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Abstract 

We report the design and synthesis of a series of non-nucleoside MtbTMPK inhibitors (1 

- 14) based on the gram-positive bacterial TMPK inhibitor hit compound 1. A practical synthesis 

was developed to access these analogues. Several compounds show promising MtbTMPK 

inhibitory potency and allow the establishment of a structure–activity relationship, which is 

helpful for further optimization. 

 

1. Introduction 

According to the global tuberculosis (TB) report in 2015, worldwide TB causes more deaths 

than any other disease caused by a single infectious agent. As a result, TB is ranked as the most 

lethal infectious disease on par with the human immunodeficiency virus HIV.1 It is estimated 

that one-third of the world population is infected with asymptomatic latent TB (LTBI), with 

around 10% lifetime risk of developing active TB. This is especially relevant for persons with a 

compromised immune system2 (one-third HIV deaths were due to TB in 20151). For drug-

susceptible active TB, treatment requires a standard 6 month course of 4 frontline drugs, which 

frequently results in poor treatment compliance. Moreover, due to the inappropriate treatment, 

multidrug-drug resistant (MDR) TB is now widespread (MDR-TB is defined as a rifampicin-

resistant form of TB that has additional resistance to isoniazid3). Mycobacterium tuberculosis 

strains of the Beijing lineage are responsible for the massive spread of MDR-TB in Eurasia.4 

Furthermore extensively drug-resistant (XDR) TB has been reported by 105 countries by the end 

of 2014 (XDR-TB is defined as a form of MDR-TB that does not respond to any fluoroquinolone 
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and at least one second-line injectable drug3). Therefore, there is an urgent need for effective and 

new TB drugs to shorten the treatment regime and cure MDR-TB and XDR-TB. 

Thymidylate kinase (TMPK, also called thymidine 5’-monophosphate kinase) phosphorylates 

thymidine 5’-monophosphate (dTMP) to thymidine 5’-diphosphate (dTDP) utilizing ATP as its 

preferred phosphoryl donor. The synthesis of dTDP is unique in that it requires TMPK, while 

other deoxynucleoside diphosphates are directly produced by ribonucleotide reductase. Further 

phosphorylation of dTDP gives thymidine triphosphate (dTTP), which is one of the building 

blocks of DNA. TMPKs are subdivided into two types based on the position of basic residues 

within the active site.5 Notably, M. tuberculosis TMPK (MtbTMPK) does not belong to type I 

nor to the type II enzyme, revealing its unique catalytic mechanism.6 Additionally, it also has a 

mere 22% sequence identity to human TMPK.5 Moreover, TMPK is the last specific enzyme for 

the synthesis of dTTP. Therefore, MtbTMPK inhibitors have the potential for being effective and 

selective anti-TB and anti-MDRTB drugs with low toxicity.  

The current MtbTMPK inhibitors can be categorized into two types:  thymine-like inhibitors 

and non-thymine-like inhibitors. The thymine-like inhibitors can be further subdivided into 

nucleoside and non-nucleoside inhibitors. The nucleoside family is mainly composed of 

thymidine analogues with modifications at position 5 of the thymine base7 and at the 3’- and/or 

5’-positions of the sugar ring,8 which give Ki values in the low micromolar range and poor anti-

bacterial activity.9 In the non-nucleoside family, most of the analogues still bear the thymine 

heterocyclic head with either an acyclic tail10 or a substituted benzyl at the N-1 position of the 

thymine ring.11 Some inhibitors of this family have submicromolar Ki values (Figure 1).12 Two 

recently discovered 3-cyanopyridone and 1,6-naphthyridin-2-one MtbTMPK inhibitors that show 

nanomolar inhibitory activity have a non-thymine-like structure.13 
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Compared to the well-explored nucleoside family, non-nucleoside MtbTMPK inhibitors 

warrant further investigation particularly since some of them offer promising antimycobacterial 

activity, e.g. the sulfoxide- and sulfone-containing cyanopyridone derivatives.13  

Figure 1. Representative MtbTMPK inhibitors 

 

In 2012, gram-positive bacterial TMPK inhibitors with picomolar activity were reported and 

further optimization of their physico-chemical properties and pharmacokinetics afforded a class 
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of promising antibacterial agents.14 Since no evaluation of these analogues on MtbTMPK was 

reported, we set out to resynthesize compound 1, which featured as the parent inhibitor for lead 

generation, and found it to be a fairly potent MtbTMPK inhibitor (Ki = 1.5 µM), comparable 

with the most potent nucleoside MtbTMPK inhibitors.9   

Encouraged by this result, we decided to further investigate its SAR (Figure 2). We first 

changed the configuration of the lipophilic biaryl ether from the meta- to para-position of the 

internal phenyl group (compound 2). In order to explore the chiral preference of the enzyme, the 

pure enantiomers of 1 and compound 2 (compounds 3-6) were prepared. In two more analogues 

(7 and 8) the piperidine ring was substituted for a pyrrolidine ring. To explore the effect of 

additional distance and flexibility between the thymine and piperidinyl or pyrrolidinyl rings, 

analogues having a methylene linkage inserted between these heterocycles (9-12) were prepared. 

In two final analogues (13 and 14) the tertiary amine was replaced with a tertiary amide in order 

to investigate the importance of the positively charged nitrogen on the piperidine ring. Based on 

the established X-ray crystal structure of MtbTMPK, we performed molecular modeling studies 

on these piperidinyl thymine analogues in order to better understand the observed SAR and to 

shed light on further modifications.  
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Figure 2. Overview of non-nucleoside thymine derivatives synthesized in this study. 

 

2. Results and Discussion 

2.1.Chemistry 

In the original synthesis of the hit compound 1,14 the key intermediate 15 is prepared 

using the highly moisture-sensitive isocyanate species 17, which was obtained from methyl 

methacrylate using a potentially hazardous multi-step synthesis.15 In order to access intermediate 

15 by an easier and safer means, alternative synthetic routes were explored. According to 

Rejman and coworkers,15 there are two alternative methods for the synthesis of the 1-(piperidin-

3-yl)thymine 15 in addition to the cyclization between substituted isocyanate 17 and primary 

amine 16 mentioned above. The first method connects the piperidine and thymine rings using a 

Mitsunobu reaction, the second one involves an alkylation reaction (Scheme 1).16 
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In the Mitsunobu reaction, thymine can react as an ambident nucleophile yielding a 

mixture of N- and O-linked isomers. Therefore, the N3-position of thymine was protected with a 

benzoyl- (Bz-, 19) or a benzyloxymethyl- (BOM-, 20) as to avoid formation of the N3-

regioisomer.17 Despite using the conditions for the Mitsunobu reaction as recommended by 

Rejman and coworkers,16 no product was obtained. Further attempts to optimize the reaction 

conditions proved fruitless. 

 

Scheme 1. Three routes towards piperidinylthymine: isocyanate based pyrimidine synthesis, 
Mitsunobu reaction and alkylation using a mesylate  

The alkylation reaction between thymine and mesylate (21)18 is typically performed at high 

temperature (e.g., 100  or 120 ) under basic condition (NaH or Cs2CO3) with the best 

obtained yield being 15%.16 In an attempt to increase the yield of the alkylation, a first trial was 

conducted using N3-Bz-thymine (1917) and cesium carbonate. Since compound 19 was 

hydrolyzed back to thymine under the reaction conditions, we switched to N3-BOM-protected 
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thymine (20), which gave similar yields with cesium carbonate (21% and 16% at 100  and 

130 , respectively). A commonly observed feature of the alkylation reaction under these 

conditions was the large amount of unreacted thymine in the reaction mixture. A possible reason 

was the elimination of mesylate (21) into compounds 22 and 23 at high temperature (Scheme 2). 

Based on these observations we could eventually raise the yield of product 25 substantially (to 

51%) by lowering the reaction temperature to 80  with portionwise addition of the mesylate 

(21) and base (K2CO3) over the course of the reaction (4 days).19  

 

Scheme 2: Alkylation of N3-protected thymine using piperidinylmesylates 

 

The alkylation of compound 20 with the azacyclic mesylates (21 and 26 - 31) provided the 

Boc-protected intermediates, which could be deprotected to give the required secondary amine 

intermediates (34 and 32-38). Next, reductive amination with aromatic aldehydes gave the N3-

BOM-protected products, which were directly deprotected with TFA at 72  to afford the final 

products 1 - 12.20 The alkylation reaction was found to occur mostly by the SN2 nucleophilic 

substitution reaction, which was demonstrated by chiral purity analysis (cf. experimental part and 

supplementary information). 

