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Summary 

Influenza is one of the most contagious respiratory diseases and is associated with a high annual 

disease burden. The disease is caused by influenza viruses and can be prevented through vaccination. 

However, the effectiveness of the licensed influenza vaccines is rather limited since they mainly elicit 

virus neutralizing antibodies, which are directed against the highly variable head domain of the 

hemagglutinin (HA), the major membrane protein of the virus. Effective protection is usually 

obtained when the virus strains present in the vaccine antigenically matches the circulating influenza 

strains. Since the replication of influenza viruses is error-prone, they carry a high genetic flexibility 

with continuous and gradual selection of mutations in the antigenic sites of HA. As a result, 

neutralizing antibodies, e.g. induced by natural infection or by vaccination, can no longer bind to 

antigenically drifted influenza viruses. This antigenic drift necessitates annual vaccination with an 

updated vaccine composition. 

Consequently, there is an urgent need for an influenza vaccine that elicits broad-spectrum and long-

lasting protection to further reduce the yearly economical and social disease burden associated with 

influenza virus infections. Several experimental approaches based on more conserved antigenic sites 

in influenza viruses are being developed in order to obtain a broadly protective influenza vaccine. 

One such approach was developed in our lab at Ghent University and VIB, and is based on the 

conserved ectodomain of the viral membrane protein 'matrix protein 2' (M2e) [1]. Preclinical data 

demonstrated the antigenic potential and heterosubtypic protective effect of M2e-based vaccines 

[2]. Some of these vaccines are being evaluated in clinical trials, and their safety and immunogenicity 

has been verified [3-6]. It is known that protection by M2e-based vaccines is mediated by non-

neutralizing antibodies, which require Fcγ Receptor (FcγR) expressing immune cells to exert their 

protective effect [7, 8]. However, which antibody isotypes exactly cooperate with which FcγR in vivo 

is not entirely clear and the contribution of FcγRIV in protection by M2e-specific antibodies has not 

yet been studied. It is also important to investigate if, and how, influenza viruses will be able to 

escape from M2e-based immune pressure. 

The genetic flexibility of influenza viruses which enables them to escape from natural immune 

selection pressure, is the result of their error-prone replication, together with their fast replication 

cycle, large population size and the high inherent tolerance of HA for mutations in its antigenic sites 

[9]. To study this intrinsic genetic diversity, a sensitive sequencing technique is required with a high 

sequencing throughput. The progress in the field of next-generation sequencing (NGS), where 

millions of DNA fragments are sequenced in parallel, makes it possible to study the genetic diversity 

in a viral population with great sensitivity.  

At the beginning of this PhD project is was unclear which sequencing platform was the most accurate 

to detect genetic variation in rapidly evolving RNA viruses. Therefore, we first compared the 

suitability of two benchtop next-generation sequencers to determine the whole-genome genetic 
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diversity in an influenza A virus population: the Illumina MiSeq sequencing-by-synthesis and the Ion 

Torrent PGM semiconductor sequencing technique [10]. Since it is often unclear how NGS data is 

processed or analyzed, we also designed an NGS data analysis pipeline to determine the variants 

present in an RNA virus population, although this workflow is also more broadly applicable. The 

sensitivity and accuracy of both sequencers were first determined using plasmids carrying a wild type 

or mutant influenza M segment, derived from the plasmid-based reverse genetics system for PR8 

virus, a well characterized influenza A virus lab strain. This comparison revealed that the read length 

after processing of the sequence reads was comparable for both sequencers. However, the sequence 

reads obtained on the Illumina MiSeq were one and a half times more accurate than the ones 

sequenced on the Ion Torrent PGM. Next, recombinant wild type and mutant PR8 viruses were 

created and an influenza-specific RT-PCR was designed, based on the conserved sequence at the 

influenza genome segment ends, which resulted in efficient amplification of all eight genomic 

segments. The viral sequencing reads obtained with both sequencers could successfully be 

assembled de novo into the segmented influenza virus genome. After mapping of the reads to the 

reference genome, we found that the detection limit for reliable recognition of variants in the viral 

genome required a frequency of 0.5% or higher. Most of the variants in the PR8 virus genome were 

present in HA, and these mutations were detected by both sequencers. Based on its lower total error 

rate and higher sequencing output, we concluded that the Illumina MiSeq platform is better suited to 

detect variant sequences, whereas the Ion Torrent PGM platform has a shorter turnaround time, 

which can be important in viral diagnosis. The designed influenza-specific RT-PCR protocol and NGS 

data analysis pipeline can be implemented in several applications e.g. in viral surveillance, influenza 

resistance testing and vaccine control.  

An additional research application for which the NGS approach can be instrumental, is assessment of 

the genetic stability of recombinant viruses. In our lab, we designed a GFP-expressing influenza 

reporter virus, based on the PR8 backbone, and used the designed RT-PCR protocol and NGS data 

analysis pipeline to evaluate the genetic stability of this virus [11]. The introduced reporter gene has 

no selective advantage for the virus. Therefore, it is important to study its retention within the virus 

genome. Although GFP remained stably expressed after passaging the virus in permissive cells for 

several rounds of replication, a two-fold reduction in sequencing coverage was observed in the GFP 

sequence of the PR8-GFP viral stock. A sequence bias introduced during preparation of the 

sequencing library could be excluded, since the bias was present when either Nextera XT transposase 

or mechanical Covaris shearing was used for DNA fragmentation [12]. Likewise, deletion of this 

foreign sequence by the virus itself was unlikely, since the sequencing drop was also present when 

the parental plasmid DNA, used to create the GFP-expressing virus through reverse genetics, was 

sequenced. Based on these results, and in agreement with the findings of Ekblom et al., we surmised 

that the ‘CCCGCC’ sequence motif in the GFP coding sequence is disfavoured by Illumina sequencing 

[13]. This assumption was verified by mutating this motif, which indeed resolved the reduction in 

sequence coverage [12]. This study shows that potential sequence biases should be taken into 
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account before making a conclusion based on the number of sequence reads of a particular target 

sequence when performing NGS coverage analysis. 

The third objective of this PhD project was to investigate the protective mechanism of M2e-based 

vaccines. We compared the functional engagement of FcγR family members by two mouse 

monoclonal antibodies (mAbs) that bind to M2e with similar affinity, but are either of the IgG1 or 

IgG2a antibody isotype. We first compared the potency of this antibody pair to activate individual 

FcγRs in the context of a viral infection using an in vitro FcγR activation assay. Subsequently, the 

importance of the FcγRs for protection in vivo was investigated by passive transfer of the M2e-

specific monoclonal antibodies to wild type mice or mice with different 

compartment, followed by a lethal viral challenge. From these experiments, we could conclude that 

M2e-specific IgG1 requires FcγRIII to accomplish protection upon infection, whereas M2e-specific 

IgG2a isotype antibodies can protect against influenza A virus challenge via any of the three 

activating FcγRs. These results demonstrate the higher protective potential of M2e-specific 

antibodies from the IgG2a isotype compared to IgG1. The protective potential of M2e-based vaccines 

can thus be increased by designing them to elicit a robust Th1-biased immune response.  

In a last part of this PhD thesis we investigated the potential evasion strategies of influenza A viruses 

under M2e-based humoral immune pressure. The M2e sequence of influenza A viruses is highly 

conserved. It is thus important to examine if and how influenza viruses will escape once the M2e-

based vaccines will be used to vaccinate the human population. To examine this, we infected SCID 

mice with influenza A virus in the presence of anti-M2e immune pressure, in the form of passively 

transferred M2e-specific mAbs. These mAbs recognize either an internal M2e epitope or the highly 

conserved first eight amino acids at the N-terminus, which are encoded in-frame with the M1 

protein. We found that all M2e-specific antibodies significantly prolonged survival of challenged SCID 

mice compared to isotype antibody control treatment. In addition, and in agreement with the 

aforementioned study, M2e-specific IgG2a protected significantly better than IgG1 and even resulted 

in complete virus-clearance in some of the treated SCID mice. Subsequently, the viral diversity of 

virus released in the mouse lung was determined using the optimized influenza-specific RT-PCR and 

NGS data analysis pipeline. Escape in M2e was only detected when mice were treated with 

antibodies which recognize an internal M2e epitope. However, the genetic diversity was limited to a 

proline to histidine or leucine mutation at position 10 or an isoleucine to threonine mutation at 

position 11 in M2e. These changes in M2e abolish recognition by the antibodies, explaining how 

viruses with these mutations emerge. Surprisingly, in half of the samples from mice that had been 

treated with the anti-M2e mAbs that recognize an internal epitope, and in all samples from mice that 

were treated with an antibody that recognizes the N-terminal epitope, no mutation in the M2e 

sequence was detected. Instead, non-synonymous mutations were detected in other viral proteins, 

mainly the polymerases and/or HA. Some of these mutations, when combined, were associated with 

a delayed M2 expression compared to the other structural proteins in infected cells. This delayed 

expression of M2e may represent an alternative escape route of the virus to circumvent M2e-based 
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immune pressure in an immune compromised host. From this study we can conclude that only 

limited variation in M2e is tolerated. Moreover, these M2e variants can still be recognized by 

polyclonal anti-M2e immune serum. However, further research is required to investigate if influenza 

viruses with alternative escape routes will also emerge in immunocompetent mice. 

Taken together, the work presented in this thesis shows that the genetic diversity in an influenza 

virus population can be determined by deep sequencing using an influenza-specific RT-PCR and NGS 

analysis pipeline [10]. Validating this workflow on a GFP-expressing reporter virus demonstrated that 

sequence bias should be taken into account when analysing sequence coverage [12]. In addition, the 

intrinsic genetic flexibility of influenza viruses enables escape to M2e-based immune selection 

pressure. However, the tolerated genetic diversity in M2e is limited and it will probably be harder for 

the virus to escape from a polyclonal anti-M2e immune response. Further research is required to 

investigate if influenza viruses that follow alternative escape routes can also emerge in 

immunocompetent individuals. Moreover, we showed that M2e-specific IgG2a antibodies have a 

higher protective potential than their IgG1 counterpart, which can be attributed to their ability to 

trigger all three activating Fcγ Receptors. These results suggest that M2e vaccine formulations should 

be used that induce high levels of M2e-specific IgG2a antibodies.  
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Samenvatting 

De griep is één van de meest besmettelijke luchtweginfecties en is geassocieerd met een hoge 

jaarlijkse ziektelast. De ziekte wordt veroorzaakt door infectie met het influenzavirus en kan 

voorkomen worden door vaccinatie. De doeltreffendheid van de huidige griepvaccins is echter 

beperkt aangezien deze voornamelijk antilichamen opwekken tegen het zeer variabele hoofddomein 

van hemagglutinine (HA), het voornaamste membraaneiwit van het virus. Effectieve bescherming 

wordt gewoonlijk bekomen wanneer de antigene eigenschappen van de virusstammen aanwezig in 

het vaccin overeenkomen met de circulerende influenzavirusstammen. Aangezien de replicatie van 

influenzavirussen mutatiegevoelig is, kennen deze een grote genetische flexibiliteit met continue en 

graduele selectie van mutaties in de antigene posities van HA. Neutraliserende antilichamen, 

bijvoorbeeld deze opgewekt tijdens een natuurlijke infectie of na vaccinatie, kunnen bijgevolg niet 

langer binden op virussen met gewijzigde antigene eigenschappen. Deze antigene drift maakt 

jaarlijkse vaccinatie met een aangepaste vaccinsamenstelling noodzakelijk. 

Er is dus dringend nood aan een griepvaccin dat langdurige bescherming biedt aan een breed 

spectrum van influenzavirussen om zo de jaarlijkse economische en sociale ziektelast, die gepaard 

gaat met influenzavirusinfecties, verder te reduceren. Momenteel worden er verschillende 

experimentele strategieën ontwikkeld die gericht zijn tegen de meer geconserveerde antigene 

posities van influenzavirussen, om zo een griepvaccin te bekomen dat een brede bescherming biedt. 

In ons laboratorium aan de Universiteit Gent en het VIB werd een dergelijk vaccin ontwikkeld dat 

gebaseerd is op het geconserveerde ectodomein van het virale membraaneiwit 'matrix eiwit 2' (M2e) 

[1]. Preklinische resultaten hebben het antigene potentieel en het beschermend effect van deze op 

M2e gebaseerde vaccins tegen verschillende subtypes van influenzavirussen aangetoond [2]. 

Sommige van deze vaccins worden momenteel geëvalueerd in klinische testen, waarbij hun veiligheid 

en immunogeniciteit reeds aangetoond is [3-6]. De bescherming door deze op M2e gebaseerde 

vaccins is te wijten aan niet-neutraliserende antilichamen die hiervoor afhankelijk zijn van 

immuuncellen die Fcγ Receptoren (FcγRs) op hun celoppervlak tot expressie brengen [7, 8]. Het is 

echter niet helemaal duidelijk welke antilichaamisotypes welke FcγRs vereisen om hun in vivo 

beschermend effect uit te kunnen oefenen. Daarnaast is de rol van FcγRIV in bescherming door M2e-

specifieke antilichamen nog niet onderzocht. Het is ook belangrijk om te onderzoeken of, en hoe, 

influenzavirussen zullen ontsnappen aan deze op M2e-gebaseerde immuundruk. 

De genetische flexibiliteit van influenzavirussen zorgt ervoor dat ze kunnen ontsnappen aan de 

natuurlijke immuunselectiedruk en is het resultaat van hun mutatiegevoelige replicatie, in 

combinatie met hun snelle replicatiecyclus, hun omvangrijke populatiegrootte en de inherente 

tolerantie van HA voor mutaties in zijn antigene posities [9]. Om deze intrinsieke genetische 

diversiteit te bestuderen is een gevoelige sequeneringstechniek vereist met een grote 

sequentiecapaciteit. De vooruitgang in het veld van 'next-generation' DNA 

sequentiebepalingstechnieken (NGS), waar verschillende miljoenen DNA fragmenten in parallel 
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gesequeneerd worden, maakt het mogelijk om de genetische diversiteit in een viruspopulatie met 

een grote gevoeligheid te bepalen. 

Aan het begin van dit doctoraatsproject was het onduidelijk welk sequeneringsplatform het meest 

accuraat was om de genetische variatie in snel evoluerende RNA-virussen te bepalen. Daarom 

hebben we eerst de geschiktheid van twee verschillende NGS platformen vergeleken om de 

genetische diversiteit over de volledige genoomsequentie in een influenza A viruspopulatie te 

bepalen: de Illumina MiSeq sequenering-door-synthese en de Ion Torrent PGM halfgeleider-

sequeneringstechniek [10]. Aangezien het vaak onduidelijk is hoe NGS data verwerkt of geanalyseerd 

wordt, hebben we ook een werkschema voor NGS data-analyse opgesteld om de variatie in een RNA-

viruspopulatie te bepalen. Dit werkschema kan echter ook voor andere toepassingen gebruikt 

worden. De gevoeligheid en accuraatheid van beide sequeneringstechnieken werd eerst bepaald op 

basis van plasmiden die een wild type of mutant influenza M segment bevatten, afkomstig van het 

'reverse genetics' plasmidesysteem van het PR8 virus, wat een goed gekarakteriseerde influenza A 

labostam is. Deze vergelijking toonde aan dat de bekomen sequentielengte na het verwerken van de 

sequenties vergelijkbaar was voor beide sequeneringstechnieken. De sequenties bekomen op de 

Illumina MiSeq waren echter anderhalve keer meer accuraat dan deze gesequeneerd op de Ion 

Torrent PGM. Daarna werden wild type en mutant PR8 virus recombinant aangemaakt en werd een 

influenza-specifieke RT-PCR ontwikkeld op basis van de geconserveerde sequenties aanwezig aan de 

uiteindes van de influenzagenoomsegmenten. Dit resulteerde in efficiënte amplificatie van elk van de 

acht genoomsegmenten. De virussequenties bekomen op de beide sequencers konden succesvol de 

novo geassembleerd worden tot het gesegmenteerde influenzavirusgenoom. Na aligneren van de 

sequenties aan het referentiegenoom, hebben we bepaald dat een detectielimiet van 0.5% 

gehanteerd moet worden om betrouwbare detectie van varianten in een virusstaal toe te laten. De 

meeste varianten in het PR8 virus werden gedetecteerd in HA en werden door beide 

sequeneringstechnieken gedetecteerd. Op basis van zijn lagere totale foutenfrequentie en hogere 

sequeneringscapaciteit, kunnen we besluiten dat het Illumina MiSeq platform meer geschikt is om 

mutaties op te sporen in een viruspopulatie, terwijl het Ion Torrent PGM platform een kortere 

doorlooptijd kent, wat belangrijk kan zijn in virusdiagnose. Het ontwikkelde influenza-specifieke RT-

PCR protocol en het werkschema voor NGS data-analyse kunnen voor verschillende toepassingen 

gebruikt worden, bijvoorbeeld in virus surveillance, in het testen voor influenzaresistentie en 

vaccincontrole. 

Een bijkomende onderzoekstoepassing waar de NGS benadering een grote rol kan spelen is in het 

bepalen van de genetische stabiliteit van recombinant aangemaakte virussen. In ons labo hebben we 

een rapporteervirus ontwikkeld dat GFP tot expressie brengt en waarbij we gebruik gemaakt hebben 

van het PR8 virusgenoom [11]. Vervolgens hebben we het ontwikkelde influenza-specifiek RT-PCR 

protocol en het werkschema voor NGS data-analyse gebruikt om de genetische stabiliteit van dit 

virus te bepalen [11]. Aangezien het geïntroduceerde rapporteergen geen selectief voordeel biedt 

voor het virus, is het daarom belangrijk om na te gaan of het gen in het virusgenoom behouden blijft 
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na virusreplicatie. Fenotypische analyse leerde ons dat het GFP eiwit stabiel tot expressie gebracht 

werd na verschillende rondes van replicatie in permissieve cellen. Daarentegen werd er echter een 

tweevoudige reductie van de sequentiedekking geobserveerd in de GFP sequentie na sequeneren 

van de PR8-GFP virusstock. Deze sequentiebias was aanwezig wanneer zowel de Nextera XT 

transposase methode of de mechanische Covaris methode gebruikt werd voor DNA fragmentatie, 

waardoor uitgesloten kon worden dat deze sequentiebias geïntroduceerd was tijdens het bereiden 

van de sequentiebibliotheek [12]. Bovendien was het onwaarschijnlijk dat het virus deze sequentie 

van vreemde oorsprong zelf verwijderd had, aangezien deze reductie in sequentiedekking ook 

geobserveerd werd indien het parentale plasmide DNA, dat gebruikt was om het virus dat GFP tot 

expressie brengt te produceren via 'reverse genetics', gesequeneerd werd. Op basis van deze 

resultaten, en in overeenstemming met de bevindingen van Ekblom et al., vermoedden we dat het 

'CCCGCC' sequentiemotief in de GFP coderende sequentie benadeeld werd tijdens het Illumina 

sequeneren [13]. Deze veronderstelling werd bevestigd door dit motief te muteren, aangezien dit de 

afname in sequentiedekking tenietdeed [12]. Deze studie toont aan dat rekening gehouden moet 

worden met een potentiële sequentiebias vooraleer een besluit genomen wordt op basis van het 

aantal sequenties dat aligneert aan een bepaalde doelsequentie bij NGS dekkingsanalyse. 

In een derde luik van dit doctoraatsproject hebben we het beschermingsmechanisme van de op 

M2e-gebasseerde vaccins onderzocht. Hiervoor hebben we de functionele betrokkenheid van de 

verschillende FcγRs bepaald voor twee monoklonale antilichamen van muis origine (mAbs) die M2e 

binden met een gelijkaardige affiniteit, maar die ofwel van het IgG1 of IgG2a antilichaam isotype zijn. 

We hebben eerst het potentieel van beide antilichamen onderzocht om de individuele FcγRs te 

activeren in de context van een virale infectie door gebruik te maken van een in vitro FcγR 

activatietest. Vervolgens werd de in vivo rol van de FcγRs onderzocht door via passieve transfer M2e-

specifieke mAbs toe te dienen aan wild type muizen of aan muizen met verschillende 

tekortkomingen in hun FcγR compartiment, gevolgd door infectie met een letale virusdosis. Op basis 

van deze experimenten konden we besluiten dat de M2e-specifieke antilichamen van het IgG1 

isotype FcγRIII vereisen om tijdens een infectie bescherming te kunnen bieden, terwijl de M2e-

specifieke antilichamen van het IgG2a isotype bescherming kunnen bieden tegen een influenza A 

virus infectie via alle drie de activerende FcγRs. Deze resultaten tonen dus aan dat M2e-specifieke 

antilichamen van het IgG2a isotype meer bescherming kunnen bieden tijdens een infectie. Het 

beschermend effect van op M2e-gebaseerde vaccins kan dus verhoogd worden door hen zodanig te 

ontwikkelen dat ze een robuuste Th1 immuunrespons opwekken. 

In een laatste luik van deze doctoraatsthesis hebben we de mogelijke strategieën onderzocht die 

influenza A virussen kunnen volgen om aan de op M2e-gebaseerde humorale immuundruk te 

ontsnappen. De sequentie van M2e in influenza A virussen is zeer geconserveerd. Het is daarom 

belangrijk om na te gaan of, en op welke manier, influenzavirussen kunnen ontsnappen eens de 

bevolking met deze op M2e-gebaseerde vaccins gevaccineerd zal worden. Om dit te onderzoeken 

hebben we immunodeficiënte (SCID) muizen geïnfecteerd met influenza A virussen in de 
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aanwezigheid van anti-M2e immuundruk, onder de vorm van M2e-specifieke mAbs toegediend via 

passieve transfer. Deze mAbs herkennen ofwel een intern M2e epitoop of de zeer geconserveerde 

acht aminozuren aan de N-terminus, welke gecodeerd worden in hetzelfde leesraam als het M1 

eiwit. Alle M2e-specifieke antilichamen resulteerden in een significante verlenging van de overleving 

van de geïnfecteerde SCID muizen, wanneer vergeleken werd met muizen die de isotype controle 

behandeling toegediend kregen. Daarnaast, en overeenkomstig met de bovengenoemde studie, 

resulteerde de behandeling met M2e-specifieke IgG2a antilichamen in een significant betere 

bescherming dan die van het IgG1 isotype, met zelfs complete virusklaring in sommige van de 

behandelde SCID muizen tot gevolg. Vervolgens werd de diversiteit van het in de muislong 

vrijgestelde virus bepaald door middel van de geoptimaliseerde influenza-specifieke RT-PCR en het 

werkschema voor NGS data-analyse. Mutaties in M2e werden enkel gedetecteerd indien de muizen 

behandeld werden met antilichamen die een intern M2e epitoop herkennen. De genetische 

diversiteit was echter wel beperkt tot een proline naar histidine of leucine mutatie op positie 10 of 

een isoleucine naar threonine mutatie op positie 11 in M2e. Deze mutaties verhinderen de binding 

van de antilichamen aan M2e, wat verklaart waarom virussen met deze mutaties geselecteerd 

worden. Het is opmerkelijk dat in de helft van de muizen die behandeld werden met anti-M2e mAbs 

die een intern epitoop herkennen en in alle stalen van muizen die behandeld werden met mAbs die 

een N-terminaal epitoop binden, geen mutaties in de M2e sequentie gedetecteerd werden. 

Daarentegen werden er wel verschillende niet-synonieme mutaties in andere viruseiwitten 

gedetecteerd, voornamelijk in de polymerasen en/of HA. Een combinatie van enkele van deze 

mutaties resulteert in vertraagde M2 expressie ten opzichte van de overige structurele eiwitten in de 

geïnfecteerde cellen. Dit kan een alternatieve manier zijn om de op M2e-gebasseerde immuundruk 

in een immunodeficiënte gastheer te omzeilen. Op basis van deze resultaten kunnen we besluiten 

dat enkel beperkte variatie in M2e toegelaten wordt. Bovendien hebben we aangetoond dat deze 

M2e varianten nog steeds herkend worden door een polyklonaal anti-M2e immuunserum. Verder 

onderzoek is echter vereist om na te gaan of influenzavirussen die aan de op M2e-gebaseerde 

immuundruk ontsnappen via een alternatieve manier ook zullen doorbreken in immunocompetente 

muizen. 

Samengevat toont deze doctoraatsthesis aan dat de genetische diversiteit in een influenza 

viruspopulatie bepaald kan worden door middel van NGS indien gebruik gemaakt wordt van de 

influenza specifieke RT-PCR en een werkschema voor NGS data-analyse [10]. Valideren van dit 

werkschema op een rapporteervirus dat GFP tot expressie brengt toonde aan dat rekening gehouden 

moet worden met een eventuele sequentiebias indien de sequentiedekking bestudeerd wordt [12]. 

Daarnaast hebben we aangetoond dat de intrinsieke genetische flexibiliteit van influenzavirussen 

ervoor zorgt dat deze virussen kunnen ontsnappen aan de op M2e-gebasseerde 

immuunselectiedruk. De toegestane genetische diversiteit in M2e is echter beperkt waardoor het 

waarschijnlijk moeilijk zal zijn voor het virus om te ontsnappen aan een polyklonale anti-M2e 

immuunrespons. Verder onderzoek is echter vereist om te bepalen of de influenzavirussen die 
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alternatieve ontsnappingsroutes volgen ook geselecteerd zullen worden in immunocompetente 

gastheren. Daarnaast hebben we ook aangetoond dat M2e-specifieke antilichamen van het IgG2a 

isotype een betere bescherming bieden dan hun IgG1 equivalent, wat een gevolg is van hun 

mogelijkheid om alle drie de activerende Fcγ receptoren te stimuleren. Deze resultaten suggereren 

dat er voor de op M2e-gebaseerde vaccins een vaccinformulatie gekozen moet worden die hoge 

niveaus van M2e-specifieke IgG2a antilichamen zal opwekken. 
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1.1. Social and economic impact of influenza viruses 

Influenza epidemics have a widespread impact, infecting 250-500 million people each year. Of these, 

3 to 5 million result in severe illnesses requiring hospitalization and an estimated 250.000-500.000 

people die each year due to influenza [1]. Influenza pandemics are rarer, but usually have a more 

severe global impact. In the last century, the world population was confronted with four influenza 

pandemics ('Spanish flu' in 1918, 'Asian flu' in 1957, 'Hong Kong' flu in 1968 and 'Mexican flu' in 

2009). The Spanish flu was the most devastating pandemic, with an estimated 500 million persons 

infected, resulting in fifty millions deaths worldwide [2, 3]. 

The symptoms that can be associated with influenza virus infection are multiple: fever, cough, sore 

throat, runny nose, muscle or body aches, headaches, fatigue, vomiting and diarrhea. The elderly 

(over 65 years), the very young (under 2 years), pregnant women, patients with chronic medical 

conditions and immuno-compromised patients are susceptible to more severe respiratory disease 

and death due to influenza [4].  

Although influenza is a vaccine preventable disease, the yearly medical cost for the US is estimated 

between three and five billion dollars [5]. However, the indirect cost due to lost or reduced 

productivity is estimated to be ten times higher. The percentage of hospitalizations that is prevented 

by using the current vaccination strategies is estimated to be between 9% and 22% [6]. Seasonal 

influenza vaccines mainly target the highly antigenically variable viral surface protein hemagglutinin 

(HA) by eliciting virus neutralizing antibodies. However, influenza viruses are intrinsically genetically 

variable and can escape immune pressure by mutating the antigenic sites in HA, rendering the 

vaccine ineffective. In addition, seasonal influenza vaccines contain the viral strains that are 

predicted to cause the next epidemic. A mismatch between the vaccine strain and the circulating 

strain, results in suboptimal protection. Taking into account the social and economic impact of 

influenza infections, there is thus a need for a more successful vaccination strategy, e.g. based on 

more conserved influenza antigens. 

1.2. Classification, nomenclature and host range of influenza viruses 

Influenza, one of the most highly contagious viral infectious diseases of the upper respiratory tract in 

humans, is caused by the influenza A, B and occasionally C viruses. The addition of a fourth influenza 

genus, influenza D, has been suggested recently based on a virus that has been isolated from pigs 

and cattle [7]. Influenza viruses represent four of the seven genera from the family of 

Orthomyxoviridae, which are characterized by a enveloped, segmented, negative-sense RNA 

genome. The influenza viruses share the same genetic ancestor and the classification in influenza A, B 

and C viruses is based on the antigenic differences in two of their internal proteins: matrix protein 1 

(M1) and nucleoprotein (NP) [8, 9]. The influenza A viruses are further subdivided based on the 

antigenic nature of their major surface glycoproteins: HA and neuraminidase (NA) [10]. There are 18 
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serologically distinguishable HA (H1 - H18) and 11 NA (N1 - N11) subtypes [11, 12]. The HA proteins 

can be further subdivided into two groups based on their phylogeny: group 1 (H1, H2, H5, H6, H8, H9, 

H11, H12, H13, H16, H17 and H18) and group 2 (H3, H4, H7, H10, H14, and H15) [13-16]. The same 

subdivision into two phylogenetic groups holds true for the NA proteins: group 1 (containing N1, N4, 

N5 and N8) and group 2 (containing N2, N3, N6, N7 and N9) [17]. Influenza B viruses are more 

antigenically stable and since the late 1970's diverged into two antigenically distinguishable lineages: 

B/Yamagata and B/Victoria [18, 19]. Influenza C viruses have a high antigenic stability and are not 

further subdivided [20, 21].  

Influenza viruses follow an internationally accepted naming convention: the antigenic type, followed 

by the host of origin (omitted if isolated from human), geographical origin, strain number and year of 

isolation [22]. For influenza A viruses, the HA and NA subtype are added in parentheses. E.g. 

A/Puerto Rico/8/1934 (H1N1), strain number eight of an influenza A virus of the H1N1 subtype 

isolated in 1934 in Puerto Rico from a human patient.  

Wild birds are the natural reservoir for almost all influenza A virus subtypes. In these species, the 

virus usually replicates asymptomatically in the intestines. However, influenza A infection causes 

disease in a wide range of vertebrate species, ranging from domestic poultry, horses, pigs to humans. 

In humans, the influenza A (H3N2 and H1N1) and B viruses are of epidemiological interest, since they 

cause the recurrent seasonal influenza epidemics, as such they are also the constituents of the 

annual influenza vaccine [23]. Avian influenza A viruses that cause disease in domestic poultry are 

divided into two groups based on the elicited disease symptoms: highly pathogenic avian influenza 

viruses (HPAIV), which can replicate systemically, and low pathogenic avian influenza viruses (LPAIV), 

which mostly infect the epithelial cells of the intestinal tract. On rare occasions avian influenza 

viruses from the H5 and H7 subtype have been transmitted to humans, resulting in severe illness. 

Until now, only a few human-to-human transmissions between close contacts have been reported 

[24, 25]. However, these viruses are of epidemiological interest since no pre-existing immunity to 

avian influenza strains is present in the human population. Consequently, there is the fear that these 

viruses will result in a next influenza pandemic once they obtain sustained human-to-human 

transmission. 

1.3. Influenza A virion 

Influenza A virions are pleiomorphic particles ranging from 80 to 120 nm in diameter, with 

filamentous particles reaching microns in length (Figure 1, schematic representation of a spheric 

influenza A virion) [10, 27, 28]. Clinical isolates of influenza A viruses frequently produce long 

filamentous particles, while laboratory-adapted strains are mainly spherical [29, 30]. Each virion 

contains only one influenza A genome of approximately 13 kb, divided over eight single-stranded, 

negative-sense RNA segments of varying length [31, 32]. Only a small portion of all influenza A virus 

particles released from an infected cell is infectious [33]. The remaining part are defective interfering 



 

7 

 

particles (DIPs) containing at least one viral segment (mainly the polymerases) with a large internal 

deletion retaining the packaging signals at the segment ends [34, 35]. The viral genome can encode 

for at least 16 proteins, with new protein products still being discovered, demonstrating the high 

coding capacity of the rather small viral genome (Table 1).  

  
Figure 1: Schematic representation of an influenza A virion. Figure adapted from [26]. 

The viral membrane contains three membrane proteins: the two protruding glycoproteins HA (~400 

HA trimers per virion) and NA (~100 NA tetramers per virion), and the less abundant and much 

smaller matrix protein M2 (10-50 M2 tetramers per virion) [27, 36, 37]. HA and NA have both a large 

protruding ectodomain composed of a globular head and a stalk domain, while the M2 ectodomain is 

small and consists of only 23 amino acids.  

HA is a type I transmembrane protein with a bilobed peanut shape and is composed of three 

identical subunits (HA0) of 550 amino acids (aa) [27]. HA0 has to be cleaved by a host cell protease 

into two polypeptides, HA1 and HA2, to become functionally active. The HA cleavage site of human 

and LPAIV contains a monobasic motif, susceptible only to trypsin-like proteases, which limits 

infection to the respiratory, respectively gastrointestinal tract. In contrast, HPAIV have a polybasic HA 

cleavage site which can be cleaved by the ubiquitously expressed furin protease, which can result in 

systemic viral replication. The HA head domain (HA1) plays an important role in viral attachment by 

binding to sialic acid (SA) on carbohydrate side chains of cell-surface glycoproteins and glycolipids, 

initiating endocytosis of the virus [49]. The HA receptor specificity is a key determinant of influenza A 

virus tropism. Human influenza viruses preferentially bind to SA linked to galactose in an α2,6 linkage 

(SAα2,6Gal) whereas avian influenza viruses prefer the SA in an α2,3 linkage (SAα2,3Gal). This 

correlates with the tissue tropism of the human and avian influenza viruses in their host: SAα2,6Gal 

are mainly present on the epithelial cells of the human trachea and SAα2,3Gal are predominantly 

present on epithelial cells of the avian intestine [65, 66]. However, SAα2,3Gal are also present in the 
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human lower respiratory tract, which explains the severe disease outcome after infection with avian 

influenza. The receptor binding specificity of HA can be altered by single amino acid substitutions 

[67]. The N-terminus of the stalk domain (HA2) is composed of hydrophobic amino acids, the fusion 

peptide, which is exposed on low pH to trigger membrane fusion [50]. As a result of this, the viral 

ribonucleoprotein complexes are released into the cell-cytoplasm. The humoral immune response 

after infection or influenza vaccination mainly targets the antigenic sites of HA expressed on the HA 

globular head part. 

The second abundant surface glycoprotein, NA, is a type II transmembrane glycoprotein with a 

mushroom shape and composed of four identical subunits of 470 aa. Each subunit is composed of an 

N-terminal cytoplasmic tail, a transmembrane domain, a thin stalk of variable length and a large 

globular head domain [53]. The length of the NA stalk affects the host range of influenza A viruses. It 

has been reported, e.g., that a deletion of 20 aa in the NA stalk of H5N1 viruses is favourable for 

adaptation to chicken [68]. However, this deletion compromises transmission between ferrets and 

replication on human airway epithelial cells [69]. The NA exosialidase acitivity cleaves α-ketosidic 

linkages between the SA and an adjacent sugar residue and is important in several stages in the viral 

replication cycle [70]. Upon viral entry in the lung, the sialidase acitivity of NA is required to cross the 

mucus layer lining the respiratory tract which contains heavily sialylated glycoproteins [71]. During 

viral budding, NA cleaves the SA from sialylated viral proteins, hereby preventing the aggregation of 

viruses. Finally, NA cleaves the SA from glycans on the host cell, to release newly produced virus [53].  

The third membrane protein, matrix protein M2, is a homotetrameric type III membrane protein 

which contains a small 23 aa N-terminal ectodomain, a transmembrane α-helical domain and a 

cytoplasmic domain consisting of a membrane proximal amphiphatic helix and cytoplasmic tail [72]. 

