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Abstract.  Polyspermy or the penetration of more than one sperm cell remains a problem during porcine in vitro fertilization 
(IVF). After in vitro culture of porcine zygotes, only a low percentage of blastocysts develop and their quality is inferior to 
that of in vivo derived blastocysts. It is unknown whether the cytoplasmic maturation of the oocyte is sufficiently sustained 
in current in vitro maturation (IVM) procedures. The complex interplay between oocyte and cumulus cells during IVM is 
a key factor in this process. By focusing on this bidirectional communication, it is possible to control the coordination of 
cumulus expansion, and nuclear and cytoplasmic maturation during IVM to some extent. Therefore, this review focuses on 
the regulatory mechanisms between oocytes and cumulus cells to further the development of new in vitro embryo production 
(IVP) procedures, resulting in less polyspermy and improved oocyte developmental potential. Specifically, we focused on the 
involvement of cAMP in maturation regulation and function of oocyte-secreted factors (OSFs) in the bidirectional regulatory 
loop between oocyte and cumulus cells. Our studies suggest that maintaining high cAMP levels in the oocyte during the 
first half of IVM sustained improved oocyte maturation, resulting in an enhanced response after IVF and cumulus matrix 
disassembly. Recent research indicated that the addition of OSFs during IVM enhanced the developmental competence 
of small follicle-derived oocytes, which was stimulated by epidermal growth factor (EGF) via developing EGF-receptor 
signaling.
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A series of integrated, efficient techniques is required to produce 
porcine embryos from follicular oocytes in vitro [1]. Three 

major subsequent phases are oocyte collection and in vitro matura-
tion (IVM), in vitro fertilization (IVF), and in vitro culture (IVC). 
When using the currently applied protocols with immature porcine 
oocytes, only 20–30% develop to the blastocyst stage [2–4], and 
a substantial proportion is polyploid [5]. In an in vitro production 
(IVP) system, the success of embryo development to the blastocyst 
stage depends on oocyte cytoplasm to facilitate normal fertilization 
and subsequent embryo development in vitro [6]. The process by 
which immature oocytes acquire this ability during IVM is frequently 
called “cytoplasmic maturation”. When considering the two major 
obstacles in porcine IVP i.e., high polyspermy rates and low blastocyst 
developmental rates (reviewed by Nagai et al. [7]), the question 
may arise if these problems are related to insufficient cytoplasmic 

maturation during IVM. However, it is difficult to directly measure 
the degree of cytoplasmic maturation by a simple assay [8] because 
it involves many biological processes, such as the re-distribution of 
certain organelles, accumulation of glutathione, or the adjustment of 
cell-cycle regulating protein kinases levels (reviewed by Ferreira et al. 
[9]). Therefore, evaluation of pronuclear formation and developmental 
ability to the blastocyst stage are the most common indirect ways to 
assess cytoplasmic maturation.

The somatic compartment around the oocyte (i.e., cumulus cells) 
possibly plays an important role during oocyte maturation by gap 
junctional communications and soluble factors (reviewed by Tanghe 
et al. [10, 11]). Despite the major progress that has been made in 
this field of study, there are still gaps in the knowledge. In this 
respect, we focused on the second messenger cyclic adenosine 
monophosphate (cAMP) and oocyte-secreted factors (OSFs), which 
possibly play a key role in oocyte maturation regulation. Cyclic 
AMP is produced by cumulus cells, and transported through gap 
junctions into the oocyte (reviewed by Shimada [12]). However, 
in vitro, this coordinated exchange of cAMP is disturbed because 
of the removal of the oocyte from the follicle. By adjusting cAMP 
levels during IVM, an improvement of the nuclear and cytoplasmic 
maturation, the response during fertilization, and the developmental 
competence of the oocyte can be obtained in in vitro systems [13–16]. 
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In addition, OSFs, specific soluble growth factors produced by 
oocytes, influence cumulus cell differentiation to enhance oocyte 
maturation via gap junctional communication and paracrine signals 
(reviewed by Gilchrist [17]). Consequently, these OSFs help the 
oocyte to create its own microenvironment during porcine IVM 
since OSFs regulate the surrounding cumulus cells. These cumulus 
cells in turn affect the oocyte development. This communication can 
be considered as an auto-regulatory loop between the oocyte and its 
supporting somatic cells and seems crucial for oocyte developmental 
competence (reviewed by Gilchrist [17]).

The general aim of this paper was to review the current knowl-
edge on the bidirectional communication between the oocyte and 
surrounding cumulus cells to establish a porcine IVP system with 
improved oocyte developmental potential. Therefore, it is important 
to reveal to what extent the removal of the oocyte from the follicle 
can affect intracellular cAMP levels and consequently developmental 
competence, and if oocytes regulate cumulus cell differentiation 
and their own development via the secretion of soluble paracrine 
growth factors.

