Deep architectures for feature extraction and generative modeling
Diepe architecturen voor kenmerk extractie en generatieve modellen

Aaron van den Oord

Promotoren: prof. dr. ir. J. Dambre, dr. ir. B. Schrauwen
Proefschrift voor het behalen van de graad van
Doctor in de Ingenieurswetenschappen: Computerwetenschappen

Vakgroep Elektronica en Informatiesystemen
Voorzitter: prof. dr. ir. R. Van de Walle

Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2014-2015

Dankwoord

Toen ik 4 jaar geleden mijn doctoraat startte, had ik geen idee waar
ik aan begon. Al snel bleek dat het een enorm boeiende en intellectueel
uitdagende tijd in mijn leven zou worden. Een doctoraat geeft je de unieke
kans (en dwingt je) om zelfstandiger te worden en de mogelijkheid om je
volledig te verdiepen in een zijtak van de wetenschap. Het is echter niet iets
dat je alleen doet: zonder de samenwerking en steun van anderen was dit
doctoraat nooit mogelijk geweest.

Eerst en vooral wil ik graag mijn (co-)promotoren Benjamin Schrauwen
en prof. Joni Dambre bedanken. Benjamin voor zijn motivatie om dingen
groots aan te pakken en ondernemend te zijn. Joni voor haar vele hulp bij
het afronden van mijn thesis en de perfecte overname van de onderzoeks-
groep. Ook wil ik beide bedanken voor de vrijheid die ze me gaven tijdens
mijn doctoraat, en voor het nalezen en feedback bij het afwerken van dit
proefschrift.

Daarnaast wil ik uiteraard ook de collega’s bedanken, die ondertussen
vrienden geworden zijn. Philémon was mijn kantoorgenoot, met wie ik vele
leuke en inspirerende gesprekken heb gehad. Francis was een vaste waarde in
de groep bij wie je altijd terecht kon voor advies en interessante discussies.
Sander was er altijd om nieuwe ideeén te bespreken en ’s avonds een frietje te
stekken. We hebben veel samengewerkt voor papers en presentaties waarbij
we elkaar goed aanvulden. Samen met hem, Jonas, Lionel, Jeroen, Pieter en
Ira hebben we ook een Kaggle-competitie gewonnen. Dit droeg zeker bij aan
de goede teamsfeer, net zoals de vele Lan-parties ’s avonds en het verkennen
van lunchplaatsen. Natuurlijk was het lab ook niet compleet zonder de
andere teamgenoten, bedankt daarom ook aan Pieter-Jan, Michiel, Tim,
Ken, Michagl, Juan Pablo, Thibault en David.

II

Daarnaast was er Elias, al een goede vriend voor de start van mijn
doctoraat sinds onze uitwisseling in Taiwan. Ik wil hem dan ook in het
bijzonder bedanken, zonder hem zou de afgelopen 4 jaar zeker niet hetzelfde
geweest zijn. Dat is ook zo voor heel wat andere vrienden: Jonas, Jonas,
Pieter, Jeroen, Sebastiaan, Tijs ...

I would also like to thank Philippe Hamel for the wonderful and challen-
ging internship at the Google Play Music team in Silicon Valley.

Uiteraard kan ik ook mijn ouders en broer niet vergeten. Ik kan hen niet
genoeg bedanken, zonder hen had ik zelfs nooit aan dit doctoraat kunnen
beginnen. Tot slot, Alexandra, bedankt voor er altijd te zijn voor mij, voor
de zalige tijden in Gent en om samen de oversteek te maken naar London!

Aéaron van den Oord

Prof.

Prof.

Dr.

Prof.

Dr.

Examencommissie

Gert de Cooman, voorzitter
Vakgroep ELIS
Faculteit Ingenieurswetenschappen en Architectuur

Universiteit Gent

Joni Dambre, promotor
Vakgroep ELIS
Faculteit Ingenieurswetenschappen en Architectuur

Universiteit Gent

Benjamin Schrauwen, co-promotor
Vakgroep ELIS
Faculteit Ingenieurswetenschappen en Architectuur

Universiteit Gent

Tom Dhaene

Vakgroep INTEC

Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Michiel Hermans

OPERA photonique
Université Libre de Bruxelles
Andriy Mnih

Google Deepmind

Eerste (interne) verdediging: 23 Oktober 2015, 16h00
Openbare verdediging: 13 November 2015, 16h00

Samenvatting

Intfroductie

De voorbije jaren is de interesse in machinaal leren (ML) enorm gestegen.
Deze tak in computerwetenschappen onderzoekt algoritmes die via data com-
plexe problemen kunnen oplossen (zoals beeldherkenning, taal- en spraak-
verwerking, . ..). Dergelijke problemen kunnen meestal niet opgelost worden
met typische algoritmes, omdat er geen duidelijke regels of commando’s zijn
om ze uit te voeren. ML daarentegen gebruikt modellen die leren uit data
waardoor hun gedrag zal afhangen van de ingegeven data in het programma.
Omdat men vaak dezelfde algoritmes kan toepassen op verschillende data-
sets om zo problemen op te lossen met minimale tussenkomst van mensen,
kunnen we deze algoritmes beschouwen als intelligent.

Een andere reden voor de stijgende interesse is de alsmaar grotere be-
schikbaarheid van digitale informatie en rekenkracht, wat toelaat om steeds
complexere en krachtigere ML modellen te ontwerpen. Een familie van krach-
tige technieken die opmerkelijk succesvol is gebleken, is deep learning (DL).
Deze ML modellen hebben een hiérarchisch gelaagde structuur. Elke laag
bouwt verder op de representatie van de vorige laag en daardoor worden
concepten met een telkens hoger abstractieniveau geleerd. Onlangs nog was
er een enorme doorbraak in gesuperviseerd leren met diep neurale netwerken
waardoor de state-of-the-art op talloze applicaties is verbeterd.

Ondanks dat DL modellen zeer goed werken voor gelabelde data (gesu-
perviseerd leren), zijn krachtige ongesuperviseerde modellen nog steeds een
groot en open probleem. Binnen de tak van ongesuperviseerd leren heb-
ben generatieve modellen veel aandacht gekregen omdat heel wat problemen
probabilistisch te schrijven zijn in functie van de datadistributie. Enkele
voorbeelden hiervan zijn voorspelling, reconstructie, simulatie, Een
van de meest veelbelovende richtingen voor generatieve modellen zou in het

VI

gebruik van DL methodes kunnen liggen.

Dit proefschrift

Door de recente ontwikkelingen in deep learning en generatieve modellen
hebben deze twee ML families een belangrijke rol gespeeld in dit proefschrift.

Het werk in dit boek kan daardoor ook ruwweg opgesplitst worden in
twee thema’s: deep learning voor muziek information retrieval (MIR) en
generatieve modellen voor afbeeldingen. In het eerste deel kijken we hoe
DL toepasbaar is op belangrijke problemen in het MIR domein, zoals in-
houdsgebaseerde muziekaanbeveling en transfer learning (machinaal leren
voor kennisoverdracht) voor het taggen en classificeren van muziek. In het
tweede deel hebben we gewerkt rond praktisch toepasbare en krachtige diepe
generatieve modellen voor afbeeldingen.

Deep learning voor MIR

Automatische muziekaanbeveling werd de laatste jaren steeds relevanter om-
dat er tegenwoordig veel muziek digitaal verkocht en beluisterd wordt. De
meeste aanbevelingsystemen gebruiken een techniek die collaborative filtering
(CF) heet en zich baseert op de luistergeschiedenis van talloze gebruikers.
Het probleem met deze techniek is dat het moeilijk kan omgaan met num-
mers waarvoor weinig luistergeschiedenis is. Daarom is het niet geschikt
voor nieuwe of onbekende muziek.

In ons werk worden de latente factoren van een CF model uit muziek-
fragmenten voorspeld als ze niet uit de luistergeschiedenis kunnen gehaald
worden. We vergelijken een traditionele aanpak die een zogenaamde bag-
of-words representatie gebruikt met diepe convolutionele neurale netwerken.
We evalueren de voorspellingen kwalitatief en kwantitatief op de million
song dataset. Zo tonen we dat de voorspelde latente factoren zinnige aan-
bevelingen genereren ondanks de grote semantische afstand tussen de ka-
rakteristieken van een nummer die de gebruikersvoorkeur beiivloeden en de
overeenstemmende audiosignalen. Daarnaast tonen we dat de recente verbe-
teringen uit de DL litatuur zeer goed toepasbaar zijn op muziekaanbeveling,
aangezien de diepe convolutionale neurale netwerken significant beter pres-
teerden dan de traditionele aanpak.

Gezien de goede resultaten voor muziekaanbeveling hebben we een gelijk-
aardige aanpak toegepast voor transfer learning. De niet-lineaire projectie
van audiosignalen naar latente factoren houdt rekening met veel aspecten
die de voorkeuren van gebruikers kunnen beiivloeden. Verder kan deze pro-
jectie ook op grote datasets getraind worden. Daarom onderzochten we of

VII

ze kan ingezet worden als kenmerk extractie voor andere taken, zoals mu-
ziekclassificatie en tagging. Onze experimenten tonen aan dat kenmerken
die zo geéxtraheerd werden consistent beter werken dan een puur ongesu-
perviseerde manier. We deden deze experimenten op vier datasets: GTZAN|,
1517-Artists, Unique en Magnatagatune.

Generatieve modellen voor afbeeldingen

In het tweede deel van dit proefschrift lag de focus op generatieve model-
len. We bestudeerden eerst mizture modellen omdat aangetoond is dat deze
(gezien hun eenvoud) opmerkelijk goed de datadistributie van afbeeldingen
kunnen modelleren. We stellen een nieuw student-t mixture model (STM)
voor als generatief model voor afbeeldingen en tonen dat ze significant be-
ter werken dan de Gaussian mixture model (GMM) voor deze taak. Dat
komt vooral omdat de STM in staat is om contrast te modelleren samen met
lineaire correlaties in elke mixture component.

Vervolgens tonen we dat generatieve modellen zoals GMMs en STMs
ook ingezet kunnen worden voor verliesloze en verlieshebbende compressie
van afbeeldingen. Ondanks dat de voorgestelde compressieschema’s relatief
eenvoudig zijn in vergelijking met die van industriestandaarden, zijn de com-
pressieresultaten licht beter dan die van JPEG2000 en significant beter dan
die van JPEG.

Daarnaast hebben we ook een nieuw diep generatief model ontwerpen dat
een krachtige uitbreiding is van GMMs naar meerdere lagen: de diepe GMM.
De parameterisatie van de diepe GMM laat toe om efficiént combinaties van
variaties uit afbeeldingen te halen. We stellen een nieuw EM gebaseerd
algoritme voor dat goed schaalbaar is naar grote datasets en tonen aan
dat de verschillende stappen in het algoritme gemakkelijk gedistribueerd
kunnen worden over verschillende machines. Onze experimenten tonen dat
GMM architecturen met meerdere lagen beter generaliseren dan degene met
minder lagen, waarbij de beste resultaten vergelijkbaar zijn met die van state
of the art technieken.

In het laatste deel van dit werk breiden we diepe GMMs uit zodat ze
toepasbaar zijn voor grotere afbeeldingen. Dat doen we door transformaties
met plaatselijke connectiviteit te gebruiken. Net zoals met convoluties in
diepe neurale netwerken, zorgt plaatselijke connectiviteit bij diepe GMMs
ervoor dat we de modellen sneller trainen en beter generaliseren dan volledig
geconnecteerde netwerken. Onze experimenten tonen de voordelen aan van
deze uitbreidingen en geven we nieuwe inzichten in het modelleren van hoog
dimensionele data.

summary

Intfroduction

In recent years there has been an enormous increase of interest in machine
learning, the computer science subfield in which algorithms are studied that
use data to solve complex problems. Examples are image recognition, natural
language processing, speech recognition, These tasks are typically hard
to solve algorithmically as there is no clear set of commands or rules that can
be used to perform them. Machine learning models are said to learn from
the data as their behavior will depend on the data samples that have been
fed into the program as input. Because the same algorithms can often be
used on different datasets to solve different problems with little intervention
from humans, we could characterize these algorithms as being intelligent.

The growing interest in machine learning has been due to the increas-
ing availability of digitized information and computing power, which allows
more complex and powerful machine learning models to be designed. A
family of powerful models that have been especially successful is deep learn-
ing. Deep learning techniques are machine learning techniques that have a
hierarchical multi-layered structure. Each layer can build upon the repre-
sentation of the previous layer and learn concepts with increasingly higher
levels of abstraction. Recently there has been an enormous breakthrough in
supervised learning with deep neural networks, which has resulted in deep
learning being the state of the art in numerous applications.

Although deep learning works really well on labeled data (with super-
vised learning), powerful unsupervised models are still an open problem.
Within unsupervised learning, generative models have received a lot of at-
tention, as many problems can be written probabilistically in terms of the
distribution of the data. This includes prediction, reconstruction, imputa-
tion and simulation. Therefore, one of the most promising directions for

generative models may lie in deep learning methods.

This dissertation

Because of the recent developments in deep learning and generative models,
these two families of machine learning models have played an important role
in this dissertation.

The work in this book can therefore roughly be split into two themes:
deep learning for music information retrieval (MIR) and generative models
for natural images. In the first part we look at how deep learning can be
applied to important problems in the MIR field, including content-based
music recommendation and transfer-learning for tagging and classification.
In the second part we have worked towards more tractable yet powerful deep
generative models for natural images.

Deep learning for MIR

Automatic music recommendation has become an increasingly relevant prob-
lem in recent years, since a lot of music is now sold and consumed digitally.
Most recommender systems rely on collaborative filtering. However, this
approach suffers from the cold start problem: it fails when no usage data is
available, so it is not effective for recommending new and unpopular songs.

In our work we propose to use a latent factor model for recommen-
dation, and predict the latent factors from music audio when they cannot
be obtained from usage data. We compare a traditional approach using
a bag-of-words representation of the audio signals with deep convolutional
neural networks, and evaluate the predictions quantitatively and qualita-
tively on the Million Song Dataset. We show that using predicted latent
factors produces sensible recommendations, despite the fact that there is
a large semantic gap between the characteristics of a song that affect user
preference and the corresponding audio signal. We also show that recent
advances in deep learning translate very well to the music recommendation
setting, with deep convolutional neural networks significantly outperforming
the traditional approach.

Given the performance on music recommendation, we tried a similar
approach for transfer learning tasks. The mapping from the music feature
space to the latent factor space captures a lot of the aspects of audio that
affect listening behavior and can be trained on large datasets, therefore we
investigate the advantages of using this mapping as feature extraction for
other related tasks, such as music classification and tagging. In our ex-
periments we have shown that features learned in this fashion consistently

X1

outperform a purely unsupervised feature learning approach on the GTZAN,
1517-Artists, Unique and Magnatagatune datasets.

Generative natural image models

In the second part of this dissertation the main focus lies on generative
models. As a starting point we study mixture models as these were shown to
be remarkably good at density modeling of natural image patches, especially
given their simplicity. We propose the student-t mixture model (STM) as a
generative model for natural images patches and show that it significantly
outperforms the Gaussian mixture model (GMM) for density modeling of
image patches. We show that performance can largely be attributed to the
fact that a STM is able to model contrast in addition to linear dependencies
within a single mixture component.

Next we show that generative models such as GMMs and STMS can be
used for lossless and lossy compression of images. Although the proposed
compression schemes are relatively simple compared to those of industry
standards, the compression results are favorable to those of JPEG 2000 and
significantly outperform JPEG.

Subsequently, we introduce a new deep generative model that is a straight-
forward but powerful generalization of GMMs to multiple layers: the deep
GMM. The parametrization of a deep GMM allows it to efficiently capture
products of variations in natural images. We propose a new EM-based algo-
rithm that scales well to large datasets, and show that both the Expectation
and the Maximization steps can easily be distributed over multiple machines.
In the density estimation experiments we show that deeper GMM architec-
tures generalize better than more shallow ones, with results comparable to
those of the state of the art.

In the final part of this dissertation we extend and apply deep GMMs
to modeling higher dimensional images, by introducing locally connected
transformations. Similarly to convolutions in deep neural networks, local
connectivity in deep GMMSs allows us to train faster and with less overfitting
than fully connected networks on images. Our experiments show the benefits
of using locally-connected deep GMMs and give new insights on modeling
higher dimensional images.

List of Abbreviations

AC Arithmetic coding

ALS Alternating least squares
AUC Area under the ROC curve
BD Block diagonal

BoW Bag of words

CDF Cumulative distribution function
CF Collaborative filtering

CNN Convolutional neural network
DBN Deep belief network

DCT Discrete cosine transform
DWT Discrete wavelet transform
EM Expectation Maximization
EPLL Expected patch log-likelihood
GMM Gaussian mixture model

HC Half-convolution

LSTM long-short term memory RNN
mAP Mean average precision

MF Matrix factorization

MFA Mixture of factor analyzers
MIR Music information retrieval

MFCC Mel-frequency cepstral coefficient
MoGSM Mixture of Gaussian scale mixtures
ML Machine learning

MLE Maximum likelihood estimation

MLP Multilayer perceptron

XIV

MSD
MSE
NMSE
NN
PCA
PDF
PSNR
RBM
ReLU
ROC
RNN
SGD
STM
SVD
SVM
VQ
WMF
WPE

Million song dataset

Mean squared error
Normalized mean squared error
Neural network

Principal component analysis
Probability density function
Peak signal-to-noise ratio
Restricted Boltzmann machine
Rectified-linear unit

Receiver operating characteristic
Recurrent neural network
Stochastic gradient descent
Student-t mixture model
Singular value decomposition
Support vector machine

vector quantization

Weighted matrix factorization
Weighted prediction error

1

Infroduction
1.1 Machine learning
1.2 Types of machine learning
1.2.1 Supervised learning
1.2.2 Unsupervised learning
1.2.3 Transfer learning
1.24 Other
1.3 Generative models
1.3.1 Gaussian mixture models
1.4 Why generative models?
1.4.1 Synthesis
1.4.2 Improving generalization performance
1.4.3 Simulation and prediction
1.4.4 Reconstruction
1.4.5 Compression
1.5 Deeplearning
1.5.1 Neural networks
1.6 Thesis outline and contributions
1.7 List of publications
Deep Content-Based Music Recommendation

2.1

2.2

Contents

Music recommendation
2.1.1 Content-based music recommendation
2.1.2 Collaborative filtering
2.1.3 The semantic gap in music
2.1.4 Proposed approach
The dataset

© © 00 O Ut U = W N N -

N D) = = e e
N O Tt W W~ O

N
(34}

XVI

3

2.3 Weighted matrix factorization
2.4 Predicting latent factors
2.4.1 Bag-of-words representation
2.4.2 Convolutional neural networks
2.4.3 Objective functions
2.5 Experiments. 0oL,
2.5.1 Versatility of the latent factors
2.5.2 Quantitative evaluation
2.5.3 Qualitative evaluation
2.6 Related work L.
2.7 Conclusion

Transfer learning for Music Information Retrieval

3.1 Imntroduction.
3.2 Datasets
3.3 Proposed approach

3.3.1 Overview,

3.3.2 Dimensionality reduction in the label space
3.3.3 Unsupervised learning of low-level features
3.3.4 Supervised learning of high-level features
3.3.5 Evaluation of the features for target tasks

3.4 Experiments and results
3.4.1 Sourcetasks.
342 Targettasks.

3.5 Conclusion

Student-t Mixture Models and Image Compression

4.1 Introduction
4.2 Related worko Lo
4.2.1 Image compression
4.2.2 Models of image patches

4.3 Mixture models as image priors
4.4 Compression with mixture models
4.4.1 Arithmetic coding
4.4.2 Lossless compression
4.4.3 Lossy compression

4.5 Results and discussion
4.5.1 Datasets and methods
4.5.1.1 Berkeley Segmentation Dataset

4.5.1.2 UCID dataset

4.5.1.3 JPEG and JPEG 2000

4.5.2 Average patch log likelihood comparison

Contents

Contents XVII

4.5.3 Lossless compression 80
4.5.4 Lossy compression 80

4.6 Conclusiono 82
5 Deep Gaussian Mixture Models 87
5.1 Backgroundo 87
5.2 Stacking Gaussian mixture layers 89
5.3 Training deep GMMs with EM 93
5.3.1 Expectation oo, 93
5.3.2 Maximization o L 96

5.4 Experimentsand results 99
5.5 Conclusion 102
6 Convolutional Deep GMMs 105
6.1 Locally connected transformations 105
6.1.1 Block Diagonal Matrices 107
6.1.2 Diagonal matrices 109
6.1.3 Half-convolution 109

6.2 Distribution over paths and gating networks 111
6.3 Experiments. oL 112
6.3.1 Training L Lo 112

6.3.2 Evaluation 113
6.3.3 Datasets and preprocessing 114
6.3.4 Experiment 1 114
6.3.5 Experiment 2 115
6.3.6 Experiment3d 117
6.3.7 Comparison with priorart 118
6.3.8 Qualitative evaluation 118

6.4 Deep GMMs and log-likelihood 118
6.5 Conclusion o 122
7 Conclusions and Future Prospects 125
7.1 Deep learning for MIR, 125
7.1.1 Summary and conclusions 125
7.1.2 Future prospects 126

7.2 Generative natural image models 128
7.2.1 Summary and conclusions 128
7.2.2 Future prospects 129

Bibliography 133

INnfroduction

The research in this thesis covers machine learning and more specifically
deep learning, generative models or the combination of both. The first part
focusses on deep learning and how it can be applied to music recommendation
and music information retrieval in general. In the second part I go into detail
about my work on deep generative models.

This chapter is an introduction to machine learning and related concepts
that provides the reader with the necessary background and context for the
rest of this thesis. It is not a complete guide to machine learning, as that
would take a whole book by itself, but is a selection of relevant material.
First I give an overview of the different types or paradigms within machine
learning. Next I give an introduction to generative models and why they are
so interesting. After that I briefly cover deep learning and (convolutional)
neural networks, which have recently become very successful. Finally, I give
a short overview of the following chapters and my research contributions.

1.1 Machine learning

The term Machine Learning (ML) is quite broad and ill defined. Artificial
intelligence, applied or computational statistics, data science, data mining,
pattern recognition, ...are all fields that are related to or overlap with ma-
chine learning and their meaning will often vary depending on the person
who uses it and his/her background. In this book I refer to machine learn-
ing as the computer science subfield wherein algorithms are studied that use
data to solve problems. These algorithms are said to learn from the data
as their behavior will depend on the data samples that have been fed into
the program as input. Because the same algorithms can often be used on

2 1 Introduction

different datasets to solve different problems with little intervention from
humans, we could characterize these algorithms as being intelligent.

Machine learning algorithms often have a mathematical model of the
data that can be used to describe the interactions between the different
variables. These models have parameters that can be tuned or optimized
by the algorithm so that the observed interactions in the data samples are
consistent with those of the model. The process of changing the parameters
in the model based on data is also called fitting or training. The objective
function of the optimization process is often called a loss function and it
describes how well the model’s behavior is in agreement with that of the
data.

One of the most important properties of machine learning models is
generalization. Generalization means that a trained model is also consistent
with unseen examples that were not part of the training dataset. This is
useful for real-world applications where the ML technique will be applied
on data samples that are not identical to the ones in the training set. ML
algorithms are therefore often compared based on their score or loss on a
holdout dataset.

1.2 Types of machine learning

There are a couple of types or paradigms within machine learning, each using
data in a different way for different tasks. The main different types of ML
are now briefly introduced. A couple of these types are used through out
this dissertation.

1.2.1 Supervised learning

The most common machine learning paradigm is supervised learning. Here
we have two set of variables: the input variables x and target (or label)
variable(s) t. The goal is to learn a mapping f from x to t. Call y = f(x|0)
the prediction from the model about ¢ given the model parameters 8, then
the loss £ (t,y) = L (¢, f(x]0)) defines the score of how well the model’s
prediction corresponds with the truth. The parameters 8 of the model are
optimized to minimize this loss function on a dataset of given examples

{wi,yi},i: 1...N:
N

Zﬁ(tuf(fﬂiw»-

i

1.2 Types of machine learning 3

The choice of loss function will often depend on the problem that needs to
be solved, and the nature of and t. It is most often continuous in the
prediction y and for convenience sometimes convex.

The most common tasks in supervised learning are classification and
regression. In classification the target is a categorical variable: e.g., having
discrete values such as “cat” or “dog”. The task of the algorithm is to classify
the datapoints between the different classes. In regression the prediction
needs to be as close as possible to the target in terms of some distance
function, for example the L2 norm ||y — 3 (also called MSE: mean squared
error).

When a supervised model is used with a certain application in mind, it
is often a good idea to choose the loss function to be as close as possible to
the actual goal of the application, so that the algorithm is directly trained
to perform the task as good as possible. For example, in stock trading this
would be the actual profit and in online advertisement the number of clicks,
or better, the actual number of items sold.

Another way of choosing a loss function is probabilistically, by opti-
mizing the (log-)likelihood of the data {x;,¢;},7... N under the conditional
distribution p(t|x). The loss becomes:

N
- Zlogp(tﬂwi,@).

Depending on t the distribution p can be discrete or continuous. The ad-
vantage of probabilistic models is that we can know how certain the model
is of its prediction. A lot of loss functions in ML can be derived from this
probabilistic interpretation, such as the logistic loss (Z] t; jlog(y; ;), with
>_;Yi; = 1) and MSE.

1.2.2 Unsupervised learning

Unsupervised learning is less well defined than supervised learning and can
serve many purposes. In unsupervised learning there are no target variables,
only input variables. The goal is to uncover the inter-variable relationships,
main features or structures in the data.

Some examples of unsupervised learning tasks are density estimation,
generative modeling, clustering, dimensionality reduction and feature ex-
traction.

e Generative modeling (see also Section 1.3) is the task of modeling
a probability density function for describing the data: p(x). The most
common approach is to maximize the log-likelihood of the data (MLE;

4 1 Introduction

maximum likelihood estimation).

e Clustering (Jain et al., 1999) is the task of organizing samples in the
dataset into disjoint groups of similar datapoints that might belong
to the same category. If there are k clusters, the goal is to assign
every datapoint to one of the k clusters. It is similar to classification,
but there are no labels to steer the model towards a desired solution.
The results of a clustering algorithm will very much depend on the
choice of model and the type of data. Clustering is useful for better
understanding a dataset, for example to create visualizations.

e Dimensionality reduction (Fodor, 2002) is the task of finding a
more compact low-dimensional representation of the data that still
captures the most important properties or information in the data.
This can be useful for various reasons, e.g., for storing the data more
efficiently, for visualization or as a preprocessing step for better, faster
or more tractable supervised learning,

e In Feature extraction the goal is to find a representation of the
data that is more suitable than the original representation as input
for supervised models. For example, sometimes a high-dimensional
sparse representation (Elad, 2010) might be more useful than a dense
low-dimensional one (or vice versa). Another example is a histogram
or bag-of-words representation (e.g., Csurka et al. (2004)), which is a
fixed-length summarized representation of a variable length input.

Semi-supervised learning

Semi-supervised learning (Chapelle et al., 2006) is something between su-
pervised and unsupervised learning. Here we have a dataset of unlabeled
data and a dataset of labeled data. Usually the amount of unlabeled data is
much larger than that of the labeled data. The goal is again to minimize the
supervised loss on the labeled data, but semi-supervised learning algorithms
are able to use the extra information in the unlabeled data to make a better
prediction.

For example, one could use feature extraction techniques to find a better
representation on a large dataset of unlabeled data, so that a classifier can
use that representation for the labeled part of the data.

1.2.3 Transfer learning

In transfer learning (Pan and Yang, 2010), algorithms and models are studied
that can use the information or “knowledge” gained from a certain dataset

1.3 Generative models 5

or task to improve performance on a different task or dataset. These are
called source and targets tasks respectively. For transfer learning to work
well there should be some overlap or similarity between the different tasks.

One of the most common ways to do transfer learning is by using the
feature representation or parameters obtained from a model that has been
trained on a source task. This could for example be useful if the source
dataset is much larger, is easier to train on or has stronger/better labels
(less noise because of labeling errors).

1.2.4 Other

No discussion about the different kinds of machine learning would be com-
plete without including reinforcement learning (Barto, 1998). In rein-
forcement learning there is no fixed dataset, but the algorithm is an agent
that can take actions in an environment and that optimizes a score or re-
ward based on its actions. As the algorithm is run (several times) through
this process, it should optimize and learn its model parameters to better
understand the dynamics of the environment.

