
VAN DER HOOFT et al.: HTTP/2-BASED ADAPTIVE STREAMING OF HEVC VIDEO OVER 4G/LTE NETWORKS 1

HTTP/2-Based Adaptive Streaming of HEVC Video over
4G/LTE Networks

Jeroen van der Hooft, Student Member, IEEE, Stefano Petrangeli, Student Member, IEEE,
Tim Wauters, Member, IEEE, Rafael Huysegems, Patrice Rondao Alface, Senior Member, IEEE,

Tom Bostoen, and Filip De Turck, Senior Member, IEEE

Abstract—In HTTP Adaptive Streaming (HAS), video content
is temporally divided into multiple segments, each encoded at
several quality levels. The client can adapt the requested video
quality to network changes, generally resulting in a smoother
playback. Unfortunately, live streaming solutions still often suffer
from playout freezes and a large end-to-end delay. By reducing
the segment duration, the client can use a smaller temporal buffer
and respond even faster to network changes. However, since
segments are requested subsequently, this approach is susceptible
to high round-trip times. In this letter, we discuss the merits of
an HTTP/2 push-based approach. We present the details of a
measurement study on the available bandwidth in real 4G/LTE
networks, and analyze the induced bit rate overhead for HEVC-
encoded video segments with a sub-second duration. Through an
extensive evaluation with the generated video content, we show
that the proposed approach results in a higher video quality
(+7.5%) and a lower freeze time (-50.4%), and allows to reduce
the live delay compared to traditional solutions over HTTP/1.1.

Index Terms—HTTP Adaptive Streaming, DASH, Quality of
Experience, HTTP/2, Server Push, 4G/LTE, H.265/HEVC.

I. INTRODUCTION

TODAY, more than half of the Internet traffic is generated
by video streaming applications [1]. To meet increasing

requirements, the concept of HTTP Adaptive Streaming (HAS)
has recently been introduced. As shown in Figure 1, content
is encoded at different quality levels and temporally divided
into segments with a typical length of 2 to 10 seconds. The
client uses a rate adaptation heuristic to decide upon the
downloaded quality for each segment, based on criteria such as
the perceived bandwidth and the buffer filling. The goal of this
heuristic is to optimize the user’s Quality of Experience (QoE),
which depends among others on the average video quality,
the frequency of quality changes and the occurrence of video
freezes. Many heuristics and solutions have been proposed in
literature, but we refer to a survey by Seufert et al. for an
elaborate view on the matter [2].

Despite the many advantages of HAS, there are drawbacks
as well. First, playout freezes still occur in 27% of video
sessions [3]. Especially in environments with rapid band-
width changes, the client may fail to adapt to new network

J. van der Hooft is funded by grant of the Agency for Innovation by Science
and Technology in Flanders (IWT). The research was performed partially
within the iMinds V-FORCE project (130655) and within the EU FP7-NoE
FLAMINGO project (318488). The associate editor coordinating the review
of this letter and approving it for publication was B. Rong. J.
van der Hooft, S. Petrangeli, T. Wauters and F. De Turck are with Ghent Uni-
versity - iMinds, Department of Information Technology, Technologiepark 15,
B-9052 Belgium. E-mail: jeroen.vanderhooft@intec.ugent.be.
R. Huysegems, P. R. Alface and T. Bostoen are with Nokia - Bell Labs,
Copernicuslaan 50, B-2018 Antwerp, Belgium.

Video

encoding

Video

segmentation

Video

decoding

Buffer

Rate adaptation

heuristic

Internet

HAS Server HAS Client

Request (s
i
,q
j
)

Segment (s
i
,q
j
)

Figure 1. The concept of HTTP Adaptive Streaming.

conditions. Furthermore, video content is generally encoded
at variable bit rate, with more bits assigned to scenes with
rapid motion. As such, it often takes significantly longer
to download a segment than initially estimated, increasing
the chances of buffer starvation. Second, since segments of
multiple seconds are typically used, the end-to-end delay in
current HAS deployments is in the order of tens of seconds.
This is detrimental for the QoE in live video streaming, where
the delay should be as low as possible [4].