For the synthesis of piperidinylamide analogues, corresponding aromatic carboxylic acids 

were condensed to 34, followed by hydrogenolysis to provide the final products 13 and 14 
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alongside their corresponding hemiaminals 13a and 14a, which could be further hydrolyzed to 

the final products (Scheme 3).  
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Scheme 3. Synthesis of piperidinyl- and pyrrolidinylthymine MtbTMPK inhibitors. Reagents 

and conditions: (a) i) K2CO3, dry DMF, 80 , overnight (compound 37 and 38), 24 h 

(compound 32 and 33), 4 days (compound 34 - 36); ii) 10% TFA/ CH2Cl2, 2 h - 4 h, rt; (b) i) 

substituted aromatic aldehydes, NaBH(OAc)3, rt, overnight; ii) TFA, 72 , 30 min – 1 h; (c) i) 

EDC, 4-DMAP, dry CH2Cl2, overnight; ii) H2, Pd/C, EtOH, 6 h, rt. (d) THF/H2O, rt, 4 h.  

2.2 Biological evaluation and structure-activity relationship (SAR) 

The inhibitory potency of compounds (1 - 14) was evaluated on MtbTMPK catalytic activity 

(determination of the inhibitory constant Ki) and the results are summarized in Table 1. 
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Table 1. Inhibition of MtbTMPK with non-nucleoside thymine derivatives 

 

Compound m n R Stereochemistry Ki (µM) 

1 2 0 R1 racemic 1.5 ± 0.4 

2 2 0 R2 racemic 22.3 ± 0.6 

3 2 0 R1 R 8.8 ± 0.3 

4 2 0 R2 R 138.5 ± 9.2 

5 2 0 R1 S 0.8 ± 0.1 

6 2 0 R2 S 21.5 ± 2.4 

7 1 0 R1 R 8.2 ± 0.8 

8 1 0 R1 S 7.8 ± 1.4 

9 2 1 R1 racemic 186.3 ± 24.3

10 2 1 R2 racemic NI at 0.2 mM

11 1 1 R1 racemic 110.7 ± 9.0 

12 1 1 R2 racemic 267.3 ± 25.4

13 2 0 R1 racemic 2.1 ± 0.3 

14 2 0 R2 racemic 14.4 ± 2.5 

A clear trend emerges in that the potency of the analogues with the meta-biphenyl ether tail is 

typically approximately 15-fold higher than that of their para-substituted congeners (comparing 

pairs 1/2, 3/4, 5/6). For the piperidinyl thymine analogues (comparing pairs 3/5 and 4/6), the S-

enantiomers were about 10-fold more potent than the R-enantiomers, and offered the most 

effective compound 5 (Ki = 0.8 µM) in this series. This trend was less pronounced in the 

pyrrolidin-3-ylthymine analogues (compound 7 and 8). Additionally, these pyrrolidine analogues 
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are less potent than their piperidinyl counterparts (cf. couples 5/8 and 3/7). Introduction of the 

methylene linker greatly impaired inhibitory potency (cf. pairs 1/9, 2/10), which indicates that 

the saturated azacycle should be connected directly to the thymine ring. Although there is no 

benefit from the substitution of the amide moiety (cf. pairs 1/13 and 2/14), bioisosteres of the 

amide could be probed as a further modification. Compound 5 was found to show promising 

activity against a Mtb H37Ra strain (MIC = 0.9 µM or 0.35 µg/mL) and a selectivity index of 35 

versus MRC-5 cells. 

To assess the binding mode of these thymine analogues, docking of the piperidinyl thymines 3, 

5 and 6, the pyrrolidinyl thymine 8 and both enantiomers of amide 13 was performed. The 

typical interactions found between the nucleobase of dTMP and MtbTMPK are likely to be 

conserved with compound 55: (1) π-π stacking between the pyrimidine ring and Phe-70; (2) two 

hydrogen bonds between the O4-thymine and Arg-74; (3) a hydrogen bond between Asn-100 

and the N3-thymine ring. Moreover, one extra hydrogen bond is formed through the oxygen of 

the meta-biphenyl ether and Arg-95 (Figure 3), which may contribute to the higher affinity for 

the enzyme. The docking results indicate that none of the other compounds can form more polar 

interactions with the enzyme (Figure 4). The thymine ring of compound 3 forms similar 

interactions as compound 5 (with the Arg-74 and Asn-100 residues), but the meta-biphenyl ether 

of 3 lacks a hydrogen bond interaction with the enzyme, which may explain the inferior 

inhibitory potency of this R-enantiomer. Similar differences are also observed for compound 6 

and 8, implying that the meta-biphenyl ether tail and piperidine ring are superior to the para-

substituted biphenyl ether tail and pyrroline ring, respectively. It is noteworthy that the aromatic 

tail of 3 is surrounded by residues Ala-35, Phe-36, Pro-37, Tyr 39, Asp-94, Arg-95 and Arg-160, 

which stabilize binding by hydrophobic interactions. Adding functional groups to this aromatic 
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tail may further increase interactions with those residues. Docking of the two enantiomers of 

compound 13 into MtbTMPK, indicates that the R-enantiomer may occupy a similar pose as the 

other inhibitors, while the S-enantiomer shows a completely different interaction with the 

enzyme resulting in a lower docking score (Figure 4). Considering the promising inhibitory 

activity of the racemate 13, it may be interesting to investigate the inhibitory potency of the pure 

enantiomers in the future.  

 

Figure 3. Compound 5 (green stick) docked in the active site of MtbTMPK. All residues 

interacting with the inhibitors including hydrophobic contact (dark gray wire) and hydrogen-

bonding interaction (residues in yellow wire, hydrogen bonds indicated in pink) were calculated 

using Ligplot21. Illustration was created using Chimera22. 
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Figure 4. Two-dimensional representation for the interacting mode of compound 3, 5, 6, 8 

and 13 with MtbTMPK; it is created using the Ligplot21 program. 

 

Conclusion 

Inspired by the published Gram-positive bacterial TMPK inhibitor 1, we described the design 

and synthesis of a new series of non-nucleoside MtbTMPK inhibitors. A convenient and less 
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hazardous synthetic method for 1-substituted azacyclo-thymine analogues has been developed. 

By exploring different scaffolds, we have demonstrated that there are several spatial 

requirements with respect to the connection between the thyminyl and piperidinyl ring. First, 

analogues with S-stereochemistry were found to be superior inhibitors of MtbTMPK compared to 

their enantiomers. Furthermore, piperidinyl analogues have been shown to have a higher potency 

compared to their pyrrolidinyl counterparts. Additionally, the docking model suggests it is 

favourable to introduce functional groups to the meta-biphenyl ether tail. For compounds with 

amide moiety, more attention needs to be paid to the pure enantiomers. Finally we came to the 

conclusion that the best scaffold of this series is the known S-enantiomer (compound 5)14a and 

future efforts should be focused on piperidinyl thymine analogues with S-stereochemistry 

combined with a meta-substituted biphenyl ether tail. 

 

4. Experimental section 

4.1. Spectrophotometric binding assay 

Activity was determined as described in Blondin et al.23 Using a coupled spectrophotometric 

assay at 334 nm in an Eppendorf ECOM 6122 photometer. The reaction medium (0.5 ml final 

volume) contained 50 mM Tris-HCl pH 7.4, 50 mM KCl, 2 mM MgCl2, 0.2 mM NADH, 1 mM 

phosphoenol pyruvate and 2 units each of lactate dehydrogenase, pyruvate kinase and nucleoside 

diphosphate kinase. One unit of enzyme activity corresponds to 1 mole of the product formed in 

1 min. at 30°C. The concentrations of ATP and dTMP were kept constant at 0.5 mM and 0.05 

mM respectively, whereas the concentrations of analogues varied between 0.01 and 1 mM. 

4.2 Biological Assays on Mycobacterium tuberculosis 
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4.2 Biological Assays on Mycobacterium tuberculosis 

The Minimal Inhibitory Concentration (MIC) against mycobacteria was evaluated by serial 

dilution method. The in vitro assay was based on a method in which a luminescent 

Mycobacterium tuberculosis H37Ra strain Lehmann &Neumann (ATCC® 25177™) 

transformed with pSMTB1 luciferase reporter plasmid is used. The tested compound was 

solubilized in DMSO (Sigma-Aldrich) at stock concentration of 10 mM. Serial dilutions were 

made in liquid 7H9 medium [Middlebrook 7H9 broth based (Difco)] with 10% oleic acid, 

albumin, dextrose, catalase (OADC) enrichment. Volumes of 20 µL of the serial dilutions were 

added in triplicate to 96 well, flat-bottomed micro well plates. The bacterial suspension was 

made by thawing and dissolving a frozen Mycobacteria pellet in 7H9-10% OADC. The dissolved 

pellet was passed through a 5.0 µM filter (Millipore) to eliminate clumps and left for 1 hour to 

recover at 37 °C, 5% CO2. Next, the bacterial suspension was diluted in 7H9-10% OADC to 

obtain 50,000 Relative Light Units (RLU)/mL and a volume of 180 µL of bacteria was added to 

each well. A bacterial replication was analyzed by luminometry after 7 days of incubation. The 

bacterial suspension from each well was collected and transferred to a black 96-well plate to 

evade cross luminescence between wells. The luminescent signal was evoked by addition of the 

substrate for the bacterial luciferase, 1% n-decanal in ethanol to each well by the Discover multi-

plate reader from Promega and the light emission in each well was measured. 