Other types of machine learning that are very similar to the ones de-
scribed before include, transductive learning (Vapnik and Vapnik, 1998),
multi-task learning (Evgeniou and Pontil, 2007),

1.3 Generative models

As already stated in Section 1.2.2, generative models are probabilistic mod-
els that try to estimate the data distribution and allow the generation of
new data through sampling. Generative models can be applied both on un-
labeled data by estimating p(x) and on labeled data by modeling the joint
probability distribution of the inputs and targets p(x,t). Generative mod-
els are different from discriminative models that only model the conditional
distribution p(t|x).

To get a better understanding about generative models I first give an
introduction to a well known model that plays an important role in this
thesis: the Gaussian mixture model (GMM) (Bishop and Nasrabadi, 2006).
After that I go into more detail about the purposes and applications of
generative models.

6 1 Introduction

1.3.1 Gaussian mixture models

A mixture model is one where the modeled distribution is a weighted sum
of other distributions p;(x),i =1...k:

k
p(x) = Z Tipi(x).

These distributions are also called mixture components. Here the m; are the
mixing weights, which are non-negative and should sum to 1: Zf m =1, so
that the distribution is normalized. We can interpret these m; as probabilities
p(i) that a certain mixture component gets picked when sampling from the
mixture.

Mixture models are very useful when the data isn’t homogeneous but
consists of smaller groups that all behave differently. It’s often much easier to
model such a multimodal dataset with a mixture of simple distributions than
a single complex one. A simple mixture model is visualized in Figure 1.1.
The superposition of three simple normal distributions gives rise to a much
more complex multimodal distribution. Apart from modeling distributions,
mixture models are also often used for clustering and other applications.

Figure 1.1: A visualization of a Gaussian mixture model. The
superposition of 3 simple normal distributions gives rise to a
more complex multimodal distribution.

One of the most popular and successful generative models are Gaussian
mixture models (GMM). A GMM is simply a mixture model where the
mixture components p;(x) are (multivariate) normal distributions:

pi(x) = N (z|p;,)
= 2n) 4|5 F e HaEmm) TR @p),

1.3 Generative models 7

Every mixture component has a mean wu; and covariance matrix 3;, which
together with the mixing weights m; make up the parameters of the GMM.

It is not possible to derive the optimal (maximum-likelihood) parameters
of a GMM analytically. Given a dataset, we assume that every datapoint
was generated by one of the mixture components in the model. However,
we don’t know which mixture component was responsible for generating a
certain datapoint. If we did know, we could simply recover the parameters
of the model by fitting k£ Gaussians on the different sub-datasets. Similarly,
if we knew the parameters of the model, we could compute the probability
that a certain datapoint was generated by a certain component.

There are a couple of different ways to optimize GMMs for maximum
likelihood (Bishop and Nasrabadi, 2006), including Expectation Maximiza-
tion (EM), variational inference methods and direct optimization with gra-
dient based methods. The most common approach is EM and this is what
is used throughout this thesis.

Expectation Maximization (Dempster et al., 1977) is an iterative algo-
rithm for optimizing probabilistic models. Every iteration consists of 2 steps:
the E-step (expectation) and the M-step (maximization) step.

E-step

In the expectation step, the posterior probabilities v;; = p(i|z;) are com-
puted, which are also called responsibilities. That is, the probability that a
given datapoint x; was generated by a mixture component i. These values
can be computed as follows:

i = milN (x| pi, £i)
Y mN (|,)

These probabilities are normalized per datapoint:), v,; = 1.

M-step

Once the responsibilities are computed in the E-step, the parameters of the
mixture are optimized. Each component ¢ is fit on the whole dataset, but
each datapoint x; is weighted by its responsibility ~;; for that component.
This means that for every datapoint the weights are higher for mixture
components that better represent that datapoint.

The equations for fitting a multivariate Gaussian on such a weighted

8 1 Introduction

dataset {v;;,x;} are:

N
N IRTLY
_ 1 _ J=1
m—NE%j, Hi = —x
i=1 > i

j=1

(1.1)

N T
Zl’ﬁj (zj — i) (25 — ps)
_J=
5, = _ (1.2)
Yij
ng !

The EM-algorithm can be initialized with random parameters or with
random responsibilities. The EM-algorithm then alternates the E and M
steps until a local optimum is reached. Every EM iteration is guaranteed
to get a better (or equal) average log-likelihood score than the previous
iteration. We can check for convergence by looking at the increases in log-
likelihood or by changes in the parameter values. Because the result of
the optimization will be a local-optimum, it is sometimes useful to run the
algorithm a couple of times with different random initializations as they
might give different results.

One of the most common uses of EM are GMMs, but it is much more
general and is also used for other probabilistic models with latent variables.
The derivation of these EM steps together with a more general and theoret-
ical introduction to EM is out of the scope of this chapter, and is given by
Bishop and Nasrabadi (2006). It is also useful to note that there a lot of
extensions and views on GMMs. For example, a typical Bayesian approach
to GMMs is by having additional prior distributions over the parameters, or
to also infer the number of mixture components from data.

1.4 Why generative models?

Generative models can serve different tasks and purposes. The versatility of
these models is not obvious at first sight, and one might ask if supervised
learning cannot be used for all problems instead. In this section we go into
more detail about how generative models can be used, and show why they
are so flexible.

A lot of problems such as prediction, reconstruction, imputation, sim-
ulation and compression can be written probabilistically in terms of the
distribution of the data. For example if the dataset consists of inputs @ and
targets t and we model the data jointly with a generative model: p(x,t) it

1.4 Why generative models? 9

is possible to compute the conditional distribution p(t|x), so that we can
predict t from @. The nice thing about this is that we don’t need to define
a priori what the inputs and targets will be. It is possible to create any
conditional distribution from the original model. When we have a dataset
of images as inputs and categories as output, we can even model the images
conditionally on the categories to get a model that can generate images of
certain classes.

The flexibility of these models stems from the fact that they are prob-
abilistic. We can simply apply our knowledge about statistics onto these
model. For example, if we have distributions p(x|y) and p(y|z), we can also
infer p(x|z).

1.4.1 Synthesis

Synthesis is the process of generating new data. In the context of generative
models this can mean sampling from the distribution. If the model has latent
(hidden) variables, it’s also possible to sample conditioned on those.

Imagine that we could make new stories with a generative model of
books, new pictures that look as realistic as the ones from a painter, or new
songs in the style of a certain artist. Fantasizing complex data such as im-
ages or audio is a big unsolved problem and is a long-term goal of generative
models. So far, models can only convincingly model simpler distributions,
such as small binary images of handwritten digits. However, machine learn-
ing is a rapidly evolving domain and some problems are getting solved much
faster than was deemed possible a few years ago.

1.4.2 Improving generalization performance

As a special case of unsupervised learning, generative modeling can also
be used to attempt to improve the generalization of supervised learning
methods. This especially makes sense when there is limited labeled data
available, but a lot of unlabeled data.

Optimizing the log-likelihood, which is the generative modeling side of
unsupervised learning, forces the model to learn what a typical input exam-
ple looks like. This way it learns what the typical structures in the data are
and how they interact. It learns to separate signal from noise. By using an
unsupervised learning method to uncover the main features that are impor-
tant for understanding the data, the supervised learning model can be made
simpler, needs less labeled data or will overfit less.

There are a couple of ways to use generative models for improving su-
pervised models. The first way is to use models with latent variables. Once

10 1 Introduction

the model is trained the latent variables can be inferred from the data and
might contain relevant information in a more suitable way than the original
data. This is a form of unsupervised feature extraction. Another way is to
use the trained model’s parameters and use them as smart initialization for
a supervised model. This is called unsupervised pre-training, because the
supervised model is trained or “fine-tuned” after initialization.

One of the best known generative models that were used for this pur-
pose are restricted Boltzmann machines (RBMs) or deep belief networks
(DBN) (Hinton et al., 2006), which are multiple RBMs combined, and other
extensions of similar models. These models sparked a wave of research in
unsupervised learning and deep learning (see later). RBMs are undirected
graphical models with a bipartite graph structure, where on one side there
are input variables “visible units” and on the other side latent variables
“hidden units”. Although RBMs were often advertised as good generative
models, they were mostly used for feature extraction and unsupervised pre-
training. Later supervised learning techniques were published that got a
lot better results (Krizhevsky et al., 2012) and RBMs got out of fashion.
Other research showed that RBMs and DBNs were good generative models
for binary data (Uria et al., 2013a) (e.g., handwritten digits), but are out-
performed by a lot simpler models on continuous data (Theis et al., 2011)
(e.g., small patches of images).

Because of the current pace of recent improvements in supervised learn-
ing (see Section 1.5) it is still unclear how much unsupervised learning will be
able to contribute. There is a large field of research that focuses on finding
better unsupervised methods and answering this unsolved question.

1.4.3 Simulation and prediction

In simulation and prediction the generative model is used to derive condi-
tional distributions from. When we know x5, but not x; we can use the
model to make predictions about it with p(x1|x2). When z; is multivariate
and has multiple possible outcomes given x5, a supervised regression model
can only output one prediction (e.g., the expected value), but a generative
model can capture the multimodal distribution instead.

With simulation we can explore the different possible outcomes of a
conditional distribution. For example, given the first 10 seconds of a song, we
can ask the model what a likely continuation of the song could be. Another
example is where the algorithm is an agent in a virtual environment and
simulates the outcomes of his possible actions so that it can evaluate what
action will produce the highest expected reward.

1.4 Why generative models? 11

1.4.4 Reconstruction

Generative models can also be used to reconstruct data & that has been
corrupted by some noise model p(&|x). If we maximize & under p(x|Z) we
get:

p(Z[z)p(x)
p()
~ log p(&|x) + log p(x).

log p(x|Z) = log

p(&) does not depend on x and can be seen as a constant term in the
optimization. This means that if we have a corrupted sample & we can
optimize for the most likely @ by using our prior knowledge about p(x).

Generative modeling has been quite successful at these tasks with the
use of Gaussian mixture models. We now give a brief introduction to the
work of Zoran and Weiss (2011) who applied GMMs to image reconstruction
tasks. This is a good illustration of how generative models can be applied
in practice.

In (Zoran and Weiss, 2011) a GMM is trained on small grayscale images
patches (small image blocks extracted from an image) by jointly modeling
the variables in a patch (e.g., patches of 8 by 8 pixels, 64 variables). The
GMM then captures the linear correlations or other (non-linear) interactions
in the patches. Note that they do not learn a distribution over whole images,
as the dimensionality would be much too high to learn with a GMM.

Instead of using a distribution over whole images they simplify the prob-
lem by summing over all the patch log-likelihoods in the image. They call
this the Expected Patch Log-Likelihood (EPLL):

EPLL,(x) = Z log p(Px),

where P; a matrix which extracts the i-th overlapping patch from the image
x (in vectorized form). Assuming that a patch location in the image is
chosen uniformly at random, EPLL is the expected log likelihood of a patch
in the image (up to a multiplication by a constant).

The corruption model that is used assumes the following distribution:
- 12
log p(&|x) ~ [[Az — &[”,

which is equivalent to using a noise distribution of N'(u = Az, = o) or
saying that the corruption is a linear transformation A of x, with additive
white Gaussian noise. This definition is powerful enough to serve as a noise
model for denoizing, deblurring and missing value imputation (amongst oth-

12 1 Introduction

ers). In denoizing, A is assumed to be the identity transform, so that the
noise is additive white Gaussian noise with a certain variance. For deblurring
A is the equivalent of a linear convolution operator with a certain kernel.
For imputation (also called image inpainting) a part of the image is miss-
ing (pixel values are unknown) and so A is linear transformation that sets

certain pixel values to 0.

Figure 1.2: An example of denoizing with a generative model
(GMM). Credit: Zoran and Weiss (2011).

Figure 1.3: An example of deblurring with a generative model
(GMM). Credit: Zoran and Weiss (2011).

Figure 1.2 shows an example of the denoizing results of this model, and
Figure 1.3 shows an example of deblurring.

Other results and more details about the approach and the optimization
technique can be found in the original paper (Zoran and Weiss, 2011).

1.5 Deep learning 13

1.4.5 Compression

Finally, it is also possible to facilitate data compression with generative
models. Compression and statistical models are actually closely related as
compression exploits the fact that certain symbols in the data are more pos-
sible than others. The expected number of bits needed to store a symbol
is the entropy of the symbol distribution, which is also the expected neg-
ative log-likelihood. This means that when we model a distribution of the
data for maximum likelihood, we are also directly maximizing the expected
compression.

For example, say we have a large English text dataset (or corpus) and
the symbols are words. The word “the” is usually much more common than
the word “Paris”. So if we want to translate these words into bits, it’s
better to use smaller bit strings for more common words and longer ones
for more uncommon words, instead of uniformly using a fixed number of
bits for each word. Entropy coders are algorithms for data compression that
near-optimally translate data symbols into bit-strings based on the symbol
probabilities. Examples of entropy coding algorithms are Huffman coding
and arithmetic coding.

Instead of using a probability table that lists the probabilities of en-
countering a word in a text, it’s much more interesting to use a powerful
generative model. An example of such a model is the recurrent neural net-
work (RNN) or LSTM (long-short term memory RNN). These models are
able to capture long term dependencies in (time-)series such as sentences.
Training RNNs on text for data compression has for example been done by
Hermans and Schrauwen (2013), but on characters instead of words.

Later, in Chapter 4, we show how images can be compressed lossy and
losslessly using GMMs and other mixture models.

1.5 Deep learning

Deep learning is a family of machine learning techniques that have a hierar-
chical multi-layered structure. The output of each layer is used as input into
the next one. Each layer can build upon the representation of the previous
layer and learn new relationships expressed in terms of those features. The
top layers in such a network can thus learn concepts with a higher level of
abstraction than the lower layers. A typical illustrative example often used
to explain this hierarchy of abstractions in deep learning is a deep network
that’s trained on images. First it might learn small edges in the image, then
small lines, larger lines, small shapes or contours, parts of an object, until

14 1 Introduction

finally it learns to recognize whole objects.

The start of the deep learning field can be attributed to the work of
Hinton et al. (2006). In their work they introduced a new method to train
deep belief networks (DBN), which was one of the first ways of training deep
structures efficiently. After that a lot of extensions and similar alternatives
such as auto-encoders were introduced (Bengio et al., 2007; Bengio, 2009)
and gained a lot of popularity. These techniques worked reasonably well
on some small and easy datasets of small images such as MNIST (LeCun
et al., 1998), NORB (LeCun et al., 2004), CIFAR-10 (Krizhevsky, 2009),
... but were not applied on harder datasets where traditional computer vision
techniques combined with simpler machine learning models worked better.
On some tasks deep learning techniques did get state of the art results, such
as speech recognition. However, adoption of these techniques outside of the
field stayed out and there was a lot of skepticism, especially because these
techniques were notoriously hard to train and tune. There were also results
(Coates et al., 2011) that showed that simpler unsupervised techniques such
as K-means were able to outperform RBMs, auto-encoders,

The paper by Krizhevsky et al. (2012) can be considered as one of biggest
breakthroughs for deep learning so far. In their work they showed that
convolutional neural networks (CNNs), which actually had existed for many
years were able to improve the state of the art of computer vision significantly
on a very challenging dataset. CNNs were introduced by LeCun et al. (1989)
and are a specific type of artificial neural network. However, there were some
crucial changes that were necessary in order to make them work that well
on this large-scale dataset (see Section 1.5.1).

The fact that these models, which can be trained in a few days on raw
images (without pre-processing), were able to outperform advanced com-
puter vision features that were the result of decades of research is one of the
biggest feats of machine learning and artificial intelligence so far. Later work
showed that the top-layer representations of a trained deep convolutional
neural network could also be used on other smaller datasets with different
classes and also significantly outperform the state of the art. This meant
that the features and representations extracted by a CNN were universal
enough to solve most computer vision problems that involved recognition.

We now give a short introduction of neural networks and how they can
be trained. We also go into more detail about the recent changes to them
and why those were crucial to get state of the art results.

1.5 Deep learning 15

/

7 NS
e QAN
S SRRRELL S
VKSR z&oxvﬁ.“ ?

" WAL

PR
NNV
"r"\\v
o

P

(ot

Q)

YA
L
4

2 A
XS

—7 XX <K ’
N

Figure 1.4: A visualization of a neural network with two hidden
layers.

1.5.1 Neural networks

Neural networks are supervised machine learning models that consist of mul-
tiple layers, also called hidden layers. An example is shown in Figure 1.4.
The nodes in every hidden layer are called neurons, of which the output
values or activations depend on the those of the previous layer. To com-
pute the activation h; in a hidden layer [, the activations of the previous
layer h;_; are first transformed with a linear transformation W; (and bias
b;) and subsequently transformed with a non-linear elementwise function o,
also called an activation function:

h; = U(WlThl_1 + bl).

A few common activation functions are shown in Figure 1.5. The output
of the whole network is a linear combination of the activations in the last
hidden layer:

y =W/ hy, + by,

16 1 Introduction

_

-1l -1l -1

sigmoid tanh ReLLU

Figure 1.5: A few common activation functions in neural net-
works.

where k is the number of hidden layers in the network. Depending on the
task or loss function, y is sometimes also transformed with a certain non-
linear function, for example a sigmoid to make sure the output values lie
between 0 and 1, so that they can represent probabilities.

Neural networks are usually optimized with gradient-based methods,
such as gradient descent. In every iteration of this algorithm we take the
gradient of the loss function with respect to the parameters and update the
parameters with a small step in the opposite direction of the gradient:

0 =0 —av,0, (1.3)

where V.0 is the gradient with respect to the parameters and « is the step
size, also called a learn(ing) rate. Usually one computes the gradient using
only a small number of datapoints from the dataset, also called a minibatch.
This method is called Stochastic Gradient Descent (SGD) and is generally
much faster than standard gradient descent that uses the whole dataset for
every iteration. There are a couple of alternatives to SGD that are also
stochastic but can often deliver faster convergence of the network. Some ex-
amples are (Nesterov) Momentum (Polyak, 1964; Nesterov, 1983; Sutskever
et al., 2013), AdaGrad (Duchi et al., 2011), RmsProp (Tieleman and Hinton,
2012) and Adam (Kingma and Ba, 2014).

Training a neural network is the iterative process of updating the param-
eters many times. After a while the average loss on the trainset will converge
and the network is done training. The learning rate o determines how fast
the network will adapt to the last couple of training datapoints from SGD.
It is common to use a high learning rating in the beginning and lower it a
couple of times during training.

There are a lot of extensions to neural networks and it is easy to change
the structure in various ways. The best known and most successful extension

1.5 Deep learning 17

‘.

X Feature maps

hi_1

Figure 1.6: A visualization of a convolutional layer in CNNs.
In this example layer h;_; has 3 feature maps and layer h;
has 7 feature maps. This means that an activation h;q is
7-dimensional.

is the convolutional neural network (CNN).

Convolutional neural networks

In a CNN some of the linear transformations in the network are replaced
by linear convolutions. These convolutions are useful for data that is struc-
tured in spatial/time dimensions, such as audio (1D), images (2D) or video
(3D). To explain CNNs in this section we assume that the input consists of
(colored) images.

In a CNN there is an activation h;; ; for every location {4, j} in layer [.
This activation is computed by linearly transforming a small patch Pj_;; ;

18 1 Introduction

2048 \dense

dense

1000

192 128 Max
Max 128 Max pooling
pooling pooling

204 2048

Figure 1.7: The convolutional neural network architecture by
Krizhevsky et al. (2012). The top half and bottom half are
symmetrical and are divided over 2 GPU's.

(where Py ; jab = Riitaj+b,0 = —S...5,b = —s...s) in the layer below
and then transforming it elementwise with the activation function o

hiij =0 (W vec(P1,;)).

Note that h;;; is a vector of values or features and that we vectorize the
tensor F;_1; ;. The matrix that consists of the p’th feature hy ; j , from every
location {i,;} is called a feature map. Figure 1.6 gives a visual representa-
tion. The patch Pj_1 ; ; is also called a receptive field and its size (2s+1) is
called the filter size or window size.

Because W; doesn’t depend on the location {4, j} we can efficiently com-
pute these linear transformations using convolution operations, where the
filters W, slide over the image. The number of parameters of such a convolu-
tion is usually relatively small when compared to a full linear transformation
of the image.

Apart from convolutional layers and normal fully-connected layers, CNNs
typically also have a couple of maz-pooling layers. These layers are a kind
of non-linear down-sample operation. The output of a max-pooling layer is
the maximum of the values in its receptive field:

hy;;= L max hi_1 itk j41,

l=—s...s

where h;;; and hj_q ;yk j4+; are vectors and the max operation is taken
element-wise over the vectors.

The optimization of CNNs is quite similar to that of standard neural net-
works, although deriving the gradients can be more difficult. CNNs also have

1.5 Deep learning 19

a lot more architectural options and hyper-parameters which can matter a
lot for the generalization performance. Constructing good architectures for
CNN s requires some skill and experience. To get an idea of a typical architec-
ture we show the model by Krizhevsky et al. (2012) (Imagenet competition
2012 winner) in Figure 1.7, although larger architectures are certainly not
unusual nowadays.

Recent changes to neural networks

As already mentioned, there were a few recent changes to neural networks,
when compared to those of the 80’s, that enabled them to suddenly work
much better. There are three crucial recent changes:

e Rectified-linear activation function: or ReL U, which can be seen
in Figure 1.5. The default standard before ReL.Us was tanh or sigmoid
and the problem with those activations functions was that they suffer
from the vanishing gradient problem when neural networks have too
many layers (e.g., higher than 3).When the input to the tanh is a
little bit too large or small the gradient becomes very small (close to
zero), which is an issue that is hard to recover from. The tanh is also
very non-linear which results in networks that are harder to optimize
and that suffer more from local minima. The ReLU does not seem
to suffer from these issues and its use results in a better optimization
landscape. Because it is mostly linear the gradients can “flow” better
trough the network.

e Dropout: dropout is a new technique to reduce overfitting. During
training dropout sets activations in the network randomly to zero (e.g.,
50% of the activations). This prevents so-called co-adaptations in the
network, forcing the neurons to learn features that are more useful on
their own.

e Gpu acceleration: Because of GPU acceleration we are able to
train much larger networks than a few years ago. Without GPU-
acceleration we would never be able to train a large network on Im-
agenet, which was the key to getting the state of the art results on
other smaller datasets as well.

The first two changes were made mainstream by Krizhevsky et al. (2012).
After that research in the field has boomed and a lot of new ideas have been
proposed. However, the basics have remained the same.

20 1 Introduction

1.6 Thesis outline and contributions

In this first chapter we have introduced Machine Learning and the impor-
tant concepts and background for understanding this thesis. The next two
chapters focus on deep learning and show how it can be applied to music
recommendation and transfer learning in music information retrieval (MIR).
These chapters will get the reader accustomed with deep learning techniques
and the way they can be used in a realistic large-scale setting. The fourth
chapter is a run-up to the next chapters, in which we focus on (deep) gener-
ative models. We introduce a new mixture model for image patch modeling
and show how they can be applied to image compression. In the following
chapter a new generative deep model is introduced that is a straightforward
but powerful generalization of GMMs to multiple layers. In the sixth chapter
extensions are introduced to scale deep GMMs to higher dimensional data,
as this is still a big unsolved problem in the field. The last chapter gives a
final overview of our work and discuss possible future research directions.

In what follows, we describe the content of each chapter in more detail
and outline the research contributions presented in them.

Deep content-based music recommendation

The second chapter briefly introduces music recommendation and shows how
deep convolutional neural networks can efficiently be applied to this task.
The proposed approach uses a latent factor for recommendation and pre-
dicts the latent factors from audio when they can not be obtained from
usage data. A traditional approach using a bag-of-words representation of
the audio signals is compared with deep convolutional neural networks and
we evaluate the predictions quantitatively and qualitatively on the Million
Song Dataset. We show that using predicted latent factors produces sen-
sible recommendations, despite the fact that there is a large semantic gap
between the characteristics of a song that affect user preference and the cor-
responding audio signal. We also show that recent advances in deep learning
translate very well to the music recommendation setting, with deep convolu-
tional neural networks significantly outperforming the traditional approach.

Transfer learning for MIR

In the third chapter we show how the ideas from the second chapter can be
extended to transfer learning in music information retrieval (MIR). Because
very few large-scale music research datasets are publicly available we propose

1.6 Thesis outline and contributions 21

to reuse models trained on an available large-scale music dataset, the Mil-
lion Song Dataset (MSD), for feature extraction on other smaller datasets.
This transfer learning approach called supervised pre-training was previously
shown to be very effective for computer vision problems. We show that fea-
tures learned from MSD audio fragments in a supervised manner, using tag
labels and user listening data, consistently outperform features learned in
an unsupervised manner in this setting, provided that the learned feature
extractor is of limited complexity. The approach is applied on the GTZAN|,
1517-Artists, Unique and Magnatagatune datasets.

STMs and image compression

From the fourth chapter onwards the main focus is on generative models.
As a starting point mixture models are studied as these were shown to be
remarkably good at density modeling of natural image patches, especially
given their simplicity. We propose the use of another, even richer mix-
ture model based image prior than the GMM: the student-t mixture model
(STM). We demonstrate that it convincingly surpasses GMMs in terms of
log likelihood, achieving performance competitive with the state of the art
in image patch modeling. We apply both the GMM and STM to the task of
lossy and lossless image compression, and propose efficient coding schemes
that can easily be extended to other unsupervised machine learning mod-
els. Finally, we show that the suggested techniques outperform JPEG, with
results comparable to or better than JPEG 2000.

Deep gaussian mixture models

In the fifth chapter a new deep generative model is introduced that is a
straightforward but powerful generalization of GMMSs to multiple layers. The
parametrization of a deep GMM allows it to efficiently capture products of
variations in natural images. We propose a new EM-based algorithm that
scales well to large datasets, and we show that both the Expectation and
the Maximization steps can easily be distributed over multiple machines. In
the density estimation experiments we show that deeper GMM architectures
generalize better than more shallow ones, with results in the same ballpark
as the state of the art.

Convolutional deep GMMs

Although a few alternatives exist for density modeling of low dimensional
datasets (e.g., image patches of 8 by 8 pixels), convincingly modeling higher

22 1 Introduction

dimensional data such as small images (e.g., 32 by 32 pixels and higher)
is still a big unsolved problem. In this chapter we extend and apply deep
Gaussian mixture models (deep GMMs) to this task, by introducing locally
connected transformations. Similarly to convolutions in deep neural net-
works, local connectivity in deep GMMs allows us to train faster and with
less overfitting than fully connected networks on images. My experiments
show the benefits of using locally-connected deep GMMs and give new in-
sights on modeling higher dimensional images.

Conclusions and future prospects

In the last chapter an overview of dissertation is given together with some
thoughts on possible future directions.

1.7 List of publications

Journal publications

1. van den Oord, A.; Schrauwen, B. (2014). The student-t mixture as
a natural image patch prior with application to image compression.
Journal of Machine Learning Research.

2. De Sutter, B.; van den Oord, A. (2012). To be or not to be cited in
computer science. Communications of the ACM.

Conference publications

1. van den Oord, A.; Dambre, J. (2015). Locally-Connected Transfor-
mations for Deep GMMs. ICML 2015 Deep Learning Workshop.

2. van den Oord, A.; Schrauwen, B. (2014). Factoring variations in nat-
ural images with deep Gaussian mixture models. Advances in Neural
Information Processing Systems 27.

3. van den Oord, A.; Dieleman, S.; Schrauwen, B. (2014). Transfer
learning by supervised pre-training for audio-based music classifica-
tion. Conference of the International Society for Music Information
Retrieval

4. van den Oord, A.; Dieleman, S.; Schrauwen, B. (2013). Deep content-
based music recommendation. Advances in Neural Information Pro-
cessing Systems 26.

1.7 List of publications 23

5. van den Oord, A.; Dieleman, S.; Schrauwen, B. (2013). Learning a
piecewise linear transform coding scheme for images. Proceedings of
SPIE, the International Society for Optical Engineering.

6. Dieleman, S.; van den Oord, A.; Schrauwen, B. (2012). Parallel one-
versus-rest SVM training on the GPU. NIPS 2012 Big Learning Work-
shop: Algorithms, Systems, and Tools.

Conference demonstrations

1. van den Oord, A.; Dieleman, S.; Schrauwen, B. (2013). Deep content-
based music recommendation. Nips 2013.

