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Abstract. Exact analysis of tandem priority queues is a difficult prob-
lem. In this paper, we model the output process of the first stage as
a three-state Markov chain and analyze the second stage. The arrival
process of this second stage is the superposition of this output process
and an uncorrelated arrival process. We calculate the joint probability
generating function of the number of high- and low-priority packets in
the second stage and show that two implicit functions appear in this
expression. We demonstrate how to deal with these implicitly defined
functions in the calculation of moments.
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1 Introduction

HOL (Head-of-the-Line) priority scheduling is one of the main scheduling types
in network buffers to diversify the delays of traffic streams with different delay
requirements [5]. When delay-sensitive high-priority packets (packets of voice
and video streams, interactive gaming . . . ) are present in the buffer, they are
transmitted. Best-effort low-priority packets can thus only be transmitted when
no high-priority traffic is present.

Isolated priority queues with uncorrelated arrival processes have been studied
abundantly in the past [6–8,11]. Analysis of networks of priority queues is much
more complicated. Even the simplest network, a tandem queue, combined with
priority has not been solved yet. Therefore, we attempt another approach for
the analysis of such a tandem priority queue. We consider one of the simplest
settings, namely a discrete-time tandem priority queueing system with constant
(single-slot) service times, uncorrelated arrivals of both classes to the two stages,
and single servers in both stages. The idea is to approximate the output process
of the first stage of the tandem queue, use this output process as input (arrival)
process of the second stage, and analyze the second stage.

The first step was already taken in a previous paper [9]. We modeled the
output process of a discrete-time priority queue with single-slot service times as
c© Springer International Publishing Switzerland 2016
S. Wittevrongel and T. Phung-Duc (Eds.): ASMTA 2016, LNCS 9845, pp. 167–178, 2016.
DOI: 10.1007/978-3-319-43904-4 12

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/74712664?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


168 A. Khalid et al.

a three-state discrete-time Markov chain, with the three states representing ‘no
output’, ‘departure of a high-priority packet’ and ‘departure of a low-priority
packet’ respectively. Transition probabilities were calculated such that the mean
residence times in these states correspond to mean idle and busy periods of both
classes.

In this paper, we take the next step. We analyze the number of high- and
low-priority packets in a priority queue with an arrival process which is the
superposition of an uncorrelated arrival process (coined external arrivals in the
remainder) and a correlated arrival process as discussed in the previous para-
graph (internal arrivals). We show that two implicitly defined functions appear
in the final expression for the joint probability generating function of the sta-
tionary number of packets of both priorities. We also demonstrate that we need
to calculate one constant numerically for the calculation of the moments of the
number of packets of both priorities in the system. For reference, in the same
queue without the second arrival process, only one implicitly defined function
is encountered and expressions of the moments of the number of packets in the
system can be found completely explicitly in terms of the parameters of the
arrival process [10].

Other studies of discrete-time queues with correlated arrivals have been pub-
lished. Khamisy and Sidi [4] study a priority queue with a correlated arrival
process according to a two-state Markovian batch arrival process. Our model is
in a way simpler, since the time-correlation in our model only applies at max-
imum one arrival. On the other hand, we will need a three-state Markov chain
instead of two states in [4]. In [2], authors analysed a queue with an arrival
process that is a superposition of on-off sources. The numbers of class-1 and
class-2 arrivals however are independent, which is not the case in our model. An
entirely different approach to correlated arrivals are train arrivals [3,12].

In the next section, we specify the model and notations. In Sect. 3, we cal-
culate the joint probability generating function of the number of low- and high-
priority packets in the system and discuss some numerical aspects. Finally, we
demonstrate the formulas by means of some numerical examples in Sect. 4 and
conclude the paper.

2 Mathematical Model

We consider a single-server queue with infinite buffer space. Time is assumed to
be slotted. Packets of two classes arrive to the system, namely packets of class 1
and packets of class 2. The packet stream is furthermore a superposition of two
arrival streams.

