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Abstract—A geometry-based reference model for Second Order
Scattering Fading (SOSF) distributed multiple-input-multiple-
output (MIMO) channels is proposed for mobile-to-mobile sce-
narios. From this model, a spatial correlation function is derived.
The time-variant nature of channel statistics is modeled by using
a Hidden Markov Model (HMM) based approach. The proposed
method enables to implement a generator of channel realizations
for a wide range of indoor MIMO channels, including Fixed-
to-Mobile and Mobile-to-Mobile transmission; Rician, Rayleigh,
Double Rayleigh, Second Order Scattering fading, etc.

Index Terms—Indoor propagation, MIMO.

I. INTRODUCTION

Predicting the parameters of indoor MIMO channels is
important for the testing and the eventual rollout of new
communication systems. New personal communication ser-
vices are indeed devoted to indoor environments, as more
people spend time in offices, classrooms, stores, etc. The
growing interest in wireless indoor communication systems
has resulted in many papers on the characteristics of indoor
radio propagation channels. In [1], peer-to-peer channels were
investigated in a typical US office environment, consisting in
a large indoor area containing individual cubicle-style offices.
An empirical model of time-variant channel statistics of a
single-input-single-output (SISO) narowband indoor channel
was presented in [2].

Various geometry-based models of correlated Rayleigh
MIMO channels were proposed in [3], [4]. However, as it
is shown in [2], the channel has a rather mixed distribution,
including the weighted combination of a line-of-sight (LOS)
component, a Rayleigh fading component and a Double-
Rayleigh fading component. This mixed type of fading can
be described by the so-called Second Order Scattering Fading
(SOSF) distribution [1], [5].

In this paper, we propose a geometry-based reference model
for narroband indoor SOSF MIMO channels with time-variant
first- and second-order statistics. Second-order statistics are
derived from the proposed reference model, while the channel
non-stationarity is modeled using a Hidden Markov Model
(HMM).

II. MODEL FOR MIMO MOBILE-TO-MOBILE CHANNELS

A. SOSF distributed channels

It is shown in [1], [2] that fading can be described by a
single distribution including a weighted combination of a line-

of-sight (LOS) component, a Rayleigh fading component and
a Double-Rayleigh fading component. Hence, any realization
of the channel can be expressed as

h(t) = ω0e
jθ + ω1h1(t) + ω2h2(t)h3(t) (1)

where h1, h2, h3 are i.i.d. complex normal random variables
with zero mean and unit variance, and θ is a constant phase
shift angle in [0, 2π]. Weights ω0, ω1 and ω2 describe the
impact of the LOS term, Rayleigh and Double Rayleigh
components, respectively. The probability density function of
g = |h| is given, as shown in [5] and [1], by the SOSF
distribution:
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where J0 is the Bessel function of the first kind and zeroth
order.

Since E{g2} = 1, we have that ω2
0 + ω2

1 + ω2
2 = 1 and we

can specify the distribution by two parameters [6]
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where (α, β) are constrained to the triangle α ≥ 0, β ≥ 0,
and α+ β ≤ 1

B. Generalized Reference Double-Ring Model for SOSF chan-
nels

In this paper we consider a narrowband MIMO communica-
tion system with LT transmit and LR receive omnidirectional
antenna elements.

It is shown in [3] that the double-ring geometry can be
used to model MIMO channels in indoor environments. The
geometry of the proposed model is shown in Fig. 1 a and b
for the cases of double- and single-bouncing, respectively.
Transmitter (Tx) and receiver (Rx) are denoted by 0T and 0R,
respectively; RT and RR are radii of rings which are formed
by scatterers SmT (m = 1, 2, . . .M) and SnR(n = 1, 2, . . . N)
located around the transmitter and the receiver. The spacing
between two adjacent antenna elements at the Tx and Rx is
denoted by δT and δR. Angles αmT and αnT denote the angles of
departure (AoD) of the transmitting waves scattered from the
scatterers SmT and SnR, whereas αmR and αnR are the angles of
arrival (AoA) of the receiving waves that impinge on SmT and
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(a) Double Bouncing
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(b) Single Bouncing

Fig. 1. The geometrical double-ring model

SnR, respectively. Angles θT and θR describe the orientation
of the Tx and Rx antenna array, respectively, relative to the
x-axis.