 

4.3 Molecular modeling 

All molecular modeling calculations were performed using the software packages AutoDock 4.2 

on Windows Cygwin and AutodockTools-1.5.6.24 The previously reported X-ray structure of the 
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MtbTMPK (PDB entry 1G3U)5 was used in all docking experiments. The 2D chemical structures 

and PDB files of the ligands were drawn and created using ChemBioDraw 13. The PDBQT file 

of ligands and receptor were prepared by AutodockTools-1.5.6, which includes atomic partial 

charges, atom types and the information of the ligand torsional degrees. For the docking, a 

default grid spacing of 0.375 Å and 60 × 60 × 60 number of grid points were used, which 

centered the box on the active site of MtbTMPK (e.g. the typical π-π stacking between Phe-70 

and thymine ring of the ligand)9. The Genetic Algorithm-Local Search (GA-LS) method was 

adopted using default settings. 50 possible conformations were generated by Autodock 4.2 for 

each docking. A manual selection procedure combining visual inspection in Chimera guided by 

the Ligplot analysis together with the predicted free energy found for each conformation was 

used to validate the docked conformations. 

 

 

4.2. Chemical synthesis 

General: Solvents were purchased from standard commercial sources and of analytical grade. 

Building blocks and reagents were used as received without any further purification. TLC 

analysis was performed using precoated Alugram Silica Gel F254 plates (Machery-Nagel). Spots 

were examined under ultraviolet light at 254 nm. Column chromatography was carried out on a 

Reveleris X2 (Grace) automated flash unit using the corresponding disposable silica gel 

cartridges. 1H and 13C NMR spectra were recorded in CDCl3 or DMSO-d6 on a Varian Mercury 

300/75 MHz spectrometer. Chemical shifts are given in parts per million (ppm δ), δ relative to 

residual solvent peak or TMS for 1H and 13C. Structural assignment was confirmed with COSY, 
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HSQC and HMBC. Exact mass measurements (HRMS) were performed on a Waters LCT 

Premier XETM Time of flight (TOF) mass spectrometer equipped with a standard electrospray 

ionization (ESI) and modular LockSpray TM interface. Samples were infused in a CH3CN/H2O 

(1:1) mixture at 100 µL/min. Preparative reversed phase HPLC chromatography was carried out 

using a Phenomenex Luna C-18 (21.2x250mm) column using an aq. NH4HCO3/MeCN gradient. 

Chiral analysis was carried out with a Daicel Chiralpak-IA HPLC column or a Daicel Chiralcel-

ODH HPLC column using hexane/ethanol 80:20 as eluent. Both columns, dimensions 

4.6x250mm, 5µm particle size, were used at 35°C. 

4.2.1. 3-((benzyloxy)methyl)-5-methyl-1-(piperidin-3-yl)pyrimidine-2,4(1H,3H)-dione (34): A 

suspension of 3-((benzyloxy)methyl)-5-methylpyrimidine-2,4(1H,3H)-dione (20, 1.06 g, 4.3 

mmol), tert-butyl 3-((methylsulfonyl)oxy)piperidine-1-carboxylate (21, 1.80 g, 6.45 mmol) and 

potassium carbonate (1.19 g, 8.6 mmol) in dry DMF (10 mL) was stirred at 80  for 48 h under 

argon. Additional 21 (1.20 g, 4.3 mmol) and potassium carbonate (0.60 g, 4.3 mmol) were added 

to the reaction mixture and the mixture was stirred at 80  for 24 h. Additional 21 (1.20 g, 4.3 

mmol) and potassium carbonate (0.60 g, 4.3 mmol) were added and the mixture was stirred at 

80°C another 24 h. After cooling to room temperature, the reaction mixture was diluted with 

CH2Cl2 (100 mL), following by washing with water (100 mL) and brine (100 mL). The organic 

layer was dried over sodium sulfate. After evaporation, the residue was purified by column 

chromatography (50% hexane/ethyl acetate) to give the intermediate which was dissolved with 

CH2Cl2 (20 mL), and TFA (2 mL) was added to the solution. The reaction mixture was stirred at 

room temperature for 3 h, followed by evaporation in vacuo. The residue was dissolved in sat. 

NaHCO3 solution (30 mL) and extracted with CH2Cl2 (50 mL × 3). The combined organic layers 

were washed with brine (50 mL × 2) and dried over sodium sulfate. The water layer can be re-
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extracted again if the product is found by TLC. After evaporation, the residue was purified by 

column chromatography (0.1% Et3N/4%MeOH/ CH2Cl2) to afford the desired product 34 as 

colorless gel (0.60 g, 42.4%). 1H NMR (300 MHz, DMSO-d6) δ: 1.60 - 2.02 (m, 7H, 5-CH3, 

piperidin-4-yl and piperidin-5-yl), 2.49 (br. s., 1H, NH), 2.55 - 2.66 (m, 1H, piperidin-6a-yl), 

2.73 (dd, J = 12.01, 10.25 Hz, 1H, piperidin-2a-yl), 2.99 - 3.10 (m, 1H, piperidin-6b-yl), 3.19 (dd, 

J = 11.86, 2.78 Hz, 1H, piperidin-2b-yl ), 4.50 (ddd, J = 10.47, 6.52, 4.10 Hz, 1H, piperidin-3-yl), 

4.71 (s, 2H), 5.51 (s, 2H), 7.18 (d, J = 1.17 Hz, 1H, 3-CH3), 7.21 - 7.41 (m, 5H, Ph). 13C NMR 

(75 MHz, CDCl3) δ: 14.21 (5-CH3), 27.00 ( piperidin-5-yl), 30.55 (piperidin-4-yl), 46.66 

(piperidin-6-yl), 51.06 (piperidin-2-yl), 54.50 (piperidin-3-yl), 71.81 (CH2, benzyloxy), 73.23 (3-

methyl), 110.67 (C-3) 128.53 (Ph), 128.58 (2C, Ph), 129.20 (2C, Ph), 136.76 (C-6), 139.06 (Ph), 

152.50 (C-2), 164.25 (C-4). HRMS (ESI): calculated for [C18H23N3O3 + H]+ , 330.1812; found, 

330.1809. The R/S-enantiomers (compound 35 and 36) were synthesized as described above. 

The yield of compound 35 and 36 is 38.9% and 41.3% respectively. 

4.2.2 General procedure for synthesis of compound 32, 33, 37 and 38. 

A suspension of 3-((benzyloxy)methyl)-5-methylpyrimidine-2,4(1H,3H)-dione (20, 1 eq), N-

Boc-protected mesylates (1.1 eq - 2 eq), potassium carbonate (1.5 eq - 2 eq) was stirred at 80  

overnight (compound 37 and 38) or 24 h (compound 32 and 33) under argon. The work-up 

procedure as well as the second step were performed as has been described for the synthesis of 

compound 34. 

 4.2.2.1 (R)-3-((benzyloxy)methyl)-5-methyl-1-(pyrrolidin-3-yl)pyrimidine-2,4(1H,3H)-dione (32): 

3-((benzyloxy)methyl)-5-methylpyrimidine-2,4 (1H,3H)-dione (20, 0.72g, 2.92 mmol), tert-butyl 

(S)-3-((methylsulfonyl)oxy)pyrrolidine-1-carboxylate (26, 1.55 g, 5.84 mmol) and potassium 
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carbonate (0.81g, 5.84 mmol) yielded compound 32 as a colorless gel (0.53 g, 57.2%). 1H NMR 

(300 MHz, CDCl3) δ: 1.77 - 1.98 (m, 4H, 5-CH3, pyrrolidin-4a-yl), 2.26 – 2.43 (m, 1H, 

pyrrolidin-4b-yl), 2.89 - 3.12 (m, 2H, pyrrolidin-2a-yl, pyrrolidin-5a-yl), 3.17 (br. s., 1H, NH), 

3.23 - 3.38 (m, 2H, pyrrolidin-2b-yl, pyrrolidin-5b-yl), 4.70 (s, 2H, CH2, 3-methylene), 5.00 - 

5.13 (m, 1H, pyrrolidin-3-yl), 5.50 (s, 2H, CH2, benzyl), 7.13 - 7.44 (m, 6H, Ph, H-6). 13C NMR 

(75 MHz, CDCl3) δ: 13.14 (5-CH3), 31.51 (pyrrolidin-4-yl), 46.15 (pyrrolidin-5-yl), 51.21 

(pyrrolidin-2-yl), 56.30 (pyrrolidin-3-yl), 70.74 (3-methylene), 72.25 (CH2, benzyl), 110.63 (C-

5), 127.60 (3C, Ph), 128.21 (2C, Ph), 136.74 (C-6), 137.96 (Ph), 151.54 (C-2), 163.33 (C-4). 