One solution to these issues is the use of H.265/HEVC, a
video compression standard which was developed to provide
twice the compression efficiency of the previous standard,
H.264/AVC [5]. In HEVC, coding units of up to 64x64 pixels
are used instead of 16x16, and more intra-picture directions,
finer fractional motion vectors and larger transform blocks are
used to achieve this improvement in compression performance.
Reducing the encoding bit rate has a significant impact on the
QoE, as fewer data needs to be transferred from server to
client. Another solution is to use segments with a sub-second
duration. Shorter segments allow to limit the maximum down-
load time of individual segments and respond faster to sudden
changes in the available bandwidth. Furthermore, they allow to
use a smaller buffer, which results in a potential decrease of the
end-to-end delay in live streaming scenarios. Unfortunately,
since every segment has to start with an Instantaneous Decoder
Refresh (IDR) frame, a higher bit rate is required to achieve
the same visual quality. Moreover, since a unique request is
required to retrieve every single video segment, solutions with
low segment duration are susceptible to high round-trip times
(RTT). This problem mainly arises in mobile networks, where
the RTT varies from 33 to 857 ms, depending on the network
carrier and the type of connection [6].

The contributions of this letter are threefold. First, we
explain an effective means to eliminate RTT cycles in Section
II, using the server push feature of the recently standardized
HTTP/2 protocol [7], [8]. This approach allows to effectively
use short video segments, achieving the advantages described
above. Second we present the details of two measurement
studies in Section III. Particularly, we actively measured the
available throughput in real 4G/LTE networks and performed

2 VAN DER HOOFT et al.: HTTP/2-BASED ADAPTIVE STREAMING OF HEVC VIDEO OVER 4G/LTE NETWORKS

Client

Client

Server

Server

RTT RTT RTT RTT

RTT

MPD

MPD

MPD

MPD s
n-m+1

s
n

s
n+1

s
n+2

s
n+3

r
n+1

r
n+2

r
n+3

r
n+4

r
n+1

r
n+2

r
n+3

r
n+4

s
n-m+1

s
n+1

s
n

... ...

... ...

s
n-m+1

s
n

s
n+1

q
j

Figure 2. An example live video scenario for HTTP/1.1 (top) and HTTP/2
(bottom), where the client requests m available segments to ramp up the buffer.
If the last released segment has index n, the first segment to play is n−m+1.
Note that ri denotes the release of segment i at server side, while si denotes
its request for download by the client. Furthermore, quality qj indicates that
the server should change the quality of pushed segments to j.

an analysis of the induced bit rate overhead for short, HEVC-
encoded video segments. Third, detailed results are presented
in Section IV to characterize the gain of the proposed
push-based approach compared to state-of-the-art HAS over
HTTP/1.1. Final conclusions are drawn in Section V.

II. HTTP/2 PUSH-BASED APPROACH

In HAS, a video session starts with the client sending a
request for the video’s media presentation description (MPD).
This file contains information regarding the video segments,
such as the duration, resolution and available bit rates. Based
on the contents of the MPD, the client then requests video
segments subsequently, generally ramping up the buffer by
downloading segments at the lowest quality. After this startup
phase, further decisions regarding the video quality are made
by the client. The main drawback of this approach is that
one RTT cycle is lost to download each segment, which has a
significant impact on the startup time and bandwidth utilization
in high-RTT networks. This behavior is illustrated in Figure 2,
for the first phase of a live streaming session.

The HTTP/2 standard was published as an IETF RFC in
February 2015, mainly focusing on the reduction of latency in
web delivery [7]. Recently, a number of papers were published
regarding the use of this new protocol in HAS. Wei et al.
proposed a k-push approach, in which k segments are sent
per request [9]. In later work, the authors proposed to change
the parameter value of k dynamically based on network char-
acteristics [10]. Focus in this research is mainly on reducing
the live latency and the number of GET requests issued by
the client, without considering the impact of freezes or the
encoding overhead introduced by shorter video segments. In
previous work, we proposed a scheme in which the base layer
segments for Scalable Video Coding (SVC) are pushed by the
server, while enhancement layers are pulled by the client [11].
Although a significant reduction of the freeze time is achieved
compared to AVC-based solutions, the encoding overhead
introduced by inter-layer dependencies makes it unfeasible to
provide more than three quality representations.

