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Abstract 

The present work evaluates the hydrogen trapping behavior of different laboratory cast generic Fe-

C-Ti martensitic alloys. Titanium carbides were precipitated in the materials by well-designed heat 

treatments. A quenched and tempered martensitic matrix with final strength above 1000 MPa was 

aimed for and verified by means of hardness measurements. Tempering allowed generating 

precipitates with different characteristics in terms of coherency, size and distribution due to the 

secondary hardening effect, as was evaluated by transmission electron microscopy. The hydrogen 

trapping capacity of the TiC precipitates was investigated by thermal desorption spectroscopy, 

while melt extraction was performed to determine the amount of hydrogen present after cathodic 

hydrogen charging. Generally, it could be concluded that the incoherent particles in the quenched 

material were not able to trap hydrogen, whereas the quenched and tempered material trapped 

hydrogen at the interface of small probably coherent TiC. 

Introduction 

Recently, many industrial developments focus on steels with a tensile strength above 1000 MPa in 

order to fulfill the requirements desired by for instance the automotive industry to reduce for 

example emissions. Moreover, lowering the weight of vehicles is a crucial subject in order to reduce 

the polluting emissions. High strength steels are good candidates to meet these requests, but 

unfortunately these grades are more sensitive to hydrogen embrittlement (HE). Hydrogen embrittles 

materials and gives rise to an unpredictable failure, which can lead to catastrophic consequences. 

Carbides are often mentioned to have a positive effect in terms of HE, as these precipitates are able 

to trap hydrogen strongly, preventing it from reaching more damaging reversible trapping sites 

where they can initiate fracture. Nevertheless, a fundamental understanding of the role of carbides 

on HE susceptibility is lacking. Although, it is generally assumed that inhibiting diffusible 

hydrogen by introducing nano-carbides as hydrogen trap is one of the approaches to reduce the 

susceptibility to HE.  

Pressouyre et al. [1] investigated by means of the hydrogen permeation technique the behavior of 

hydrogen with TiC and determined an activation energy (Ea) about 95 kJ/mol, while Lee and Lee 

[2] studied the interaction of hydrogen with the matrix/precipitate interface of TiC inclusions in iron 

by thermal desorption spectroscopy (TDS) and obtained an Ea of 86.9 kJ/mol. Wei et al. [3] 

determined the Ea for hydrogen from the incoherent TiC particles in a 0.05C-0.22Ti-2.0Ni steel to 

be 85.7 kJ/mol, while in another steel (0.42C – 0.30 Ti) with larger incoherent TiC the Ea was about 

116 kJ/mol, whereas the coherent precipitates showed an Ea between 46 and 59 kJ/mol. 

Consequently, it could be assumed that the degree of coherence plays a crucial role. Pressouyre et 

al. [1] reported that coherent TiC are less effective as trap site compared to incoherent particles and 

that the Ea as trap increases with precipitate size. Similar conclusions were drawn by Lee et al. [4]. 
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Wei et al. [5] found that the amount of trapped hydrogen could be correlated to the size of the 

precipitate, suggesting that hydrogen is trapped at the TiC/matrix interface. This was later 

confirmed by the work of Takahashi et al. [6], who performed a direct observation of deuterium 

atoms trapped along the broad surfaces at TiC precipitates by using atom probe tomography.  

The aim of this work is to evaluate the trapping capacity of TiC precipitates in, on the one hand, a 

quenched material containing incoherent particles and, on the other hand, a quenched and tempered 

sample where many probably coherent TiC of about 3-5 nm are introduced. 

Experimental Procedure 

Three alloys with different carbon contents and stoichiometric amount of titanium were cast and 

processed at ArcelorMittal Global R&D Gent Center. The chemical compositions of the alloys are 

presented in Table 1. 

Table 1: Chemical compositions of the Fe-C-Ti materials. 

Alloy wt.% C wt.% Ti Other elements 
A 0.099 0.38 Al: 200-300 wt. ppm 

Other elements traces 
B 0.202 0.74 
C 0.313 1.34 

The materials were hot and cold rolled till 1 mm and further austenitized at 1250°C for one hour 

followed by water quenching. A tempering thermal treatment, as summarized in Fig.1, was 

performed in air in order to determine the optimum temperature at which secondary hardening, due 

to TiC precipitation, occurs.  

 
Figure 1: Schematized heat treatment used to detect secondary hardening peak. 

In order study the hydrogen interaction with the alloys, several equipments belonging to 

ArcelorMittal Global R&D Gent Center were used. To determine the hydrogen content, a melt 

extraction technique was used. The experimental details can be found elsewhere [7, 8]. 