The ectodomain of M2 (M2e) is highly conserved in nature and can adopt multiple conformations 

[73-75]. M2 forms a pH-dependent ion channel which is essential for viral uncoating through 

acidification of the virion and correct maturation of HA in the trans-Golgi network [76, 77]. The ion 

channel activity of newly synthesized M2 also results in activation of the inflammasome [56]. The 

cytoplasmic domain of M2 contributes in virion assembly, budding and release [58, 59]. Furthermore, 

this domain is also involved in subverting the autophagy machinery from the host cell [57]. The M 

segment in some viral strains also encodes for an alternative splice variant, M42, which has an 

antigenically distinct ectodomain compared to M2 and can functionally replace M2 despite being 

mainly present in the perinuclear region of the infected cell [60]. We note that a more extended 

outline on M2 and M2e-based vaccines will be provided in Chapter 2. 
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Table 1: Coding capacity influenza A virus genome.  

Segment Protein Length (aa) Function Ref. 

1 PB2 759 
Subunit viral polymerase complex 

Binding 5' cap of host pre-mRNA in cap-snatching 
[38] 

 PB2-S1 508 
Inhibition RIG-I signaling, interferes with viral 

polymerase activity 
[39] 

2 PB1 757 
Subunit viral polymerase complex 

RNA polymerase activity 
[40] 

 PB1-F2 87 
Induction of host-cell apoptosis 

Influences the polymerase activity (interaction PB1) 
[41-44] 

 PB1-N40 718 
Maintaining balance between PB1 and PB1-F2 

expression, exact function unknown 
[45] 

3 PA 716 
Subunit viral polymerase complex 

Endonuclease activity in cap-snatching 
[46] 

 PA-X 61 Inhibition of host protein synthesis [47] 

 PA-N155 568 Unknown [48] 

 PA-N182 535 Unknown [48] 

4 HA 550 

Binding receptor 

Membrane fusion 

Virus budding 

[49, 50] 

5 NP 498 
Binding and protecting vRNA 

Supporting polymerase complex 
[51, 52] 

6 NA 454 

Host entry 

Viral budding 

Virion release 

[53] 

7 M1 252 
Nuclear export vRNPs 

Virus budding and virion structure 
[54, 55] 

 M2 97 

Virus entry, assembly and budding 

Autophagy 

Inflammasome activation 

[56-59] 

 M42* 99 Can functionally replace M2 [60] 

8 NS1 230 Evasion of the host immune system [61, 62] 

 NEP/NS2 121 Export viral RNPs from nucleus [63] 

 NS3* 174 Adaptation to mammalian host [64] 

Protein length refers to A/Puerto Rico/8/34(H1N1). *Expression depends on viral isolate 
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Lying beneath the lipid envelope is a matrix layer formed by matrix protein M1, which is the most 

abundant protein present in the virion [78]. M1 plays a role in virus budding and surrounds the rod-

shaped viral ribonucleoprotein (vRNPs) complexes [55]. A vRNP is a genomic RNA segment wrapped 

by nucleoprotein (NP) oligomers and has a single polymerase complex bound to the 5' and 3' end of 

the vRNA, which form a partially double-stranded structure through base-pairing [79-81]. NP binds 

RNA through its highly conserved RNA binding groove and forms oligomers by inserting a flexible tail 

loop into a neighbouring molecule [51]. The viral polymerase complex is an RNA-dependent-RNA 

polymerase (RdRpol) and consists of three different viral proteins: Polymerase Basic 1 and 2 (PB1 and 

PB2) and Polymerase Acidic (PA). The viral RdRpol has a relatively high error rate (2.3 × 10−5) due to 

absence of 3'→5' exonuclease activity and thus proof-reading activity [82, 83]. Additionally, M1 also 

interacts in the virion with the nuclear export protein (NEP), also known as non-structural protein 2 

(NS2). NEP is responsible, together with M1, for nuclear export of newly produced vRNPs in infected 

cells [63]. The presence of "non-structural" protein 1 (NS1), in low abundance, in the virion has 

recently been described [78]. NS1 is a multifunctional protein with a major role in evasion of the host 

immune system by inhibiting cellular gene expression and antagonising the effector functions of IFN 

[61, 62]. Its role in the virion is unclear, but it could potentially play a role in virion assembly or 

enhance infection when introduced into a new host cell [78]. 

Several influenza proteins are also expressed in the infected cell, but are absent in the virion [78]. 

PB2-S1 has recently been described to be encoded by a splice variant of PB2 mRNA. PB2-S1 localizes 

to mitochondria, inhibits the RIG-I dependent interferon signaling pathway and interferes with the 

viral polymerase activity [39]. PB1-F2 is encoded by an alternate reading frame in the PB1 gene 

segment and targets the mitochondria, leading to apoptosis [41-43]. PB1-F2 contributes to 

pathogenicity in avian hosts but has a minimal effect on virulence on humans [84]. The PB1 segment 

also encodes for an N-terminally truncated form, PB1-N40, with a so far unknown function but lacks 

polymerase activity and interacts with PB2, PB1, NP and PB1-F2 in the nucleus [45, 85]. PA-X is 

expressed as a result of ribosomal frameshifting and contains the N-terminal endonuclease domain 

and an alternative C-terminus [86]. PA-X inhibits host protein synthesis in the infected cell, hereby 

suppressing the antiviral response [47]. In addition, two N-terminally truncated forms of PA have 

been described recently, PA-N155 and PA-N182, with a suggested role for enhanced influenza A virus 

replication and pathogenicity [48]. NS3, a splice-variant of NS1 mRNA, is present in some viral strains 

and is associated with host-adaptation from avian to mammalian hosts [64]. 
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Figure 2: Schematic representation of the influenza A virus replication cycle.  

1.4. Virus replication 

A schematic representation of the influenza A virus replication cycle is shown in Figure 2. Initiation of 

virus infection involves binding of HA to SA on carbohydrate side chains of cell-surface glycoproteins 

and glycolipids [49]. Upon binding, the virion is engulfed by either clathrin-dependent-receptor-

mediated endocytosis or macropinocytosis and trafficked to an endosomal compartment [87-89]. 

The low endosomal pH induces a conformational change in HA, exposing the HA2 fusion peptide. This 

hydrophobic fusion peptide inserts itself in the endosomal membrane, resulting in fusion of the viral 

and endosomal membrane [50]. In parallel, the ion channel activity of M2 is also activated by the 

acidic environment in the endosome, resulting in acidification of the viral core and release from the 

vRNPs in the cytoplasm. These vRNPs are then imported to the nucleus for viral transcription and 

replication [90, 91]. Their nuclear import is mediated by nuclear localization sequences (NLS) on the 

vRNPs, which are exposed after they dissociate from M1 [92]. Since influenza viruses have a 

negative-sense RNA genome, a positive-sense copy is synthesized for both viral transcription and 

viral replication. The synthesis of viral mRNA is initiated by a process called 'cap snatching', in which a 

5' cap of a host cell derived pre-mRNA is bound by PB2 and cleaved-off by the endonuclease activity 

of PA at approximately 10 to 13 nucleotides from the cap structure [38, 46]. This 5' cap is 

subsequently used as an RNA primer and elongated by the RNA polymerase activity of PB1 [40]. 

Transcription is performed by the polymerase complex initially bound to the vRNP and supported by 

NP [52, 93]. Transcriptional elongation is terminated when the poly-U stretch near the 5'-terminus of 

the vRNA is transcribed by reiterative stuttering [94, 95]. This results in an mRNA containing a 5' cap 
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structure and 3' poly(A) tail, resembling the cellular mRNAs. Afterwards, the synthesized viral mRNA 

is exported to the cytoplasm for translation to viral proteins by the host cell machinery. The newly 

produced proteins are then transported to the cell surface or to the nucleus to form new vRNPs. Viral 

transcription dominates early in infection, with replication becoming more abundant with 

progression of the infection [96]. In contrast to transcription, replication requires a newly produced 

polymerase complex and NP proteins to synthesize a positive-sense copy RNA (cRNA) from which 

new full-length vRNAs will be synthesized [97]. Newly synthesized vRNAs are co-transcriptionally 

encapsidated by NP and a polymerase complex, forming vRNPs. Nuclear export of these progeny 

vRNPs is mediated by M1 and NEP, which both contain nuclear export signals (NES) [98, 99]. 

Afterwards, the vRNPs are transported across the cytoplasm to the apical cell membrane, where 

assembly of progeny virions takes place in lipid raft domains. The M1 protein plays an important role 

in viral assembly and budding since it interacts both with the viral membrane proteins and the 

vRNPs. The presence of all eight genomic segments in a single virion is ensured by the packaging 

signals at their 5' and 3' termini [100]. Influenza viruses obtain their viral envelope during budding 

from the infected cell. The virions are finally released by cleavage of sialic acid from the infected cell 

by NA. 

1.5. Influenza quasispecies, antigenic drift and shift. 

The huge diversity in an influenza A virus population is the consequence of the relatively high error-

rate of its RNA polymerase (2.3 × 10−5), in combination with the large population size and rapid 

replication kinetics [82, 83]. Influenza viruses, as many other RNA viruses, exists as a large population 

of closely related genotypes linked through mutation: the influenza quasispecies [101, 102]. As a 

consequence, a given consensus sequence for an influenza virus is thus the average sequence of all 

viruses present in that sample [103]. The immense variation present in the viral quasispecies helps 

the virus to easily adapt to a changing environment. In addition, it is suggested that selection takes 

places at the population level, rather than on the individual genomes [104, 105]. 

The humoral immune response induced during seasonal vaccination or infection mainly generates 

neutralizing antibodies against the influenza virus major surface proteins HA and NA. Upon infection 

and due to the intrinsicly high genetic variability of influenza viruses, these antibodies select for 

viruses with amino acid substitutions in HA and/or NA that retain their structure and function, but to 

which the antibodies can no longer bind. This is called antigenic drift and is a continuous and 

unpredictable process, since each introduced amino acid substitution changes the mutation 

landscape [106]. Once a virus emerges that is no longer inhibited by the host humoral immune 

response elicited by the seasonal influenza vaccine, re-infection can occur and the virus can spread 

more rapidly among the population, resulting in the yearly recurrence of influenza epidemics. 

Antigenic drift is the main reason why the current influenza vaccines are updated annually since the 

vaccines are only effective when the vaccine antigenically matches the circulating virus strains. The 
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process of antigenic drift can be recapitulated in vitro and has been extensively studied [106-108]. 

Escape to neutralizing HA antibodies has also been shown to correlate with increased receptor 

avidity, suggesting a critical role of receptor binding avidity in antigenic drift [109]. The head domain 

of HA contains at least four different, surface-exposed highly-variable antigenic sites: Sa, Sb, Ca and 

Cb to which virus neutralizing antibodies can bind [107]. HA is inherently highly tolerant for 

mutations in its antigenic sites, contributing to influenza's rapid antigenic evolution [110]. NA is also 

subject to antigenic drift and carries three surface-exposed antigenic sites: A, B and C [111, 112]. 

However, the sequence evolution of NA is slower compared to HA1 [113].  

Antigenic shift is rather rare compared to antigenic drift and results in the introduction of a new 

influenza virus subtype from one species into another species, to which the new host has no pre-

existing immunity. Influenza viruses can follow three different routes leading to antigenic shift [114]. 

The first route is a consequence of the segmented nature of influenza viruses and takes place when 

an avian and human influenza virus from a different subtype infect a single cell in an intermediate 

host, e.g. pig. During assembly, exchange of viral segments between the two viruses can take place, 

resulting in the release of a virus from a different subtype that can infect a human host. Antigenic 

shift can also take place when an avian influenza virus first infects an intermediate host, followed by 

infection of a human host or directly, when an avian influenza virus crosses the species border and 

directly infects a human host. When such a antigenic shifted virus gains efficient human-to-human 

transmission, antigenic shift will introduce a viral subtype into the human population to which that 

population is immunologically (largely) naive. This can result in an influenza pandemic. Four human 

influenza pandemics in the last century were the result of antigenic shift by reassortment: The 

'Spanish Flu' (H1N1) in 1918, the 'Asian Flu' (H2N2) in 1957, the 'Hong Kong Flu' (H3N2) in 1968 and 

the recent H1N1 pandemic in 2009 [115-118]. 

A third mechanism introducing genetic diversity in the viral population is recombination. 

Recombination can take place when two different influenza viruses infect a single cell and RNA 

segments of both viruses are coupled by strand replacement during replication. In contrast to 

antigenic drift and shift, recombination in influenza viruses is less well studied and its importance in 

the evolution of influenza viruses remains controversial [119-121]. 

1.6. Influenza control 

1.6.1. Vaccination 

Vaccination is the primary means to protect humans against influenza virus infection and control 

virus spread. The WHO recommends seasonal influenza vaccination for pregnant women, children 

between six and 59 months, elderly, individuals with specific chronic medical conditions and health-

care workers. 
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Seasonal influenza vaccine 

Protection induced by the current influenza vaccines correlates primarily with the induction of strain-

specific neutralizing antibodies mainly targeting the antigenic sites in the head domains of HA, and to 

a lesser extent NA. Antigenic drift in HA and NA can lead to escape from antibody recognition and 

loss of vaccine effectiveness. As a consequence, the vaccine is continually assessed for cross-

reactivity with currently circulating strains and its composition is re-evaluated twice a year. The WHO 

makes recommendations on the composition of the influenza vaccines in February and September 

based on the results of surveillance, laboratory (e.g. testing for antiviral resistance) and clinical 

studies (e.g. human serology studies) by the WHO Global Influenza Surveillance and Response 

System. 

Three different types of seasonal influenza vaccines are approved for use in Europe: inactivated 'split' 

virus vaccines, subunit vaccines or live-attenuated virus vaccines. The traditional vaccines, 'the 

trivalent influenza vaccine', contains three different viral strains (or parts thereof): an influenza A 

H1N1 virus, an influenza A H3N2 virus and an influenza B virus. Since the two influenza B lineages are 

co-circulating, a 'quadrivalent vaccine', in which both the B/Victoria and B/Yamagata virus strain are 

included, was recently developed to give broader protection. The vaccine efficacy thus depends on 

how well the vaccine strains matches the viral strains that will circulate in the upcoming season. In 

general, the vaccine effectiveness is estimated to be ~40-60% for the three different viruses in the 

vaccine [122]. If the strains in the vaccine match the circulating ones, the vaccine efficacy in healthy 

young adults ranges from 70 to 90 % [123]. The vaccine viruses are created using classical 

reassortment or reverse genetics. The majority of vaccine doses are produced by amplifying the 

selected vaccine strains in embryonated chicken eggs, with a time-span of five to six months starting 

from isolation of the vaccine strain to bringing the vaccine on the market. This is an important 

disadvantage in pandemic preparedness: when suddenly an influenza virus emerges with pandemic 

potential, the new vaccine doses will only be on the market when the virus has already spread 

through the population. This was the case for the vaccine against the pandemic H1N1 virus in 2009. 

Despite being a critical tool in combating influenza infection worldwide, current available influenza 

vaccines are limited by their subtype-specificity and the ease of influenza viruses to evade the 

elicited humoral immune response. There is thus a need for a single vaccine that provides long-

lasting immunity against a broad spectrum of influenza viruses: the so-called 'universal influenza 

vaccine'. 

Universal influenza vaccine 

The 'universal influenza vaccine' candidates target epitopes present in influenza viral proteins that 

are conserved between influenza subtypes, with the aim to provide heterosubtypic protection. In 

addition, the broadness of protection of the vaccine can be increased if both the humoral and the 
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cell-mediated immune system are activated upon vaccination. Several 'universal influenza vaccine' 

candidates have been proposed eliciting a cross-reactive antibody-inducing and/or a cross-reactive T-

cell response. The cross-reactive antibody-inducing response is directed against conserved, 

extracellular parts of influenza membrane proteins, with the HA2 stem domain and the M2 

ectodomain (discussed in Chapter 2) being the major targets [124, 125]. In contrast to the seasonal 

vaccines eliciting mainly neutralizing antibodies, these vaccines are infection permissive, with 

protection mainly mediated through antibody-dependent cellular cytotoxicity and/or phagocytosis 

[126]. The cross-reactive T cell-inducing antigens are typically directed against conserved internal 

structural proteins, with the influenza M1 and NP being the major targets [127]. Several 'universal 

influenza vaccine' candidates are currently being evaluated in clinical trials [128]. 

1.6.2. Antivirals 

Influenza antivirals are used to prevent viral infection and treat infected individuals. Although 

vaccination is the method of choice for influenza prophylaxis, influenza antivirals are the first line of 

defense against emerging, antigenically different influenza strains and are thus stockpiled for 

pandemic preparedness. Two classes of antiviral drugs have been approved by the European Centre 

for Disease Prevention and Control: M2 inhibitors (the adamantanes: amantadine (Symmetrel®) and 

rimantadine (Flumadine®)) and neuraminidase inhibitors (oseltamivir (Tamiflu®), zanamivir 

(Relenza®)). The NA inhibitors Peramivir (Rapivab®) and Laninamivir (Inavir®) are currently in Phase III 

clinical trials in Europe. 

The M2 inhibitors, the adamantanes, exert their antiviral activity by blocking the ion channel activity 

of M2 and hence preventing the uncoating of the virus in infected cells. The adamantanes are only 

effective against influenza A viruses and their use is limited due to several toxic effects and the rapid 

emergence of drug-resistant variants [129]. A single amino acid substitution can result in resistance, 

with the predominant mutation being the M2-S31N. The resistance to adamantanes remains high 

among circulating influenza A isolates, with resistance detected among all tested influenza A(H3N2) 

and pandemic 2009 H1N1 viruses [130]. Furthermore, resistance was also detected in highly 

pathogenic H5N1 viruses isolated from poultry recently, limiting their use in pandemic preparedness 

[131-134]. Due to the high levels of antiviral resistance among circulating influenza viruses, these 

antivirals are no longer recommended for use by the WHO.  

The second class of influenza antivirals, the NA inhibitors, inhibit the enzymatic activity of 

neuraminidase by mimicking its substrate sialic acid. As a consequence, the release and spread of 

influenza viruses to other cells is prevented. The NA inhibitors are effective against influenza A and B 

viruses. The most frequently detected resistance mutation to Oseltamivir is H275Y, however, viral 

surveillance and resistance data indicate that >99% of currently circulating influenza virus strains are 

sensitive to the NA inhibitors [130].  
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The use of currently available influenza antivirals are limited by the emergence of drug resistance. 

There is thus a demanding need to develop new antivirals with reduced drug resistance potential and 

novel mechanisms of action. A newly developed influenza antiviral is Favipiravir (T-705 or Avigan), 

which is currently being evaluated in clinical trials. Favipiravir selectively targets the viral RNA 

polymerase complex, thereby inhibiting viral replication [135]. Favipiravir is converted by the cellular 

kinases to its active form, ribofuranosyl triphosphate, which block the RNA polymerase complex. 

Favipiravir is active against influenza A, B and C viruses, and against viruses resistant to the currently 

used antivirals. Recently, the broad-spectrum antiviral activity of favipiravir against a variety of RNA 

viruses, including Ebola virus, has been demonstrated [136, 137]. The availability of crystal structures 

results in the development of structure-based drug design, with several candidates being evaluated 

for their effectiveness as influenza antiviral, e.g. HB36.6 binding with high affinity to the conserved 

HA stem domain [138]. The possibility of specifically targeting the host cellular mechanisms activated 

upon influenza infection are also currently being explored as an antiviral strategy [139]. 
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Chapter 2 

Structure and function of influenza M2 and 

its development as a broadly protective vaccine 
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2.1. Structure and biological function of the influenza A M2 protein 

M2 is an influenza A virus membrane protein of 97 aa encoded by genome segment seven, the M 

segment. Four different mRNAs are transcribed from the M segment: unspliced M1 mRNA and 

alternative splice variants M2 mRNA, mRNA 3 and M42 mRNA [1-4]. The three splice variants use a 

common 3'-splice acceptor site, but a different 5'-splice donor site in the M1 mRNA [1]. The splicing 

of M2 mRNA is regulated by the viral NS1 protein and polymerase complex, and the cellular SF2/ASF 

protein [5-8]. Recent data demonstrate that splicing of M1 mRNA occurs at nuclear speckles [9]. M1 

and M2 use the same start codon for their translation and thus share the first nine amino acids 

before the 5' splice site of the mRNA. The C-terminal 89 aa of M2 are translated in the +1 reading 

frame relative to M1. M2 is the least abundant viral membrane protein, with only 14 to 68 molecules 

incorporated per virion [10, 11]. In contrast, it is highly expressed on infected cells [3, 12]. 

Interestingly, in a small number of influenza viruses, mRNA 4 can encode an M2-related protein, 

M42, which has an antigenically distinct ectodomain and can functionally replace M2 [2]. 

The influenza M2 protein is a homotetrameric type III membrane protein composed of two 

disulphide-linked dimers [13]. It is a multifunctional protein with three domains: an N-terminal 

ectodomain, a transmembrane domain and a C-terminal domain consisting of an amphiphatic helix 

and cytoplasmic tail. 

2.1.1. The M2 ectodomain (M2e) 

The ectodomain of M2 (M2e) comprises 23 amino acids and has a sequence which is highly 

conserved in all known human influenza A viruses (IAV) (Figure 1.A). However, the M2e sequence of 

viruses isolated during the influenza pandemic in 2009 (pH1N1 2009) deviates at four positions from 

the human consensus (Figure 1.A and B). The M segment in this reassortant virus is of avian-like 

swine origin, explaining the observed variation in the pH1N1 2009 M2e sequence (Figure 1.C) [14]. 

Comparably, there are minor variations in the M2e sequences derived from human and avian 

influenza A viruses (Figure 1). The cysteines at position 17 and 19 are highly conserved and are both 

equally competent to form the intermolecular disulfide bond in an M2 dimer [13]. Although they are 

not essential for tetramerization and in vitro and in vivo viral replication, they stabilize the M2 

tetramer when present [13, 15]. Little is known about the functional role of M2e. By using chimeric 

proteins consisting of domain-swaps between M2 and Sendai virus F protein, it was concluded that 

M2e is implicated in the selective incorporation of the M2 protein in virions [16]. A role for M2e in 

regulating the conformation of the transmembrane domain of M2 has recently also been suggested 

[17]. 

The high conservation of the M2e sequence is partially due to the genetic overlap with the highly-

conserved structural protein M1. The first nine amino acids are identical and show almost no 

variation in influenza viruses isolated from avian, human or swine, hinting toward a restriction in 
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genetic flexibility (Figure 1). An additional factor that might limit the genetic diversity in M2e is the 

low immune pressure present in the population for M2e: only poor anti-M2e antibody responses are 

elicited after influenza A virus infection or vaccination with conventional vaccines [21-23]. This can be 

the result of its small size and its low abundance in virions, where it is shielded by the large and more 

abundant surface proteins HA and NA. Interestingly, the seroprevalence of anti-M2 antibodies 

increases with age in humans, which possibly reflects the cumulative effect of multiple influenza A 

exposures [24]. This parallels findings in several inbred and outbred mice strains after repetitive 

influenza infections [25]. 

A. Human IAV M2e (excluding pH1N1 2009) 

 
B. Human pH1N1 2009 IAV M2e 

 

C. swine IAV M2e 

 

D. avian IAV M2e 

 

Figure 1: Conservation of the M2e sequence in human, swine and avian influenza A viruses (IAV). Logo based 

on alignment of all complete M2 protein sequences of influenza A viruses isolated from human (A: excluding all 

pH1N1 2009 sequences, n = 11230 ; B: only pH1N1 2009 sequences, n = 1924), swine (C, n = 7046) or avian (D, 

n = 8218) hosts, extracted from the Influenza Research Database (http://www.fludb.org/) on 9th of July, 2016 

for human and avian influenza A viruses and on 10th of August, 2016 for swine influenza A viruses. Amino acid 

sequence logo created using WebLogo after aligning the M2 sequences with Mega7 [18-20]. 

The structure of M2e is highly flexible, making it very difficult to obtain a crystal structure of native 

M2e [17, 28]. Nevertheless, crystal structures of M2e in complex with Fab-fragments derived from 

M2e-specific mAbs have modeled M2e in two different conformations. M2e complexed with an 
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antibody (mAb148) binding to the highly conserved N-terminus (aa 2-9) resembles a fishing hook, 

with residues Ser2-Leu3-Leu4-Thr5-Glu6 forming a β-turn (Figure 2.A) [26]. In contrast, M2e in 

complex with an antibody (mAb65) with an epitope specificity similar to that of mAb 14C2 (aa 5-15) 

forms a remarkable compact structure with a β-turn from Thr5 to Glu8 and a 310 helix from Ile11 to 

Trp15, with Trp15 stabilizing the M2e conformation (Figure 2.B) [27]. 

A. Fab148-M2eW15G B. Fab65-M2e 

  

Figure 2: Crystal structure of M2e in complex with Fab-fragments of M2e-specific mAbs. Crystal structure of 

Fab148 in complex with M2e-W15G (PDB: 5DLM, [26]) (A) and Fab65 in complex with M2e (B) (PDB: 4N8C, 

[27]). M2e in complex with Fab148 or Fab65 was modeled in PyMol (Delano Scientific, http://www.pymol.org)). 

2.1.2. M2 transmembrane domain 

The transmembrane domain of M2 (aa 25-46) forms a homotetrameric proton channel, adopting an 

α-helical secondary structure [29-32]. The four helices assemble into a left-handed four-helix bundle 

with a twist angle of about 23°, somewhat depending on the membrane composition, and a well-

defined pore [31].  

M2 forms an ion channel that transfers protons selectively across membranes along the 

electrochemical proton gradient [33]. Its activity is regulated by protonation of His37 at low pH, 

which also participates in selectively shuttling protons across the channel [34-36]. Trp41 acts as a 

gate of the proton channel, helping to define the rate of proton flux [37]. Interestingly, M2 is an 

asymmetric conductor and conducts only protons from the N-terminal part to the C-terminal part 

when the pH at the N-terminus is low [32]. To cope with the buildup of a large electrical potential as 

a consequence of proton transport, M2 has antiporter-like activity and mediates a significant 

outward flux of K+ ions [38]. 
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Evidence for the ion channel function of the M2 transmembrane domain originates from studies 

investigating the method of action of the M2-targeting influenza antivirals amantadine and 

rimantadine, derivates of adamantane [39-42]. M2 ion channel activity has multiple functions during 

the viral life cycle. Upon virus entry in the host cell, the lower pH in the endosome activates the M2 

channel, resulting in the influx of protons into the virion and disruption of the interactions between 

vRNPs, M1 and the viral membrane [43]. In parallel, this lower endosomal pH activates the fusion 

activity of HA, leading to fusion of the viral and endosomal membranes and subsequent release of 

the vRNPs into cytoplasm. Conversely, during protein trafficking of newly synthesized HA, M2 

neutralizes the intravesicular pH in the trans-Golgi network, ensuring the correct maturation of HA by 

preventing its low-pH induced fusogenic form [44]. Moreover, the ion channel activity of M2 also 

plays a role in regulation of cell death by arresting autophagy through the prevention of fusion of 

autophagosomes with lysosomes [45, 46]. A role for the M2 transmembrane domain in viral budding 

by augmenting the membrane curvature has recently also been suggested but is still under debate 

[47-49]. In addition, the imbalance in ionic concentrations in the Golgi apparatus caused by the M2 

channel activity of newly produced M2 is also required and sufficient for the stimulation of NLRP3 

inflammasomes, which is important in the development of an adaptive immune response [50-52]. 

2.1.3. Cytoplasmic domain 

The cytoplasmic domain (aa 47-97) of M2 is highly conserved among influenza A viruses and contains 

a membrane-surface associated amphipathic helix (aa 46-62) and an unstructured C-terminal tail [28, 

53]. Although the cytoplasmic domain of M2 is not required for ion channel activity of the protein, it 

facilitates proton conduction through the transmembrane pore [54, 55]. An important role has been 

assigned to the cytoplasmic domain in the formation of filamentous viral particles [56, 57]. The 

amphiphatic helix is required for virus budding, with a suggested stabilizing role for cholesterol, and 

scission of the viral particles [48, 49, 58-61]. The cytoplasmic tail of M2 plays an essential role in its 

interactions with M1, promoting the efficient packaging of genome segments into influenza virus 

particles [62]. Furthermore, by mimicking a host short linear protein-protein interaction motif, the 

cytoplasmic tail of M2 also interacts directly with autophagy protein LC3, promoting its relocalization 

to the plasma membrane, which results in increased virion stability and budding of filamentous 

viruses [63].  

2.2. Unraveling the antigenic potential of M2  

The interest in M2 as antiviral target was raised after Zebedee and Lamb demonstrated an effect on 

viral growth by anti-M2e mAbs [11]. They observed inhibition of viral growth, but not of viral 

infectivity, for some of the viruses, when applying a monoclonal antibody recognizing the 

ectodomain of M2, mAb 14C2, in a plaque-reduction assay [11]. By generating viruses that can 

escape to the in vitro growth inhibitory effect of mAb 14C2, the growth restriction could be assigned 
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to single amino acid positions in the cytoplasmic domain of M2 (positions 71 and 78) or at the N 

terminus of the M1 protein (positions 31 and 41) [64]. Hughey et al. could further demonstrate that 

inhibition of virus replication by mAb 14C2 is coupled to reduced cell surface expression and 

redistribution of the M2 protein [65]. In addition to the in vitro growth inhibitory effect, mAb 14C2 

also inhibited viral replication in influenza A infected mice [66]. The lung viral titer in 14C2 treated 

mice was 100 fold lower on day 3 and 4 post infection compared to control treated mice. In addition, 

a larger effect on virus replication was observed in the lungs than in the upper respiratory tract [66].  

The immunogenic potential of M2 was further investigated by Black and his colleagues. They 

determined the antibody titers against M2 in serum of recently infected humans and ferrets, 

applying an in-house developed enzyme immunoassay and Western blot assay based on M2 

expressing insect cells [22]. Low antibody levels against M2 were detected in the convalescent sera 

from individuals recently infected with influenza A (H3N2) virus and in serum samples from ferrets 

experimentally infected with influenza A H1N1, H2N2 and H3N2 viruses [22]. 

These observations, together with the conserved structure of M2, made researchers speculate on 

the potential of M2 as a broad-spectrum vaccine against influenza. Mice vaccinated with a partially 

purified M2 protein, derived from recombinant baculovirus expressing M2 in insect cells, were 

protected against lethal challenges with both homologous and heterologous influenza viruses [67]. 

These results demonstrated for the first time that vaccination with a conserved influenza protein can 

elicit heterosubtypic immunity to influenza A viruses. In addition, no protection against influenza B 

virus was obtained, suggesting that protection was mediated by a mechanism specific to M2 [67].  

Inspired by the protective effect of anti-M2e mAb 14C2 in mice, Neirynck et al. were the first to focus 

on the conserved ectodomain of M2 (M2e) as candidate for a universal influenza vaccine [68]. Since 

M2e is poorly immunogenic in nature, the immunogenicity of the peptide was enhanced by linking it 

N-terminally to the hepatitis B virus core (HBc) protein [68]. The HBc protein self-assembles to form 

so-called virus-like particles (VLPs), displaying M2e on the outside in a manner similar to influenza 

virus particles or infected cells. The ordered presentation of M2e on VLPs promotes a strong immune 

response [69]. Mice vaccinated with M2e-HBcore demonstrated long-lasting, heterosubtypic 

immunity against influenza A viruses which was mediated by antibodies since protection was 

transferable by serum [68]. 

2.3. M2e based vaccines 

The initial reports on the M2- and M2e-based influenza A vaccines, were quickly followed by multiple 

studies from different research groups confirming its potential as antigen for the development of 

broadly protective influenza vaccines, with homo- and heterosubtypic protection. The 

immunogenicity of M2e is hereby enhanced using several strategies, most of them by coupling M2e 

to a carrier or by the use of adjuvant formulations. Also a significant portion of research focuses on 
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evaluation of different routes for immunization, large-scale production systems and activation of the 

desired branch of the immune system.  

The M2e peptide is poorly immunogenic 

The short nature of the M2e peptide, together with the absence or low abundance of M2e-specific 

antibodies after influenza infection or seasonal vaccination, generally leads to the assumption that 

the M2e peptide itself is a poor immunogen [21-23]. However, a small number of studies could show 

induction of M2e-specific T cell responses and antibodies after vaccination with free synthetic M2e 

peptide in incomplete Freund’s and aluminum adjuvant, but not in the absence of adjuvant [70, 71]. 

The immunogenicity of the M2e peptide can be attributed to the presence of a BALB/c-specific CD4+ 

T-cell epitope in its sequence (discussed in paragraph 2.5.2) [72]. 

Increasing immunogenicity by coupling M2e to a vaccine carrier 

As mentioned earlier, our group was the first to increase the immunogenicity of M2e by fusing its 

sequence to HBc, which assemble into VLPs. An important advantage of M2e-HBc is their ease to 

produce in Escherichia coli in large scale at low cost. M2e-HBc VLPs with M2e fused N-terminally or in 

the immunodominant loop of HBc are equally protective [73]. The protective capacity of monomeric 

M2e-HBc VLPs has been enhanced by synthesizing M2e with a terminal cysteine and chemically 

coupling it to a lysine in the immunodominant region of HBc, hereby avoiding the steric hindrance 

during capsid assembly [74]. Multiple different other successful strategies have been implemented to 

produce protective M2e expressing VLPs, differing in fusion partner, M2e expression levels, 

production and induced immune response and are presented in Table 1. Another strategy to increase 

the immunogenicity of M2e, is by fusing it either genetically or chemically to a highly immunogenic 

fusion protein, that exerts an adjuvant effect. Several successful examples of M2e-fusion proteins 

have been reported and are presented in Table 1. A similar strategy was used to design M2e 

lipopeptides, where the lipid Pam2Cys moiety was coupled to M2e [75]. 

DNA and adenoviral vector vaccines 

DNA vaccines and recombinant adenoviral vectors (rAd) are also a promising design for M2e-based 

vaccines since they can directly induce both humoral and cellular immune responses, by endogenous 

expression of the antigen. This is in contrast with natural infection, where M2-specific cellular 

responses are poorly raised due to immunodominance of NP and M1 in eliciting cellular immune 

responses [113, 114]. DNA vaccines or adenoviral vectors often contain the full-length protein to 

include a high number of T cell epitopes. However, the presence of the transmembrane part of M2 

should be avoided, since its proton channel activity induces toxicity in mammalian cells [115]. Some 

studies on the protective effect of M2 DNA or rAd vaccination are available, mostly in combination 

with NP, HA or M1; or as M2 DNA vaccination, followed by M2 rAd boost vaccination [101, 110-112, 

116, 117]. A synergistic effect has been described using a DNA vaccine expressing a fusion protein of 

H1N1 HA and M2e, resulting in complete protection against an avian H5N2 influenza virus [112]. 
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Adenoviruses have the advantage over DNA vaccination that no needles are required for 

administration since they can be administered using a nasal spray.  