In the push-based approach [8], the server uses HTTP/2’s
server push to push m segments to the client as soon as the
MPD request is received, where m corresponds to the number
of segments that fit into a preferred buffer size defined by the
client. Since state-of-the-art heuristics ramp up the buffer by
downloading segments at the lowest quality, it makes sense
to push segments at this quality as well. As illustrated in

Figure 2, at least one RTT cycle is gained in the reception of
the first video segment, and multiple RTT cycles are gained
during the buffer rampup phase. Once the MPD and the first
m segments are sent, the server periodically pushes a new
segment to the client at the specified quality level. Every time
a segment is received, the rate adaptation heuristic determines
the most suitable video quality and if required, a request is sent
to change the bit rate of pushed segments. Since the first m
segments are pushed back-to-back when the MPD is requested,
the proposed approach can significantly reduce the client’s
startup delay in high-RTT networks. Short segments can be
used, as no RTT cycles are lost, further reducing the startup
delay. Additionally, since a smaller buffer can be used, the
approach allows to reduce the total end-to-end delay as well.

Preliminary evaluations showed that it is important to limit
the maximum number of segments in flight; if a large amount
of high-quality segments are queued in the network, e.g. right
after a bandwidth drop, buffer starvation at client-side is likely
to occur. An appropriate rule of thumb for the maximum
number of segments k in flight is ceil

(
RTT
seg

)
+ 1, where k is

directly proportional to the ratio of the RTT and the segment
duration seg. Indeed, the higher this ratio, the more segments
should be pushed in order to bridge idle RTT cycles. In our
experimental setup, it will be sufficient to use k = 2.

III. MEASUREMENT STUDY

A. Available Bandwidth in 4G/LTE Networks
To evaluate the proposed approach, we decided to focus on

4G/LTE networks. In order to provide a realistic evaluation,
we collected throughput measurements in 4G networks within
the city of Ghent, Belgium, in January and February 2016.
We have built a dataset over multiple routes, measuring
the available bandwidth while downloading a large file over
HTTP. To guarantee appropriate download speeds, we hosted
a dedicated server in iLab.t’s Virtual Wall infrastructure1, con-
nected through a 100 Mb/s Ethernet connection. In this way,
bandwidth and latency measurements indicate the performance
of the wireless 4G connection, with minimal interference from
the wired network. As for the client, we developed an Android
application which logs all required information, running on
a smartphone (Huawei P8 Lite) connected over 4G. Similar
to the collection of 3G throughput traces by Riiser et al.
[12], several properties are logged, among which the GPS
coordinates, the number of bytes received since last datapoint
and the number of milliseconds since last datapoint. From
these last two entries, the average throughput can be obtained.

We collected throughput logs for six types of transportation:
foot, bicycle, bus, tram, train and car2. As an example,
Figure 3 shows the selected route in a car and the measured
bandwidth over time. Lower throughput values are observed
when connectivity is limited, due to tunnels, large buildings
and bad coverage in general. Also, the type of transportation
and the selected route have a strong impact on the available
bandwidth. As an example, the average throughput on a train
around the city was 22.8 Mb/s±14.6 Mb/s, while this was

1 http://ilabt.iminds.be/iminds-virtualwall-overview
2 The authors would like to thank T. Baele and L. Timperman for their kind
assistance during the data collection.

VAN DER HOOFT et al.: HTTP/2-BASED ADAPTIVE STREAMING OF HEVC VIDEO OVER 4G/LTE NETWORKS 3

 0

 20

 40

 60

 80

 100

 0 100 200 300 400

T
h

ro
u

g
h

p
u

t
[M

b
/s

]

Time [s]

1 2 3

Figure 3. A car travelling from north to south (left), along with the measured
throughput (right). When travelling from (1) to (2), large townhouses on the
right side impede the client’s connection. Arriving at (2), the client switches
to a new antenna with better coverage. Once an open area is reached in (3)
and a new antenna is again selected, throughput improves significantly.

33.9 Mb/s±15.8 Mb/s in a car driving on the ring road. The
measured bandwidth ranged from 0 Mb/s (connection inter-
rupted) through 111 Mb/s (higher than 100 Mb/s because of
network queuing), with an average of 30.3 Mb/s±16.7 Mb/s.
The complete dataset, which consists of 40 traces and covers
5 hours of monitoring, has been made available online [13].

