
Optimization of liquid crystal devices based on weakly conductive layers for lensing
and beam steering
Jeroen Beeckman, Inge Nys, Oliver Willekens, and Kristiaan Neyts

Citation: J. Appl. Phys. 121, 023106 (2017); doi: 10.1063/1.4973939
View online: http://dx.doi.org/10.1063/1.4973939
View Table of Contents: http://aip.scitation.org/toc/jap/121/2
Published by the American Institute of Physics

Articles you may be interested in
 Photonic crystal properties of self-assembled Archimedean tilings
J. Appl. Phys. 121, 023101023101 (2017); 10.1063/1.4973472

 Highly tunable bistability using an external magnetic field in photonic crystals containing graphene and
magnetooptical layers
J. Appl. Phys. 121, 023105023105 (2017); 10.1063/1.4973897

 Microfluidic metamaterial sensor: Selective trapping and remote sensing of microparticles
J. Appl. Phys. 121, 023102023102 (2017); 10.1063/1.4973492

 Analytical equation for the motion picture response time of display devices
J. Appl. Phys. 121, 023108023108 (2017); 10.1063/1.4974006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/74752078?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aip.scitation.org/author/Beeckman%2C+Jeroen
http://aip.scitation.org/author/Nys%2C+Inge
http://aip.scitation.org/author/Willekens%2C+Oliver
http://aip.scitation.org/author/Neyts%2C+Kristiaan
/loi/jap
http://dx.doi.org/10.1063/1.4973939
http://aip.scitation.org/toc/jap/121/2
http://aip.scitation.org/publisher/
/doi/abs/10.1063/1.4973472
/doi/abs/10.1063/1.4973897
/doi/abs/10.1063/1.4973897
/doi/abs/10.1063/1.4973492
/doi/abs/10.1063/1.4974006


Optimization of liquid crystal devices based on weakly conductive layers
for lensing and beam steering

Jeroen Beeckman,a) Inge Nys, Oliver Willekens, and Kristiaan Neyts
Department of Electronics and Information Systems, Ghent University, Ghent, Belgium

(Received 23 September 2016; accepted 19 December 2016; published online 12 January 2017)

Liquid crystals are mostly known for their use in displays, but over the past decade these materials

have been applied in a number of other devices such as tunable lenses or beam steering devices. A

common technique to realize a gradual electric field profile as is required to obtain a gradual

refractive index profile in these applications is the use of weakly conductive materials. The weakly

conductive layers are able to spread the voltage profile which is applied through well-conductive

electrodes at the side of the weakly conductive layer. The simulation and design of such structures

is not trivial because two or three dimensional quasi-static electric field profiles need to be calcu-

lated. This is due to the fact that the resistivity of the conductive layers and the dielectric properties

of the liquid crystal are coupled. An exact solution requires solving a number of coupled differen-

tial equations. In this paper, we develop a model to simulate the RC-effects with an approximate

model. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4973939]