Deep Content-Based
Music Recommendation

The purpose of this chapter is to show how deep learning can be applied on
a realistic real-world application. The task that is studied in this chapter
is music recommendation based on music content as an alternative to music
recommendation based on user listening behavior patterns (collaborative
filtering, CF). The techniques studied in this domain, music information
retrieval (MIR), used to be strongly feature-engineering focussed and the
datasets that are used are usually quite small. We show how the music
recommendation problem can be translated to a machine learning regression
problem and show that deep learning significantly outperforms traditional
approaches on a realistic large-scale dataset.

This chaper is organized as follows. First we give a short introduction to
music recommendation with the current approaches and problems in the first
section. In the second section we go deeper into the specifics of the dataset
that is used in the chapter. Next, weighted matrix factorization is explained
which is a typical algorithm used for CF and which is used here to extract a
latent factor representation for the songs in our dataset. In fourth section we
discuss how these latent factors can be predicted from audio by either using a
conventional approach or using a deep learning approach with convolutional
neural networks. In the fifth section we show the experimental results with
qualitative and quantitive evaluations. Finally, we give an overview of related
work in Section 2.6 and conclude in the last section.

The techniques and results presented in this chapter were published in
(van den Oord et al., 2013). This works was in collaboration with Sander
Dieleman.

26 2 Deep Content-Based Music Recommendation

2.1 Music recommendation

In recent years, the music industry has shifted more and more towards dig-
ital distribution through online music stores and streaming services such as
iTunes, Spotify, Grooveshark and Google Play. As a result, automatic mu-
sic recommendation has become an increasingly relevant problem: it allows
listeners to discover new music that matches their tastes, and enables online
music stores to target their wares to the right audience.

Although recommender systems have been studied extensively, the prob-
lem of music recommendation in particular is complicated by the sheer va-
riety of different styles and genres, as well as social and geographic factors
that influence listener preferences. The number of different items that can be
recommended is very large, especially when recommending individual songs.
This number can be reduced by recommending albums or artists instead,
but this is not always compatible with the intended use of the system (e.g.
automatic playlist generation), and it disregards the fact that the repertoire
of an artist is rarely homogenous: listeners may enjoy particular songs more
than others.

Many recommender systems rely on usage patterns: the combinations of
items that users have consumed or rated provide information about the users’
preferences, and how the items relate to each other. This is the collaborative
filtering approach. Another approach is to predict user preferences from
item content and metadata.

The consensus is that collaborative filtering will generally outperform
content-based recommendation (Slaney, 2011). However, it is only applica-
ble when usage data is available. Collaborative filtering suffers from the cold
start problem: new items that have not been consumed before cannot be
recommended. Additionally, items that are only of interest to a niche audi-
ence are more difficult to recommend because usage data is scarce. In many
domains, and especially in music, they comprise the majority of the available
items, because the users’ consumption patterns follow a power law (Celma,
2008). Content-based recommendation is not affected by these issues.

2.1.1 Content-based music recommendation

Music can be recommended based on available metadata: information such
as the artist, album and year of release is usually known. Unfortunately
this will lead to predictable recommendations. For example, recommending
songs by artists that the user is known to enjoy is not particularly useful.
One can also attempt to recommend music that is perceptually similar
to what the user has previously listened to, by measuring the similarity

2.1 Music recommendation 27

between audio signals (Slaney et al., 2008; Schliiter and Osendorfer, 2011).
This approach requires the definition of a suitable similarity metric. Such
metrics are often defined ad hoc, based on prior knowledge about music
audio, and as a result they are not necessarily optimal for the task of music
recommendation. Because of this, some researchers have used user preference
data to tune similarity metrics (McFee et al., 2012a; Stenzel and Kamps,
2005).

2.1.2 Collaborative filtering

Collaborative filtering (CF) methods can be neighborhood-based or model-
based (Ricci et al., 2011). The former methods rely on a similarity measure
between users or items: they recommend items consumed by other users
with similar preferences, or similar items to the ones that the user has al-
ready consumed. Model-based methods on the other hand attempt to model
latent characteristics of the users and items, which are usually represented
as vectors of latent factors. Latent factor models have been very popular
ever since their effectiveness was demonstrated for movie recommendation
in the Netflix Prize (Bennett and Lanning, 2007).

One of the most popular model-based approaches for CF is by using
matrix factorization (MF) methods. Here the user-item relationships are
stored in a (sparse) matrix: r,; equals the number of times the user u has
listened to the item i. A matrix-factorization model tries to factorize this
matrix into two low-dimensional matrices (with small number of rows or
colums). These matrices contain the latent factors: each song (and user)
is now represented by a low-dimensional row-vector that summarizes the
listening history for that song (or user). Each element r,; in the original
matrix is now approximated as the inner product of the user latent factor
vector and song latent factor vector. These latent factors are sometimes also
called embeddings.

Although a matrix factorization technique (Section 2.3) is used here,
other model-based approaches can also be used.

2.1.3 The semantic gap in music

Latent factor vectors form a compact description of the different facets of
users’ tastes, and the corresponding characteristics of the items. To demon-
strate this, we computed latent factors for a small set of usage data, and
listed some artists whose songs have very positive and very negative values
for each factor in Table 2.1. This representation is quite versatile and can be
used for other applications besides recommendation, as we show later (Sec-

28

2 Deep Content-Based Music Recommendation

Artists with positive values

Artists with negative values

Justin Bieber, Alicia Keys,
Maroon 5, John Mayer,
Michael Bublé

Bonobo, Flying Lotus,
Cut Copy, Chromeo, Boys Noize

Phoenix, Crystal Castles, Muse,
Royksopp, Paramore

The Kills, Interpol, Man Man,
Beirut, the bird and the bee

Shinedown, Rise Against,
Avenged Sevenfold, Nickelback,
Flyleaf

Traveling Wilburys, Cat Stevens,
Creedence Clearwater Revival,

Van Halen, The Police

Table 2.1: Artists whose tracks have very positive and very
negative values for three latent factors. The factors seem to
discriminate between different styles, such as indie rock, elec-
tronic music and classic rock.

tion 2.5.1). Since usage data is scarce for many songs, it is often impossible
to reliably estimate these factor vectors. Therefore it would be useful to be
able to predict them directly from music audio content.

There is a large semantic gap between the characteristics of a song that
affect user preference, and the corresponding audio signal. Extracting high-
level properties such as genre, mood, instrumentation and lyrical themes
from audio signals requires powerful models that are capable of capturing
the complex hierarchical structure of music. Additionally, some properties
are impossible to obtain from audio signals alone, such as the popularity of
the artist, their reputation and and their location.

Researchers in the domain of music information retrieval (MIR) concern
They
have grown to rely on a particular set of engineered audio features, such as
mel-frequency cepstral coefficients (MFCCs), which are used as input to sim-

themselves with extracting these high-level properties from music.

ple classifiers or regressors, such as SVMs and linear regression (Humphrey
et al., 2012). Recently this traditional approach has been challenged by some
authors who have applied deep neural networks to MIR problems (Hamel
and Eck, 2010; Lee et al., 2009; Dieleman et al., 2011).

2.2 The dataset 29

2.1.4 Proposed approach

With our approach, we strive to bridge the semantic gap in music by train-
ing deep convolutional neural networks to predict latent factors from music
audio. This means our approach is sequential: we first obtain latent factor
vectors for songs for which usage data is available with matrix factorization,
and use these to train a regression model. Because we reduce the incorpo-
ration of content information to a regression problem, we are able to use a
deep convolutional network.

We evaluate our approach on an industrial-scale dataset with audio ex-
cerpts of over 380,000 songs, and compare it with a more conventional ap-
proach using a bag-of-words feature representation for each song. We assess
to what extent it is possible to extract characteristics that affect user pref-
erence directly from audio signals, and evaluate the predictions from our
models in a music recommendation setting.

2.2 The dataset

The Million Song Dataset (MSD) (Bertin-Mahieux et al., 2011) is a collection
of metadata and precomputed audio features for one million contemporary
songs. Several other datasets linked to the MSD are also available, featuring
lyrics, cover songs, tags and user listening data. This makes the dataset
suitable for a wide range of different music information retrieval tasks. Two
linked datasets are of interest for our experiments:

e The Echo Nest Taste Profile Subset provides play counts for over
380,000 songs in the MSD, gathered from 1 million users. The dataset
was used in the Million Song Dataset challenge (McFee et al., 2012b)
last year.

e The Last.fm dataset provides tags for over 500,000 songs.

Traditionally, research in music information retrieval (MIR) on large-
scale datasets was limited to industry, because large collections of music
audio cannot be published easily due to licensing issues. The authors of the
MSD circumvented these issues by providing precomputed features instead
of raw audio. Unfortunately, the audio features provided with the MSD are
of limited use, and the process by which they were obtained is not very well
documented. The feature set was extended by Rauber et al. (2012), but the
absence of raw audio data, or at least a mid-level representation, is still an
issue. However, we were able to attain 29 second audio clips for over 99% of
the dataset from 7digital.com.

30 2 Deep Content-Based Music Recommendation

Due to its size, the MSD allows for the music recommendation problem to
be studied in a more realistic setting than was previously possible. It is also
worth noting that the Taste Profile Subset is one of the largest collaborative
filtering datasets that are publicly available today.

2.3 Weighted matrix factorization

The Taste Profile Subset contains play counts per song and per user, which
is a form of implicit feedback. We know how many times the users have
listened to each of the songs in the dataset, but they have not explicitly
rated them. However, we can assume that users will probably listen to songs
more often if they enjoy them. If a user has never listened to a song, this
can have many causes: for example, they might not be aware of it, or they
might expect not to enjoy it. This setting is not compatible with traditional
matrix factorization algorithms, which are aimed at predicting ratings.

We used the weighted matriz factorization (WMF) algorithm, proposed
by Hu et al. (2008), to learn latent factor representations of all users and
items in the Taste Profile Subset. This is a modified matrix factorization
algorithm aimed at implicit feedback datasets. Given a binary preference
matriz P of size m x n (m items and n users), WMF will find an m x f-
matrix U and an n x f-matrix V, so that P ~ UV7T. The hyperparameter
f controls the rank of the resulting approximation. This approximation is
found by optimizing the following weighted objective function:

J(U.V)=Co(P-UVT)?+MN|U[[F +|IVIE),

where C' is a m X n confidence matriz, o represents the inner product, the
squaring is elementwise, and A is a regularization parameter.

The preference variable p,; indicates whether user u has ever listened
to song ¢. If it is 1, we assume the user enjoys the song. The confidence
variable measures how certain we are about this particular preference. It
is a function of the play count, because songs with higher play counts are
more likely to be preferred. If the song has never been played, the confidence
variable will have a low value, because this is the least informative case.

More specifically the values of P and C are the following (as proposed
by Hu et al. (2008)):

Pui = I(ry; > 0), (2.1)
cui = 14+ alog(l 4+ ¢ 1ry), (2.2)

where r,,; is the play count for user u and song 4, I(x) is the indicator function

2.4 Predicting latent factors 31

and «, € are hyperparameters.

Because the confidence values in C' are chosen to be 1 for all zeroes in
P, an efficient alternating least squares (ALS) method exists to optimize
J(U,V), provided that P is sparse. In ALS U and V are alternatingly
updated, while keeping the other constant. Each update-step (of U or V) is
a simple least-squares problem with an algebraic solution. Although gradient
descent can also be used for the optimization, ALS is much more efficient
for a dataset of this size. For details, we refer to Hu et al. (2008).

2.4 Predicting latent factors

Predicting latent factors for a given song from the corresponding audio sig-
nal is a regression problem. It requires learning a function that maps a time
series to a vector of real numbers. We evaluate two methods to achieve this:
one follows the conventional approach in MIR by extracting local features
from audio signals and aggregating them into a bag-of-words (BoW) rep-
resentation. Any traditional regression technique can then be used to map
this feature representation to the factors. The other method is to use a deep
convolutional network.

Latent factor vectors obtained by applying WMF to the available usage
data are used as ground truth to train the prediction models. It should be
noted that this approach is compatible with any type of latent factor model
that is suitable for large implicit feedback datasets. We chose to use WMF
because an efficient optimization procedure exists for it.

2.4.1 Bag-of-words representation

Many MIR systems rely on the following feature extraction pipeline to con-
vert music audio signals into a fixed-size representation that can be used as
input to a classifier or regressor (McFee et al., 2012a; Weston et al., 2012,
2011; Foote, 1997; Hoffman et al., 2009):

e Extract MFCCs from the audio signals. We computed 13 MFCCs
from windows of 1024 audio frames, corresponding to 23 ms at a sam-
pling rate of 22050 Hz, and a hop size of 512 samples. We also com-
puted first and second order differences, yielding 39 coefficients in
total.

e Vector quantize the MFCCs. We learned a dictionary of 4000
elements with the K-means algorithm and assigned all MFCC vectors
to the closest mean.

32 2 Deep Content-Based Music Recommendation

e Aggregate them into a bag-of-words representation. For ev-
ery song, we counted how many times each mean was selected. The
resulting vector of counts is a bag-of-words feature representation of
the song.

We then reduced the size of this representation using PCA (we kept
enough components to retain 95% of the variance) and used linear regression
and a multilayer perceptron with 1000 hidden units on top of this to predict
latent factors. We also used it as input for the metric learning to rank
(MLR) algorithm (McFee and Lanckriet, 2010), to learn a similarity metric
for content-based recommendation. This was used as a baseline for our music
recommendation experiments, which are described in Section 2.5.2.

2.4.2 Convolutional neural networks

As already mentioned in Chapter 1, convolutional neural networks (CNNs)
have recently been used to improve on the state of the art in speech recog-
nition and large-scale image classification by a large margin (Hinton et al.,
2012a; Krizhevsky et al., 2012). A few ingredients seem to be central to the
success of this approach: rectified linear units (ReLUs), GPU acceleration,
dropout and large training datasets.

We used the Theano library (Bergstra et al., 2010) to take advantage
of GPU acceleration and the MSD contains enough training data to be able
to train large models effectively. We have evaluated the use of dropout
regularization (Hinton et al., 2012b), but this did not yield any significant
improvements. Although there is no clear explanation for this behavior, it
might be due to the use of the MSE loss (instead of a more commenly used
classification loss).

We first extracted an intermediate time-frequency representation from
the audio signals to use as input to the network. We used log-compressed
mel-spectrograms with 128 components and the same window size and hop
size that we used for the MFCCs (1024 and 512 audio frames respectively).
The networks were trained on windows of 3 seconds sampled randomly from
the audio clips. This was done primarily to speed up training. To predict
the latent factors for an entire clip, we averaged over the predictions for
consecutive windows.

Convolutional neural networks are especially suited for predicting latent
factors from music audio, because they allow for intermediate features to
be shared between different factors, and because their hierarchical structure
consisting of alternating feature extraction layers and pooling layers allows
them to operate on multiple timescales.

2.5 FExperiments 33

2.4.3 Objective functions

Latent factor vectors are real-valued, so the most straightforward objective is
to minimize the mean squared error (MSE) of the predictions. Alternatively,
we can also continue to minimize the weighted prediction error (WPE) from
the WMF objective function. Let y; be the latent factor vector for song
i, obtained with WMF, and vy, the corresponding prediction by the model.
The objective functions are then (8 represents the model parameters):

. 7112
i — Yl 2.3
min > [ly: - il (2.3)
. T, /\2
wi(pui — 272, 2.4
min Y cui(Pus = ;) (2.4)

2.5 Experiments

2.5.1 Versatility of the latent factors

To demonstrate the versatility of the latent factor vectors, we compared
them with audio features in a tag prediction task. Tags can describe a
wide range of different aspects of the songs, such as genre, instrumentation,
tempo, mood and year of release.

We ran WMF to obtain 50-dimensional latent factor vectors for all 9,330
songs in the subset, and trained a logistic regression model to predict the 50
most popular tags from the Last.fm dataset for each song. We also trained
a logistic regression model on a bag-of-words representation of the audio
signals, which was first reduced in size using PCA (see Section 2.4.1). We
used 10-fold cross-validation and computed the average area under the ROC
curve (AUC) across all tags. This resulted in an average AUC of 0.69365
for audio-based prediction, and 0.86703 for prediction based on the latent
factor vectors.

2.5.2 Quantitative evaluation

To assess quantitatively how well we can predict latent factors from music
audio, we used the predictions from our models for music recommendation.
For every user u and for every song ¢ in the test set, we computed the
score 1y, and recommended the songs with the highest scores first. As

34 2 Deep Content-Based Music Recommendation

mentioned before, we also learned a song similarity metric on the bag-of-
words representation using metric learning to rank. In this case, scores for a
given user are computed by averaging similarity scores across all the songs
that the user has listened to.

The following models were used to predict latent factor vectors:

e Linear regression trained on the bag-of-words representation described
in Section 2.4.1.

e A multi-layer perceptron (MLP) trained on the same bag-of-words
representation.

e A convolutional neural network trained on log-scaled mel-spectrograms
to minimize the mean squared error (MSE) of the predictions.

e The same convolutional neural network, trained to minimize the weighted
prediction error (WPE) from the WMF objective instead.

For our initial experiments, we used a subset of the dataset containing
only the 9,330 most popular songs, and listening data for only 20,000 users.
We used 1,881 songs for testing. For the other experiments, we used all
available data: we used all songs that we have usage data for and that we
were able to download an audio clip for (382,410 songs and 1 million users
in total, 46,728 songs were used for testing).

We report the mean average precision (mAP, cut off at 500 recommenda-
tions per user) and the area under the ROC curve (AUC) of the predictions.
We evaluated all models on the subset, using latent factor vectors with 50
dimensions. We compared the convolutional neural network with linear re-
gression on the bag-of-words representation on the full dataset as well, using
latent factor vectors with 400 dimensions. Results are shown in Tables 2.2
and 2.3 respectively.

Model mAP AUC
MLR 0.018 0.606
linear regression 0.024 0.635
MLP 0.025 0.646

CNN with MSE 0.050 0.710
CNN with WPE 0.043 0.701

Table 2.2: Results for all considered models on a subset of
the dataset containing only the 9,330 most popular songs, and
listening data for 20,000 users.

2.5 FExperiments 35

On the subset, predicting the latent factors seems to outperform the met-
ric learning approach. Using an MLP instead of linear regression results in a
slight improvement, but the limitation here is clearly the bag-of-words fea-
ture representation. Using a convolutional neural network results in another
large increase in performance. Most likely this is because the bag-of-words
representation does not reflect any kind of temporal structure.

Interestingly, the WPE objective does not result in improved perfor-
mance. Presumably this is because the weighting causes the importance of
the songs to be proportional to their popularity. In other words, the model
will be encouraged to predict latent factor vectors for popular songs from
the training set very well, at the expense of all other songs.

Model mAP AUC

random 0.00015 0.499
linear regression 0.00101 0.645
CNN with MSE 0.00672 0.772

upper bound 0.23278 0.961

Table 2.3: Results for linear regression on a bag-of-words rep-
resentation of the audio signals, and a convolutional neural
network trained with the MSE objective, on the full dataset
(382,410 songs and 1 million users). Also shown are the scores
achieved when the latent factor vectors are randomized, and
when they are learned from usage data using WMF (upper
bound).

On the full dataset, the difference between the bag-of-words approach
and the convolutional neural network is much more pronounced. Note that
we did not train an MLP on this dataset due to the small difference in
performance with linear regression on the subset. We also included results
for when the latent factor vectors are obtained from usage data. This is
an upper bound to what is achievable when predicting them from content.
There is a large gap between our best result and this theoretical maximum,
but this is to be expected: as we mentioned before, many aspects of the
songs that influence user preference cannot possibly be extracted from audio
signals only. In particular, we are unable to predict the popularity of the
songs, which considerably affects the AUC and mAP scores.

36 2 Deep Content-Based Music Recommendation

2.5.3 Qualitative evaluation

Evaluating recommender systems is a complex matter, and accuracy metrics
by themselves do not provide enough insight into whether the recommen-
dations are sound. To establish this, we also performed some qualitative
experiments on the subset. For each song, we searched for similar songs
by measuring the cosine similarity between the predicted usage patterns.
We compared the usage patterns predicted using the latent factors obtained
with WMF (50 dimensions), with those using latent factors predicted with
a convolutional neural network. A few songs and their closest matches ac-
cording to both models are shown in Table 2.4. When the predicted latent
factors are used, the matches are mostly different, but the results are quite
reasonable in the sense that the matched songs are likely to appeal to the
same audience. Furthermore, they seem to be a bit more varied, which is a
useful property for recommender systems.

Following McFee et al. (2012a), we also visualized the distribution of
predicted usage patterns in two dimensions using t-SNE (Van der Maaten
and Hinton, 2008). A few close-ups are shown in Figure 2.1. Clusters of
songs that appeal to the same audience seem to be preserved quite well, even
though the latent factor vectors for all songs were predicted from audio.

2.6 Related work

Many researchers have attempted to mitigate the cold start problem in col-
laborative filtering by incorporating content-based features. We review some
recent work in this area of research.

Wang and Blei (2011) extend probabilistic matrix factorization (PMF)
(Salakhutdinov and Mnih, 2008) with a topic model prior on the latent factor
vectors of the items, and apply this model to scientific article recommenda-
tion. Topic proportions obtained from the content of the articles are used
instead of latent factors when no usage data is available. The entire system
is trained jointly, allowing the topic model and the latent space learned by
matrix factorization to adapt to each other. Our approach is sequential in-
stead: we first obtain latent factor vectors for songs for which usage data is
available, and use these to train a regression model. Because we reduce the
incorporation of content information to a regression problem, we are able to
use a deep convolutional network.

McFee et al. (2012a) define an artist-level content-based similarity mea-
sure for music learned from a sample of collaborative filter data using metric
learning to rank (McFee and Lanckriet, 2010). They use a variation on

"}JOMIBU [BINBU [BUOIIN|OAUOD B AQ paioipaid sio1oey juaie| Suisn pue JINAA
Y1m paulelqo sioloey juale| Suisn ‘susalled aSesn Jo SWU] Ul SBYDIBW 1SBSO|D JIBY] pue sSuos Ma) Y g dlqel

WSTUPIN OF, INUIN U - 01)snp
UonQJ, au() - woIsAspunos (1D
sse[310g 19)SUOIN 194 - snjor] Sulh[g
eART BART - 9ZION SAog]

QUIYQ dUIYS - 9ZION sAog

ysnipron oy, - Aerdpop

Ie9 9Injeal)) - I9A] uog

POOMAT[OY - 8U0)g eInf 29 snuy
Surreaoddy nox - ¢8IN

Suruuny rey) oy J, desy] - all apedry

Ielg UROLIOWY - [[PURYS / SUAeAN I

Aemy SOfI\ - RUUOPRIN

ayooN o(sy o1dwelg - zueg orpuelo[y
pejuneq - BUURYIY

oUQ YT, JON 9LNOX JI - PloYSuIpag [orue(

SI98eU09], - 9ouRWOY [edTWAY) AN

WOUdA oY J, I10,] NOX NURYJ, - 90UBWOY [edTwat)) AN
NOX JI9A() SPuaLL] AN - AIO[Y) PUNO MON

sowrer) - SIayjolg Seuo[

[A15) 09PIA - SIdjolg seuof

STRUAPOIOY / 9wl], 9I0J\ du(Q) - Jund e
orureuAporoy - yund yeq

(uots1o/ sorezuox)) Suor] oo, - yund yed
UOISTAJUSIN - Yund yeq

HNOILT I0Yg - qund yed

poon) gg - sieyjorg seuo

au() arenbg - AejdpionH

A %3 X - Aerdprop

UsnIp[on Ay, - Ae[dpop

pu®lS NOX 2I_YA\ [Nyare)) - Aeidp[o)

pojune] - BUURYIY
A0 U] A[snore8ue(] - 9ouokog

207 pa[[e) Sury, o1 Azer) - snyeig-r / euueyry
Appe(- 9ouokeg

08I\ WOI] YIY) - 9ouokog

pooxn) gg - sivyjolrg seuor

000€ Iedx - sIatjolg seuof

un, 9ARE BUURAA ISN[S[IIX) - SNIAD) AS[IN
(MO WSIN SID) "O°'N'D - snIk) Aoy
seuwrer) - sIaljolg Seuof

[10Y u ooy
- und yed

Aemy uey |
- Aerdpop

sso[yooadg
- 9ouOAdg

"0 PI°H
- SI9Y}0Ig] Seuor

(pojorpaad) syoed) Je[ruuis JSOJA]

(AINM) sPery Teruls 3o

ALisnd

_u—v:ﬁﬂ: Baau

Figure 2.1: t-SNE visualization of the distribution of predicted usage patterns, using latent factors predicted from
audio. A few close-ups show artists whose songs are projected in specific areas. We can discern hip-hop (red), rock
(green), pop (yellow) and electronic music (blue). This figure is best viewed in color.

2.7 Conclusion 39

the typical bag-of-words approach for audio feature extraction (see Section
2.4.1). Their results corroborate that relying on usage data to train the
model improves content-based recommendations. For audio data they used
the CAL10K dataset, which consists of 10,832 songs, so it is comparable in
size to the subset of the MSD that we used for our initial experiments.

Weston et al. (2012) investigate the problem of recommending items to a
user given another item as a query, which they call “collaborative retrieval”.
They optimize an item scoring function using a ranking loss and describe a
variant of their method that allows for content features to be incorporated.
They also use the bag-of-words approach to extract audio features and eval-
uate this method on a large proprietary dataset. They find that combining
collaborative filtering and content-based information does not improve the
accuracy of the recommendations over collaborative filtering alone.

Both McFee et al. (2012a) and Weston et al. (2012) optimized their
models using a ranking loss. We have opted to use quadratic loss functions
instead, because we found their optimization to be more easily scalable.
Using a ranking loss instead is an interesting direction of future research,
although we suspect that this approach may suffer from the same problems
as the WPE objective (i.e. popular songs will have an unfair advantage).

2.7 Conclusion

In this chapter, we have investigated the use of deep convolutional neural
networks to predict latent factors from music audio when they cannot be
obtained from usage data. We evaluated the predictions by using them for
music recommendation on an industrial-scale dataset. Even though a lot of
characteristics of songs that affect user preference cannot be predicted from
audio signals, the resulting recommendations seem to be sensible. We can
conclude that predicting latent factors from music audio is a viable method
for recommending new and undiscovered music.

We also showed that recent advances in deep learning translate very well
to the music recommendation setting in combination with this approach,
with deep convolutional neural networks significantly outperforming a more
traditional approach using bag-of-words representations of audio signals.
This bag-of-words representation is used very often in MIR, and our re-
sults indicate that a lot of research in this domain could benefit significantly
from using deep neural networks.

Transfer learning for Music
Information Retrieval

Some ideas presented in the previous chapter can also be used for transfer
learning. As already mentioned, the latent factor representation resulting
from matrix factorization captures a lot of information about the song such
as genre, mood, instrumentation, lyrical themes but also the popularity of an
artist and their reputation and location. When we try to infer these latent
factors from audio with a machine learning regression model, a lot of the
high-level features extracted by this model are possibly also useful for other
applications, such as music tagging or genre classification. In this chapter we
explore the possibility of using models trained on the Million Song Dataset
(MSD) as feature extractors for smaller related datasets.

The techniques and results presented in this chapter were published in
(van den Oord et al., 2013). This work was in collaboration with Sander
Dieleman.

3.1 Introduction

With the exception of the Million Song Dataset (MSD) (Bertin-Mahieux
et al., 2011), public large-scale music datasets that are suitable for research
are hard to come by. Among other reasons, this is because unwieldy file sizes
and copyright regulations complicate the distribution of large collections of
music data. This is unfortunate, because some recent developments have
created an increased need for such datasets.

On the one hand, content-based music information retrieval (MIR) is
finding more applications in the music industry, in a large part due to the
shift from physical to digital distribution. Nowadays, online music stores
and streaming services make a large body of music readily available to the

42 8 Transfer learning for Music Information Retrieval

listener, and content-based MIR can facilitate cataloging and browsing these
music collections, for example by automatically tagging songs with relevant
terms, or by creating personalized recommendations for the user. To develop
and evaluate such applications, large music datasets are needed.

On the other hand, the recent rise in popularity of feature learning and
deep learning techniques in the domains of computer vision, speech recog-
nition and natural language processing has caught the attention of MIR
researchers, who have adopted them as well (Humphrey et al., 2012). Large
amounts of training data are typically required for a feature learning ap-
proach to work well.

