rovided by Ghent University Academic Bibliogra

CORE

UGent producing Bacillus azotoformans LMG 9581^T

Yihua Sun¹, Paul De Vos^{1,2}, Kim Heylen¹, Anne Willems¹

¹Laboratory of Microbiology, (LM-UGent) Ghent University, Belgium; ²BCCM/LMG Culture Collection, Ghent

University, Belgium

 N_2O is a potent greenhouse gas and a contributor to ozone layer destructions. There are three N_2O producing microbial processes that have been studied thus far: denitrificaion, dissimilatory nitrate reduction to ammonium (DNRA), and nitrification. The former two respiratory pathways were previously thought to be mutually exclusive, but recently both pathways have been demonstrated to be functional in one organism *Shewanella loihica* PV-4. Soil bacteria *Bacillus azotoformans* LMG 9581^T also possesses these two pathways, besides, its genome analyses showed a remarkable redundancy of dissimilatory nitrogen reduction, with multiple copies of each denitrification gene as well as *nrf*AH, but has reduced capacity for nitrogen assimilation, with no *nas* operon nor *amtB* gene. We hypothesize that (i) NH₄⁺ and NO₃⁻ could not assimilated, and (ii) DNRA, if expressed, would be used for energy conservation, not for nitrogen assimilation.

Fig 1. genes in green exist, genes in red are absent in the genome.

Topological model of enzymes involved in dissimilatory nitrate reduction (DNR) pathways

Growth could be partially supported by NH4+ only if certain organic nitrogen exists

Table 1 . Growth observations of *B. azotoformans* after 15 days aerobic incubation under different combinations of nitrogen sources.

Nitrogen source	Growtha	
4.6 mM NH4		-
100 mg/L Yeast extract , 4.6 mM NH4+ $$	+	
500 mg/L Yeast extract, 4.6 mM NH4+	+	"+" indicates growth
1000mg/L Yeast extract, 4.6 mM NH4+	+	observed ; '-' indicates
6.7 g/L YNB+ ^b	+	no growth
6.7 g/L YNB- ^c	-	b 'YNB+' means
6.7 g/L YNB-, 10 mg/L L-histidine		defined yeast nitrogen
6.7 g/L YNB-, 20 mg/L L-methionine		base with 5g/l
6.7 g/L YNB-, 20 mg/L L-tryptophan	-	$(NH_4)_2SO_4$ with amino
YNB- supplemented with 5 g/L $(\rm NH_{4})_2SO4$	-	acids (10mg/l L-
YNB- supplemented with 5 g/L (NH_4)_2SO4, 10 mg/L L-histidine	-	histidine, 20mg/l L-
YNB- supplemented with 5 g/L (NH4)_2SO4, 20 mg/L L-methionine	+	methionine. and
YNB- supplemented with 5 g/L (NH4)_2SO4, 20 mg/L L-tryptophan	+	20mg/LL-tryptophan)
5 g/L (NH ₄) ₂ SO ₄	-	C'VNB ' moons defined
10 mg/L L-histidine, 20 mg/L L-methionine, 20 mg/L L-tryptophan	-	TIND- Inteans defined
5 g/L (NH4)2SO4, 10 mg/L L-histidine, 20 mg/L L-methionine, 20 mg/L L-tryptopha	n +	yeast nitrogen base
114 mg/L casein <u>znzymatic</u> hydrolysate	+	without $(NH_4)_2SO_4$
1.14 g/L casein znzymatic hydrolysate	+	without amino acids
mixed vitamin B solutions	-	

761 mg/L L-glutamate sodium or 658 mg/L L-glutamin with mixed vitamin B solutions

Conclusions:

• *B. azotoformans* has reduced N assimilation capacity, and requires organic nitrogen for assimilation.

- NH₄⁺ can be assimilated only if certain organic nitrogen is supplied.
- NH₄⁺ concentration has a clear influence on growth rate.
- Low NH₄⁺ concentration, low NO₃⁻ concentration and high C/N ratio do not trigger DNRA in denitrifier *B. azotoformans* in batch test.

Fig 3. NH₄⁺ concentration test: 4.6 mM (a), 1mM, 0.1mM and 0mM NH₄⁺ (b). n > = 2. Similar growth is obtained in 4 different media (P >0.05), all initial NO₃⁻ converts to N₂O, growth rate is significantly different (P =2.9x10⁻⁵, SPSS), no NH₄⁺ production is observed.

Figure 4. NO₃⁻ concentration test: 0.2 mM, 0.5 mM, 1 mM, 2 mM, 4 mM, 10 mM. n = 3. After growth, all initial NO₃⁻ converts to N₂O, no NH₄⁺ production is observed. DNRA is not observed.

Figure 5. C/N-NO₃⁻ ratio test: C/N=1.5, 3, 7.5, 15, 30, 150, with 0.2 mM or 1 mM NO₃⁻. n = 3. Slower growth was obtained after 3 days incubation under high C/N ratio of 150 (P <0.05, SPSS). After 7 days, all initial NO₃⁻ converts to N₂O. No NH₄⁺ production is observed(P=0.308). DNRA is not observed.