I. INTRODUCTION

Lenses with a tunable focal distance are interesting for a

number of applications in which the traditional mechanical

focus adaptation is not an option. Quite a number of com-

mercially available tunable focus lenses rely on a system

where a fluid is mechanically pushed between flexible sub-

strates1 or a system based on electro-wetting.2 Another

important class of tunable lenses is based on liquid crystals

(LCs).3 Liquid crystals are electro-optic materials that are

widely used in display applications. When applying a voltage

over a liquid crystal layer, the average molecular orientation

is changed such that it aligns along the electric field vector

(for positive dielectric anisotropy liquid crystals). Due to this

reorientation, light that is passing through the liquid crystal

layer experiences a different refractive index. A suitable

positional dependent refractive index profile then leads to a

curvature of the phase profile of the light such that the beam

is focused (in a tunable lens) or such that the direction of the

beam is changed (in beam steering devices). A wide number

of approaches have been studied to realize liquid-crystal

tunable lenses, using a non-uniform LC layer thickness,4 a

non-uniform distance to the electrodes,5 an optically hidden

dielectric structure,6 a spatially varying polymer stabilized

LC7 or a series of ring-shaped electrodes.8–10 Another impor-

tant class of LC tunable lenses is based on the use of weakly

conductive layers. Due to the combined effect of the resistiv-

ity of the layer and the capacitance of the LC layer, the

uniform weakly conductive layer leads to a spatially varying

effective voltage profile. Such a weakly conducting layer

approach can be used for tunable lens applications11–14 but

also for beam steering devices.15,16

The sheet resistance of weakly conductive layers is an

important parameter in the design of several types of devi-

ces. It is well known that large area Organic Light Emitting

Diode devices (OLEDs) for lighting applications may suffer

from a drop in light emission due to the finite sheet conduc-

tivity. An intelligent design of conductor grids is neces-

sary.17,18 Similar effects are playing a role in solar cells in

which the generated current needs to be collected by the

electrode grid in an efficient way.19 In OLEDs and solar

cells, the currents are stationary and the voltage drop is

purely related to a resistive effect. In LC devices, the LC

layer acts as a capacitor and a possible voltage drop due to a

finite sheet conductivity is strongly dependent on the fre-

quency of applied voltage. AC voltages are necessary in LC

devices as DC voltages result in unwanted movement of

small concentration of ions in the LC material.20

In one-dimensional beam steering devices, it is desired

to have a linear refractive index profile along one direction.

Approximately, this means that also the voltage variation

from one contacting electrode to the other needs to be linear.

This can be accomplished by using a conductive layer with

low sheet resistance. Such a low sheet resistance inevitably

leads to a large current. In large-area beam steering devices,

this leads to an unacceptably high power consumption.

When the sheet resistance of the weakly conductive layer is

high, the power consumption is low, but this will lead to a

voltage drop between the contacting electrodes. It is thus

vital for the proper functioning of the device that the correct

sheet resistance of the weakly conductive layer is chosen.

Finding the right sheet resistance is not evident as the simu-

lation of such a structure requires the solution of two sets of

differential equations in 2D or 3D. The first set of equations

is related to the electric field distribution in the structure con-

sisting of perfect conductors, weakly conductive layers, and

the anisotropic dielectric LC material. The other set of differ-

ential equations relates to the response of the liquid crystal

to the applied electric field. From the behavior of the liquid

crystal, it is then possible to calculate the optical field propa-

gation through the layer. In this work, we develop an approx-

imate model to simulate the behavior of nematic LC devicesa)Electronic mail: jeroen.beeckman@UGent.be
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with weakly conductive layers and the model will be applied

to one and two-dimensional beam steering devices and

tunable lenses with circular geometry.

II. THEORETICAL MODEL

A LC device with weakly conducting layers consists of

a LC layer with a uniform thickness as depicted in Fig. 1.

The LC layer is not conductive, but in practice the LC needs

to be driven with low frequency AC electric fields (e.g.,

1 kHz) to avoid ion drift.20 The permittivity of the LC is

anisotropic and is given by the 3� 3 tensor �e . The elements

of the tensor depend on the orientation of the average molec-

ular orientation (i.e., the director, given by the vector �n)

according to the equation

eij ¼ e?dij þ Deninj (1)

with e? the permittivity perpendicular to the director and

De ¼ ek � e? the dielectric anisotropy for low frequency

electric fields. For the calculation of the LC director, differ-

ent models exist, either based on a fixed order21 or variable

order approach.22 We will not elaborate the equations

describing the director distribution based on the electric field

distribution and boundary conditions in the current manu-

script, but we refer to the aforementioned references or a

textbook on this topic.23

Solving the electrical problem can be greatly simplified

when assuming that the lateral dimensions are much larger

than the thickness d of the LC layer, which in practical realiza-

tions is often the case. The typical thickness of the LC layer is

in the order of a few lm up to maximum a few tens of lm,

while the lateral dimensions range from tens of lm16 to several

millimeter.13 With this approximation, we need to find an

effective permittivity of the liquid crystal layer which is posi-

tion dependent: eeffðx; yÞ. This effective permittivity can be

calculated by stating that the z-component of the dielectric dis-

placement should be constant along the thickness of the LC

layer for every (x,y)-position: Dz ¼ ezzðzÞEzðzÞ. Using the lat-

ter equation and the fact that V1 � V2 ¼
Ð d

0
Ezdz we find the

following equation for eeff from �e :

eeff ¼
dðd

0

1

ezz
dz

: (2)

In this approximation, only the ezz component is needed.