Table 1: Overview on successful M2e-based vaccination strategies  

i.p.= intraperitoneal, i.n. = intranasal, i.m.= intramuscular, m.n. = microneedle, s.c.= subcutaneous, o. = oral and 
e.p.= electroporation 

Vaccine 
type 

Carrier Origin M2e 
Copies 
M2e 

Animal 
model 

Route Ref 

VLP 

HBc 

Human 1, 3 Mice i.p. or i.n. [68, 76, 77] 

Human, avian 4 Mice i.m. [78] 

Avian 1, 2 or 4 Mice i.m. [79] 

M1 Human, avian, 
swine 

5 Mice, ferrets i.m. [80-82] 

tGCN4, M1 Human, swine, 
avian 

5 Mice m.n. [83] 

tGCN4, tFliC, M1 Human Tetramer Mice i.n. [84] 

AuNPs Human 1 Mice i.n. [85] 

OMV Human, avian, 
swine 

4 Mice s.c. [86] 

PMV Human 1 Mice s.c. [87] 

MaMV Dog 3 Mice s.c. [88] 

WHP Avian-like 1 Mice o [89] 

CotB Human 3 Mice o [90] 

T7 Human 1 Mice s.c. [91] 

f88 Human  
(aa 2-16) 

1 Mice i.p. [92] 

Qβ Human 1 Mice i.n., s.c. [93] 

Protein 

mHSP70c  Human 4 Mice i.m. [94, 95] 

HSA Human 1 Mice i.p. [96] 

flagelin  Human, avian 4 Mice i.n. , m.n. [97-100] 

KLH Human 1 Mice i.p. [101] 

BLS Human 1,4 Mice i.n., s.c., i.m. [102] 

CTA1-DD  Human 1, 3 Mice i.n. [72] 

OMPC  Human 1 Ferrets, Rhesus 
Monkey 

i.m. [103] 

ASP-1  Avian 1,3 Mice i.m. [104] 

GST  Human 1 mice i.p. [105] 

HA2 Human 1 Mice i.n. [106] 

LTB Avian 3 Mice i.n. [107] 

tGCN4 Human Tetramer Mice i.p., i.n. [108] 

Peptide 
Pam2Cys Human 1 Mice i.n., s.c. [75] 

MAP Human 1,2,4 Mice i.n. [109] 

DNA 

NP Human 1 Mice i.d., e.p. [110] 

NP, HA Avian 1 Mice, ferrets i.m. [111] 

HA Human, avian 2 Mice i.m. [112] 
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Tetrameric M2e as immunogen 

The M2 protein forms a tetramer which can contain structural epitopes. Consequently, some 

research groups focus on mimicking the native structure of M2 by producing tetrameric M2e as 

vaccine target. In addition, the protective potential of M2e-based vaccines has also been linked to 

the amount of tetramer specific M2e-antibodies in serum [118]. Oligomer-specific antibodies could 

be obtained after immunization with M2e coupled to a modified form of the leucine zipper of the 

yeast transcription factor GCN4 [108]. In another strategy, four M2e copies were coupled to a 

peptidyl core matrix resulting in tetra-branched M2e-MAPs (multiple antigenic peptide), from which 

the M2e peptides radially extend [119, 120]. To increase their immunogenicity, the four copies of 

M2e were fused to foreign T helper cell epitopes or tuftsin [109, 121, 122]. Tetrameric M2e has also 

been expressed in a membrane-anchored form onto VLPs, resulting in heterosubtypic protection 

when a truncated form of flagellin was co-expressed [84]. 

Enhancing immunogenicity by epitope density and vaccine broadness by inclusion of M2e variants 

Several studies demonstrate enhanced immunogenicity and protective capacity of M2e-based 

vaccines by increasing the epitope density, possibly by facilitating cross-linking of the B-cell receptor 

on M2e-specific B cells [73, 79, 123-125]. Using M2e-GST fusion proteins carrying different amounts 

of M2e epitopes, it was shown that the serum M2e-specific antibodies increase with increasing M2e 

number [126]. In addition, higher M2e epitope densities resulted in higher survival rates and slower 

weight losses in mice [126]. Next to increasing the epitope density, the broadness of the vaccine can 

also be enhanced by including M2e sequences from human, avian and/or swine origin. Incorporation 

of human, swine and avian M2e sequences in M2e(5x)-VLPs resulted in enhanced cross-reactivity 

against human, swine and avian M2e peptides and enhanced protection to heterologous viruses in 

mice, when compared to wild type VLPs [82, 127]. In addition, an equal antibody response was raised 

against human and avian M2e when mice were vaccinated with a flagelin fusion protein to which two 

human and two avian M2e sequences were coupled, resulting in similar significant protection against 

lethal challenges with human or avian influenza viruses [128]. However, in a side-by-side analysis of 

particles carrying four human M2e, four avian M2e or two human and two avian M2e epitopes, a 

weaker protective effect was observed for VLPs carrying both human and avian M2e epitopes and 

enhanced cross-reactivity for VLPs carrying only human or avian M2e sequences [78]. 

Enhancing the immune response by the use of an adjuvant 

The protective effect induced by M2e based vaccines is primarily by a non-neutralizing cell-mediated 

antibody response with an essential role for Fcγ Receptors (described in more detail in paragraph 

2.5.1) [129]. Antibodies of the IgG2a isotype are the most potent in binding activatory Fcγ Receptors 

with high affinity in mice [130]. In addition, IgG2a antibodies have been associated with increased 

efficacy of influenza vaccination [131-134]. This holds also true for M2e based vaccines, where 

protection correlates closely with the presence of anti-M2e antibodies, in particular of the IgG2a 

subclass [68, 135, 136]. It is thus important to direct the evoked immune response by vaccination to 

the Th1 cellular response by the use of an adjuvant [133, 137]. Adjuvants in M2e-based vaccines are 
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either fused to M2e as carrier or separately added in the vaccine preparation. A potent, protective 

Th1 response can for example be obtained by including a pathogen-associated molecular pattern in 

the M2e vaccine, e.g. RNA (TLR7 ligand) or RC-529 (TLR4 ligand) [73, 136]. Incorporation of RNA in 

M2e-VLPs resulted in an increased Th1 response after vaccination and better protection against 

infection when compared to M2e-VLPs without associated RNA [138]. Another potent and safe 

mucosal adjuvant with proven protective effect for M2e is CTA1-DD, containing the A1 subunit of 

cholera toxin with a dimer of an IgG binding element from Staphylococcus aureus protein A, which 

augments both T and B cell responses following intranasal immunizations [72, 139]. 

Route of immunization 

Mucosal surfaces lining the airways are the site of viral entry so high antibody titers are required at 

these sites. Intramuscular vaccination is the most common route of vaccine administration, as is the 

case for M2e-based vaccines, and results in a systemic and protective immune response. Oral or 

intranasal vaccine administration induce localized immunity which results in higher antibody titers at 

the site of infection (both IgG and IgA), decreased viral spread in the lungs and increased protection 

when compared to systemic immunizations, making them the preferred routes of vaccine 

administration [68, 118, 140, 141]. In addition, since needles are omitted, oral and intranasal 

vaccines can be administered in a safer manner then most of the seasonal influenza vaccines. 

Intranasal vaccination also results in a higher portion of IgG2a isotypes antibodies, compared to 

parenteral vaccination, independent of the adjuvant used [118]. The success of intranasal vaccine 

administration for use in the clinic is somewhat limited due to safety issues regarding retrograde 

transport of applied antigens to the central nervous system. An alternative is sublingual M2e vaccine 

administration, resulting in significant better protection against homologous and heterologous 

influenza viruses infections, when compared to systemic vaccination [140]. Coated microneedle 

vaccination is another painless vaccination method which induces strong humoral an mucosal 

antibody responses and conferred complete protection against homo- and heterosubtypic lethal 

virus challenges, significantly better than conventional intramuscular injection [100]. 

Co-immunization of M2e with the licensed influenza vaccines 

Co-immunization of M2e based vaccines with seasonal influenza vaccines is also being investigated to 

overcome the strain-specific protection elicited by current influenza vaccines. Supplementing the 

inactivated A/PR8 influenza vaccine with M2-VLPs resulted in cross-protection against lethal 

challenges with heterologous and heterosubtypic influenza viruses by preventing disease symptoms 

[142]. In addition, co-immunization of the seasonal H3N2 split vaccine with a heterologous M2e(5x)-

GCN4 vaccine resulted in higher M2e-specific IgG2a antibody titers, compared to both vaccines 

separately, and synergistic improved protection against heterologous H3N2 viruses [143]. Moreover, 

co-immunization resulted in improved cross-protection to different H1N1 and H5N1 viruses in mice 

[143]. Supplementation of the H1N1pdm09 split vaccine with heterologous M2e(5x)-VLPs also 

resulted in significantly reduced disease symptoms while conferring improved cross-protection in 

ferrets [80].  
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Viral escape from M2e-based immunity 

An important concern regarding vaccines based on the conserved M2e epitope, is their potential to 

select for viral resistance. There are only two studies that describe escape mutations in M2 under 

M2e selection pressure, both using M2e-specific mAbs. In vitro selection of viruses that were no 

longer growth inhibited by M2e-specific mAb 14C2, resulted in the selection of resistant viruses 

carrying single amino acid mutations in the M2 cytoplasmic domain or the N terminus of M1 [64]. In 

a second study, chronic treatment of infected SCID mice with different M2e-specific mAbs, with the 

same epitope specificity as 14C2, resulted in a mutated M2e sequence in 65% of all treated mice 

[144]. Mutations were only detected at amino acid position 10 in M2e, with the variation limited to a 

proline to leucine or histidine and both mutations were silent in M1 [144]. However, no escape 

mutants emerged in SCID mice treated with a combination of mAbs specific for M2e of PR8 and the 

P10H and P10L escape mutants [145]. In addition, Wolf et al. showed that mice vaccinated with M2e-

MAP, which carry four wild type M2e side chains, were fully protected against challenge with PR8-

M2 P10L or PR8-M2 P10H [25]. Moreover, eleven consecutive passages of PR8 virus in M2e-

vaccinated BALB/c mice did not result in selection of a single M2e escape virus [145]. In addition, no 

mutations inside the 'SLLTE' epitope or the M2 protein were detected using 454 pyrosequencing on 

the last positive nasal swab sample of experimentally infected patients treated with M2e-specific 

mAb TCN-032 (discussed in section 2.4) [146]. Consequently, the genetic constraints in M2e suggest 

that the chance for developing resistance to M2e based vaccination is rather low. 

2.4. Clinical development of M2e based vaccines 

Giving the long-standing record of protection by M2e-based immunogens in pre-clinical models, a 

number of companies have moved forward with a variety of designs to clinical testing.  

Sanofi Pasteur, formerly known as Acambis, enrolled the M2e-HBc VLPs (ACAM-FLU-ATM) in a Phase I 

clinical trial. ACAM-FLU-ATM was developed in our research group and carries three human consensus 

M2e sequences at the N-terminus of HBc. Its immunogenicity was proven after intramuscular 

administration, alone or in combination with aluminium hydroxide or QS-21 adjuvants. The highest 

immune responses were recorded in 90% of participants after two vaccine doses of ACAM-FLU-ATM 

(50 µg) in combination with QS-21 adjuvant [147].  

VaxInnate focuses on STF2.4xM2e (VAX102), a fusion protein where four copies of M2e are linked to 

flagellin of Salmonella typhimurium, a TLR5 ligand, as adjuvant. Two subsequent phase I studies were 

performed to determine the optimal vaccine dose for intramuscular administration. From these 

studies, it could be concluded that VAX102 was safe and high M2e-specific antibody titers were 

induced in 96% of participants when using two subsequent vaccine doses of 0.3 and 1 µg [148]. A 

follow-up study, applying co-immunization of VAX102 with the seasonal influenza vaccine, resulted in 

increased immune responses, including M2e immunity, which may lead to cross-protection [149]. 

VAX102 is currently undergoing Phase II testing [150]. 
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In another TLR-triggering based vaccine design, Dynavax employs a fusion protein of M2e and NP 

covalently linked to a TLR9 agonist (N8295). Clinical phase 1a/b data show antibody responses to 

M2e and NP and cellular immune responses to NP for all evaluated doses [151, 152]. Addition of 

N8295 to an investigational H5N1 avian influenza vaccine, resulted in increased HA-specific 

responses [151].  

Next to active immunization methods, passive immunization using human monoclonal antibodies is 

also being explored. TCN-032 is a monoclonal antibody isolated directly from M2e-seropositive 

individuals that binds the very conserved N-terminal 'SLLTE' epitope of M2e on infected cells and 

virions, but not to synthetic M2e peptide [153]. TCN-032 has successfully passed a clinical phase II 

study where the protective potential of the mAb was tested in a controlled, experimental influenza 

infection in healthy human participants [146]. The phase II study confirmed that TCN-032 is safe and 

well tolerated, and has a half-life of approximately 16 days [146]. Treatment with TCN-032 (40 

mg/kg) twenty-four hours post infection resulted in reductions in clinical symptoms and viral 

shedding, with no detectable emergence of resistant virus [146]. The clinical phase II results thus 

prove the therapeutic potential of TCN-032 after influenza infection.  

SEEK investigates a synthetic influenza vaccine (Flu-v) comprising equimolar amounts of conserved T 

cell epitopes of M1, M2, NP and PB1 [154]. A phase I clinical trial demonstrated the safety of Flu-v 

and the induction of vaccine-specific cellular immunity[154]. A follow-up phase Ib study involving live 

virus challenge in humans, resulted in increased cellular immunity and reduction in both symptom 

scores and virus loads after Flu-v vaccination [155]. Flu-v is now being evaluated in a Phase II study 

[150]. 

2.5. Mechanism of M2e-based protection 

What is clear from preclinical studies using M2e-based active and passive vaccinations, is that M2e-

based protection is not-neutralizing, i.e. it cannot prevent initial infection of host cells. However, 

despite extensive reports on M2e-based vaccines, the exact mechanism of the elicited immune 

response remains poorly understood. A better understanding of the protective mechanism of M2e 

based vaccines will result in the development of improved vaccination strategies. In addition, the 

efficacy of conventional influenza vaccines is currently evaluated based on the induction of HA 

inhibition antibody titers. Since M2e-specific antibodies are not virus neutralizing, understanding 

their mechanism of action will result in the development of a read-out system to test and define the 

efficacy of the M2e-based vaccines. A schematic representation of the proposed mode of action of 

M2e based vaccines is represented in Figure 3.  
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Figure 3: Schematic representation of mechanism of action of M2e based vaccines. The M2e based vaccine, in 

this example M2e-HBc, is processed by an antigen presenting cell and presented on MHCII to CD4+ T cells. Upon 

activating, cytokines and chemokines are released as bystander help to generate M2e-specific mAbs by plasma 

cells. These mAbs can bind to M2e present on virus or highly expressed on infected cells. Phagocytes will bind 

to cells opsonised with M2e-specific antibodies and clear the infected cell through antibody-dependent cellular 

cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP) or complement-dependent cytotoxicity 

(CDC). NK cells also contribute to M2e-based protection through ADCC. A cytolytic activity for CD4
+
 T-cells has 

also been suggested. Figure adapted from [158]. 

2.5.1. Antibody-mediated M2e-based protection 

As mentioned, vaccination with M2e results in non-neutralizing protection. This protection is 

antibody-mediated, since the protective effect of vaccination can be transferred by serum and 

protection correlates with M2e-specific antibody titers [68, 71, 109, 156]. In addition, passive 

transfer of M2e-specific mAbs can provide protection against lethal viral challenges [157]. However, 

the M2e-specific serum antibodies do not, or only poorly, bind to virions and hence are not virus 

neutralizing [68, 156]. Nevertheless, they can easily bind to M2 that is expressed on infected cells 

and exert their protective effect through the effector functions of their Fc-tail [12]. These effector 



 

39 

 

functions can be subdivided into two groups: binding to cellular receptors that recognize the 

constant fragment (Fc tail) of IgG (FcγRs), resulting in antibody dependent cell-mediated cytotoxicity 

(ADCC) and antibody dependent cell-mediated phagocytosis (ADCP), or binding to complement, 

resulting in complement-dependent cytotoxicity (CDC) (Figure 3). Elimination of the virus-infected 

cell opsonized with M2e-specific antibodies through ADCC, ADCP or CDC will suppress virus 

production and release, and thus progression of the infection.  

Role of complement 

In general, complement-dependent cytotoxicity has a protective role in the early response to acute 

influenza infection [159]. To what extent complement assists in M2e-mediated protection however is 

somewhat controversial. A role for both CDC and ADCC in protection by a human anti-M2 mAb in 

mice was demonstrated by Wang et al., who showed that the anti-M2e mAbs failed to reduce lung 

viral titers after a sublethal infection in the absence of complement or FcγRIII [157]. The CDC and 

ADCC potential of this antibody was also confirmed in vitro [157]. Heat inactivated immune serum 

from mice vaccinated with both inactivated PR8 and M2-VLPs could protect against a lethal infection 

[142]. However, these mice exhibited more body weight loss compared to mice receiving immune 

serum that was not heat inactivated, hinting towards a role of heat-sensitive serum components 

such as complement in providing cross-protection [142]. In contrast, a role for complement was 

excluded by Jegerlehner et al. based on the observation that C3-deficient mice were as protected as 

wild-type mice to a lethal influenza infection by passively transferred mouse anti-M2e hyperimmune 

serum [156]. In addition, El Bakkouri et al. also demonstrated that complement is not sufficient for 

protection, since mice that lack FcγRs were not protected after passive transfer of M2e immune 

serum [129]. Further studies are thus required to investigate the role of complement in M2e based 

protection. 

Role of Fcγ receptors  

The availability of FcγR knock-out mice makes it possible to study their role in M2e-based protection. 

Mice have three activating Fcγ receptors (FcγRI, FcγRIII and FcγRIV), one inhibitory (FcγRIIb) and the 

neonatal Fc receptor (FcRn). The affinity of the different mouse Fcγ receptors for the different 

murine IgG subtypes is listed in Table 2; the expression pattern of the different Fcγ receptors on 

immune cells is shown in Figure 4.  

Independent studies have shown that FcγRs are essential in M2e-mediated protection using fcer1g 

knock-out mice, lacking the Fc common γ chain, which is required for expression and function of all 

activating FcγRs [127, 129, 160]. M2e-based vaccination in fcer1g-/- mice elicits similar levels of IgG1 

and IgG2a M2e-specific antibodies as wild type BALB/c mice [160]. Nevertheless, the elicited immune 

response failed to effectively clear the virus and protect fcer1g-/- mice. However, passive transfer of 

M2e serum elicited in fcer1g-/- mice resulted in similar protection of wild type BALB/c mice after 
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challenge with a lethal viral dose, compared to serum of WT vaccinated mice [160]. Fcer1g-/- mice are 

thus able to induce M2e-specific antibodies with similar protective potential as wild type mice, but 

FcγRs play a critical role in viral clearance and protection after M2e vaccination [160].  

Different IgG isotypes have a distinct protective potential in cell-mediated M2e-based protection 

against influenza virus infection. This is a direct consequence of their selective binding to the 

activating FcγRs. Since IgG2a can bind to all three types of activating FcγRs, this antibody subtype 

possesses the strongest potential to stimulate effector functions (Table 2). This has been shown by 

passive transfer of the IgG2a switch variant of M2e-specifc mAb 14C2 (IgG1), which resulted in 

significant less morbidity and mortality when compared to its IgG1 and IgG2b counterparts [118]. In 

addition, IgG1 M2e-specific mAbs failed to protect fcgr3-/- mice, while IgG2a isotype Abs could 

restore the protective capacity [129]. Enhanced levels of IgG2a antibodies also correlate with better 

protection against influenza viruses, which holds true both for M2e-based and seasonal influenza 

vaccination strategies [132, 136]. 

Table 2: Mouse Fcγ receptors. Schematic representation of the different mouse Fcγ receptors together with 

their function and affinity for the different IgG isotype subclasses. NB: not binding, +: binds receptor but affinity 

unknown. Table adapted from [161] and [130]. 

 FcγRI FcγRIIB FcγRIII FcγRIV FcRn 

 

     

 Function 

 Activation Inhibition Activation Activation 
IgG recycling 
Transport IgG 

Ag Uptake 

 IgG subclass binding (M-1) 

IgG1 NB 3x106 3x105 NB 8x106 

IgG2a 1x108 4x105 7x105 3x107 + 

IgG2b 1x105 2x106 6x106 2x107 + 

IgG3 + NB NB NB + 
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Figure 4: Mouse FcγR expression profiles based on publically available microarray data. Expression values are 

colour-coded, varying from blue (showing low expression), to white (showing medium expression) to red 

(showing high expression). Figure kindly provided by Martin Guilliams and adapted from [161]. 
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Murine alveolar macrophages express high levels of all three activating FcγRs and form an important 

part of the innate immune system of the lung (Figure 4). Phagocytosis exerted by macrophages plays 

an important role in viral clearance during influenza infection, since they ingest opsonized viral 

particles using FcγR-mediated phagocytosis and remove influenza virus-infected cells by apoptosis-

driven phagocytosis [132, 162]. Likewise, an essential role for alveolar macrophages in M2e-based 

protection by digesting M2e-antibody coated infected cells through ADCP has been suggested. 

Intratracheal delivery of clodronate-loaded liposomes resulted in elimination of all alveolar 

macrophages, while leaving the NK cells intact, and failure of anti-M2e immune serum to protect 

these mice [129, 163]. The role of alveolar macrophages was confirmed by transferring wild type 

alveolar macrophages into FcγRI and FcγRIII knock-out mice, depleted of alveolar macrophages, 

restoring the protection exerted by M2e-immune serum [129]. 

Murine natural killer (NK) cells are also part of the first line of defense against influenza infections by 

infiltrating the lungs to kill influenza infected cells through ADCC [164]. NK cells solely express the 

activating FcγRIII (Figure 4) and a role for NK-dependent ADCC in M2e-based protection has been 

suggested, although the exact part NK cells play in M2e-based protection is unclear. An essential role 

for NKs was suggested by Jegerlehner et al., since depletion of NK cells resulted in significant 

diminished protection after lethal infection of M2e-HBc immunized mice [156]. However, these mice 

showed slightly enhanced protection compared to naive C57BL/6 mice, albeit not significant. In 

addition, two human M2e-specific IgG1 mAbs, Ab1-10 and C40G1, induce in vitro NK cell-mediated 

ADCC [157, 165]. To boot, M2e-specific human mAb Z3G1 (hIgG1) failed to reduce lung viral titers in 

FcγRIII knock-out mice, the only activating low-affinity FcγR on NK cells (Figure 4) [157]. In contrast, 

another study showed that M2e-vaccinated BALB/c mice depleted of NK cells were similarly 

protected to controls [101]. Similar findings were obtained in C57BL/6 mice treated with IgG1 or 

IgG2a M2e-specific mAbs and depleted of NK cells [166]. In addition, fcgr3-/- mice are equally 

protected as wild type mice after passive transfer of polyclonal M2e immune serum or the IgG2a 

isotype antibody fraction alone [129]. Altogether, these results indicate that NK cells can contribute 

in M2e-based protection, but that their role is probably not essential. 

2.5.2. T-cell mediated M2e-based protection 

Although the humoral immune response is essential for M2e-based protection, also the induced T-

cell response has an important impact on protection [101, 167]. M2e contains two overlapping 

human CD8+ T cell epitopes and one murine CD4+ T cell epitope [72, 168-170]. The latter was 

discovered by our group, in collaboration with the group of Nils Lycke, after intranasal vaccination of 

mice with CTA1-M2e-DD and an ex vivo M2e-specific proliferation recall assay on isolated 

splenocytes [72]. Proliferation of the splenocytes was lost when T cells were depleted but not when 

B cells or CD8 T cells were depleted, indicating the presence of a CD4+ T cell epitope in M2e, which 

was confirmed by a cell proliferation assay using an anti-MHCII mAb [72]. The induction of a murine 
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M2e-specific CD4+ T cell response was further illustrated by Stepanova and coworkers after 

vaccination with Flg-2M2eh2M2ek, a flagellin-fusion protein bearing two human consensus M2e and 

two avian A/H5N1 M2e sequences [128]. 

This murine CD4+ T cell epitope however is restricted to the H-2d MHC haplotype of BALB/c mice [25, 

167]. Vaccination of mice with a different MHC haplotype with M2-DNA, followed by a boost 

vaccination with an M2 recombinant adenoviral vector, resulted in protection of BALB/c (H-2d), but 

not of C57BL/6 (H-2b) or CBA (H-2k) mice [167]. This was confirmed using MHC congenic mice in a 

BALB/c or C.B10 background, where also a role for the genetic background was demonstrated, since 

lower anti-M2 antibody responses together with a lower number of anti-M2 T-cells, secreting less 

IFN-γ, were registered for congenic C.B10 mice of the H-2d haplotype compared to BALB/c mice 

[167]. The absence of protection and induction of a T cell response in mice with MHC haplotype 

differing from H-2d was also confirmed by Wolf et al. using different inbred and outbred mice strains 

[25]. Although the M2e-specific T-cell response varies with different genetic background of the host, 

the protective response in low responding haplotypes can be increased by the use of carrier, 

adjuvants or the use of combined vaccination [167, 171]. This is illustrated by the fact that 

vaccination with M2 or NP alone failed to protect CBA mice from lethal infection, while all mice 

vaccinated with both M2 and NP survived the infection [167]. 

2.5.3. Infection permissive immunity 

M2e-based vaccines are infection-permissive and, in contrast to the licensed influenza vaccines, do 

not block infection. This is an important advantage, since also a T-cell mediated immune response 

against the conserved internal proteins can be elicited during infection, resulting in cross-protective 

cellular immunity [81, 172]. The importance of cellular immunity in providing heterosubtypic 

protection and the use of infection-permissive vaccines in immunologically naive individuals, was 

demonstrated by Schotsaert and co-workers [172, 173]. The induction of cross-reactive T cells in M2e 

vaccinated mice was not hindered during primary infection with a homologous virus and resulted in 

increased protection against a secondary infection with a heterosubtypic virus. In contrast, WIV-

vaccinated mice were protected during primary homologous infection, but failed to raise a T-cell 

response and succumbed to the secondary heterosubtypic challenge [172]. The induction and 

protective effect of heterosubtypic immunity by infection-permissive vaccination upon virus 

exposure, was later confirmed using combinations of M2e-VLPs, tetrameric NA and trimeric HA 

[173].  

  



 

44 

 

2.6. Concluding remark 

The M2e sequence is highly conserved across all influenza A viruses and M2e-based vaccines result in 

broad-spectrum protection against both homo- and heterosubtypic viral challenges. In addition, 

alterations in M2e, which could contribute to escape from M2e-based immunity, are restricted due 

to genetic constraints because the sequence of M2e overlaps with the sequence coding for the highly 

conserved, structural protein M1. These findings make M2e-based vaccines appropriate as a 

'universal influenza vaccine' candidate. Next to broad-spectrum protection, another advantage over 

licensed influenza vaccines, is the absence of annual revisions of the vaccine. Consequently, M2e-

based vaccines could be stockpiled. In addition, several of the successful M2e-based vaccine 

approaches can be produced in bacteria, omitting the need for eggs or cell culture, which results in 

faster vaccine production and a lower cost per vaccine dose. However, further studies are required 

to unravel the mechanism of action of M2e-based vaccines. This will help in the optimization of 

vaccine design and the development of a read-out system to define the efficacy of M2e-based 

vaccines. In addition, reports on the evolution of the viral genome sequence under M2e-based 

immune pressure are limiting. It will thus be important to investigate if M2e immune escape will 

occur and how. After all, the hope remains that one day this vaccine will be introduced into the 

human population to mitigate disease caused by influenza A viruses. 
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Chapter 3 

A brief history of DNA sequencing technologies 
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3.1. Introduction 

The ability to determine the genome sequence of viruses had an important impact on the progress of 

viral research. The coat protein of bacteriophage MS2 was the first complete gene sequenced, an 

achievement that was accomplished using RNA sequencing by the research group of Walter Fiers in 

1972 [1]. The full genome sequence of phage MS2 was reported four years later by the same group 

[2]. Sooner or later, however, Sanger sequencing became the 'Golden Standard' to determine the 

sequence of DNA for many years since its introduction in 1977 [3]. However, the introduction of 

next-generation sequencing technologies in 2005 revolutionized the sequencing field, resulting in an 

exponential increase in deposited viral genome sequences [4]. Up to now, more than 99,000 

complete viral genome sequences are registered in the NCBI virus genome database [5]. We present 

here a brief history of DNA sequencing technologies and some successful applications of next-

generation sequencing technologies in the virology field. 

3.2. First generation of automated DNA sequencers 

History of DNA sequencing 

DNA sequencing, one of the most important technologies in life science today, has a relatively recent 

history, dating back to the late 1970’s, twenty years after Francis Crick and James Watson, along with 

Rosalind Franklin and Maurice Wilkins, discovered the three-dimensional structure of DNA [6, 7]. The 

first techniques to determine the order of nucleotides in a stretch of DNA were simultaneously 

described by Frederick Sanger and by Walter Gilbert and Allan Maxam, for which the first two were 

awarded the Nobel Prize in chemistry in 1980 [8]. Besides the development of these DNA sequencing 

techniques, the introduction of reverse transcription was crucial for DNA sequencing of viral RNA 

genomes [9, 10].  

The method of Maxam-Gilbert sequencing was the first widely adopted DNA sequencing technique, 

and was based on chemical reactions inducing nucleotide specific breaks in radiolabelled DNA [11]. 

The generated fragments were subsequently separated on a polyacrylamide gel and the nucleotide 

sequence determined by autoradiography [11]. An advantage of this technique is the fact that 

purified DNA could be used directly. The first full-length influenza genome segment, the HA of fowl 

plague influenza virus, was sequenced using the method of Maxam and Gilbert [12]. In addition, 

Maxam and Gilbert sequencing of the HA genome segment of A/duck/Ukraine/1/63 (H3N8), 

provided very strong molecular evidence for viral reassortment between a human and avian 

influenza virus as a step that can lead to a new pandemic [13]. 

In parallel with the chemical DNA sequencing method, Frederick Sanger worked on an alternative 

approach to determine the sequence of a DNA molecule: the ‘plus and minus technique’ [14]. In this 

technique, a radioactively labelled complement of the template is made by enzymatically extending 
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an annealed primer, which is followed by two different, separate reactions: The 'minus' and the 'plus' 

reaction [14]. In the minus reaction, one type of deoxynucleotide triphosphates (dNTPs) is missing, 

resulting in termination of the DNA polymerase at its 3’ end at one position before the missing dNTP 

[14]. In contrast, in the ‘plus’ reaction only one type of dNTP and T4 DNA polymerase are present, so 

all fragments end with the same dNTP [14]. Afterwards, the fragments in the eight separate reactions 

were resolved on a polyacrylamide gel, followed by determining the nucleotide sequence based on 

the pattern of radioactive bands [14]. This technique was used to sequence the first DNA genome in 

history, the genome of bacteriophage PhiX 174 [15].  

A breakthrough in the DNA sequencing field came when Frederick Sanger described the more rapid 

and more accurate 'chain termination' or 'dideoxy' sequencing technique, which was based on his 

‘plus and minus’ technique [3]. This sequencing technique uses a mix of all four dNTPs (of which one 

is radioactively labelled), together with one type of dideoxynucleotidetriphosphates (ddNTPs) in the 

elongation reaction [3]. Since these ddNTPs lack a 3'-hydroxyl group, no extra nucleotides can be 

added once a ddNTP is incorporated by the DNA polymerase, resulting in termination of the DNA 

elongation reaction [3]. Since these ddNTPs are 100 times less abundant in the reaction, DNA 

fragments of varying lengths are produced from a single template [3]. Separating these fragments 

based on their size using polyacrylamide gel electrophoresis enables deduction of the sequence by 

autoradiography.  

First generation of automated sequencing technologies 

The Sanger sequencing technique, together with some important adaptations, resulted in the 

development of the first prototype of an automated sequencer by Lloyd Smith in 1985 [16]. An 

important adjustment was the labelling of the sequencing primers with a fluorescent dye, omitting 

radioactive labelling and hazardous chemicals in the reaction. Four different fluorophores were 

coupled to the sequencing primer, emitting light at a different wavelength when excited by a laser. 

Per sequencing primer, a different sequencing reaction was performed, each reaction with a mix of 

all four dNTPs and only one type of ddNTPs. Afterwards, the reactions were pooled and co-

electrophoresed, increasing the throughput per gel four times, since all four reactions could be 

analysed in parallel. The fluorophores coupled to the sequencing primers were excited by a fixed 

laser while the fragments of different lengths migrate through the polyacrylamide gel. The emitted 

light was then recorded by a camera, resulting in a sequencing chromatogram. The DNA sequence 

could be directly determined based on the order of the detected colours. This prototype was brought 

to the market as the first automated DNA sequencer, the ABI 370, by Applied Biosystems in 1986 

[17]. The throughput was later increased by fluorescent labelling of the ddNTPs instead of the 

sequencing primers. Consequently, the sequence of a DNA fragment could be determined in a single 

sequencing reaction. 
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A next important increase in throughput was reached when the polyacrylamide gel electrophoresis 

was replaced by capillary gel electrophoresis, where a semi-liquid polymer is injected before 

sequencing, omitting the need to pour gels. In addition, the introduction of thermal cycling of 

enzymatic DNA synthesis allowed to sequence minute amounts of DNA in a biological sample. In this 

method, the DNA is subjected to successive rounds of denaturation, annealing and extension with 

only one primer, resulting in linear amplification of the extension products [18]. In parallel, all the 

different steps in the sequencing process (e.g. more accurate enzymes and data processing) are still 

continuously being optimized. The capillary sequencers of Applied BioSystems currently on the 

market have up to 96 capillaries, can handle 384-well plates and can sequence up to 2304 samples 

per day (3730xl DNA Analyzer) [19].  

The main advantages of automated capillary sequencing today are the high accuracy (99.999%) and 

the long read length (750 - 1000 bp). However, these 'first generation of automated sequence 

techniques' were limited in throughput, rather slow, have a high cost and limited sensitivity. In 

addition, the sequence reaction is sequence dependent, since the sequencing primer should anneal 

upstream of the sequence of interest. Despite the emergence of next- and third-generation 

sequencing techniques, automated Sanger sequencing technology remains a powerful technique and 

is still the mainstream sequencing method for many applications, e.g. to confirm the sequence of 

cloned genes of interest in a plasmid. In addition, Sanger sequencing is used to complement the NGS 

technologies, e.g. to confirm single-nucleotide polymorphisms detected by NGS or to aid in de novo 

genome assembly when repetitive sequence motifs are present [20, 21]. 

3.3. Next-generation sequencing (NGS) techniques: Massive parallel sequencing 

Focused on the race to the $1000 genome, which should make it possible to sequence the full 

genome of a person for $1000, researchers searched for alternative sequencing methods that could 

reduce time and cost, whilst increasing the output [22]. This lead to the development of several 

'next-generation sequencing' (NGS) techniques. In contrast to capillary Sanger sequencing, many 

DNA fragments are sequenced in parallel on these platforms, without the requirement of prior 

sequence knowledge on the sample. Different NGS techniques are on the market, which are quite 

diverse in biochemistry, with the result that each platform has its own characteristics concerning 

sequence read length, accuracy, output, cost and time (Table 1). However, they all share a 

conceptually similar workflow: 

- Library preparation: DNA is randomly fragmented into fragments with an appropriate length. 

Different fragmentation techniques exist: enzymatic (e.g. enzymatic digestion and Nextera 

XT) or mechanic (e.g. nebulization and sonication). Subsequently, sequencing adaptors are 

ligated to the fragments to enable immobilization of the DNA fragment on the sequencing 

chip or beads. These adaptors also provide priming sequences for both amplification and 
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sequencing. When different samples are pooled in a single sequencing run, barcodes are 

added. A barcode is a small nucleotide stretch that is sequenced along with the DNA 

fragment and makes discrimination between the reads derived from different samples 

possible. 