HRMS (ESI): calculated for [C17H21N3O3 + H]+ , 316.1656; found, 316.1651. 

4.2.2.2 (S)-3-((benzyloxy)methyl)-5-methyl-1-(pyrrolidin-3-yl)pyrimidine-2,4(1H,3H)-dione (33): 

3-((benzyloxy)methyl)-5-methylpyrimidine-2,4 (1H,3H)-dione (20, 1.45g, 6 mmol), tert-butyl 

(R)-3-((methylsulfonyl)oxy)pyrrolidine-1-carboxylate (27, 3.18 g, 12 mmol) and potassium 

carbonate (1.66 g, 12 mmol) yielded compound 33 as a colorless gel (0.96 g, 50.8%). 1H NMR 

(300 MHz, CDCl3) δ 1.73 -1.87 (m, 1H, pyrrolidin-4a-yl), 1.92 (d, J = 1.17 Hz, 3H, 5-CH3), 2.26 

- 2.41 (m, 1H, pyrrolidin-4b-yl), 2.89 - 3.09 (m, 2H, pyrrolidin-2a-yl, pyrrolidin-5a-yl), 3.19 - 

3.32 (m, 2H, pyrrolidin-2b-yl, pyrrolidin-5b-yl), 4.70 (s, 2H, CH2, 3-methylene), 5.01 - 5.11 (m, 

1H, pyrrolidin-3-yl), 5.50 (s, 2H, CH2, benzyl), 7.20 - 7.40 (m, 6H, Ph, H-6). 13C NMR (75 MHz, 

CDCl3) δ: 13.32 (5-CH3), 31.87 (pyrrolidin-4-yl), 46.37 (pyrrolidin-5-yl), 51.70 (pyrrolidin-2-yl), 

56.40 (pyrrolidin-3-yl), 70.89 (3-methylene), 72.38 (CH2, benzyl), 110.64 (C-5), 127.75 (3C, Ph), 

128.36 (2C, Ph), 136.89 (C-6), 138.16 (Ph), 151.70 (C-2), 163.54 (C-4). HRMS (ESI): calculated 

for [C17H21N3O3 + H]+ , 316.1656; found, 316.1650. 

4.2.2.3. 3-((benzyloxy)methyl)-5-methyl-1-(pyrrolidin-3-ylmethyl)pyrimidine-2,4(1H,3H)-dione 

(37): 3-((benzyloxy)methyl)-5-methylpyrimidine-2,4 (1H,3H)-dione (20, 1.5 mmol, 0.52 g), tert-
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butyl 3-(((methylsulfonyl)oxy)methyl)pyrrolidine-1-carboxylate (30, 0.63 g, 2.25 mol,) and 

potassium carbonate (0.42 g, 3 mmol) yielded compound 37 as a colorless gel (0.29 g, 58.3%). 

1H NMR (300 MHz, CDCl3) δ: 1.54 (dd, J = 13.91, 6.59 Hz, 1H, pyrrolidin-4a-yl), 1.88 - 1.99 

(m, 4H, 5-CH3, pyrrolidin-4b-yl), 2.58 - 2.69 (m, 1H, pyrrolidin-3-yl), 2.77 (dd, J = 11.13, 5.86 

Hz, 1H, pyrrolidin-2a-yl), 2.97 - 3.17 (m, 3H, pyrrolidin-2b-yl, pyrrolidin-5-yl), 3.26 (br. s., 1H, 

NH), 3.71 (dd, J = 7.62, 2.93 Hz, 2H, CH2, 1-methylene), 4.71 (s, 2H, CH2, benzyl), 5.50 (s, 1H, 

CH2, 3-methylene), 7.08 (d, J = 1.17 Hz, 1H, H-6), 7.21 - 7.40 (m, 5H, Ph). 13C NMR (75 MHz, 

CDCl3) δ: 13.14 (5-CH3), 29.64 (pyrrolidin-4-yl), 38.74 (pyrrolidin-3-yl), 46.10 (pyrrolidin-5-yl), 

50.00 (pyrrolidin-2-yl), 52.37 (1-methylene), 70.84 (3-methylene), 72.38 (CH2, benzyl), 110.12 

(C-5), 127.76 (3C, Ph), 128.39 (2C, Ph), 138.16 (Ph), 139.41 (C-6), 151.85 (C-2), 163.82 (C-4). 

HRMS (ESI): calculated for [C18H23N3O3 + H]+ , 330.1812; found, 330.1810. 

4.2.2.4 3-((benzyloxy)methyl)-5-methyl-1-(piperidin-3-ylmethyl)pyrimidine-2,4(1H,3H)-dione 

(38): 3-((benzyloxy)methyl)-5-methylpyrimidine-2,4(1H,3H)-dione (20, 0.52 g, 2.1 mmol), tert-

butyl 3-(((methylsulfonyl)oxy)methyl)piperidine-1-carboxylate (31, 0.66 g, 2.25 mmol) and 

potassium carbonate (0.44 g, 3.15 mmol) yielded compound 38 as colorless gel (0.26 g, 36%). 1H 

NMR (300 MHz, CDCl3) δ: 1.12 - 1.30 (m, 1H, piperidin-4a-yl), 1.53 - 1.84 (m, 3H, piperidin-

4b-yl, piperidin-5-yl), 1.87 - 1.95 (d, J = 1.17 Hz, 3H, 5-CH3), 2.11 (dtd, J = 13.73, 6.68, 6.68, 

3.37 Hz, 1H, piperidin-3-yl), 2.49 (dd, J = 12.30, 9.96 Hz, 1H, piperidin-2a-yl), 2.67 (td, J = 

11.64, 3.08 Hz, 1H, piperidin-6a-yl), 3.03 - 3.17 (m, 2H, piperidin-2b-yl, piperidin-6b-yl), 3.49 

(br. s., 1H, NH), 3.52 - 3.72 (m, 2H, 1-methylene), 4.69 (s, 2H, CH2, benzyl), 5.48 (s, 2H, CH2, 

3-methylene), 6.97 (d, J = 1.17 Hz, 1H, H-6), 7.19 - 7.38 (m, 5H, Ph). 13C NMR (75 MHz, 

CDCl3) δ: 13.12 (5-CH3), 24.01 (piperidin-5-yl), 27.88 (piperidin-4-yl), 35.49 (piperidin-3-yl), 

45.90 (piperidin-6-yl), 48.75 (piperidin-2-yl), 52.19 (1-methylene), 70.90 (3-methylene), 72.41 
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(CH2, benzyl), 110.16 (C-5), 127.78 (Ph), 127.81 (2C, Ph), 128.40 (2C, Ph), 138.10 (Ph), 139.46 

(C-6), 151.91 (C-2), 163.80 (C-4). HRMS (ESI): calculated for [C19H25N3O3 + H]+ , 344.1969; 

found, 344.1973. 

4.2.3 General procedure for the synthesis of final compounds 1 - 12.  

A suspension of compound 32 - 38 (1 eq), substituted aromatic aldehyde (1.5 – 2 eq) and sodium 

triacetoxyborohydride (1.5 – 3 eq) in 1,2-dichloroethane (~ 0.03 M) was stirred at room 

temperature under argon overnight. The reaction mixture was evaporated and dried with oil 

pump vacuum for 0.5 h. The residue was purified by silica chromatography (CH2Cl2→90% 

CH2Cl2/MeOH in a linear gradient elution) to afford pure intermediate, which was immediately 

dissolved with TFA under argon. The reaction mixture was stirred at 72  for 30 min to 1 h. The 

reaction was monitored by HRMS. After cooling to room temperature, the reaction mixture was 

concentrated and dried under oil pump vacuum. The residue was dissolved in an equivolumar 

mixture of MeCN/t-BuOH/H2O (1 – 2 mL) and purified by preparative liquid chromatography 

(Phenomenex Luna C-18 (21.2x250mm), flow rate 17.5 mL/min) using a linear gradient from 10% 

MeCN-90% aq. 10 mM ammonium bicarbonate →  100% MeCN over 20 min. After 

lyophilization, products 1 – 12 were obtained as a white powder.  