Role of cAMP and Oocyte-Secreted Factors during 
Oocyte Maturation

Role of cAMP
In mammalian cells, cAMP is a second messenger in the process 

of intracellular signaling [18]. Consequently, a wide range of cellular 
processes is regulated by cAMP responses [18]. Cyclic AMP exerts 
an important regulating role in the meiotic process of the oocyte. In 
vivo, follicles control meiotic arrest and resumption. High intracellular 
cAMP levels, produced by the oocyte, that are mediated by signals 
from the follicle [19] and continuously provided through gap junctional 
contacts with cumulus and mural granulosa cells [20], maintain 
meiotic arrest in the oocyte when the oocyte is inside the follicle 
[21]. In follicular fluid (FF), substances like hypoxanthine, a natural 
purine, can contribute to an elevated cAMP concentration inside the 
oocyte and therefore inhibit germinal vesicle breakdown (GVBD) 
[22]. A recent study showed that the concentration of hypoxanthine 
in FF was higher in small than large follicles [23]. This information 
emphasizes that changes within in vivo environment allows oocytes 
from large follicles to resume meiosis more readily in response to a 
luteinizing hormone (LH) surge. Furthermore, cAMP degradation by 
a type 3 phosphodiesterase (PDE3) of the oocyte is inhibited via the 
supply of cyclic guanosine monophosphate (cGMP) to the oocyte by 
the cumulus cells [17]. After gonadotropin stimulation, a transient 
increase followed by a drop in the intracellular cAMP concentration 
induces the oocyte to resume meiosis [24]. Thereafter, the cAMP 
concentration decreases to basal levels at approximately the time of 
GVBD [24]. The scenario in vitro is considerably different because 
the cumulus oocyte complex (COC) is removed from the follicle. 
Since the control of the follicular environment is lost, cAMP levels 
drop prematurely (mouse, [25]) causing a spontaneous resumption 
of meiosis, which is characterized by an accelerated progression 
to metaphase II (nuclear maturation), producing oocytes with low 
developmental competence (reviewed by Gilchrist and Thompson 
[26]). A possible cause for this low developmental potential is 
incomplete cytoplasmic maturation (reviewed by Gilchrist and 

Thompson [26]). The aspects of cytoplasmic maturation affected 
by cAMP are detailed below.

Role of oocyte-secreted factors
Oocytes regulate cumulus cell differentiation via the secretion 

of soluble paracrine growth factors, known as the OSF-regulation 
of folliculogenesis [27], which is a bidirectional regulatory loop 
between oocyte and cumulus cells since OSFs regulate the sur-
rounding cumulus cells that in turn affect the oocyte development. 
The importance of the OSFs produced by the oocyte to create a 
microenvironment determining its further development, has only 
recently been acknowledged [17]. Two factors, from the transforming 
growth factor beta (TGF-β) superfamily, growth differentiation factor 
9 (GDF9) [28] and bone morphogenetic protein 15 (BMP15) [29], 
are the most crucial OSFs. Both factors work through the BMP 
receptor type II (BMPRII) [30], and downstream through activin 
receptor-like kinases (ALKs) followed by action on the SMA and 
MAD related intracellular proteins (SMAD) [31]. More specifically, 
GDF9 acts on ALK5 and SMAD2/3 [31] and BMP15 on ALK6 and 
SMAD1/5/8 [32].

It is unknown whether the oocyte itself, with the associated OSFs, 
is necessary for cumulus expansion. Prochazka et al. [33] stated that 
cumulus expansion was not dependent on the oocyte, although Singh 
et al. [34] observed that the oocyte secretes a cumulus expansion-
enabling factor(s) based on an interspecies model. In this model, 
it was shown that mouse cumulus cells, which are dependent on a 
cumulus-expansion enabling factor produced by the oocyte, could 
fully expand in the presence of porcine denuded oocytes (DO) and 
FSH [34]. Funahashi and Day [35] claimed that cumulus expansion 
did not depend on intercellular communication between cumulus 
cells and oocytes, although oocytectomy inhibited the expansion of 
the corona radiata. In these studies, cumulus expansion was scored 
using an arbitrary scale from 0 to +4 [33–35]. In a recent study of 
ours [11], cumulus expansion was measured more objectively using 
an individual tracking system of COCs during IVM, the defined 
porcine oocyte medium (POM), and digital image analysis. Using 
this approach, we demonstrated that the cumulus can expand in the 
absence of the oocyte [11]. However, oocytectomized complexes 
(OOXs) do not reach the same level of expansion as intact COCs. The 
addition of DOs to OOXs improved the level of cumulus expansion. 
Inhibition of gap junctional communication by carbenoxolone in 
COCs significantly reduced cumulus expansion at 20 h of IVM 
[11]. These observations support the research by Singh et al. [34] 
that even though expansion does not require the oocyte, the oocyte 
enhances cumulus expansion. This occurs both through gap junctional 
communication and paracrine signaling [11]. Our study [11] also 
detailed the evolution of the cumulus expansion of COCs, OOXs, 
and cumulus clumps in a defined medium. After a period of an 
increase in cumulus area, the three groups showed shrinking of the 
cumulus area between 20 and 48 h of IVM [11]. Previously, cumulus 
expansion of COCs in POM was described as the occurrence of a 
continuously increasing cumulus area [36]. A possible explanation for 
this discrepancy is possibly the use of different hormones between the 
two studies. Studies have also shown that factors exist in follicular 
fluid that support continuous and full cumulus expansion [37–39]. 
In vivo, one of the functions of the expanded cumulus is to guide 
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the oocyte through ovulation by facilitating oocyte extrusion, to 
help the ciliated epithelial cells of the infundibulum capture and 
transport the oocyte towards the fertilization site (reviewed by 
Tanghe et al. [10]). Therefore, the shrinking cumulus area observed 
between 20 and 48 h of IVM [11] could be due to a deficiency of 
the in vitro environment. However, whether cumulus expansion is 
a pre-requisite for normal fertilization and embryo development is 
unknown. Abnormal expansion has been associated with low embryo 
development in many studies [40, 41]. On the contrary, Yoshioka et 
al. [42] reported a similar penetration and development after IVM 
in POM + polyvinyl alcohol (PVA) and POM + porcine FF despite 
the more pronounced cumulus expansion in the latter [43, 44]. In 
another study, Gomez et al. [45] reported reduced cumulus expansion 
associated with improved blastocyst development after IVM in the 
presence of denuded oocytes. Moreover, the importance of cumulus 
cells for fertilization in porcine IVF systems is still unknown. Early 
reports suggested that cumulus cells are essential for sperm penetration 
and male pronucleus formation [46]. More recently, studies have 
demonstrated that removal of cumulus cells before IVF does not reduce 
sperm penetration and can even increase penetration with high rates 
of polyspermy (reviewed by Dang-Nguyen et al. [47]). The reasons 
underlying these contradictory findings remain unclear. It is plausible 
that IVF conditions such as the medium and the origin of sperm used 
for IVF (such as fresh or frozen, ejaculated, or epididymal) contribute 
to such differences among studies. Clarification of the importance 
of the cumulus compartment for the regulation of penetration and 
monospermy rates during IVF is important for future improvements 
of the porcine IVP system.