B. HEVC-Encoded Video

In this research, we decided to focus on HEVC because of
its promising compression efficiency. Since our intention is to
use video segments with a sub-second duration, it is important
to analyze the induced encoding overhead. The considered
video sequence in our analysis and evaluation is Netflix’s El
Fuente, which has a total length of 476 seconds and a frame
rate of 60 FPS. The video is encoded using HEVC, providing
six quality levels at nominal bitrates of 0.3, 1.0, 2.3, 5.2,
10.9 and 21.4 Mb/s, with a spatial resolution ranging from
540p to 2160p video. Using the x265 encoder3, the video
is segmented using five segment durations: 133, 267, 500,
1000 and 2000 ms. To allow each segment to be decoded
independently, every segment starts with an IDR frame and
the Group Of Pictures (GOP) length is set to 8, 16, 30, 60
and 120 frames respectively. To assess the impact of shorter
GOP lengths on the compression performance, the encodings
for different segment durations have been set to target the same
visual quality and allow a subsequent overhead in the achieved
nominal bitrate. To realize this, we have selected the Constant
Rate Factor (CRF) rate control implemented in the x265
encoder. The obtained encodings for the same nominal rates
but different segment durations, have the same visual quality,
measured in terms of Peak-Signal-to-Noise-Ratio (PSNR),
with deviations smaller than 0.233 dB. Compared to a GOP
length of 120 frames, the average over-head is 6.3%, 9.2%,
29.3% and 60.5% for a GOP length of 60, 30, 16 and 8 frames
respectively. Figure 4 shows the obtained bit rates of the six
quality representations, with a clear increase for segments
with a sub-second duration. In the next section, the proposed
approach will be evaluated for a segment duration of 500 ms.
This allows to reduce the buffer size to the order of seconds
and increase video quality in high-RTT networks, while the
overhead is limited to 9.2%.

As for the encoding time, using a multicore platform with
Intel Core i7 CPUs and an Nvidia GTX 980 GPU, x265 with

3 http://x265.org

 0

 10

 20

 30

 40

 8 16 30 60 120

B
it

 r
at

e
[M

b
/s

]

GOP length

 SD - 0.3 Mb/s
 HD - 1.0 Mb/s

 FHD - 2.3 Mb/s

 FHD - 5.2 Mb/s
 4K - 10.9 Mb/s
 4K - 21.4 Mb/s

Figure 4. Obtained video bit rates for the different quality representations
and a GOP length of 8, 16, 30, 60 and 120 frames.

OpenCL acceleration was able to encode the FHD content in
real-time, with frame rates ranging from 63 FPS (GOP 8) to
68 FPS (GOP 120). For the 4K representations however, frame
rates ranged from 21 FPS (GOP 8) to 24 FPS (GOP 120).
Faster software HEVC encoders were reported recently to be
able to encode 4K in real-time on similar CPU platforms [14].

IV. EVALUATION

A. Experimental Setup

To allow a fair comparison of the proposed approach with
traditional HAS, a network topology is emulated using the
MiniNet framework4. It consists of a single client, streaming
the encoded video from a dedicated Jetty web server5. A new
request handler is defined, which processes the client’s GET
requests using a specific query to start the pushing of segments
at a given quality representation. The client is implemented on
top of the libdash library6, the official reference software of
the MPEG-DASH standard. We provided support for HTTP/2
using the nghttp2 library7, and implemented the required logic
to asynchronously handle pushed video segments. Client-side
rate adaptation is based on the FINEAS heuristic by Petrangeli
et al. [15]. This heuristic estimates the segments’ download
time to achieve a target buffer filling level, resulting both in
a higher video quality and a lower amount of playout freezes
compared to state-of-the-art solutions. To avoid an excessive
amount of quality switches for short segments, the client is
only allowed to increase the quality every 2 s. The collected
4G traces for same-type vehicles are merged together, in order
to obtain 30 unique bandwidth traces with a minimal length
of 494 s and an average bandwidth of 30.3 Mb/s±16.8 Mb/s.
Using traffic control command tc for traffic shaping, the client
can stream 30 episodes of the video with a different bandwidth
pattern for every episode. A lower threshold of 50 kb/s is used,
in order to guarantee correct packet scheduling with tc. The
bandwidth at server-side is fixed at 100 Mb/s, same as in the
measurement study.