4.2.3.1 5-methyl-1-(1-(3-phenoxybenzyl)piperidin-3-yl)pyrimidine-2,4(1H,3H)-dione (1): 

Following the general procedure, the use of 3-((benzyloxy)methyl)-5-methyl-1-(piperidin-3-

yl)pyrimidine-2,4(1H,3H)-dione (34, 85.64 mg, 0.26 mmol), 3-phenoxybenzaldehyde (77.31 mg, 

0.39 mmol) and sodium triacetoxyborohydride (110.22 mg, 0.52 mmol) yielded compound 1 

(28.9 mg, 28.4%). 1H NMR (300 MHz, DMSO-d6) δ: 1.45 - 1.78 (m, 7H, 5-CH3, piperidin-4-yl, 

piperidin-5-yl), 1.97 - 2.24 (m, 2H, piperidin-2a-yl, piperidin-6a-yl), 2.64 - 2.80 (m, 2H, 
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piperidin-2b-yl, piperidin-6b-yl), 3.51 (s, 2H, CH2, 1-benzyl), 4.29 - 4.46 (m, 1H, piperidin-3-yl), 

6.89 (d, J = 8.20 Hz, 1H, Ph), 6.94 - 7.17 (m, 5H, Ph), 7.29 - 7.43 (m, 3H, Ph), 7.70 (s, 1H, H-6) 

11.20 (s, 1H, NH). 13C NMR (75 MHz, DMSO-d6) δ: 12.04 (5-CH3), 23.87 (piperidin-5-yl), 

27.90 (piperidin-4-yl), 50.98 (piperidin-3-yl), 52.13 (piperidin-6-yl), 56.16 (piperidin-2-yl), 

61.39 (CH2, 1-benzyl), 108.61 (C-5), 117.25, 118.55, 118.67, 123.39, 123.84, 129.81, 130.03 (7C, 

Ph), 137.96 (C-6), 140.34 (Ph), 150.80 (C-2), 156.62 (Ph), 163.62 (C-4). HRMS (ESI): 

calculated for [C23H25N3O3 + H]+, 392.1969; found: 392.1972. 

4.2.3.2 5-methyl-1-(1-(4-phenoxybenzyl)piperidin-3-yl)pyrimidine-2,4(1H,3H)-dione (2): 

Following the general procedure the use of 3-((benzyloxy)methyl)-5-methyl-1-(piperidin-3-

yl)pyrimidine-2,4(1H,3H)-dione (34, 82.70 mg, 0.251 mmol), 4-phenoxybenzaldehyde (74.70 

mg, 0.377 mmol) and sodium triacetoxyborohydride (106.4 mg, 0.501 mmol) yielded compound 

2 (29.48 mg, 30.0%). 1H NMR (300 MHz, DMSO-d6) δ: 1.46 - 1.63 (m, 1H, piperidin-5a-yl), 

1.63 - 1.80 (m, 6H, 5-CH3, piperidin-4-yl, piperidin-5b-yl), 1.96 - 2.09 (m, 1H, piperidin-2a-yl), 

2.19 (t, J = 10.25 Hz, 1H, piperidin-6a-yl), 2.64 - 2.81 (m, 2H, piperidin-2b-yl, piperidin-6b-yl), 

3.48 (s, 2H, CH2, 1-benzyl), 4.33 - 4.47 (m, 1H, piperidin-3-yl), 6.92 - 7.02 (m, 4H, Ph), 7.09 - 

7.16 (m, 1H, Ph), 7.27 - 7.33 (m, 2H, Ph), 7.34 - 7.42 (m, 2H, Ph), 7.67 - 7.73 (d, J = 3.0 Hz, 1H, 

H-6), 11.20 (s, 1H, NH). 13C NMR (75 MHz, DMSO-d6) δ: 12.06 (5-CH3), 23.93 (piperidin-5-yl), 

28.07 (piperidin-4-yl), 51.04 (piperidin-3-yl), 52.16 (piperidin-6-yl), 56.28 (piperidin-2-yl), 

61.30 (CH2, 1-benzyl), 108.64 (C-5), 118.29 (2C, Ph), 118.62 (2C, Ph), 123.42 (Ph), 130.03 (2C, 

Ph), 130.42 (2C, Ph), 133.00 (Ph), 138.02 (C-6), 150.83 (C-2), 155.67 (Ph), 156.68 (Ph), 163.65 

(C-4). HRMS (ESI): calculated for [C23H25N3O3 + H]+, 392.1969; found: 392.1970. 

4.2.3.3 (R)-5-methyl-1-(1-(3-phenoxybenzyl)piperidin-3-yl)pyrimidine-2,4(1H,3H)-dione (3): 

Following the general procedure the use of (R)-3-((benzyloxy)methyl)-5-methyl-1-(piperidin-3-
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yl)pyrimidine-2,4(1H,3H)-dione (35, 139.01 mg, 0.422 mmol), 3-phenoxybenzaldehyde (167.30 

mg, 0.844 mmol) and sodium triacetoxyborohydride (268.34 mg, 1.266 mmol) yielded 

compound 3 (45.09 mg, 27.3%). 1H NMR (300 MHz, DMSO-d6) δ: 1.44 - 1.82 (m, 7H, 5-CH3, 

piperidin-4-yl, piperidin-5-yl), 1.96 - 2.11 (m, 1H, piperidin-6a-yl), 2.17 (t, J = 9.81 Hz, 1H, 

piperidin-2a-yl), 2.63 - 2.82 (m, 2H, piperidin-2b-yl, piperidin-6b-yl), 3.51 (s, 2H, CH2, 1-

methylene), 4.38 (br. s., 1H, piperidin-3-yl), 6.89 (d, J = 7.91 Hz, 1H, Ph), 6.94 - 7.04 (m, 3H, 

Ph), 7.04 - 7.17 (m, 2H, Ph), 7.29 - 7.43 (m, 3H, Ph), 7.70 (s, 1H, H-6), 11.20 (s, 1H, NH). 13C 

NMR (75 MHz, DMSO-d6) δ: 12.04 (5-CH3), 23.89 (piperidin-5-yl), 27.92 (piperidin-4-yl), 

50.98 (piperidin-3-yl), 52.13 (piperidin-6-yl), 56.20 (piperidin-2-yl), 61.41 (1-methylene), 

108.61 (C-5), 117.22 (Ph), 118.55 (2C, Ph), 118.65 (Ph), 123.39 (Ph), 123.83 (Ph), 129.81 (Ph), 

130.01 (2C, Ph), 137.96 (C-6), 140.36 (Ph), 150.80 (C-2), 156.62 (2C, Ph), 163.62 (C-4). HRMS 

(ESI): calculated for [C23H25N3O3 + H]+, 392.1969; found: 392.1970. ee: 84.8% (Daicel 

Chiralpak-IA HPLC column, hexane/ethanol 80/20 as eluent).  

4.2.3.4 (R)-5-methyl-1-(1-(4-phenoxybenzyl)piperidin-3-yl)pyrimidine-2,4(1H,3H)-dione (4): 

Following the general procedure the use of (R)-3-((benzyloxy)methyl)-5-methyl-1-(piperidin-3-

yl)pyrimidine-2,4(1H,3H)-dione (35, 139.01 mg, 0.422 mmol), 4-phenoxybenzaldehyde (167.30 

mg, 0.844 mmol) and sodium triacetoxyborohydride (268.34 mg, 1.266 mmol) yielded 

compound 3 (44.10 mg, 26.7%). 1H NMR (300 MHz, DMSO-d6) δ: 1.43 - 1.81 (m, 7H, 5-CH3, 

piperidin-4-yl, piperidin-5-yl), 1.93 - 2.09 (m, 1H, piperidin-6a-yl), 2.17 (t, J = 10.84 Hz, 1H, 

piperidin-2a-yl), 2.63 - 2.80 (m, 2H, piperidin-2b-yl, piperidin-6b-yl), 3.47 (s, 2H, CH2, 1-

methylene), 4.38 (br. s., 1H, piperidin-3-yl), 6.88 - 7.03 (m, 4H, Ph), 7.08 - 7.16 (m, 1H, Ph), 

7.24 - 7.42 (m, 4H, Ph) 7.69 (s, 1H, H-6), 11.18 (s, 1H, NH). 13C NMR (75 MHz, DMSO-d6) δ: 

12.06 (5-CH3), 23.92 (piperidin-5-yl), 28.06 (piperidin-4-yl), 51.04 (piperidin-3-yl), 52.16 
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(piperidin-6-yl), 56.27 (piperidin-2-yl), 61.29 (1-methylene), 108.64 (C-5), 118.29 (2C, Ph), 

118.64 (2C, Ph), 123.43 (Ph), 130.04 (2C, Ph), 130.44 (2C, Ph), 132.99 (Ph), 138.01 (C-6), 

150.83 (C-2), 155.69 (Ph), 156.66 (Ph), 163.65 (C-4). HRMS (ESI): calculated for [C23H25N3O3 

+ H]+, 392.1969; found, 392.1972. ee: 90.4% (Daicel Chiralpak-IA HPLC column, 

hexane/ethanol 80/20 as eluent). 