We denote the number of arrivals of type j of the first arrival stream (external
arrivals) during slot k by aj,k (j = 1, 2). The numbers of arrivals in this stream
are assumed to be i.i.d. from slot to slot and are characterized by the (common)
joint probability generating function (PGF)

A(z1, z2) � E
[
z

a1,k
1 z

a2,k
2

]
.
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The marginal PGFs of the numbers of per-slot arrivals of class 1 and class 2
are denoted and given by A1(z) = A(z, 1) and A2(z) = A(1, z) respectively. The
arrival rate λj,ext of class-j packets (j = 1, 2) is given by A′

j(1).
A second arrival process (internal arrivals) is governed by a three-state

discrete-time Markov chain with state space {0, 1, 2}. We define tk as the state
of the Markov chain in slot k. When the Markov chain is in state 0 no packets
arrive in that slot. When the Markov chain is in state j (1 or 2), exactly one
class-j packet arrives. We define the transition probabilities as

ei(j) � Pr[tk+1 = j|tk = i],

i, j = 0, 1, 2. We summarize the total arrival process in the generating function
matrix B(z1, z2):

B(z1, z2) �
[
E

[
z

a1,k+1{tk=1}
1 z

a2,k+1{tk=2}
2 1{tk=j}|tk−1 = i

]]

i,j

= A(z1, z2)

⎛

⎝
e0(0) e0(1)z1 e0(2)z2
e1(0) e1(1)z1 e1(2)z2
e2(0) e2(1)z1 e2(2)z2

⎞

⎠, (1)

with 1{X} the indicator function of X. The mean internal arrival rates of class j
equals λj,int = e(j), with e(j) the stationary probability that the Markov chain
is in state j.

We note here in passing that the case e0(1) = e2(1) is an important special
case, as it is the case for our motivating example (cf. [9]) and it will lead to some
(numerical) simplifications.

We define λ1 and λ2 as the total arrival rate of packets of class 1 and 2
respectively, i.e., λj � λj,int + λj,ext, j = 1, 2. Similarly we define λT as the
overall arrival rate, i.e., λT � λ1 + λ2.

The server serves the packets at the rate of one packet per slot, i.e., all service
times equal one slot. It is assumed that class-1 packets have service priority over
class-2 packets and we adopt a FCFS discipline within a class.

3 Analysis

We denote the number of packets of class j in the system at the beginning of
slot k by uj,k (j = 1, 2). The triplet (tk−1, u1,k, u2,k) is a first-order Markov
chain, and is therefore suitable to analyze the queueing system. We assume that
λT < 1, such that this Markov chain reaches a steady state.

3.1 System Equations

Figure 1 shows the time axis for the buffer in stage 2, with tk−1 the class of
internal packet arriving during slot k − 1 and uj,k the buffer occupancy of class
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Fig. 1. Time axis for the buffer analysis in stage 2

j during slot k Note that tk−1 = 0 if there is no internal arrival. The buffer
occupancy of both classes are characterized by the following system of equations.

u1,k+1 = [u1,k − 1]+ + a1,k + 1{tk=1};

u2,k+1 = [u2,k − 1{u1,k=0}]+ + a2,k + 1{tk=2}. (2)

These equations are understood as follow: if tk = j (j = 1, 2) an extra packet
of class j arrives. If u1,k > 0, a class-1 packet is served because of the priority
scheduling; otherwise a class-2 packet is served, if any.

3.2 Functional Equations

We define the partial joint generating functions

Pj(z1, z2) �
∞∑

m=0

∞∑

n=0

p(j,m, n)zm
1 zn

2 , j = 0, 1, 2,

with p(j,m, n) = limk→∞ Pr[tk−1 = j, u1,k = m,u2,k = n], and the row vector
P(z1, z2) = [Pj(z1, z2)]j=0,1,2.

Transforming the system equations (2) to generating functions and letting
k → ∞, we find

P(z1, z2) =
[
P(z1, z2) − P(0, z2)

z1
+

P(0, z2) − P(0, 0)
z2

+ P(0, 0)
]

B(z1, z2).