Although the initial draw of deep learning was the ability to incorporate
large amounts of unlabeled data into the models using an unsupervised learn-
ing stage called unsupervised pre-training (Bengio, 2009), modern industrial
applications of deep learning typically rely on purely supervised learning
instead. This means that large amounts of labeled data are required, and
labels are usually quite costly to obtain.

Given the scarcity of large-scale music datasets, it makes sense to try and
leverage whatever data is available, even if it is not immediately usable for
the task we are trying to perform. We can use a transfer learning approach
to achieve this: given a target task to be performed on a small dataset, we
can train a model for a different, but related task on another dataset, and
then use the learned knowledge to obtain a better model for the target task.

In image classification, impressive results have recently been attained on
various datasets by reusing deep convolutional neural networks trained on
a large-scale classification problem: ImageNet classification. The ImageNet
dataset contains roughly 1.2 million images, divided into 1,000 categories
(Deng et al., 2009). The trained network can be used to extract features
from a new dataset, by computing the activations of the topmost hidden
layer and using them as features. Two recently released software packages,
OverFeat (Sermanet et al., 2013) and DeCAF (Donahue et al., 2013), provide
the parameters of a number of pre-trained networks, which can be used to
extract the corresponding features. This approach has been shown to be
very competitive for various computer vision tasks, sometimes surpassing
the state of the art (Razavian et al., 2014; Zeiler and Fergus, 2013).

Inspired by this approach, we propose to train feature extractors on the
MSD for two large-scale audio-based song classification tasks, and leverage
them to perform other classification tasks on different datasets. We show
that this approach to transfer learning, which we refer to as supervised pre-
training following Girshick et al. (2013), consistently improves results on the
tasks we evaluated.

The rest of this chapter is structured as follows: in Section 3.2, we give

3.8 Proposed approach 43

an overview of the datasets we used for training and evaluation. In Section
3.3 we describe our proposed approach and briefly discuss how it relates to
transfer learning. Our experiments and results are described in Section 3.4.
Finally, we draw conclusions and point out some directions for future work
in Section 3.5.

3.2 Datasets

The Million Song Dataset (Bertin-Mahieux et al., 2011) is a collection of
metadata and audio features for one million songs. Although raw audio data
is not provided, we were able to obtain 30 second preview clips for almost
all songs from 7digital.com. A number of other datasets that are linked to
the MSD are also available. These include the Taste Profile Subset (McFee
et al., 2012b), which contains listening data from 1 million users for a subset
of about 380,000 songs in the form of play counts, and the last.fm dataset,
which provides tags for about 500,000 songs. All tags were created (they
can be any string) and applied by last.fm users, which means they could
be based on anything ranging from genre, artist location, artist popularity,
mood, tempo,

We use the combination of these three datasets to define two source
tasks: user listening preference prediction and tag prediction from audio.
We evaluate four target tasks on different datasets:

o genre classification on the GTZAN dataset (Tzanetakis and Cook,
2002), which contains 1,000 audio clips, divided into 10 genres.

e genre classification on the Unique dataset (Seyerlehner et al., 2010),
which contains 3,115 audio clips, divided into 14 genres.

e genre classification on the 1517-artists dataset (Seyerlehner et al.,
2010), which contains 3,180 full songs, divided into 19 genres.

e tag prediction on the Magnatagatune dataset (Law and von Ahn,
2009), which contains 25,863 audio clips, annotated with 188 tags.

3.3 Proposed approach

3.3.1 Overview

There are many ways to transfer learned knowledge between tasks. Pan
and Yang (2010) give a comprehensive overview of the transfer learning

(source task) -
labels (tags or target task
user listening audio signals audio signals
preferences) | |
v spectrogram spectrogram
dimensionality extraction extraction
reduction by WMF) 1
I spectrograms spectrograms
factors v l
K-means feature K-means feature
learning + il extraction _mvw_m
extraction ! shallow classifier
! low-level features (L2-SVM)
low-level features ! ;
train mzmmw BN MMMMMMMMHMMMMM . Emr-#m/\& features
regression or MLP el (predicted factors)
\ AN

Figure 3.1: Schematic overview of the workflow we use for our supervised pre-training approach. Dashed arrows
indicate transfer of the learned feature extractors from the source task to the target task.

3.8 Proposed approach 45

framework, and of the relevant literature. In their taxonomy, our proposed
supervised pre-training approach is a form of inductive transfer learning with
feature representation transfer: target labels are available for both the source
and target tasks, and the feature representation learned on the source task
is reused for the target task.

In the context of MIR, transfer learning has been explored by embed-
ding audio features and labels from various datasets into a shared latent
space with linear transformations (Hamel et al., 2013). The same shared
embedding approach has previously been applied to MIR tasks in a multi-
task learning setting (Weston et al., 2011). We refer to these papers for a
discussion of some other work in this area of research.

For supervised pre-training, it is essential to have a source task that
requires a very rich feature representation, so as to ensure that the informa-
tion content of this representation is likely to be useful for other tasks. For
computer vision problems, ImageNet classification is one such task, since it
involves a wide range of categories. In this chapter, we evaluate two source
tasks using the MSD: tag prediction and user listening preference prediction
from audio. The goal of tag prediction is to automatically determine which
of a large set of tags are associated with a given song. User listening pref-
erence prediction involves predicting whether users have listened to a given
song or not.

Both tasks differ from typical classification tasks in a number of ways:

e Tag prediction is a multi-label classification task: each song can be
associated with multiple tags, so the classes are not disjoint. The
same goes for user listening preference prediction, where we attempt
to predict for each user whether they have listened to a song. The
listening preferences of different users are not disjoint either, and one
song is typically listened to by multiple users.

e There are large numbers of tags and users; orders of magnitude larger
than the 1,000 categories of ImageNet.

e The data is weakly labeled: if a song is not associated with a particular
tag, the tag may still be applicable to the song. In the same way, if a
user has not listened to a song, they may still enjoy it (i.e. it would
be a good recommendation). In other words, some positive labels are
missing.

e The labels are redundant: a lot of tags are correlated, or have the
same meaning. For example, songs tagged with disco are more likely
to also be tagged with 80’s. The same goes for users: many of them
have similar listening preferences.

46 8 Transfer learning for Music Information Retrieval

e The labels are very sparse: most tags only apply to a small subset of
songs, and most users have only listened to a small subset of songs.

We tackle some of the problems created by these differences by first
performing dimensionality reduction in the label space using weighted matriz
factorization (WMF, see Section 3.3.2), and then training models to predict
the reduced label representations instead.

To be able to experiment with a lot different ideas and architectures in
the transfer learning scheme we used neural networks on top of spherical
K-means features (Coates and Ng., 2012; Dieleman and Schrauwen, 2013)
instead of convolutional neural networks. Convolutional neural networks
have a lot of architectural hyperparameters that can influence the results in
non-obvious ways. Using simpler neural networks on the other hand made
the analysis more clear and allowed to draw better conclusions about the
influence of the number of layers and non-linearity of the neural network on
the results. As we show in our experiments, more powerful models do not
always work better for transfer learning as these may overfit on the source
task.

The spherical K-means algorithm (Section 3.3.3) is used to learn low-
level features from audio spectrograms, which are then used as input for
the supervised models that we train to perform the source tasks. Feature
learning using K-means is very fast compared to other unsupervised feature
learning methods, and yields competitive results. It has recently gained
popularity for content-based MIR applications (Schliiter and Osendorfer,
2011; Wiilfing and Riedmiller, 2012; Dieleman and Schrauwen, 2013).

In summary, our workflow (visualized in Figure 3.1) is as follows: we first
learn low-level features from audio spectrograms, and apply dimensionality
reduction to the target labels. We then train supervised models to predict
the reduced label representations from the extracted low-level audio features.
Next, we use the trained models to extract higher-level features from other
datasets, and use those features to train shallow classifiers for different but
related target tasks. We compare the higher-level features obtained from
different model architectures and different source tasks by evaluating their
performance on these target tasks.

The key learning steps of our workflow are detailed in the following
subsections.

3.3.2 Dimensionality reductionin the label space

To deal with large numbers of overlapping labels, we first consider the matrix
of labels for all examples, and perform weighted matrix factorization (WMF)
on it (See Section 2.3 from the previous chapter). Our choice for WMF over

3.8 Proposed approach 47

other dimensionality reduction methods, such as PCA, is motivated by the
particular structure of the label space described earlier. WMF allows for the
sparsity and redundancy of the labels to be exploited, and we can take into
account that the data is weakly labeled by choosing the confidence matrix
C so that positive signals are weighed more than negative signals.

The original label matrix for the tag prediction task has 173,203 columns,
since we included all tags from the last.fm dataset that occur more than once.
The matrix for the user listening preference prediction task has 1,129,318
columns, corresponding to all users in the Taste Profile Subset. By applying
WMF, we obtain reduced representations with 400 factors for both tasks.
These factors are treated as ground truth target values in the supervised
learning phase.

3.3.3 Unsupervised learning of low-level features

We learn a low-level feature representation from spectrograms in an unsuper-
vised manner, to use as input for the supervised pre-training stage. First,
we extract log-scaled mel-spectrograms from single channel audio signals,
with a window size of 1024 samples and a hop size of 512. Conversion to the
mel scale reduces the number of frequency components to 128. We then use
the spherical K-means algorithm (as suggested by Coates and Ng. (2012)) to
learn 2048 bases from randomly sampled PCA-whitened windows of 4 con-
secutive spectrogram frames. This is similar to the feature learning approach
proposed by Dieleman and Schrauwen (2013).

To extract features, we divide the spectrograms into overlapping win-
dows of 4 frames, and compute the dot product of each base with each
PCA-whitened window. We then aggregate the feature values across time by
computing the maximal value for each base across groups of consecutive win-
dows corresponding to about 2 seconds of audio. Finally, we take the mean
of these values across the entire audio clip to arrive at a 2048-dimensional
feature representation for each example. This two-stage temporal pooling
approach turns out to work well in practice.

3.3.4 Supervised learning of high-level features

For both source tasks, we train three different model architectures to predict
the reduced label representations from the low-level audio features: a linear
regression model, a multi-layer perceptron (MLP) with a hidden layer with
1000 rectified linear units (ReLUs) (Nair and Hinton, 2010), and an MLP
with two such hidden layers. The MLPs are trained using stochastic gradient
descent (SGD) to mimize the mean squared error (MSE) of the predictions,

48 8 Transfer learning for Music Information Retrieval

and dropout regularization (Hinton et al., 2012b). The training procedure
was implemented using Theano (Bergstra et al., 2010).

We trained all these models on a subset of the MSD, consisting of 373,855
tracks for which we were able to obtain audio samples, and for which listening
data is available in the Taste Profile Subset. We used 308,443 tracks for
training, 18,684 for validation and 46,728 for testing. For the tag prediction
task, the set of tracks was further reduced to 253,588 tracks, including only
those for which tag data is available in the last.fm dataset. For this task, we
used 209,218 tracks for training, 12,763 for validation and 31,607 for testing.

The trained models can be used to extract high-level features simply by
computing predictions for the reduced label representations and using those
as features, yielding feature vectors with 400 values. For the MLPs, we can
alternatively compute the activations of the topmost hidden layer, yielding
feature vectors with 1000 values instead. The latter approach is closer to the
original interpretation of supervised pre-training as described in Section 3.1,
but since the trained models attempt to predict latent factor representations,
the former approach is viable as well. We compare both.

To evaluate the models on the source tasks, we compute the predicted
factors U’ and obtain predictions for each class by computing A’ = U'VT.
This matrix can then be used to compute performance metrics.

3.3.5 Evaluation of the features for target tasks

To evaluate the different extracted features for the target tasks outlined in
Section 3.2, we train linear L2-norm support vector machines (L2-SVMs)
with liblinear (Fan et al., 2008). Although using more powerful classifiers
could probably improve our results, the use of a shallow, linear classifier
helps to assess the quality of the input features.

3.4 Experiments and results

3.4.1 Source tasks

To assess whether the models trained for the source tasks are able to make
sensible predictions, we evaluate them by computing the normalized mean
squared error (NMSE)! of the latent factor predictions, as well as the area
under the ROC curve (AUC) and the mean average precision (mAP) of the

!The NMSE is the MSE divided by the variance of the target values across the
dataset.

3.4 Ezxperiments and results 49

Model NMSE AUC mAP

User listening preference prediction:

Linear regression 0.986 0.750 0.0076
MLP (1 hidden layer) 0.971 0.760 0.0149
MLP (2 hidden layers) 0.961 0.746 0.0186

Tag prediction:
Linear regression 0.965 0.823 0.0099
MLP (1 hidden layer) 0.939 0.841 0.0179
MLP (2 hidden layers) 0.924 0.837 0.0179

Table 3.1: Results for the source tasks. For all three models,
we report the normalized mean squared error (NMSE) on the
validation set, and the area under the ROC curve (AUC) and
the mean average precision (mAP) on a separate test set.

class predictions?. They are reported in Table 3.1. Note that the latter two
metrics are computed on a separate test set, but the former is computed
on the validation set that we also used to optimize the hyperparameters for
the dimensionality reduction of the labels. This is because the ground truth
latent factors, which are necessary to compute the NMSE, are not available
for the test set. The validation AUC and mAP scores were similar to those
on the test set (there was no overfitting on the validation set).

It is clear that using a more complex model (i.e. an MLP) results in
better predictions of the latent factors in the least-squares sense, as indicated
by the lower NMSE values. However, when using the AUC metric, this does
not always seem to translate into better performance for the task at hand:
MLPs with only a single hidden layer perform best for both tasks in this
respect. The mAP metric seems to follow the NMSE on the validation set
more closely.

Although the NMSE values are relatively high, the class prediction met-
rics indicate that the predicted factors still yield acceptable results for the
source tasks. In our preliminary experiments we also observed that using
fewer factors tends to result in lower NMSE values. In other words, as
we add more factors, they become less predictable. This implies that the

2The class predictions are obtained by multiplying the factor predictions with
the matrix V7T, as explained in the previous section.

50 8 Transfer learning for Music Information Retrieval

most important latent factors extracted from the labels are also the most
predictable from audio.

3.4.2 Target tasks

We report the L2-SVM classification performance of the different feature
sets across all target tasks in Figure 3.2. For the GTZAN, Unique and
1517-Artists datasets, we report the average cross-validation classification
accuracy across 10 folds. Error bars indicate the standard deviations across
folds. We optimize the SVM regularization parameter using nested cross-
validation with 5 folds. Magnatagatune comes divided into 16 parts; we use
the first 11 for training and the next 2 for validation. After hyperparameter
optimization, we retrain the SVMs on the first 13 parts, and the last 3 are
used for testing. We report the AUC averaged across tags for the 50 most
frequently occuring tags (Figure 3.2d), and for all 188 tags (Figure 3.2¢).

The single bar on the left of each graph shows the performance achieved
when training an L2-SVM directly on the low-level features learned using
spherical K-means. The two groups of five bars show the performance of
the high-level features trained in a supervised manner for the user listening
preference prediction task and the tag prediction task respectively.

Across all tasks, using the high-level features results in improved perfor-
mance over the low-level features. This effect is especially pronounced for
Magnatagatune, when predicting all 188 tags from the high-level features
learned on the tag prediction source task. This makes sense, as some of
the Magnatagatune tags are quite rare, and features learned on this closely
related source task must contain at least some relevant information for these
tags.

Comparing the performance of different source task models for user lis-
tening preference prediction, model complexity seems to play a big role.
Across all datasets, features learned with linear regression perform much
better than MLPs, despite the fact that the MLPs perform better for the
source task. Clearly the MLPs are able to achieve a better fit for the source
task, but in the context of transfer learning, this is actually a form of over-
fitting, as the features generalize less well to the target tasks — they are too
specialized for the source task. This effect is not observed when the source
task is tag prediction, because this task is much more closely related to the
target tasks. As a result, a better fit for the source task is more likely to
result in better generalization across tasks.

For MLPs, there is a limited difference in performance between using
the predictions or the topmost hidden layer activations as features. Some-
times the latter approach works a bit better, presumably because the feature

0.90

0.88}
0.86

0 0.84

o}
< 0.82f

0.80
0.78
0.76

(d)

0.85
I low-level features
0.80 I linear regression |

.- I MLP (1)

g 0.75F E MLP (2)]

2 = MLP hiddens (1)

2 0.70p 1 MLP hiddens (2)
0.65 R
0.60 " "

listening data tag data
(a) Unique
0.55
0.50 b

Accuracy
o
>
o

listening data tag data _ listening data tag data o
(b) GTZAN (c) 1517-Artists

0.90
. 0.88} .
1 0.86
4,084
o)

<0.82
1 0.80
1 0.78

" " — 0.76 " "
listening data tag data listening data tag data

Magnatagatune (top 50 tags) (e) Magnatagatune (all 188 tags)

Figure 3.2: Target task performance of the different feature
sets. The dashed line represents the performance of the low-
level features. From left to right, the five bars in the bar groups
represent high-level features extracted with linear regression, an
MLP with 1 hidden layer, an MLP with 2 hidden layers, the
hidden layer of a 1-layer MLP, and the topmost hidden layer
of a 2-layer MLP respectively. Error bars for the first three
classification tasks indicate the standard deviation across cross-
validation folds. For Magnatagatune, no error bars are given
because no cross-validation was performed.

52 8 Transfer learning for Music Information Retrieval

vectors are larger (1000 values instead of 400) and sparser.

On GTZAN, we are able to achieve a classification accuracy of 0.882 +
0.024 using the high-level features obtained from a linear regression model
for the tag prediction task, which is competitive with the state of the art. If
we use the low-level features directly, we achieve an accuracy of 0.85140.034.
This is particularly interesting because the L2-SVM classifier is linear, and
the features obtained from the linear regression model are essentially linear
combinations of the low-level features.

3.5 Conclusion

We have proposed a method to perform supervised feature learning on the
Million Song Dataset (MSD), by training models for large-scale tag predic-
tion and user listening preference prediction. We have shown that features
learned in this fashion work well for other audio classification tasks on dif-
ferent datasets, consistently outperforming a purely unsupervised feature
learning approach.

This transfer learning approach works particularly well when the source
task is tag prediction, i.e. when the source task and the target task are
closely related. Acceptable results are also obtained when the source task is
user listening preference prediction, although it is important to restrict the
complexity of the model in this case. Otherwise, the features become too
specialized for the source task, which hampers generalization to other tasks
and datasets.

Student-t Mixture Models
and Image Compression

The previous two chapters showed how deep learning can be applied to music
recommendation and MIR in general. This chapter is the start of the second
part of this dissertation that focusses on generative modeling. This chapter
looks at mixture models for natural image patches and is a run-up to the
next chapters where we focus on deep generative models.

As already mentioned in the first chapter, recent results have shown that
Gaussian mixture models (GMMs) are remarkably good at density model-
ing of natural image patches, especially given their simplicity. We propose
the use of another, even richer mixture model based image prior than the
GMM: the student-t mixture model (STM). We demonstrate that it con-
vincingly surpasses GMMs in terms of log likelihood, achieving performance
competitive with the state of the art in image patch modeling. We apply
both the GMM and STM to the task of lossy and lossless image compres-
sion, and propose efficient coding schemes that can easily be extended to
other unsupervised machine learning models. Finally, we show that the sug-
gested techniques outperform JPEG, with results comparable to or better
than JPEG 2000.

The techniques and results presented in this chapter were published in
(van den Oord and Schrauwen, 2014b).

4.1 Intfroduction

As already mentioned in the first chapter, there has been a growing interest
in generative models for unsupervised learning. Especially latent variable
models such as sparse coding, energy-based learning and deep learning tech-
niques have received a lot of attention (Wright et al., 2010; Bengio, 2009).
The research in this domain was for some time largely stimulated by the

54 4 Student-t Mizture Models and Image Compression

success of the models for discriminative feature extraction and unsupervised
pre-training (Erhan et al., 2010). Although some of these techniques were
advertised as better generative models, no experimental results could sup-
port these claims (Theis et al., 2011). Furthermore recent work (Theis et al.,
2011; Tang et al., 2013) showed that many of these models, such as restricted
Boltzmann machines and deep belief networks are outperformed by more
basic models such as the Gaussian mixture model (GMM) in terms of log
likelihood on real-valued data.

Although arguably not as useful for the extraction of discriminative fea-
tures for the use of unsupervised pre-training, GMMs have been shown to
be very successful in various image processing tasks, such as denoising, de-
blurring and inpainting. See Section 1.4.4 and (Zoran and Weiss, 2011; Yu
et al., 2012). Good density models are essential for these tasks, and the log
likelihood measure of these models has shown to be a good proxy for their
performance. Apart from being simple and efficient, GMMs are easily inter-
pretable methods, which allow us to learn more about the nature of images
(Zoran and Weiss, 2012).

In this chapter we suggest the use of a similar, simple model for model-
ing natural image patches: the student-t mixture model (STM). The STM
uses multivariate student-t distributed components instead of normally dis-
tributed components. We show that a student-t distribution, although hav-
ing only one additional variable (the number of degrees of freedom), is able to
model stronger dependencies than solely the linear covariance of the normal
distribution, resulting in a large increase in log likelihood on natural image
data. Although a GMM is a universal approximator for continuous densities
(Titterington et al., 1985), we see that the gap in performance between the
STM and GMM remains substantial, as the number of components increases.

Apart from comparing these methods with other published techniques
for natural image modeling in terms of log likelihood, we also apply them
to image compression by proposing efficient coding schemes based on these
models. Like other traditional image processing applications, it is a challeng-
ing task to improve upon the well-established existing techniques. Especially
in data compression, which is one of the older, more advanced branches
of computer science, research has been going on for more than 30 years.
Most modern image compression techniques are therefore largely the result
of designing data-transformation techniques, such as as the discrete cosine
transform (DCT) and the discrete wavelet transform (DWT), and combin-
ing them with advanced engineered entropy coding schemes (Wallace, 1991;
Skodras et al., 2001).

We demonstrate that simple unsupervised machine learning techniques
such as the GMM and STM are able to perform quite well on image com-

4.2 Related work 55

pression, compared with conventional techniques such as JPEG and JPEG
2000. Because we want to measure the density-modeling capabilities of these
models, the amount of domain-specific knowledge induced in the proposed
coding schemes is kept to a minimum. This also makes it relevant from a
machine learning perspective as we can more easily apply the same ideas to
other types of data such as audio, video, medical data, ... or more specific
kinds of images, such as satellite, 3D and medical images.

This chapter is organized as follows. In Section 4.2 we review published
work on data compression, in which related techniques were used. In Section
4.3 we give additional background for this chapter on the GMM and STM
and the expectation-maximization (EM) steps for training them. We also
elaborate on their differences and the more theoretical aspects of their ability
to model the distribution of natural image patches. In Section 4.4 we present
the steps for encoding/decoding images with the use of these mixture models
for both lossy and lossless compression. The results and their discussion
follow in Section 4.5. We conclude in Section 4.6.

4.2 Related work

In this section we review related work on image compression and density
modeling.

4.2.1 Image compression

The coding schemes (see Section 4.4) we use to compare the GMM and
STM, can be related with other published techniques in image compression,
in the way they are designed. Although little research has been done on the
subject we briefly review work based on vector quantization, sparse coding
and subspace clustering.

In vector quantization (VQ) literature (Hedelin and Skoglund, 2000),
GMDMs have been proposed for the modeling of low-dimensional speech sig-
nal parameters. In this setting, the GMMSs’ probability density function is
suggested to be used to fit a large codebook of VQ centroids on (e.g. with a
technique similar to k-means), instead of on the original dataset. They were
introduced to help against overfitting, which is a common problem with the
design of vector quantizers when the training set is relatively small com-
pared to the size of the codebook. The same idea has also been suggested
for image compression (Aiyer et al., 2005). In contrast to these approaches
we apply a (learned) data transformation in combination with simple scalar
uniform quantization, which reduces the complexity considerably given the

56 4 Student-t Mizture Models and Image Compression

relatively high dimensionality of image patches. This idea called transform
coding (Goyal, 2001) is widely applied in most common image compression
schemes, which use designed data-transforms such as the DCT and DW'T.

Hong et al. (2005) suggested image compression based on a subspace
clustering model. The main contribution was a piecewise linear transfor-
mation for compression, which was also extended to a multiscale method.
This is by some means similar to our lossy compression scheme as we also
apply a piecewise linear transform, but based on the GMM/STM instead
of a subspace clustering technique. They did not suggest quantization or
entropy coding steps, and therefore only evaluated their approach in terms
of energy compaction instead of rate-distortion.

Image compression based on sparse coding has been proposed (Horev
et al., 2012) for images in general (Bryt and Elad, 2008; Zepeda et al.,
2011) and for a specific class of facial images. Aside from being another
unsupervised learning technique, sparse coding has been related with GMM
in another way: Some authors (Yu et al., 2012; Zoran and Weiss, 2011) have
suggested the interpretation of a GMM as a structured sparse coding model.
This idea is based on the observation that data can often be represented
well by one of the k& Gaussian mixture components, thus when combining all
the eigenvectors of their covariance matrices as an overcomplete dictionary,
the sparsity is +. The main results in (Horev et al., 2012) show that sparse
coding outperforms JPEG, but it does not reach JPEG 2000 performance
for a general class of images.

4.2.2 Models of image patches

Sparse coding approaches (Olshausen and Field, 1997) have also been suc-
cessfully applied as an image prior on various image reconstruction tasks,
such as denoising and demosaicing (Elad and Aharon, 2006; Mairal et al.,
2009). These models have recently been shown to be outperformed by the
GMM in both image denoising (Zoran and Weiss, 2011) as density modeling
(Zoran and Weiss, 2012).

The fields of experts framework is another approach for learning priors
that can be used for image processing applications (Roth and Black, 2005;
Weiss and Freeman, 2007). In fields of experts, the linear filters of a markov
random field are trained to maximize the log-likelihood of whole images in
the training set. This optimization is done approximately with contrastive
divergence, as computing the log likelihood itself is intractable. The po-
tential functions that are used in the MRF are represented by a product
of experts (Hinton, 2002). Fields of experts are commonly used for image
restoration tasks such as denoising and inpainting, but was also recently

4.8 Mizture models as image priors 57

outperformed by GMMs with the expected patch log likelihood framework
(EPLL) (Zoran and Weiss, 2012).

Recently similar models to the GMM have been proposed for image
modeling, such as the deep mixture of factor analyzers (Tang et al., 2012).
This technique is a deep generalisation of the mixture of factor analyzers
model, which is similar to the GMM. The deep mixture of factor analyzers
has a tree structure in which every node is a factor analyser, which inherits
the low-dimensional latent factors from its parent.

Another model related to the GMM and STM is the mixture of Gaussian
scale mixtures (MoGSM) (Theis et al., 2011, 2012). Instead of a Gaussian,
every mixture component is a Gaussian scale mixture distribution. The
MoGSM has been used for learning multi-scale image representations, by
modeling each level conditioned on the higher levels.

RNADE, a new deep density estimation technique for real valued data
has a very different structure (Uria et al., 2013b,a). RNADE is an extension
of the NADE technique for real-valued data, where the likelihood function is
factored into a product of conditional likelihood functions. Each conditional
distribution is fitted with a neural mixture density network, where one vari-
able is estimated, given the other ones. Recently a new training method
has allowed a factorial number of RNADE’s to be trained at once within
one model. It is currently one of the few deep learning methods with good
density estimation results on real-valued data and is the current state of the
art on image patch modeling.

4.3 Mixture models as image priors

Mixture models are among the most widely accepted methods for clustering
and probability density estimation. Especially GMMs are well known and
have widespread applications in different domains. However depending on
the data used, other mixture models might be more suitable.

Recall from Chapter 1 that a mixture distribution f is a weighted sum
of mixture components fy:

K
f@)=> mfe (@), (4.1)
k=1

where 7,k = 1... K are the mixing weights. The two component distribu-
tions we study in this chapter are the multivariate normal distribution and
the multivariate student-t distribution.

The multivariate normal distribution is used as component distribution

58 4 Student-t Mizture Models and Image Compression

in GMMs and it has the following density function:
Ji @) = N (@lpe, i) = (2m)5[Sa] 73 2 @) ()

where p is the dimensionality of . In this chapter we train GMMs with the
EM-algorithm that was introduced in Section 1.3.1.

One of the important reasons GMMs excel at modeling image patches
is that the distribution of image patches has a multimodal landscape. A
unimodal distribution such as the multivariate normal distribution is not
able to capture this. When using a mixture however, each component can
represent a different aspect or texture of the whole distribution. We can
observe this by looking at the individual mixture components of a trained
GMM model, see Figure 4.1.