4.2.3.5 (S)-5-methyl-1-(1-(3-phenoxybenzyl)piperidin-3-yl)pyrimidine-2,4(1H,3H)-dione (5)14a: 

Following the general procedure the use of (S)-3-((benzyloxy)methyl)-5-methyl-1-(piperidin-3-

yl)pyrimidine-2,4(1H,3H)-dione (36, 139.01 mg, 0.422 mmol), 3-phenoxybenzaldehyde (167.30 

mg, 0.844 mmol) and sodium triacetoxyborohydride (268.34 mg, 1.266 mmol) yielded 

compound 5 (45.40 mg, 27.5%). 1H NMR (300 MHz, DMSO-d6) δ: 1.46 - 1.78 (m, 7H, 5-CH3, 

piperidin-4-yl, piperidin-5-yl), 1.98 - 2.10 (m, 1H, piperidin-6a-yl), 2.17 (t, J = 10.25 Hz, 1H, 

piperidin-2a-yl), 2.64 - 2.79 (m, 2H, piperidin-2b-yl, piperidin-6b-yl), 3.50 (s, 2H, CH2, 1-

methylene), 4.30 - 4.45 (m, 1H, piperidin-3-yl), 6.89 (ddd, J = 8.13, 2.56, 1.03 Hz, 1H, Ph), 6.94 

- 7.04 (m, 3H, Ph), 7.04 - 7.09 (m, 1H, Ph), 7.10 - 7.17 (m, 1H, Ph), 7.30 - 7.43 (m, 3H, Ph), 7.70 

(d, J = 1.00 Hz, 1H, H-6), 11.20 (s, 1H, NH). 13C NMR (75 MHz, DMSO-d6) δ: 12.04 (5-CH3), 

23.90 (piperidin-5-yl), 27.93 (piperidin-4-yl), 51.00 (piperidin-3-yl), 52.14 (piperidin-6-yl), 

56.19 (piperidin-2-yl), 61.43 (1-methylene), 108.59 (C-5), 117.20 (Ph), 118.55 (2C, Ph), 118.64 

(Ph), 123.37 (Ph), 123.81 (Ph), 129.80 (Ph), 130.01 (2C, Ph), 137.99 (C-6), 140.36 (Ph), 150.82 

(C-2), 156.60 (Ph), 156.63 Ph), 163.62 (C-4). HRMS (ESI): calculated for [C23H25N3O3 + H]+, 

392.1969; found: 392.1973. ee: 84.2% (Daicel Chiralpak-IA HPLC column, hexane/ethanol 

80/20 as eluent). 

4.2.3.6 (S)-5-methyl-1-(1-(4-phenoxybenzyl)piperidin-3-yl)pyrimidine-2,4(1H,3H)-dione (6): 

Following the general procedure, (S)-3-((benzyloxy)methyl)-5-methyl-1-(piperidin-3-
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yl)pyrimidine-2,4(1H,3H)-dione (36, 130.11 mg, 0.395 mmol), 4-phenoxybenzaldehyde (156.59 

mg, 0.79 mmol) and sodium triacetoxyborohydride (251.17 mg, 1.185 mmol) yielded compound 

6 (41.78 mg, 27.2%). 1H NMR (300 MHz, DMSO-d6) δ: 1.45 - 1.78 (m, 7H, 5-CH3, piperidin-4-

yl, piperidin-5-yl), 1.96 - 2.08 (m, 1H, piperidin-6a-yl), 2.17 (t, J = 10.40 Hz, 1H, piperidin-2a-

yl), 2.62 - 2.80 (m, 2H, piperidin-2b-yl, piperidin-6b-yl), 3.47 (s, 2H, CH2, 1-methylene), 4.31 - 

4.45 (m, 1H, piperidin-3-yl), 6.89 - 7.01 (m, 4H, Ph), 7.08 - 7.15 (m, 1H, Ph), 7.24 - 7.41 (m, 4H, 

Ph), 7.65 - 7.71 (m, 1H, H-6), 11.18 (s, 1H, NH). 13C NMR (75 MHz, DMSO-d6) δ: 12.04 (5-

CH3), 23.92 (piperidin-5-yl), 28.04 (piperidin-4-yl), 51.03 (piperidin-3-yl), 52.14 (piperidin-6-yl), 

56.27 (piperidin-2-yl), 61.29 (1-methylene), 108.61 (C-5), 118.27 (2C, Ph), 118.61 (2C, Ph), 

123.40 (Ph), 130.03 (2C, Ph), 130.41 (2C, Ph), 132.99 (Ph), 138.01 (C-6), 150.82 (C-2), 155.66 

(Ph), 156.65 (Ph), 163.64 (C-4). HRMS (ESI): calculated for [C23H25N3O3 + H]+, 392.1969; 

found: 392.1971. ee: 86.4% (Daicel Chiralpak-IA HPLC column, hexane/ethanol 80/20 as 

eluent). 

4.2.3.7 (R)-5-methyl-1-(1-(3-phenoxybenzyl)pyrrolidin-3-yl)pyrimidine-2,4(1H,3H)-dione (7): 

Following the general procedure, (R)-3-((benzyloxy)methyl)-5-methyl-1-(pyrrolidin-3-

yl)pyrimidine-2,4(1H,3H)-dione (32, 157.69 mg, 0.50 mmol), 3-phenoxybenzaldehyde (198.22 

mg, 1.00 mmol) and sodium triacetoxyborohydride (211.96 mg, 1.00 mmol) yielded compound 8 

(53.40 mg, 28.3%). 1H NMR (300 MHz, DMSO-d6) δ: 1.60-1.80 (m, 4H, 5-CH3, pyrrolidin-4a-

yl), 2.14 - 2.37 (m, 2H, pyrrolidin-4b-yl, pyrrolidin-2a-yl), 2.48 – 2.56 (m, 1H, pyrrolidin-5a-yl), 

2.60 - 2.75 (m, 1H, pyrrolidin-5b-yl), 2.89 - 3.03 (m, 1H, pyrrolidin-2b-yl), 3.48 - 3.70 (m, 2H, 

CH2, benzyl), 4.87 - 5.01 (m, 1H, pyrrolidin-3-yl), 6.88 (dd, J = 7.91, 1.76 Hz, 1H, Ph), 6.93 - 

7.01 (m, 3H, Ph), 7.05 - 7.15 (m, 2H, Ph), 7.28 - 7.40 (m, 3H, Ph), 7.62 (d, J = 1.17 Hz, 1H, H-6), 

11.15 (s, 1H, NH). 13C NMR (75 MHz, DMSO-d6) δ: 12.29 (5-CH3), 30.90 (pyrrolidin-4-yl), 
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52.45 (pyrrolidin-2-yl), 52.74 (pyrrolidin-3-yl), 58.27 (CH2, benzyl), 58.40 (pyrrolidin-5-yl), 

109.16 (C-5), 117.28 (Ph), 118.33 (Ph), 118.44 (2C, Ph), 123.35 (Ph), 123.42 (Ph), 129.86 (Ph), 

129.98 (2C, Ph), 137.72 (C-6), 141.23 (Ph), 150.77 (C-2), 156.66 (Ph), 163.67 (C-4). HRMS 

(ESI): calculated for [C22H23N3O3 + H]+, 378.1812; found, 378.1806. ee: 98.8% (Daicel 

Chiralcel ODH HPLC column, hexane/ethanol 80/20 as eluent). 

