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Abstract—This paper discusses the relationship between two
standard methods for the stochastic analysis of linear circuits,
namely the stochastic Galerkin method (SGM) and the stochastic
collocation method (SCM), based on a multidimensional Gaussian
quadrature. It is established that the SCM corresponds to
an approximate factorization of the SGM, involving matrix
polynomials sharing the same coefficients as the pertinent poly-
nomial chaos basis functions. Under certain assumptions, the two
methods coincide. These findings are illustrated by means of a
frequency-domain simulation of a transmission line circuit.

Index Terms—Circuit simulation, matrix factorization, poly-
nomial chaos, statistical analysis, stochastic collocation method,
stochastic Galerkin method, uncertainty quantification.

I. INTRODUCTION

The past few years have seen an evergrowing interest in
uncertainty quantification techniques for electrical engineer-
ing applications. In particular, the polynomial chaos (PC)
method [1] was widely adopted in the analysis of electrical
circuits and interconnects [2]–[7]. The underlying idea of PC
is to represent stochastic variables of interest (e.g., circuit
voltages and currents) as expansions of suitable orthogonal
polynomials. The determination of the expansion coefficients
allows obtaining relevant statistical information and it is
typically much faster than traditional approaches such as the
Monte Carlo method.

Essentially there exist two classes of methods to calcu-
late the PC expansion (PCE) coefficients, namely Galerkin-
and collocation-based techniques [1]. The stochastic Galerkin
method (SGM) requires the single solution of a modified
(augmented) problem [2], [3]. On the other hand, stochastic
collocation methods (SCM) only require to sample the so-
lution at a limited set of points in the space of the random
variables [4]–[7]. Several different strategies are available
for choosing the collocation points, which in most cases
are (a subset of) the nodes of a multidimensional Gaussian
quadrature [8].

In literature it is often stated that the SGM is more accurate
in the calculation of the PCE coefficients. However, this
statement often remains somewhat vague, and comparisons
were only provided from a numerical standpoint (e.g., [9]).
This paper aims at elaborating in a more quantitative way
on this important matter, by focusing on the relationship
between the full-tensor SGM and the pseudo-spectral SCM [1]
(from now on, “SCM” will denote this particular scheme).
Other stochastic collocation techniques use a reduced subset

of quadrature nodes or random collocation points, and they are
therefore understood to be an approximation of the pseudo-
spectral SCM. Although the formal derivations are deferred to
a mathematical paper [10], it is here discussed that the SCM is
an approximate factorization of the SGM problem and that the
two methods coincide under certain assumptions. Moreover,
the discussion, available in a rigorous mathematical sense only
for the single-variable case [10], is here extended by means
of numerical comparisons to the multivariate case, while
refraining from deriving lengthy and tedious mathematical
derivations due to space limitations.

II. STOCHASTIC SIMULATION VIA POLYNOMIAL CHAOS

For the sake of illustration, the discussion is applied to
the well-known transmission-line equations [11]. Consider an
interconnect of length ` described in the frequency domain by

dV (z, ω, ξ)

dz
= −(R(ω, ξ) + jωL(ω, ξ))I(z, ω, ξ) (1a)

dI(z, ω, ξ)

dz
= −(G(ω, ξ) + jωC(ω, ξ))V (z, ω, ξ) (1b)

where z ∈ [0, `] denotes the longitudinal coordinate, vectors
V and I collect the voltages and currents along the line, and
R, L, G, C are the so-called per-unit-length (p.u.l.) param-
eters describing the electromagnetic propagation. Besides the
frequency, they also depend on D stochastic variables defined
by vector ξ = [ξ1, . . . , ξD]. In turn, the voltages and currents
are also ξ-dependent.

The discussion that follows traces the one in [10], which
is however limited to the univariate case (D = 1). The
formulation is here extended to the multivariate case, but
without providing any formal proof. The validity is empirically
assessed via the numerical analysis of Section III.