Electrochemical charging was done for one hour using a 1 g/L thiourea 0.5 M H2SO4 based solution 

at a constant current density of 0.8 mA/cm². TDS analysis was performed as well in order to 

identify the hydrogen trapping sites and their Ea. The samples were charged identically and three 

different heating rates (200°C/h, 600°C/h and 1200°C/h) were used. The amount of released 

gaseous H2 at certain temperatures was recorded. In order to determine the Ea of hydrogen traps 

related to the peaks observed in the TDS spectra, the method based on the work of Lee et al. [9, 10, 

11] was used. Equation (1) is a simplification of the original formula of Kissinger [12]: 

 (d(ln(Φ/(Tmax
2
)))/(d(1/Tmax)) = - Ea/R 

Where  is the heating rate (K/min), Tmax (K) the TDS maximum peak temperature, Ea (J/mol) the 

activation energy for the specific H trap associated with Tmax and R (JK
-1

mol
-1

) the universal gas 

constant. After determining the corresponding peak temperatures for a trap, plotting ln(Φ/Tmax
2
)) vs. 

(1/Tmax) allows to obtain the Ea corresponding to that specific trap. 

 

(1) 
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Materials Characterization 

In this work, the focus will be put on alloy C and the optical microstructures of the quenched and 

quenched and tempered (600°C) condition are presented in Fig. 2. Further details can be found 

elsewhere [7]. Quenching resulted in a fully martensitic microstructure and the black dots presented 

in the matrix are most likely incoherent TiC carbides.  

 
Figure 2: Optical microscope images of alloy C in the quenched (left) and quenched and tempered 

at 600°C (right) condition. 

Results and Discussion 

The effect of tempering temperature on the hardness level is denoted in Fig. 3 (left), where the 

secondary hardening behavior can be clearly observed with a maximum hardness around 600°C. 

The as quenched samples’ hardness is rather similar at about 260 HV. This hardness is mainly 

determined by the amount of interstitial free carbon. The amount of free carbon as a function of the 

temperature can be calculated using a classical solubility product equation [13]. The results are 

represented in Fig. 3 (right). It can be concluded that for all the alloys, approximately 450 wt. ppm 

of carbon can be kept in solid solution at 1250°C for stoichiometric contents of Ti and C. Besides, 

the increasing variance between the materials when tempered can be attributed to the presence of a 

variable amount of large carbides from the processing which are able to pin the grain boundaries 

and hence impede grain growth, although further TEM analysis is suggested to demonstrate this. 

           
Figure 3: Effect of tempering temperature on Vickers Hardness, As Q - as quenched (left), mass 

fraction of Ti and C (ppm) vs. temperature (°C) that can be kept in solid solution at each 

temperature for stoichiometric total contents of C and Ti (right). 

A thorough microstructural study by means of TEM was further performed on alloy C in both the as 

quenched and the quenched and tempered condition, since the highest hardness level was achieved 

for this grade when tempered at 600°C for one hour. At higher temperatures the hardness decreases 

due to phenomena such as recovery, recrystallization, grain growth and coarsening of the carbides. 

A TEM image of the as quenched sample is presented in Fig. 4 (left), where the laths of the 

martensitic structure are clearly visible. Moreover, large carbides are found, which are most 

probably incoherent due to their size and formed before quenching the materials (Fig. 4 centre). The 
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average diameter of the carbides is about 366 nm. An Energy Dispersive X-ray (EDX) spectrum 

was taken in order to confirm the precipitates are indeed TiC [7]. A dark field TEM image of the 

sample which was tempered is shown in Fig. 4 (right) and further discussed elsewhere [7]. The 

numerous white spots could be assigned to small probably coherent TiC formed during tempering. 

EDX measurements were taken [7] and it could be concluded that TiC of about 2-5 nm are formed 

during the tempering process. This was also observed by Wei and Tsuzaki [5]. 

     

Figure 4: TEM bright field images of the quenched sample of alloy C (left) and of the TiC (centre), 

a dark field TEM image of the quenched and tempered material (600°C) (right) 

The results of the hydrogen melt extraction (charged or uncharged) are presented in Fig. 5.  

 
Figure 5: Melt extraction results for the three alloys as quenched (As Q) or quenched and tempered 

(Q&T) (600°C) in uncharged and hydrogen charged condition. 