Next to modeling different textures, the GMM also captures differences
in contrast. It has been shown by Zoran and Weiss (2012) that multiple
components in the GMM describe a similar structure in the image, but each
with a different level of contrast. That is, they have similar covariance
matrices that are scaled with different scalar multipliers. The eigenvectors
of the covariance matrices (such as the ones shown in Figure 4.1) are the
similar, but the eigenvalue spectra differ by multiplicative constants. The
STM, however, can model different ratios of contrast within a single mixture
component.

A multivariate student-t distribution has the following density function
(Kotz and Nadarajah, 2004):

(5" 1 - o

T(m|V7H,E): D 2p 1+-
NP ISl B

(4.3)
v is an additional parameter which represents the number of degrees
of freedom. Note that for v — oo the student-t distribution converges
to the normal distribution. It is interesting to see how this distribu-
tion is constructed:
If Y is a multivariate normal random vector with mean 0 and covari-
ance Y, and if v7T is a chi-squared random variable with degrees of
freedom v, independent of Y, then

X = ;/T + p, (4.4)

X has a multivariate student-t distribution with degrees of freedom

v, mean u, and covariance matrix X. This also means X|T = 7 is

‘Juouodwod ST} Aq pojueseldal soq oIr e} josurel) oy} wodgj sojdurexr

HE T EENESFEE ¥ ETEPLLJEINES idy EESEEENEENEEETE
BT NAENENEEEET ESFYRILETHAELETEF FTEETEDEsEERERT

‘monnquisip jusuoduwrod o) woyy surjdures Aq pajeIoues soydled

FNEEAETSAEERE ¥ EAIMEUNSEEINT DENEENETEEEEEN
T AEETEEYEE " AE..TNTEESESLAELSE D EERERE TEEEE

"XTI)eU 9OURLIBAOD S, JUoU0dUIOd 9T} JO SIOJIAUASIO F9 SIT o1 T,

DHSRCEEDR ENENEnEE CEEREAE A
AFEEEREN Bl SSEE NIEEEREE
BEEREC A BRELAENEN EENEESE N

HEFEEN LD SRSERES0 HE-SlEEE
CEeNEANES WHEESEXCE EEFlEs S
ARANEEEN MAESOUIAE D NN =
BAEANANR" SEAXN=MNL ARrahan™

| INNNFEY c=Bo=EE= | REL]ITAIT
ERENINERER == 0N [0 000G A
ENNERIIEN C5SSES= WA NN N
CEERMITEE S=FE=FNT CyLH0XS =
YEHIEEENEE BAE0EEET XA RSN
VEENENRE BERSEMENE NI =S50 e=E
FEERRERS 2HHNMBSPRE SEERTR0NE

The first 64 eigenvectors of the component’s covariance matrix.

ENTICE EEERR § SEFuETEE=T o™ NN TN e e
FE FET'EENER 'R SCERSsE . SSEEF .= BRI E (EpEy e
i

Patches generated by sampling from the component distribution.

H Bl EEFENTE ENENSTEEEE ECE ElMENETENS EAN N
Al NENEEEEE BN “"FEENEE EEESEE I ON eV ELES

Examples from the trainset that are best represented by this component.

Figure 4.1: Six mixture components of the GMM are visualized here (the STM gives similar texture patterns).
We first show the eigenvectors of the covariance matrix of each component, which show the structure of the image
patches that the mixture component learns. These eigenvectors are sorted by their respective eigenvalues from large
to small (left to right and top to bottom). Only the first 64 of 192 are shown. Next we show some samples that are
generated by each component, and some examples from the trainset that are best represented with this component
(clustered with the GMM). Note that every component has specialized in a different aspect or texture, and that the
samples generated by the component distributions are very similar to the real image patches. This figure is best
viewed in color on the electronic version.

4.8 Mizture models as image priors 61

J 111 I FFFPFP
BN B I N W N B R EE o X
I PPy Py P P
I I I R R 2
HEEEEEERERNENR

Figure 4.2: Visualization of 5 different image patches of which
the pixel values are transformed with different scalar multipliers
(relative to the mean pixel value). On the left we see that a
small scalar constant results in very low contrast in the image
and on the right we see that large scalar constants result in high
contrast.

normally distributed with mean p and covariance % So when we sam-
ple from a multivariate student-t distribution, we first sample from a
normal distribution with certain covariance matrix, and then multi-
ply this sample with a multiplier from a scalar distribution (that has
one parameter: the degrees of freedom v), before adding the mean.
In Figure 4.2 we visualize what happens to the contrast of an im-
age patch (e.g., sampled from a Gaussian) when we multiply it with
different scalar constants.

In the setting of modeling image patches, T can be interpreted as
the variable that models the variety of contrast, for a given texture.
The distribution of 7' is visualized in Figure 4.3, for different values
of v. If v is small for a given component (texture), this means that
the texture appears in natural images in a wide range of contrast
(the scale can be very high and very low). For v — oo we get a
Gaussian distribution and its contrast is more constrained (dirac-delta
distribution at 1). To obtain the same contrast-modeling capacities
with a GMM, one would need multiple components having scaled
versions of the same covariance matrix.

In Figure 4.4 the value of v is visualized for different components
of a trained STM. This value differs substantially for each compo-

62 4 Student-t Mizture Models and Image Compression

nent, ranging from almost zero to 15. This means some component-
distributions are very long-tailed (with small) and some are more
normally distributed (higher v). This means that some texture pat-
terns appear in a wider range of contrast than others. However, in our
experiments we saw that the STM does not learn significantly differ-
ent structures compared to the GMM. The texture patterns learned
by the STM were also very similar to those shown in Figure 4.1. This
means the STM might be better at generalizing to image patches with
different levels of contrast, but not at generalizing to different unseen
texture patterns.

3.0

— v=1

-- v=3
2.5 v=10 |[]

----- v =100
2.0 |
15 1
1.0 1
0.5 |
%80 05 1.0 15 2.0 25 3.0

Figure 4.3: The distribution of T" in Equation 4.4, for differ-
ent values of v. As v increases the distribution becomes more
peaked and converges to a dirac delta at 1.

Given the fact that a GMM is universal approximator for contin-
uous densities, the question that remains is if a STM still has the ad-
vantage over the GMM when the number of components increases. To
this end we have trained a GMM and STM on a set of image patches
for different numbers of mixture components and computed their log
likelihood scores on a validation set, see Figure 4.5. Notice that the
performance of a single student-t is much better than that of a single

4.8 Mizture models as image priors 63

16

14f 1

121 1

10t -

O0 20 40 60 80 100 120 140

Figure 4.4: The value of v, for each component k of a trained
STM with 128 components, sorted from low to high.

Gaussian, and close to that of a GMM with 4 mixture components.
This is in agreement with the findings of Zoran and Weiss (2012),
who state that a GMM with a small number of components mainly
learns contrast. Next we see that as the number training datapoints
increases the gap in performance between the STM and GMM re-
mains substantial, see Figure 4.6. The most plausible explanation for
this behavior is that the GMM needs more mixture components than
the STM to have the same contrast modeling capabilities. However,
with more mixture components the risk of overfitting also increases.
If one would tie the parameters of some of these components together,
so that they have scaled versions of the same covariance matrix, the
risk of overfitting would decrease. This is exploited in the mixture of
Gaussian scale mixtures (Theis et al., 2012).

The idea of explicitly sharing covariance parameters between mix-
ture components has also been applied to mixtures of factor analyzers,
with the deep mixture of factor analyzers model Tang et al. (2012).
They proposed a hierarchical structure in which the mixture compo-
nents partially inherit the covariance structure of their parent in the

64 4 Student-t Mixture Models and Image Compression

hierarchy.

The student-t distribution has previously been used for modeling
image patches in the PoE framework (Welling et al., 2002), where
each expert models a differently linearly filtered version of the input
with a univariate student-t distribution.

160

2 gmm
B stm
150} 1

140 i

130f b

120 b

Log-likelihood

110 b

100 1

90 1 2 4 8 16 32 64 128 256

Number of mixture components

Figure 4.5: The average patch log likelihood for the Gaussian
mixture model (GMM) and student-t mixture model (STM) in
function of its number of mixture components.

We also train the STM with the EM algorithm (Peel and McLach-
lan, 2000; Dempster et al., 1977):
E-step:

_ WkT(a:n’Vk::u’kyEk) W, — VEt+p
Tnk =K Pk @) TS (@ —par)
ZlﬂjT(iBnWj,uj,Ej)
]:

(4.5)

4.8 Mizture models as image priors 65

155
2 gmm
B stm
154 h

B 153 i}

o

=

e

&

S 152 i}
151 h
150

100k 200k 300k 400k 500k 600k 700k 800k 900k 1M
Number of training samples
Figure 4.6: The average patch log likelihood for the Gaussian
mixture model (GMM) and student-t mixture model (STM) in
function of the number of training samples.
M-step:
N
1 N E'Ynkwnkmn
Th= D ks k= S (4.6)
n=1 Z'Ynkwnk
n=1
N T
E TnkWnk (wn - H'lc) (wn - Nk)
_ n=1
Y = N (4.7)
Z Tnk
n=1

For the degrees of freedom, there is no closed form update rule. In-
stead v gets updated as the solution of:

66 4 Student-t Mizture Models and Image Compression

N

Vi Vi 1
d}(5) + log (5 > + +—(¥kn:17 i (log (wnk) — Wpk)

+¢<~k;p>—log<y~k;p>:0, (4.8)

where U is the value of the current vy, ap = 27127:1 Yok and 1 is

the digamma function. This scalar non-linear equation can be solved
quickly with a root finding algorithm, such as Brent’s method (Brent,
1973).

Note that the expectation and maximization steps are quite similar
to those of the GMM in Section 1.3.1. In our experiments, it did not
take substantially longer to train a STM than a GMM. Typically 100
iterations were enough to train the STM or GMM, even though the
log likelihood does keep improving a little bit after that (even after
500 iterations). For a big mixture model of 256 components, trained
on 500.000 samples of 8x8 grayscale patches, this took about 20 hours
on a standard desktop computer with four cores. For the STM, it
took 21 hours. On this scale, the CPU time is linear in both the
number of training samples and the number of components. Training
on image patches proved to be quite stable: no components needed
to be reinitialized during training.

4.4 Compression with mixture models

Both the lossy and lossless algorithms we propose are patch/block
based. This means they encode each patch of an image separately.
During training we randomly sample a large set of image patches
from the training images. These are used to fit the GMM and STM
models. Once training is finished, these density models can be used
to encode the test images. Each test image is viewed as a grid of
non-overlapping patches. The encoder loops over all patches, which
are extracted, flattened and encoded one by one.

To speed up the algorithms, each patch is encoded using the dis-
tribution and parameters of only one of the mixture components. We

4.4 Compression with mizture models 67

GMM STM

Log likelihood 152.86 154.51
Highest mixture component log likelihood 152.66 154.15

Table 4.1: Average patch log likelihood compared with the
average highest component patch log likelihood: How well can
a sample be represented by using a single mixture component?
(See text)

choose the mixture component which represents the given patch with
the highest likelihood (as in clustering):

= axg s f (). (4.9)

This only slightly reduce the performance, because the “overlap” be-
tween the individual mixture components is relatively small. We can
easily validate this with a simple intermediate experiment. In Table
4.1 we have computed the log likelihood for a trained GMM and STM
on a validation set. We have also computed the average log likelihood
when only one of the mixture components is used for each example:
+ SN log (maxy, (7 fr, (€,))). Note that this is strictly lower than
the actual average log likelihood: & SN, log (Zszl T fx (:cn)) But
as can be seen from Table 4.1, the difference is small.

4.4.1 Arithmetic coding

Most commonplace image compression schemes follow three main
steps: transformation, quantization and entropy coding (Goyal, 2001).
Transformation decorrelates the data, quantization maps the values
of the decorrelated continuous variables onto discrete values from a
relatively small set of symbols (such as integers) and entropy coding
encodes these discrete quantized values into a bit sequence. In this
chapter, transformation and quantization are only used for lossy com-
pression and not for lossless compression. However, in both cases we
employ arithmetic coding (AC) for the entropy coding step.

Entropy coding is a family of algorithms that take as input a
sequence of discrete values, and give as output the encoded binary

68 4 Student-t Mizture Models and Image Compression

sequence. Based on the statistical properties of the input, the goal is
to minimize the expected length of the bit sequence (e.g. by assign-
ing more bits to a rare symbol and fewer bits to a common symbol).
The theoretical limit of the encoding scheme is bounded by the en-
tropy of the input signal, which explains the name entropy coding.
Arithmetic coding is a form of entropy coding, which requires a list
of probabilities «;,7 = 1... N that describe the discrete distribution
P (sj) = a; of a symbol s; occurring in an input sequence. Based
on these probabilities, the algorithm on average spends fewer bits on
common symbols, than on rare ones. However, with AC it is also pos-
sible to use different probabilities for each timestep ¢ in the sequence:
P (s;t)) = «ajt, and even adapt them during the encoding/decoding
based on the values of the previously encoded symbols. This is also
called adaptive arithmetic coding.

4,42 Lossless compression

In lossless compression, the image should be preserved perfectly so
that after decompression the output image is identical to the input
image. Because we have a probabilistic model for an image patch, the
most natural way to approach this task is to use lossless predictive
coding (Pearlman and Said, 2011). The idea is to predict the value
(integer) of each sample within an image patch, using the values of its
neighboring samples that are already encoded, based on the correla-
tions between them. In this case, the prediction actually consists of a
discrete probability distribution over the possible values of the current
sample, which can directly be used to perform arithmetic coding.

To carry out arithmetic coding on a patch x;, one needs to com-
pute a list of probabilities (probability table) for each of its ele-
ments x;;: P(x;; = 1) for { = 0...L. More specifically, because
arithmetic coding can adapt the probability tables to the informa-
tion of the previous symbols x; 1 ...x; j_1 it is possible to encode ev-
ery symbol conditionally with respect to the ones already encoded:
P(x;j =lx;q...255-1). As the image patches are modeled by con-

4.4 Compression with mizture models 69

tinuous probability densities, this can computed as follows:

I+

P(J}Z‘,j = l‘$i71 e mi,j—l) = /l N f (.731‘7]".731'71 . xi,j—l) d:L’Z'J‘. (4.10)

2

This scheme for performing lossless image compression can be used in
combination with any density model f, provided that we can compute
(4.10). This way arithmetic coding can be applied to the image using
the statistics of the trained model. Algorithm 1 gives a summary for
lossless compression with a mixture model.

As already mentioned, when using an mixture model, it is more
efficient to use a single component for the encoding of a patch than the
whole mixture. For both normally and student-t distributed variables,
the expressions for Equation 4.10 can be derived from their conditional
distributions.

For the normal distribution this becomes:
l+3 1
N(xi7j|:ci71 e .xiVj_l) dxm :Fn (l + §|M~j, 07j2>

-
Lo~ 5
R (1= 56%) . @)

with F, the cumulative distribution function (CDF) of the univariate
normal distribution, and where

i =y + 51150 1 o1 (@11 — f15-1)
6% = %5 — Bj1 1501151511
For the multivariate student-t distribution the equations are similar:
I+3

. .
o T @iglwin .. wig) daij =F <l + 2|Vjvujvsj2>

I=3
L ~ 2
—Ft l_i‘yj”uj’sj y (4.12)

with F}, the CDF of the non-standardized univariate student-t distri-
bution (which has a location and scale parameter), and where

17]':I/j+j—1,

70 4 Student-t Mizture Models and Image Compression

-1
I =y + Tj-1275 1 151 (T1-1 — p1-1)

T —1
o e B Tyt o o -1))
Sj° = v4j—1 g _21,1:3—121:]‘—1,1:]‘—1Zl:y—l,y :

When using a form of entropy coding, such as arithmetic coding,
the theoretical optimal code length for a symbol i is dependent on the
probability P; of it occurring: — log (F;). Therefore, the lower bound
on the expected rate (bits per symbol) is: —=- SN Plog (P;). Be-
cause P; is calculated by a density model (eq. 4.10), the log likelihood
score of this model is a good indication for how well it performs on

lossless compression.

Algorithm 1: Lossless image compression with a mixture
model. [AC] stands for arithmetic coding.

Encoder:

for each patch x; in image do
B = arg maxy fi(x;)
[AC] Encode symbol 8 with probability table 7w (mixing
weights)
for each x;5, j=1...p do
Use (4.10) to compute: «; j; = Pg(xi; = |21 ... @i 5-1)
[AC] Encode symbol z;; with probability table o ;

end

end

Decoder:

while not at end of bitstream do
[AC] Decode symbol § with probability table 7w (mixing

weights)

initialize x;

for j=1...pdo
Use (4.10) to compute: «;;; = Pﬂ(ivi,j = l’ZZ‘J - Ii7j_1)
[AC] Decode symbol x;; with probability table o ;

end

end
Reconstruct image from patches x;, i=1...N.

4.4 Compression with mizture models 71

4.4.3 Lossy compression

For lossy compression, the image reconstruction after decompression
does not have to be identical to the original, but should match it very
closely. The strength of compression should be as high as possible,
given a certain tolerable amount of distortion. This freedom evidently
allows stronger compression than with lossless algorithms.

Lossy image compression algorithms typically use quantization to
reduce the amount of information that needs to be entropy coded.
Quantization decreases the number of states of the data variables
to a smaller discrete set. As mentioned above we use simple scalar
quantization as the number of variables in a patch is relatively high
and vector quantization would simply be impractical. Instead of VQ,
we combine scalar quantization with a data transform step, as is done
in most image compression schemes.

The main reason of a data transform step in compression schemes
is to decorrelate the input, so that the different coefficients can be
handled more independently afterwards. Especially when using scalar
quantization it is important to use a form of transformation first, as
this reduces the amount of redundancy in the data that has to be
encoded. Moreover, if one would quantize the image in the original
pixel domain, the reconstruction artifacts would be very obtrusive.
Because a Gaussian or student-t mixture component already models
covariance, decorrelation is fairly straightforward. The transform step
is as follows:

yi =W (@i —), (4.13)

where W is the eigenvector matrix of the covariance matrix 3 of the
Gaussian/student-t mixture component: WJW7T = 3. J is the di-
agonal eigenvalue matrix of X. Subsequently, the transformed values
are quantized with a uniform quantizer:

z; = round (%) . (4.14)

The strength of the quantization only depends on A. When it is high,
the quality of the encoded image will be low, but the compression
ratio will be high.

72 4 Student-t Mizture Models and Image Compression

Once quantization is done, arithmetic coding is carried out in a
similar fashion as with lossless compression: we have to be able to
compute (4.10). Because the data is transformed (4.13), the mean of
y becomes 0: p, = 0 and the covariance matrix reduces to: ¥, = J.
The equations for calculating the conditional probabilities from before
can now be simplified.

For the normal distribution:

P (Zi,j = l|Zi,1, e ,ZLJ',l) (415)
A(+3)

= N (i,

//\((Yi.

-1)

=F, ()\ (z + ;) |0,Jj) — F, ()\ (l - ;) 10, Jj) :

with Fj, the cumulative distribution function (CDF) of the uni-
variate normal distribution, and ;. is the reconstruction of y; . (as

Uit - Gij—1) dyi j-

we discuss later).
For the student-t distribution:

P(zij=1Uzi1,...,%j-1) (4.16)

o
= /}:(l_;) (yl,j‘yz71 "'yl,j—l) yl"].

1 1

with F} the CDF of the non-standardized univariate student-t distri-
bution (which has a location and scale parameter), and where

vi=vj+j—1 (4.17)
=1 Tim
S R b S (4.18)
i~ . j :
vi+j—1

Because of the two additional steps (Transformation and Quantiza-
tion) during compression, the decoder has to dequantize and subse-
quently detransform the data after arithmetic coding.

4.4 Compression with mizture models 73

Dequantization:

§i = Az (4.19)

Inverse transform:
z;, =Wy, + p. (4.20)

Uniform threshold quantization

It is important to note that Equation 4.19 might not be the best choice
for reconstruction. It is indeed possible to increase the quality of de-
quantization by using prior knowledge of the scalar input distribution.
This concept is called uniform threshold quantization (Pearlman and
Said, 2011). Figure 4.7 shows the difference with regular uniform
quantization.

Depending on the assumed distribution of the source it is possible
to minimize the expected distortion: (g;; — yivj)Q (other measures of
distortion can also be used). This comes down to solving the following
optimization problem:

)\(Zi’ +l)
Uij = argmin/ ’ 12 I|s — t||% £(t) dt, (4.21)
S INz-3)
which can be simplified to:
i i ar
~ 2i,j "3
Yi,j A(zi,]—i-%) (4.22)

This is actually nothing more than the centroid in that region (see Fig-
ure 4.7). Because we are using a probabilistic method, this improved
reconstruction almost comes for free: The compression scheme re-
mains the same, only the decompression is improved. For a normally
distributed variable the reconstruction is

J: A2 Zi"fl 2 A2 ,Z,L'7'~i>l 2
T [(- 205782 e (255

B (A (205 + 3)10,05) = B (A (25—) 10,.7;)

Yij =

Algorithm 2: Lossy image compression with a mixture model.
[AC] stands for arithmetic coding.

Encoder:

for each patch x; in image do

B = argmaxy, fr(x;)

[AC] Encode symbol 8 with probability table 7w (mixing
weights)

Transform «; with (4.13) using the S-th component
Quantize x; with (4.14)

for each x;;, j=1...pdo
Use (4.15) or (4.16) to compute:

Q451 = Pg(x@j = ”1’@1 . JIZ‘J_l)
[AC] Encode symbol z;; with probability table a ;

end

end

Decoder:

while not at end of bitstreamm do
[AC] Decode symbol 8 with probability table 7« (mixing

weights)
initialize x;
for j=1...pdo
Use (4.15) or (4.16) to compute:
ai,j,l = Pﬁ(%"j = l|$i71 e xi,j,l)
[AC] Decode symbol z;; with probability table a;
end
Dequantize x; with (4.19) or (4.22)
Inverse transform x; with (4.20)

end
Reconstruct image from patches x;, i =1...N.

4.5 Results and discussion 75

f

1

Y UTQ UQ = A(z +5)

1

Figure 4.7: Uniform quantization versus uniform threshold
quantization. During dequantization, UQ reconstructs the in-
put with the centers of the quantization intervals. UTQ uses
the centroids instead.

and for a student-t distributed variable it is

1—vy 1—v5

J

F(';jﬂ) v 4 i
2 ERaZn . 2 P] . 2)
< [(ujs§+v<z1-,j;>) (e at)?)]

Ft(A(Zi7j+%)‘I]j,O,S}Q)*Ft()\(Z,L"j7%)‘I;ﬁo,s'}'z)

4.5 Results and discussion

4.5.1 Datasets and methods

4.5.1.1 Berkeley Segmentation Dataset

The Berkeley Segmentation Dataset (Martin et al., 2001a) consists of
200 training and 100 test JPEG-encoded images, originally intended
to be used as a segmentation benchmark. Some samples can be seen
on Figure 4.8. This dataset has been used by several authors to mea-
sure the unsupervised learning performance of their model on image
patches (Zoran and Weiss, 2011; Tang et al., 2013; Uria et al., 2013a).

Dataset.

Figure 4.9: Sample images from the UCID dataset (Uncom-
pressed Colour Image Dataset).

78 4 Student-t Mizture Models and Image Compression

We adopt the use of this dataset for measuring density modeling per-
formance, but not for image compression, as these images were already
encoded with JPEG and already contain some quantization noise.

45.1.2 UCID dataset

Although images are abundant on the world wide web, large datasets
containing losslessly encoded images are rather hard to find. In image
processing most authors have grown to rely on a particular set of

L' to measure

standard images, such as Lena, Baboon, Peppers, ...
their algorithms’ performance. Although each of these images have
specific features that make them interesting to test a new method on,
results on this small set will likely not generalize to a wide range of
images. Furthermore, because there is no clear distinction between a
training and test set for these images, there is a high risk of overfitting
(even when engineering a compression scheme). Finally most of these
images are relatively old and noisy, so they are hardly representative
for images of modern photography.

One of the few publicly available datasets is UCID (Schaefer and
Stich, 2003) (Uncompressed Colour Image Dataset). The UCID data-
base consists of 1338 TIFF images on a variety of topics including nat-
ural scenes and man-made objects, both indoors and outdoors. The
camera settings were all set to automatic as this resembles what the
average user would do. All the images have sizes 512x384 or 384x512.
The images are in true color (24-bit RGB, each color channel having
256 possible values per pixel). Some sample UCID images can be seen
on Figure 4.9.

As the images are not in random order, we have included every
10th image (10, 20, 30, ... 1330) of the dataset in our testset, and
the others were used for training. This results in 1205 images for
training and 133 images for testing. We randomly sample a large set
of image patches (two million) for training the mixture models. We
then encode every test image with a number of different quantization
strengths (only for lossy compression), and measure their compression
performance and the distortion of their reconstruction.

"Most of these standard images can be found here:
http://sipi.usc.edu/database/database.php?volume=misc

4.5 Results and discussion 79

4.5.1.3 JPEG and JPEG 2000

For comparison we added two image compression standards as bench-
mark: JPEG (Wallace, 1991) and JPEG 2000 (Skodras et al., 2001).

JPEG is a patch based compression standard which uses the DCT
as its transform, with quantization and entropy coding optimized for
this transform. For the JPEG standard, we employed the widely used
libjpeg implementation (ijg.org). Optimization of the JPEG entropy
encoding parameters was enabled for better performance. The quality
parameter was swept from 0 (worst) to 100 (best) in steps of 5.

JPEG 2000 is a wavelet-based compression standard and because
of its multiresolution decomposition structure, it is able to exploit
wider spatial correlations than JPEG and our method (which are
patch based). For JPEG 2000, the kakadu implementation was used
(kakadusoftware.com). To make a fair comparison, command line pa-
rameters were enabled to optimize the PSNR instead of perceptual
error measures.

For both methods we did not take the meta information of the
header into account when measuring the performance of compression.

4.5.2 Average patch log likelihood comparison

We compare our GMM and STM log likelihood results with the re-
cently proposed RNADE model (Uria et al., 2013b,a) on the Berkeley
dataset. The authors preprocess the image patches as follows. Before
subtracting the sample mean, small uniform noise (between 0 and 1)
is added to the pixel values (between 0 and 255), which are then nor-
malised by dividing by 256. Afterwards, they remove the last pixel,
so that the number of variables of each datapoint equals 63. For this
task we used four million patches during training and evaluated on
one million patches from the testset. The results are shown in Ta-
ble 4.2. The STM outperforms the deep RNADE model of 6 layers,
but is on its turn outperformed by the ensemble of RNADE models
(EoRNADE).

80 4 Student-t Mizture Models and Image Compression

Model Log-likelihood

RNADE (1 to 6 hl) 143.2, 1492, 152.0
153.6, 154.7, 155.2

EoRNADE (6hl) 157.0
GMM 153.7
STM 155.3

Table 4.2: Average log-likelihood comparison (in nats) with
RNADE (Uria et al., 2013a) in function of the number of hidden
layers (hl). Our results are marked in bold. EoORNADE stands
for an ensemble of RNADE's.

45,3 Lossless compression

Because JPEG does not natively support lossless compression we did
not include it for this test. For our methods we used patch size 8x8
and 128 mixture components. The results are listed in Table 4.3.
As explained above (see Section 4.4.2), there is a connection between
average log likelihood and the expected lossless compression strength.
The STM also outperforms the GMM on this task, and both methods
outperform JPEG 2000.

JPEG 2000 GMM STM

12.40 12.07 11.83

Table 4.3: Lossless compression rate (in bits per pixel - lower
is better). Naive encoding would result in 24 bits per pixel (true
color images).

4.5.4 Lossy compression

We first analyze the influence of the patch size on the lossy com-
pression performance. The results are visualized in Figure 4.10. All
mixture models were trained for 500 iterations and consist of 128 com-
ponents. The reconstruction quality of an image is measured in peak

4.5 Results and discussion 81

signal-to-noise ratio: PSNR = 10log;, MR—SQE, with R being the largest
possible pixel value (255 in this case) and MSE being the average
mean squared error.