In the case that the LC is planarly aligned and no twist is pre-

sent, then the director can be described by the tilt angle h of

the director and the equations reduce to24

K11 cos2hþ K33 sin2h
� � @2h

@z2
þ 1

2
K33 � K11ð Þsin 2h

@h
@z

� �2

þ 1

2
e0Des sin 2hjEzj2 ¼ 0: (3)

In this equation, K11 and K33 are the elastic constants of

the LC for splay and bend. The tilt angle h is the angle of the

director with the xy plane such that �n ¼ cosðhÞ�1y þ sinðhÞ�1z.

Remark that the liquid crystal only responds to the square of

the electric field. In most practical LC devices, a sinusoidally

varying field is used and for jEzj the rms value can be used.

The resulting eeff for a given voltage can be found in Fig. 2.

For this calculation, the values for the liquid crystal E7

(Merck) are used with e? ¼ 5:1e0; ek ¼ 19:6e0, K11¼ 12 pN,

K33¼ 19.5 pN and a fixed tilt angle at the top and bottom

substrates of 2�.
The surface current densities �H1 and �H2 at the bottom

and top plates, respectively, are given by

�H1 ¼ �r1d1rV1; (4)

�H2 ¼ �r2d2rV2: (5)

In these equations, ri denotes the conductivity and di is

the thickness of the weakly conductive layer, while Vi is the

potential distribution in the weakly conductive layer. The

nabla operator only involves derivatives to x and y. Due to

the capacity of the LC layer, at each point we can state that

the current density Jz going from the bottom to the top plate

is given by

Jz ¼ jx
eeff

d
V2 � V1ð Þ: (6)

From now on we assume that all quantities are sinusoi-

dal with an angular frequency x. The conservation law of

charge then leads to

r � �H1 ¼ �Jz; (7)

r � �H2 ¼ Jz: (8)

Combining the above equations leads to the two coupled

differential equations

FIG. 1. Sample geometry showing the liquid crystal layer which is sand-

wiched between two weakly conductive layers. Solid dark lines indicate per-

fectly conductive electrodes. FIG. 2. The variation of eeff as a function of the applied voltage.
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r2V1 ¼
jxeeff

r1d1d
V1 � V2ð Þ; (9)

r2V2 ¼
jxeeff

r2d2d
V2 � V1ð Þ: (10)

eeff is a function of jV1 � V2j resulting in a system of

nonlinear partial differential equations to be solved.

III. TWO-DIMENSIONAL GEOMETRY WITH ONE WEAK
CONDUCTOR

In the two-dimensional case, we assume that there is no

variation along y, while there are two perfect contacts at

x¼ 0 and x¼ L on the bottom contact. The above equations

simplify greatly if the top conductor has a large conductivity

(r2d2 � xemax=d), which leads to a homogeneous voltage

distribution in the top conductor. For simplicity, we set

V2 ¼ 0. The equation to be solved reduces to

r2V1 ¼
jxeeff

r1d1d
V1: (11)

In a two-dimensional geometry, this equation reduces to

a one-dimensional equation with only dependency on x

@2V1

@x2
¼ jxeeff

r1d1d
V1 ¼ jc2V1: (12)

A. Constant permittivity approximation

If we assume that eeff is position independent, the gen-

eral solution of this equation is given by

V1 ¼ A exp � 1þ jffiffiffi
2
p cx

� �
þ B exp

1þ jffiffiffi
2
p cx

� �
: (13)

The RC-effect is fully taken into account by the factor c.

One can define a characteristic distance xc ¼ 1=c, which

expresses the distance over which the effect takes place. For

the ease of notation, we set 1þjffiffi
2
p c ¼ a and we call the distance

between the left and right electrode L. Consider the case

where the left electrode is set to Vþ and the right electrode to

V�, then the solution is given by

V1 xð Þ ¼ Vþ exp aLð Þ � V�
2sinh aLð Þ exp �axð Þ

þ V� � Vþ exp �aLð Þ
2sinh aLð Þ exp axð Þ: (14)

To demonstrate the result of this equation we choose to

immediately select realistic values for the different parame-

ters in order to show the effect on the voltage distribution.