In a martensitic structure, many hydrogen traps such as grain boundaries, dislocations, internal 

stress regions or free carbon are present. Since an equal amount of carbon is dissolved from the 

carbides during austenitizing for the three grades, a higher amount of incoherent carbides in the 

matrix is present when the initial carbon content rises. Around these carbides, lattice distortions are 

present which can be filled with hydrogen. The hydrogen content present in the uncharged samples 

is trapped in the material during its processing. Charging of the as quenched samples was effective 

and a higher amount of carbon lead to a considerable hydrogen uptake. Grain boundaries and high 

stress regions around the incoherent carbides are filled with hydrogen during cathodic charging. 

Chan [14] reported that the hydrogen content was drastically reduced when a martensitic structure 

was tempered and related this with a decrease in dislocation density during tempering. For the 

alloys of this study (cf. Fig. 5), although the dislocation density is expected to decrease with the 

tempering, the charged quenched and tempered samples trapped more hydrogen compared to the as 

quenched ones. This is probably due to the presence of small coherent carbides which are formed 

during secondary hardening and which can trap hydrogen at their interface with the matrix. The 

incoherent TiC, present in the as quenched condition, were not able to trap hydrogen 

electrochemically. Similar observations were seen by Wei and Tsuzaki [5] and Escobar [8]. 
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A thorough hydrogen related characterization by TDS was done on alloy C for both the as quenched 

and quenched and tempered condition. The TDS spectra at a heating rate of 600°C/h are 

respectively shown in Fig. 6 (left) and (right). 

 
Figure 6: TDS spectrum of alloy C in as quenched (left) and quenched and tempered (right) 

condition - at a heating rate of 600°C/h. 

No high temperature peak was observed, indicating that no hydrogen was irreversibly trapped up to 

600°C. Wei et al. [3] observed by TDS that hydrogen trapped at TiC particles can desorb at about 

150 °C, corresponding to an Ea of approximately 58 kJ/mol. This Ea is on the border between 

reversible and irreversible traps. Nevertheless, at room temperature, the incoherent TiC do not trap 

hydrogen during cathodic charging because the energy barrier is too high [5]. Gaseous charging at 

high temperature is required as described by Escobar et al. [8]. The Ea for the peaks, calculated as 

described previously, are summarized in Table 2. 

Table 2: Ea (with standard deviation out of three measurements) of the deconvoluted peaks of alloy 

C in the as Q and Q&T condition, 

Activation energy (kJ/mol) As quenched Quenched and tempered 

Peak 1 33 ± 2 39 ± 1 

Peak 2 - 29 ± 3 

Peak 3 - 32 ± 4 

The TDS spectrum of the quenched sample is deconvoluted into one peak corresponding to an Ea of 

33 kJ/mol, whereas the spectrum of the tempered sample can be deconvoluted into three peaks 

corresponding to 39, 29 and 32 kJ/mol. The first hydrogen desorption peak of both samples can be 

attributed to hydrogen trapped at the grain boundaries. The latter two peaks of the tempered sample 

have similar Ea’s and are assumed to be produced by the hydrogen trapped at the interface between 

the matrix and the coherent TiC carbides. An in-depth TEM investigation concerning the coherency 

is suggested to confirm this. 

Pressouyre and Bernstein [1] published that the TiC precipitates trap hydrogen more reversible 

when its coherence with the matrix is increased, leading to a lower Ea. The lower Ea compared to 

the results of Wei et al. [3, 5] can probably be related to the difference in coherency of the 

precipitates. Similar findings were obtained by E. Wallaert et al. [15] where a TDS evaluation of 

the hydrogen trapping of NbC precipitates was performed.  

Conclusions 

Three generic Fe-C-Ti alloys were cast and processed in order to obtain a high strength/hardness 

level and evaluate the effect of hydrogen trapping of TiC precipitates by TDS and melt extraction. 

Quenching and tempering was executed in order to fulfill the hardness requirements. The secondary 

hardening effect was at its optimum when the materials got tempered at 600°C. The precipitation of 

small probably coherent TiC was responsible for this behavior as demonstrated by a comparison of 

TEM analysis for both the quenched and the tempered materials. Incoherent large carbides of about 
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350 nm could be detected in the quenched material, whereas small TiC precipitates of 

approximately 2-5 nm were identified in the tempered sample. 

A hydrogen related characterization was executed in terms of melt extraction, where it could be 

observed that the quenched and tempered material was able to trap 3-6 wppm of hydrogen more 

than the quenched sample. This can also be correlated with the presence of small coherent TiC in 

the tempered grade. Furthermore, TDS analysis confirmed the obtained tendencies, since the 

tempered sample contained two extra hydrogen peaks compared to the quenched one, which could 

be attributed to hydrogen trapped in the interface between the small coherent precipitates and the 

matrix. 
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