Larger patch sizes show better results for low bitrates and vice
versa. This can be explained by the fact that when using larger patch
sizes, covariance between more pixels can be modeled simultaneously.
This way the transform has the ability to decorrelate better, which is
important for low bitrates. For higher bitrates, we approach a near-
lossless region, where the log likelihood performance of the model is
crucial. When modeling smaller patch sizes, the algorithm is less
prone to overfit, resulting in better performance. We can see that
these high-rate effects are most apparent for the GMM. The STM,
which is more robust to overfitting, is able to model larger patch
sizes.

Because the 8x8 patch size has a good performance in general for
both methods, our final experiments are performed with this setting.
Note that JPEG also uses 8x8 patches for its compression scheme. For
different compression strengths we have computed the average PSNR
of the reconstructed images. For some images, JPEG or JPEG 2000
was unable to encode them at a given rate (1, 2 and 10 images for 3, 4
and 5 bpp respectively), so these images where not taken into account
at those rates.

The final results are shown on Figure 4.11. For all compression
rates, JPEG is outperformed by the other methods. The proposed
compression schemes are competitive with JPEG 2000, and relatively
to JPEG they score quite similar. In all experiments uniform thres-
hold quantization improves on standard uniform quantization. The
GMM is always outperformed by the STM, and the difference in-
creases for larger bitrates. JPEG 2000 slightly exceeds the perfor-
mance of the GMM in all experiments, but is in turn surpassed by
the STM, with the exception of the lowest bitrate. At low bitrates,
correlations on a more global scale become more important, which
is why the multiresolution wavelet transform of JPEG 2000 achieves
a better performance than our patch-based approach in this setting.
Extending the presented approach to a multiscale technique might
therefore be a promising direction of future research.

Figure 4.12 visualizes some reconstructed images after compres-

82 4 Student-t Mizture Models and Image Compression

sion with JPEG, JPEG 2000 and the proposed method (GMM and
STM), for varying levels of compression strength: 1, 2.5 and 5 bits
per pixel (bpp). This Figure is best viewed on the electronic version
by zooming in on the different images. Because JPEG and the pro-
posed method are block based, they have blocking artifacts that JPEG
2000 does not. The latter has more blurring artifacts. The proposed
method seems to have the strongest visual artifacts in low-frequency
regions, but performs well in high-frequency regions such as trees and
leaves. This can be attributed to the fact that the compression method
does not take into account the properties of human visual perception
and therefore quantizes both high and low frequency regions equally
strongly. One could improve the visual results by adding prior knowl-
edge about the perceptual system, using a deblocking filter (or using
an image reconstruction algorithm based on GMM/STMs with the
expected patch log likelihood framework, extending the model so that
it works with overlapping blocks (with the MDCT transform for ex-
ample) or by making it multi-scale. However, these extensions are
outside the scope of this chapter.

4.6 Conclusion

The presented work in this chapter consists of two main contributions:
the introduction and analysis of the student-t mixture as an image
patch modeling technique, and the proposal of lossless and lossy image
compression techniques based on mixture models.

In the first part of this chapter we have proposed the STM as
an image patch prior. This method significantly outperformed the
GMM for density modeling of image patches, with results competitive
to the state-of-the-art on this task. This performance could largely
be attributed to the fact that a student-t mixture is able to model
contrast in addition to linear dependencies within a single mixture
component.

In the second part both the GMM and STM have been exam-
ined for the task of image compression. Lossless and lossy coding
schemes were presented, which could easily be adapted for other un-
supervised learning techniques. For lossy compression, experimental

Peak signal-to-noise ratio (psnr)

Peak signal-to-noise ratio (psnr)

45

N
o

w
Ul

w
o

25

45

IS
o

W
ul

w
o

25

GMM 4x4
e—e GMM 6x6
v—v GMM 8x8
*—+ GMM 10x10
—e GMM 12x12

1 2 3 4 > 6
bits per pixel (bpp)

STM 4x4
e—e STM 6x6
—v STM 8x8
* STM 10x10
— STM 12x12

1 2 3 4 5 6
bits per pixel (bpp)

Figure 4.10: Average patch Quality (PSNR) - Rate (bpp)
curves for different patch-sizes (GMM top, STM bottom). This
Figure is best viewed in color.

Peak signal-to-noise ratio (psnr)

44

42

40

38

36

34

32

30

I JPEG
EEN JPEG 2000
= GMM
B GMM*
B STM
B STM*

1 bpp 2 bpp 3 bpp 4 bpp 5 bpp

Figure 4.11: Results for lossy compression of colored images.
Average quality (PSNR) in function of average rate (bits per
pixel). Methods marked with a asterisk (*) use uniform thres-
hold quantization, and thus have a better reconstruction error.

4.6 Conclusion 85

results demonstrated that the proposed techniques consistently out-
perform JPEG, with results similar to those of JPEG 2000. With
the exception of the lowest bitrate, the STM has the advantage over
JPEG 2000 in terms of rate-distortion. In lossless compression both
the GMM and STM outperform JPEG 2000, which is mainly due to
the fact that this task is even more connected with density estimation.

One of the most important conclusions we can draw here is that
relatively simple machine learning techniques can perform quite well
on the task of image compression. We saw that their performance
could largely be attributed to their density modeling capabilities.
Given the recent progress in unsupervised machine learning we ex-
pect that even better results will follow.

STM

Figure 4.12: Reconstructions after compression by JPEG,
JPEG 2000 or the proposed method with a GMM of STM.
The rates were 1 bpp (left), 2.5 bpp (middle), 5 bpp (right).
This fiqure is best viewed on the electronic version by zooming
in on the images.

Deep Gaussian Mixture
Models

In the previous chapter we saw that simple mixture models such as
GMMs and STMs perform very well at modeling small image patches.
However, mixture models can only model a small set of categories
with their set of mixture components, such as the different types of
textures in image patches we saw in the previous chapter. In this
chapter we introduce a straightforward but powerful generalization
of GMMs to multiple layers. The parametrization of a deep GMM
allows it to efficiently capture products of variations in natural images.
In our density estimation experiments we show that deeper GMM
architectures generalize better than more shallow ones, with results
in the same ballpark as the state of the art.

The techniques and results presented in this chapter were pub-
lished in (van den Oord and Schrauwen, 2014a).

5.1 Background

One of the most promising directions for unsupervised learning may
lie in deep learning methods, given their recent results in supervised
learning (Krizhevsky et al., 2012). Although not a universal recipe
for success, the merits of deep learning are well-established (Bengio,
2009). Because of their multilayered nature, these methods provide
ways to efficiently represent increasingly complex relationships as the
number of layers increases. “Shallow” methods will often require a
very large number of units to represent the same functions, and may

88 5 Deep Gaussian Mizxture Models

therefore overfit more.

Looking at real-valued data, one of the current problems with
deep unsupervised learning methods, is that they are often hard to
scale to large datasets. This is especially a problem for unsupervised
learning, because there is usually a lot of data available, as it does
not have to be labeled (e.g. images, videos, text). As a result there
are some easier, more scalable shallow methods, such as the Gaussian
mixture model (GMM) and the student-t mixture model (STM), that
remain surprisingly competitive (as we saw in the previous chapter).
Of course, the disadvantage of these mixture models is that they have
less representational power than deep models.

In this chapter we propose a new scalable deep generative model
for images, called the deep Gaussian mixture model (deep GMM). The
deep GMM is a straightforward but powerful generalization of Gaus-
sian mixture models to multiple layers. It is constructed by stacking
multiple GMM-layers on top of each other, which is similar to many
other deep learning techniques. Although for every deep GMM, one
could construct a shallow GMM with the same density function, it
would require an exponential number of mixture components to do
S0.

The multilayered architecture of the deep GMM gives rise to a
specific kind of parameter tying. The parameterization is most inter-
pretable in the case of images: the layers in the architecture are able to
efficiently factorize the different variations that are present in natural
images: changes in brightness, contrast, color and even translations or
rotations of the objects in the image. Because each of these variations
will affect the image separately, a traditional mixture model would
need an exponential number of components to model each combina-
tion of variations, whereas a deep GMM can factor these variations
and model them individually.

The proposed training algorithm for the deep GMM is based on the
most popular principle for training GMMs: Expectation Maximiza-
tion (EM). Although stochastic gradient (SGD) is also a possible op-
tion, we suggest the use of EM, as it is inherently more parallelizable.
As we show later, both the Expectation and the Maximization steps
can easily be distributed on multiple computation units or machines,
with only limited communication between compute nodes. Although

5.2 Stacking Gaussian mizture layers 89

there has been a lot of effort in scaling up SGD for deep networks
(Krizhevsky, 2014), the deep GMM is parallelizable by design.

This chapter is organized as follows. First we introduce the design
of deep GMMs before explaining the EM algorithm for training them.
Next, we discuss the experiments where we examine the density esti-
mation performance of the deep GMM, as a function of the number
of layers, and in comparison with other methods. We conclude in
Section 5.5, where we also discuss some unsolved problems for future
work.

5.2 Stacking Gaussian mixture layers

Deep GMMs are best introduced by looking at some special cases: the
multivariate normal distribution and the Gaussian mixture model.

One way to define a multivariate normal variable x is as a stan-
dard normal variable z ~ N (0, I,,) that has been transformed with a
certain linear transformation: = Az + b, so that

p(@) =N (b, 44T).

This is visualized in Figure 5.1 (top-left). The same interpreta-
tion can be applied to Gaussian mixture models, see the same Figure
(top-right). A transformation is chosen from set of (square) transfor-
mations A;,7 = 1...N (each having a bias term b;) with probabilities
mi,t = 1... N, such that the resulting distribution becomes:

N

p(x) = Zm./\/ (w\bi,AiAIT).

=1

With this in mind, it is easy to generalize GMMs in a multi-layered
fashion. Instead of sampling one transformation from a set, we can
sample a path of transformations in a network of k layers, see Figure
5.1 (bottom). The standard normal variable z is now successively
transformed with a transformation from each layer of the network.
Let ® be the set of all possible paths through the network. Each path
P = (p1,p2,...,pk) € ® has a probability m, of being sampled, with

Figure 5.1: Visualizations of a Gaussian, GMM and deep GMM
distribution. Note that these are not graphical models. This vi-
sualization describes the connectivity of the linear transforma-
tions that make up the multimodal structure of a deep GMM.
The sampling process for the deep GMM is shown in red. Every
time a sample is drawn, it is first drawn from a standard normal
distribution and then transformed with all the transformations
on a randomly sampled path. In the example it is first trans-
formed with A 3, then with Ay ; and finally with A3 5. Every
path results in differently correlated normal random variables.
The deep GMM shown has 3-2-3 = 18 possible paths. For
each square transformation matrix A; ; there is a corresponding
bias term b; ; (not shown here).

5.2 Stacking Gaussian mizture layers 91

N1 N2 Ny
Z Tp = Z Z T Zﬁphm,---,pk =1
ped P1 P2 Pk

Nj; is the number of components in layer j. The density function

of x is:
p(@) =3 mpN (2lBp, B0), (5.1)
ped
with
IBP = bk’ypk + Akﬂ'k (.- (b2,p2 + A27P2b17p1)) (5'2)
1
Q=[] A4)p,- (5.3)
j=k

Here A, and by, , are the n’th transformation matrix and bias
of the m’th layer. Notice that one can also factorize m, as follows:
P12 Pl = H;‘?:l Tp;, so that each layer has its own set of parameters
associated with it. In our experiments, however, this had very little
difference on the log likelihood. This would mainly be useful for very
large networks.

The GMM is a special case of the deep GMM with only one layer.
Moreover, each deep GMM can be constructed by a GMM with Hf N;
components, where every path in the network represents one compo-
nent in the GMM. The parameters of these components are tied to
each other by the way the deep GMM is defined. Because of this
tying, the number of parameters to train is proportional to Zf N;.
Still, the density estimator is quite expressive as it can represent a
large number of Gaussian mixture components. This is often the case
with deep learning methods: shallow architectures can often theoreti-
cally learn the same functions, but will require a much larger number
of parameters (Bengio, 2009). When the kind of compound functions
that a deep learning method is able to model are appropriate for the
type of data, their performance will often be better than their shallow
equivalents, because of the smaller risk of overfitting.

In the case of images, but also for other types of data, we can
imagine why this network structure might be useful. A lot of images
share the same variations such as rotations, translations, brightness

92 5 Deep Gaussian Mizxture Models

changes, etc.. These deformations can be represented by a linear
transformation in the pixel space. When learning a deep GMM, the
model may pick up on these variations in the data that are shared
amongst images by factoring and describing them with the transfor-
mations in the network.

The hypothesis of this chapter is that deep GMMs overfit less than
normal GMMSs as the complexity of their density functions increases
because the parameter tying of the deep GMM will force it to learn
more useful functions. Note that this is one of the reasons why other
deep learning methods are so successful. The only difference is that
the parameter tying in deep GMMs is more explicit and interpretable.

A closely related method is the deep mixture of factor analyz-
ers (DMFA) model (Tang et al., 2012), which is an extension of the
mixture of factor analyzers (MFA) model (Ghahramani and Hinton,
1996). The DMFA model has a tree structure in which every node is
a factor analyzer that inherits the low-dimensional latent factors from
its parent. Training is performed layer by layer, where the dataset is
hierarchically clustered and the children of each node are trained as a
MFA on a different subset of the data using the MFA EM algorithm.
The parents nodes are kept constant when training its children. The
main difference with the proposed method is that in the deep GMM
the nodes of each layer are connected to all nodes of the layer above.
The layers are trained jointly and the higher level nodes will adapt to
the lower level nodes.

Recall from the last chapter that the main improvement of the
STM over the GMM was mainly because of its contrast modeling ca-
pacity. This ability stems from the fact that the multivariate student-
t distribution is a Gaussian scale mixture. With a deep GMM it is
straightforward to have the same capabilities as a STM by using only
two layers. If in the bottom layer we use scaled identity matrices then
result is a mixture of Gaussian scale mixtures. The mixing weights
mp for the different paths (if they are not constrained) will define how
likely the different scales are for the covariance structures defined by
the transformation matrices in the top layer. Note that this was a
special case of a deep GMM with only two layers and that a general
k-layered deep GMM is much more powerful. This also shows why
constructing a deep STM model would not be useful.

5.8 Training deep GMMs with EM 93

5.3 Training deep GMMs with EM

The algorithm we propose for training deep GMMs is based on Ex-
pectation Maximization (EM). The optimization is similar to that of
a GMM: in the E-step we compute the posterior probabilities v, that
a path p was responsible for generating x,,, also called the responsi-
bilities. In the maximization step, the parameters of the model are
optimized given those responsibilities.

5.3.1 Expectation

From Equation 5.1 we get the the log-likelihood given the data:
S logp (n) = Y log | S mp (2l Bp, 200) | -
n n ped

This is the global objective for the deep GMM to optimize. When
taking the derivative with respect to a parameter 8 we get:

_ TN ($n|5panQ£) [Vg log (mn|ﬁp,QpQZ>]
VG;Ing (xn) = nz,p %:Wq-/\/’ (mana QQQ?;)

= S v Volog N (248, 2,08),
n,p
with
_ N (mn|ﬂpa QPQ;{>
> 71'q-/\/’ (wn‘ﬁqv QqQZ) ,

qed

Ynp

the equation for the responsibilities. Although 7, generally depend
on the parameter @, in the EM algorithm the responsibilities are as-
sumed to remain constant when optimizing the model parameters in
the M-step.

The E-step is very similar to that of a standard GMM, but in-
stead of computing the responsibilities ~,; for every component k,
one needs to compute them for every path p = (p1,p2,...,pr) € .
This is because every path represents a Gaussian mixture component

94 5 Deep Gaussian Mizxture Models

in the equivalent shallow GMM. Because 7, needs to be computed for
each datapoint independently, the E-step is very easy to parallelize.
Often a simple way to increase the speed of convergence and to reduce
computation time is to use an EM-variant with “hard” assignments.
Here only one of the responsibilities of each datapoint is set to 1:

1 p=arg maXgq (WqN (mnwtp QQQZ>)

0 otherwise

Tnp = (5.4)

Heuristic

Because the number of paths is the product of the number of com-
ponents per layer (H;f Nj;), computing the responsibilities can become
intractable for large deep GMM networks. However, when using hard-
EM variant (eq. 5.4), this problem reduces to finding the best path
for each datapoint, for which we can use efficient heuristics. Here we
introduce such a heuristic that does not hurt the performance signif-
icantly, while allowing us to train much larger networks.

We optimize the path p = (p1,p2,...,pr), which is a multivariate
discrete variable, with a coordinate ascent algorithm. This means we
change the parameters p; layer per layer, while keeping the parameter
values of the other layers constant. After we have changed all the
variables one time (one pass), we can repeat.

The heuristic described above only requires Z? N; path evalua-
tions per pass. In Figure 5.2 we compare the heuristic with the full
search. At the top graph we see that after 3 passes the heuristic con-
verges to a local optimum. In the middle graph we see that when
repeating the heuristic algorithm a couple of times with different ran-
dom initializations, and keeping the best path after each iteration, the
log-likelihood converges to the optimum.

In our experiments we initialized the heuristic with the optimal
path from the previous E-step (warm start) and performed the heuris-
tic algorithm for 1 pass. Subsequently we ran the algorithm for a
second time with a random initialization for two passes for the pos-
sibility of finding a better optimum for each datapoint. Each E-step
thus required 3 (Z? Nj) path evaluations. In Figure 5.2 (bottom) we
show an example of the percentage of data points (called the switch-

168

1671

166

121

1641

163f

1621

161r

160f

159

168

1671

166}

123

164

150

101

0 . . n —

0 20 40 60 80 100

Figure 5.2: Visualizations for the introduced E-step heuristic.
(Top): The average log-likelihood of the best-path search with
the heuristic as a function of the number of iterations (passes)
and (middle): as a function of the number of repeats with a
different initialization. (Bottom): the percentage of data points
that switch to a better path found with a different initialization
as a function of the number of the EM-iterations during training.

96 5 Deep Gaussian Mizxture Models

"Folded" version of all the layers
above the current layer

Current layer

z
Figure 5.3: Optimization of a transformation Q in a deep
GMM. We can rewrite all the possible paths in the above lay-
ers by "folding” them into one layer, which is convenient for
deriving the objective and gradient equations of Q.

rate) that had a better optimum with this second initialization for
each EM-iteration. We can see from this Figure that the switch-rate
quickly becomes very small, which means that using the responsibili-
ties from the previous E-step is an efficient initialization for the current
one. Although the number of path evaluations with the heuristic is
substantially smaller than with the full search, we saw in our experi-
ments that the performance of the resulting trained deep GMMs was
ultimately similar.

5.3.2 Maximization

In the maximization step, the parameters are updated to maximize
the log likelihood of the data, given the responsibilities. Although
standard optimization techniques for training deep networks can be
used (such as SGD), deep GMMs have some interesting properties that
allow us to train them more efficiently. Because these properties are
not obvious at first sight, we derive the objective and gradient for the
transformation matrices A;; in a deep GMM. After that we discuss
various ways for optimizing them. For convenience, the derivations
in this section are based on the hard-EM variant and with omission
of the bias-term parameters. Equations without these simplifications
can be obtained in a similar manner.

In the hard-EM variant, it is assumed that each datapoint in the
dataset was generated by a path p, for which v, , = 1. The likelihood

5.8 Training deep GMMs with EM 97

of x given the parameters of the transformations on this path is

1 1
}Al P1 ‘Akpk N(Alm Akpkm|07-[n>) (55)

where we use |-| to denote the absolute value of the determinant.
Now let’s rewrite:

- —1

A%-‘rl Pit1 T Ak,]okm (5.
Q = 7p'L
- —1
Ty Al P T .Ai_lvpi717

so that we get (omitting the constant term w.r.t. @):

logp (x) o log |Q] + log N (RpQz0, I,) . (5.9)

Figure 5.3 gives a visual overview. The layers above the current layer
have been “folded” into one. This means that each path p through the
network above the current layer is equivalent to a transformation R,
in the folded version. The transformation matrix for which we derive
the objective and gradient is called (). The average log-likelihood of
all the data points that are generated by paths that pass through @
is:

—Zlogp (z;) x log|Q| + ZZlog/\f »Q2:]0,1) (5.10)

P i€pp

—log Q| — §Z7rpTr 0RTYQ), (5.11)
p

where m, = %,Fp = N GZ z;zl and Qp = RTRp For the gradient
Picop
we get:

%VQZIOg ple) =Q " = mpl'pQT . (5.12)
7 p

Optimization

Notice how in Equation 5.11 the summation over the data points has

been converted to a summation over covariance matrices: one for each

98 5 Deep Gaussian Mizxture Models

path!. If the number of paths is small enough, this means we can use
full gradient updates instead of mini-batched updates (e.g. SGD). The
computation of the covariance matrices is fairly efficient and can be
done in parallel. This formulation also allows us to use more advanced
optimization methods, such as LBFGS-B (Byrd et al., 1995).

In the setup described above, we need to keep the transformation
R,, constant while optimizing (). This is why in each M-step the deep
GMM is optimized layer-wise from top to bottom, updating one layer
at a time. It is possible to go over this process multiple times for
each M-step. Important to note is that this way the optimization of
() does not depend on any other parameters in the same layer. So
for each layer, the optimization of the different nodes can be done in
parallel on multiple cores or machines. Moreover, nodes in the same
layer do not share data points when using the EM-variant with hard-
assignments. Another advantage is that this method is easy to control,
as there are no learning rates or other optimization parameters to be
tuned, when using L-BFGS-B “out of the box”. A disadvantage is
that one needs to sum over all possible paths above the current node
in the gradient computation. For deeper networks, this may become
problematic when optimizing the lower-level nodes.

Alternatively, one can also evaluate (5.11) using Kronecker prod-
ucts as

log |Q| — %VQC {pr p @ 1p) }Vec (Q) (5.13)

and Equation 5.12 as

QT — mat ({pr }vec (Q)> . (5.14)

Here vec is the vectorization operator and mat its inverse. With
these formulations we don’t have to loop over the number of paths
anymore during the optimization. This makes the inner optimization
with LBFGS-B even faster. We only have to construct Y m, (2, @ I'p)

P

! Actually we only need to sum over the number of possible transformations R,
above the node Q.

5.4 FExperiments and results 99

once, which is also easy to parallelize. These equations thus allow us to
train even larger deep GMM architectures. A disadvantage, however,
is that it requires the dimensionality of the data to be small enough
to efficiently construct the Kronecker products.

When the aforementioned formulations are intractable because
there are too many layers in the deep GMM and the data dimen-
sionality is too high, we can also optimize the parameters using back-
propagation with a minibatch algorithm, such as stochastic gradient
descent (SGD). This approach works for much deeper networks, be-
cause we don’t need to sum over the number of paths. From Equation
5.9 we see that this is basically the same as minimizing the L2 norm
of R,Qz, with log |Q)| as regularization term. Disadvantages include
the use of learning rates and other parameters such as momentum,
which requires more engineering and fine-tuning.

The most naive way to optimize the deep GMM with SGD is
by simultaneously optimizing all parameters, as is common in neu-
ral networks. When doing this, it is important that the parameters
of all nodes are converged enough in each M-step, otherwise nodes
that are not optimized enough may have very low responsibilities in
the following E-step(s). This results in whole parts of the network
becoming unused, which is the equivalent of empty clusters during
GMM or k-means training. An alternative way of using SGD is again
by optimizing the deep GMM layer by layer. This has the advantage
that we have more control over the optimization, which prevents the
aforementioned problem of unused paths. But more importantly, we
can now again parallelize over the number of nodes per layer.

9.4 Experiments and results

For most of our experiments we again used the Berkeley Segmentation
Dataset (BSDS300) (Martin et al., 2001b) and the tiny images dataset
(Torralba et al., 2008). Similarly as in the last chapter, we follow
the setup of (Uria et al., 2013a) for BSDS300, which is best practice
for this dataset. 8 by 8 grayscale patches are drawn from images of
the dataset. The train and test sets consist of 200 and 100 images
respectively. Because each pixel is quantized, it can only contain

100 5 Deep Gaussian Mizxture Models

integer values between 0 and 255. To make the integer pixel values
continuous, uniform noise (between 0 and 1) is added 2. Afterwards,
the images are divided by 256 so that the pixel values lie in the range
[0, 1]. Next, the patches are preprocessed by removing the mean
pixel value of every image patch. Because this reduces the implicit
dimensionality of the data, the last pixel value is removed. This results
in the data points having 63 dimensions. For the tiny images dataset
we rescale the images to 8 by 8 and then follow the same setup. This
way we also have low resolution image data to evaluate on.

In all the experiments described in this section, we used the fol-
lowing setup for training deep GMMs. We used the hard-EM variant,
with the aforementioned heuristic in the E-step. For each M-step
we used LBFGS-B for 1000 iterations by using Equations (5.13) and
(5.14) for the objective and gradient. The total number of iterations
we used for EM was fixed to 100, although fewer iterations were usu-
ally sufficient. The only hyperparameters were the number of compo-
nents for each layer, which were optimized on a validation set.

Because GMMs are in theory able to represent the same probabil-
ity density functions as a deep GMM, we first need to assess wether
using multiple layers with a deep GMM improves performance. The
results of a GMM (one layer) and deep GMMs with two or three layers
are given in Figure 5.4a. As we increase the complexity and number
of parameters of the model by changing the number of components
in the top layer, a plateau is reached and the models ultimately start
overfitting (the train log-likelihoods always increased when adding
components). For the deep GMMs, the number of components in
the other layers was kept constant (5 components). The deep GMMs
seem to generalize better. Although they have a similar number of
parameters, they are able to model more complex relationships, with
less overfitting (better holdout score). We also tried this experiment
on a more difficult dataset by using highly downscaled images from
the tiny images dataset, see Figure 5.4b. Because there are less corre-
lations between the pixels of a downscaled image than between those
of an image patch, the average log likelihood values are lower. Overall
we can see that the deep GMM performs well on both low and high

21f the data is discrete, a density model can get arbitrarily high likelihoods by
placing Dirac delta functions on the quantization means (Uria et al., 2013a).

155

154+
°
o
O 153} -
E .
Ko
X !
o 152t :
) ;
|
-1
1518 — GMM
T - - Deep GMM - 2 layers
.y Deep GMM - 3 layers
150+

0 50 100 150 200 250 300 350 400
Number of Components in the top layer

(a) BSDS300 dataset

130
129}
©
o
O 128f
<
Ko}
X
o 127+
o
-
. 1
- 1
1260 — GMM
B - - Deep GMM - 2 layers
o .- Deep GMM - 3 layers
125

0 50 100 150 200 250 300 350 400
Number of Components in the top layer

(b) Tiny Images dataset

Figure 5.4: Performance of the deep GMM for different number
of layers, and the GMM (one layer). All models were trained on
the same dataset of 500 thousand examples. For comparison
we varied the number of components in the top layer.

102 5 Deep Gaussian Mizxture Models

resolution natural images.

Next we compared the deep GMM with other published methods
on this task. Results are shown in Table 5.1. The first method is
the RNADE model, a new deep density estimation technique which
is an extension of the NADE model for real valued data (Uria et al.,
2013b,a). EoRNADE, which stands for ensemble of RNADE models,
is currently the state of the art. We also report the log-likelihood
results of two mixture models: the GMM and the student-t mixture
model, from the previous chapter. Overall we see that the deep GMM
has a strong performance. It scores better than other single models
(RNADE, STM), but not as well as the ensemble of RNADE models.

Model Log-likelihood

RNADE (1 to 6 hl) 143.2, 149,2, 152.0
153.6, 154.7, 155.2

EoRNADE (6hl) 157.0
GMM 153.7

STM 155.3

deep GMM - 3 layers 156.2

Table 5.1: Density estimation results on image patch model-
ing using the BSDS300 dataset. Higher log-likelihood values
are better. “hl” stands for the number of hidden layers in the
RNADE models.

5.5 Conclusion

In this chapter we introduced the deep Gaussian mixture model: a
novel density estimation technique for modeling real valued data. we
show that the deep GMM is on par with the state of the art in image
patch modeling, and surpasses other mixture models. We conclude
that the deep GMM is a viable and scalable alternative for unsuper-
vised learning. The deep GMM tackles unsupervised learning from
a different angle than other recent deep unsupervised learning tech-

5.5 Conclusion 103

niques (Gregor et al., 2013; Rezende et al., 2014; Bengio et al., 2013),
which is interesting for future research.