The following assumptions are made: (i) the Tx and Rx
are moving with speeds vt and vr in directions described
by angles γT and γR for the transmitter and the receiver,
respectively; (ii) the distance between Tx and Rx is much
larger than the radii RT and RR, i.e. max(RT , RR) � D;
(iii) δT and δR are much smaller than the radii RT and
RR, i.e., max{δT , δR} � min{RT , RR}; (iv) the angles
αmT and αnR are uniformly distributed random variables; (v) for
short periods of time, the mobile environment can be assumed
as quasi-stationary, i.e. the rings of scatterers are fixed; (vi)
waves reaching the receiver antenna array are equal 1√

N(M)
or

1√
NM

for single- and double-bounce scattering, respectively.
The expressions for the distances which a plane wave

travels in the case of so-called double bounce scattering
(εpm, εmn, εqn in Fig. 1 a) and single bounce scattering
(εpm, εmq, εpn, εqn in Fig. 1 b) can be found in [3].

The complex faded envelop of the link from the transmit
antenna element Ap to the receive antenna element Aq can be
expressed as:

hpq(t) =ω0h
pq
LOS(t) + ωSBRh

pq
SBR(t) + ωSBTh

pq
SBT (t)

+ωDBh
pq
DB(t) + ωDBIh

pq
DBI(t),

(5)

where hpqLOS(t) denotes the LOS term; hpqSBR(t) and hpqSBT (t)

are the components caused by single bounce scattering at
the scatterers around the receiver and the transmitter, respec-
tively; hpqDB(t) and hpqDBI(t) are the components caused by
double bounce scattering under conditions of correlated and
independent1 scattering, respectively. The various ω are the
corresponding weights.

By proceeding as in [3], we can express the components of
(5) as:

hpqLOS(t) =e
j2πtfTmax cos (π−αLOSRq −γT )

× ej2πtfRmax cos (αLOSRq −γR)
(6)

hpqSBT (t) = lim
M→∞

1√
M

M∑
m=1

ejφm−j
2π
λ (εpm+εmq)

× ej2πt(fTmax cos (αmT −γT )+fRmax cos (αmR−γR)),

(7)

hpqSBR(t) = lim
N→∞

1√
N

N∑
n=1

ejφn−j
2π
λ (εpn+εnq)

× ej2πt(fTmax cos (αnT−γT )+fRmax cos (αnR−γR)),

(8)

hpqDB(t) = lim
N→∞
M→∞

1√
MN

N∑
n=1

M∑
m=1

ejφmn−j
2π
λ (εpm+εmn+εnq)

× ej2πt(fTmax cos (αmT −γT )+fRmax cos (αnR−γR)),
(9)

By using the results in [2], [7] for the case of independent
scatterers, we obtain

hpqDBI(t) =

lim
N→∞

1√
N

N∑
n=1

ej(φn−
2π
λ εnq) × ej2πtfRmax cos (αnR−γR)

× lim
M→∞

1√
M

M∑
m=1

ej(φm−
2π
λ εpm) × ej2πtfTmax cos (αmT −γT )

(10)

Since the central limit theorem states that each single sum
is a zero-mean complex Gaussian process with unit variance,
the envelopes gpqDB(t) = |hpqDB(t)|, g

pq
SBR(t) = |hpqSBR(t)|

and gpqSBT (t) = |hpqSBT (t)| are all characterized by Rayleigh
distributions whereas the envelope gpqDBI(t) = |hpqDBI(t)|
enables to reproduce the Double-Rayleigh distribution, so that
ωDBI can be identified to ω2 in (1). The Rayleigh term in (1) is
made of the combination of all other components. Proceeding
as in [2], we may set ωDB = ωSBT = ωSBR = ω1√

3
,

assuming that all three mechanisms are occurring with the
same probability. Finally, ωLOS = ω0, so that we can express
(5) as

hpq(t) = ω0h
pq
LOS(t)

+
ω1√
3
·
(
hpqDB(t) + hpqSBT (t) + hpqSBR(t)

)
+ ω2 · hpqDBI(t).