- Clonal amplification of DNA fragments: The limited sensitivity of the detectors currently used 

requires clonal amplification of DNA fragments, e.g. by emulsion PCR (emPCR) or bridge-

amplification, resulting in clusters of identical DNA molecules. 

- Sequencing: most of the NGS technologies use sequencing-by-synthesis (454, 

Solexa/Illumina, Ion Torrent), although also sequencing-by-ligation (AB SOLID) can be 

performed. At each sequencing cycle, the sequence data for all clusters is analysed in 

parallel. 

- Bioinformatics data analysis: Millions to billions of sequencing reads are generated in a single 

sequencing run and exported in 'fastq'-format. In such files, all sequence reads are present, 

together with their read name and the quality score per nucleotide in the sequence read. The 

sequencing quality per base is expressed as a Phred score (Q), which is logarithmically related 

to the base-calling error probabilities (P):  

Q = -10*log10(P). When a Phred score Q of 30 is assigned to a base, it means that the chance 

that this base is called incorrectly is 1 in 1000. Before analysis, the parts of the sequencing 

read with low sequencing quality should be trimmed, together with contamination of 

adaptor sequences. To prevent aspecific mapping, short reads are also filtered out. Multiple 

NGS software methods are available to process primary NGS sequencing reads. 

Four different NGS technologies have been commercially released since 2005: 454 pyrosequencing 

(Roche), Illumina sequencing-by-synthesis (Illumina), SOLiD sequencing-by-ligation (Thermo 

Scientific) and Ion Torrent semiconductor sequencing (Thermo Scientific) (Table 1). In the course of 

2016, both 454 (Roche) and SOLiD (Thermo Scientific) were commercially discontinued. 
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Table 1: Overview of next-generation sequencing platforms. The maximum read length, the maximum 

number of reads, the maximum output per sequencing run and the time for a sequencing run with the 

maximum read length are presented. The information provided is obtained from manufacturer's data (as on 

August 12, 2016), except the values for accuracy. The accuracy is determined as the percentage of errors per 

base within single reads of the maximum read length (2014 update of the 'Field guide to next-generation 

sequencers') [23, 24]. 

Sequencing 
platform 

Read length 
(bp) 

Number of reads Output Accuracy Run time 

454 
- GS Junior 
- GS Junior + 
- GS FLX+ 

 
400 
700 
700 

 
100,000 
100,000 

1,000,000 

 
35 Mb 
70 Mb 

700 Mb 

1% 

 
10 hours 
18 hours 
23 hours 

Illumina 
- MiniSeq 
- MiSeq 
- NextSeq500 
- HiSeq 
- HiSeq x 

 
2x150 
2x300 
2x150 
2x150 
2x150 

 
25,000,000 
25,000,000 

400,000,000 
5,000,000,000 
6,000,000,000 

 
7,5 Gb 
15 Gb 

120 Gb 
1500 Gb 
1800 Gb 

0.1% 

 
24 hours 
55 hours 
29 hours 
3.5 days 
3 days 

SOLiD 
- 5500 
- 5500xl 

 
75 
75 

 
700,000,000 
1,400,000,00 

 
120 Gb 
240 Gb 

≤0.1% 
 

6 days 
10 days 

Ion Torrent 
- PGM 
- Ion Proton 
- Ion S5 

 
400 
200 
400 

 
5,500,000 

80,000,000 
20,000,000 

 
2 Gb 

10 Gb 
8 Gb 

1% 

 
7,3 hours 
4 hours 
4 hours 

 3.3.1. 454 pyrosequencing (Roche)  

The 454 GS20 sequencing machine was the first next-generation DNA sequencer launched on the 

market in 2005 by Roche Diagnostics. The most recent 454 sequencers were the GS Junior, GS 

Junior+ and GS FLX+, which were all discontinued in 2016.  

In 454 sequencing (Figure 1), two different adaptors, adaptor A and B, are first ligated to the DNA 

fragments. Adaptor B is biotinylated and is used to capture the sequencing library on streptavidin-

coated beads. The complementary strand is removed and the single stranded library is subsequently 

released from the beads. This library is then clonally amplified using emulsion PCR (emPCR), to 

increase the signal upon incorporation of a nucleotide during sequencing. To enable emPCR, the 

single stranded DNA fragments are first captured on beads containing covalently linked, 

complementary adaptors (Figure 1.A). The fragments are bound to the beads under conditions that 

favour the annealing of one fragment per bead. Subsequently, the beads are captured in droplets 

containing heat-stable PCR-reaction-mixture-in-oil emulsions. In these microreactors, the fragment is 

clonally amplified by emPCR [25-27]. This results in millions of identical sequences coupled to a bead. 

Subsequently, the beads carrying single-stranded DNA clones are deposited into wells of a fibre-optic 
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slide and the DNA sequence of each bead is individually determined using pyrosequencing (Figure 

1.B). This sequencing technique uses natural nucleotides in a sequencing-by-synthesis protocol and 

finds its origin in the fact that DNA polymerization can be monitored by measuring phyrophosphate 

production, which can be detected by a reaction that gives light [28]. During pyrosequencing, the 

dNTPs are sequentially flown over the microtiterplate in which the sequencing primer is bound to its 

complementary sequence on the immobilized DNA fragments. When a nucleotide is incorporated by 

the DNA polymerase, inorganic pyrophosphate (PPi) and a hydrogen ion are released [29-31]. This 

released pyrophosphate is quantitatively converted into ATP by sulfurylase. ATP is a cofactor for the 

enzyme luciferase, which subsequently oxidizes luciferin to oxyluciferin along with the production of 

visible light (Figure 1.B). The amount of emitted light per well is detected by a CCD (charge-coupled 

device) sensor. The number of nucleotides added can be determind since the emitted light is 

proportional to the amount of pyrophosphate produced, which is directly proportional to the 

number of incorporated nucleotides [32]. Before the addition of the next dNTP, the unincorporated 

dNTPs and the produced ATP are degraded by an apyrase. The DNA sequence can be determined 

since dNTPs are sequentially added in a known order to the sequencing reaction [32].  

The major advantage of 454 sequencing was the long reads that were obtained (up to 1000 bases on 

the GS FLX Titanium XL+). Nevertheless, its output was limited (700 Mb on the GS FLX Titanium XL+). 

In addition, the reagents were quite expensive, resulting in the highest cost per nucleotide of the 

NGS technologies [23, 33]. Since multiple identical nucleotides can be incorporated in a single 

reaction which generates a single light signal, the main sequencing errors were homopolymer errors. 
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A. Sequence library preparation 

 
B. Pyrosequencing  

  

Figure 1: 454 pyrosequencing. (A) Sequence library preparation. Adaptors (A and B) are added to the DNA 

fragments, followed by clonally amplification of the DNA library on beads by emulsion PCR. The beads carrying 

multiple copies of the DNA fragment are deposited into wells of a pico titer plate (PTP). (B) Pyrosequencing 

reaction. After annealing of the sequencing primer, the different types of dNTPs are sequentially added. When 

a nucleotide is incorporated by the DNA polymerase, inorganic pyrophosphate (PPi) is released. The sulfurylase 

converts this PPi to ATP in the presence of adenosine 5' phosphosulfate (APS). ATP is a cofactor for luciferase, 

which oxides luciferin to oxyluciferin and the production of visible light, which is quantitative for the amount of 

released PPi, and thus the number of incorporated nucleotides. Figure obtained from [34] and [35]. 

3.3.2. Solexa/Illumina sequencing 

The first Solexa sequencer, the Genome Analyzer, was commercially launched in 2006. In 2007, 

Solexa was acquired by Illumina. There are currently five series of Illumina sequencers on the market: 

Illumina MiniSeq, Illumina MiSeq, NextSeq 500, HiSeq and HiSeq X, with maximum output ranging 

from 8 Gb to 1800 Gb and read lengths up to 2 x 300 bp. In the second half of 2017, Illumina 

announced that they will commercialize their 'Project Firefly', a sequencing instrument which 

employs the Illumina sequencing-by-synthesis chemistry on a semiconductor chip [36].  

The DNA fragments that are to be sequenced by Illumina sequencing are first clonally amplified using 

"bridge amplification" (Figure 2.A) [37]. To enable this, different Illumina adaptors (P5 and P7) are 
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first ligated to each end of the DNA fragment. The DNA fragments are subsequently denatured and 

applied on an Illumina flow cell containing the two types of single-stranded adaptor sequences 

covalently coupled to the glass plate (Figure 2.A1). The DNA fragments hybridize to the adaptors on 

the flow cell (Figure 2.A2) and a polymerase extends the adaptor to synthesize the complementary 

strand (Figure 2.A3). This complementary strand is covalently coupled to the chip and the original 

DNA fragment is removed after denaturation (Figure 2.A4). The coupled fragment is clonally 

amplified by an isothermic reaction on the chip, called 'bridge amplification'. In this reaction, a single 

strand of DNA bends over to hybridize to an adjacent adaptor primer on the flow cell to form a 

bridge (Figure 2.A5). The hybridized primer is extended by polymerases, generating the 

complementary strand, forming a double stranded bridge (Figure 2.A6). The bridge is then 

denatured, resulting in two complementary copies of covalently bound single stranded templates 

(Figure 2.A7). These steps are repeated for millions of clusters in parallel, until multiple clonal copies 

of all the DNA fragment are generated (Figure 2.A8). Finally, all the reverse strands are removed by 

restriction digestion and the free 3' ends are blocked (using ddNTPs) to prevent unwanted DNA 

priming (Figure 2.A9). 

After bridge-amplification, the first sequencing primer is hybridized to the P5 adaptor sequence and 

extended by a polymerase to create the sequencing read (Figure 2.B). During each sequencing cycle, 

all four fluorescently labelled dNTPs (all with a different, cleavable fluorophore) are flown over the 

flow cell. Due to the presence of a removable blocking group (3′-O-azidomethyl) on each dNTP, only 

one complementary dNTP will be incorporated per cycle in a cluster [38]. A laser excites the 

fluorophores coupled to the dNTPs per cluster and the characteristic emission spectrum, with 

specific wave length and signal intensity, is detected by a CCD camera and determines the base call. 

Millions of clusters are analyzed in parallel. Afterwards, the terminator and fluorescent dye are 

cleaved and the cycle repeated [39]. Since the clusters are fixed, the sequence of the DNA fragment 

is obtained by joining the detected fluorescent signals per position on the chip. After completion of 

the first read, all DNA fragments are denatured and the complementary sequencing product washed 

away. When multiple samples are pooled on a single flow cell, the barcode sequence is determined 

in a separate sequencing reaction. A second sequencing primer, recognizing a different sequence, 

binds to the template and the barcode sequence is determined in the same way as for the first 

sequencing read. 

Illumina sequencing has the possibility to perform paired-end sequencing, i.e. sequencing of both the 

forward and reverse strand of a DNA fragment. To enable paired-end sequencing, the sequencing 

primer and its sequencing product are first removed through denaturation, followed by removal of 

the 3' blocking group from the template. The complementary strand is now synthesised by bridge 

amplification, followed by denaturation of the bridge and removal of the forward strand by 

restriction digest. After addition of the second sequencing primer, the sequencing protocol of the 

reverse strand is identical to that of the forward strand.  
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Figure 2: Illumina sequencing. (A) Bridge amplification. An Illumina flow cells contains billions of two different 

types of covalently coupled adaptors (P5 and P7) (1) and the DNA library anneals with its adaptor sequence to 

its complementary sequence on the flow cell (2), followed by elongation by a DNA polymerase (3). After 

denaturation, the original DNA fragment is washed away and its complement is now covalently attached to the 

flow cell (4). This DNA fragment bends to hybridize with an adjacent adaptor sequence (5), which is used as 

primer in an isothermal reaction to synthesize the reverse strand (6). After denaturation (7), this process is 

repeated several times, resulting in millions to billions (depending on the sequencing platform) of clusters of 

clonally amplified 'double-stranded DNA bridges' (8). In a final step, all 'double-stranded bridges' are 

denatured, and the reverse strand removed by restriction digest, leaving clusters of clonally amplified forward 

strands on the chip (9). (B) Sequencing-by-synthesis. A single nucleotide coupled to a fluorophoric group and a 

blocking group is incorporated during each sequencing cycle. The incorporated nucleotide is detected based on 

the emission spectra of its coupled fluorophore. Next, the blocking group and fluorophore are removed and the 

sequencing cycle repeated. The number of sequencing cycles determines the read length. The sequence of the 

DNA fragment is obtained after concatenating the fluorescent signals per cluster. Figures obtained adapted 

from [40] and [41]. 



 

66 

 

An advantage of Illumina sequencing is that the clonal amplification is directly performed on the 

chip, which is directly followed by sequencing. This decreases the hands-on time and the chance for 

contamination. In addition, the base per base analysis in Illumina sequencing, decreases the change 

of detecting insertions or deletions at homopolymers. The possibility to perform paired-end 

sequencing allows sequencing of fragments in both directions resulting in overlapping reads. 

Additionally, it allows both ends of a larger fragment to be sequenced, facilitating e.g. the detection 

of genomic rearrangements. At present, the different Illumina platforms have the lowest total error 

rate of the commercially available NGS technologies [23, 33]. A disadvantage of Illumina sequencing 

is the requirement of a heterogeneous base composition across the sequence clusters that are 

imaged to obtain high-quality data. The nucleotide diversity can be increased by adding a sample 

with high-diversity to the sequencing run, such as the PhiX genome which is also included as 

sequencing control in an Illumina sequencing run. In addition, Illumina sequencing uses lasers, optics 

and fluorophores which may, in the future, limit reductions in sequencing costs.  

3.3.3. SOLiD 

The SOLiD system (Thermo Scientific) was commercially available since 2007. Thermo Scientific 

decided to discontinue their two SOLiD platforms, the 5500 and the 5500xl, in 2016. 

In contrast to the other sequencers, the SOLiD (Sequencing-by-Oligo-Ligation Detection) technology 

uses two-base sequencing and sequencing-by-ligation [42]. In the first series of SOLiD sequencers, 

the DNA fragments were first clonally amplified on beads using emPCR, followed by covalently 

coupling of these beads to a glass slide. In the latest 5500 Series of Genetic Analysers, the library was 

directly amplified on the flowchip in an isothermal reaction. In the SOLiD sequencing technique, a 

universal sequencing primer first hybridizes to the template. Afterwards, the sequence of the DNA 

fragment is determined by ligating di-base probes to the primer (Figure 3.A). These eight nucleotide 

probes contain a ligation site, two specific bases (each dinucleotide corresponds to one of the four 

fluorescent dyes), followed by six universal bases binding to any of the four nucleotides and a 

fluorescent dye coupled to the last nucleotide [43]. Four fluorescent dyes are used and each dye is 

coupled to four out of 16 possible dinucleotide sequences (Figure 3.A). The complementary probe 

will hybridize to the template and a ligase will join the 5' of the growing strand with the 3' of the 

probe (Figure 3.B). A laser will excite the fluorescent dye and the emission spectrum is recorded. The 

dye and the three 5' universal bases are removed by a chemical cleaving agent, leaving the remaining 

five nucleotides bound to the template and a free 5' phosphate group, which allows the ligation of 

the next probe. This process is repeated several times, determining the read length. Finally, the 

synthesized strand is removed and new sequencing primers hybridizes to the template, offset by one 

base and the ligation cycles are repeated. The whole process is repeated in total five times, resulting 

in dual measurements of each base. Since a detected colour can correspond to four different 

dinucleotides, the detected colours should be decoded using the two-base colour code (Figure 3.A).  
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An advantage of SOLiD sequencing is the dual measurements of each base, which results in a low 

error rate (Table 1). The drawback of SOLiD sequencing are its inability to sequence through 

palindromic sequences and its relatively short read-length (75 nucleotides) [44].  
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Figure 3 (previous page): SOLiD sequencing. (A) SOLiD dibase probes. Each dibase probe consists of a ligation 

site, two specific bases (each dinucleotide corresponds to one of the four fluorescent dyes), followed by six 

universal bases and a fluorescent dye coupled to the last nucleotide. (B) Sequencing-by-ligation. After binding 

of the sequencing primer, a complementary dibase probe hybridizes to the template and is subsequently 

ligated to the primer. Following detection of the incorporated dibases, the dye and the three 5' nucleotides are 

removed by a chemical cleaving agents. This process is repeated several times and the number of cycles 

determines the read length. After removal of the complementary strand, the sequencing reaction is repeated 

with a sequencing primer offset by one base. Finally, the DNA sequence can be decoded using the two-base 

colour code. Figure adapted from [45]. 

3.3.4. Ion Torrent 

Ion Torrent (Thermo Scientific) sequencers have been commercially available since 2010. Currently, 

three different Ion Torrent sequencers are on the market: the Ion S5, the Ion Torrent Personal 

Genome Machine (PGM) and the Ion Proton, with sequencing output ranging from 30 Mb to 15 Gb 

and read lengths up to 400 bases (Table 1). The throughput per sequencer varies based on the 

sequencing chip used. 

 

Figure 4: Ion Torrent semiconductor sequencing. Beads carrying clonally amplified DNA fragments are 

deposited into wells on a semiconductor chip. Each sequencing cycle, one type of nucleotide is flown over the 

chip (dATPs are marked in green; dTTPs are marked in red). Upon nucleotide incorporation, a proton is 

released, which results in a change in pH, and an accompanying change in voltage, which is detected by the ion 

sensor at the bottom of the well. When a homopolymer is sequenced (right panel, in this example two 

adenosines), a change in voltage is recorded proportional to the number of incorporated bases. Figure adapted 

from [47]. 

For Ion Torrent sequencing, the beads carrying the emPCR amplified single-stranded DNA clones, are 

flown across a semiconductor chip containing millions of wells, resulting in the deposition of one 
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bead per well. The DNA sequence of each fragment is determined by semi-conductor sequencing, a 

technique similar to pyrosequencing, but the incorporation of a given nucleotide is detected based 

on the release of hydrogen ions (Figure 4) [46]. To enable sequencing, the sequencing primers first 

hybridize to the adapter. Subsequently, the well is flooded with one of the four nucleotides. If the 

complementary nucleotide is added, the polymerase will incorporate this dNTP, and a hydrogen ion 

and PPi are released. The hydrogen ion changes the pH of the solution in the well, which is measured 

by an ion sensitive layer beneath the well as a change in voltage, which is recorded by the 

semiconductor sensor underneath. The incorporation of identical bases next to each other in the 

DNA sequence, results in a plural release of protons and the detected change in voltage is 

proportional to the number of nucleotides incorporated (Figure 4, right panel). The semiconductor 

wells thus capture chemical information and translate it into digital information. The DNA sequence 

is determined by adding the different types of nucleotides in a well-known order to the 

semiconductor chip, while the voltage is continuously monitored. 

An important advantage of Ion Torrent sequencing is its shorter run time (two to seven hours) 

compared to the other sequencing technologies. In addition, native dNTPs and semiconductor chips 

are used, omitting the need for fluorescent labels, enzyme cascades, lasers and cameras. This will 

possibly result in a lower cost for Ion Torrent sequencing in the long run. The high error rate in 

homopolymers is an important disadvantage. 

3.4. Third generation sequencing techniques: Single-Molecule-Sequencers 

Although the characteristics of the next-generation of automated sequencers are constantly being 

improved, also newer technologies are being developed: the third generation of sequencing 

techniques, also called single-molecular sequencers (SMS). These recent techniques have a much 

higher sensitivity, making direct sequencing of single DNA molecules possible, abolishing the need for 

clonal amplification of the DNA library. However, the current SMS technologies are still suffering 

from high error rates [33, 48]. Although many different types of SMS are being developed, only three 

platforms have been commercially released:  

 HeliScope - Helicos BioSciences Corporation: Helicos was launched as the first SMS on the 

market in 2008. Helicos sequencing used a similar sequencing-by-synthesis technique as 

Illumina using terminally blocked, fluorescently labelled nucleotides, omitting the need for 

bridge-amplification [49]. The DNA fragment was hybridized by its adaptor to its 

complementary sequence which was covalently coupled to the chip. The sequence was 

determined by adding each time a single fluorescently labelled nucleotide which could be 

incorporated by the DNA polymerase. Due to bankruptcy of the company in 2011, this 

sequencer is no longer sold.  
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 PacBio RS II and the Sequel System - Pacific BioSystems: The PacBio sequencer was 

commercially launched in 2010 and currently is the most established SMS. Before 

sequencing, the DNA is circularized using SMRTbell hairpin adaptors. Subsequently, the 

template-polymerase complex is immobilized at the bottom of a microwell, the so called 

zero-mode waveguide (ZMW) cell. Differentially fluorescently labelled phospholinked 

nucleotides are incorporated by the DNA polymerase. During incorporation, the nucleotide is 

detected by the very sensitive ZMW at the bottom of the microwell. Since the fluorophore is 

linked to the terminal phosphate, it is released upon incorporation [50]. In addition to DNA 

sequencing, the PacBio system can also be used to study epigenetic changes based on the 

kinetic variation measured during base incorporation. The very long read lengths (average > 

10 kb, some reaching >60 kb) are an important advantage of the PacBio platforms [51]. The 

recently released 'Sequel System' has an almost seven times higher output (1,000,000 ZMWs 

per SMRT cell), then its prefacing PacBio RS II (150,000 ZMWs per SMRT cell).  

 MinION - Oxford Nanopore Technologies: The MinION is commercially available since May 

2015 and weights only 87g. The small size and weight of the MinION sequencer are a big 

advantage, since it improves the flexibility of sequencing, making it also possible to sequence 

outside of the lab. In this technology, single-stranded DNA is passed through a protein 

nanopore in an electrically resistant polymer membrane. Since an ionic current is constantly 

passing through the membrane, the current is changed when DNA passes through it. This 

change in current can be used to identify the nucleotide that passed through the nanopore 

[52, 53]. The MinION contains up to 512 sequencing channels, which measure 280 bases per 

second per pore, with a flow cell lifetime of 72 hours [54]. Oxford Nanopore Technologies 

also optimized the nanopore enzyme to be specific for RNA, enabling direct RNA sequencing 

[55]. A developers kit for RNA sequencing will be released by the end of 2016. The read 

length is determined by the fragment length, with the longest reported read length being 

230-300 kb [54]. PromethION devices with an increased throughput of up to 144,000 

nanopores will soon be available through the PromethION early access programme. 

3.5. Successful applications of NGS in virology research 

The small genome size of viruses, together with the high output, the possibility to multiplex samples 

and the sequence independence of the different NGS technologies, has resulted in an exponential 

increase in available viral sequence data. The implementation of NGS technologies in virology is very 

diverse and opens new opportunities for viral research. Consequently, NGS is becoming the 

mainstream technique for more and more virologic applications. 

In a disease outbreak, it is important to quickly characterize the infectious agent and its evolutionary 

rate to determine the appropriate control measures. The importance of NGS in viral diagnosis was 

demonstrated by an outbreak of hemorrhagic fever in northern Uganda. Patients with suspected 
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hemorragic fevers tested negative for several suspected hemorrhagic fever viruses using traditional 

methods (PCR and ELISA) [56]. Eventually, the presence of yellow fever virus was detected by whole 

RNA sequencing on serum samples using 454 sequencing. Subsequently, a vaccination campaign was 

started, to limit the viral spread and disease burden [56]. The importance of real-time genomic 

surveillance using the portable MinION sequencer was demonstrated during the Ebola outbreak in 

2015 in West-Africa, where sequence data were generated less than 24 hours after receiving an 

Ebola-positive sample and were used to monitor the transmission history and viral evolution during 

the outbreak [57]. Despite the instrument's high error rate, 25-fold coverage of genome positions 

was sufficient to accurately determine the genotype [57]. 

The intrinsically high variability of RNA viruses can result in the selection of mutant viruses under 

antiviral pressure. Consequently, the high sensitivity of NGS plays an important role in the detection 

of viral resistance. Genetic testing for resistance markers is routinely used in HIV patients to select 

the appropriate antiretroviral regimen before the start of an initial drug therapy or when the current 

drug therapy fails, before therapy switch. Selection of an antiviral therapy after genetic testing has 

shown to improve the disease outcome [58]. However, conventional tests are based on Sanger 

sequencing, which is unable to detect resistant variants present at low frequency. The high sensitivity 

of NGS makes early detection of clinically relevant low-frequency variants and the intra-host viral 

diversity possible [59]. Sentosa announced the commercial release of the first next-generation 

sequencing test for HIV drug resistance testing, 'the Sentosa SQ HIV-1 genotyping assay', in the near 

future [60]. The assay is developed for sequencing on the Ion Torrent PGM sequencer. In this assay, a 

sample is also screened for resistance mutations that are not included in conventional test, 

increasing the potential for optimization of HIV treatment. 

Current licensing and quality control of live attenuated virus vaccines is based on the consensus 

sequence of the attenuated virus, along with phenotypic characterization. The development of 

sensitive NGS technologies, creates opportunities to develop new quality control criteria. This will be 

of utmost importance for live-attenuated vaccines of genetically variable RNA viruses to survey the 

minor variants present in the vaccine. The importance of the use of NGS for vaccine control has been 

shown for commercially available modified-live oral rabies vaccines. None of the investigated 

vaccines were genetically uniform, representing a more or less heterogeneous populations [61]. The 

utility of NGS for quality control of viral vaccines was also demonstrated for the oral Poliovirus 

vaccine [62]. Low frequency signature mutations reflected subtle differences in manufacturing 

conditions between different manufacturers and can be used to monitor the molecular consistency 

of viral vaccines [62]. 

The high sequencing output of NGS has revolutionized the field of metagenomics, since a mixture of 

genetic materials can now be sequenced with high sensitivity. However, the sequence-independent 

nature of NGS and the rather low abundance of viral sequences, in for e.g. clinical samples, required 

the optimization of virus enrichment protocols [63]. The use of NGS in the study of the human 
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virome, resulted in better characterization of this viral ecosystem and its function, and the human-

virus interactions. Illumina MiSeq sequencing on viruses isolated from human stool of patients with 

Crohn's disease and ulcerative colitis assigned a role for the virome in intestinal inflammation and 

bacterial dysbiosis [64]. Both diseases were associated with a significant expansion of Caudovirales 

bacteriophages in the virome of patients [64]. Consequently, the virome is suggested to be a 

biomarker for human inflammatory bowel diseases [64]. The use of NGS in metagenomics resulted 

also in the discovery of several new viruses due to the sequence independent nature of the system. 

Bas-Congo virus, a novel strain of Rhabdovirus, was detected by performing 454 and Illumina 

sequencing on serum samples of a cluster of three human cases with acute hemorrhagic fever in 

Central Africa, which tested negative by TaqMan real-time PCR on all viruses known to cause acute 

hemorrhagic fever in Africa [65]. This was also the first successful demonstration of de novo assembly 

of a novel, highly divergent viral genome in the absence of a reference sequence [65]. Moreover, the 

use of 454 sequencing resulted in the discovery of a previously unknown polyomavirus, Merkel cell 

polyomavirus, as a contributing factor of to Merkel cell carcinoma [66].  

3.6. Concluding remark 

The different NGS techniques have contributed to significant progress in virology research. Their 

higher sensitivity and larger output makes that not only more sequencing results can be obtained 

faster, but opens also several new research opportunities (e.g. sequence independent viral discovery 

and intra-host evolution). In addition, the single-molecule sequencers are even accelerating the 

sequencing process while avoiding the sequence bias introduced during library preparation, although 

these platforms still suffer from a high error rate. However, the large amount of sequencing data 

generated, creates also challenges on how to handle and interpret this enormous amount of 

information. In addition, information on how sequencing data was processed before sequence 

analysis was performed, is often lacking or rather limited in literature. 
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4.1. Introduction 

The development of next-generation sequencing (NGS) methods has led to significant progress in all 

branches of life sciences, including the field of influenza biology. The high sequencing throughput of 

NGS, along with the relatively small genome size of influenza viruses, makes it possible to sequence 

multiple viral samples in parallel and with a very high coverage per nucleotide (so called sequencing 

depth). This high capacity and sensitivity of NGS compared to earlier sequencing methods has 

contributed to major advances in several domains of influenza research. Here we will highlight some 

of the successful applications of NGS to study influenza viruses. 

4.2. Virus discovery 

In contrast to Sanger sequencing, NGS sequencing does not require prior knowledge of the target 

sequence, which increases the speed and sensitivity for viral discovery. Recently, RT-PCR using 

random primers on total nucleic acids extracted from rectal swabs, followed by Illumina GAIIx or 454 

GS-FLX sequencing was a key experimental step in the discovery of H17N10 and H18N11 influenza 

viruses in New World bats [1, 2]. In the genome segments coding for PB2, PB1, PA and NA, more 

genetic diversity was detected than present in all known mammalian and avian influenza virus 

species combined, suggesting that H17N10 and H18N11 have a long-standing association with their 

host [2]. Since bats represent approximately twenty percent of all mammalian species, it will be 

important to characterize these viruses and assess their potential risk for the human population.  

The use of NGS also resulted in the detection of a suggested fourth influenza genus: the influenza D 

viruses. This new influenza genus was detected in pigs exhibiting influenza-like illness, after random 

RT-PCR amplification of RNA retrieved from virus present in nasal swabs amplified on swine testicle 

cells, followed by Ion Torrent PGM sequencing [3]. The de novo assembled, seven genome segments 

turned out to be only 50% identical at the protein level to human influenza C viruses and serum 

antibodies exhibited no cross-reactivity [3]. Sequencing the viral transcriptome upon infection of 

swine testicle cells, resulted in identification of spliced mRNA for both the NS and M segment [4]. 

While splicing of the NS segment occurs in the same way as for influenza C viruses, splicing of the M 

segment of influenza D viruses occurs differently [4]. Splicing of the colinear mRNA of segment 6 

creates a stop codon at the splice junction for influenza C viruses, whereas four extra codons are 

added to the M1-ORF upon splicing of this mRNA in the case of influenza D viruses [4, 5].  

The merit of NGS in viral discovery has also nicely been demonstrated by the determination of the 

genome sequence of the Spanish influenza H1N1 strain responsible for the 1918 pandemic. It took 

nine years to obtain the full genome sequence of this virus using traditional overlapping RT-PCR 

followed by Sanger sequencing [6]. In contrast, the full-genome sequence could be obtained in a 

single RNA sequencing run on a formalin-fixed and paraffin-embedded lung sample [7]. 



 

80 

 

4.3. Viral surveillance 

Viral surveillance is important to monitor emerging influenza viruses and viral evolution of the 

circulating influenza strains. The high throughput of the NGS platforms combined with their high 

sensitivity has refined the genetic analysis of influenza viruses because many more sequences are 

determined than was the case a decade ago. Consequently, NGS is used more and more in current 

reports on influenza genome evolution for virus surveillance in their human, swine and avian hosts 

[8-17]. The sequence information obtained during viral surveillance can also be used to guide vaccine 

design. This has been illustrated by Stucker et al., who deep sequenced 154 nasopharyngeal swabs, 

which tested positive for the presence of H3N2 viruses [18]. The sequencing data showed the 

presence of co-circulating H3N2 clades and antigenic drift variants, which contained HA substitutions 

and alterations in the potential N-linked glycosylation sites of HA, during the 2012-2013 influenza 

epidemic. Such information could be used to guide the vaccine selection process for the next 

influenza season. In addition, this study also showed a role for intrasubtypic reassortment in the 

evolution of seasonal influenza viruses [18].  

The ease and utility of performing whole-genome sequence analysis in viral surveillance, was 

demonstrated by the study of Zaraket et al., where 100 influenza A H3N2 isolates collected during 

the 2012-2015 epidemics in four Asian countries were analysed by NGS [19]. Analysis of the 

phylogenetic tree of each viral genome segment revealed several viral reassortment events and the 

co-circulation of multiple viral clades within the same influenza season [19]. Moreover, the presence 

of a common ancestral PB1 gene in singleton reassortants suggests a fitness advantage for this gene, 

allowing it to persist into the following season [19]. In addition, the phylogenetic three of HA 

revealed temporal and geographical clustering of the samples, e.g. it appears that the H3N2 viruses 

circulating in Myanmar in 2013 later gave rise to the 2013-2014 epidemic in the northern 

hemisphere [19]. Furthermore, this study also showed that resistance to amantadine, due to the 

presence of the M2-S31N (most frequently) or -S31D mutation, was present in the majority of all 

samples [19]. Nevertheless, no mutations conferring resistance to neuraminidase inhibitors were 

detected [19]. Interestingly, five of the virus isolates contained novel polymorphisms in the PB1-F2 

coding sequence leading to an early stop codon and shortening of the protein with 24 to 34 amino 

acids [19]. 

Viral surveillance can also be used to determine the likely origin of an outbreak of influenza 

infections or the relatedness between samples. This was demonstrated during an outbreak of highly-

pathogenic H5N8 influenza A viruses in Dutch poultry farms in 2014 [20]. Whole genome sequencing 

on viral RNA isolated from cloacal and oropharyngeal samples of infected hens, suggested that four 

out of the five outbreaks were not the result of farm-to-farm spread, but of separate introduction of 

the virus in the different farms, which were located 16 to 112 km from each other [20]. The results of 

this study therefore support the conclusion that migratory birds are spreaders of avian influenza into 
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and possible between poultry farms and the importance of hygienic measures in these farms to keep 

potential pathogens out. 

4.4. Antigenic drift 

The humoral immune response elicited upon influenza infection or vaccination selects for mutations 

in the antigenic sites of HA, a process called antigenic drift. A study performed by Cushing et al., 

demonstrated that antigenic drift is already present early in infection [21]. NGS on HA-specific RT-

PCR products of virus isolated from human nasopharyngeal swabs, identified the emergence of 

genetic diversity in HA upon infection [21]. In addition, the intra-host evolution of HA showed unique 

mutations specific to an individual, with temporal genetic variation during infection [21]. The 

generation of HA mutants with antigenic variation, in both vaccinated and non-vaccinated 

individuals, was also demonstrated by Dinis et al. [22]. The group of Bloom followed a synthetic DNA 

approach to try to understand the inherent tolerance of influenza HA for mutations at its antigenic 

sites [23]. A mutant HA library was made in which mutations at practically every position within the 

HA protein were introduced. This library, theoretically consisting of 40.000 different HA sequences, 

was used to generate a library of recombinant A/WSN/1933(H1N1) viruses [23]. Passaging this virus 

library on cells was done to select for those virus clones that could replicate, leading to the positive 

selection of tolerated mutations within HA [23]. NGS sequencing of the passaged virus population 

revealed a strong purifying selection against stop-codon and many non-synonymous mutations. 

However, the HA antigenic sites appeared to be highly tolerant for mutations compared to the rest of 

the HA sequence, a feature which contributes to its fast antigenic evolution [23].  

4.5. Viral diagnosis 

Accurate and fast diagnosis of a newly emerging influenza strain, will accelerate the start, and thus 

the effectiveness, of protective measures. Influenza virus detection tests based on nucleic acid, e.g. 

PCR and microarray, are more and more preferred above traditional culture- or antigen based 

diagnostic procedures [24]. However, these tests are sequence dependent, which limits their use in 

the detection of newly emerging influenza viruses or of viruses which are mutated in the binding site 

of the PCR primer or micro-array probe. These limitations of traditional viral testing were 

demonstrated at the start of the influenza A (H1N1) pandemic in 2009, when no clinical or laboratory 

tests were initially available to identify this virus with high sensitivity and specificity. Whole RNA 

sequencing, on the other hand, of a nasopharyngeal swab sample using the Illumina GA IIx, resulted 

in de novo assembly of the genome of the 2009 pandemic influenza H1N1 virus, without the 

requirement of a reference sequence [25]. The suitability of NGS to accurately identify the virus 

subtype during an influenza outbreak was also demonstrated by Seong et al., who applied RNA 

sequencing of nasopharyngeal swabs samples to investigate a nosocomial influenza outbreak [26]. 