A. Polynomial Chaos Expansion

Following PC theory [1], the RLGC parameters as well
as the vectors of voltages and currents are approximated by
means of PCEs, e.g.,

R(ω, ξ) ≈
∑
n

Rn(ω)ϕn(ξ) (2)

and
V (z, ω, ξ) ≈

∑
n

V n(z, ω)ϕn(ξ), (3)



respectively, where n = [n1, . . . , nD] is a D-variate multi-
index associated to the basis functions ϕn, which are con-
structed as the product of the univariate polynomials pn(ξ) that
are orthogonal with respect to the probability density function
of the random variables in ξ, i.e., ϕn =

∏D
d=1 pnd

(ξd).
The discussion in this paper assumes a full tensor-product
expansion, with polynomials up to degree P in each dimension
(i.e., nd ≤ P , ∀d). The total number of terms is thus (P+1)D.

B. Stochastic Galerkin Method

The substitution of the PCEs (2) and (3) into (1) and
subsequent Galerkin projection yield the following coupled
and augmented, yet deterministic equations in the unknown
PCE coefficients [2]:

dṼ (z, ω)

dz
= −(R̃(ω) + jωL̃(ω))Ĩ(z, ω) (4a)

dĨ(z, ω)

dz
= −(G̃(ω) + jωC̃(ω))Ṽ (z, ω) (4b)

where Ṽ and Ĩ collect all the uknown coefficients of the
voltage and current PCE, whereas R̃, L̃, G̃, C̃ are augmented
p.u.l. matrices obtained from the PCE coefficients in (2) as

R̃(ω) =
∑
n

AnD
⊗ · · · ⊗An2

⊗An1
⊗Rn(ω) (5)

with ⊗ denoting the Kronecker product and with the “auxil-
iary” matrix An having entries given by

[An]ij =
1

||pi||2

∫ +∞

−∞
pn(ξ)pj(ξ)pi(ξ)w(ξ)dξ (6)

C. Stochastic Collocation Method

The SCM calculates the unknown PCE coefficients accord-
ing to the classical projection theorem:

V n(z, ω) =
1

||ϕn||2

∫ +∞

−∞
V (z, ω, ξ)ϕn(ξ)w(ξ)dξ

≈
∑
q

V (z, ω, ξ
(q1)
1 , . . . , ξ

(qD)
D )

D∏
d=1

pnd
(ξ

(qd)
d )

wqd

||pnd
||2

(7)

with the integral approximated by means of a multivariate P -
order Gaussian quadrature [8] based on the univariate nodes
{ξ(q)}Qq=1 and the corresponding weights {wq}Qq=1, with Q =
P + 1, and indexed by q = [q1, . . . , qD].

Since (7) requires the solution of (1) at the quadrature nodes,
the SCM problem can be rewritten by combining (1) and (7)
in compact form as [10]

dṼ (z, ω)

dz
= −(PR̂(ω)P−1+jωPL̂(ω)P−1)Ĩ(z, ω) (8a)

dĨ(z, ω)

dz
= −(PĜ(ω)P−1+jωPĈ(ω)P−1)Ṽ (z, ω) (8b)

where the matrices denoted with a “hat” are block diagonal,
and each block is given by the corresponding matrix evaluated
at the quadrature nodes. Matrix P is given by

P = Q⊗ · · · ⊗Q︸ ︷︷ ︸
D times

⊗1 (9)

with 1 the identity matrix of the same size as the RLGC
matrices, and Q a matrix with entries Qqn = pn(ξ(q))

wq

||pn||2
for n = 0, . . . , P and q = 1, . . . , Q.

D. An Approximate Matrix Factorization

The problems (4) and (8) have similar form, though different
matrices. In [10] it is shown, for the univariate case, that (8) is
an approximate factorization of (4), obtained by replacing the
auxiliary matrices (6) in (5) with Ân = pn(M), i.e., a matrix
polynomial sharing the same coefficients as the nth-order basis
function pn, and with the argument M being a tridiagonal
matrix constructed from the coefficients of the three-term re-
cursion relation that defines these polynomials [8]. Moreover,
it was shown that for any polynomial basis, Â1 ≡ A1, which
implies that the SGM and the SCM exactly coincide when the
expansion (2) does not contain terms of degree higher than
one.