B. Obtained Results

First, the performance of traditional HAS and the push-
based approach are evaluated for increasing values for the
RTT, with an initial buffer size of 10 s. Note that when playout
freezes occur, the buffer is expanded as to hold all segments
released at server-side. Figure 5 shows that for HTTP/1.1,
the video quality, averaged out over all segments - 0 for the

4 http://mininet.org/ 5 http://www.eclipse.org/jetty/
6 https://github.com/bitmovin/libdash 7 https://nghttp2.org/

4 VAN DER HOOFT et al.: HTTP/2-BASED ADAPTIVE STREAMING OF HEVC VIDEO OVER 4G/LTE NETWORKS

 0

 1

 2

 3

 4

 5

 0 100 200 300 400

A
v

er
ag

e
v

id
eo

 q
u

al
it

y

Round-trip time [ms]

 HTTP/1.1 - GOP 120
 HTTP/1.1 - GOP 30
 HTTP/2 - GOP 30

Figure 5. Impact of the RTT on the video quality, both for HTTP/1.1 and
HTTP/2 with an initial buffer size of 10 seconds.

 0

 1

 2

 3

 4

 5

 6

 2 4 6 8 10
 0

 10

 20

 30

 40

 50

A
v

er
ag

e
v

id
eo

 q
u

al
it

y

A
v

er
ag

e
fr

ee
ze

 t
im

e
[s

]

Buffer size [s]

Quality HTTP/1.1
Quality HTTP/2

Freezes HTTP/1.1
Freezes HTTP/2

Figure 6. Impact of the buffer size on the video quality and freeze time, both
for HTTP/1.1 (GOP 120) and HTTP/2 (GOP 30) with an RTT of 300 ms.

lowest quality level, 5 for the highest - drops significantly for
higher RTTs, regardless whether a segment duration of 2000
or 500 ms is used. The video quality for the proposed approach
over HTTP/2 is not impacted however, because bandwidth
utilization is maximized by actively pushing segments from
server to client. Short segments can thus effectively be used,
which is not true for traditional HAS over HTTP/1.1.

In a second set of experiments, performance is evaluated
as a function of the initial buffer size, for an RTT of 300 ms.
Figure 6 shows that, while the video quality over HTTP/1.1
increases for larger values of the buffer size, it is more or less
constant for the push-based approach. Despite an encoding
overhead of 9.2%, the average quality is significantly higher
because of better bandwidth utilization. As for the freeze time,
a clear decrease is observed for higher buffer sizes, because
a playout freeze is less likely if more content can be buffered
at client-side. More importantly however, the freeze time for
the proposed approach is always lower than for traditional
HAS, because the client can respond faster to changes in the
available bandwidth or buffer fulling.

The most relevant results are summarized in Table I. For a
standard buffer size of 10 s, the proposed approach results in
a significantly higher video quality (+7.5%), a lower freeze
time (−50.4%) and a lower startup delay (−25.0%) compared
to traditional HAS. Focusing on a reduction of the live delay,
a smaller buffer size of 6 s with pull-based HAS results in a
significantly lower video quality (−3.4%) and a higher freeze
time (+54.7%), compared to a buffer size of 10 s. However,
comparing results for the push-based approach and a buffer
size of 6 s, with traditional HAS and a buffer size of 10 s,
a higher video quality (+7.1%) and a lower startup delay
(−25.3%) are obtained, while differences for the freeze time
are not statistically significant (two-tailed Wilcoxon signed-
rank test, p = 0.82). This shows that the proposed approach
allows the client to follow the live signal more closely, without
losing performance on other metrics.

HTTP Buffer [s] Video quality Quality switches Freeze time [s] Startup delay [s]
HTTP/1.1 10 4.919±0.132 49.633±6.663 9.817±4.988 2.408±0.052
HTTP/1.1 6 4.754±0.140 64.333±7.254 15.190±5.204 2.405±0.047
HTTP/2 10 5.288±0.111 52.067±9.766 4.867±3.361 1.806±0.085
HTTP/2 6 5.270±0.117 60.233±10.600 8.977±4.363 1.799±0.084

Table I
PERFORMANCE SUMMARY FOR AN RTT OF 300 ms. AVERAGE VALUES

ARE REPORTED, ALONG WITH THE 95% CONFIDENCE INTERVALS.