Oocyte-secreted factors can be added to monolayers or clumps of 
granulosa cells or cumulus cells, OOXs, or intact COCs. They are 
presumed to be soluble paracrine factors because the DOs do not 
come in physical contact with the influenced cell type and oocyte 
conditioned medium can exert a biological response [27]. Moreover, 
OSFs apparently work in a concentration-dependent manner: the 
strongest effect of OSFs on granulosa cells [48], cumulus cells [49] 
or co-cultured oocytes [45] was observed when more DOs or/and 
a lower culture volume were added. The addition of DOs to OOXs 
affects cumulus expansion and several other important parameters, 
such as cumulus cell apoptosis (cattle [49]), luteinization markers (e.g., 
the expression of LH receptor mRNA in mice [50] and progesterone 
production in pigs [51]), cumulus glycolytic enzyme mRNA levels 
(mouse [52]), and steroidogenesis (pig [51]). It is possible that these 
effects of DOs are caused by the anti-apoptotic effect of BMP15 on 
cumulus cells [49]. With fewer apoptotic cumulus cells, the overall 
functionality of the cumulus cells is improved, resulting in higher 
mRNA levels and increased progesterone production. Together, these 
findings suggest that the addition of DOs could be beneficial for an 
IVM production system for OOXs. Regarding nuclear maturation, 
no enhancement was observed after DO addition using undefined 
and defined maturation media [11, 45].

Interplay between cAMP and oocyte-secreted factors
These two previously discussed biosystems should not be considered 

as totally independent. Recently the beneficial effect of the treatment 
of developing COCs with dibutyryl cAMP sodium salt (dbcAMP) 
and OSFs on the acquisition of oocyte developmental competence 

by enhancing epidermal growth factor (EGF) receptor (EGFR) 
functionality has been demonstrated in a study by Sugimura et al. 
[53]. In vivo, prior to the LH surge, follicle stimulating hormone 
(FSH) enhanced the expression of LH receptors on mural granulosa 
cells [54] and the expression of EGFR on cumulus cells [55] (Fig. 
1). In a later phase, LH induces the expression of EGF-like peptides 
(amphiregulin (AREG), epiregulin (EREG), and betacellulin (BTC)) 
that activate EGFR [56, 57] (Fig. 1). These EGF-like peptides stimulate 
EGFR in the mural and cumulus cell compartment, concomitant with 
a positive autocrine feedback loop on their own expression [58]. Two 
main processes regulated by EGFR are the expansion of cumulus 
cells and meiotic oocyte maturation [55]. This coordinated interplay 
of events possibly occurs only in pre-ovulatory COCs, after the LH 
surge. Oocytes from small antral follicles (3 mm diameter) have a 
lower developmental capacity than oocytes from large antral follicles 
[16]. However, since these oocytes can grow into large follicles to 
developmentally competent oocytes, the oocyte is not intrinsically 
defective, but requires the correct stimulus to gain developmental 
competence [53]. Cumulus oocyte complexes from small antral 
follicles contain the same amount of EGFR mRNA as larger antral 
follicles, but substantially less total-EGFR protein leading to impaired 
phospho-EGFR and phospho- extracellular signal-regulated kinase 1 
and 2 (ERK1/2) signaling [59]. In this way, EGF will not stimulate 
the EGFR and ERK1/2 signaling pathways in those cumulus cells 
implying a low developmental potential of the oocyte [59] (Fig. 
1). However, the combined treatment of dbcAMP and OSFs, more 
specifically GDF9 and BMP15, promoted EGF receptor functionality, 
which is, as indicated above, an essential element in the acquisition 
of developmental potential [53] (Fig. 1). More specifically, OSFs 
stimulated AREG signaling in COCs derived from small antral follicles 
(< 4 mm) [59] and dbcAMP positively interacted with COCs from 
medium-sized follicles (> 4–6 mm) concerning meiotic maturation and 
developmental potential of the oocyte, but the combination of dbcAMP 
and BMP15 increased the meiotic maturation and the combination 
of dbcAMP, BMP15, and GDF9 increased blastocyst rates of COCs 
from small antral follicles in an AREG-stimulated IVM system [53]. 
Moreover, only this combination of AREG stimulation together 
with cAMP modulation, BMP15, and GDF9 positively influenced 
cumulus expansion and expression of the matrix-related genes [53]. 
The added products all synergistically stimulated the cumulus cell 
EGFR-ERK1/2 signaling pathway in AREG stimulated IVM [53] 
(Fig. 1). Therefore, the improved developmental competence of 
oocytes derived from small follicles can be attributed to an enhanced 
EGFR signaling after a combinational treatment of dbcAMP and 
the OSFs, BMP15, and GDF9 [53] (Fig. 1). After the addition of 
dbcAMP, BMP15, and GDF9, AREG stimulation appeared to be 
more beneficial than gonadotropin supplementation [53].