For the geometry we choose a realistic spacing of L ¼ 50 lm

between two perfectly conducting electrodes at the bottom.

The rest of the material properties are chosen such that the

characteristic distance xc equals 10, 20, and 50 lm. Figures 3

and 4 show the absolute value jVj and the phase difference

with the applied voltage / with V1 ¼ jVj exp ðj/Þ for a dis-

tance between the two contacting electrodes of 50 lm.

Figure 3 shows the situation when the contacting elec-

trodes at the left and the right side are set to 1 V. For large

values of the characteristic distance, the absolute value is

nearly constant and equal to 1 V in the gap between the two

contacting electrodes. For smaller values of the characteristic

distance, there is a considerable voltage drop between the

two contacting electrodes due to the RC effects. From the

phase plot, it is clear that the voltage signal in the middle is

trailing the signals applied to the side. The phase difference

in the middle is becoming larger when the characteristic

length is decreasing.

A similar observation can be made when 1 V is applied

on the left side and 0 V on the right side. Instead of a linear

voltage variation from left to right, due to the RC effects the

voltage is smaller than the linear slope. The voltage trailing

seems to keep increasing with increasing x. This is due to the

fact that the applied voltage is zero at the right side and thus

the phase is undefined.

FIG. 3. Absolute value and phase of the voltage signal for a device with a

bottom weakly conductive electrode and a top perfect conductor. The bottom

conductive layer is contacted with 1 V at both sides. The different curves cor-

respond to different characteristic distances as denoted in the legend.

FIG. 4. Absolute value and phase of the voltage signal for a device with a

bottom weakly conductive electrode and a top perfect conductor. The bot-

tom conductive layer is contacted with 1 V at the left and 0 V at the right.

The different curves correspond to different characteristic distances as

denoted in the legend.
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B. Variable permittivity

For some LC materials, there is a big difference between

the e? and the ek values. When the characteristic distance is

close to the distance between the contacting electrodes, the

variation of the effective permittivity can have a big influ-

ence on the obtained voltage signal. In contrast to Sec. III A,

the voltage profile is also depending strongly on the value of

the applied voltage since for small voltages there is almost

no variation of the effective permittivity. But for voltages

around the threshold, there is a large variation. The calcula-

tion involves solving the equations for both the LC (3), the

effective permittivity (2), and the potential distribution (12).

The partial differential equations are numerically solved

using the partial differential equation (PDE) Toolbox in

Matlab using finite element discretization. The nonlinearity

due to the variable permittivity is taken into account by solv-

ing the equations iteratively. After a limited number of itera-

tions, a self-consistent solution is found. Figure 5 shows the

results of the calculation for a configuration similar to Fig. 3.

The parameter c is now position dependent and can be writ-

ten as c2 ¼ eeff

e?
c2

0 with 1=c0 ¼ 20lm.

C. Power consumption

The complex electrical power supplied by an electrode

can be calculated by using the following equation at the bor-

der of every contacting electrode i: P ¼
P

iVi � Ii at position

x¼ xi, with for a one-dimensional electrode Ii ¼ 7rd1D
@Vi

@x jx¼xi
. In this equation, D is the length of the electrodes in

the invariant direction. The minus and plus signs are, respec-

tively, for an electrode at the left and right edge.

For the case of the constant permittivity approximation

and V� ¼ 0, we find

P ¼
rd1DV2

þ

tanh
1þ jffiffiffi

2
p cL

� � 1þ jffiffiffi
2
p c: (15)

The power that we find is a complex number which

means that there is both an active and a reactive power

component. Since most sources are not able to compensate

for the reactive power, it is fairly correct to state that the

power consumption is equal to the absolute value of P. If c is

much smaller than 1 (meaning, high conductivity of the

layer) then the voltage profile is changing in a linear way

from left to right and Equation (15) results in a real number

(only active power). Then the power is equal to

P ¼
rd1DV2

þ
L

: (16)

To use the device for large area beam steering, it is nec-

essary to repeat the structure multiple times. Then we obtain

a configuration at the lower plane as illustrated in Fig. 6. The

left side of the weakly conductive layer is connected through

the bottom electrode on the figure, while the right side is

connected through the top one.