Furthermore, direct NGS on virus in a clinical sample has an added advantage compared to Sanger 
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sequencing of amplified virus, as there is no selection for culture-induced mutations. This was 

demonstrated by Ren et al., who showed that the full-length genome sequence of an H7N9 virus 

obtained after NGS on RNA directly isolated from a sputum specimen of a patient differed 

prominently from the Sanger sequencing results on virus amplified on eggs [27]. The latter virus 

carried mutations that were introduced during its in vitro propagation.  

4.6. Viral host adaptation and transmission 

Animal reservoirs of influenza viruses have been important contributors to the last four human 

influenza pandemics. Consequently, it is important to identify circulating viruses with an increased 

potential to infect humans and to understand how these viruses gain sustained human-to-human 

transmission. Novel mutations in the polymerase complex of a H5N1 virus that confer increased 

replication in mammalian cells and increased virulence in mice were detected based on a high 

throughput screen using reporter gene expression and randomly mutated polymerase genes, which 

was followed by Ion Torrent PGM sequencing to determine the mutations in the polymerases and NP 

responsible for increased replication [28].  

Infection with highly pathogenic avian influenza H5N1 viruses can cause severe morbidity and 

mortality in humans, but these viruses do not efficiently transmit between humans. It is of interest 

for pandemic preparedness plans, to be able to forecast, at least with some confidence, what genetic 

changes would be required for these viruses to evolve into human-to-human transmissible 

pathogens. The potential of A/Indonesia/5/2005(H5N1) to acquire sustained human-to-human 

transmission, was investigated by performing serial passages of this virus in ferrets [29]. Four amino 

acid substitutions in HA and one in PB2 were consistently present in the airborne-transmitted viruses 

and resulted in increased receptor binding and enhanced replication in mammalian cells [29]. These 

mutations were already detected by the use of 454 sequencing after one or two passages of the 

avian influenza virus in ferret, and they became dominant starting from passage seven [30]. Similar 

results were obtained in an independently performed ferret-to-ferret transmission study in which an 

H5N1 reassortant virus, comprising H5 HA (from an H5N1 virus) and the other seven genomic 

segments from a prototype 2009 pandemic H1N1 virus was used as the starting inoculum [31]. 

Although the HA diversity increased during infection of the index animals, transmission of H5N1 

viruses via respiratory droplets imposed a severe bottleneck and resulted in limited HA diversity in 

contact animals [32]. Interestingly, this study revealed that minor virus variants in index animals can 

become the dominant genotype in the contact animal, an insight that was revealed thanks to the 

high sensitivity of NGS, and likely would have been missed or much more difficult to find by 

traditional Sanger sequencing [32].  

The impact of influenza A virus transmission on the genetic diversity present in a virus population has 

also been investigated using a set of 100 different recombinant A/California/04/2009(H1N1) viruses, 

each carrying a unique, neutral barcode in their viral NS segment which makes it possible to track the 
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viral diversity during transmission [33]. A viral inoculum containing equivalent levels of each 

barcoded virus was used to infect donor guinea pigs or ferrets. Although these viruses replicated as a 

highly diverse virus population in the inoculated animals, viral diversity was very limited in the 

recipient animal [33]. The difference between the barcode profiles in the different recipient animals 

originating from a single index animal, suggest that the observed bottleneck occurs at the level of the 

recipient, independent of virus genetics [33]. In addition, this study demonstrated that the strength 

of the bottleneck is influenced by the infection route, with a higher selection imposed by aerosol 

transmission than direct contact [33]. 

The 1918 Spanish influenza pandemic had a devastating effect on the human population at that time 

whereas the subsequent influenza pandemics claimed significantly less lives. There are concerns that 

a pandemic virus with a similar pathogenicity as the 1918 pandemic virus may emerge again in the 

future. Watanabe et al. investigated the chance for a virus similar to the 1918 pandemic virus to 

emerge from wild bird reservoirs, and their experimental set-up is schematically represented in 

figure 1 [34]. They first searched the publically available avian influenza virus sequence repository for 

sequences that are closely related to the 1918 pandemic virus [34]. Subsequently, an influenza virus 

was created by reverse genetics (named '1918-like avian virus') that contained avian viral genome 

segments with high homology to the 1918 virus, presumably to lend support to the hypothesis that 

such a constellation of naturally occurring influenza A virus genes, could in the future blend together 

by reassortment in nature [34]. However, this virus replicated poorly in index ferrets and did not 

result in virus transmission. Consequently, to enhance the chance to select for virus transmission, 

three described mammal-adapting substitutions were introduced in the 1918-like avian virus 

genome: E627K in PB2 and E190D together with G225D in HA (H3 numbering) [34]. Subsequently, 

this man-made virus (named '1918-like avian HA190D225D virus') was passaged into ferrets to select 

for a respiratory droplet transmissible virus. The virus strains that emerged in contact animals during 

ferret adaptation, suggest the association of three mutations in the polymerases (E627K and A684D 

in PB2 and V253M in PA), six mutations in HA (E89D, S113N, I187T, E190D, G225D and D265V) and a 

single mutation in NP (T232I), with efficient transmission of a potential pandemic 1918-like avian 

influenza strain [34].  

In a follow up report NGS analysis was used to try to elucidate which evolutionary pathway the 1918-

like avian influenza virus had followed to become transmissible between ferrets through the air [35]. 

This whole genome NGS analysis, performed on virus that was retrieved from upper respiratory tract 

of the ferret sampled at each transmission step, showed that the early stages of ferret adaptation of 

this avian virus are marked by diversification of HA during its replication in the index animals [35]. 

Transmission on the other hand first involved a loose genetic bottleneck, with maintenance of the HA 

diversity and the fixation of two mutations in the polymerases (V253M in PA and A684D in PB2), that 

did not confer a detectable replication advantage (Figure 1) [35]. These viruses transmitted better 

and gave rise to a new virus population that seemed to have undergone a strong genetic bottleneck, 

with fixation of the I187T and D265V or S113N mutations in HA1 [35]. This study shows that the 
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stringency of the transmission bottleneck can change during host adaptation [35]. In addition, the 

occurrence of mutations in multiple combinations in the transmitted viruses suggests that an 1918-

like influenza virus can evolve to transmission via multiple genetic pathways [35]. 

 

Figure 1: Avian influenza viruses with sequences similar to the 1918 pandemic influenza A virus may have 

pandemic potential. The groups of Kawaoka and Friedrich investigated the potential that a transmissible virus 

with a similar pathogenicity as the 1918 pandemic virus may emerge from the wild bird reservoir. Their 

experimental procedure is schematically represented. Figure adapted from [34] and [35]. 

The principal measure to limit adaptation of an avian influenza virus towards replication in humans, 

is by restricting exposure to the avian influenza reservoir. The importance of reducing human 

exposure to avian influenza viruses has been demonstrated during an H7N7 outbreak in the 

Netherlands in 2003, were a veterinarian got infected in a direct manner after visiting a virus-struck 

chicken farm and died subsequently [36]. Within the clinical samples isolated from the veterinarian 

11 days post exposure and one day after hospitalization, the human adaptation mutation PB2 E627K 
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was present at 75% in the BAL and 93% in the sputum samples [36]. Moreover, the mutation was 

homogenously present in the lung tissue obtained during autopsy five days later. Importantly, this 

mutation could not be detected by NGS in the H7N7 positive chicken samples obtained on the day 

the veterinarian visited the farm, which suggests that the PB2 E627K mutation emerged in the 

infected veterinarian [36].  

The above mentioned studies show that a small number of amino acid substitutions in the circulating 

avian influenza viruses is sufficient to enhance viral replication and transmission in humans, and as 

such, create a virus with pandemic potential. The possibility of minor variants to become dominant 

upon transmission, demonstrates the importance of using NGS for viral surveillance.  

4.7. Vaccine control 

Current recommendations to assure the quality, safety and efficacy of influenza vaccines require 

reporting of the consensus sequence of the virus population used for vaccine production [37]. 

However, due to the intrinsic genetic heterogeneity of influenza viruses, NGS is more suitable to 

survey the genetic composition of influenza vaccines. Laasri et al. demonstrated that deep 

sequencing can be used to monitor the consistency of influenza vaccines [38]. Illumina sequencing of 

the A/California/07/2009(H1N1) vaccine strains generated either through reverse genetics or 

traditional reassortment, resulted in effective and reproducible detection of low quantities of 

mutants in the entire genome of influenza viruses, including variations in antigenic sites of HA [38]. 

Remarkably, the heterogeneity in the virus stock derived by reverse genetics was higher than in the 

virus stocks created by conventional reassortment [38]. Due to the error-prone replication of 

influenza viruses, it is thus important to accurately determine the viral variants present in the vaccine 

strains, since vaccine antigenicity may be influenced by mutations in the antigenic sites of HA and 

NA. In addition, the high sensitivity of NGS is also ideally suited to monitor the genetic stability and 

safety of live-attenuated influenza vaccines. 

4.8. Viral resistance and escape 

The high variability of the influenza viruses, requires a sensitive method for viral resistance testing. 

Direct Sanger sequencing of amplified viral RT-PCR products has a limited sensitivity of 20 to 30 % 

and is as such unable to detect minor drug resistant virus populations. The detection of minor 

variants using NGS sequencing makes is possible to study the evolution of drug-resistant mutations, 

both intra-host and on a large population scale, and to predict the speed at which resistance will 

arise [39]. In addition, whole genome analysis by NGS enables analysis of all variants in the viral 

genome. Consequently, also variants that would likely remain undetected by traditional screening for 

resistance can be analyzed. NGS has proven to be successful in detecting and identifying antiviral 



 

86 

 

resistance in e.g. seasonal influenza A H1N1 and H3N2 virus and the pandemic 2009 H1N1 viruses 

[40-43].  

In vitro antiviral selection pressure can also help in the understanding of the evolution of viral 

resistance. In vitro selection for oseltamivir resistance, followed by full-genome sequencing on an 

Illumina HiSeq 2000 platform, revealed selection of H274Y in NA and that this mutation alone is 

required for oseltamivir resistance [44]. In addition, the observed rise in oseltamivir resistance in 

seasonal H1N1 influenza A viruses can be explained by the fact that this mutation is neutral for the 

virus, since further passaging of this resistant virus in the absence of oseltamivir resulted in 

maintenance of the mutation [44]. The fitness of influenza B viruses resistant to neuraminidase 

inhibitors has also been determined using recombinant mutant influenza B/Yamanashi/166/1998 

viruses containing single amino acid mutations responsible for resistance to oseltamivir or zanamivir 

[45]. Cells were co-infected with an equal amount of wild type virus and one of these mutants, 

followed by NGS analysis [45]. Interestingly, the H274Y mutation resulted in a fitness advantage over 

wild type virus, but these viruses retained sensitivity to zanamivir [45]. In addition, the NA-E119A 

mutant virus could replicate to high viral titers in the presence of both oseltamivir or zanamivir, 

however it is less fit compared to wild type virus [45].  

NGS can also be used to analyze viral escape to antibody pressure. NGS has been applied to study the 

viral resistance after in vitro viral escape selection of the influenza viruses A/California/7/2009(H1N1) 

and A/Perth/16/2009(H3N2) for the broadly neutralizing pan-HA stalk-binding human mAb 39.29 [46, 

47]. Eight rounds of virus passage in the presence of mAb 39.29 did not result in the selection for 

resistant A/California/7/2009(H1N1) viruses. In contrast, passaging of A/Perth/16/2009(H3N2) in the 

presence of mAb 39.29 resulted in the selection of three mutant viruses that had acquired resistance 

to the neutralizing activity of this mAb. These viruses each carried one mutation in the HA stalk that 

resulted in viral escape: either Gln387Lys, Asp391Tyr or Asp391Gly [48]. These mutations rendered 

the viruses completely resistant to the mAb by two different mechanisms: either by abolishing 

antibody binding (mutation Gln387Lys) or enhancing the fusion ability of HA (mutations Asp391Tyr 

and Asp391Gly) [48]. NGS has also been used to investigate the escape routes of a highly-pathogenic 

avian H5N1 influenza A virus to vaccine pressure, by in vitro passaging of the virus in the presence of 

immune serum of chickens that had been vaccinated with a commercial inactivated, clade-matching 

H5N2 vaccine only or followed by viral challenge with A/cygnus cygnus/Germany/R65/2006 (H5N1) 

[47]. Although no complete escape to the immune serum could be achieved even after 100 passages, 

several mutations scattered throughout the viral genome were spotted that contributed to partial 

resistance of the immunity provided by the H5N2 vaccine. These mutations mapped to regions that 

have been described to be antigenically active, i.e. HA and PA [47]. Interestingly, some of the in vitro 

selected escape mutations have been detected in natural isolates, demonstrating the in vivo 

relevance of in vitro escape selection and its potential to be used to predict the antigenic changes 

present in circulating influenza viruses [47]. Such studies not only help in screening for antiviral-
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resistant viruses, but also help in understanding the mechanisms behind escape and the biology of 

influenza viruses as a whole. 

4.9. Influenza virus-host biology 

The high throughput of NGS platforms makes it possible to perform RNA sequencing of the 

transcriptome, which can result in new insights in influenza virus biology. As an example, an 

important role for I64 in the anti-inflammatory functions of NS1 has been demonstrated by 

comparing alterations in the transcriptome in MDCK cells upon infection with different seasonal 

human H3N2 influenza virus isolates [49]. Remarkably, upregulation of genes associated with the 

innate immune response, e.g. genes coding for IFN-β, RIG-1 and TNF, was most pronounced after 

infection of MDCK cells with just one of the twelve tested clinical isolates [49]. The observed defect 

in suppressing the innate antiviral response could be linked to a I64T mutation in the dsRNA-binding 

domain of NS1, which attenuates the virus [49]. This mutation decreases its interaction with cleavage 

and polyadenylation specificity factor 30 (CPSF30), resulting in decreased inhibition of host protein 

synthesis [49]. Interestingly, the virus with the I64T mutation in NS1 was isolated from a subject with 

a defect in induction of IFN responses [49].  

4.10. Concluding remark 

The diversity of applications where NGS contributed to progress in the influenza research field were 

highlighted here. It is clear that their higher sequencing output and sensitivity, together with the 

sequence independence of sequencing, are important advantages compared to traditional 

techniques. However, large data sets of millions to billions of sequencing reads are nowadays easily 

generated during a single sequencing run, which require skilled people to convert this huge amount 

of information to results with biological relevance. In addition, NGS continues to evolve. One 

development that may breakthrough in the future is the possibility to directly sequence RNA, which 

is being developed by Oxford Nanopore and is characterized by long read lengths and a fast 

turnaround time [50]. This method, once mature, will circumvent the sequence bias and errors that 

are introduced during the preparation of the sequencing library for RNA viruses such as influenza, 

leading to even more sensitive surveillance options. 
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Aims of the thesis 

Influenza is one of the most common infectious diseases, resulting in a high morbidity and mortality 

each year, although it can be prevented through effective vaccination. However, the current 

influenza vaccination strategies are mainly based on eliciting neutralizing antibodies against the 

antigenically, highly variable surface protein HA [1]. This profound antigenic variability in HA results 

from the relatively high error rate of the viral RNA polymerase, the humoral herd immunity directed 

against HA that is build up in the population during each influenza season, and the structural 

flexibility of HA, which tolerates almost any amino acid substitution in the most antigenic parts of 

this glycoprotein [2, 3]. In addition, optimal protection by current vaccination strategies is only 

achieved when the vaccine strain antigenically matches the circulating influenza strains. Therefore, 

there is an urgent need for 'a universal influenza vaccine' that, ideally, would give heterosubtypic and 

life-long immunity. A vaccine based on the conserved influenza M2e is a good candidate for such a 

vaccine [4]. Although immunity against M2e in response to influenza infection is rather low or 

undetectable, vaccination with M2e constructs induces a very strong anti-M2e antibody response 

which protects against homo- and heterosubtypic influenza strains in animal models of influenza [4-

6]. However, the protective mechanisms behind M2e-based vaccines are still poorly understood. In 

addition, since influenza viruses are genetically diverse, it is important to investigate how these 

viruses could evolve when under the immune pressure elicited by M2e-based vaccines. 

In this project, we first wanted to study the in vitro and in vivo viral diversity of influenza A viruses. 

The development of next-generation sequencing techniques (NGS), which enables sequencing of 

millions of DNA fragments in parallel, makes it possible to study the composition of variants in a viral 

population with high sensitivity. At the beginning of this project, it was unclear which NGS technique 

was the most suitable to study the genetic diversity present in an influenza virus population. 

Consequently, the first aim of this project was to compare the suitability of two NGS benchtop 

sequencers, the Illumina MiSeq and Ion Torrent PGM, to accurately identify the mutations and their 

prevalence present in an influenza A virus population (Chapter 5). Due to the segmented nature of 

the influenza RNA genome, an RT-PCR protocol had to be designed that would result in sufficient 

amplification of all eight genome segments. In addition, there was no standardized variant calling on 

NGS data derived from highly variable RNA viruses available at the start of this PhD project. 

Therefore, there was need to develop a sequencing analysis pipeline using a user-friendly 

bioinformatics platform to identify and determine the frequency of nucleotide variants in a viral 

sample. 

The designed RT-PCR protocol and sequencing analysis pipeline were subsequently implemented to 

evaluate the genetic stability of a recombinant GFP virus, PR8-NS1(1–73)GFP, that was recently 

developed in our lab [7]. Recombinant influenza viruses expressing a reporter gene are very useful in 

a plethora of in vitro and in vivo virus applications (e.g. to study viral replication, spread and cell 

tropism). Although a reporter gene has no selective benefit for the virus, we could conclude, based 
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on phenotypic characterization of the virus, that this GFP-expressing virus is genetically very stable 

[7]. However, this conclusion seemed to be contradicted by the outcome of our NGS sequencing 

analysis pipeline for influenza A viruses. A remarkable drop in sequencing coverage in the GFP 

sequence was observed. Therefore, a second aim of this project was to investigate the origin of this 

observed phenomenon (Chapter 6).  

Although the (pre)clinical results obtained with several M2e-based vaccines are promising to develop 

a 'universal influenza vaccine' based on M2e, the mechanism of action of these vaccines is still poorly 

understood. M2e-specific immune serum or monoclonal antibodies do not inhibit influenza A virus 

replication in vitro, or do so very rarely for some viral strains [8]. In contrast, passive transfer studies 

of serum derived from M2e-immunized mice demonstrated that M2e-specific IgG antibodies can 

confer protection and are able to reduce lung virus titers [4, 9]. Our lab, among others, has already 

established an essential role for FcγRs in immune-protection by M2e-specific IgGs [10]. In this project 

we investigated further the protective mechanism of M2e based vaccines and the role of FcγRs in 

M2e-based protection using two M2e-specific monoclonal antibodies of different antibody isotype 

and FcγRs knock-out mice (Chapter 7). 

The sequence of M2e is highly conserved in nature, which likely results from the genetic constraint of 

this part of M2 due to sequence overlap with the gene encoding for the conserved structural protein 

M1, likely combined with the low immune selection pressure on this antigen induced by natural 

infections [5]. Therefore, it remains an open question if influenza viruses will find a mechanism to 

escape to the M2e immune pressure once, in the future, an M2e-based vaccine would be 

implemented on a large scale in the human population. Earlier in vitro and in vivo studies suggest 

that M2e escape viruses can emerge with mutations within or outside M2e [11, 12]. The last aim of 

this project was to use the established protocol and NGS data analysis pipeline to address the 

research question: 'How do influenza A viruses evolve under anti-M2e immune pressure in vivo?' 

(Chapter 8).  
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ABSTRACT  

Background:  

Influenza viruses exist as a large group of closely related viral genomes, also called quasispecies. The 

composition of this influenza viral quasispecies can be determined by an accurate and sensitive 

sequencing technique and data analysis pipeline. We compared the suitability of two benchtop next-

generation sequencers for whole genome influenza A quasispecies analysis: the Illumina MiSeq 

sequencing-by-synthesis and the Ion Torrent PGM semiconductor sequencing technique.  

Results:  

We first compared the accuracy and sensitivity of both sequencers using plasmid DNA and different 

ratios of wild type and mutant plasmid. Illumina MiSeq sequencing reads were one and a half times 

more accurate than those of the Ion Torrent PGM. The majority of sequencing errors were 

substitutions on the Illumina MiSeq and insertions and deletions, mostly in homopolymer regions, on 

the Ion Torrent PGM. To evaluate the suitability of the two techniques for determining the genome 

diversity of influenza A virus, we generated plasmid-derived PR8 virus and grew this virus in vitro. We 

also optimized an RT-PCR protocol to obtain uniform coverage of all eight genomic RNA segments. 

The sequencing reads obtained with both sequencers could successfully be assembled de novo into 

the segmented influenza virus genome. After mapping of the reads to the reference genome, we 

found that the detection limit for reliable recognition of variants in the viral genome required a 

frequency of 0.5% or higher. This threshold exceeds the background error rate resulting from the RT-

PCR reaction and the sequencing method. Most of the variants in the PR8 virus genome were present 

in hemagglutinin, and these mutations were detected by both sequencers. 

Conclusions: 

Our approach underlines the power and limitations of two commonly used next-generation 

sequencers for the analysis of influenza virus gene diversity. We conclude that the Illumina MiSeq 

platform is better suited for detecting variant sequences whereas the Ion Torrent PGM platform has 

a shorter turnaround time. The data analysis pipeline that we propose here will also help to 

standardize variant calling in small RNA genomes based on next-generation sequencing data. 

Keywords: influenza virus, quasispecies, next-generation sequencing, Illumina MiSeq, Ion Torrent 

PGM, RT-PCR 
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BACKGROUND 

Viruses outnumber all other known life forms on earth. Furthermore, viruses in general and RNA 

viruses in particular have a huge genetic diversity, which is the driving force of their evolutionary 

success. Viral genomic diversity is well captured in the term ‘quasispecies’. The term 'quasispecies 

theory' was first introduced by Manfred Eigen as a theoretical model to study molecular evolution by 

mutation and selection in self-reproducing macromolecules [1, 2]. Later, the term was also used to 

describe an RNA virus population consisting of a mixture of related genomes [3-6]. A viral 

quasispecies is defined as a proliferating population of non-identical but closely related viral 

genomes in a mutation-prone environment subjected to continuous competition and selection [5, 7]. 

Biologically, the quasispecies is the level at which selection takes place [8]. Human influenza viruses 

represent a prototypical example of rapid virus evolution facilitated by error-prone genome 

replication combined with the selection pressure imposed by host immune responses. This situation 

favors the emergence of fit mutant viruses that escape the herd immunity induced by infection with 

parental viruses or by vaccination [9, 10].  

Influenza is an acute and highly contagious viral disease of the respiratory tract in humans. It is 

caused by influenza A and B viruses and occasionally by influenza C virus. These viruses represent 

three of the five genera of the Orthomyxoviridae family, which is characterized by enveloped viruses 

that have a segmented, single-stranded, negative sense RNA genome [11]. Replication of the RNA 

genome of influenza viruses is associated with a relatively high mutation rate (2.3 x 10-5) because the 

viral RNA-dependent RNA polymerase lacks 3'-5'-exonuclease activity and therefore has no proof-

reading function [12, 13]. Mutations that are introduced during replication are tolerated because 

they are neutral for virus fitness in a particular environment, rapidly lost because they reduce fitness, 

or expanded because they are advantageous [5]. 

The mutation rate of influenza A viruses has been traditionally determined by sequencing different 

cDNA clones obtained from multiple plaques descending from a plaque-purified influenza A virus 

[14]. In other words, viral genomes that are fit enough to generate plaques were sequenced. This 

approach revealed a mutation rate of approximately 1.5 x 10-5 per nucleotide per infectious cycle. 

Sequence analysis of multiple clones of cDNA fragments derived from one or more gene segments 

has also been used to study sequence variation of influenza virus derived from clinical samples [15, 

16]. In addition, deep amplicon sequencing of one or two gene segments from avian H7N1 and 

equine H3N8 influenza viruses has been applied to study within and between host genetic variation 

[17, 18]. However, identification of the extent of genetic variation in a viral quasispecies under a 

given condition requires a highly accurate sequencing method that does not rely on molecular 

cloning, or a phenotypic selection method such as plaque generation. Next-generation sequencing 

(NGS) seems to fulfill this requirement [19-21]. However, experimental errors are introduced during 

the preparatory steps, i.e. reverse transcription and PCR amplification, and the NGS method itself is 

also an error-prone process [22]. 



 

103 

 
1

0
3

 

NGS enables sequencing of multiple gigabases of DNA in a single run; the output size depends on the 

sequencing instrument [23]. Consequently, because the influenza genome consists of only 13,000 

ribonucleotides, it is straightforward to sequence it at high coverage (i.e. the number of times the 

genome is sequenced). However, its segmented RNA genome makes it technically challenging to 

obtain full genome coverage. Stoichiometric RT-PCR amplification of each of the eight genomic RNA 

segments is difficult, in particular when starting from ex vivo samples such as nasal swabs or 

bronchoalveolar lavage from experimentally infected animals. NGS studies of influenza virus 

reported to date did not start from the amplification of all eight full-length genomic segments in 

sufficient amounts in a single reaction, and homogeneous coverage across all eight segments was not 

always obtained [24-29]. 

Here, we compared the suitability of two NGS methods to determine the influenza A virus 

quasispecies diversity. We deep-sequenced A/Puerto Rico/8/34 (PR8) influenza virus, which is used 

extensively in many research laboratories for in vitro and mouse experiments. In addition, PR8 virus 

is used as a donor to generate egg-grown reassortant viruses for seasonal influenza vaccine 

production. Importantly, we also took advantage of the available plasmid-based reverse genetics 

system for PR8 virus because it is a genetically stable equivalent of the virus [30]. We compared the 

quality of the primary sequence data, the read length, the coverage across the viral genome, the 

method-associated error rate, and the sensitivity of two modern NGS platforms: the Illumina MiSeq 

sequencing-by-synthesis and the Ion Torrent PGM semiconductor sequencing technique. For both 

sequencing platforms, we used the latest available software and the most recent chemistries 

available. 
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RESULTS 

High-throughput sequencing of plasmid samples 

Our aim was twofold: (1) to compare the performance of two high-throughput sequencing 

instruments; (2) to determine the complexity of an influenza A virus quasispecies (to count the 

number of nucleotide variants present in a swarm of genomes of that virus). We selected the 

Illumina MiSeq and the Ion Torrent PGM sequencing platforms because the accuracy of single 

nucleotide polymorphism (SNP) identification of these two popular NGS platforms is unclear. A study 

by Quail and colleagues concluded that the overall SNP calling rate is slightly higher for the data 

generated by Ion Torrent PGM than for Illumina MiSeq data [21], whereas Loman and colleagues 

reported a lower substitution error rate for the Illumina MiSeq [20]. 

We first compared the accuracy and sensitivity of these two sequencers. We used plasmid DNA to 

compare the accuracy of the sequencing output because it is genetically very stable. We also 

generated a plasmid with two tracer mutations, which allowed us to prepare mixtures with different, 

defined amounts of wild type and mutant plasmid before sequence analysis, in order to determine 

the sensitivity of the sequencers for picking out the occurrence of the introduced SNPs. For this 

comparison, we chose plasmids that also allowed us to generate PR8 virus with or without the 

introduced tracer mutations [30, 31]. 

We generated a mutated version of plasmid pHW197-M (pHW197-Mmut). This mutant has two silent 

mutations in the influenza virus M1 open reading frame (ORF) that served as tracers when mixing 

pHW197-Mmut and pHW197-M plasmids at different ratios. Because we intended to perform such 

mixing experiments with both plasmids and viruses generated from these plasmids, we carefully 

selected two silent mutations that most likely would not affect virus fitness. We chose these 

mutations based on their prevalence in human H1N1 virus isolates (see Materials and Methods). We 

selected two silent mutations in M1, which at the same time also added a restriction site to facilitate 

screening (Figure 1.A). These mutations were introduced in pHW197-M at positions 797 (C797T, 

pHW197-M numbering; C354T, segment 7 numbering) and 1088 (A1088T, pHW197-M numbering; 

A645T, segment 7 numbering). So the resulting plasmid, pHW197-Mmut, had additional HindIII and 

PvuII restriction sites. The presence of these mutations was verified by restriction analysis and 

conventional Sanger sequencing (Figure 1.B). 
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Figure 1: Introduction of synonymous tracer mutations in gene segment 7 of PR8 virus. (A) Schematic 

representation of the influenza M segment present in pHW197-Mmut. The open reading frames of M1 (yellow, 

starting at position 489, relative to the upstream CMV promoter (not depicted)) and M2 (orange, starting at 

position 489 and ending at position 1470) are indicated. The resulting HindIII and PvuII restriction sites are 

indicated. (B) Fluorograms showing the synonymous substitutions in pHW197-Mmut relative to pHW197-M at 

positions 797 (C to T) and 1088 (A to T). The predicted amino acid sequence is shown underneath the 

nucleotide sequence. 

Sequence read length.  

Assuming an equal error rate per base, longer read lengths are preferred for the de novo sequence 

assembly. In addition, longer read lengths increase the likelihood that one can conclude whether 

mutations observed in a genomic segment are linked or not. The two point mutations that we 

introduced in the M gene segment are 291 nucleotides apart. Therefore, to confirm the presence of 

these two mutations on the same DNA molecule, read lengths after processing should be at least 291 

nucleotides long. Such a length should be obtained when using the Ion Torrent PGM 400 base-pair 

sequencing kits. The length distribution of the sequencing reads of the plasmid samples generated by 

both sequencers is shown in black in figure 2. Plasmid samples were fragmented with Nextera XT 

transposase for Illumina MiSeq and mechanically sheared by Covaris, followed by adaptor ligation 

before Ion Torrent PGM sequencing. Nearly 70% of the unprocessed reads obtained on the Illumina 

MiSeq (2x250 bp sequencing) have a length of 250 bp, and the mean read length is 233.70 bp ± 1.65 

bp (Figure 2.A). The length of the unprocessed reads generated by the Ion Torrent PGM (400-bp 

sequencing on Ion 318 chip v2) follows a Gaussian distribution with a peak around 280 bp and a 

mean read length of 261.06 bp ± 2.51 bp (Figure 2.B). These values are lower than expected since the 

Ion PGM Template OT2 400 Kit, Ion PGM Sequencing 400 Kit and Ion 318 chip v2 (revision 2.0) that 
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we used should offer sequence reads of 400 bp according to their manuals. As analyzed on a High 

Sensitivity DNA Chip on the Agilent Bioanalyzer, the peak fragment size before emulsion PCR 

(emPCR) was situated around 450 bp (data not shown), indicating that Covaris shearing and 

subsequent size selection did not account for this relatively short average sequence length. We note 

that Junemann et al. also obtained fragments with the OT2 400 kit that were shorter than expected 

[19].  

 
Figure 2: Quality of sequencing reads obtained on the Illumina MiSeq and Ion Torrent PGM platforms. The 

pHW197-M and pHW197-Mmut plasmids (= 7) were fragmented with the Nextera XT DNA sample preparation 

kit (Illumina MiSeq) or with Covaris mechanical shearing followed by adaptor ligation (Ion Torrent PGM). 

Distribution of the read lengths obtained on the Illumina MiSeq (A) and Ion Torrent PGM (B) before processing 

(in black, output files of sequencer) and after processing (in orange) the obtained sequencing reads. Processing 

implies removal of adaptor contamination, quality trimming (> Q20), the removal of ambiguous bases and 

removal of reads shorter than 50 bases. For the Illumina MiSeq reads, broken pairs after read processing were 

also removed during the processing. Error bars represent the standard deviation. (C, D) Per-base quality 

distribution of sequencing reads. The Phred score distribution (Y-axis) relative to the processed reads obtained 

after sequencing on the Illumina MiSeq (C) and Ion Torrent PGM (D). x% ile = xth percentile of quality scores 

observed at that position.  
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Figure 3: Next Generation Sequencing data analysis pipeline. Schematic representation of the analysis pipeline 

for in silico processing of next-generation sequencing data. 

In silico processing of the sequencing reads.  

Accurate analysis of viral quasispecies composition has to be based on high quality reads to ensure 

that SNPs and insertions and deletions (indels) can be confidently counted, because low quality reads 

could lead to over-interpretation of the number of mutations. In addition, high quality reads will lead 

to a higher accuracy of de novo sequence assembly. Therefore, we performed a quality control using 

the CLC Genomics Workbench software; we also propose a NGS data analysis pipeline that is 

generally applicable (Figure 3). First, we removed adaptor contamination and the low quality ends of 

the sequencing reads from the data generated by the two deep sequencing techniques. It was 



 

108 

 

recently reported that applying a Phred score of 20 or higher to filter Illumina MiSeq NGS data 

dramatically reduces the noise in SNP calling [32]. Hence, we applied this quality threshold to all our 

plasmid-derived sequencing reads. A Phred score is logarithmically related to the base-calling error 

probabilities. When a Phred score of 20 is assigned to a base, it means that the chance that this base 

is called incorrectly is 1 in 100. We also discarded ambiguous bases and read lengths below 50 bases, 

which further reduces the background because such short reads are often mapped inaccurately. This 

quality trimming and read length filtering retained 94.89% ± 0.55% of the Illumina MiSeq and 95.26% 

± 0.57% of the Ion Torrent PGM reads. On the other hand, 85.99% ± 0.72% of the bases sequenced 

on the Illumina MiSeq and 78.99% ± 1.22% of the bases sequenced on the Ion Torrent PGM were 

retained. This indicates that the greatest loss of bases was due to quality trimming rather than read 

length filtering and that Illumina MiSeq sequencing provides higher sequencing quality than Ion 

Torrent PGM. The resulting read length distribution after this in silico filtering is shown in orange in 

figure 2, where the mean read length is 211.78 bp ± 2.18 bp on the Illumina MiSeq and 216.43 bp ± 

1.15 bp on the Ion Torrent PGM after processing of the reads. 

Quality of the sequencing reads.  

The per-base quality distribution on both sequencers, using the plasmid samples as template, is 

shown in figure 2. Bases with a Phred score of 30 (chance of a wrong base call of 1 in 1000) are a 

measure of high quality data. For the raw reads obtained on the Illumina MiSeq, the 25th percentile of 

the Phred scores is ≥ 33 until position 251, and thus most of the sequencing reads are without 

sequencing error (Figure 2.C). For the reads obtained on the Ion Torrent PGM, the median of the 

Phred scores is ≥ 30 until position 266 (Figure 2.D). Therefore, we conclude that the overall 

sequencing quality of the reads obtained on the Illumina MiSeq is higher than that obtained on the 

Ion Torrent PGM.  

Table 1: Alignment metrics for Illumina MiSeq and Ion Torrent PGM sequencing runs. 

 Illumina MiSeq Ion Torrent PGM 

 pHW197-M pHW197-Mmut pHW197-M pHW197-Mmut 

 S1 S2 S1 S2 S1 S2 S1 S2 

Minimum coverage 683 744 815 609 3532 4510 3995 4830 

Maximum coverage 27389 28589 32802 26275 15716 17632 14664 18196 

Average coverage 15369 16315 18236 14610 11525 13236 11118 13636 

Standard deviation 6739 7120 7888 6315 3323 3499 2853 3562 

Unmapped reads (%) 0.20 0.16 0.21 0.22 1.06 1.05 1.28 1.19 

Unmapped bases (%) 0.17 0.14 0.19 0.19 1.07 1.05 1.26 1.18 

Wild type (pHW197-M) and mutant (pHW197-Mmut) plasmids were sequenced in duplicate (S1 and S2) on 

both sequencers and the processed reads were mapped to the plasmid reference sequence. 
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Mapping of the sequencing reads. 