In earlier studies, the establishment of a functional EGFR signaling 
pathway in developing oocytes depended on the correct stimulation by 
FSH, followed by cAMP and PKA responses [55, 60, 61]. However, 
recently it has been demonstrated that this pathway is not the only 
requirement for functional EGFR signaling, but the combination of 
cAMP together with OSFs may be necessary [53]. It is assumed that 
cAMP may stimulate BMP15-GDF9-induced SMAD signaling and 
therefore increase the developmental potential [53, 62]. Moreover, 
EGF-peptides/EGFR and cAMP-PKA signaling pathways interact 
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and establish a wide intercellular communication all over the COC 
[53], and the AREG stimulation of COC glycolysis and BMP15 
preservation of gap junctional communication can enhance the transfer 
of necessary metabolites from cumulus cells into the oocyte [63]. Both 
these events contribute to an enhanced developmental potential of the 
oocyte [53]. Together, recent research indicated that the co-operative 
action of cAMP modulation and OSFs resulted in improved EGFR 
signaling in the somatic compartment, which is necessary for the 
COC to acquire full oocyte developmental competence [53].

Application of cAMP and Oocyte-Secreted Factors in 
IVP Systems

Manipulation of intracellular cAMP levels by chemical agents
Nuclear maturation, cytoplasmic maturation, the response during 

fertilization and developmental competence of the oocyte are possibly 
improved by increasing cAMP levels during IVM. Intracellular 
cAMP levels of oocytes can be modulated in several ways by 
numerous chemicals with different mechanisms of action [26, 64]: 

(1) membrane permeable cAMP analogs, such as dbcAMP [13–16, 
65], (2) adenylate cyclase activators, such as forskolin [22, 66] and 
invasive adenylate cyclase [13], and (3) phosphodiesterase inhibitors, 
such as the non-specific inhibitor 3-isobutyl-1-methylxanthine (IBMX) 
[13, 65, 67], phosphodiesterase type 4-specific inhibitor, rolipram 
[68], and phosphodiesterase type 3-specific inhibitors, milrinone [69] 
and cilostamide [67]. However, in pigs, the only cAMP-elevating 
treatment that has improved porcine oocyte developmental competence 
is dbcAMP (reviewed by Gilchrist and Thompson [26]). Other 
cAMP-elevating treatments did not show a clear improvement in 
porcine oocyte developmental competence.

Three-isobutyl-1-methylxanthine is a non-specific PDE inhibitor 
[70], which prevents the in vitro drop in cAMP by inhibiting the 
increasing PDE3 activity in the oocyte (cattle [70]). This increased 
of PDE3 activity is caused by a decreased supply of cGMP via the 
gap junctions because of the premature closure of the gap junctional 
communication between oocyte and cumulus cells (mouse [71, 72]). 
When evaluating the IBMX efficacy, two factors could determine the 
outcome: 1) the time of IBMX addition, which can either be during 

Fig. 1. Hypothetical mechanism for the stimulation of the epidermal growth factor receptor (EGFR)/extracellular signal-regulated kinases 1 and 2 
(ERK1/2) signaling pathway in cumulus cells of porcine cumulus-oocyte complexes (COCs) derived from small follicles (< 4 mm). Intercellular 
communication between mural granulosa cells, cumulus cells, and oocytes occurs through paracrine and autocrine signals and gap junctional 
communication (GJ). In vivo, follicle-stimulating hormone (FSH) induces luteinizing hormone (LH) receptors (LHR) and EGFR that can be 
stimulated by LH and amphiregulin (AREG), epiregulin (EREG), and betacellulin (BTC), respectively. In vitro, developing oocytes cannot 
stimulate the EGFR/ERK1/2 pathway without the addition of dibutyryl cAMP sodium salt (dbcAMP) and oocyte-secreted factors (OSFs) leading 
to a low developmental competence of the oocyte. Addition of dbcAMP and OSFs, such as bone morphogenetic protein (BMP15) and growth 
differentiation factor 9 (GDF9), in an AREG-stimulated IVM system promotes the EGFR/ERK1/2 signaling pathway, consequently with an 
improved developmental potential of the oocyte.



REVIEW: OOCYTE-SECRETED FACTORS AND cAMP 443

oocyte collection or IVM and 2) the time of evaluation of the effect 
of IBMX, which can be during collection, IVM, or IVC. Several 
studies investigated the effect of IBMX in combination with other 
compounds in various species; however, only some studies tested the 
effect of IBMX alone on oocytes. Bornslaeger et al. [73] demonstrated 
that IBMX inhibited PDE activity and GVBD in mouse oocytes. In 
the “simulated physiological oocyte maturation (SPOM) system” 
(in mice and cattle) IBMX increased cAMP levels during pre-IVM 
in combination with, forskolin [70]. The SPOM system improved 
the developmental potential of the oocyte, although this procedure 
included the addition of many more cAMP-modulating agents after 
the pre-IVM phase [70]. In pigs, the addition of IBMX during IVM 
reversibly blocked meiotic resumption [67, 74], prolonged the 
maintenance of gap junctional communication between the oocyte and 
cumulus cells [74], and synchronized oocytes to the germinal vesicle 
(GV) 2 stage when matured with follicle-stimulating hormone (FSH) 
for 20 h [75]. However, when added to the collection medium, the 
combination of IBMX and invasive adenylate cyclase did not influence 
the nuclear progression during IVM and subsequent developmental 
competence of porcine oocytes [13]. Our recent research confirmed 
that the addition of IBMX during collection does not alter the 
chromatin configuration of porcine oocytes at the end of collection 
[65]. However, in earlier research [76], concentrations of > 1 mM 
IBMX were used to maintain the majority of porcine oocytes in GV 
arrest, a concentration of 0.5 mM was optimal for synchronizing 
the GV stage during IVM (> 80% at 20 h of IVM) and allowed the 
formation of LH receptors and optimal hCG binding of COCs [75]. 
Higher concentrations of 1 mM suppressed LH receptor formation 
and hCG binding [75].