4.2.3.8 (S)-5-methyl-1-(1-(3-phenoxybenzyl)pyrrolidin-3-yl)pyrimidine-2,4(1H,3H)-dione (8): 

Following the general procedure, (S)-3-((benzyloxy)methyl)-5-methyl-1-(pyrrolidin-3-

yl)pyrimidine-2,4(1H,3H)-dione (33, 126.15 mg, 0.40 mmol), 3-phenoxybenzaldehyde (158.58 

mg, 0.80 mmol) and sodium triacetoxyborohydride (169.57 mg, 0.80 mmol) yielded compound 8 

(42.30 mg, 28.0%). 1H NMR (300 MHz, DMSO-d6) δ: 1.64 - 1.83 (m, 4H, 5-CH3, pyrrolidin-4a-

yl), 2.17 - 2.38 (m, 2H, pyrrolidin-4b-yl, pyrrolidin-2a-yl), 2.48- 2.56 (m, 1H, pyrrolidin-5a-yl), 

2.64 - 2.77 (m, 1H, pyrrolidin-5b-yl), 2.91 - 3.03 (m, 1H, pyrrolidin-2b-yl), 3.52 - 3.72 (m, 2H, 

CH2, benzyl), 4.89 - 5.03 (m, 1H, pyrrolidin-3-yl), 6.90 (dd, J = 8.20, 1.76 Hz, 1H, Ph), 6.95 - 

7.03 (m, 3H, Ph), 7.07 - 7.16 (m, 2H, Ph), 7.31 - 7.42 (m, 3H, Ph), 7.64 (d, J = 1.17 Hz, 1H, H-6), 

11.17 (s, 1H, NH). 13C NMR (75 MHz, DMSO-d6) δ: 12.30 (5-CH3), 30.89 (pyrrolidin-4-yl), 

52.44 (pyrrolidin-2-yl), 52.73 (pyrrolidin-3-yl), 58.26 (CH2, benzyl), 58.40 (pyrrolidin-5-yl), 

109.15 (C-5), 117.26 (Ph), 118.31 (Ph), 118.43 (2C, Ph), 123.35 (Ph), 123.39 (Ph), 129.85 (Ph), 

129.97 (2C, Ph), 137.71 (C-6), 141.24 (Ph), 150.76 (C-2), 156.66 (Ph), 163.66 (C-4). HRMS 

(ESI): calculated for [C22H23N3O3 + H]+, 378.1812; found, 378.1806. ee: 99.2% (Daicel 

Chiralcel ODH HPLC column, hexane/ethanol 80/20 as eluent). 
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4.2.3.9 5-methyl-1-((1-(3-phenoxybenzyl)piperidin-3-yl)methyl)pyrimidine-2,4(1H,3H)-dione (9): 

Following the general procedure, 3-((benzyloxy)methyl)-5-methyl-1-(piperidin-3-yl)pyrimidine-

2,4(1H,3H)-dione (38, 102.00 mg, 0.297 mmol), 3-phenoxybenzaldehyde (88.41 mg, 0.446 

mmol) and sodium triacetoxyborohydride (125.9 mg, 0.594 mmol) yielded compound 9 (37.58 

mg, 31.2%).1H NMR (300 MHz, DMSO-d6) δ: 0.88 - 1.07 (m, 1H, piperidin-4a-yl), 1.28 - 1.46 

(m, 1H, piperidin-5a-yl), 1.48 - 1.68 (m, 2H, piperidin-4b-yl, piperidin-5b-yl), 1.68 - 2.05 (m, 6H, 

5-CH3, piperidin-2a-yl, piperidin-6a-yl), 2.58 (d, J = 9.67 Hz, 2H, piperidin-2b-yl, piperidin-6b-

yl), 3.34 - 3.60 (m, 4H, 2CH2, 1-methyl, phenoxybenzyl-), 6.83 - 7.07 (m, 5H, Ph), 7.09 - 7.17 (m, 

1H, Ph), 7.27 - 7.42 (m, 3H, Ph), 7.44 (s, 1H, H-6), 11.19 (s, 1H, NH). 13C NMR (75 MHz, 

DMSO-d6) δ: 11.91 (5-CH3), 23.93 (piperidin-5-yl), 27.22 (piperidin-4-yl), 35.35 (piperidin-3-

yl), 50.19 (CH2, 1-methylene), 53.38 (piperidin-6-yl), 56.51 (piperidin-2-yl), 61.99 (CH2, 

phenoxybenzyl-), 108.24 (C-5), 117.00 (Ph), 118.47(Ph), 118.61 (2C, Ph), 123.40 (Ph), 123.72 

(Ph), 129.67 (Ph), 130.03 (2C, Ph) 140.92 (Ph), 141.61 (C-6), 151.05 (C-2), 156.62 (Ph), 156.65 

(Ph), 164.17 (C-4). HRMS (ESI): calculated for [C24H27N3O3 + H]+, 406.2125; 406.2142. 

4.2.3.10 5-methyl-1-((1-(4-phenoxybenzyl)piperidin-3-yl)methyl)pyrimidine-2,4(1H,3H)-dione 

(10): Following the general procedure, 3-((benzyloxy)methyl)-5-methyl-1-(piperidin-3-

yl)pyrimidine-2,4(1H,3H)-dione (38, 118.48 mg, 0.345 mmol), 4-phenoxybenzaldehyde (136.77 

mg, 0.69 mmol), sodium triacetoxyborohydride (219.38 mg, 1.035 mmol) yielded compound 10 

(44.10 mg, 32.7%). 1H NMR (300 MHz, DMSO-d6) δ: 0.89 - 1.06 (m, 1H, piperidin-4a-yl), 1.29 

- 1.46 (m, 1H, piperidin-5a-yl), 1.48 - 1.67 (m, 2H, piperidin-4b-yl, piperidin-5b-yl), 1.67 - 1.82 

(m, 4H, 5-CH3, piperidin-2a-yl), 1.83 - 2.02 (m, 2H, piperidin-3-yl, piperidin-6a-yl), 2.57 (d, J = 

8.20 Hz, 2H, piperidin-2b-yl, piperidin-6b-yl), 3.34 - 3.54 (m, 4H, 2CH2, 1-methyl, 

phenoxybenzyl-), 6.88 - 6.99 (m, 4H, Ph), 7.07 - 7.14 (m, 1H, Ph), 7.22 - 7.28 (m, 2H, Ph), 7.33 
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- 7.41 (m, 2H, Ph), 7.44 (d, J = 1.17 Hz, 1H, H-6), 11.17 (s, 1H, NH). 13C NMR (75 MHz, 

DMSO-d6) δ: 11.91 (5-CH3), 23.98 (piperidin-5-yl), 27.35 (piperidin-4-yl), 35.32 (piperidin-3-

yl), 50.25 (CH2, 1-methylene), 53.41 (piperidin-6-yl), 56.49 (piperidin-2-yl), 61.87 (CH2, 

phenoxybenzyl), 108.21 (C-5), 118.29, 118.47, 123.29, 130.03, 130.35, 133.51 (Ph), 141.64 (C-

6), 151.05 (C-2), 155.44 (Ph), 156.78 (Ph), 164.17 (C-4). HRMS (ESI): calculated for 

[C24H27N3O3 + H]+, 406.2125; found, 406.2097. 

4.2.3.11 5-methyl-1-((1-(3-phenoxybenzyl)pyrrolidin-3-yl)methyl)pyrimidine-2,4(1H,3H)-dione 

(11): Following the general procedure, 3-((benzyloxy)methyl)-5-methyl-1-(pyrrolidin-3-

ylmethyl)pyrimidine-2,4(1H,3H)-dione (37, 140.00 mg, 0.425 mmol), 3-phenoxybenzaldehyde 

(168.49 mg, 0.85 mmol) and sodium triacetoxyborohydride (270.25 mg, 1.275 mmol) yielded 

compound 11 (72.30 mg, 43.5%). 1H NMR (300 MHz, DMSO-d6) δ: 1.36 - 1.54 (m, 1H, 

pyrrolidin-4a-yl), 1.69 - 1.89 (m, 4H, 5-CH3, pyrrolidin-4b-yl), 2.20 - 2.33 (m, 1H, pyrrolidin-2a-

yl), 2.46 - 2.61 (m, 4H, pyrrolidin-2b-yl, pyrrolidin-5-yl, pyrrolidin-3-yl),3.48 - 3.68 (m, 4H, 

2CH2, 1-methyl, phenoxybenzyl-), 6.87 (ddd, J = 8.05, 2.49, 0.88 Hz, 1H, Ph), 6.93 - 7.03 (m, 3H, 

Ph), 7.06 - 7.17 (m, 2H, Ph), 7.31 (d, J = 7.91 Hz, 1H, Ph), 7.34 - 7.43 (m, 2H, Ph), 7.50 (d, J = 

1.17 Hz, 1H, H-6), 11.20 (s, 1H, NH). 13C NMR (75 MHz, DMSO-d6) δ: 11.92 (5-CH3), 27.29 

(pyrrolidin-4-yl), 36.56 (pyrrolidin-3-yl), 51.00 (1-methylene), 52.91 (pyrrolidin-5-yl), 56.63 

(pyrrolidin-2-yl), 58.88 (CH2, phenoxybenzyl), 108.33 (C-5), 117.00 (Ph), 118.33 (Ph), 118.59 

(2C, Ph), 123.39 (Ph), 123.43 (Ph), 129.74 (Ph), 130.03 (2C, Ph), 141.50 (2C, Ph, C-6), 151.06 

(C-2), 156.63 (2C, Ph), 164.16 (C-4). HRMS (ESI): calculated for [C23H25N3O3 + H]+, 392.1969; 

found, 392.1986. 