For this simple geometry, assuming an active area of D
by Ltot the total power consumption of the device equals

P ¼
rd1DV2

þLtot

L2
: (17)

Alternatively, Equation (15) should be multiplied by

Ltot=L in the case when the sheet conductivity is not high.

Using realistic values for a LC beam steerer of 1 cm2

surface area (d ¼ 10l m, x ¼ 2p� 1 kHz, eeff ¼ 10� e0;
L ¼ 50l m) we plot the power in Fig. 7. For large values of

the sheet conductivity, the resistive power prevails and the

total power jPj is equal to the active power given by

Equation (17). For low values of the sheet conductivity, the

potential drops to zero quickly when moving away from the

left electrode. The power consists of equal parts of resistive

and capacitive losses. As was made clear in the previous

paragraph, the optimal value of the characteristic distance

should be comparable to the distance between the two con-

tacting electrodes L. For these values of the characteristic

distance we are in the region of the graph where the active

power is coming close to the total power. This means that for

optimal values of the sheet conductivity (around 10�10S) the

beam steerer of 1 cm2 total active area results in a power

consumption of a few lW, which is very reasonable. Such

FIG. 5. Absolute value of the voltage signal and the variation of the effec-

tive permittivity for a device with a bottom weakly conductive electrode and

a top perfect conductor. The bottom conductive layer is contacted with,

respectively, 1, 2, and 3 V on both sides.

FIG. 6. Geometry of a one-dimensional steerer for calculating the electrical

power consumption.
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values of the sheet conductivity can be obtained with

conductive polymers, such as poly (3, 4-ethylenedioxythio-

phene) polystyrene sulfonate (PEDOT:PSS). In the work of

Shang et al.16 for example, conductive polymer layers with a

sheet resistance of 11 GX/sq are used, equal to a sheet con-

ductivity of about 10�10S.

IV. THREE-DIMENSIONAL GEOMETRIES

A. Circular geometry

Configurations which are circularly symmetric can be

solved analytically in the case of only one weak conductor

layer and constant permittivity. Rewriting Equation (12) in

polar coordinates leads to

@2V1

@r2
þ 1

r

@V1

@r
þ 1

r2

@2V1

@/2
� jc2V1 ¼ 0: (18)

Separation of variables V1ðr;/Þ ¼ RðrÞUð/Þ and

expressing that there is no variation in / lead to the equation

r2 d2R

dr2
þ r

dR

dr
� jc2r2R ¼ 0 (19)

of which the solution is the zeroth order Bessel function

R rð Þ � J0

1þ jffiffiffi
2
p cr

� �
: (20)

B. Resistive lens with an outer contact ring

An obvious example of a three-dimensional geometry is

a lens with a tunable focal length. Such a lens consists of a

weakly conductive circular area which is contacted with a

circular outer ring of a highly conductive material on one

substrate. In order to achieve lensing, the resulting phase

profile of light propagating through the structure needs to be

a parabolic profile. For a convex lens with a positive diopter,

the optical path length (OPL or refractive index) in the mid-

dle area needs to be larger than the outer regions. This means

that the voltage over the planarly aligned liquid crystal needs

to be larger at the edge compared to the center. Setting the

boundary condition VðR;/Þ ¼ V0 leads to the following ana-

lytical solution in the constant permittivity approximation

V1 R;/ð Þ ¼ V0

J0

1þ jffiffiffi
2
p cr

� �

J0

1þ jffiffiffi
2
p cR

� � : (21)

The absolute value of the resulting V1 along the diameter

of the lens is shown in Fig. 8. In order to achieve maximum

focusing, the voltage near the center area should be close to

zero. As opposed to Sec. III, the ideal conductivity in this

case (neglecting electrical power consumption) should not be

high in order to obtain the ideal potential profile. A highly

conductive layer results in a nearly constant potential profile,

which is obviously unwanted.