The absence of the effect of IBMX during collection in pigs could 
possibly suggest that during oocyte collection, intracellular cAMP 
in oocytes might not drop to a level that could cause spontaneous 
maturation. This lack of effect of IBMX addition in pigs is in 
contrast with the results obtained in other species, including cattle 
and mice [70, 73, 77], where cAMP levels were increased, GVBD 
was inhibited, and blastocyst rates were improved by adding IBMX 
to the collection medium. Therefore, these findings strongly suggest 
that the action of IBMX is species-specific; although, it should be 
considered that the different findings concerning IBMX effects could 
also be due to differences in the collection methods used between 
species and studies.

The generally used dbcAMP concentration of 1.00 mM was set 
by Funahashi et al. [14] according to the findings of Mattioli et al. 
[24]. At this concentration, dbcAMP reversibly blocked GVBD in 
porcine oocytes without any negative side effects [14]. Exposure 
of COCs to dbcAMP should occur only during the first 20–22 h 
of a total of 44–48 h of IVM [14] because a high concentration of 
cAMP throughout the whole IVM period would maintain meiotic 
arrest [24]. Keeping cAMP levels high during the early stages of 
IVM of the porcine oocyte by dbcAMP reversibly inhibited the 
spontaneous meiotic progression [69], causing a synchronization of 
meiotic maturation during the second half of the IVM culture, when 
the oocytes are released from the blocking effect of this agent [13, 
14]. Such treatment has been reported to increase normal fertilization 
rates [13, 15] and subsequent embryo development [13–16]; however, 
it has not been clarified if this effect is due to the prevention of 

premature oocyte aging by the synchronization of meiotic maturation 
or via other effects. Furthermore, it is possible that modulation of 
cAMP levels during IVM could affect sperm penetration into the 
oocyte during IVF. It is unknown whether the ability of the oocyte 
to block polyspermy is affected by modulating cAMP levels via the 
IVM medium. Conflicting results have been published concerning 
the influence of cAMP modulation on fertilization parameters. 
Funahashi et al. [14] did not find any significant difference in sperm 
penetration and monospermy rates between oocytes matured with 
or without 1.0 mM dbcAMP in the IVM medium. Somfai et al. [13] 
confirmed that no significant difference was observed in penetration 
rate, but revealed that the monospermic fertilization rate significantly 
increased using 1.00 mM dbcAMP during the first 22 h of IVM. On 
the contrary, Kim et al. [15] reported a higher penetration rate in the 
dbcAMP supplemented group, but confirmed the lower polyspermy 
rate. We recently showed that dbcAMP addition during the first part 
of IVM decreased the polyspermy rate of porcine oocytes after IVF 
[65]. This result was in line with the reports of Somfai et al. [13] 
and Kim et al. [15], but contradicted the results of Funahashi et 
al. [14]. The reason behind this discrepancy remains unknown. A 
possible explanation can be that each research group operated with 
its own materials and methods, which also determined fertilization 
outcome. Differences in the applied IVF protocols may contribute 
to a variation in results between research groups. Factors such as 
the IVF medium, sperm concentrations, ejaculated or epididymal, 
frozen or fresh semen or spermatozoa, IVF co-incubation time, and 
the presence of cumulus cells during IVF may vary considerably. 
Moreover, the expression of parameters such as penetration and 
polyspermy rate is not always clearly defined, making interpretation 
and comparison difficult. However, we consider the decreased 
polyspermy rate in our study is a genuine result. First, because 
of the already shown synchronizing ability of dbcAMP, nuclear 
maturation will proceed in a more harmonized way [14]. This nuclear 
synchronization facilitates cytoplasmic maturation, which could 
better sustain monospermic fertilization. Second, gap junctional 
communication promotes cytoplasmic maturation by transferring 
the necessary metabolites to the oocytes [78]. With the addition of 
dbcAMP, these connections are preserved for a longer period [79] 
and thus the cytoplasmic maturation and normal fertilization [78] 
are enhanced. Third, dbcAMP increases the plasminogen activator 
(PA) [80]. Tissue-type PA could be involved in the block against 
polyspermy. In rats, tissue-type PA is released during the cortical 
granule exocytosis and could have a possible role in the zona hardening 
as part of the defense against polyspermy [81]. Fourth, Bijttebier 
et al. [41] showed that an improved cumulus matrix quality could 
provide enhanced protection against polyspermy. Mucification is 
directly correlated with high cAMP levels in rats [82]. Furthermore, 
it was demonstrated that pre-incubation of COCs with dbcAMP 
caused an extensive proliferation of porcine cumulus cells [83] and 
that dbcAMP addition to the IVM medium in pigs resulted in an 
improved cumulus matrix disassembly [65]. Moreover, in parallel 
with the reduced polyspermy rate, we also observed decreased 
penetration [65]. Presumably, cAMP modulation could have been 
responsible for an improved cumulus matrix and consequently 
reduced penetration and polyspermy rates. The phenomenon of 
dbcAMP affecting cumulus cells, emphasizes the importance of the 
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used IVF protocol (e.g., the presence of cumulus cells during IVF) 
strongly determining the obtained fertilization results and possibly 
clarifying the divergent results between different research groups.

Besides the involvement of cAMP levels in the nuclear and cyto-
plasmic maturation of the oocyte, several findings also illustrated a 
crucial role of cAMP in cumulus expansion. During IVM of porcine 
oocytes, some oocytes adhered to the bottom of the dish (Fig. 2). 
This phenomenon indicates inferior matrix disassembly [84]. To 
explain this occurrence, the composition and degradation of the 
extracellular matrix of the COC should first be discussed in more 
detail. Proteases are among the products secreted by cumulus cells 
[84]. Within the metalloproteases, a disintegrin and metalloprotein-
ase with thrombospondin-like repeats-1 (ADAMTS-1), part of the 
ADAMTS family, plays a crucial role in the ovulation process [85]. 
In pigs, ADAMTS-1 secretion by cumulus cells is a prerequisite for 
gonadotropin-dependent cumulus expansion [86]. A disintegrin and 
metalloproteinase with thrombospondin-like repeats-1 is responsible 
for the cleavage of versican, a large HA binding proteoglycan, in the 
expanded COC matrix [85] (Fig. 2). As a result of this cleavage, the 
cross-linking properties of versican are altered [85] and the expanding 
matrix is stabilized by binding the cleaved N-terminal domain of 
versican to HA [86]. Shimada et al. [86] reported that inhibiting the 
function of ADAMTS-1 led to cumulus cells adhering to the culture 
dish. Integrins on the surface of cells can interact with the C-terminal 