Convolutional Deep GMMs

In the previous chapter the deep Gaussian mixture model was intro-
duced. So far we only looked at the most basic version of the deep
GMM. Just like neural networks, deep GMMs can very easily be ex-
tended and modified. For example in neural networks convolutions
are used to induce parameter sharing and local connectivity in the
network. This makes convolutional neural networks very useful for
data that is structured in a N-dimensional array such as audio, im-
ages, video, etc. In this chapter we introduce local connectivity for
deep GMMs. This only induces parameter sharing, it is also necessary
for deep GMMSs to remain tractable on higher dimensional data.

The techniques and results presented in this chapter were pub-
lished in (van den Oord and Dambre, 2015).

6.1 Locally connected transformations

A potential problem with deep GMMs as they are defined so far is that
they are harder to scale to higher dimensional inputs. For example,
the number of dimensions in a grayscale image with d by d pixels is
d?. This means the transformation matrices in the deep GMM are
of size d? by d?, which makes it very computationally intensive to do
matrix inverses on: O(d%)?.

Lor slightly more efficient with e.g., the Strassen matrix inversion algorithm
(Strassen, 1969) for very large matrices.

106 6 Convolutional Deep GMMs

Apart from being computationally intensive, the large number of
parameters (d*) might also decrease generalization performance be-
cause of overfitting.

Motivated by the success of convolutional neural networks, we look
at the use of local connectivity (such as linear convolutions) within
the matrix transformations of the deep GMM. With local connectivity
we mean that transformed pixel values are the linear combination of
nearby pixels, instead of all pixels in the image. This is useful because
pixels in images are usually more correlated to neighboring pixels than
to distant ones. This way we make use of our prior knowledge about
images so that the model is less prone to overfitting.

However parameterizing local connectivity in the linear transfor-
mations of a deep GMM is non-trivial as it needs to fulfill the following
requirements:

e Needs to be invertible. If the linear transformation is sin-
gular there is a loss of information and the logarithm of the
determinant (and thus the log-likelihood) will go to —oo. This
means that it should be possible to invert the linear transfor-
mation (i.e., non-singular, bijective). The number of dimensions
cannot grow or decrease when the data is transformed through
the network.

e Determinant should be computable. The parameterization
should make the computation of the determinant of the total
linear transformation feasible. Furthermore, we should be able
to compute its gradient with respect to the parameters.

e Training needs to be fast enough. It is necessary to be able
to train a network for many iterations on a realistic dataset.
This means that we cannot simply sparsify a linear transforma-
tion matrix with a lot of zeros to achieve the desired connectiv-

ity.

e Needs to deal with borders. Borders are often trickier to
deal with and give rise to special cases. Together with the fact
that the transformation needs to be invertible means that we

cannot pad or crop the images as is done with convolutional
neural networks.

6.1 Locally connected transformations 107

From these constraints it is clear that we cannot simply use convo-
lutions as linear transformations. We now introduce a way to induce
local connectivity in deep GMMs that does meet these constraints.

6.1.1 Block Diagonal Matrices

The first way to induce local connectivity is by using block-diagonal
(BD) matrices instead of full matrices. This means variables are
grouped into non-overlapping clusters and a linear transformation is
applied to every cluster separately. For simplicity we assume all clus-
ters have the same size. We group variables by location. This means
we divide the image into small image patches with a regular grid and
each patch is transformed with its respective transformation. We can
use the same transformation for each location or a different one.

In a certain layer of a deep GMM we can now have a set of k block-
diagonal matrices. The advantage of using block diagonal matrices is
that matrix transformations can be implemented relatively efficiently
as a set of small matrix products in parallel. Furthermore, if we divide
an image of d by d into image patches with size 7 by r we get (d/r)?
blocks in total. This means we can compute the matrix inverse of
this block diagonal matrix in O(r%(d/r)?) = O(r*p?) time instead of
O(d®), and usually r < d.

In a deep GMM there is a discrete random variable associated with
every layer in the network. The value of this variable determines what
(block-diagonal) matrix is chosen in the sampling process. However,
we can also choose to have a different random variable for every loca-
tion (patch) in the image. Now we need a set of discrete random values
to determine what local transformation gets chosen for every location
in the sampling process from a set of k transformations. We refer
to this method as the block diagonal transformation with unshared
blocks in contrast to the one with only a single random variable per
layer, which we refer to as the one with shared blocks. Using shared
blocks in the block diagonal deep GMM layers has a very different
result than using unshared blocks. Figure 6.1 visualizes the difference
between two approaches.

For example, consider a set of grayscale images of size 32 by
32, which should be modeled by a deep GMM of k layers having

108 6 Convolutional Deep GMMs

A | |
A 4 | Az 1
Ay 2=2 Asp
Ay Az s
— Ay Ag g
— Ay
(a) Shared
As
¥ z=(3,4,2,4) Ay
/‘:44 > Ay
Ay

(b) Unshared

Figure 6.1: Block diagonal matrices with shared or unshared
blocks. The symbol z represents (multivariate) discrete random
variable that determines what blocks/block-diagonal matrices
get chosen in the sampling process.

transformations with a block diagonal structure. The images are di-
vided into patches of 8 by 8 so that there are 16 blocks in the block
diagonal matrices. In the case of shared blocks, every layer has a
set of n block-diagonal matrices. This means that the total possi-
ble number of transformations that are present in the network is n*.
The number of parameters is 16kn(64)?> = 65536kn (k layers with
n transformations with 16 blocks of 64 by 64). In the E-step, each
pass evaluates kn different transformations (paths through the net-
work). In the case of unshared blocks, every layer now has a set of m
blocks. Every patch in the image can be transformed with a different
block, which means there are m!® possibilities per layer (instead of

16k in total in the network. The number of parameters is

n), or m
now mk(64)2 = 4096mk. In the E-step, each pass has to evaluate

16mk different transformations (there are now 16k discrete variables

6.1 Locally connected transformations 109

determining the total transformation of the network, each having m
possible values).

As can be seen from the example, with unshared blocks the number
of discrete random variables in the network is much larger. This
requires a lot more evaluations in the E-step. On the other hand,
this means that the network is more powerful as it can represent a
larger number of possible transformations. The number of parameters
is usually also smaller.

6.1.2 Diagonal matrices

A special case of the previous approach is when the blocksize is ex-
actly 1 and we get a diagonal matrix. This comes down to multiplying
the input elementwise with a vector and summing it with a bias vec-
tor. The main advantage is that the number of parameters is very
small and that it is very fast to compute activations and gradients
(no matrix inverses).

In Chapter 4 we saw that mixtures of Gaussian scale mixtures
(such as a student-t mixture model) are ideally suited for modeling
image patches. A two-layered deep GMM having diagonal matrices
in one of the two layers, can essentially represent the same by setting
the diagonal values of the same matrix to a single value. Each node
in this layer multiplies the data with a different factor, resulting in a
scale mixture.

6.1.3 Half-convolution

When we divide an image into a set of non-overlapping patches we
can also represent this image as a tensor. Instead of a d by d image
with 3 color channels, we can have a new smaller (¢) by (¢) image

with 3r2 channels (where r is the patch size), so that we get a tensor
d d
T
bottom layer the values of these feature maps simply are pixel values,

with shape (3r%). We call these channels feature maps. In the
however, in the layers above they can represent different features.
When we transform an image (tensor) with a block-diagonal matrix,
the vector (of size 372) at each location is transformed separately and
we get a new tensor of the same size.

110 6 Convolutional Deep GMMs

One of the disadvantages of using block diagonal matrices is that
the resulting samples have blocking artifacts, such as the ones one
could get from using JPEG. Layers with block diagonal matrices can
hardly model the correlations between pixels from different blocks
(only from being a mixture as a whole, not from the individual mix-
ture components). This is because the blocks do not overlap as is the
case with convolutions. As already mentioned, because of the require-
ments mentioned earlier we cannot simply use regular convolutions as
transformations in the layers of a deep GMM.

There is however a simple workaround that allows the use of con-
volutions. It was first suggested by Dinh et al. (2014) in a slightly
different form and we call it a half-convolution (HC) for ease of ref-
erence. First, an image = (tensor) is split into two parts, each part
having half of the feature maps: z, and x;. Next a convolution is
applied to x, and added to x; so that we get

Ty = Tp + W 0 Tq, (6.1)

where w is the convolution kernel, and o is the convolution operator.

As z, is kept constant it’s very easy to compute the inverse:
Ty = T — w o Tq. Moreover, the determinant of the total linear
transformation of this operation is 1, which means it doesn’t add to
the loss of a deep GMM. The reason that the determinant equals 1 is
due to the fact that the total linear transformation of the image can
be written as a lower-triangular matrix, with identity matrices on the

x| |10 . |%a
ALl ¢

Because half of the image does not change with this transformation

diagonal blocks:

it is necessary to alternatingly update x, and xy.

In this chapter, half-convolution layers in the deep GMMs only
contain a single transformation so that all images are transformed
with the same convolutions. This is in contrast to other layers where
a transformation is sampled from a set of transformations. However,
in practice it’s perfectly possible to have n different ones.

As we mentioned earlier, one of the disadvantages of block diagonal

6.2 Distribution over paths and gating networks 111

matrices (by location) is that the samples have blocking artifacts.
One way to solve this is by alternating block diagonal layers with
a few half-convolutional layers. This way the pixels get mixed and
correlated between blocks.

Half-convolution layers are also relatively fast and easy to im-
plement efficiently. A whole minibatch can simply be convolved at
once. In the backward pass we don’t need to compute any matrix
inverses as half-convolutions do not contribute to the loss function
(log-determinant is zero).

Finally, it is possible to use a more advanced operation than the
convolution in Equation 6.1, for example a neural network as done
by Dinh et al. (2014). In the few experiments where we explored this
idea, we didn’t really see any large improvements, so all results in this
chapter are based on HCs using a simple convolution.

6.2 Distribution over paths and gating
networks

When sampling from a deep GMM, first a path is sampled from a
certain path distribution. The easiest distribution we can use is a
uniform distribution: all paths have equal probability. Another suit-
able option is to have a distribution over the transformations in every
layer instead, so that the path distribution is factorized. However, it’s
also possible to store the probability for every a path in the network
(as in the previous chapter) or to use much more advanced distribu-
tions (e.g., a NADE model (Larochelle and Murray, 2011)). These
choices might greatly influence the quality of the samples drawn from
the network.

Another way of choosing the path in the network is by using a neu-
ral network in every layer that models a distribution over the trans-
formations based on the sample so far:

p(zi = jlhi) = [fi (hi)l;-

Here h; is the sample transformed from white Gaussian noise down to

112 6 Convolutional Deep GMMs

the layer ¢ (before the transformation in layer i) and z; is the variable
that determines the transformation in this layer. These networks (f;)
are also called gating networks and usually have a softmax output, as
the sum of the vector elements of f; (h;) should be 1. By using these
networks the model has more control over the samples it generates.
The neural network could be able to detect the main features in the
sample and promote transformations that are appropriate to that kind
of image by giving them a higher probability. For example, some
transformations may only be useful for images of boats or planes, but
not for cats and dogs.

There are several ways to train these networks. We optimized the
gating networks after the deep GMM was trained based on the paths
from the last E-step. Another option is to train the networks between
the E and M step or to incorporate the optimization into one of the
two steps.

6.3 Experiments

6.3.1 Training

All experiments in this chapter were performed with Expectation-
Maximization (EM) and stochastic gradient descent (SGD) was used
for the M-steps. The deep GMM layers were implemented in Python
and Theano (for GPU-acceleration) with some parts of the code imple-
mented and wrapped from Pycuda and Scikits-cuda. Theano makes
it more straightforward to implement back-propagation as it can au-
tomatically derive expressions for the gradients and optimize them.

In the M-step a minibatch-size of 100 was used. In the first EM-
steps we use a higher number of gradient updates (around 50000)
than for the other EM-steps (around 5000-10000) as those need fewer
updates to converge. Every M-step is initialized with the parame-
ters from the previous M-step. Within every M-step we lowered the
learning rate for the last 4000 updates, and also lowered it towards
the later M-steps to make sure the network converges before every
E-step.

In our experiments we used the ADAM (Kingma and Ba, 2014)

6.3 FExperiments 113

update rules to accelerate the convergence. Although gradient de-
scent with (Nesterov) momentum also seemed to work well, it needed
more careful tuning of layer-specific learning rates as half-convolutions
needed a lot lower learning rate than others. With ADAM we used
a single learning rate for the whole network, and the standard hyper-

parameters seemed to work quite well (we only used a learning rate
schedule).

The E-step was done similarly as in previous chapter. We initial-
ized the paths from the previous iteration and performed the heuristic
for 1 pass. Subsequently we ran the algorithm for a second time with
a random initialization for two passes for the possibility of finding a
better optimum for each datapoint.

We let the networks train for 20 EM-step iterations for compar-
isons, although using more iterations would probably increase the log-
likelihood scores.

6.3.2 Evaluation

In the previous chapter all log-likelihood evaluations were done ex-
actly, by summing over all possible paths. For the experiments in this
chapter the number of paths and dimensionality of the data is much
higher, so we compute a lower bound of the log-likelihood instead.
The log-likelihood of a datapoint x of a mixture model is

p(x) = Z mipi(T),

so by estimating

max 7;p; ()
3

we get a lower bound. This lower bound gives a good indication for
the true log-likelihood if max; m;p;(x) is much higher than m;p;(z) for
j # . This lower-bound tends to work better for higher-dimensional
data, as these typically have higher log-likelihoods, and thus expo-
nentially bigger differences between likelihoods of different mixture
components.

114 6 Convolutional Deep GMMs

It’s also possible to define an upper bound:
max pi(x) = Z j <m;axpi(:z)>
J
> mip;(@).
J

To compute this exactly we would need to evaluate all possible paths.
In our experiments we use a uniform distribution over paths, so that

T = (except when using gating networks). This means that it’s

Npaths
enouglf t?cj) find a p;(x) that’s higher than the average p;(z) to get an
upper bound. As our estimate of the lower bound starts to converge,
we also have a good idea about the upper bound by multiplying with
;. However, we refer to this as an approximate upper bound as we
can never be sure there isn’t a much better path for each datapoint

in the validation set.

6.3.3 Datasets and preprocessing

We use the Cifar-10 dataset, which consists of 50k training and 10k
test colored images respectively of size 32 by 32. We use 10k images
from the training set for validation. In our first experiments where
we analyze the influence of some architectural decisions we report
validation scores. In the last experiment where we compare with other
methods we report test scores.

Because the image data is quantized into integer values between 0
and 255 it’s important to add small noise to make the data continuous.
In our experiments we add uniform noise between 0 and 1 to the pixel
values and rescale and center the data between -1 and 1.

6.3.4 Experiment 1

In the first experiment we evaluate whether the local connectivity of
the block-diagonal and half-convolution layers are powerful enough to
model simple linear correlations in the image. In Section 6.1.3 we pro-
posed to alternate block-diagonal layers with a few half-convolutions.
This is the base configuration of this experiment. We do not use mix-
ture components in this experiment so that the total learned parametrized

6.3 FExperiments 115

No HC 1 HC 2 HC 3 HC 4 HC

3829 4349 4927 5059 5074

Table 6.1: Validation log-likelihood scores of models with 0,
1, 2, 3 or 4 half-convolution layers (HC) and 1 block-diagonal
layer. A Gaussian distribution with full-rank covariance matrix
gets 4989.

transformation is linear, which means that the network represents a
Gaussian in this case. By comparing the results to that of a Gaus-
sian distribution with a full-rank covariance matrix we can analyze
whether these architectures are able to capture most of the linear
correlations in the image.

We combine 0, 1, 2, 3 or 4 half-convolution transformations (filter-
size of 5 by 5) with a block-diagonal layer so that an image is split
into patches of 4 by 4 (64 blocks). The images are represented as a
tensor of 8 by 8 by 48 (4 % 4 x 3 = 48 feature maps). The number
of parameters of the half-convolutions is 5 % 5 % 24 x 24 = 14400 and
that of the block-diagonal is 48 % 48 x 64 = 147456. This is an order
of magnitude smaller than that of a Gaussian with full covariance:
(30722 — 3072)/2 = 4717056.

Table 6.1 shows the validation log-likelihood scores of models with
0, 1, 2, 3 or 4 half-convolution layers (HC) and 1 block-diagonal layer.
The log-likelihood of a Gaussian with full covariance is 4989 (5237
on the trainset). From the results we can conclude that factoring
a full rank transformation into locally connected layers works well.
The result is actually even better than that of a Gaussian with full
covariance, because there is less overfitting.

In our other experiments we typically use 3 half-convolutions in
the bottom layers.

6.3.5 Experiment 2

In our next experiment we evaluate the effect of the number of shared
block-diagonal layers and the number of transformations per layer in
a deep GMM. This way we can see if using more layers works better.

The architectures we consider have 3 half-convolution layers fol-

116 6 Convolutional Deep GMMs

#Transformations / layer:
4 8 16 32 64

1 layer 5584 5618 5649 5613 5568
2 layers 5736 5802 5776 5834 5329
3 layers 5803 5887 5760 5744

4 layers 5876 5881 5752

5 layers 5933 5905

6 layers 5954 5877

7 layers 5961 5839

8 layers 5941

Table 6.2: Influence of the number of block-diagonal layers
(shared) and number of transformations per layer (combined
with 3 HC layers at the bottom of the network). These log-
likelihood results represent lower-bounds. We increased the
number of layers and number of transformations per layer until
the networks started to overfit. The approximate upper bounds
were not that much higher (For example, with 6 layers and
8 transformations per layer this is about 61n(8) ~ 12.5 nats
higher, see Section 6.3.2)).

lowed by k shared block-diagonal layers (grouped by location). Simi-
larly with the last experiment, the images are represented as tensors
of 8 by 8 by 48. The half-convolutions have a filter-size of 5 by 5 and
the block-diagonal layers have 64 blocks of size 48. The number of
transformations in the block-diagonal layer is the same in every layer.

Table 6.2 shows the log-likelihood of deep GMMs in function of
the number of layers and number of components per layer. Because
these are validation scores, the log-likelihood can go down when the
networks start to overfit (usually when there are too many transfor-
mations per layer).

Notice how a deep GMM with 8 layers and 4 components per
layer performs much better than a deep GMM with 1 layer and 32
components, although they have the same number of parameters.

6.3 FExperiments 117

1 layer 2 layers 3 layers 4 layers 5 layers

With bottom Half-Convolutions:
LB 5981 6182 6168 6145 6097
UB* 6070 6359 6434 6500 6541

With added intermediate Half-Convolutions:
LB 5981 6278 6395 6342 6326
UB* 6070 6455 6661 6697 6770

With added Gating-Networks:
LB 6046 6367 6490 6452 6441

Table 6.3: Influence of the number of block-diagonal layers
with unshared blocks. LB stands for lower bound and UB*
stands for approximate upper bound (see Section 6.3.2).

6.3.6 Experiment 3

In the third experiment we use block-diagonal layers with unshared
blocks. The results can be see in Table 6.3. The experimental setup
is roughly the same as the previous one. All layers now have a set of 4
blocks. As we already mentioned, the number of mixture components
that can be modeled by block-diagonal layers with unshared blocks
is much larger than with shared blocks. For example, in the case of
3 layers the number of possible mixture components represented by
the network is 4543 ~ 3.94E115. This also means that the difference
between the lower and upper-bound starts to increase (see Section
6.3.2.).

First we evaluated the use of these block-diagonal layers, with only
half-convolutional layers at the bottom of the network (similar to the
last experiment). Next we repeated the same experiments where we
also added 3 HC layers in between the block-diagonal layers. Finally,
we used a gating network to learn to sample better paths through the
network.

118 6 Convolutional Deep GMMs

Model Log-Likelihood

Gaussian 4893
NICE 5372
deep GMM 6384

Table 6.4: Test log-likelihood scores on the Cifar-10 dataset.

6.3.7 Comparison with prior art

Next we compare deep GMMs with other methods on the Cifar-10
testset. The results can be seen in Table 6.4. For deep GMMs we
report lower-bounds to make sure we don’t overestimate the results.
The score is from the model that had the best reported LB validation
error: 6490 (model with 3 unshared BD layers with intermediate HC
layers and added gating networks). It’s typical for the testset log-
likelihood score to be lower than the validation score on this dataset:
This is also the case for a single Gaussian (4893 vs. 4989).

6.3.8 Qualitative evaluation

In Figure 6.2 we show the filters learned in the first few layers of a
deep GMM. We can see that these are all kinds of differently colored
edge filters.

In Figure 6.3 we see samples drawn from models with 1, 3 or 5
unshared BD layers. As the number of layers increase the correlations
and structures become less local and more global. However, the sam-
ples do not resemble real images yet and appear cloudy (no strong
edges). This may call for better or larger deep GMM architectures.

6.4 Deep GMMs and log-likelinood

From the experimental results we saw that deep GMMs perform well
in terms of log-likelihood on natural images. On the other hand we
saw that the samples generated by a deep GMMs do not look that
realistic. To better understand why this happens we first give several

“UOISISA DIUOJID3|9 3y UO Ul Sulwooz Aq pamalA 1s9q sI a4nBi4 siy | -siake| syl y3noiyl wuoysuet 11 3unis| pue (g
3Y1 A0QR) 24n1e3) Ule14ad B JulleAllDe A Pa1BaJd SJam SISl 953y “s|axid ¢ Jo apuIs e y1im Ajjeuoiinjoauod paijdde
aJe Asyj se juspuadspul UOIIBDO| S4B SIS)|I} 9SSY | UOIIBWIOJSURI]Y [BDO] 1URJSJ)Ip B udsaudas uwnjod A1sng -sishe|
M3} 151} 9Y] Se |euoSeIp-320|q paJeysun e pue suollnjoAuod-jjey ¢ Yyum NIND dosp e Aq psues| sislji4 :g 9 a4nSi4

T P R R T
EFEESEER - OEQR-FER-AEFRANEQdER - 8

%_‘-

LA

'R v
) e
5 e

1 layer

.;-.,“-.Ir

aE TR

"E
! »
-

yor P8
-
:
=
L

3 layers

NMErFRERCPRE
K . S []
PRENMYAERESELSD
Fad - i i - e
dNERESESNE

5 layers
Figure 6.3: Samples drawn from models with 1, 3 or 5 unshared
BD layers (with intermediate HC layers and gating networks).

6.4 Deep GMMs and log-likelihood 121

observations about (deep) GMMs and log-likelihood.
Observation 1:

The log-likelihood of a datapoint x under a (deep) GMM can be writ-
ten as follows:

log p(z) = log Zp](a:)]

= log Zexp (logpj(a;))] .

J

The log-likelihood of a mixture model is the log-sum-exp or soft-
mazximum of the mixture components’ individual log-likelihoods. This
means the log-likelihood of a mixture model is dominated by a few
mixture components for which a certain datapoint has the highest
log-likelihood.

For high-dimensional data this effect is more pronounced than for
low-dimensional data, because log-likelihood values become larger as
the dimensionality grows. For example, given unit-variance uncorre-
lated normally distributed data with d dimensions, the log-likelihood
of the data will be

g (1+In(2m)),

which is a linear function of the dimensionality. This is similar to the
temperature of a soft-maximum function: the larger d, the closer the
soft-maximum function approximates the (hard-)maximum function.

For deep GMM models this means that as long as every datapoint
can be well represented by a path in the network, the log-likelihood
of the data is high. This is also the reason why the EM-version with
hard assignments works well in this case.

Observation 2:

Assume p(z) to be the the optimal probability density function of a
multivariate random variable X. Furthermore, allow ¢(x) to be a pdf
of noise, so that the likelihood of samples from X is very low. Now
consider a pdf m(x) that is a mixture of p(z) and ¢(z) with mixture

122 6 Convolutional Deep GMMs

weights 0.01 and 0.99 respectively. This means that samples drawn
from the mixture distribution have 99% chance of being noise and 1%
of being a true sample.

The log likelihood of samples from X under m(zx) is

log [0.01p(z) 4+ 0.99¢(x)] = log [p(z) + 99¢(x)] — log(100)
> log p(z) — log(100),
or maximally 4.61 nats (natural logarithm) worse than the optimal
distribution. Recall that the log-likelihood results on Cifar-10 were in
the order of 1000’s and that on higher dimensional images they would
be orders of magnitudes higher.

From this we can conclude that very well performing models in
terms of log-likelihood can still produce very unrealistic samples. High-
dimensional PDFs are hard to comprehend. Most of the capacity of
the density function can be spent towards explaining regions of the
multivariate image space that model unlikely patterns. It’s a lot less
costly for the model to over-generalize than to overfit.

When the samples drawn from a model do look realistic it is also
plausible that the model is overfitting in some way or an other (this
tells us nothing about the log-likelihood score). It’s important to
understand that overfitting does not mean simply memorizing the
training images. It’s easy to create a system that generates good
looking samples that do not resemble any of the training images too
much, but that never generates patterns that occur in the validation
images.

6.5 Conclusion

In this chapter we introduced new ways of modeling images with deep
GMMs by using locally-connected transformations. These transfor-
mations efficiently exploit the fact that correlations in images are
stronger between pixels that are closer to each other. This allows
much faster training and less overfitting.

From our experiments we saw that the introduced locally-connected
transformations fulfill their intended purpose. Deep GMMs are able
to capture a lot of variations in images and generalize well, resulting

6.5 Conclusion 123

in good log-likelihood values. Samples drawn from these models often
look unrealistic, but as we show in our discussion, this does not mat-
ter much for the log-likelihood: it is a lot less costly for the model to
over-generalize than to overfit.

Conclusions and Future
Prospects

In this final chapter, we give a brief summary and the main conclusions
that follow from the presented work. We also give an overview of po-
tential future directions. The discussions in this chapter are grouped
into two themes: deep learning for music information retrieval (MIR)
and deep generative models for natural images.

/.1 Deep learning for MIR

The first main theme of this dissertation is deep content-based music
information retrieval. We have investigated the use of deep (convo-
lutional) neural networks to predict latent factors from music audio
that can be used for music recommendation and other related tasks
such as tagging and classification through transfer learning.

7.1.1 Summary and conclusions

In Chapter 2 we have introduced a new deep learning approach for
content-based music recommendation. By embedding users and songs
in a latent factor space with weighted matrix factorization and subse-
quently predicting the latent song factors from audio, we have trans-
lated a music recommendation problem into a standard machine learn-
ing regression problem. We have applied this model to the million
song dataset, which is an order of magnitude larger than most other

126 7 Conclusions and Future Prospects

publicly available music datasets. This way we have shown that the
proposed method scales well to large datasets.

Deep learning approaches still are relatively uncommon in the MIR,
field. A lot of researchers have grown to rely on a particular set of
engineered audio features, such as mel-frequency cepstral coefficients
(MFCCs), which are used as input to simple classifiers or regressors,
such as SVMs and linear regression (Humphrey et al., 2012). In our
experiments we showed that deep learning significantly outperforms
the more traditional approach.

From the qualitative and quantitative results we could conclude
that the proposed approach is a viable method for recommending new
or undiscovered music. Although the focus of our work was mainly
on the long tail, it has potential for music recommendation problems
in general (see future prospects).

In Chapter 3 we tried a similar approach for transfer learning
tasks. As the mapping from the music feature space to the latent
factor space captures a lot of the aspects of audio that affects listening
behavior and can be trained on large datasets, it might be beneficial to
use this mapping as feature extraction for other related tasks. We have
investigated two different source tasks with different latent spaces, one
for user listening preference prediction (as with recommendation) and
another one for large-scale tag prediction.

In our experiments we have shown that features learned in this
fashion consistently outperform a purely unsupervised feature learn-
ing approach. Although the performance of the transfer learning is
acceptable, they are arguably not as convincing as the ones obtained
in similar computer vision experiments (Razavian et al., 2014; Zeiler
and Fergus, 2013).

7.1.2 Future prospects

e Is there a better loss function for latent factor predic-
tion?
In our work we have approached the music recommendation
problem as a regression task with the MSE loss function. A
possibility for future work is to look at other loss functions,
such as L1 loss or cosine distance and see how much this affects

7.1 Deep learning for MIR 127

the performance.