Solving in P(z1, z2) yields

P(z1, z2) =
[
z1 − z2

z2
P(0, z2) +

z1(z2 − 1)
z2

P(0, 0)
]

B(z1, z2)(z1I − B(z1, z2))−1,

(3)

with I the 3 × 3 identity matrix.

3.3 Calculation of Unknowns

Expression (3) contains three unknown functions P0(0, z2), P1(0, z2) and
P2(0, z2) and three unknown constants P0(0, 0), P1(0, 0) and P2(0, 0). However,
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P1(0, z2) = P2(z1, 0) = 0 since at least one class-j packet is present in the sys-
tem if the state of the Markov chain was equal to j in the previous slot. This
eliminates the unknown function P1(0, z2) and the unknown parameters P1(0, 0)
and P2(0, 0).

We now show how to calculate the other unknowns. It can be proved that
f(z1) � det(z1I − B(z1, z2)) has three zeroes inside the complex unit disk for
each z2 inside the complex unit disk, see the appendix. One of them is 0. We
denote the two other zeroes by Y1(z2) and Y2(z2). Since PGFs are analytic
inside the complex unit disk, Y1(z2) and Y2(z2) are zeroes of the numerators of
Pj(z1, z2). Using the notation C(z1, z2) for the cofactor matrix of z1I−B(z1, z2),
i.e., CT (z1, z2) = f(z1)(z1I − B(z1, z2))−1, this leads to the vector equations
[
(Yi(z2) − z2)P(0, z2) + Yi(z2)(z2 − 1)P(0, 0)

]
B(Yi(z2), z2)CT (Yi(z2), z2) = 0,

(4)
for i = 1, 2.

Since Pi(0, 0) = 0, i �= 0, we have that P0(0, 0) equals the probability that
the system is empty and thus P0(0, 0) = 1 − λT . This leaves the calculation of
the unknown functions P0(0, z2) and P2(0, z2) only. It can be shown that the
three scalar equations for each i in (4) are dependent. Hence we only use the
first for our system of two equations (i = 1, 2):

Yi(z2)P0(0, z2) + Xi(z2) P2(0, z2) = Y 2
i (z2)

1 − z2
Yi(z2) − z2

P0(0, 0),

where we used the notations

Xi(z2) � A(Yi(z2), z2)
2∑

j=0

C0j(Yi(z2), z2)
C00(Yi(z2), z2)

e2(j) zj

∣
∣
z0=1, z1=Yi(z2)

,

Cij(z1, z2) �
(

C(z1, z2)
)
ij

,

and that f(Yi(z2), z2) = 0 can be written as

A(Yi(z2), z2)
2∑

j=0

C0j(Yi(z2), z2) e0(j) zj

∣
∣
z0=1, z1=Yi(z2)

= Yi(z2)C00(Yi(z2), z2).

Thus we can solve for the two unknown functions, yielding

P0(0, z2) = (1 − z2)
Y 2
1 (z2)X2(z2)
Y1(z2)−z2

− Y 2
2 (z2)X1(z2)
Y2(z2)−z2

Y1(z2)X2(z2) − Y2(z2)X1(z2)
P0(0, 0) (5)

P2(0, z2) = (1 − z2)
Y 2
2 (z2)Y1(z2)
Y2(z2)−z2

− Y 2
1 (z2)Y2(z2)
Y1(z2)−z2

Y1(z2)X2(z2) − Y2(z2)X1(z2)
P0(0, 0). (6)

Not surprisingly these equations are symmetric in Y1(z2) and Y2(z2).
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3.4 Results

All unknown partial PGFs and constants have been calculated and this results
in expressions for Pi(z1, z2), i = 0, 1, 2 that depend on A(z1, z2), the transition
probabilities ei(j) and the implicitly defined functions Yi(z2), i = 1, 2. In general,
the latter functions have to be calculated numerically for each z2.

From the expressions of the Pi(z1, z2), the joint generating function of the
stationary buffer occupancies u1 and u2 of class 1 and class 2 respectively can
be calculated as

U(z1, z2) � E[zu1
1 zu2

2 ]
=P0(z1, z2) + P1(z1, z2) + P2(z1, z2).