(11)

1i.e when the phase shifts caused by joint interaction of the scatterers Sm
T

and Sn
R can be expressed as φmn = φm + φn



Using the model in [2], time-variant statistics of the SOSF
channel (i.e weights ω0, ω1 and ω2) can be modeled.

C. Statistics of AoA and AoD

Using the geometrical model in Fig. 1, the AoD and AoA
probability density functions can be derived. The PDFs of AoA
and AoD in the case of double bouncing are trivial and can
be expressed as

f(αnR) = f(αmT ) =
1

2π
(12)

In the case of single bouncing at scatterers around the receiver

(hpqSBR(t)), the AoA PDF is described by (12), whereas the
AoD PDF is described by

f(αnT ) =

{
1

arcsin
(
RR
D

) −αAoD < αnT < αAoD

0 otherwise
(13)

where αAoD = arcsin
(
RR
D

)
.

In the case of single bouncing at scatterers around the
transmitter (hpqSBT (t)), the AoD PDF is described by (12); the
AoA PDF expressed as

f(αmR ) =

{
1

arcsin
(
RT
D

) −αAoA < π − αmR < αAoA

0 otherwise
(14)

where αAoA = arcsin
(
RT
D

)
.

As it is assumed that the total power of all waves
reaching the receiver antenna array depends on the weights
ωDB , ωSBT , ωSBR, ωDBI , we can easily obtain Power Angu-
lar Spectra using appropriate weights together with the PDFs
of AoA and AoD.

D. Spatial Correlation Function

Using the space-time correlation function derived in [8]
with appropriate parameters, the normalized spatial correlation
function between two complex fading envelopes hpq(t) and
hp̃q̃(t) can be written as

Rpq,p̃q̃(δT , δR) = ω2
0 ·R

pq,p̃q̃
LOS (δT , δR)

+
ω2
1

3
·

[
J0

(
2π(p̃− p)δT

λ

)
+ J0

(
2π(q̃ − q)δR

λ

)

+ J0

(
2π(p̃− p)δT

λ

)
J0

(
2π(q̃ − q)δR

λ

)]

+ ω2
2 · J0

(
2π(p̃− p)δT

λ

)
J0

(
2π(q̃ − q)δR

λ

)
,

(15)

where

Rpq,p̃q̃LOS (δT , δR) = e
j2π
λ (δT cos θT−δR cos θR)

×ej2π(fTmax cos γT−fRmax cos γR)

(a) SOSF distribution parameters

(b) Spatial correlation function R11,22

Fig. 2. Simulated statistics over time for double mobile scenario

Fig. 3. Simulated Power Angular Spectrum

III. MODEL SUMMARY AND SIMULATION RESULTS

This section presents some simulation results. In simula-
tions, we use LT = LR = 2 and δT = δR = 0.5λ. An
HMM-based method described in [2] is used here to model
time-variant fading statistics of an indoor mobile-to-mobile
channel. Duration of one state of the HMM (sample) is chosen
the same as in [2] and equals 0.8 s. The temporal behavior
of the SOSF parameters is shown in Fig. 2 a. Next, using
modeled values of the parameters α and β, the weights in
(11) and (15) can be calculated as

ω0 =
√
β =

√
K

1 +K
(16)

ω1 =
√
1− α− β =

√
1− α− K

1 +K
(17)

ω2 =
√
α, (18)



where K is the Rician K-factor.
Time-variant weights (extracted from parameters α and β

modeled by the HMM by using (16) − (18)) are used to
calculate theoretical spatial correlation R11,22(0.5λ, 0.5λ, t)
(Fig. 2 b) and Power Angular Spectrum (Fig. 3). Next, a
pre-defined number of correlated complex fading realizations
hpq(t) with appropriate first- and second-order statistics can
be generated as a weighted combination of the components
(6)−(10) by using any of simulation models found in literature
(e.g. [3], [9], [4]).

IV. CONCLUSION

This paper has presented a model of time-variant fading
statistics of MIMO indoor channels: (i) a reference model for
second-order scattering fading (SOSF) has been proposed; (ii)
probability density functions of angles of departure and arrival
have been presented; (iii) the theoretical spatial correlation
function for SOSF has been derived and simulated.
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