V. CONCLUSIONS

In this letter, we discussed an HTTP/2 push-based approach
for HTTP Adaptive Streaming (HAS) which enables the use
of video segments with a sub-second duration in mobile,
high round-trip time networks. We quantified the encoding
overhead for short HEVC-encoded segments, and determined
that the segment duration should not be lower than 500 ms to
limit the overhead to 9.2%. We also performed measurements
for the available bandwidth in real 4G/LTE networks within
the city of Ghent, Belgium, and created a dataset which
has been made available online. Using the encoded content
and collected throughput traces in an extensive evaluation,
we showed that the presented approach results in a higher
video quality (+7.5%) and a lower freeze time (−50.4%), and
allows to reduce the live delay compared to solutions over
HTTP/1.1. Future work will focus on further improving the
user’s QoE through HTTP/2 features such as request/response
multiplexing and stream prioritization, on reducing the en-
coding overhead for short video segments and on adaptively
changing the segment duration based on network conditions.

REFERENCES

[1] Sandvine Incorporated, “Global Internet Phenomena Report,” 2016.
[2] M. Seufert et al., “A Survey on Quality of Experience of HTTP Adaptive

Streaming,” IEEE Communications Surveys Tutorials, vol. 17, no. 1, pp.
469–492, 2015.

[3] Conviva, “Viewer Experience Report,” 2015.
[4] T. Lohmar et al., “Dynamic Adaptive HTTP Streaming of Live Content,”

in IEEE International Symposium on a World of Wireless, Mobile and
Multimedia Networks, 2011, pp. 1–8.

[5] G. J. Sullivan et al., “Overview of the High Efficiency Video Coding
(HEVC) Standard,” IEEE Trans. on Circuits and Systems for Video
Technology, vol. 22, no. 12, pp. 1649–1668, 2012.

[6] OpenSignal, “IConnect 4G Coverage Maps,” 2014. [Online]. Available:
http://opensignal.com/networks/usa/iconnect-4g-coverage

[7] M. Belshe et al., “Hypertext Transfer Protocol Version 2,” RFC
Editor, Tech. Rep. Internet-Draft, 2015. [Online]. Available: https:
//datatracker.ietf.org/doc/draft-ietf-httpbis-http2/

[8] R. Huysegems et al., “HTTP/2-Based Methods to Improve the Live
Experience of Adaptive Streaming,” in ACM Multimedia Conference,
2015, pp. 541–550.

[9] S. Wei et al., “Low Latency Live Video Streaming over HTTP 2.0,”
in ACM Network and Operating System Support on Digital Audio and
Video Workshop, 2014, pp. 37:37–37:42.

[10] M. Xiao et al., “Evaluating and Improving Push-Based Video Streaming
with HTTP/2,” in ACM International Workshop on Network and Oper-
ating Systems Support for Digital Audio and Video, 2016, pp. 3:1–3:6.

[11] J. van der Hooft et al., “An HTTP/2 Push-Based Approach for SVC
Adaptive Streaming,” in IEEE/IFIP Network Operations and Manage-
ment Symposium, 2016, pp. 104–111.

[12] H. Riiser et al., “Commute Path Bandwidth Traces from 3G Networks:
Analysis and Applications,” in ACM Conference on Multimedia Systems,
2013, pp. 114–118.

[13] J. van der Hooft et al., “4G/LTE Bandwidth Logs,” 2016. [Online].
Available: http://users.ugent.be/~jvdrhoof/dataset-4g/

[14] T. K. Heng et al., “A Highly Parallelized H.265/HEVC Real-Time
UHD Software Encoder,” in IEEE International Conference on Image
Processing, 2014, pp. 1213–1217.

[15] S. Petrangeli et al., “QoE-driven Rate Adaptation Heuristic for Fair
Adaptive Video Streaming,” ACM Trans. on Multimedia Computing,
Communications and Applications, vol. 12, no. 2, pp. 28:1–28:24, 2015.

http://opensignal.com/networks/usa/iconnect-4g-coverage
https://datatracker.ietf.org/doc/draft-ietf-httpbis-http2/
https://datatracker.ietf.org/doc/draft-ietf-httpbis-http2/
http://users.ugent.be/~jvdrhoof/dataset-4g/