From this joint PGF, marginal PGFs of the total, class-1 and class-2 buffer
occupancies can be calculated as

UT (z) � E[zu1+u2 ] = U(z, z),

U1(z) � E[zu1 ] = U(z, 1),

U2(z) � E[zu2 ] = U(1, z).

Although the resulting expressions are too large to show, we can provide some
insight.

The expression for UT (z) does not depend on the implicitly defined functions
Yi(z), and is therefore explicitly known in terms of the arrival processes and
parameters. This can also be understood from expression (3). By putting z1 = z2
in this expression, the unknown functions Pi(0, z2) disappear and it is these
functions that introduced the implicitly defined functions in the final expressions.
In fact, UT (z) is the PGF of the buffer occupancy in a single-class buffer with a
superposition of an independent arrival process and a three-state Markov chain
with 1 off-state and 2 on-states.

The expression for U1(z) does depend on the implicitly defined functions
through the constants Y1(1) and Y2(1) only. This is logically sound as Yi(z2)
appears in the expression of U(z1, z2) and we put z2 = 1 to obtain an expression
for U1(z). We can prove that one of these two constants equals 1 and the other
does not (see Appendix). Assume for instance that Y1(1) = 1. Then, U1(z) can
be calculated completely in terms of the arrival processes and parameters apart
from one constant that has to be calculated numerically (Y2(1)). We note that
U1(z) is, in fact, the PGF of the buffer occupancy in a single-class buffer with a
superposition of an independent arrival process and a three-state Markov chain
with 2 off-states and 1 on-state.

Finally, the expression for U2(z), which is of primary interest to us, contains
both implicitly defined functions Y1(z) and Y2(z), as expected.

Moments of the total buffer occupancy and the buffer occupancies of class 1
and class 2 can be calculated by means of the moment generating property of
PGFs, i.e., by taking derivatives in 1. The mean buffer occupancy, for instance,
is calculated by taking the first derivative of the corresponding marginal PGF
in 1.
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As for the PGFs, the moments of the total buffer occupancy (the class-1
buffer occupancy respectively) are found in terms of the arrival parameters (the
arrival parameters and Y2(1) respectively). The moments of the class-2 buffer
occupancy are also found in terms of the arrival distributions and parameters,
and Y2(1). The reason that no other constants but Y2(1) appear in this expression
is that Y1(1) = 1 and that the derivatives of Yi(z) in 1 can be expressed in terms
of Yi(1). With some abuse of notation, we obtain, for instance,

Y ′
i (1) = −

∂f(z1,z2)
∂z2

∂f(z1,z2)
∂z1

∣
∣
∣
∣
∣
z1=Yi(1),z2=1

,

by considering f as a function of z1 and z2 (instead of z1 only). We conclude
that all moments of the buffer occupancies can be calculated explicitly in terms
of the arrival distributions apart from one constant that has to be calculated
numerically.

4 Numerical Results

We now demonstrate our results for some numerical examples.
We assume that the external (independent) arrival process is a two-class

Bernoulli process, i.e.,

A(z1, z2) = (1 − λ1,ext − λ2,ext) + λ1,extz1 + λ2,extz2 .

In choosing this easy arrival process we end up with two similar Bernoulli arrival
processes: the external one is a time-independent process and the internal one
a time-dependent one. This will therefore demonstrate the effect of this time-
dependence fairly.

The internal arrival process is characterized by the 9 transition probabilities
ei(j), i, j = 0, 1, 2, of which 6 can be independently chosen (

∑2
j=0 ei(j) = 1).

We first assume e0(1) = e2(1), cf. the discussion in Sect. 2. The advantage is
that Y2(1) disappears from the expression of E[u1] since the 2 off-states can be
merged to 1 off-state in this particular case. Therefore, we end up – for the
class-1 buffer occupancy – with a single-class system with a superposition of an
independent arrival process and a two-state Markov chain with 1 off-state and 1
on-state. Therefore, the mean total buffer occupancy and the mean class-1 buffer
occupancy can be calculated explicitly. Since the mean class-2 buffer occupancy
is the difference of these two, this measure can also be calculated explicitly in
the case e0(1) = e2(1). Again, we stress that this is an important special case.