To evaluate the accuracies of both sequencers, the processed reads were mapped to the plasmid 

reference sequence (Table 1). The percentage of unmapped bases was lower for the Illumina MiSeq 

(0.17% ± 0.02%) than for the Ion Torrent PGM (1.14% ± 0.10%). This is due to the lower quality of the 

Ion Torrent PGM sequencing reads, which reflects the intrinsic sequencing errors that lead to 

reduced alignment and a higher number of unmapped bases, particularly at the ends of the longer 

reads.  

 
Figure 4: Next Generation Sequence analysis of pHW197-M. (A) Schematic representation of pHW197-M. 

HCMV: human cytomegalovirus promoter, T7: T7 RNA polymerase promoter, M1: matrix protein 1 open 

reading frame, M2: matrix protein 2 open reading frame (interrupted by an intron), hPolI: human RNA 

polymerase I promoter, pMB1 ori: origin of replication, AmpR: ampicillin resistance gene. (B) Mean sequencing 

depth after mapping the processed reads (n = 2) to the reference plasmid genome. The pHW197-M plasmid 

was fragmented with the Nextera XT DNA sample preparation kit before Illumina MiSeq sequence analysis or 

by Covaris mechanical shearing, followed by adaptor ligation before Ion Torrent PGM sequence analysis. (C) 

Percentage GC distribution in the pHW197-M plasmid reference sequence. The peak after position 2000 

corresponds to the origin of replication. 

For both sequencers, we observed a striking fluctuation in coverage depth (times a nucleotide is 

sequenced plotted against the position in the genome) (Figure 4). The largest fluctuation was seen 
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for the Illumina MiSeq (Figure 4.B). It is known that Illumina MiSeq and Ion Torrent PGM sequencers 

perform rather poorly when sequencing DNA with very low or very high GC content, which leads to 

low sequencing coverage of AT and GC rich regions [33, 34]. In addition, the Nextera transposon-

based fragmentation that we used for the samples sequenced on the Illumina MiSeq has some 

sequence preference, which can lead to a fragmentation bias, particularly in small genomes [35].  

Since the plasmid reference sequence is known, we were confident that any mismatching nucleotide 

variant could be reported as a sequencing error. The error rate per read position was 0.08% ± 0.01% 

for the Illumina MiSeq and 0.12% ± 0.01% for the Ion Torrent PGM. The error rate increases slightly 

with the read length for both sequencers, with a pronounced rise at the end of the reads on the Ion 

Torrent PGM (data not shown). For the Illumina MiSeq, substitutions are the dominant error type 

with A-to-C and T-to-G being the most prevalent (Figure 5.A), which is consistent with an earlier 

report [36]. In contrast, indels are dominant on the Ion Torrent PGM (Figure 5.B), and most of them 

are single nucleotide insertions or deletions (data not shown). Nearly all of these indels occur in 

homopolymeric regions. Since these regions require multiple incorporations of identical nucleotides, 

this increases the chance of non-linearity between the signal intensity and homopolymer length, 

explaining the higher indel error rate of the Ion Torrent PGM. 

 
Figure 5: Comparison of nucleotide variants revealed by Illumina MiSeq and Ion Torrent PGM sequencing. 

The pHW197-M and pHW197-Mmut plasmids were fragmented with the Nextera XT DNA sample preparation 

kit (Illumina MiSeq) or by Covaris mechanical shearing, followed by adaptor ligation (Ion Torrent PGM). The 

samples were sequenced in duplicate and the sequence reads were processed (adaptor removal, Q20 

trimming, removal of ambiguous bases and removal of reads shorter than 50 bases). For reads obtained on the 

Illumina MiSeq: broken pairs after read processing were also removed. The relative percentages of 

substitutions, insertions and deletions were determined after mapping the processed Illumina MiSeq (A) and 

Ion Torrent PGM (B) sequencing reads to the pHW197-M or pHW197-Mmut reference sequence. Bars 

represent averages from 4 samples and error bars represent the standard deviation. 
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Variant detection 

We considered the frequency of a given nucleotide significant (a real mutation) when it was higher 

than twice the sequencing error background, i.e. above 0.16% for the Illumina MiSeq and above 

0.24% for the Ion Torrent PGM. Since we are dealing with proportions very close to zero, the 

proportion of variants that could be miscalled at this threshold was estimated using the Agresti-Coull 

interval as an approximate binomial confidence interval [37]. Setting twice the background error rate 

as upper bound of the binomial confidence interval, only 0.0041% and 0.00002% of the variants are 

expected to be miscalled as true variant on the Illumina MiSeq and Ion Torrent PGM, respectively. 

Despite this stringent cut-off, false positive errors were still detected, mostly as a consequence of the 

sequence specific error profiles of both sequencers (Table 2, [21, 38, 39]). The largest number of 

variants was deduced from the Ion Torrent PGM data, and all of them were indels (Table 2). In 

contrast, the variant calls on the Illumina MiSeq were mainly SNPs (Table 2). To eliminate false 

positive variants, we applied extra in silico filtering parameters. We set the forward/reverse balance 

between 0.25 and 0.75, meaning that the minimum ratio between the number of forward and 

reverse reads that support the surmised variant should be at least 0.25. In addition, a nucleotide 

variant should be counted at least 10 times independently and should have an average Phred score 

of at least 20 (based on [40]) (Figure 3). Applying these variant filters removed most of the false 

positive variant calls and retained one variant from the Illumina MiSeq and six or five variants from 

the Ion Torrent PGM data (Table 2). So applying the variant filtering parameters has the largest 

impact on removing false positive variants detected in the Ion Torrent PGM data. Regardless of the 

sequencing method used, all false positive indels were present in homopolymer regions (at least two 

consecutive identical bases in the plasmid reference sequence). These variants can be excluded by 

using a homopolymer indel filter. However, homopolymeric regions are also the sites were the viral 

RNA polymerase may have the highest error rate. Therefore, applying this homopolymer indel filter 

to analyze viral RNA sequences (see below) could lead to underestimation of the number of variant 

genomes. Alternatively, the number of called variants based on the Ion Torrent PGM data can be 

reduced in order to exclude likely false positive variants, by increasing the average Phred score for a 

registered variant to 30. However, this also increased the number of false negative variant calls (data 

not shown). 

Table 2: Number of detected variants in the pHW197-M sample before and after filtering. 

 Illumina MiSeq Ion Torrent PGM 

 Before After
a 

Before After
a 

 S1
b 

S2
b 

S1
b 

S2
b 

S1
b 

S2
b 

S1
b 

S2
b 

SNP
c 

4 4 0 0 0 0 0 0 

Insertion 0 0 0 0 14 12 3 1 

Deletion 0 2 0 1 71 66 3 4 
aThe filtering parameters used were average quality threshold > Q20, forward/reverse balance > 0.25, and 

independent counts of variant > 10.  
bSequencing was performed in duplicate (S1 and S2).  

cSNP = single nucleotide polymorphism. 
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Table 3: Sensitivity of Illumina MiSeq and Ion Torrent PGM. 

  Illumina MiSeq Ion Torrent PGM 

  797 1088 797 1088 

pHW197-M pHW197-Mmut C T A T C T A T 

0 100 < d.l. 99.97 < d.l. 99.96 < d.l. 99.56 < d.l. 99.89 

0 100 < d.l. 99.95 < d.l. 99.94 < d.l. 99.62 < d.l. 99.96 

95 5 94.84 5.14 95.40 4.58 95.22 4.75 95.02 4.96 

99 1 98.78 1.19 98.93 1.06 98.97 1.02 98.96 1.02 

99.9 0.1 99.80 < d.l. 99.85 < d.l. 99.93 < d.l. 99.87 < d.l. 

The observed mutation frequencies (%) after mapping the reads to the reference sequence of pHW197-M are 

shown. < d.l. = mutation frequency falls below detection limit (< 2 * error rate, < 0.16% for Illumina MiSeq and 

< 0.24% for Ion Torrent PGM). The pHW197-Mmut plasmid contains the tracer mutations C797T and A1088T. 

To determine the sensitivity for variant calling, we mixed pHW197-M and pHW197-Mmut plasmids in 

ratios of 95:5, 99:1 and 99.9:0.1 (v:v) and then sequenced the mixtures on both platforms. On both 

sequencers, the calculated frequency of pHW197-M or pHW197-Mmut based on the output data 

closely resembled the used ratios (Table 3). Nevertheless, the average quality (average Phred score) 

of the tracer mutations was higher on the Illumina MiSeq (37.97 ± 0.09) than on the Ion Torrent PGM 

(30.72 ± 1.07), making the detected variants on the Illumina MiSeq more reliable. Since the 

mutations are physically linked on one plasmid, both mutations should be present at similar 

frequencies in a single sample. This was indeed the case: the observed frequencies of the linked 

tracer mutations varied only slightly with on average 0.18% ± 0.26% on the mapped Illumina MiSeq 

reads and 0.22% ± 0.15% on the mapped Ion Torrent PGM reads. Finally, we found that the 99.9:0.1 

plasmid input ratio could not be resolved because it is too close to the intrinsic error rate of both 

sequencers. Overall, the Illumina MiSeq is more accurate than the Ion Torrent PGM sequencer but 

they have similar sensitivities for detection of SNPs in plasmid DNA.  

Sequencing of influenza virus samples 

To compare the efficacy of the sequencers for detecting mutations in an influenza A virus sample, we 

generated influenza virus starting from eight plasmids, including pHW197-M or pHW197-Mmut. This 

resulted in wild type PR8 and mutant PR8 (PR8mut), respectively, the latter carrying two silent 

mutations in the M1 ORF (C354T and A645T, segment 7 numbering). These mutations did not seem 

to affect viral fitness because PR8 and PR8mut replicated equally well in vitro (Figure 6). In addition, 

Sanger sequencing and restriction analysis of the mutant M segment after RT-PCR revealed that the 

introduced tracer mutations in PR8mut were uniformly present in the stock preparation (data not 

shown). These viral samples were sequenced in duplicate (i.e. from each RT-PCR sample two libraries 

of DNA fragments were generated in parallel) to evaluate the consistency of the two NGS methods. 

In addition, wild type and mutant viruses were mixed at a ratio of 99:1 before RNA isolation to 

compare the accuracy of the two NGS sequencing methods to resolve this ratio. Finally, we also 
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wanted to quantify the number of differences, if any, between the plasmid encoded influenza virus 

information and the in vitro cultured virus samples. This quantification would reflect the baseline 

quasispecies diversity, in the absence of exogenous selection pressure. 

 
Figure 6: Comparison of the in vitro replication of PR8 and PR8mut influenza viruses. (A) Individual plaques of 

PR8 and PR8mut. Plaques were revealed by immunostaining with an anti-M2 ectodomain-specific monoclonal 

antibody. (B) Multi-cycle growth analysis of PR8 and PR8mut viruses. MDCK cells were infected in triplicate at a 

MOI of 0.01 of PR8 or PR8mut virus. Every twelve hours after infection, samples in the cell supernatant were 

analyzed for the presence of infectious virus by plaque assay. Error bars represent the standard deviation. 

Amplification of the genomic influenza virus segments.  

Ensuring sufficient coverage across all segments requires an RT-PCR protocol that amplifies all eight 

influenza genome segments with equal efficiency. We used an RT-PCR protocol based on the 

conserved termini of the influenza genome segments, which allowed us to amplify all eight segments 

in sufficient amounts (Figure 7.A) [41]. Surprisingly, next to the eight genomic segments, an 

unexpected band with a length of about 850 bp was also amplified. This band was identified by 

conventional Sanger sequencing after blunt-end cloning in pBlueScript and corresponded to the first 

847 nucleotides of HA. Its amplification in the RT-PCR reaction was probably due to partial overlap of 
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the CommonUni12G primer with a nine-nucleotide perfect match in the coding region of HA 

(GCCGGAGCTCTGCAGATATCAGCGAAAGCAGG, match underlined). By lowering the concentration of 

the CommonUni12G primer, we could avoid this extra band and obtained the eight amplicons of the 

expected size (Figure 7.B). Overall, these results show that this RT-PCR protocol based on the 

conserved termini of the influenza A genome segments is suitable for amplifying all eight segments 

simultaneously and efficiently. 

 
Figure 7: RT-PCR amplification of influenza A virus PR8 and PR8mut genomic RNA. (A) Electrophoretic analysis 

of RT-PCR products of PR8 and PR8mut separated on a 1.5% agarose gel and subsequently stained with 

Ethidium Bromide. PB1: polymerase basic 1, PB2: polymerase basic 2, PA: polymerase acidic, HA: 

hemagglutinin, NP: nucleoprotein, NA: neuraminidase, M: matrix, NS: non-structural. The amplified PB1 and 

PB2 RT-PCR products run at the same position in the gel. * = aspecific amplification product of 847 bp. (B) 

Optimized RT-PCR product resolved as in A. 

De novo assembly of sequencing reads derived from viral RNA. 

Accurate de novo nucleotide sequence assembly is essential to identify the viral quasispecies that is 

present in (clinical) samples. The viral RT-PCR products were purified and subjected to NGS on the 

Illumina MiSeq and the Ion Torrent PGM platforms. Before assembly, the reads were processed in 

silico as described above for the plasmid-derived sequences (Figure 3). Afterwards, the sequencing 

reads were assembled de novo using de Bruijn graphs [42]. This assembly method is ideally suited for 

high coverage next-generation sequencing data since the computational burden is lowered by first 

subdividing all sequencing reads in all possible subsequences with a certain short length (k), followed 

by looking for all neighbors with k-1 overlap. The consensus sequence is then constructed as being 

the alignment of k-mers that follows the shortest path connecting all overlap sequences [43]. In this 
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way, 99.90% ± 0.02% of the reads on the Illumina MiSeq and 99.65% ± 0.16% of the reads on the Ion 

Torrent PGM were assembled in eight contigs corresponding to the eight genome segments of the 

PR8 virus. These eight contigs had a mean coverage depth of 23020 ± 3504 on the Illumina MiSeq 

and 13768 ± 394 on the Ion Torrent PGM. All viral genome segments were almost completely 

covered by the consensus contigs (Table 4). Only the extreme 3’ and 5’ ends of each segment were 

not covered in all consensus sequences. This is partly due to the high sequence similarity and partial 

complementarity of the 5’ and 3’ ends of the influenza virus genome, making those reads more 

difficult to assemble de novo. In addition, the transposase-based fragmentation and tagging of the 

samples sequenced on the Illumina MiSeq disfavors coverage of free ends, making de novo assembly 

at these ends more difficult. For the Ion Torrent PGM samples, the adaptors were ligated to the DNA 

fragments that had been generated by Covaris shearing, with the free ends of the influenza genome 

DNA segments favoring adaptor ligation, resulting in higher coverage of the segment termini and 

making full-length de novo assembly easier. Nevertheless, in all viral contigs, the coding sequences 

were highly covered and entirely present. In summary, both sequencers are equally suited for de 

novo assembly of the influenza virus genome, and transposase based fragmentation should be 

avoided when high coverage of the influenza virus genome ends is desired. 

Table 4: Percent coverage of the influenza PR8 reference sequence after de novo assembly. 

Segment Illumina MiSeqa (SDb) Ion Torrent PGMa (SDb) 

PB2 99.55 (0.30) 100.00 (0.00) 

PB1 99.37 (0.52) 100.00 (0.00) 

PA 99.35 (0.54) 99.30 (0.21) 

HA 98.65 (0.52) 99.04 (0.50) 

NP 98.79 (0.92) 98.07 (0.00) 

NA 98.92 (0.82) 99.97 (0.07) 

M - Mmut 98.20 (1.36) 99.55 (0.89) 

NS 96.94 (0.76) 98.17 (2.12) 

a
Viral RT-PCR product sequencing reads obtained on Illumina MiSeq and Ion Torrent PGM were de novo 

assembled, followed by alignment of the obtained consensus sequence to the PR8 (n = 2) or PR8mut (n = 2) 

reference genome. For each segment, the percentage of the influenza reference sequence (based on the 

sequence from the plasmids from which the virus was produced) that is covered by the assembled contigs is 

given.  
bSD = standard deviation. 
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Mapping of sequencing reads. 

Mapping of the above-mentioned reads to the viral reference genome (based on the eight plasmids 

used to generate the recombinant PR8 virus) resulted in sufficient full-length coverage of the entire 

influenza genome (Figure 8 and Table 5). This allowed us to study the viral quasispecies, i.e. to 

determine the number of variable nucleotides at each position in the viral genome. When mapping 

was done with the Illumina MiSeq data, we noticed a significant coverage dip near the middle of the 

NP segment as well as a dip around position 600 of the PA segment, but this did not occur when the 

Ion Torrent PGM data were used (Figure 8). These parts of NP and PA are not particularly GC-rich or 

AT-rich, and these coverage dips therefore likely reflect a sequence dependency of the Nextera 

transposase [35, 44]. Indeed, when we used mechanical shearing to fragment the RT-PCR products 

before Illumina MiSeq sequencing, coverage of the NP and PA segments was high and consistent over 

the entire length of all PR8 genome segments (Figure 9, orange). For the viral samples sequenced on 

the Ion Torrent PGM, the sequencing depth is more homogenous across the segments, and the 

regions close to the ends of the viral segments are slightly overrepresented. This overrepresentation 

is probably due to mechanical shearing and subsequent adaptor ligation. The inadvertent RT-PCR 

amplification of the 847-bp HA fragment mentioned earlier was clearly reflected in the sequence 

read coverage of that segment, which showed a higher coverage for the 5’ half of this segment 

(Figure 8). Moreover, the gradual versus steep drop of coverage near position 847 in the HA segment 

reflects the different chemistries of the Nextera transposase and the Covaris shearing/adapter 

ligation methods. Homogenous coverage across the HA segment was evident with the optimized RT-

PCR method in which the extra partial HA-fragment was not present (Figure 9). 
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Figure 8: Sequence coverage of the influenza virus genome. Sequence coverage for the different genome 

segments of wild type PR8 virus sequenced on Illumina MiSeq (2x250 bp, black lines, n = 2) or Ion Torrent (Ion 

318 chip v2, orange lines, n = 2). The obtained sequences were mapped to the reference genome (based on the 

pHW plasmids that were used to generate the virus, with addition of the extra 20 nucleotides present at the 5’ 

site in the RT-PCR primers). 
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Table 5: Alignment metrics for Illumina MiSeq and Ion Torrent PGM sequencing runs. 

Illumina MiSeq     
 

PR8 S1      

Segment Length Mapped reads Min. coverage Max. coverage Average coverage 

PB2 2381 159869 12 20525 15057 

PB1 2381 126244 6 16513 11960 

PA 2273 107490 7 14883 10533 

HA 1815 213169 6 58709 25756 

NP 1605 149599 9 29927 19883 

NA 1453 139858 5 29353 21256 

M 1067 180592 13 56656 37788 

NS 930 140785 4 47293 31651 
 

PR8 S2      

Segment Length Mapped reads Min. coverage Max. coverage Average coverage 

PB2 2381 163969 14 20266 14923 

PB1 2381 128791 9 16043 11750 

PA 2273 110954 5 14733 10486 

HA 1815 222513 5 57511 25860 

NP 1605 150831 11 29497 19330 

NA 1453 135597 14 27006 19834 

M 1067 177520 13 54233 35854 

NS 930 136505 12 44068 29591 

      

Ion Torrent PGM     
 

PR8 S1      

Segment Length Mapped reads Min. coverage Max. coverage Average coverage 

PB2 2381 93676 6396 11399 8765 

PB1 2381 72187 4016 10132 6471 

PA 2273 70492 4735 9315 6940 

HA 1815 148242 4613 39585 17544 

NP 1605 94509 8518 19617 12324 

NA 1453 77561 7918 14959 11904 

M 1067 119301 15170 31854 24331 

NS 930 112041 16425 33280 25428 
 

PR8 S2      

Segment Length Mapped reads Min. coverage Max. coverage Average coverage 

PB2 2381 84783 5612 10775 7947 

PB1 2381 65635 3442 9253 5900 

PA 2273 63994 4529 8607 6290 

HA 1815 139240 4438 37662 16517 

NP 1605 88966 8283 18590 11625 

NA 1453 74318 7629 14494 11453 

M 1067 115512 15395 30397 23553 

NS 930 109661 16936 32481 24950 

Wild type PR8 virus was sequenced in duplicate (S1 and S2) on both sequencers and the processed reads were 

mapped to the reference sequence (based on the sequence obtained from the plasmids from which the virus 

was produced). 
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Figure 9: Coverage of PR8 virus genome with the optimized RT-PCR protocol. Sequence coverage for the 

different genome segments of wild type PR8 virus sequenced on Illumina MiSeq (2x250 bp) using two different 

fragmentation methods: Nextera XT transposase-based fragmentation (black lines) and mechanical Covaris 

shearing followed by adaptor ligation (orange lines).The obtained sequences were mapped to the reference 

genome (based on the plasmids used to generate the virus). 
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Analysis of the viral quasispecies. 

After mapping the reads to the reference genome, we called the variants using the optimal 

parameters described above (Figure 3). Since we started with viral RNA, we increased the 

background threshold for variant calling to 0.5%, what we believe is the biologically relevant 

frequency threshold. This value is above the estimated total error rate (including errors introduced 

by the virus itself) obtained after mapping all sequencing reads to the PR8 reference genome, which 

is 0.10% ± 0.01% on Illumina MiSeq and 0.12% ± 0.01% on Ion Torrent PGM.  

Table 6: Sensitivity of Illumina MiSeq and Ion Torrent PGM to detect mutations in viral samples. 

 Illumina MiSeq Ion Torrent PGM 

 354 645 354 645 

PR8 PR8mut C T A T C T A T 

0 100 < 0.5 99.96 < 0.5 99.95 < 0.5 99.61 < 0.5 99.95 

0 100 < 0.5 99.96 < 0.5 99.95 < 0.5 99.62 < 0.5 99.95 

99 1 98.21 1.77 98.31 1.64 98.90 0.76 98.95 0.90 

The observed mutation frequencies (%) after mapping the reads of the PR8 and PR8mut viral samples to the 

wild type PR8 viral reference genome (based on the sequence from the plasmids from which the virus was 

produced) are shown. The PR8mut virus contains the tracer mutations C354T and A645T. 

PR8, PR8mut and a mixture of PR8 and PR8mut (99% PR8:1% PR8mut, v:v, virus samples mixed 

before RNA isolation), were used to prepare RT-PCR products that were subsequently sequenced on 

both platforms (in duplicate, except for the mixed sample) (Figure 7.A). All obtained sequences were 

aligned to the PR8 reference genome. The output data of both sequencing platforms were processed 

in silico as described above and used to count the number of reads with C/T at position 354 and A/T 

at position 645 in the M segment. Illumina MiSeq slightly overestimated and Ion Torrent PGM slightly 

underestimated the expected percentage of tracer mutations in the PR8:PR8mut mix (Table 6). As 

the two introduced mutations are linked, we expected to retrieve them with the same frequency. 

This was indeed the case, and the observed frequencies of the linked tracer mutations differed on 

average by only 0.05% on the mapped Illumina MiSeq reads and by 0.27% on the mapped Ion Torrent 

PGM reads.  

Next, we determined the number of variants at each nucleotide position in the virus-derived 

sequences, which would reflect the quasispecies diversity of in vitro grown PR8 and PR8mut virus. 

Sequencing each sample in duplicate and simultaneously on the same machine also allowed us to 

determine and compare the intrinsic variability of the two platforms. The number and types of 

nucleotide variants that were retained after applying the variant filter are presented in table 7. Most 

variants were present in both sequencing duplicates, with the highest proportion of shared variants 

on the Illumina MiSeq (Table 7). However, the variants that were identified in only one of the 

duplicates were actually also detectable in the duplicate sample, but just below one of the four 

variant filtering parameters. As for the plasmid samples, all of the indels in the samples sequenced 

on the Illumina MiSeq and most of the indels in the samples sequenced on the Ion Torrent PGM were 
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present in homopolymer regions. The frequencies of the sequencing variants detected by both 

sequencers in duplicate are presented in tables 8 (PR8) and 9 (PR8mut). This revealed 19 mutations 

(18 SNPs and 1 deletion) for wild type PR8 and 29 SNPs for PR8mut. Nearly all SNPs were detected 

with a higher average Phred score on the Illumina MiSeq (37.39 ± 0.43 for PR8) and were thus more 

reliable than on the Ion Torrent PGM (28.58 ± 2.44 for PR8). 

Table 7: Number of variants detected in wild type and mutant PR8 quasispecies after filtering. 

  Illumina MiSeq Ion Torrent PGM 
shared 

  S1
a 

S2
a 

shared S1
a 

S2
a 

Shared 

P
R

8
 

SNPb 25 26 24 19 21 18 18 

Insertion 0 0 0 1 1 0 0 

Deletion 6 5 4 9 9 3 1 

P
R

8m
u

t SNPb 48 46 46 32 37 32 29 

Insertion 0 0 0 4 4 4 0 

Deletion 5 6 5 8 11 4 0 

The filtering parameters were: average quality threshold > Q20, forward/reverse balance > 0.25, independent 

counts of variant > 10, and frequency > 0.5%. 
aThe wild type and mutant PR8 quasispecies were sequenced in duplicate (S1 and S2). bSNP = single nucleotide 

polymorphism. 
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Table 8: Wild type PR8 quasispecies sequenced in duplicate on both Illumina MiSeq and Ion Torrent PGM. 

      Frequency (in %)  

Segment Position Type Ref Allele aa change 
Illumina 

MiSeq 

Ion Torrent 

PGM 
Function/location 

PB1 1482 Deletion A - frameshift 1.87 2.19 3.18 2.88  

PB1 1486 SNP A G Lys481Arg 2.32 2.62 1.91 1.91 K481 crucial for polymerase function in vivo, not in vitro [46] 

PA 539 SNP A G silent 1.37 1.42 0.56 0.54 / 

HA 607 SNP A G silent 1.60 1.56 2.02 1.85 / 

HA
#
 659 SNP G A Glu203Lys 1.13 1.23 0.65 0.60 enhanced receptor binding activity [47] 

HA 660 SNP A G Glu203Gly 3.11 3.02 1.76 1.55 slightly increased α2-6 and decreased α2-3 binding [48] 

HA 747 SNP A G Glu232Gly 11.56 11.43 7.29 7.19 receptor specificity [49] 

HA 764 SNP G A Asp238Asn 0.83 0.80 0.65 0.60 enables binding to α2.3- and α2.6-linked sialic acids [50] 

HA 765 SNP A G Asp238Gly 39.73 39.43 35.33 35.00 
enables binding to α2.3- and α2.6-linked sialic acids  

[51, 52] 

HA 768 SNP A G Gln239Arg 2.81 3.12 1.43 1.23 preferential binding to α-2,3-linked glycans [51] 

HA 823 SNP A G Ile257Met 1.76 1.54 0.72 0.74 located in head domain close to Sa antigenic site [53] 

HA# 1199 SNP A G Ser383Gly 1.41 1.15 1.14 1.29 located in stem domain 

HA 1330 SNP A G silent 1.59 1.50 1.02 1.20 / 

HA 1424 SNP G A Val458Met 95.25 95.67 97.85 97.77 located in stem domain 

HA 1440 SNP A G Glu463Gly 1.91 1.75 0.58 0.56 located in stem domain 

HA 1451 SNP A G Ser467Gly 0.70 0.81 0.62 0.63 located in stem domain 

NP 212 SNP C T silent 1.80 1.76 0.83 0.64 / 

NP 1249 SNP A G Asn395Ser 10.71 11.01 5.97 6.76 located in NP-NP and NP-PB2 interaction domain [54, 55] 

NP 1324 SNP T G Phe420Cys 3.43 3.41 1.31 1.15 located in the hypervariable NP418-426 CTL epitope [56] 
# = not present in Genbank or Influenza Research Database, Bold = variant also present in PR8mut quasispecies. Ref: Reference nucleotide 

HA segment = numbering of HA amino acid residues is based on the PR8 HA open reading frame with the starting methionine as position = 1. 
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Table 9: Mutant PR8 quasispecies sequenced in duplicate on both Illumina MiSeq and Ion Torrent PGM. 

      Frequency (in %)  

Segment Position Type Ref Allele aa change 
Illumina 

MiSeq 

Ion Torrent 

PGM 
Function/location 

PB2 416 SNP A G silent 1.55 1.30 0.59 0.57 / 

PB1 1486 SNP A G Lys481Arg 2.52 2.80 1.79 2.37 K481 crucial for polymerase function in vivo, not in vitro [46] 

PA 212 SNP G T Glu56Asp 5.72 4.85 2.09 2.18 located in endonuclease domain [57, 58] 

PA 1139 SNP G T Gln365His 2.50 2.40 1.00 1.05 located in PB1 interacting domain [59] 

HA 524 SNP A C Ser158Arg 13.17 12.93 9.70 9.63 Compensatory mutation in [60], located in Ca antigenic site [53] 

HA 524 SNP A T Ser158Cys 0.98 0.90 0.61 0.63 located in variable Ca antigenic site [53] 

HA 607 SNP A G silent 1.54 1.43 2.23 2.47 / 

HA 747 SNP A G Glu232Gly 39.95 40.14 36.74 36.02 receptor specificity [49] 

HA 765 SNP A G Asp238Gly 3.17 3.07 1.50 1.44 enables binding to α2,3- and α2,6-linked sialic acids [51, 52] 

HA 823 SNP A G Ile257Met 2.92 3.08 1.49 1.64 located in head domain close to Sa antigenic site [53] 

HA 828 SNP A G Glu259Gly 5.17 4.96 2.09 1.95 located on surface head domain close to Sa antigenic site [53] 

HA 1088 SNP T A Phe346Ile 6.99 6.76 3.75 4.18 located in fusion peptide [61] 

HA 1090 SNP T G Phe346Leu 1.28 1.09 0.59 0.69 located in fusion peptide [61, 62] 

HA 1109 SNP A G Ile353Val 59.69 60.02 62.48 61.74 described as fusion peptide pseudorevertant [61, 63] 

HA# 1199 SNP A G Ser383Gly 1.13 1.18 0.97 1.05 located in stem domain 

HA 1330 SNP A G Silent 1.59 1.67 1.94 1.14 / 

HA 1424 SNP G T Val458Leu 3.43 3.13 1.63 1.64 located in stem domain, not surface exposed 

HA 1430 SNP A G Asn460Asp 10.08 9.60 5.82 6.10 present in the PR8 quasispecies grown on MDCK cells [64] 

HA 1431 SNP A G Asn460Ser 14.79 14.62 10.15 10.29 located in stem domain 

HA 1487 SNP G A Gly479Arg 1.59 1.39 0.61 0.57 located in stem domain, not surface exposed 

NP 635 SNP G A silent 4.44 3.93 2.45 1.87 / 

NP
#
 739 SNP T C Ile225Thr 1.11 1.15 0.52 0.56 surface exposed, in NP-NP interaction domain [55] 

NA 476 SNP T A Cys146Ser 6.85 6.71 4.33 3.85 located in head domain, involved in coupling of subunits [65] 

NA 994 SNP C T silent 1.03 1.00 0.60 0.65 / 
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Table 9 (continued): Mutant PR8 quasispecies sequenced in duplicate on both Illumina MiSeq and Ion Torrent PGM. 

      Frequency (in %)  

Segment Position Type Ref Allele aa change 
Illumina 

MiSeq 

Ion Torrent 

PGM 
Function/location 

M 354 SNP C T introduced 99.96 99.96 99.61 99.62 / 

M 645 SNP A T introduced 99.95 99.95 99.95 99.95 / 

NS 409 SNP G T NS1: Gln121His 40.37 39.54 31.96 32.61 situated next to the NS1122-130 CTL epitope [66] 

NS 549 SNP G A 
NS1: Gly168Glu 

NS2: Asp11Asn 
1.27 1.20 0.71 0.59 

NS1: located in effector domain [67] 

NS2: N-terminal domain 

NS# 564 SNP A G 
NS1: Asp173Gly 

NS2: Met16Val 
1.05 1.10 0.65 0.64 

NS1: located in effector domain [67] 

NS2: Met16 is involved in nuclear export NP [68] 

# = not present in Genbank or Influenza Research Database. Bold = variants also present in PR8 quasispecies. Ref: Reference nucleotide 
HA segment = numbering of HA amino acid residues is based on the PR8 HA open reading frame with the starting methionine as position = 1. 



 

125 

 

The average difference between the frequencies of a variant in PR8 sequencing duplicates was only 

0.17% ± 0.12% for the Illumina MiSeq and 0.16% ± 0.18% for the Ion Torrent PGM, again indicating 

that both sequencing platforms provide reproducible output (Table 8). However, the frequency of 

occurrence of the variants differed substantially between sequencers. For example, the mean variant 

frequency differed between 0.06% (position 1199 in the PR8 HA segment) and 4.5% (position 1249 in 

the PR8 NP segment) for the same viral sample sequenced on both sequencers. In addition, most 

detected variants were present at a lower frequency based on the Ion Torrent PGM output. Similar 

results were obtained for the PR8mut samples (Table 9). To determine whether this difference in 

frequencies is significant between the sequencing platforms, variant frequencies obtained in PR8 and 

PR8mut were analyzed using logistic regression, considering loci with low (< 15%) and high (> 15%) 

minor variant frequencies as separate classes. This analysis clearly indicates that when the minor 

variant is present at a low frequency, the Illumina MiSeq systematically detects the minor variants at 

significantly higher frequencies than the Ion Torrent PGM (Figure 10).  

 
Figure 10: Low frequency minor alleles are detected at significantly higher frequencies by Illumina MiSeq 

compared to Ion Torrent PGM. Nucleotide variants were subdivided in two frequency classes: high (frequency 

minor allele > 15%, n = 4) and low (frequency minor allele: < 15%, n = 42). Mean proportions  s.e. of the minor 

variants detected in PR8 and PR8mut viral samples by the Illumina MiSeq and Ion Torrent PGM are shown. 

Minor allele proportions were analyzed by logistic regression (link function = logit). Significance levels of 

pairwise comparisons were assessed by a Fisher’s protected least significance difference test * = p<0.05, ** = 

p<0.01. 

Almost all mutations detected in the wild type and/or mutant PR8 quasispecies are also present in 

H1N1 viral sequences retrieved from the Influenza Research Database and/or Genbank. The 

exceptions are indicated with a number sign (#) in tables 8 and 9. These sequence variants 

(Glu203Lys and Ser383Gly in HA, Ile225Thr in NP and Asp173Gly/Met16Val in NS1/NS2) might exist in 
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nature but have not been reported yet. Most of the detected mutations are present in the HA 

segment, which is also the most variable influenza protein in nature [45]. Most of the detected 

mutations were substitutions occurring at a frequency < 5%. However, three mutations in HA and 

one in NP of PR8 as well as four mutations in HA and one in NS of PR8mut were present at a 

frequency > 10% (based on Illumina MiSeq data) (Tables 8 and 9). Of all detected variants, only seven 

(five non-synonymous and two synonymous) were shared by both PR8 and PR8mut and present in all 

samples sequenced. These were all in the HA segment, except for one variant in PB1 (Tables 8 and 9, 

bold). 

Taken together, these results show that both the wild type and mutant PR8 virus behave as a fairly 

heterogeneous virus populations even in the absence of external selection pressure. 