4.2.3.12 5-methyl-1-((1-(4-phenoxybenzyl)pyrrolidin-3-yl)methyl)pyrimidine-2,4(1H,3H)-dione 

(12): Following the general procedure, 3-((benzyloxy)methyl)-5-methyl-1-(pyrrolidin-3-
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ylmethyl)pyrimidine-2,4(1H,3H)-dione (37, 140.00 mg, 0.425 mmol), 4-phenoxybenzaldehyde 

(173.24 mg, 0.874 mmol) and sodium triacetoxyborohydride (277.88 mg, 1.311 mmol) yielded 

compound 12 (75.00 mg, 43.8%). 1H NMR (300 MHz, DMSO-d6) δ: 1.38 - 1.53 (m, 1H, 

pyrrolidin-4a-yl), 1.69 - 1.91 (m, 4H, 5-CH3, pyrrolidin-4b-yl), 2.21 - 2.32 (m, 1H, pyrrolidin-2a-

yl), 2.39 - 2.61 (m, 4H, pyrrolidin-2b-yl, pyrrolidin-5-yl, pyrrolidin-3-yl), 3.44 - 3.67 (m, 4H, 

2CH2, 1-methylene, phenoxybenzyl-), 6.91 - 7.03 (m, 4H, Ph), 7.09 - 7.16 (m, 1H, Ph), 7.28 - 

7.34 (m, 2H, Ph), 7.34 - 7.42 (m, 2H, Ph), 7.51 (d, J = 1.17 Hz, 1H, H-6), 11.20 (s, 1H, NH). 13C 

NMR (75 MHz, DMSO-d6) δ: 11.92 (5-CH3), 27.31 (pyrrolidin-4-yl), 36.50 (pyrrolidin-3-yl), 

51.08 (1-methylene), 52.92 (pyrrolidin-5-yl), 56.60 (pyrrolidin-2-yl), 58.63 (CH2, 

phenoxybenzyl), 108.29 (C-5), 118.38, 118.45, 123.29, 129.93, 129.99, 134.35 (6C, Ph), 141.57 

(C-6), 151.06 (C-2), 155.37 (Ph), 156.82 (Ph), 164.16 (C-4). HRMS (ESI): calculated for 

[C23H25N3O3 + H]+, 392.1969; found, 392.1962. 

4.2.4 5-methyl-1-(1-(3-phenoxybenzoyl)piperidin-3-yl)pyrimidine-2,4(1H,3H)-dione (13): To the 

reaction mixture of 3-((benzyloxy)methyl)-5-methyl-1-(piperidin-3-yl)pyrimidine-2,4(1H,3H)-

dione (34, 132.75 mg, 0.403 mmol) and 3-phenoxybenzoic acid (129.49 mg, 0.605 mmol) in dry 

CH2Cl2 (10 mL) was added EDC (125.12 mg, 0.806 mmol) and 4-DMAP (1.32 mg) at room 

temperature under argon. The reaction mixture was stirred overnight, diluted with CH2Cl2 (50 

mL) and washed with water (50 mL) and brine (50 mL). The organic layer was dried over 

sodium sulfate and concentrated in vacuum. The residue was purified with column 

chromatography (ethyl acetate/hexane, 25→65% in a linear gradient elution). The resulting 

amide intermediate was dissolved in EtOH (10 mL) and Pd/C (0.15 g) was added. The reaction 

was stirred under hydrogen for 6 h and the suspension was filtered. The filtrate was evaporated 

and dried under high vacuum for 0.5 h. The residue was dissolved in a mixture of THF/H2O (10 
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mL, v/v = 2/1) and stirred for 4 h. After evaporation, the residue was purified with column 

chromatography (MeOH/CH2Cl2, 1→10% in linear gradient elution). After lyophilization, the 

desired product was obtained as a white powder (131.10 mg, 80.2%). 1H NMR (300 MHz, 

DMSO-d6, 80 ) δ: 1.46 - 1.65 (m, 1H, piperidin-5a-yl), 1.74 - 2.08 (m, 6H, 5-CH3, piperidin-4-

yl, piperidin-5b-yl), 2.91 (t, J = 11.72 Hz, 1H, piperidin-6a-yl), 3.15 (t, J = 11.86 Hz, 1H, 

piperidin-2a-yl), 3.80 - 4.21 (m, 2H, piperidin-2b-yl, piperidin-6b-yl), 4.33 (tt, J = 11.31, 4.36 

Hz, 1H, piperidin-3-yl), 6.99 (dd, J = 2.34, 1.46 Hz, 1 H) 7.03 - 7.11 (m, 3 H) 7.13 - 7.20 (m, 2 

H) 7.37 - 7.48 (m, 3 H) 7.52 (d, J = 1.17 Hz, 1 H) 10.95 (s, 1H, NH). 13C NMR (75 MHz, 

DMSO-d6) δ: 12.12 (5-CH3), 24.96 (piperidin-5-yl), 28.21 (piperidin-4-yl), 52.08 (piperidin-3-

yl), 109.04 (C-5), 116.50 (Ph), 119.10 (2C, Ph), 119.39 (Ph), 121.46 (Ph), 123.93 (Ph), 130.16 

(2C, Ph), 130.27 (Ph), 137.51 (C-6), 137.67 (Ph), 150.72 (C-2), 156.08 (Ph), 156.85 (Ph), 163.59 

(C-4), 168.32 (CO, benzoyl). C (piperidin-2-yl) and C (piperidin-6-yl) cannot be found. HRMS 

(ESI): calculated for [C23H23N3O4 + H]+, 406.1761; found, 406.1775. 

4.2.5 5-methyl-1-(1-(4-phenoxybenzoyl)piperidin-3-yl)pyrimidine-2,4(1H,3H)-dione (14): 

Applying 3-((benzyloxy)methyl)-5-methyl-1-(piperidin-3-yl)pyrimidine-2,4(1H,3H)-dione (34, 

105.41 mg, 0.32 mmol), 4-phenoxybenzoic acid (102.82 mg, 0.48 mmol), EDC (99.67 mg, 0.64 

mmol) and 4-DMAP (1.05 mg), the procedure described for the synthesis of compound 13 

afforded the desired compound 14 as a white powder (96.40 mg, 74.3%). 1H NMR (300 MHz, 

DMSO-d6, 80 ) δ: 1.47 - 1.68 (m, 1H, piperidin-5a-yl), 1.71 - 2.10 (m, 6H, 1.74 - 2.08 (m, 6H, 

5-CH3, piperidin-4-yl, piperidin-5b-yl), 2.84 - 2.98 (m, 1H, piperidin-6a-yl), 3.14 (t, J = 11.72 Hz, 

1H, piperidin-6a-yl), 3.99 (d, J = 12.01 Hz, 1H, piperidin-6b-yl), 4.13 (d, J = 10.84 Hz, 1H, 

piperidin-2a-yl), 4.34 (tt, J = 11.35, 4.32 Hz, 1H, piperidin-2b-yl), 6.96 - 7.10 (m, 4H, Ph), 7.14 - 

7.22 (m, 1H, Ph), 7.35 - 7.47 (m, 4H, Ph), 7.52 (d, J = 1.17 Hz, 1H, H-6), 10.93 (br. s., 1H, NH). 
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13C NMR (75 MHz, DMSO-d6, 80 ) δ: 12.13 (5-CH3), 24.58 (piperidin-5-yl), 28.20 (piperidin-

4-yl), 41.70 (piperidin-6-yl), 50.96 (piperidin-3-yl), 109.05 (C-5), 117.53 (2C, Ph), 119.50 (2C, 

Ph), 124.22 (Ph), 129.23 (2C, Ph), 130.23 (3C, Ph), 137.50 (C-6), 150.78 (C-2), 155.63 (Ph), 

158.06 (Ph), 163.60 (C-4), 168.78 (CO, benzoyl). C (piperidin-2-yl) cannot be found. HRMS 

(ESI): calculated for [C23H23N3O4 + H]+, 406.1761; found, 406.1757. 
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