of versican and thus promote cell adhesion [87]. In vitro, the removal 
of the C-terminus of versican is crucial to prevent the adhesion of 
the COC to the bottom of the dish. Hampered cumulus remodeling, 
followed by adhesion of the COC to the bottom of the dish, could 
possibly affect maturation, fertilization, and developmental competence 
of porcine oocytes. It has been shown that nuclear and cytoplasmic 
maturation is affected in oocytes attached to the bottom of the culture 
dish [88]. Adherent COCs will resume meiosis and reach the metaphase 
II stage earlier than floating ones surrounded by cumulus matrix, 
probably caused by the disability of the cumulus cells to maintain 
the meiotic arrest [88]. The exact mechanism of premature nuclear 
maturation is unclear, but at the end of the maturation period these 
oocytes manifest a certain degree of aging [88]. Aged oocytes are 
expected to show heterogeneity concerning cytoplasmic maturation 
[13] and a higher polyspermy rate [89].

A possible link between the level of intracellular cAMP and the 
function of ADAMTS-1 was found in research regarding the role 
of parathyroid hormone (PTH) in bones. Miles et al. [90] showed 
that in the rat femur metaphysis, ADAMTS-1 mRNA expression 
is only upregulated by those PTH analogs that can significantly 
elevate intracellular cAMP levels. Although PTH influences many 
signal transduction pathways, Miles et al. [90] suggested that the 
upregulation of ADAMTS-1 expression by PTH, is primarily medi-
ated by the cAMP/protein kinase A (PKA) pathway. Experiments 

Fig. 2. Relationship between dibutyryl cAMP sodium salt (dbcAMP), the proprotein of a disintegrin and metalloproteinase with thrombospondin-like 
repeats-1 (proADAMTS-1), versican, and adherent cumulus-oocyte complexes (COCs) during in vitro maturation (IVM). Addition of dbcAMP 
upregulates proADAMTS-1, which promotes the cleavage of versican and thus prevents adherence of the COC to other cells, or specifically for 
in vitro culture to the bottom of the culture dish. Adherent COCs on the bottom of the dish have an impaired quality (red) in comparison to the 
floating ones (green) [88, 89].
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in vitro as well as in vivo, using forskolin, dbcAMP, and agents that 
activate the cAMP/PKA pathway, revealed this important connection 
[90]. Apart from this connection in bone, little is known about the 
relationship between the cAMP/PKA signaling pathway and expres-
sion of ADAMTS-1 in COCs. It is widely accepted that pituitary 
hormones, such as LH, act through the binding of ligand-specific cell 
surface G protein-coupled receptors, activation of adenylyl cyclase, 
and the subsequent production of cAMP [91]. Shimada et al. [86] 
demonstrated that porcine ADAMTS-1 expression is regulated by the 
functionality of the progesterone receptor (PR), which is a member 
of the nuclear receptor transcription factor superfamily [92, 93]. 
However, Doyle et al. [94] reported that the molecular mechanism by 
which LH induces the expression of ADAMTS-1, operates through 
or independently from the progesterone receptor. Therefore, it is 
possible that the cAMP pathway affects the expression of ADAMTS-1 
in granulosa cells in mice [94]. Moreover, in other species, includ-
ing humans [95] and rats [82], the addition of dbcAMP inhibited 
monolayer formation and attachment onto the bottom of the culture 
dish of cumulus cells. Only recently, data were obtained about the 
relationship between adherent complexes, ADAMTS-1, and cAMP 
levels in cumulus cells in pigs [65]. Appeltant et al. [65] were the 
first to demonstrate the cAMP-dependent regulation of ADAMTS-1 
in porcine cumulus cells. First, the latter relationship was shown by 
a decreased proportion of adherent complexes at 44 h of IVM after 
treatment with dbcAMP [65] (Fig. 2). Second, upregulation of the 
proprotein of ADAMTS-1 (proADAMTS-1) levels in cumulus cells 
was demonstrated when dbcAMP was added to the IVM medium, for 
floating and attached COCs [65] (Fig. 2). Moreover, cumulus cells 
of floating complexes contained consistently more proADAMTS-1 
than attached complexes [65].

Therefore, during porcine IVM, cAMP modulation caused elevated 
proADAMTS-1 levels, probably yielding elevated ADAMTS-1 
levels, which promoted increased matrix remodeling by the increased 
cleavage of versican, leading to less adherence to the bottom of 
the culture dish in vitro [65] (Fig. 2). However, it must be noted 
that the problem of adherent complexes was not totally solved by 
cAMP regulation, since adherent complexes can occur from several 
mechanisms, such as the material of the dish or culture system (static 
or non-static) [88].

Since attached COCs have inferior quality than floating COCs 
[88], it is important to avoid these complexes during IVP. Besides the 
addition of dbcAMP, which reduced the number of attached COCs 
as mentioned above, a practical selection tool during IVM can be 
applied to select the optimal oocytes to start IVF/IVC. Since adherent 
complexes display impaired cumulus remodeling [65] and Somfai 
et al. [88] reported inferior nuclear and cytoplasmic maturation in 
those complexes, fertilization and further developmental competence 
of such oocytes are possibly affected. The implementation of the 
systematic removal of adherent (inferior) COCs after IVM revealed 
that the remaining oocytes developed to the blastocyst stage in the 
same proportion in the groups treated with or without dbcAMP [65]. 
Since literature [13, 14] mostly reported an increased blastocyst 
rate after cAMP modulation, it could be presumed that the reduced 
blastocyst rate in non-treated COCs without the selection of adherent 
complexes, was due to the presence of those impaired complexes 
that were decreasing the blastocyst rates [65].