DISCUSSION 

Next generation sequencing (NGS) has become increasingly valuable to study virus diversity. NGS 

instruments have a very high sequencing capacity and therefore allow a very high coverage of the 

relatively small genome of RNA viruses. NGS analysis is thus in principle well suited for determining 

the genetic heterogeneity of RNA viruses. Unfortunately, in many research articles on viral 

quasispecies diversity there is little information on how the raw data were processed. Furthermore, 

the performance of different commercially available NGS platforms for quasispecies analysis has not 

been evaluated. Here, we compared the quality of the sequencing output obtained on the Illumina 

MiSeq and Ion Torrent PGM benchtop sequencers. We also propose an analysis pipeline for in silico 

processing of the sequencing data that allows identification and frequency determination of 

nucleotide variants in the influenza A virus (Figure 3). This analysis pipeline will help to standardize 

variant calling in small RNA genomes based on NGS data. 

To determine the influenza genome diversity by NGS technology, different hurdles have to be 

overcome. First, it is technically challenging to obtain high quality full-length RT-PCR products that 

cover the complete segmented RNA genome of influenza viruses. We optimized an RT-PCR protocol 

with primers based on the conserved 3' (Uni12) and 5' ends (Uni13) of the eight genome segments 

[69-71]. Critical steps in this protocol are primer concentration and annealing and elongation times. 

Because the sequence of these segment ends is conserved, this RT-PCR should be applicable to 

different influenza A virus strains.  

A second hurdle is to distinguish between mutations that truly represent the viral genome diversity 

from errors introduced by RT-PCR amplification and the NGS chemistry. The first step is to filter the 

output sequence data in silico to retain only high quality reads. However, the available software and 

filtering parameters vary and are not always clearly described in the literature, making comparison of 

results very difficult. To reduce false positive variant calls introduced by the sequencing method, we 

applied specific trimming, filtering and variant calling parameters in the CLC Genomics Workbench 
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software. We first applied this bioinformatics analysis pipeline to sequencing reads derived from 

plasmid DNA samples. We removed adaptor contamination, ambiguous nucleotides and trimmed low 

quality bases at the end of the reads by applying a Phred score of 20. Then, we excluded reads 

shorter than 50 bases to avoid unspecific mapping of these short reads. Trimming eliminated 

relatively more bases from the Ion Torrent PGM, meaning that the base quality of sequencing reads 

from the Ion Torrent PGM is lower than that from the Illumina Miseq. Subsequent filtering on read 

length also had a bigger effect on the Ion Torrent PGM reads. In other words, the potential 

advantage of longer read lengths obtained with the Ion Torrent machine was cancelled by their 

relatively low quality. Together this resulted in a higher relative loss of bases for the Ion Torrent PGM 

data than for the Illumina MiSeq data (21.01% versus 14.01% respectively). Furthermore, the Phred 

score distribution across the reads, a measure of the intrinsic sequencing quality, was higher for the 

Illumina MiSeq data than for the Ion Torrent PGM data, resulting in a lower error rate. After this 

quality control, the sequencing reads were mapped to the reference sequence, resulting in a higher 

percentage of mapped reads for the Illumina MiSeq. The total mapping error rate of the Illumina 

MiSeq (mainly nucleotide substitutions) was lower than that of the Ion Torrent PGM (mainly indels). 

This finding is in agreement with Loman and colleagues [20]. However, for plasmid DNA analysis the 

substitution error rate on the Ion Torrent PGM appeared to be lower than that of Illumina MiSeq 

(Figure 5). After variant calling, the resulting hits were filtered based on frequency, forward/reverse 

balance, average quality, and independent counts to remove false positive variants. After filtering, 

both sequencers detected the tracer mutations we had introduced with excellent accuracy and 

sensitivity. Nevertheless, the average quality (Phred score) of the detected variants was higher on 

the Illumina MiSeq than on the Ion Torrent PGM, making the variants detected on the Illumina MiSeq 

more reliable. The number of false positive variants can be further reduced by cross-platform 

replication, but the different biases of the sequencing platforms may cause many true variants to be 

overlooked when cross-platform replicates are compared [72, 73].  

We then applied the analysis pipeline outlined in figure 3 to PR8 and PR8mut virus, which were 

generated by a plasmid-based reverse genetics system and amplified in MDCK cells. In our opinion, 

variants in the influenza virus genome that appear with a frequency below 0.5% are very difficult to 

distinguish from the background noise that is cumulatively introduced by RT-PCR and the inherent 

variation due to the chemistry of currently available Illumina and Ion Torrent sequencers. We 

propose that a similar threshold of 0.5% should be applied to interpret the genetic diversity of RNA 

viruses. Nevertheless, mutations with a frequency as low as 0.050.2% in Chikungunya virus have 

been reported in the literature as meaningful based on Illumina GAIIX sequencing [74]. Given the 

error rate of the influenza virus polymerase, resulting in approximately one mutation per 10.000 

nucleotides, together with the errors introduced during RT-PCR and the technical background error 

rate of the NGS platforms applied in this study, it is not straightforward for both the Illumina MiSeq 

and the Ion Torrent PGM to identify each variant in the viral quasispecies. Nevertheless, even with 
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the threshold of 0.5% proposed here, NGS will enable studying of the viral diversity in much more 

detail than in the past.  

 
Figure 11. Position of variants present in PR8 and PR8mut quasispecies in the HA, NP and NS1. The variants in 

HA (hemagglutinin), NP (nucleoprotein) and NS1 (non-structural protein 1) detected in the PR8 and PR8mut 

quasispecies were modeled with PyMol (Delano Scientific, http://www.pymol.org), using the HA from A/Puerto 

Rico/8/1934 (H1N1) (PDB code: 1RVX), the NP from A/WSN/1933 (H1N1) (PDB code: 2IQH) and the effector 

domain of NS1 from A/Puerto Rico/8/1934 (H1N1) (PDB code: 3RVC). (A) Top (left) and lateral (right) view of 

the surface exposed amino acids of the HA trimer. The Cb, Ca, Sa and Sb antigenic sites are shown in green. The 

mutations that are present in both PR8 and PR8mut are shown in red or in magenta if they overlap with the 

antigenic sites. Mutations in PR8mut that are present at a frequency > 5% are shown in blue or in yellow when 

overlapping with the antigenic sites or in purple when overlapping with the fusion peptide (orange). The 

mature H3 amino acid numbering of the variants is provided in superscript. (B) Lateral view of the NP monomer 

with the N395S mutation present in PR8 shown in brown. (C) The effector domain of NS1 with the Q121H 

mutation in PR8mut shown in blue. 

Our analysis showed that the de novo assembled PR8 and PR8mut sequences correspond very well to 

the plasmid-derived reference genome. We detected 19 mutations in PR8 and 29 mutations 

(including the two tracer mutations) in PR8mut with a frequency of 0.5% or higher. When a variant 

was present at low frequency (<15%), the Illumina MiSeq detected it with significantly higher 

frequency than the Ion Torrent PGM. Most of the detected mutations were transitions and appeared 

with a frequency below 5%. However, three mutations in HA and one in NP of PR8, as well as four 

mutations in HA and one in NS of PR8mut, were present at a frequency > 10% (based on Illumina 

MiSeq data) (Tables 8 and 9). We detected only one single nucleotide deletion in the PR8 virus. This 

deletion was in a homopolymer at position 1482 in PB1 but was detected with a frequency of 23% 

by both sequencers, in both duplicates of PR8 virus. In addition, this deletion was also detected with 
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a similar frequency in both PR8mut samples sequenced on the Illumina MiSeq and in one of the 

duplicate samples sequenced on the Ion Torrent PGM. This deletion disrupts the open reading frame, 

leading to premature termination of PB1. This detrimental mutation is in line with the finding of 

Brooke and colleagues, who showed that most of the infectious influenza A virions fail to express 

detectable levels of one or more viral proteins [75]. 

We focused on the mutations detected by both sequencers with a frequency > 5% and on the 

mutations that appeared in both wild type and mutant PR8 viruses. There are three such mutations 

in the HA head domain of PR8 and four in the HA head domain of PR8mut, and all of them are part of 

or close to the antigenic sites (Figure 11.A). The shared Asp238Gly mutation (Asp225Gly for H3 

numbering) is associated with enhanced virion binding to the avian-type Sia(α2-3)Gal and was 

reported previously as a position that is selected by egg-adaptation of influenza viruses [76]. The 

Ser158Arg mutation (Ser145Arg for H3 numbering) in PR8mut has been described as a compensatory 

mutation in PR8 virus possessing the Lys165Glu mutation in HA (H3 numbering), which decreases the 

receptor binding avidity and replication kinetics of the virus [60]. The two mutations in the stem 

domain are relatively conservative (Ser383Gly and Val458Met; Ser40Gly and Val115Met for H3 

numbering of HA2) and therefore might not affect virus replication. Remarkably, the G-to-A 

substitution at position 1424, leading to the Val458Met change in HA, had a frequency close to 100% 

in the PR8 HA segment but was absent in PR8mut (although a Val458Leu change is present in a small 

percentage of PR8mut). This mutation was probably fixed in the wild type virus genome at a very 

early step, e.g. during plaque purification of the PR8 seed virus we used to prepare stock virus. We 

also picked up two other codon changes in the HA stem region of PR8mut: Asn460Asp (510%) and 

Asn460Ser (1015%) (Asn117Asp and Asn117Ser for H3 numbering of HA2). Based on 

pyrosequencing of the HA segment, the Asn460Asp mutation has been observed in 12.2% in PR8 

virus grown on MDCK cells [64]. In addition, the PR8mut caries the Ile353Val (Ile10Val for H3 

numbering of HA2) mutation in the HA fusion peptide at a frequency of about 60%. A valine at this 

position has been observed in a PR8 pseudo-revertant after introducing the Ile10Ala mutation. A 

valine at this position is compatible with the α-helical structure of the fusion peptide [63]. Both PR8 

viruses also contain mutations in other segments. For example, both viruses share the conservative 

Lys481Arg mutation in PB1. This lysine at position 481 is crucial for the polymerase function of PB1 in 

vivo but mutating it to alanine was tolerated in vitro [46]. In wild type PR8, the Asn395Ser variant in 

NP is in a domain involved in NPNP and NPPB2 interactions (Figure 11.B) [77]. The Gln121His 

variant detected in NS1 of PR8mut is situated just before a human CTL epitope (Figure 11.C) [66]. 

Remarkably, none of the variants we observed correspond to the variants described in an earlier 

study, in which a PR8 strain (originally adapted for growth on embryonated chicken eggs) was 

adapted for growth on MDCK cells [78]. However, we used MDCK cells only to expand our virus stock, 

which corresponds to about six cycles of PR8 virus replication. Furthermore, we generated our PR8 

virus starting from eight plasmids, indicating that the passaging history is a determinant of the 

variants detected in an influenza virus quasispecies. 
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Both sequencers are highly effective for accurate detection of low frequency mutations, but each 

one has its advantages and limitations. On the one hand, the Illumina MiSeq platform has about 

three times higher output capacity than the Ion Torrent PGM, enabling sequencing of more samples 

in parallel on the Illumina MiSeq. On the other hand, the Ion Torrent PGM is significantly faster: its 

time from sample preparation to data analysis is one day less than for the Illumina MiSeq. After the 

in silico quality control, the two sequencers produced reads of comparable lengths. The Illumina 

MiSeq had a higher intrinsic sequencing quality than the Ion torrent PGM, presumably because 

detecting incorporated bases based on a coupled fluorescent dye (Illumina) gives less noise than a 

change in pH caused by release of a proton after incorporation of a base (Ion Torrent). However, the 

Ion Torrent PGM had a lower false-positive rate for detecting SNPs. Another interesting observation 

is the lower coverage of the ends of the viral segments on the Illumina MiSeq due to the 

transposase-based fragmentation. Nextera transposase-based fragment library preparation is 

convenient and fast but results in low coverage of segment termini. We also noticed some sequence 

bias of this transposase-based fragmentation approach (Figures 8 and 9). Mechanical fragmentation 

followed by adaptor ligation enables comparable coverage of all bases of the influenza virus genome, 

and is therefore the preferred method for library preparation (Figures 8 and 9). 

The proposed RT-PCR protocol and subsequent analysis pipeline for influenza viruses is widely 

applicable, e.g. to study vaccine composition, analyze virus evolution under selection pressure, 

monitor mutations associated with antiviral resistance, and assemble the reference genome of new 

viral isolates. For clinical samples, the shorter turnaround time of the Ion Torrent PGM (sample 

preparation, sequencing and analysis in about 2 days) is clearly advantageous to the Illumina MiSeq 

(about 3 days). In contrast, when analyzing many viral samples at high coverage, the greater output 

of the Illumina MiSeq is an important advantage. 

CONCLUSION 

Our study underlines the power and limitations of two commonly used next-generation sequencers 

for the analysis of influenza gene diversity. We propose an in silico pipeline for selecting high quality 

reads obtained by NGS platforms. This pipeline is also more widely applicable. Due to the lower total 

error rate and the higher sequencing quality of the reads, we conclude that the Illumina MiSeq 

platform is more suited than the Ion Torrent PGM for detecting variant sequences, whereas the Ion 

Torrent platform has a shorter turnaround time. In addition, we found that the detection limit for 

reliable recognition of variants in the viral genome required a frequency of 0.5% or higher.  
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MATERIAL AND METHODS 

Cell lines.  

MDCK and HEK293T cells were cultured in Dulbecco's Modified Eagle medium (DMEM) 

supplemented with 10% fetal calf serum, non-essential amino acids, 2 mM L-glutamine, 0.4 mM 

sodium pyruvate, 100 U/ml penicillin and 0.1 mg/ml streptomycin at 37°C in 5% CO2.  

Generation and production of plasmids with tracer mutations.  

Reverse genetics plasmids for PR8 virus were kindly provided by Dr. Robert G. Webster (St. Jude 

Children's Research Hospital, Memphis, USA) [31]. We introduced two silent mutations in the M 

coding gene, a C-to-T substitution at position 797 (numbering relative to the human cytomegalovirus 

promoter in the pHW197-M plasmid) and an A-to-T substitution at position 1088 in pHW197-M. 

These two positions were selected as follows. First, we generated a consensus sequence of the M-

gene based on all full-length segment 7 sequences of human H1N1 viruses present in the Influenza 

Virus Resource Database (NCBI) on September 11th, 2011. Next, we aligned the consensus sequence 

to the M segment of PR8 (present in pHW197-M) and selected two synonymous mutations in the M1 

open reading frame at positions C354T and A645T (segment 7 numbering). These two mutations 

were introduced by two consecutive rounds of quickchange site-directed mutagenesis (Stratagene) 

at positions C797T and A1088T in pHW197-M to generate pHW197-Mmut. The two mutations also 

introduced a HindIII and a PvuII restriction site, respectively. These plasmids and the plasmids 

encoding the other seven PR8 genome segments were transformed and amplified in E. coli DH5α. 

Plasmid DNA was isolated with the Plasmid Midi Kit (Qiagen) according to the manufacturer’s 

instructions. The resulting air-dried pellet was dissolved in 50 µl of sterile ultrapure water. The 

presence of the introduced mutations in pHW197-Mmut was confirmed by restriction analysis and 

Sanger sequencing on a capillary sequencer (Applied Biosystems 3730XL DNA Analyzer). 

Generation of recombinant PR8 and PR8mut viruses. 

To generate recombinant wild type PR8 virus and PR8 virus with the two tracer mutations in the M 

gene (PR8mut), 1 µg of pHW191-PB2, pHW192-PB1, pHW193-PA, pHW194-HA, pHW195-NP, 

pHW196-NA and pHW198-NS, together with 1 µg of pHW197-M (wild type PR8) or pHW197-Mmut 

(PR8mut) was transfected using calcium phosphate co-precipitation into a HEK293T-MDCK cell co-

culture in Opti-MEM (3 x 105 HEK293T and 2 x 105 MDCK cells in a 6-well plate). After 30 h, L-1-

tosylamide-2-phenylethyl chloromethyl ketone (TPCK)-treated trypsin (Sigma) was added to a final 

concentration of 2 µg/ml. After 72 h, the culture medium was collected and the presence of virus 

was confirmed by hemagglutination of chicken red blood cells. Reverse genetics-generated PR8 and 

PR8mut viruses were plaque-purified on MDCK cells as follows. Confluent MDCK cells in a six-well 

plate were infected with a serial dilution series of virus. After 1 h, an overlay of low melting agarose 

(Type VII agarose, Sigma; final concentration 1%) in serum-free cell culture medium containing 2 

µg/ml TPCK-treated trypsin (Sigma) was added. After 56 h, cytopathic effect was checked, agar 

overlaying viral plaques were selected with a pipette tip, and virus was allowed to diffuse from the 
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agar for 24 h at 4°C in serum-free medium. Afterwards, virus derived from one plaque was amplified 

on MDCK cells in serum-free cell culture medium in the presence of 2 µg/ml TPCK-treated trypsin 

(Sigma). After 96 h, the culture medium was collected, and cell debris was removed by centrifugation 

for 10 min at 2500 g at 4°C, and the virus was pelleted from the supernatants by overnight 

centrifugation at 16,000 g at 4°C. The pellet was dissolved in sterile 20% glycerol in PBS, aliquoted 

and stored at 80°C. The infectious titer of the obtained PR8 and PR8mut virus stocks was 

determined by plaque assay on MDCK cells, on three different aliquots each performed in triplicate. 

The presence of the introduced mutations in the M segment of PR8mut was confirmed by segment-

7-specific RT-PCR followed by purification from 1% agarose gel (High Pure PCR Product Purification 

Kit, Roche) and conventional Sanger sequencing of the amplified PCR fragment. 

Plaque assay.  

MDCK cells were seeded in complete DMEM in 12-well plates at 3 x 105 cells per well. After 18 h, the 

cells were washed once with serum-free medium and incubated (in triplicate) with a two-fold 

dilution series of the virus (made in serum-free cell culture medium containing 0.1% BSA) in 500 µl 

medium. After 1 h incubation at 37°C, an overlay of 500 µl of 1.6% Avicel RC-591 (FMC Biopolymer) in 

serum-free medium with 4 µg/ml TPCK-treated trypsin (Sigma) was added. After incubation at 37°C 

for 48 h, the overlay was removed and the cells were fixed with 4% paraformaldehyde and 

permeabilized with 20 mM glycine and 0.5% (v/v) Triton X-100. Plaques were stained with an anti-

M2e IgG1 mouse monoclonal antibody (final concentration 0.5 µg/ml) followed by a secondary anti-

mouse IgG horseradish peroxidase (HRP)-linked antibody (GE Healthcare). After washing, TrueBlue 

peroxidase substrate (KPL) was used to visualize the plaques. 

RNA isolation.  

RNA was isolated with the High Pure RNA Isolation Kit (Roche) according to the manufacturer’s 

instructions, excluding the DNase I digestion step. In brief, a 200-µl sample containing 1 x 107 PFU of 

stock virus in serum-free cell culture medium with 0.1% BSA was combined with 400 µl lysis-binding 

buffer and mixed by vortexing. The mixture was loaded on a two-layered glass fiber column. After 

binding to the column and washing, the RNA was eluted in 50 µl elution buffer (water, PCR grade).  

RT-PCR. 

Primers used for cDNA synthesis and PCR were designed based on the 5’ and 3’ conserved ends of 

the influenza A genomic segments and contain an additional sequence of 20 nucleotides at their 5' 

end necessary for PCR amplification [70]. cDNA was generated using the Transcriptor First Strand 

cDNA Synthesis Kit (Roche). Reverse transcription was performed with the Transcriptor Reverse 

Transcriptase (10 U, Roche), using 12.5 µl RNA, 2.5 µM CommonUni12G primer 

(GCCGGAGCTCTGCAGATATCAGCGAAAGCAGG), 1x Transcriptor Reverse Transcriptase Reaction 

Buffer, 20 U Protector RNAse inhibitor and 4 mM dNTPs, in a total volume of 20 µl. The components 

were mixed, and the reaction was incubated for 15 min at 42°C, 15 min at 55°C, 5 min at 60°C, and 

finally 5 min at 85°C to inactivate the reverse transcriptase. Ten microliters of the resulting cDNA 



 

133 

 

sample was amplified in a 100-µl PCR reaction using 2 U Phusion High Fidelity polymerase (Thermo 

Scientific), 0.2 µM CommonUni12G and CommonUni13 

(GCCGGAGCTCTGCAGATATCAGTAGAAACAAGG), 0.2 mM dNTPs, and 1x High-Fidelity buffer. 

Thermocycling was performed in a PTC-200 Thermal Cycler (MJ Research) with the following 

conditions: initial denaturation for 30 s at 98°C, 25 cycles of 10 s at 98°C followed by 7.5 min at 72°C, 

and a final elongation step of 7 min at 72°C. PCR products were purified using the High Pure PCR 

Product Purification kit (Roche) according to the manufacturer’s instructions, and the product was 

eluted in 50 µl sterile ultrapure water (preheated to 65°C). One microgram of the product was 

analyzed by agarose gel electrophoresis (1.5% agarose gel) followed by ethidium bromide staining. 

Illumina MiSeq sequence determination.  

We used 0.5 ng of purified plasmid or RT-PCR sample and the Nextera XT DNA Sample Preparation Kit 

(Illumina) according to the manufacturer’s instructions to generate multiplexed paired-end 

sequencing libraries. Sequencing libraries were generated in duplicate, meaning that from each 

plasmid or RT-PCR sample two libraries were prepared in parallel and sequenced on the same 

Illumina MiSeq sequencing chip. In brief, DNA samples were fragmented and tagged with adapters by 

Nextera XT transposase. These adaptor ligated DNA fragments were amplified by a limited-cycle PCR 

program (12 cycles) to add the barcodes and sequences required for subsequent cluster formation. 

The resulting fragments were purified and simultaneously size-selected by using 0.6x AMpure beads. 

Fragments were analyzed on a High Sensitivity DNA Chip on the Bioanalyzer (Agilent Technologies) 

before loading on the sequencing chip. The fragment lengths showed a negatively skewed 

distribution with a peak at approximately 7001000 bases. From the optimized RT-PCR products, also 

500 ng was sheared with an M220 focused-ultrasonicator (Covaris) set to obtain peak fragment 

lengths of 300400 bp. Next, the NEBNext Ultra DNA Library Preparation kit (New England Biolabs) 

was used to repair the ends and to add Illumina MiSeq-compatible barcode adapters to 100 ng of 

fragmented DNA. The resulting fragments were size-selected using Agencourt AMPure XP bead sizing 

(Beckman Coulter). Afterwards, indexes were added in a limited-cycle PCR (10 cycles), followed by 

purification on Agencourt AMpure XP beads. Fragments were analyzed on a High Sensitivity DNA 

Chip on the Bioanalyzer (Agilent Technologies) before loading on the sequencing chip. Equimolar 

amounts of normalized libraries were combined and diluted 25-fold in hybridization buffer. The 

multiplex sample was heat denatured for 2 min at 96°C before loading on the MiSeq chip. After the 

2x250 bp MiSeq paired-end sequencing run, the data were base called and reads with the same 

barcode were collected and assigned to a sample on the instrument, which generated Illumina 

FASTQ files (Phred +64 encoding). These files were imported in the CLC Genomics Workbench 

software (CLC Bio, Qiagen). During import in CLC Genomics Workbench, the uncallable ends of the 

MiSeq reads (B in input file) were automatically trimmed and the failed reads (Y in header 

information for the quality score) were removed. 
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Ion Torrent PGM 318 chip sequence determination.  

Samples for sequence analysis were generated in duplicate, meaning that from each plasmid or RT-

PCR sample two libraries were prepared in parallel for sequencing on the same Ion Torrent PGM 318 

sequencing chip. From each plasmid or RT-PCR product, 100 ng was sheared with an M220 focused-

ultrasonicator (Covaris) set to obtain peak fragment lengths of 400500 bp. After shearing, blunt 

ends were created using the end repair enzyme from the Ion Plus Fragment Library kit (Life 

Technologies). Next, the fragments were ligated to Ion Torrent PGM-compatible barcode adapters. 

Since the adaptors are not 5' phosphorylated, the nick repair polymerase in the kit repairs 

subsequently the nick on one strand at each ligation site, in order to minimize adaptor-dimer 

formation. We purified and simultaneously size-selected the adapter-ligated library using Agencourt 

AMPure XP bead sizing (Beckman Coulter). Fragments were analyzed on a High Sensitivity DNA Chip 

on the Bioanalyzer (Agilent Technologies); the fragment length peak was situated around 450 bp. 

Barcoded libraries were pooled in equimolar amounts. From the resulting diluted multiplexed library, 

20 µl was loaded on an Ion OneTouch 2 instrument (Life Technologies) to perform emulsion PCR on 

Ion Sphere particles using the Ion PGM Template OT2 400 kit. We used the Ion PGM sequencing 400 

kit (Life Technologies) to sequence templated ion sphere particles deposited in the Ion 318 chip v2 

(revision 2.0, Life Technologies). The Ion Torrent Suite version 4.6 (Life Technologies) was used with 

the default parameters for base calling and assigning of the reads to a sample based on their 

barcode. The default settings in the Ion Torrent Suite already filter and trim the sequencing reads to 

some extent. These default trimming parameters are not stringent and remove only very low quality 

3' ends (mean Phred score of at least 15 in a base window of 30) and adaptor contamination. The 

resulting FASTQ files were imported into CLC Genomics Workbench for further analysis. 

Analysis of sequencing data.  

CLC Genomics Workbench version 7.0.3 (CLC Bio, Qiagen) was used to analyze and process the 

sequencing reads of both the Ion Torrent PGM and the Illumina MiSeq. First, adaptor contamination 

was removed from the reads. Next, the sequencing reads were trimmed from both sides using the 

modified Mott trimming algorithm to reach a Q20 score, which means that the chance that a 

particular base in the sequence is called incorrectly by the sequencer is 1 in 100. Afterwards, all 

ambiguous (N) bases were trimmed from the reads. We also removed the reads with a read length 

below 50. For the Illumina MiSeq, the broken pairs resulting from trimming and filtering were also 

removed. The remaining reads were assembled using default settings for de novo assembly. In 

addition, the processed reads were also aligned with the pHW197-M plasmid reference sequence or 

the influenza PR8 reference genome (based on the sequences encoding the eight segments in the 

pHW vectors, determined by Sanger sequencing, with addition of the extra 20 nucleotides present at 

the 5' site in the RT-PCR primers) using local alignment. For this, the following default penalties were 

used: match = +1, mismatch = -2, insertion/deletion = -3, filtering threshold: length fraction = 0.9 and 

similarity fraction = 0.8. Non-specific matches, defined as reads aligning to more than one position 

with an equally good score, were ignored. Sequence variants were called using all available 
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sequencing data that covered each nucleotide at least 100 times and had a central base quality score 

of Q20 or greater. The A-to-G variant introduced by the primer at position 24 in the HA, NP, NA, M 

and NS segments was not taken into account during the influenza quasispecies variant analysis. All 

numerical data mentioned in the text are presented as averages with their standard deviations (± 

SD). 

Statistical analysis.  

Sequence variants with the lowest proportion were considered as minor alleles. Analysis of minor 

allele proportions was performed by fitting a logistic regression model of the form logit(p) = constant 

+ PLATFORM*VIRUS*CLASS+error, where p indicates the minor allele proportion, PLATFORM refers 

to the sequencing platform, VIRUS refers to virus population, and CLASS refers to class of loci having 

either low (<15%) or high (>15%) minor variant frequencies. Significance of the fixed PLATFORM, 

VIRUS and CLASS effects was assessed by an F-test. Significance of pair-wise comparisons between 

mean proportions was assessed by a Fisher’s protected least significance difference test. The logistic 

regression and assessment of significance was performed in Genstat v16. 

Sequencing data. 

The output sequencing reads obtained on the Illumina MiSeq and Ion Torrent PGM were submitted 

to NCBI’s Sequence Read Archive and can be found under project numbers SRP052608 (plasmid 

samples) and SRP052225 (viral samples). 
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Abstract 

Green fluorescent protein (GFP) is one of the most used reporter genes. We have used next-

generation sequencing (NGS) to analyse the genetic diversity of a recombinant influenza A virus that 

expresses GFP and found a remarkable coverage dip in the GFP coding sequence. This coverage dip 

was present when virus-derived RT-PCR product or the parental plasmid DNA was used as starting 

material for NGS and regardless of whether Nextera XT transposase or Covaris shearing was used for 

DNA fragmentation. Therefore, the sequence coverage dip in the GFP coding sequence was not the 

result of emerging GFP mutant viruses or a bias introduced by Nextera XT fragmentation. Instead, we 

found that the Illumina MiSeq sequencing method disfavours the ‘CCCGCC’ motif in the GFP coding 

sequence. 

Introduction 

Influenza viruses are important human and animal pathogens that have evolved numerous 

mechanisms to subvert their host’s innate and adaptive immune system. Recombinant influenza 

viruses that express a reporter gene are thus very useful to study viral replication, spread and cell 

tropism in vitro and in vivo. The use of such reporter viruses can also facilitate the discovery of new 

antivirals and vaccines [1-4]. However, adding a reporter gene to the relatively small influenza virus 

genome has no selective advantage for the virus. Instead, influenza viruses expressing a reporter 

gene are attenuated compared to their parental counterparts [5-9]. Influenza viruses that have lost 

(part of) the reporter gene can thus quickly outgrow the original reporter virus. Such reporter gene 

loss can e.g. lead to false negative hits in a compound screening experiment that is based on reporter 

gene expression as a read out. It is therefore important to study the genomic stability of the viral 

population derived from a recombinant influenza virus clone. Next-generation sequencing (NGS) is 

very well suited to determine the genomic stability of recombinant influenza viruses due to its high 

sequencing output (up to hundreds of Gigabases) [10, 11]. In addition, the small genomic size, 

approximately 14,000 bases of negative stranded RNA, of influenza viruses enables sequencing of 

viral samples at high coverage for each position in the genome. We recently optimized an influenza 

RT-PCR protocol and NGS data analysis pipeline to study the genomic composition of an influenza A 

virus population [12].  

We previously reported the generation and characterization of a recombinant influenza A virus that 

expresses GFP [1]. In that virus, named PR8-NS1(1-73)GFP, the GFP transgene is encoded by the 

middle part of a tri-cistronic gene segment 8 [1]. The virus is phenotypically stable and appeared to 

be genetically stable based on lllumina MiSeq sequencing of full genome RT-PCR products of this 

virus [1]. However, we noticed a twofold drop in sequence coverage within the GFP coding sequence 

(Figure 1, orange line) [1]. This coverage dip could be the result of different processes. First, a 

proportion of the PR8-NS1(1-73)GFP progeny virus might have lost part of the GFP coding sequence. 

Second, sequence preference of the transposase-based Nextera XT fragmentation could account for 
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the sequence coverage dip [13-15]. A less favourable sequence motif in the GFP coding region could 

lead to a fragmentation bias and hence lower sequence coverage [13-16]. The ‘Illumina Nextera XT 

DNA library preparation kit’ fragments the DNA and adds the desired sequencing adaptors in a single 

step by using a transposition reaction, a process that is named tagmentation [13]. The transposase is 

target sequence based and, as a consequence, near-random [13-17]. Finally, sequencing bias by the 

Illumina MiSeq sequencer itself, due to a motif in the GFP sequence, could explain the drop in 

sequence coverage that we observed. It has been shown that the Illumina MiSeq exhibits sequencing 

biases for different sequence types, e.g. in regions with a low or high GC-content, long 

homopolymers or inverted repeats [17-19]. 

Here, we report that a sequence motif in the GFP coding sequence leads to a significant reduction in 

sequence coverage when using Illumina MiSeq sequencing. This finding is important for NGS analysis 

of small microbial genomes, in particular when GFP is included as a reporter in those genomes. 

Results 

An NGS coverage dip in the GFP sequence irrespective of the fragmentation method used 

We previously used Nextera XT tagmentation followed by NGS on an Illumina MiSeq sequencing 

platform to study the genetic heterogeneity of a GFP-expressing influenza A virus [1]. Sequence 

coverage was high and homogenous for all eight virus genome segments, with the exception of the 5’ 

and 3’ termini [1]. The latter is expected when using a transposon-based fragmentation technique to 

make a library of fragments derived from a discrete set of relatively small linear double stranded 

DNA molecules [12, 13]. However, we noticed a twofold drop in sequence coverage from over 40,000 

to almost 20,000 reads per position near the middle of the NS1(1-73)-GFP segment (Figure 1, orange 

line) [1]. The PR8-NS1(1-73)GFP virus retained GFP expression over multiple rounds of replication in 

vitro, suggesting that the coverage dip was unlikely the result of the rapid evolution of a 

subpopulation of viruses that had lost part of the GFP information [1]. We first explored the 

possibility that this apparent coverage dip could be the result of the sequence dependency of 

Nextera XT fragmention, which has a known target sequence bias [13-15]. Therefore, we repeated 

the Illumina MiSeq NGS analysis of the PR8-NS1(1-73)GFP virus using Covaris shearing for the library 

preparation. This is a mechanical shearing technique that is based on adaptive focused acoustics, and 

therefore more random. We used the same RT-PCR sample of the PR8-NS1(1-73)GFP virus which had 

been sequenced previously on the Illumina MiSeq after Nextera XT fragmentation [1]. Mapping of 

the reads to the PR8-NS1(1-73)GFP reference genome resulted in high coverage across all eight 

segments, which now also included the genome segment ends (Supplementary Figure S1). However, 

we again observed a decrease in coverage at the same position in the GFP coding sequence 

(nucleotide position: 452-1162, with the lowest coverage at position 952; Figure 1, black line), similar 

to the one observed after Nextera XT fragmentation. This indicates that this dip is not caused by the 

sequence dependency of the transposition reaction in the Nextera XT fragmentation. We note that 



 

145 

 

the ends of the viral fragments are overrepresented after Covaris fragmentation because adaptors 

are ligated to mechanically sheared DNA, a process that is favored at the free ends of the influenza 

genome [12].  

 

Figure 1: Sequence coverage of the viral NS1(1-73)-GFP segment. Sequence coverage as determined by 

Illumina MiSeq sequencing after Nextera XT (orange) or Covaris (black) fragmentation and CLC Genomics 

Workbench version 7.0.3 data processing. The obtained sequences were filtered, trimmed and mapped to the 

reference sequence of the NS1(1-73)-GFP segment (based on the plasmid used to generate the recombinant 

PR8-NS1(1-73)GFP virus, with addition of the extra 20 nucleotides present at the 5′ site in the RT-PCR primers) 

[12]. Below sequencing coverage plot: schematic representation of NS1(1-73)-GFP segment. For an explanation 

of the different features of this segment, see Figure 2. 

The above results do not exclude the possibility that viruses with a deletion in the GFP coding 

sequence were present in the virus population that we used as starting material. We investigated the 

presence of major deletions in the GFP sequence by using the 'CLC Genomics Workbench Large Gap 

Mapper', which aligns reads to the reference sequence, while allowing large gaps in the mapping. 

Based on the 'Large Gap Mapper' 0.22% more reads were aligned to the reference genome, 

compared to regular mapping. The distribution of these extra mapped reads over the eight segments 

ranged from 0.04% (M segment) to 0.60% (PA segment). An increase of 0.41% of mapped reads was 

recorded for the NS1(1-73)-GFP segment. Therefore, fragments with a large deletion were not 

substantially enriched for the NS1(1-73)-GFP segment, indicating that the dip in coverage was not 

caused by large deletions in the GFP sequence. 