In our experiments the user factors were kept constant (from
WMF) and only the item factors were predicted, so instead of
using WMF one could also try to learn the user factors together
with the mapping to the item latent space. This way the targets
are not the latent vectors of the items but the corresponding
item play counts in the listening matrix. This is a more direct
approach and one could choose a loss function that more closely
resembles the objective we are ultimately interested in (e.g., a
ranking loss). A potential problem with this approach is that it
may be less scalable, which is important as the number of users
can be very large. Optimizing the user factors concurrently with
a mapping from audio to song factors might also lead to much
slower convergence (instead of alternatingly optimizing them, as
with alternating least squares for WMF).

e Hybrids of CF and content-based approaches

An interesting open question is how well the proposed content-
based approach would work in combination with collaborative
filtering as a hybrid method. Because our approach works in
the same latent factor space as WMF-based CF one could easily
combine song factors inferred from audio with those obtained
from WMF. Depending on the popularity of a certain song one
could weight the content-based approach to have more or less
influence.

e Performance on A /B tests
It would be very interesting to see how good the recommenda-
tions are according to real users. The way the recommendations
were currently evaluated was by looking at how well a model
could predict listening behavior on a validation set. However,
metrics like this also promote obvious recommendations such as
the most popular songs in the validation set or songs from the
same artist. Collaborative filtering is very good at picking up
these relations in the data and will therefore perform very well
on a holdout set. To be able to evaluate novel recommendations
(e.g., for music discovery) one has to perform experiments with

128 7 Conclusions and Future Prospects

real users, for example with A /B-tests.

e Transfer learning with more complex models
For transfer learning experiments it would be interesting to see
what the impact is when more complex models are used, both
for the source task and for the target task. For the source task
a convolutional neural network such as the one used in Chapter
2 is an obvious choice.

For the transfer learning models we have used a linear classifier,
which is similar to the approaches in computer vision that use
features from imagenet CNN models. However, it’s possible
that for our transfer learning problem a more powerful classifier
would be able to transfer better, especially when the source and
target task are less closely related.

/.2 Generative natural image models

The second theme of my dissertation is deep generative models for
natural images.

7.2.1 Summary and conclusions

The first proposed generative model for images was the student-t mix-
ture (STM) model. This method significantly outperformed the GMM
for density modeling of image patches. The performance could largely
be attributed to the fact that a student-t mixture is able to model
contrast in addition to linear dependencies within a single mixture
component.

In Chapter 4 we also showed that generative models such as GMMs
and STMS can be used for lossless and lossy compression of images.
Although the proposed compression schemes were relatively simple
compared to those of industry standards, the compression results
were favorable to those of JPEG 2000 and significantly outperformed
JPEG.

Subsequently, in Chapter 5 we introduced a new deep generative
model: the deep GMM. This model is a straightforward but powerful

7.2 Generative natural image models 129

generalization of GMMs to multiple layers. Furthermore, we could
show that the STM is also a special case of the deep GMM (having
two layers).

The parametrization of a deep GMM allows it to efficiently capture
products of variations in natural images. In our density estimation
experiments we showed that deeper GMM architectures generalize
better than more shallow ones, with results in the same ballpark as
the state of the art. An additional advantage of the deep GMM is
that it is inherently more parallelizable than methods that solely rely
on SGD-based optimization.

A potential problem for standard deep GMMs is high dimensional
data. Motivated by the success of convolutional neural networks we
have therefore looked at using locally-connected matrix transforma-
tions in deep GMMSs to solve this problem. These structural priors
make sure that the model effectively exploits the fact that correlations
in images are stronger between pixels that are closer to each other.
In our experiments we showed that the proposed parameterizations
are able to capture these local correlations well. Furthermore deep
GMMs can now also scale more easily to much higher dimensional
data. Although samples drawn from these models often look unreal-
istic, this does not matter much for the relatively good log-likelihood
performance: it is a lot less costly for the model to over-generalize
than to overfit.

7.2.2 Future prospects

e How well can we compress other kinds of data?

After the compression results on images, it would be interesting
to see how well generative models can compress other types of
data, such as audio, video, medical data (EEG, fMRI, ...). It’s
possible that models like GMMs, STMs or deep GMMs do not
work well on some of these other types of data and that other
generative models have to be used. For some types of data
(such as audio) perceptual error measures might also become
more important, which brings us to the next open question.

¢ How can we incorporate perceptual error measures?

130

7 Conclusions and Future Prospects

The error measure that’s most commonly used is MSE (or equiv-
alently PSNR). Although this metric usually works reasonably
well given its simplicity, it is very different from how humans per-
ceive and evaluate compression artifacts. For example, blocking
artifacts that occur in JPEG are usually not particularly bad
for the MSE loss, but are very obtrusive to humans. For a com-
pression technique to be used in real applications it is therefore
important that it incorporates prior knowledge about human
perception.

How well do deep GMMs compare with STMs on image
compression?

On lossless compression we can quite confidently say that a deep
GMM will perform better than a STM because this task is so
closely related with density modeling. Although this is to a
lesser degree also true for lossy compression, it would still be in-
teresting to see how these models compare. Especially compres-
sion with locally-connected deep GMMs might be a promising
line of research as this would likely solve the blocking compres-
sion artifacts that appear with block-based image compression.

How well do deep GMMs perform on image reconstruc-
tion tasks?

As already mentioned, it has been shown by Zoran and Weiss
(2011) that GMMs can be applied to various image reconstruc-
tion tasks, such as image denoizing, deblurring, ..., with great
performance. Because a deep GMM is a powerful generalization
of GMMs to multiple layers, a possibility would be to study the
deep GMM for the use of image reconstruction applications.

Is log-likelihood a good loss function for unsupervised
learning?

An open research question is whether log-likelihood is a suit-
able loss function for unsupervised learning. The answer to this
question would of course also depend on what application the
model would ultimately be used for. For tasks such as loss-
less compression we know that maximum likelihood estimation
is a very good proxy. For other applications such as synthesis,

7.2 Generative natural image models 131

feature extraction, ... this is less certain. For example, in Sec-
tion 6.4 we saw that if a model performs very well in terms of
log-likelihood it is still possible that it will produce unrealistic
samples most of the time.

Bibliography

Aiyer, A., Pyun, K., Huang, Y.-z., O’Brien, D. B., and Gray, R. M.
(2005). Lloyd clustering of gauss mixture models for image compres-
sion and classification. Signal Processing: Image Communication,

20(5):459-485.

Barto, A. G. (1998). Reinforcement learning: An introduction. MIT
press.

Bengio, Y. (2009). Learning deep architectures for Al. Foundations
and Trends® in Machine Learning, 2(1).

Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H., et al. (2007).
Greedy layer-wise training of deep networks. Advances in neural
information processing systems, 19:153.

Bengio, Y., Thibodeau-Laufer, E., and Yosinski, J. (2013). Deep gen-
erative stochastic networks trainable by backprop. In International
Conference on Machine Learning.

Bennett, J. and Lanning, S. (2007). The netflix prize. In Proceedings
of KDD cup and workshop, volume 2007, page 35.

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R.,
Desjardins, G., Turian, J., Warde-Farley, D., and Bengio, Y. (2010).
Theano: a CPU and GPU math expression compiler. In Proceedings
of the Python for Scientific Computing Conference (SciPy).

134 Bibliography

Bertin-Mahieux, T., Ellis, D. P., Whitman, B., and Lamere, P. (2011).
The million song dataset. In Proceedings of the 11th International
Conference on Music Information Retrieval (ISMIR).

Bishop, C. M. and Nasrabadi, N. M. (2006). Pattern recognition and
machine learning. Springer New York.

Brent, R. P. (1973). Algorithms for minimization without derivatives.
Courier Dover Publications.

Bryt, O. and Elad, M. (2008). Compression of facial images using
the k-svd algorithm. Journal of Visual Communication and Image
Representation, 19(4):270-282.

Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C. (1995). A limited mem-
ory algorithm for bound constrained optimization. SIAM Journal
on Scientific Computing.

Celma, O. (2008). Music Recommendation and Discovery in the Long
Tail. PhD thesis, Universitat Pompeu Fabra, Barcelona.

Chapelle, O., Scholkopf, B., Zien, A., et al. (2006). Semi-supervised
learning.

Coates, A. and Ng., A. Y. (2012). Learning feature representations
with k-means. Neural Networks: Tricks of the Trade, Reloaded.

Coates, A., Ng, A. Y., and Lee, H. (2011). An analysis of single-
layer networks in unsupervised feature learning. Journal of Machine
Learning Research - Proceedings Track, 15:215-223.

Csurka, G., Dance, C., Fan, L., Willamowski, J., and Bray, C. (2004).
Visual categorization with bags of keypoints. In Workshop on sta-
tistical learning in computer vision, ECCYV, volume 1, pages 1-2.
Prague.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum
likelihood from incomplete data via the em algorithm. Journal of
the Royal Statistical Society. Series B (Methodological), pages 1-38.

Bibliography 135

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. (2009). Imagenet: A large-scale hierarchical image database.
In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pages 248-255. IEEE.

Dieleman, S., Brakel, P., and Schrauwen, B. (2011). Audio-based mu-
sic classification with a pretrained convolutional network. In Pro-

ceedings of the 12th International Conference on Music Information
Retrieval (ISMIR).

Dieleman, S. and Schrauwen, B. (2013). Multiscale approaches to mu-
sic audio feature learning. In Proceedings of the 14th International
Conference on Music Information Retrieval (ISMIR).

Dinh, L., Krueger, D., and Bengio, Y. (2014). Nice: Non-linear inde-
pendent components estimation. arXiv preprint arXiv:1410.8516.

Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E.,
and Darrell, T. (2013). Decaf: A deep convolutional activation fea-
ture for generic visual recognition. arXiv preprint arXiv:1310.1531.

Duchi, J. C., Hazan, E., and Singer, Y. (2011). Adaptive subgradient
methods for online learning and stochastic optimization. Journal
of Machine Learning Research, 12:2121-2159.

Elad, M. (2010). Sparse and redundant representations: from theory
to applications in signal and image processing. Springer Science &
Business Media.

Elad, M. and Aharon, M. (2006). Image denoising via sparse and
redundant representations over learned dictionaries. Transactions
on Image Processing, 15(12):3736-3745.

Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P.,
and Bengio, S. (2010). Why does unsupervised pre-training help

deep learning? The Journal of Machine Learning Research, 11:625—
660.

Evgeniou, A. and Pontil, M. (2007). Multi-task feature learning. Ad-
vances in neural information processing systems, 19:41.

136 Bibliography

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-
J. (2008). LIBLINEAR: A library for large linear classification.
Journal of Machine Learning Research, 9:1871-1874.

Fodor, I. K. (2002). A survey of dimension reduction techniques.

Foote, J. T. (1997). Content-based retrieval of music and audio. In
Voice, Video, and Data Communications, pages 138-147. Interna-
tional Society for Optics and Photonics.

Ghahramani, Z. and Hinton, G. E. (1996). The em algorithm for mix-
tures of factor analyzers. Technical report, University of Toronto.

Girshick, R. B., Donahue, J., Darrell, T., and Malik, J. (2013). Rich
feature hierarchies for accurate object detection and semantic seg-
mentation. CoRR, abs/1311.2524.

Goyal, V. (2001). Theoretical foundations of transform coding. Signal
Processing Magazine, 18(5):9-21.

Gregor, K., Mnih, A., and Wierstra, D. (2013). Deep autoregressive
networks. In International Conference on Machine Learning.

Hamel, P., Davies, M. E., Yoshii, K., and Goto, M. (2013). Transfer
learning in MIR: sharing learned latent representations for music
audio classification and similarity. In ISMIR 2013.

Hamel, P. and Eck, D. (2010). Learning features from music audio
with deep belief networks. In Proceedings of the 11th International
Conference on Music Information Retrieval (ISMIR).

Hedelin, P. and Skoglund, J. (2000). Vector quantization based on
gaussian mixture models. Transactions on Speech and Audio Pro-
cessing, 8(4):385-401.

Hermans, M. and Schrauwen, B. (2013). Training and analysing deep
recurrent neural networks. In Advances in Neural Information Pro-
cessing Systems, pages 190-198.

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly,
N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T. N., et al.

Bibliography 137

(2012a). Deep neural networks for acoustic modeling in speech
recognition: the shared views of four research groups. Signal Pro-
cessing Magazine, IEEE, 29(6):82-97.

Hinton, G., Osindero, S., and Teh, Y.-W. (2006). A fast learning
algorithm for deep belief nets. Neural computation, 18(7):1527—
1554.

Hinton, G. E. (2002). Training products of experts by minimizing
contrastive divergence. Neural computation, 14(8):1771-1800.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, 1., and
Salakhutdinov, R. R. (2012b). Improving neural networks by pre-
venting co-adaptation of feature detectors. Technical report, Uni-
versity of Toronto.

Hoffman, M., Blei, D., and Cook, P. (2009). Easy As CBA: A Simple
Probabilistic Model for Tagging Music. In Proceedings of the 10th
International Conference on Music Information Retrieval (ISMIR).

Hong, W., Wright, J., Huang, K., and Ma, Y. (2005). A multiscale
hybrid linear model for lossy image representation. In International
Conference on Computer Vision, volume 1, pages 764-771. IEEE.

Horev, L., Bryt, O., and Rubinstein, R. (2012). Adaptive image com-
pression using sparse dictionaries. In International Conference on
Systems, Signals and Image Processing, pages 592-595. IEEE.

Hu, Y., Koren, Y., and Volinsky, C. (2008). Collaborative filtering for
implicit feedback datasets. In Proceedings of the 2008 Eighth IEEE
International Conference on Data Mining.

Humphrey, E. J., Bello, J. P., and LeCun, Y. (2012). Moving beyond
feature design: Deep architectures and automatic feature learning
in music informatics. In Proceedings of the 13th International Con-
ference on Music Information Retrieval (ISMIR).

Jain, A. K., Murty, M. N., and Flynn, P. J. (1999). Data clustering:
a review. ACM computing surveys (CSUR), 31(3):264-323.

Kingma, D. and Ba, J. (2014). Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980.

138 Bibliography

Kotz, S. and Nadarajah, S. (2004). Multivariate t-Distributions and
their Applications. Cambridge University Press.

Krizhevsky, A. (2009). Learning Multiple Layers of Features from
Tiny Images. Master’s thesis.

Krizhevsky, A. (2014). One weird trick for parallelizing convolutional
neural networks. In Proceedings of the International Conference on
Learning Representations.

Krizhevsky, A., Sutskever, 1., and Hinton, G. E. (2012). Imagenet
classification with deep convolutional neural networks. In Advances
in Neural Information Processing Systems 25.

Larochelle, H. and Murray, I. (2011). The neural autoregressive dis-
tribution estimator. JMLR: Wé&CP, 15:29-37.

Law, E. and von Ahn, L. (2009). Input-agreement: a new mechanism
for collecting data using human computation games. In Proceedings
of the 27th international conference on Human factors in computing
systems.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E.,
Hubbard, W., and Jackel, L. D. (1989). Backpropagation applied
to handwritten zip code recognition. Neural Comput., 1:541-551.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-
based learning applied to document recognition. Proceedings of the
IEEE, 86(11):2278-2324.

LeCun, Y., Huang, F. J., and Bottou, L. (2004). Learning methods
for generic object recognition with invariance to pose and lighting.
In Proceedings of the 2004 IEEE computer society conference on

Computer vision and pattern recognition, CVPR’04, pages 97-104,
Washington, DC, USA. IEEE Computer Society.

Lee, H., Pham, P., Largman, Y., and Ng, A. Y. (2009). Unsuper-
vised feature learning for audio classification using convolutional
deep belief networks. In Advances in neural information processing
systems, pages 1096—-1104.

Bibliography 139

Mairal, J., Bach, F., Ponce, J., Sapiro, G., and Zisserman, A. (2009).
Non-local sparse models for image restoration. In International
Conference on Computer Vision, pages 2272-2279. IEEE.

Martin, D., Fowlkes, C., Tal, D., and Malik, J. (2001a). A database
of human segmented natural images and its application to evalu-
ating segmentation algorithms and measuring ecological statistics.

In International Conference on Computer Vision, volume 2, pages
416-423.

Martin, D., Fowlkes, C., Tal, D., and Malik, J. (2001b). A database
of human segmented natural images and its application to evaluat-
ing segmentation algorithms and measuring ecological statistics. In

Proceedings of the International Conference on Computer Vision.
IEEE.

McFee, B., Barrington, L., and Lanckriet, G. R. G. (2012a). Learning
content similarity for music recommendation. IEEE Transactions
on Audio, Speech & Language Processing, 20(8).

McFee, B., Bertin-Mahieux, T., Ellis, D. P., and Lanckriet, G. R.
(2012b). The million song dataset challenge. In Proceedings of the
21st international conference companion on World Wide Web.

McFee, B. and Lanckriet, G. R. G. (2010). Metric learning to rank.
In Proceedings of the 27 th International Conference on Machine
Learning.

Nair, V. and Hinton, G. E. (2010). Rectified linear units improve
restricted boltzmann machines. In Proceedings of the 27th Interna-
tional Conference on Machine Learning (ICML-10).

Nesterov, Y. (1983). A method of solving a convex programming
problem with convergence rate o (1/k2). In Soviet Mathematics
Doklady, volume 27, pages 372-376.

Olshausen, B. A. and Field, D. J. (1997). Sparse coding with an over-
complete basis set: A strategy employed by v1? Vision research,
37(23):3311-3325.

140 Bibliography

Pan, S. J. and Yang, Q. (2010). A survey on transfer learning. Know!l-
edge and Data Engineering, IEEE Transactions on, 22(10):1345—
1359.

Pearlman, W. A. and Said, A. (2011). Digital signal compression:
principles and practice. Cambridge University Press.

Peel, D. and McLachlan, G. J. (2000). Robust mixture modelling
using the t distribution. Statistics and computing, 10(4):339-348.

Polyak, B. T. (1964). Some methods of speeding up the convergence of
iteration methods. USSR Computational Mathematics and Mathe-
matical Physics, 4(5):1-17.

Rauber, A., Schindler, A., and Mayer, R. (2012). Facilitating com-
prehensive benchmarking experiments on the million song dataset.
In Proceedings of the 13th International Conference on Music In-

formation Retrieval (ISMIR).

Razavian, A. S., Azizpour, H., Sullivan, J., and Carlsson, S. (2014).
Cnn features off-the-shelf: an astounding baseline for recognition.
CoRR, abs/1403.6382.

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic
back-propagation and variational inference in deep latent gaussian
models. In International Conference on Machine Learning.

Ricci, F., Rokach, L., Shapira, B., and Kantor, P. B., editors (2011).
Recommender Systems Handbook. Springer.

Roth, S. and Black, M. J. (2005). Fields of experts: A framework
for learning image priors. In Computer Vision and Pattern Recog-
nition, 2005. CVPR 2005. IEEE Computer Society Conference on,
volume 2, pages 860-867. IEEE.

Salakhutdinov, R. and Mnih, A. (2008). Probabilistic matrix factor-
ization. In Advances in Neural Information Processing Systems,

volume 20.

Schaefer, G. and Stich, M. (2003). Ucid: an uncompressed color image
database. In Electronic Imaging 2004, pages 472-480. International
Society for Optics and Photonics.

Bibliography 141

Schliiter, J. and Osendorfer, C. (2011). Music Similarity Estimation
with the Mean-Covariance Restricted Boltzmann Machine. In Pro-

ceedings of the 10th International Conference on Machine Learning
and Applications (ICMLA).

Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., and
LeCun, Y. (2013). Overfeat: Integrated recognition, localiza-
tion and detection using convolutional networks. arXiv preprint
arXiv:1312.6229.

Seyerlehner, K., Widmer, G., and Pohle, T. (2010). Fusing block-level
features for music similarity estimation. In Proc. of the 13th Int.
Conference on Digital Audio Effects (DAFz-10), pages 225-232.

Skodras, A., Christopoulos, C., and Ebrahimi, T. (2001). The jpeg
2000 still image compression standard. Signal Processing Magazine,
18(5):36-58.

Slaney, M. (2011). Web-scale multimedia analysis: Does content mat-
ter? MultiMedia, IEEE, 18(2):12-15.

Slaney, M., Weinberger, K. Q., and White, W. (2008). Learning a
metric for music similarity. In Proceedings of the 9th International
Conference on Music Information Retrieval (ISMIR).

Stenzel, R. and Kamps, T. (2005). Improving content-based similarity
measures by training a collaborative model. In ISMIR, pages 264—
271. Citeseer.

Strassen, V. (1969). Gaussian elimination is not optimal. Numerische
Mathematik, 13(4):354-356.

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013). On the im-
portance of initialization and momentum in deep learning. In Pro-

ceedings of the 30th International Conference on Machine Learning
(ICML-13), pages 1139-1147.

Tang, Y., Salakhutdinov, R., and Hinton, G. (2012). Deep mixtures of
factor analysers. In International Conference on Machine Learning.

Tang, Y., Salakhutdinov, R., and Hinton, G. (2013). Tensor analyzers.
In International Conference on Machine Learning.

142 Bibliography

Theis, L., Gerwinn, S., Sinz, F., and Bethge, M. (2011). In all likeli-
hood, deep belief is not enough. The Journal of Machine Learning
Research, 12:3071-3096.

Theis, L., Hosseini, R., and Bethge, M. (2012). Mixtures of conditional
gaussian scale mixtures applied to multiscale image representations.
PLoS ONE, 7(7).

Tieleman, T. and Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the
gradient by a running average of its recent magnitude. COURS-
ERA: Neural Networks for Machine Learning, 4.

Titterington, D. M., Smith, A. F., Makov, U. E., et al. (1985). Statis-
tical analysis of finite mixture distributions, volume 7. Wiley New
York.

Torralba, A., Fergus, R., and Freeman, W. T. (2008). 80 million
tiny images: A large data set for nonparametric object and scene
recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence.

Tzanetakis, G. and Cook, P. (2002). Musical genre classification of
audio signals. IEEE Transactions on Speech and Audio Processing,
10:293-302.

Uria, B., Murray, 1., and Larochelle, H. (2013a). A deep and tractable
density estimator. In Proceedings of the International Conference
on Machine Learning.

Uria, B., Murray, I., and Larochelle, H. (2013b). RNADE: The real-
valued neural autoregressive density-estimator. In Advances in Neu-

ral Information Processing Systems.

van den Oord, A. and Dambre, J. (2015). Locally-connected transfor-
mations for deep gmms. In ICML 2015 Deep Learning Workshop.

van den Oord, A., Dieleman, S., and Schrauwen, B. (2013). Deep
content-based music recommendation. In Advances in Neural In-
formation Processing Systems 26.

Bibliography 143

van den Oord, A. and Schrauwen, B. (2014a). Factoring variations in
natural images with deep gaussian mixture models. In Advances in
Neural Information Processing Systems, pages 3518-3526.

van den Oord, A. and Schrauwen, B. (2014b). The student-t mixture
model as a natural image patch prior with application to image
compression. Journal of Machine Learning Research.

Van der Maaten, L. and Hinton, G. (2008). Visualizing data using
t-sne. Journal of Machine Learning Research, 9(2579-2605):85.

Vapnik, V. N. and Vapnik, V. (1998). Statistical learning theory,
volume 1. Wiley New York.

Wallace, G. (1991). The jpeg still picture compression standard. Com-
munications of the ACM, 34(4):30-44.

Wang, C. and Blei, D. M. (2011). Collaborative topic modeling for
recommending scientific articles. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data
mining.

Weiss, Y. and Freeman, W. T. (2007). What makes a good model
of natural images? In Computer Vision and Pattern Recognition,
2007. CVPR’07. IEEE Conference on, pages 1-8. IEEE.

Welling, M., Osindero, S., and Hinton, G. E. (2002). Learning sparse
topographic representations with products of student-t distribu-
tions. In Advances in neural information processing systems, pages
1359-1366.

Weston, J., Bengio, S., and Hamel, P. (2011). Large-scale music an-
notation and retrieval: Learning to rank in joint semantic spaces.
Journal of New Music Research.

Weston, J., Wang, C., Weiss, R., and Berenzweig, A. (2012). La-
tent collaborative retrieval. In Proceedings of the 29th international
conference on Machine learning.

Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T. S., and Yan,
S. (2010). Sparse representation for computer vision and pattern
recognition. Proceedings of the IEEFE, 98(6):1031-1044.

144 Bibliography

Wiilfing, J. and Riedmiller, M. (2012). Unsupervised learning of local
features for music classification. In Proceedings of the 13th Inter-

national Society for Music Information Retrieval Conference (IS-
MIR).

Yu, G., Sapiro, G., and Mallat, S. (2012). Solving inverse problems
with piecewise linear estimators: from gaussian mixture models to
structured sparsity. Transactions on Image Processing, 21(5):2481—
2499.

Zeiler, M. D. and Fergus, R. (2013). Visualizing and understanding
convolutional networks. CoRR, abs/1311.2901.

Zepeda, J., Guillemot, C., and Kijak, E. (2011). Image com-
pression using sparse representations and the iteration-tuned and
aligned dictionary. Journal of Selected Topics in Signal Processing,
5(5):1061-1073.

Zoran, D. and Weiss, Y. (2011). From learning models of natural im-
age patches to whole image restoration. In International Conference
on Computer Vision.

Zoran, D. and Weiss, Y. (2012). Natural images, gaussian mixtures
and dead leaves. In Advances in Neural Information Processing
Systems, volume 25, pages 1745-1753.

	1 Introduction
	1.1 Machine learning
	1.2 Types of machine learning
	1.2.1 Supervised learning
	1.2.2 Unsupervised learning
	1.2.3 Transfer learning
	1.2.4 Other

	1.3 Generative models
	1.3.1 Gaussian mixture models

	1.4 Why generative models?
	1.4.1 Synthesis
	1.4.2 Improving generalization performance
	1.4.3 Simulation and prediction
	1.4.4 Reconstruction
	1.4.5 Compression

	1.5 Deep learning
	1.5.1 Neural networks

	1.6 Thesis outline and contributions
	1.7 List of publications

	2 Deep Content-Based Music Recommendation
	2.1 Music recommendation
	2.1.1 Content-based music recommendation
	2.1.2 Collaborative filtering
	2.1.3 The semantic gap in music
	2.1.4 Proposed approach

	2.2 The dataset
	2.3 Weighted matrix factorization
	2.4 Predicting latent factors
	2.4.1 Bag-of-words representation
	2.4.2 Convolutional neural networks
	2.4.3 Objective functions

	2.5 Experiments
	2.5.1 Versatility of the latent factors
	2.5.2 Quantitative evaluation
	2.5.3 Qualitative evaluation

	2.6 Related work
	2.7 Conclusion

	3 Transfer learning for Music Information Retrieval
	3.1 Introduction
	3.2 Datasets
	3.3 Proposed approach
	3.3.1 Overview
	3.3.2 Dimensionality reduction in the label space
	3.3.3 Unsupervised learning of low-level features
	3.3.4 Supervised learning of high-level features
	3.3.5 Evaluation of the features for target tasks

	3.4 Experiments and results
	3.4.1 Source tasks
	3.4.2 Target tasks

	3.5 Conclusion

	4 Student-t Mixture Models and Image Compression
	4.1 Introduction
	4.2 Related work
	4.2.1 Image compression
	4.2.2 Models of image patches

	4.3 Mixture models as image priors
	4.4 Compression with mixture models
	4.4.1 Arithmetic coding
	4.4.2 Lossless compression
	4.4.3 Lossy compression

	4.5 Results and discussion
	4.5.1 Datasets and methods
	4.5.1.1 Berkeley Segmentation Dataset
	4.5.1.2 UCID dataset
	4.5.1.3 JPEG and JPEG 2000

	4.5.2 Average patch log likelihood comparison
	4.5.3 Lossless compression
	4.5.4 Lossy compression

	4.6 Conclusion

	5 Deep Gaussian Mixture Models
	5.1 Background
	5.2 Stacking Gaussian mixture layers
	5.3 Training deep GMMs with EM
	5.3.1 Expectation
	5.3.2 Maximization

	5.4 Experiments and results
	5.5 Conclusion

	6 Convolutional Deep GMMs
	6.1 Locally connected transformations
	6.1.1 Block Diagonal Matrices
	6.1.2 Diagonal matrices
	6.1.3 Half-convolution

	6.2 Distribution over paths and gating networks
	6.3 Experiments
	6.3.1 Training
	6.3.2 Evaluation
	6.3.3 Datasets and preprocessing
	6.3.4 Experiment 1
	6.3.5 Experiment 2
	6.3.6 Experiment 3
	6.3.7 Comparison with prior art
	6.3.8 Qualitative evaluation

	6.4 Deep GMMs and log-likelihood
	6.5 Conclusion

	7 Conclusions and Future Prospects
	7.1 Deep learning for MIR
	7.1.1 Summary and conclusions
	7.1.2 Future prospects

	7.2 Generative natural image models
	7.2.1 Summary and conclusions
	7.2.2 Future prospects

	Bibliography