The use of oocyte-secreted factors in IVP systems in different 
experimental models

In the past, attention was focused on the influence of the follicle 
on the oocyte, mostly by the addition of follicular fluid for improving 
oocyte maturation conditions. Recently, the focus has shifted towards 
the secretion of soluble paracrine growth factors by the oocyte itself 
for its further development [17]. In this part of the review, we focused 
on OSFs to understand the critical changes the COC has to undergo 
before the oocyte can be fertilized and develop into a viable embryo.

The OSF function has been investigated using different experimental 
models such as genetic and immunization models, bioassays of native 
OSFs or bioassays using candidate recombinant OSFs (reviewed by 
Gilchrist et al. [27]). All these approaches should complement each 
other for a holistic understanding of the processes.

The source of native OSFs can be the oocyte itself after removal 
of the cumulus cells, called the denuded oocyte (DO) addition, or 
can be the culture medium conditioned by denuded oocytes, called 
the oocyte conditioned medium. The addition of DOs can possibly 
exhibit beneficial effects on cultured COCs of interest by secreting 
extra OSFs and therefore providing a higher concentration of OSFs 
in the applied IVP system. This approach was especially promising 
when culturing low numbers of oocytes in a group because these 
oocytes suffer from a lack of other surrounding oocytes to sustain 
their development. By supplying DOs as helper oocytes, a large group 
culture could possibly be mimicked. In cattle, sheep and mice, these 
OSFs have been identified as GDF9 and BMP15 [96–99]. Native 
OSFs influence numerous functions in granulosa cells, cumulus cells, 
and oocytes (reviewed by Gilchrist et al. [27]).

When interpreting results after DO addition on IVM, IVF, and 
IVC, it is important to notice that the addition of extra oocytes 
can modify the culture system in several ways. Besides the aimed 
addition of OSFs, extra cells can exert a non-specific influence 
during IVM by reducing harmful agents. For instance, an excess 
amount of oxygen (harmful by causing oxidative stress) may be 
reduced in the medium around DOs by their oxidative metabolism; 
moreover, the antioxidant systems of the DOs can detoxify diffusible 
reactive oxygen species [100]. In very basic media such as POM 
with hormones, this oxygen reducing action may be observed, but 
in enriched media supplemented with antioxidants, which overrule 
the oxidative action of extra cells, this effect may be overshadowed 
and therefore not observed. Consequently, to draw conclusions, 
every study should reveal if the observed effect is due to specific 
OSF working mechanisms or non-specific oxygen consumption.

In the study of Gomez et al. [45] it was shown that DO addition 
decreased cumulus expansion of COCs during IVM in pig. It is 
important to take into account that this study [45] was performed in 
a non-defined culture medium and cumulus expansion was scored 
subjectively. However, in recent studies we also assessed the action 
of OSFs on porcine oocytes using a defined medium [11, 101]. 
Using a defined medium, differences were not observed after DO 
addition, neither in cumulus expansion at 20 and 48 h of IVM nor in 
nuclear maturation at 48 h of IVM [11]. Although no improvement 
on cumulus expansion of intact COCs could be found, the addition 
of DOs to OOXs facilitated expansion measured at 48 h of IVM 
[11]. Consequently, DOs can influence expansion, although, when 
the oocyte as part of the complex is still present, the DO-effect is 
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not strong enough to improve expansion.
Furthermore, no differences were observed in penetration, poly-

spermy, and normal fertilization rates after IVF of porcine IVM 
oocytes with or without extra helper DOs [101]. Previous research 
in cattle [96], goats [102], and mice [97] demonstrated an enhanced 
oocyte developmental potential after DO addition or supplementation 
of specific OSFs. In pigs, contradictory results are reported. Denuded 
oocyte addition improved blastocyst rates after parthenogenetic 
activation in a non-defined medium [45]; however, other studies, using 
defined medium, could not show any enhancement of the blastocyst 
proportion and blastocyst quality after activation [103] or IVF [101]. 
This is clearly in contrast to reports on other species. The possibility 
that a species-specific mechanism is involved in the OSF action is 
emphasized by 1), a discrepancy was observed between pigs and 
other species, and 2), even the same researchers (i.e., Romaguera 
et al.) showed an effect in goats [102], but were not able to show 
it in pigs [103]. However, even when considering species-specific 
differences, why the study of Gomez et al. [45] contradicts the study 
of Romaguera and Grupen [103] and our study [101], all performed 
in pigs, remains unclear. A possible explanation could be the use of 
defined [101, 103] or undefined [45] maturation media.