We are then left with 5 independent parameters. To demonstrate our results
more intuitively, we map these to 5 other parameters, namely to the traffic
intensities of both classes λ1,int and λ2,int and to Li, i = 0, 1, 2 defined as

Li � 1
1 − ei(i)

.



174 A. Khalid et al.

The Li are in fact the mean residence times in state i (the residence time in state
i is shifted geometrically distributed with parameter ei(i)) and serve therefore
as measures for the time-correlation: the larger Li, the more slots on average the
Markov chain resides in state i. The λi,int, on the other hand, are measures for
the frequency of being in the different states.

A difficulty with applying this mapping is that not every ‘logical’ combination
of (λ1,int, λ2,int, L0, L1, L2) leads to values in [0, 1] for each of the 9 transition
probabilities. In the remainder, we filtered out the ones that do, but this restricts
the range of values for the parameters somewhat. We focus on the influence of
correlation in the arrival process.

Fig. 2. Mean values of system contents versus the mean residence time L

In Fig. 2, we show the influence of the lengths Li on the mean buffer occu-
pancy. We depict the mean total class-1 and class-2 buffer occupancies as a
function of L, with Li = L, i = 0, 1, 2. We assume a perfect balance of class-1
and class-2 arrival rates, with λ1,int = λ2,int = 0.3, λ1,ext = λ2,ext = 0.15. We
firstly observe that a larger mean residence time L in the states leads to higher
mean buffer occupancies of both classes. The reason is that for long periods
at least 1 packet per slot arrives (internal arrivals) while occasionally a second
packet arrives in that slot (external arrivals). Therefore, the buffer occupancy
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can not decrease during these (long) periods. Secondly, it is clear that the low-
priority class is affected much more. In fact, its slope is about the same as the
slope of the mean total buffer occupancy. This is again explained by these long
consecutive periods of arrivals: class-1 is only ‘punished’ by long periods of its
own class while class 2 suffers from long periods of both (which can even directly
follow eachother).

Figure 3 depicts the influence of the fraction of correlated and independent
arrivals. The mean buffer occupancies are shown as function of λT,int for λT =
0.9, Li = 5 and perfect balance between class-1 and class-2 arrivals. We notice
that time-correlation is not necessarily the dominant factor: time-correlation
increases when more internal packets arrive, while the mean buffer occupancies
decrease. The main reason is that the variance of the number of arrivals in
a slot changes as well: when λT,int = 0 or λT,ext = 0 (the two extremes of
the plot; the left extreme cannot be shown because of the remark above), at
most one packet can arrive in the system per slot and no queueing happens.
When λT,int and λT,ext are more balanced, the probability of two arrivals in a
slot is significantly higher. This leads to a maximum of the buffer occupancies
somewhere in the middle.

Fig. 3. Mean values of system contents versus λT,int
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5 Conclusions and Future Work

We analysed a discrete-time two-class priority queue with an arrival process
that is a superposition of an independent process and a time-dependent process.
The latter is modeled by a discrete-time Markov chain with three states, no
arrivals when in state 0 and one class-1 or class-2 arrivals when in state 1 or
state 2 respectively. This model is motivated by a priority tandem queue, where
our system can be regarded as the second stage of the tandem and the two
arrival processes as models for external and internal (output from the first stage)
arrivals from the network. We analysed the buffer occupancy in this system and
demonstrated some results. We also identified an important special case that
simplifies the analysis and numerical work.

In future work, we will analyse sojourn times. Note that we can define several
different sojourn times, not only from different classes but also either of a packet
of the external or the internal arrival stream. Furthermore, since the three-state
Markov chain is only a very coarse model for the output process of the first stage,
we need to test whether the results of our model are accurate approximations of
the second stage performance measures of a priority tandem queue. If not, we
will need to come up with a more complex model for the internal arrival process
which will evidently complicate analysis.