The specific fact that the SGM and the SCM coincide for
first-order parameters was already proven for the general mul-
tivariate case in [13]. In [3], the factorization (8) of the SGM
was derived for the particular case of Hermite polynomials,
showing that the polynomial approximation of the auxiliary
matrices An provides the best factorization in terms of error,
and it was later extended to arbitrary polynomials in [12].
Here, however, it is argued for the first time that in the general
multivariate case with arbitrary polynomials, the SCM can
always be considered as an approximate factorization of the
SGM.

III. NUMERICAL RESULTS
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Fig. 1. Stripline cross-section (left) and terminations (right).

As a validation, the outlined considerations are applied to
the frequency-domain simulation of the stripline interconnect
depicted in Fig. 1. The pertinent RLGC parameters are com-
puted by means of a field solver based on the interconnect
cross-sectional properties. The dielectric is assumed to be
lossless, thus G = 0 in the following simulations.

The following two test cases are considered:
1) Two random parameters, i.e., conductor resistivity ρ ∈

[1.7241, 32.759] nΩ · m and relative dielectric permit-
tivity εr ∈ [2.8, 5.2]. The remaining parameters are
w = 20 µm, tk = 2 µm, s = 30 µm, h = 50 µm.

2) Three random parameters, i.e., w ∈ [2, 20] µm, s ∈
[3, 30] µm, and h ∈ [5, 50] µm. The remaining param-
eters are ρ = 17.241 nΩ ·m, εr = 4, tk = 2 µm.

The first test case is designed to exhibit a linear (first-
order) variation of both R (the resistance is proportional to the
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Fig. 2. A subset of the PCE coefficients of the far-end crosstalk voltage
for case 1), computed with the SCM (circles), the SGM (crosses) and the
approximate factorization of the SGM (dots).

resistivity) andC (the capacitance matrix is proportional to the
relative permittivity due to the homogeneity of the structure),
while L is not affected by the parameter variations. No dif-
ference is therefore expected between the SGM and the SCM.
In the second test case, a nonlinear variation of all the RLC
parameters occurs, which will produce differences in the SGM
and SCM. The parameter variations are taken deliberately very
large to make this difference visually appreciable.

Uniform variations are considered and a second-order PCE
with orthonormal Legendre polynomials is used, meaning that
p0 = 1, p1 =

√
3 ·ξ and p2 =

√
5 ·( 3

2ξ
2− 1

2 ). With this choice,
the approximate auxiliary matrices that factorize the SGM into
the SCM are Â0 = 1 (identity matrix), Â1 =

√
3 ·M and

Â2 =
√

5·( 3
2M

2− 1
2 ·1). Since Â1 = A1, it can be computed

via (6) and the argument of the matrix polynomials is readily
obtained as M = A1/

√
3, without the need for deriving the

recursion coefficients of the normalized Legendre polynomials.
Figs. 2 and 3 show the magnitude of a subset of the PCE

coefficients of the far-end crosstalk voltage for cases 1) and 2).
The figures compare the PCE coefficients computed with (7)
or, equivalently, with (8) (SCM, circles), with (4)–(6) (SGM,
crosses), and with the factorized SGM that uses the polynomial
approximation of the auxiliary matrices (dots). The results
confirm that, also for the multivariate case, the SCM is an
approximate factorization of the SGM (Fig. 3), and the two
methods coincide only for linear (first-order) variations of the
input parameters (Fig. 2). The maximum difference in the
estimated variance for case 2) is 0.154 dB. It is important to
note that with smaller variations of the parameters (as occurs
in practice) the difference between the two methods becomes
much smaller.

IV. CONCLUSIONS

This paper discusses the equivalence of the SCM to an
approximate factorization of the SGM and extends the mathe-
matical formulation to multiple random variables. The validity
is empirically assessed by means of an ad-hoc numerical
example.
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Fig. 3. A subset of the PCE coefficients of the far-end crosstalk for case 2).
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