Besides the addition of native DOs to the IVM system, OSFs can 
be investigated by direct supplementation of media with recombinant 
OSFs. When focusing on the improvement of existing IVP systems, 
the model of COCs with the addition of DOs can provide valuable 
basic information. Oocyte-secreted factors will be released by DOs 
and the addition of OSFs during IVM can be beneficial for oocyte 
developmental competence. The nature of these OSFs can be verified 
by using the experimental model of recombinant OSFs. Although this 
is a promising potential experimental plan, studies were faced with 
some practical obstacles. Bioassays with native OSFs faced technical 
issues concerning the collection of the necessary amount of material 
to conduct large-scale co-culture trials, even when using microdrops 
[17, 27, 101]. When applying recombinant OSF bioassays, research 
was obstructed because commercially available purified GDF9 and 
BMP15 preparations lacked their proregions [17], although research 
on and development of highly purified recombinant proteins including 
proregion-mature region interaction is ongoing [104–106]. Meanwhile, 
methods are being developed by which recombinant BMP15 is produced 
in 293T cells, and the majority of these recombinants consist of a 
non-covalent complex of the processed mature region bound to the 
corresponding proregion [107–110]. It is important to use these full-
length pro-mature protein forms to obtain an increase in developmental 
potential [53, 63, 111], since isolated mature domains of recombinant 
BMP15 and GDF9 seemed to be ineffective [112]. This is in line with 
the findings that pro-domains of TGF-β superfamily growth factors 
are necessary for correct protein conformation and the regulation of 
bioactivity [113]. To obtain an enhanced developmental competence of 
the oocyte, recombinant human BMP15 and GDF 9 should be added 
to the IVM medium in a concentration of 100 ng/ml [53, 63, 111]. 
Moreover, recent research focused on the interaction between GDF9 and 
BMP15 leading to the formation of a heterodimer called cumulin, which 
could explain the potent synergistic action of these two oocyte-specific 
growth factors on granulosa cells [114]. Recombinant heterodimeric 
complexes of pro/mature domains (pro-cumulin) and complexes of 
covalent mature domains (cumulin) are generated [114]. Both kinds of 

complexes activated SMAD2/3 and SMAD1/5/8 signaling pathways 
in granulosa cells, together with the proliferation and upregulation of 
genes associated with oocyte-regulated differentiation [114]. Although 
cumulin was more effective on granulosa cells, pro-cumulin stimulated 
better oocyte developmental competence in COCs [114]. Therefore, 
pro-cumulin can be considered as a potential additive during IVM to 
improve oocyte developmental competence [114].

Future Perspectives

The general use of cAMP-modulating agents and oocyte-
secreted factors

It can be concluded that maintaining high cAMP levels in porcine 
oocytes during the first 20–24 h of IVM enhances maturation of the 
oocyte, reflected in improved response after IVF and improved cumulus 
matrix disassembly. Practically, the use of cAMP modulating agents 
is not necessary (recommended) during the collection of porcine 
COCs. However, the addition of dbcAMP during the first period 
of IVM is strongly advised. To select only the high quality oocytes 
for further processing in IVP, COCs that adhered to the bottom of 
the culture dish after IVM, should be removed. Fundamentally, 
more research is necessary to reveal the exact mechanism by which 
cAMP levels are involved in the regulation and production of the 
ADAMTS-1 protein. More insight into the cAMP/ADAMTS-1 
pathway could possibly reveal more modulating opportunities. In 
parallel with the performed research on parathyroid in bones [90], 
other cAMP-modulating agents, such as forskolin could be tested 
for their influence on ADAMTS-1 levels in porcine cumulus cells. 
A detailed mapping of the different pathways by which ADAMTS-1 
production can be controlled in porcine cumulus cells will provide 
a better understanding of the fundamental upstream regulating 
mechanism of ADAMTS-1, and therefore may create opportunities 
to intervene in the process.

Regarding the practical use of OSFs in porcine IVP systems, most 
studies conclude that DO addition cannot be used as a practical tool 
to increase cumulus expansion, nuclear maturation, fertilization, and 
blastocyst formation. In the future, further fundamental research 
should be performed to investigate the nature of OSFs and elucidate 
the basic action of OSFs in pigs. Possible effects of DO-derived 
OSFs on gene expression (e.g., ovulation-related genes) in the 
cumulus cannot be eliminated and may be revealed in the future. 
The technical feasibilities hampering large-scale experiments when 
performing trials in the field of native OSF bioassays should also 
be considered. Several studies reported the technical limitations of 
bioassays with native OSFs, such as the collection of the necessary 
amount of material to conduct large co-culture trials, even when 
using micro drops [17, 27, 101]. To avoid problems in research, the 
obtained results on native OSF bioassays of this review and the issue 
of a very labor intensive protocol of DO production should be taken 
into account. Consequently, the use of recombinant OSFs may be a 
more expedient approach to study OSFs in pigs.

The combinational treatment with cAMP modulating agents 
and oocyte-secreted factors

More insight was gained the interaction between cAMP and OSFs 
regarding the modulation of maturation of small follicle-derived 
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oocytes. Research on this topic emphasized the important role of a 
functioning EGFR signaling pathway in the acquisition of oocyte 
developmental competence [53, 59, 115, 116]. This combinational 
treatment suggests the possibility of modifying and improving the 
developmental competence of developing oocytes. Moreover, EGF 
responsiveness of the cumulus cell compartment can possibly be 
considered as an indicator of the cumulus cell differentiation and 
possibly plays a central role in the acquisition of developmental 
potential [59]. Fundamentally, it would be interesting to investigate 
the possible interaction of cAMP with non-SMAD pathways, activated 
by BMP15 and GDF9 [117], to explain the influence on oocyte 
developmental potential [53].

Conclusion

This review discussed the bidirectional communication between 
oocytes and cumulus cells in the pig, at the level of cAMP dependent 
pathways and oocyte-secreted factors. The use of cAMP modulating 
agents during collection does not synchronize the germinal vesicle 
stages of porcine oocytes. However, the use of the cAMP-analog, 
dbcAMP, during the first 20–24 h of IVM leads to less polyspermy 
and results in a lower rate of adherent COCs due to elevated 
proADAMTS-1 levels in cumulus cells. Although cumulus cells 
can expand independently from the oocyte, oocytes enhance cumulus 
expansion through gap junctions and by affecting the medium. 
Nevertheless, co-culture with DOs during IVM does not affect 
fertilization parameters and the developmental competence of porcine 
COCs. Regarding the practical use of OSFs, direct supplementation 
of the IVM medium is advised especially in combination with the 
use of cAMP modulating agents (dbcAMP) during the first half of 
IVM to increase oocyte developmental competence after fertilization.
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