In the limit of high conductivity cR� 1, the Bessel

function can be approximated by the first terms of its series

expansion and V1 takes the form

V1 R;/ð Þ
V0

	 J0

1þ jffiffiffi
2
p cR

� �� ��1

� 1� 1þ jffiffiffi
2
p cr

2

� �2

þ 1

4

1þ jffiffiffi
2
p cr

2

� �4
" #

: (22)

In the first order, the voltage profile as a function of r is

parabolic. If the LC would respond linearly to applied volt-

age in terms of refractive index profile, this would result in

the desired parabolic refractive index profile of an ideal lens.

Unfortunately, in reality, a number of nonlinear effects come

into play which makes the profile deviate from the parabolic

one as will be shown and explained in Subsection IV D.

C. Power consumption

Similar to that in Section III C, we can find the power

consumption of the device

P ¼ V0r1d12pR
@

@r
V1 r;/ð Þ½ 
r¼R

¼ �V2
0r1d12p

1þ jffiffiffi
2
p cR

J1

1þ jffiffiffi
2
p cR

� �

J0

1þ jffiffiffi
2
p cR

� � : (23)

Note that in the latter equation c depends on r1d1. We

can rewrite the equation as

FIG. 7. Power consumption for a 1 cm2 beam steerer as a function of the

sheet conductivity of the weakly conductive layer.

FIG. 8. Absolute value of the voltage along the diameter of a ring-shaped

perfect conductor with radius R for different values of xc.
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P ¼ �V2
0

xeeff

c2d
2p

1þ jffiffiffi
2
p cR

J1

1þ jffiffiffi
2
p cR

� �

J0

1þ jffiffiffi
2
p cR

� � : (24)

Suppose that we are interested to know the power con-

sumption as a function of the sheet conductivity r1d1 for a

fixed radius R of the circular lens and fixed x, we can plot P
as a function of xc ¼ 1=c. The result is shown in Fig. 9.

In contrast to the power consumption of the two-

dimensional geometry shown in Fig. 7, the power does not

go to infinity when rd1 increases (or alternatively when xc

increases) because the outer ring is a single electrode and no

current can flow towards another electrode. Instead, the

power reaches a finite value for large values of r1d1 and is

completely imaginary. For values which are acceptable for

tunable lenses, xc in the range of 0:2R! 0:5R (see Fig. 8),

the power is again a mixture of active and reactive power.

D. Numerical simulations of a tunable lens

A lens with good optical quality should have a parabolic

Optical Path Length (OPL) variation along the radius of the

lens. The voltage profiles in Fig. 8 look more or less para-

bolic, but this is not sufficient because the response of the

LC as a function of the applied voltage is very nonlinear.

The optical path length can be calculated using the equation

for the refractive index as a function of the tilt angle of the

LC director

neff ¼
nkn?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2
k sin2 hð Þ þ n2

? cos2 hð Þ
q : (25)

The neff needs to be integrated over the thickness of the

LC layer to obtain the OPL. Dividing the OPL by the LC

layer thickness results in an average refractive index as

shown in Fig. 10. A circular area of 50 lm diameter with an

outer ring set to voltages ranging from 1 to 15 V is assumed.

The characteristic distance xc is chosen such that the voltage

in the center is close to zero, i.e., in the order of a few hun-

dred millivolt. From our simulations, it is found that charac-

teristic distances around 10 lm (¼ 0:4R) result in refractive

index profiles which combine an acceptable compromise

between tuning range of the focal distance and lens distor-

tions (i.e., deviation from the parabolic profile).

The refractive index profiles in Fig. 10 can be further

analyzed. Although the theoretical model predicts a para-

bolic variation of the voltage (in first order approximation,

see Eq. (22)), the OPL profiles in Fig. 10 deviate strongly

from the ideal parabolic profile. This is due to two reasons:

FIG. 9. Power consumption of a circular lens with the outer contact ring as a

function of the characteristic distance divided by the lens radius.

FIG. 10. Refractive index profile inside a ring-shaped PEC with a weakly

conductive layer of xc ¼ 10 lm (top) and xc ¼ 12 lm (bottom). The differ-

ent curves are for voltages on the PEC ring ranging from 1 to 15 V.