Acknowledgement. The authors acknowledge support of the Interuniversity Attrac-
tion Poles Programme initiated by the Belgian Science Policy Office and of BOF-UGent.
Sofian De Clercq is a BOF postdoctoral fellow of UGent.

Appendix

In this appendix, we first prove that f(z1) = det(z1I−B(z1, z2)) has three zeroes
inside the complex unit disk for each z2 with |z2| < 1 and that one of them is 0.
The function f(z1) can be written as z1(g(z1) − h(z1)) with

g(z1) = (z1 − e0(0)A(z1, z2))(1 − e1(1)A(z1, z2))(z1 − e2(2)A(z1, z2)), (7)

h(z1) = − (z1 − e0(0)A(z1, z2))e1(2)e2(1)z2A(z1, z2)2

− (1 − e1(1)A(z1, z2))e0(2)e2(0)z2A(z1, z2)2

− (z1 − e2(2)A(z1, z2))e0(1)e1(0)A(z1, z2)2

− e0(1)e1(2)e2(0)z2A(z1, z2)3 − e0(2)e2(1)z2e1(0)A(z1, z2)3.

The factor z1 contributes for the zero 0. We will prove that |g(z1)| > |h(z1)| on
the complex unit circle and hence, due to Rouché’s theorem, that the number
of zeroes of g(z1) − h(z1) inside the complex unit circle equals the number of
zeroes of g(z1). Finally, we prove that the latter has two zeroes, again by means
of Rouché’s theorem.
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We have that

|h(z1)|
|g(z1)| <

e1(2)e2(1)|A(z1, z2)|2
|1 − e1(1)A(z1, z2||z1 − e2(2)A(z1, z2)|
+

e0(2)e2(0)|A(z1, z2)|2
|z1 − e0(0)A(z1, z2)||z1 − e2(2)A(z1, z2)|

+
e0(1)e1(0)|A(z1, z2)|2

|z1 − e0(0)A(z1, z2)||1 − e1(1)A(z1, z2)|
+

e0(1)e1(2)e2(0)|A(z1, z2)|3
|z1 − e0(0)A(z1, z2)||1 − e1(1)A(z1, z2)||z1 − e2(2)A(z1, z2)|

+
e0(2)e2(1)e1(0)|A(z1, z2)|3

|z1 − e0(0)A(z1, z2)||1 − e1(1)A(z1, z2)||z1 − e2(2)A(z1, z2)| . (8)

If we further use that, for |z1| = 1, |A(z1, z2)| ≤ 1, that |z1 − ej(j)A(z1, z2)| ≥
1−ej(j) (j = 0, 2), that 1−e1(1)A(z1, z2) ≥ 1−e1(1) and that

∑2
j=1 ei(j) = 1, we

find that the RHS of (8) is less than or equal to 1. Therefore, |h(z1)| < |g(z1)| for
|z1| = 1 and the number of zeroes of g(z1)−h(z1) in the complex unit circle equals
the number of zeroes of g(z1). The latter function exists of three factors, see (7).
Using |z1−ej(j)A(z1, z2)| ≥ 1−ej(j) (j = 0, 2) and 1−e1(1)A(z1, z2) ≥ 1−e1(1)
once more, we find that each of the factors has as many zeroes inside the complex
unit disk as its first terms. Therefore, g(z1) - and g(z1) − h(z1) - has two zeroes.

Next, we prove that the limit for z2 → 1 of one of the two zeroes equals 1
while the other one does not. If we substitute z2 by 1 in f(z1), Rouché’s theorem
can no longer be used directly, because f(z1) is not necessarily analytic for z2 = 1
and |z1| = 1. The result is however still valid, cf. [1], i.e., f(z1) has two zeroes
inside and on the complex unit disk. One of them is equal to 1, since f(1) = 0
for z2 = 1. Finally, it is easily proved that f ′(1) �= 0 for z2 = 1 which means
z1 = 1 is a single zero of f for z2 = 1. The other root is therefore different from
1 for z2 → 1. It will however lie in ] − 1, 1[ which simplifies a numerical search.
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