FIG. 11. Analysis of the configuration of Fig. 10 in terms of focal distance

and lens aberrations. xc ¼ 10 lm (top) and xc ¼ 12 lm (bottom).
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first, the voltage profile is not parabolic due to the combined

effect of a voltage dependent permittivity and the fact that

the first order approximation in Eq. (22) is not always valid.

Second, the OPL as a function of applied voltage is strongly

nonlinear. A different LC mode which shows a more linear

response as a function of voltage would result in more ideal

profiles. The focal distance of the main focal point and the

lens aberration is calculated by fitting the first two (circularly

symmetric) Zernike polynomials Z0
2ðqÞ ¼ a3ð2q2 � 1Þ and

Z0
4ðqÞ ¼ a8ð6q4 � 6q2 þ 1Þ with the OPL variation as a

function of q ¼ r=R.25 An LC layer thickness of 10 lm is

assumed. Z0
4 is often called the third order spherical aberra-

tion, and is a good measure for the deviation from the ideal
FIG. 12. Configuration for two-dimensional steering.

FIG. 13. Absolute value of the potential distribution at the top and bottom (left and middle figures) and potential difference between top and bottom (right) fig-

ures for a configuration for two-dimensional beam steering. (a) VA¼ 1 V, VB¼VC¼VD¼ 0 V; (b) VA¼ 1 V, VB¼VC¼ 0 V, VD¼ 0.5 V; (c) VA¼VD¼ 1 V,

VB¼VC¼ 0 V.
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parabolic profile. The results for the focal distance and the

aberration (i.e., coefficient a8 given in a number of wave-

lengths) are shown in Fig. 11. Of course, also higher order

aberrations are occurring but are not discussed here. For both

characteristic lengths, there is a voltage region in which the

focal distance variation is fairly linear with applied voltage.

Also in this voltage region, the lowest lens aberrations can

be found. The two figures clearly demonstrate the trade-off

which needs to be made in terms of characteristic length.

Higher conductivity (smaller characteristic length) leads to

lower overall aberration, but gives rises to a longer minimal

focal distance.

E. Two-dimensional steering with two weakly
conductive layers

As an example of a configuration with weakly conduc-

tive layers on both sides of the LC layer, we investigate

whether two-dimensional steering is possible with two

straight Perfect Electric Conductors (PECs) at the bottom

along the y direction and two straight PECs at the top along

the x direction as shown in Fig. 12. Both top and bottom

PECs are 50 lm apart from each other, while r1d1 ¼ r2d2.

The contour plots of the potential distribution for 3 different

applied voltages are shown in Fig. 13. When examining the

potential difference (figures on the right side), it is clear that

a fairly linear voltage profile can be realized along any direc-

tion in the xy-plane, demonstrating the possibility of two-

dimensional steering. However, the situation is different

from the one-dimensional steering case. As it is clear from

Fig. 6, in the one-dimensional case, it is possible to extend

the configuration periodically such that large blazed gratings

can be realized. In the two-dimensional case, in general, this

is not possible anymore. The steering is then limited to a

one-period device. Nevertheless we believe that even a one-

period device has important applications in which for exam-

ple, a focused laser beam can be steered in any possible

direction. In such an application, the laser beam must be

focused such that its waist is smaller than the region formed

by the four contacting electrodes. As a result of the focusing,

there is a considerable divergence of the beam. It is clear

that the angle over which the beam can be steered must be

much larger than the beam divergence angle. To the best of

our knowledge, we believe that such a device has not been

presented yet in the literature.

V. CONCLUSION

In this paper, we have developed an approximated

quasi-static model for describing LC devices with weakly

conductive electrodes driven by sinusoidally varying vol-

tages. The nonlinear partial differential equations are solved

using finite element discretization. The model offers an easy

way to estimate the LC behavior in such devices by reducing

the number of dimensions by one and thus avoiding the need

for full three-dimensional calculation of the potential distri-

bution inside the devices. The model is applied to a number

of interesting configurations. A novel two-dimensional

steering device is proposed and its working principle is

demonstrated.
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