NGS sequencing of the pHW-NS1(1-73)Dmd-GFP-NEP plasmid also reveals a coverage dip 

Based on the above analyses it is unlikely that the observed variability in the PR8-NS1(1-73)GFP virus 

population was responsible for the coverage dip in GFP. We therefore hypothesized that the Illumina 

MiSeq platform caused the coverage bias in the GFP coding sequence. To test this, we sequenced the 

pHW-NS1(1-73)Dmd-GFP-NEP plasmid that was used to generate the GFP expressing influenza A 
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virus. In this way, we could also assess a possible effect of RT-PCR efficacy on the sequencing 

coverage of the GFP sequence. A mean sequencing coverage of 16,655 (+/- 2,927) was obtained, with 

the coverage per position ranging from 6,376 (position 2,612) to 21,513 (position 1,451). We 

observed a twofold drop in nucleotide coverage in the GFP coding sequence of the plasmid, with the 

lowest coverage being 10,683 at position 1,395 (Figure 2). 

 

Figure 2: Sequence coverage of pHW-NS1(1-73)Dmd-GFP-NEP based on Illumina MiSeq sequencing. (a) Map 

of pHW-NS1(1-73)Dmd-GFP-NEP. (b) Sequence coverage (black line) and GC-percentage distribution (grey line, 

window size: 100) of the pHW-NS1(1-73)Dmd-GFP-NEP plasmid as determined by Illumina MiSeq sequencing 

after Covaris shearing and CLC Genomics Workbench version 7.0.3 data processing [12]. The diagram below the 

graph shows the organization of the different features from position 1 to position 4561 in the linearized pHW-

NS1(1-73)Dmd-GFP-NEP plasmid. HCMV: human cytomegalovirus promoter, T: terminator sequence, NCR: non-

coding region, NS1: non-structural protein 1, HA: hemagglutinin-tag, Dmd: dimerization domain (Dmd) of the 

Drosophila melanogaster Ncd protein, 2A FMDV: foot-and-mouth disease virus-2A auto processing site, 2A 

PTV-1: porcine teschovirus-1 2A cleavage site, NEP: nuclear export protein, Pol I: human RNA polymerase I 

promoter, polyA: polyA terminator, pMB1 ori: origin of replication, AmpR: ampicillin resistance gene. 

It has been reported that the performance of Illumina MiSeq sequencing is reduced in regions that 

have a high or low GC-content [18, 20]. However, the GFP coding sequence is slightly GC-poor 

(average 43.18%), compared to the overall GC-percentage of the plasmid (49.55%) (Figure 2). Based 

on the relation between the GC-content and sequencing coverage at each position, we conclude that 

there was no strict correlation between GC-content and sequencing coverage. 

Before sequencing on the Illumina MiSeq platform, the DNA fragments are ligated on the sequencing 

chip through their adaptors and subjected to bridge amplification PCR. Presuming that bridge 

amplification PCR occurs less efficiently when secondary structures are present in the template, the 

minimal energy to form secondary structures of fragments of 350 bp (approximately the mean DNA 

fragment length), with a sliding window of 50 bp was calculated using mFold [21]. This minimal 

energy is inversely correlated with the formation of secondary structures: the lower the minimal 

energy needed to form a secondary structure, the higher the chance that this structure will be 



 

147 

 

formed. The mFold calculation predicted that the minimal energy required to form secondary 

structures is not lower in the GFP coding sequence than the average minimal energy to form 

secondary structures in the pHW-NS1(1-73)Dmd-GFP-NEP sequence (data not shown). This suggests 

that the GFP sequence is not more prone to form secondary structures compared to the rest of the 

plasmid sequence. The dip in coverage in the GFP sequence can therefore not be explained by a less 

efficient bridge amplification of the fragments containing the GFP sequence. 

 

Figure 3: Drop in sequencing coverage at the ‘GGCNGG’ or ‘GGCNG’ motifs. The sequencing coverage is 

plotted in function of the nucleotide position in the pHW-NS1(1-73)Dmd-GFP-NEP plasmid. The presence of the 

'CCCGCC’ motif (reverse complement of ‘GGCGGG’) at position 1397-1402 (a), the 'GGCGGG' motif at position 

1865-1870 (b) and the 'GGCGG' motif at position 2603-2607 (c), result in a drop in sequencing coverage. 

Sequence-specific errors were previously reported to be common in Illumina HiSeq reads, with the 

highest error rates seen at the ‘GGC’ motif, and in particular at 'GGCNG' [22]. In addition, Ekblom et 

al. observed a negative correlation between the site specific sequencing error rate and the 

sequencing coverage [19]. In particular, they observed a steep drop in coverage exactly at and 

upstream of the error prone motif 'CCNGCC' (or downstream of its reverse complement ‘GGCNGG’) 

[19]. This 'CCNGCC' motif occurs 12 times in pHW-NS1(1-73)Dmd-GFP-NEP. At two of these motifs 

(positions 1,397-1,402 and 1,865-1,870) a drop in sequencing coverage is observed. Position 1,397-

1,402 is within the GFP coding sequence. At position 1,396 (one nucleotide upstream of the 1,397-

1,402 'CCCGCC’ motif), there was a drop in sequencing coverage from 14,384 (position 1,397) to 
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10,744 (position 1,396; Figure 3.a). The 'GGCGGG' motif at position 1,865-1,870 was associated with 

a similar steep sequencing coverage dip (coverage of 18,639 at position 1,870 to a coverage of 

14,576 at position 1,871; Figure 3.b). Finally, the error-prone 'GGCGG' motif at position 2,603-2,607 

was also associated with a drop in coverage from 10,604 at position 2,607 to 7,947 at position 2,608 

(Figure 3.c). We manually inspected the quality trimmed reads with unaligned ends at the ‘CCCGCC’ 

motif and found that part of these reads contained unaligned (mainly single) nucleotides at this 

position. We also inspected the reads manually prior to quality control trimming, i.e. with only the 

adaptor removed. This analysis revealed that most of the reverse reads were of a too low quality at 

the nucleotides next to the ‘CCCGCC’ motif and were thus removed during trimming on base quality. 

Therefore, the steep coverage drop next to the ‘CCCGCC’ motif results from a combination of poor 

quality at the error prone motif and actual loss of coverage immediately after the motif. 

Since multiple different GFP variants are used to generate reporter RNA viruses, we sequenced four 

plasmids that encode other GFP variants (Supplementary Figure S2) [23, 24]. A drop in coverage at 

‘CCNGCC’ or the shorter ‘CNGCC’ motif can also be observed in some of the sequences encoding 

these GFP variants [23, 24]. Although the ‘CCNGCC’ motif is absent in the Aequorea victoria GFP 

coding sequence, the shorter ‘CNGCC’ motif occurs two times in this sequence (positions 820 to 824 

and 975 to 979, plasmid numbering). Mapping the reads to the plasmid reference sequence did not 

reveal a steep drop in sequencing coverage. However, the GFP sequence is not homogenously 

covered, with the sequencing coverage ranging from 75,529 (minimum; position 1,048) to 108,654 

(maximum; position 722). Nevertheless, we found two sharp drops in coverage outside the A. victoria 

GFP coding sequence: upstream of a ‘CCNGCC’ motif at positions 425 to 430 and downstream of a 

‘GGCNG’ motif at positions 1,704 to 1,708. From the sequenced GFP variants, the largest loss in 

coverage in the GFP coding sequence is present in eGFP: a ‘CCGCC’ motif (positions 2,992 – 2,996) 

results in a coverage drop of 42,730 at position 2,992 to 32,146 at position 2,991. The 

MaxGFP/TurboGFP that was used in the NS1-GFP influenza virus reported by Manicassamy et al., 

displays only a minor sequencing drop (Supplementary Figure S2.c) [5].  

To provide evidence that the observed dip in coverage is a consequence of the presence of the 

‘CCCGCC’ motif in the GFP coding region, two silent mutations (separate or in combination) were 

introduced in pHW-NS1(1-73)Dmd-GFP-NEP: C1398T (resulting in CTCGCC), C1401T (resulting in 

CCCGTC) and the double mutant C1398T - C1401T (resulting in CTCGTC). The two single mutations in 

the ‘CCCGCC’ motif largely abolished and the double mutant completely overcame the sequence 

coverage drop following Illumina MiSeq sequencing (Figure 4). We can thus conclude that the 

observed drop in sequencing coverage in the GFP coding region can be linked to the ‘CCCGCC’ motif 

and that this drop can be eliminated by mutating this motif. 
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Figure 4: Introducing silent mutations (C1398T and/or C1401T) that interrupt the ‘CCCGCC’ motif in the GFP 

coding sequence abrogates the drop in sequence coverage. The sequencing coverage is plotted in function of 

the nucleotide position in pHW-NS1(1-73)Dmd-GFP-NEP (a), pHW-NS1(1-73)Dmd-GFP-NEP C1398T (b), pHW-

NS1(1-73)Dmd-GFP-NEP C1401T (c) or pHW-NS1(1-73)Dmd-GFP-NEP C1398T-C1401T (d) plasmid. Illumina 

MiSeq sequencing was performed after Covaris shearing and followed by CLC Genomics Workbench version 

7.0.3 data processing and mapping of the reads to the plasmid reference sequence [12]. The position of the 

CCCGCC (a), CTCGCC (b), CCCGTC (c) and CTCGTC (d) motif is marked with an arrow head and the introduced 

mutation is marked in blue in this motif. The position of the sequence that codes for GFP is marked on the 

coverage plots in green. 

Discussion 

NGS analysis is a powerful tool to study nucleotide sequence variation in biological samples. Ideally, 

such analysis should result in high and unbiased nucleotide coverage across the target region(s) to 

provide an accurate picture of the real ratio of sequences present. Uneven coverage of sequences 

can result in the false interpretation of data, e.g. as has been reported for transcriptomics analysis 

[20, 25, 26].  

In general, RNA viruses have a relatively high mutation and recombination rate [27, 28]. NGS analysis 

of the genome diversity of certain RNA viruses, such as influenza A, is used to detect escape 
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mutations after antiviral treatment or host immunity and to study the viral population dynamics [29-

32]. In addition, influenza A viruses with various reporter genes have been generated to facilitate the 

study of immune responses and cell tropism in vivo [1, 5, 6, 33]. Because these studies rely on 

monitoring the reporter gene products, it is very important to be able to rely on a genetically stable 

reporter virus. Because the reporter gene does not have a selective advantage for the virus its 

(partial) deletion in the progeny virus would in most cases offer a competitive advantage over the 

parental virus. NGS enables sequencing of many viral genomes in a viral population at once. Mapping 

of these sequencing reads to the reference genome results in a coverage plot, which provides 

information on the genomic stability of a viral population. 

We previously reported on the genomic stability of a GFP expressing influenza A virus that we 

generated in our lab [1]. Nextera XT tagmentation and Illumina MiSeq sequence analysis of this PR8-

NS1(1-73)GFP virus revealed a clear coverage dip in the GFP sequence, which was puzzling because 

we found that the virus was phenotypically stable over multiple generations [1]. Here, we identified 

the cause of this GFP-associated coverage drop. This dip was equally apparent when the same 

sample was analysed after Covaris fragmentation, so it could not be attributed to a sequence 

preference of the Nextera XT transposase. We also excluded that large deletions in the GFP sequence 

in the viral population were responsible for the reduced coverage, since NGS analysis of the parental 

pHW-NS1(1-73)Dmd-GFP-NEP plasmid revealed a similar coverage dip at the same position in the 

GFP coding sequence. We identified a ‘CCNGCC’ motif in the GFP coding sequence next to the steep 

drop in coverage. This motif was recently reported to be associated with more errors in the reads 

generated by Illumina sequencing [19]. The observed coverage dip in the NS1(1-73)-GFP segment is 

thus the result of a sequencing bias of the Illumina MiSeq for this ‘CCNGCC’ motif.  

This work shows that caution is needed when analysing samples containing the GFP sequence by 

NGS. To avoid this sequencing bias a Quantum SuperGlo GFP coding sequence with silent mutations 

at positions C504T and/or C507T (GFP numbering) should be used. The ‘CCNGCC’ sequence motif is 

also present in other GFP versions, e.g. the Emerald and ZsGreen1 GFP, which also have been used to 

generate reporter RNA viruses [34-37]. The MaxGFP (also named TurboGFP) that was used in the 

NS1-GFP influenza virus reported by Manicassamy et al., displays only a minor sequencing drop 

(Supplementary Figure S2.c) [5].  

When designing reporter viruses it is thus important to take into account that there could be a 

sequencing bias against the reporter gene used. To prevent such an Illumina MiSeq sequencing bias, 

it is worthwhile to avoid the presence of the error prone ‘CCNGCC’ motif in the reporter gene. In the 

reported PR8-NS1(1-73)GFP virus, this sequencing bias could lead to the false conclusion that the 

reporter virus is genetically diverse at the GFP coding sequence.  
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Conclusion 

We report a striking variation in coverage depth in the GFP sequence of the PR8-NS1(1-73)GFP virus, 

as analysed by Illumina MiSeq sequencing. We investigated the different sources that could be 

responsible for this reduced sequencing coverage and found that a ‘CCNGCC’ motif in the GFP coding 

sequence was the cause of the steep drop in sequencing coverage. Since Illumina MiSeq is the most 

popular NGS platform that is currently used and GFP is widely used as a reporter gene, we believe 

that this finding is of value for other researchers, in particular for those instances where genetic 

variability in concert with GFP reporter gene expression are studied. 

Material and methods 

Plasmids 

The cloning strategy used to construct the pHW-NS1(1-73)Dmd-GFP-NEP plasmid has been described 

in De Baets, et al. [1] The C1398T and/or C1401T mutations were introduced by QuickChange site-

directed mutagenesis (Stratagene).The plasmids were transformed and amplified in Escherichia coli 

DH5α. Plasmid DNA was isolated with the Plasmid Midi Kit (Qiagen) according to the manufacturer’s 

instructions. The sequence of NS1(1-73)Dmd-GFP-NEP and the introduced C1398T or/and C1401T 

mutations were confirmed by Sanger sequencing on a capillary sequencer (Applied Biosystems 

3730XL DNA Analyzer). Plasmids pBluAGFP [24], pEF6-turboGFP-MCS, pLVX-EF1a-IRES-ZsGreen1 

(Clontech-BD Biosciences, Palo Alto, United States) and pDG2-hRIPK4-WT-EGFP-puro [23] were kindly 

provided by the BCCM/LMBP Plasmid Collection, Dr. Jens Staal and Giel Tanghe from our 

department. 

Cell lines 

MDCK, MDCK.PIV5V and HEK293T cells were cultured in DMEM supplemented with 10% FCS, non-

essential amino acids, 2 mM L-glutamine, 0.4 mM sodium-pyruvate, 100 U/ml penicillin and 0.1 

mg/ml streptomycin at 37°C in 5% CO2. MDCK cells stably expressing the type I IFN antagonist 

Paramyxovirus Simian Virus 5 V protein (MDCK.PIV5V) were kindly provided by Dr. Rick Randall 

(University of St. Andrews, United Kingdom) [38, 39]. These cell lines were used to rescue and grow 

PR8-NS1(1-73)GFP virus.  

Production of recombinant viruses 

Recombinant influenza virus PR8-NS1(1-73)-GFP was rescued using the A/Puerto Rico/8/34 based 

reverse genetics system [40]. To generate recombinant PR8-NS1(1-73)-GFP virus, 1 μg of each pHW-

plasmid (pHW191-PB2, pHW192-PB1, pHW193-PA, pHW194-HA, pHW195-NP, pHW196-NA, 

pHW197-M and pHW-NS1(1-73)Dmd-GFP-NEP) was transfected in a HEK293T/MDCK coculture using 

calcium phosphate precipitation in Optimem. After 36 h, TPCK-treated trypsin (Sigma) was added to 

a final concentration of 2 μg/ml. After 72 h, the medium was collected. The virus in the medium was 
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amplified on MDCK.PIV5V cells in serum-free cell culture medium in the presence of 2 μg/ml TPCK-

treated trypsin (Sigma). 

RT-PCR on PR8-NS1(1-73)GFP virus 

Total RNA was isolated from 2 x 105 PFU of PR8-NS1(1-73)GFP virus with the High Pure RNA isolation 

Kit (Roche), and cDNA was synthesized with the Transcriptor First Strand cDNA Synthesis kit (Roche), 

both according to the instructions of the manufacturer. cDNA synthesis was performed with the 

CommonUni12G (GCCGGAGCTCTGCAGATATCAGCGAAAGCAGG) primer specific for influenza A vRNA. 

Next, all eight genomic segments were amplified in one reaction with Phusion High Fidelity 

polymerase (Thermo Scientific) using primers CommonUni12G and CommonUni13 

(GCCGGAGCTCTGCAGATATCAGTAGAAACAAGG) [12, 32].  

Illumina MiSeq library preparation and sequencing 

500 ng of the PR8-NS1(1-73)GFP virus RT-PCR product or the pHW-NS1(1-73)Dmd-GFP-NEP plasmid 

was sheared with an M220 focused-ultrasonicator (Covaris) set to obtain peak fragment lengths of 

300-400 bp. Next, the NEBNext Ultra DNA Library Preparation kit (New England Biolabs) was used to 

repair the ends and to add the Illumina MiSeq-compatible barcode adapters to 100 ng of fragmented 

DNA. The resulting fragments were size-selected using Agencourt AMPure XP bead sizing (Beckman 

Coulter). Afterwards, indexes were added in a limited-cycle PCR (10 cycles), followed by purification 

on Agencourt AMpure XP beads. Fragments were analysed on a High Sensitivity DNA Chip on the 

Bioanalyzer (Agilent Technologies). The multiplex sample was heat denatured for 2 min at 96°C 

before loading on the Illumina MiSeq chip. After the 2×250 bp Illumina MiSeq paired-end sequencing 

run, the data were base called and reads with the same barcode were collected and assigned to a 

sample on the instrument, which generated Illumina FASTQ files (Phred +64 encoding).  

Data analysis 

The downstream data analyses were performed on the resulting Illumina FASTQ files (Phred +64 

encoding) using CLC Genomics Workbench (Version 7.0.3) following the analysis pipeline as described 

in Van den Hoecke, et al. [12] The trimmed and filtered reads were aligned to the PR8-NS1(1-73)GFP 

reference genome (based on the plasmids used to generate the recombinant PR8 virus, with addition 

of the extra 20 nucleotides present at the 5′ site in the RT-PCR primers) or the plasmid reference 

sequence using the following parameters: match = +1; mismatch = -2; insertion/deletion = -3; length 

fraction = 0.9; similarity fraction = 0.8; non-specific match handling = ignore [12]. For the 'Large Gap 

Mapper', the same mapping parameters were used, together with the default 'Large Gap Mapper' 

settings, allowing large gaps in the mapping.  
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Supplementary Figures 

 
Supplementary Figure S1. Sequence coverage of the PR8-NS1(1-73)GFP virus. Sequence coverage for the 

different genome segments of the virus stock determined by Illumina MiSeq sequencing after Covaris shearing 

and CLC Genomics Workbench version 7.0.3 data processing. The obtained sequences were filtered, trimmed 

and mapped to the reference genome based on the eight plasmids used to generate the recombinant PR8 virus 

(with addition of the extra 20 nucleotides present at the 5′ site in the RT-PCR primers) [12]. 
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Supplementary Figure S2. Sequence coverage of plasmids expressing different GFP variants. The sequencing 

coverage is plotted in function of the nucleotide position in the plasmid containing the coding sequence for 

Aequorea victoria GFP (pBluAGFP [24]) (a), eGFP (pDG2-hRIPK4-WT-EGFP-puro [23]) (b), TurboGFP (pEF6-

turboGFP-MCS) (c) and ZsGreen1 (pLVX-EF1a-IRES-ZsGreen1) (d). The position of the sequence coding for GFP 

in the different expression plasmids is marked in green on the coverage plot. Samples were sequenced on 

Illumina MiSeq (2*250bp) after Covaris shearing, followed by CLC Genomics Workbench version 7.0.3 data 

processing and mapping of the reads to the plasmid reference sequence [12]. 
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ABSTRACT 

The ectodomain of matrix protein 2 is a universal influenza A vaccine candidate that provides 

protection through antibody-dependent effector mechanisms. Here we compared the functional 

engagement of Fc Receptor family members by two M2e-specific monoclonal antibodies: mAb 37 

(IgG1) and mAb 65 (IgG2a), which recognize the same epitope in M2e with similar affinity. Binding of 

mAb 65 to influenza A virus-infected cells triggered all three activating mouse Fc receptors in vitro, 

whereas mAb 37 only activated FcRIII. Passive transfer of mAb 37 or mAb 65 in wild type, Fcer1g-/-, 

Fcgr3-/- and Fcgr1-/- Fcgr3-/- BALB/c mice revealed the importance of these receptors for protection 

against influenza A virus challenge, with a clear requirement of FcRIII for IgG1 mAb 37. We also 

report that FcγRIV contributes to protection by M2e-specific IgG2a antibodies.  

IMPORTANCE 

There is increased awareness that protection by antibodies directed against viral antigens is also 

mediated by the Fc domain of these antibodies. These Fc-mediated effector functions are often 

missed in clinical assays, which are used for example to define correlates of protection induced by 

vaccines. The use of antibodies to prevent and treat infectious diseases is on the rise, and has proven 

a promising approach in our battle against newly emerging viral infections. It is now also realized that 

broadly neutralizing antibodies directed against the conserved parts of the influenza virus 

hemagglutinin require the engagement of Fcγ receptors. We show here that two M2e-specific 

monoclonal antibodies with close to identical antigen- binding specificity and affinity have a very 

different in vivo protective potential that is controlled by their capacity to interact with activating Fcγ 

receptors. 

Keywords: Influenza A, M2e, viral infection, Fcγ Receptors, mechanism of protection 
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INTRODUCTION 

The ectodomain (M2e) of the influenza membrane protein M2 is an interesting candidate for a 

universal influenza vaccine. M2e vaccine-induced protection against influenza A viruses (IAV) is 

mainly conferred by antibodies [1-3]. Although only some M2 molecules are incorporated in the 

virion, M2 is abundantly expressed on the surface of infected cells [4, 5]. Hence, these cells are the 

most likely in vivo targets of M2e-based immune protection. 

Influenza A virus infection elicits poor serum antibody responses against M2e [6, 7]. Immunization 

with M2e fused to a heterologous carrier, however, readily induces M2e-specific antibody responses 

in animal models [1, 4, 5, 8-12]. Some M2e vaccine candidates have reached early stage clinical 

testing, which showed their safety and immunogenicity [11, 13]. Despite these developments, there 

is still confusion about the mechanism of protection of M2e-specific responses. For example, a role 

for complement, natural killer cells and alveolar macrophages has been proposed [2, 10, 14, 15]. It is 

important to understand this in vivo mechanism in order to anticipate on potential immune evasion 

strategies of influenza viruses under selection pressure of M2e-based immunity, and to establish 

correlates of protection that are measurable by in vitro assays. 

FcR family members are crucial for protection by M2e-specific and broadly-neutralizing 

hemagglutinin-specific IgG [2, 14-16]. The mouse FcR family comprises four members: three 

activating FcRs (FcRI, FcRIII and FcRIV) and one inhibitory FcR (FcRIIB) [14, 15]. We showed that 

polyclonal IgG1 isotype antibodies purified from mouse M2e immune serum required FcRIII for 

immune protection and that protection of Fcgr3-deficient mice could be restored by an IgG fraction 

containing M2e-specific IgG1 and IgG2a antibodies [2]. That study, however, did not address the 

affinity of the purified IgG subclasses for M2e, nor did it address protection by IgG2a antibodies 

alone. Moreover, the possible role of mouse FcRIV in protection by anti-M2e IgG was unknown. 

Here we compared the protective potential of two mouse monoclonal antibodies (mAbs) with very 

similar affinities for M2e but different Fc domains: mAb 37 (IgG1) and mAb 65 (IgG2a). Our data 

shows that M2e-specific IgG1 requires FcγRIII, whereas IgG2a isotype antibodies protect against 

influenza A virus challenge via any of the three activating FcγRs. 
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RESULTS 

M2e-specific monoclonal antibodies 37 and 65 have comparable target specificity and affinity 

Our aim was to compare the capacity of two M2e-specific monoclonal antibodies, that bind a similar 

epitope with similar affinity but are of different isotype, to engage FcRs in vitro and in vivo. Ala-scan 

revealed that for both mAb 37 and mAb 65 the recognition of M2 involves residues Thr5, Glu6, 

Pro10, Ile11 and Trp15 and to a lesser extent Val7, Glu8, Thr9 and Glu14 (Figure 1) [17].  

 
Figure 1: mAb 37 and mAb 65 have a similar epitope specificity. Lysates of HEK293T cells transfected with 

Flag-tagged M2 wild type (WT) and M2e Ala-scan mutants were analyzed in Western Blot for reactivity with 

mAb 37 or mAb 65. As a loading control, reactivity with an anti-Flag antibody was used (flag). NC: lysate from 

non-transfected cells; S2A: serine at position 2 in M2e changed to alanine, L3A: leucine at position 3 in M2e 

changed to alanine, etc. The result shown for anti-Flag and mAb 65 is the same as published before [17]. 

Copyright © American Society for Microbiology [17] 

Next, the affinity of the two mAbs for M2e was determined. Based on Surface Plasmon Resonance 

measurements, mAb 37 and mAb 65 bound M2e peptide with similar equilibrium dissociation 

constant (Table 1). We also calculated the affinity for immobilized M2e peptide by ELISA. This 

method confirmed that mAb 37 and 65 bound M2e peptide with similar affinity with an estimated KD 

of 0.526 nM for mAb 37 and 0.375 nM for mAb 65 (Figure 2A). 

Table 1. Affinities of anti-M2e antibodies for the M2e consensus sequence measured by Surface Plasmon 

Resonance. 

Sample Kon (M-1s-1) Koff (s
-1) KD (nM) χ2 (RU2) 

mAb 37 3.49*10
5 

(±6.60*10
2
) 1.48*10

-4 
(±1.70*10

-6
) 0.423 0.123 

mAb 65 2.24*10
5 

(±4.70*10
2
) 9.16*10

-5
 (±3.50*10

-6
) 0.409 0.0593 

Kon = Association rate constant, Koff = dissociation rate constant, KD = equilibrium dissociation constant (Koff/Kon). 

Numbers between brackets are the standard error calculated based on measurements at seven different 

peptide concentrations. χ2 = goodness of fit. RU = resonance units. 
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Figure 2: mAb37 and mAb65 bind with similar affinity to M2e and M2. (A) M2e peptide ELISA using high-

performance liquid chromatography (HPLC)-purified M2e peptide (SLLTEVETPIRNEWGCRCNDSSD) for coating. 

Binding of mAb 37 or mAb 65 to M2e-coated wells was determined using a secondary horseradish peroxidase 

(HRP)-conjugated anti-mouse antibody. (B) MDCK cells were infected with A/Puerto Rico/8/34 virus. Twenty-

four hours later, the cells were incubated with a dilution series of mAb 37 or mAb 65, followed by fixation with 

4% paraformaldehyde and detection by cellular ELISA. (C) HEK293T cells were infected with A/Puerto Rico/8/34 

virus. Sixteen hours later, the cells were incubated with a dilution series of mAb 37 or mAb 65, followed by 

fixation with 4% paraformaldehyde, permeabilisation and staining with goat anti-vRNP polyclonal serum. 

Binding of mAb 37 and mAb 65 was detected with donkey anti-mouse IgG coupled to AlexaFluor 488 and 

binding of anti-vRNP was detected with donkey anti-goat IgG coupled to AlexaFluor 647. Y-axis depicts Median 

fluorescence intensity (MFI) which corresponds to the median fluorescence of binding of mAb 37 or mAb 65 to 

infected cells subtracted with the median fluorescence of uninfected cells bound by mAb 37 or mAb 65. The 

dissociation constant (Kd) of mAb 37 or mAb 65 in each condition is shown. Data points represent averages 

(M2e peptide ELISA and Flow cytometry analysis: n = 2, cell ELISA: n =3) and error bars represent standard 

deviations. The graphs in A-C are representative of one out of 3 repeat experiments. 
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The affinity of mAb 37 and 65 for M2 on virus-infected cells, where M2 assembles as a tetrameric 

membrane protein, was also determined. mAb 37 and 65 bound to M2 expressed on the surface of 

PR8 virus-infected cells with an estimated KD of 7.554 nM and 5.795 nM, respectively, based on cell 

ELISA (Figure 2B). In line with this, the estimated KD values deduced from flow cytometry analysis of 

PR8 virus-infected cells were 4.591 nM and 3.726 nM for mAb 37 and 65, respectively (Figure 2C). 

From these in vitro binding studies, we conclude that the two M2e-specific mAbs bind to M2e 

peptide and PR8-infected cells with comparable affinity.  

Murine and human IgGs have a conserved N-glycosylation site in their Fc region [18], where the 

associated N-glycan plays an important role in Fc-dependent effector functions [19]. Especially core-

fucosylation strongly influences the binding of antibodies to FcγRs, and subsequent antibody-

mediated cellular cytotoxicity or antibody-dependent cellular phagocytosis [20-23]. We therefore 

profiled the N-glycans of mAb 37 and 65, and show that they contained comparable levels of total 

terminal galactose residues and that they were completely core-fucosylated (Figure 3). 

mAb 37 and 65 differentially activate FcγRs in vitro 

To compare the potency of mAb 37 versus mAb 65 to activate individual FcRs in vitro, a recently 

developed cell-based activation assay was applied [24, 25]. We compared the engagement of 

individual FcRs by graded concentrations of mAb 37 and mAb 65 bound to PR8-infected MDCK cells. 

Control IgG1 and IgG2a monoclonal antibodies did not activate any of the FcR-s in this assay 

(Figure 4). IgG2a mAb 65 activated all FcR-s with very similar dose-response curves ranging from 

0.0065 nM mAb to plateau values at 6.7 nM antibody (Figure 4). In contrast, mAb 37 (IgG1) only 

triggered the inhibitory FcRII- and the activating FcRIII-and completely failed to activate FcRI 

and FcRIV even at very high concentrations of opsonizing mAb. The latter result is in line with the 

report that monomeric mouse IgG1 binds very poorly to FcRI and -IV [26]. mAbs 37 and 65 activated 

FcRIII- equally well, but mAb 37 was approximately 10 fold more potent in activating FcRII- than 

mAb 65 (Figure 4), which accords well with the reported higher affinity of monomeric IgG1 for FcRII 

[27]. Taken together, mAb 65 and mAb 37 exhibited similar F(ab)2-mediated M2e-binding 

characteristics and had clearly distinct Fc-mediated functions in vitro. 
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Figure 3: N-Glycan profiling of mAb 37 and mAb 65. DSA-FACE chromatograms of the fluorescently labeled 

dextran ladder (top) and N-glycans on mAb 37 and mAb 65. For each mAb, the upper panel corresponds to the 

untreated sample, which was subjected to exoglycosidase digests using an α-2,3/6/8-sialidase alone or 

combined with an α-1,2/3/4/6-fucosidase, as indicated. The glucose units from the ladder were annotated 

using N-glycans from bovine RNaseB (not shown), and the annotated structures were confirmed using 

additional exoglycosidase digests. Blue squares correspond to N-acetylglucosamine residues, green circles to 

mannose, yellow circles to galactose and red triangles to fucose residues. 
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Figure 4: MAb 37 and mAb 65 differentially activate FcγRs in vitro. MDCK cells were infected with A/Puerto 

Rico/8/34 virus (MOI 5) for one hour, washed and co-cultured overnight with the Fc R-  expression reporter 

cells and graded concentrations of the mAbs or the corresponding isotype controls. Produced IL-2 was 

quantified by sandwich ELISA and represents a measure for the magnitude of Fc R activation. Data points are 

averages from triplicates and error bars represent 95% confidence interval. Two way ANOVA with Sidak 

correction for multiple comparisons (* p < 0.05; ** p < 0.01; *** p<0.001). 



 

169 

 

 

Figure 5: M2e-specific IgG2a protects better than M2e-specific IgG1 and protection depends on FcRγ. (A) 

M2e-specific IgG2a protects better than M2e-specific IgG1 against influenza A virus challenge. BALB/c mice 

(WT) received 100 µg of either mAb 37 (IgG1) or mAb 65 (IgG2a) by i.p. injection. The IgG1/IgG2a group was 

treated with 50 µg of control IgG1 and 50 µg of control IgG2a per mouse. Twenty-four h later, mice were 

challenged with 4 LD50 of mouse-adapted X47 virus. Body weight (left) and survival (right) were monitored for 

two weeks after challenge. In the left hand graph data points represent averages and error bars represent 

standard deviations. Differences in body weight between the negative control groups on the one hand and the 

mAb 37 and 65 groups on the other hand are statistically significant (p < 0.001, REML variance components 

analysis, n = 6 per group on day 0 except for the PBS group which had 5 mice). The differences in body weight 

curves between groups that received mAb 37 or mAb 65 are statistically significant (p < 0.001; REML variance 

components analysis). The survival rate of the mice that received mAb 65 or mAb 37 is significantly different 

from the control groups (***: p<0.001, Log-rank test). The graphs represent one out of 2 repeat experiments 

which had similar results. (B) M2e-specific mAbs fail to protect mice lacking the Fc common  chain. Fcer1g-/- 

BALB/c mice were treated with 100 µg of mAb 37, mAb 65, or PBS by i.p. injection. Twenty-four h later, mice 

were challenged with 4 LD50 of mouse-adapted X47 virus. Body weight (left) and survival (right) were 

monitored for two weeks after challenge. In the left hand graph data points represent averages and error bars 

represent standard deviations. $: starting from day 9 after infection, data based on only one surviving mouse. 

The survival rates of the groups that received mAb 37 or mAb 65 are not significantly different from the control 

groups (p>0.05, Log-rank test, n = 5 per group on day 0). “NS”: not significant. 

  



 

170 

 

Protection by mAb 37 and mAb 65 requires FcγRs

Next, we compared the protective efficacy of passively transferred mAb 37 and 65 against a 

potentially lethal influenza A virus challenge (4 LD50) of BALB/c mice with X47, a mouse-adapted 

H3N2 virus [1]. Compared to isotype control mAbs, both mAb 37 and 65 protected the animals from 

lethal infection (Figure 5A). However, mice that were treated with the M2e-specific IgG2a mAb 65 

displayed significantly less body weight loss compared to M2e-specific IgG1 mAb 37 recipients (p < 

0.001, Figure 5A). Next, we evaluated the in vivo requirement of FcRγs for protection by the two 

mAbs. To define the requirement for one or more activating FcγRs for in vivo protection mediated by 

the two anti-M2e mAbs, we performed passive transfer experiments in Fcer1g-/- mice that lack the 

common γ chain and cannot express any functional FcγR. Twenty-four hours after antibody 

administration, the mice were challenged with 4 LD50 of X47. Fcer1g-/- mice that received mAb 65, 

mAb 37 or the isotype controls showed no significant difference in body weight loss (p = 0.541, 

Figure 5B). Except for one mouse in the mAb 37 recipient group, all Fcer1g-/- mice succumbed to the 

challenge infection (Figure 5B), demonstrating that FcγRs are essential for protection against 

influenza A virus challenge by both M2e-specific mAbs. 

MAb 65 can protect in the absence of FcγRI and FcγRIII and involves FcγRIV 

MAb 37 largely failed to protect Fcgr3-/- mice, although the difference in survival rates of challenged 

mice that had been treated with the irrelevant control antibody was significantly different (p = 

0.0289, Figure 6). In contrast to mAb 37, mAb 65 performed significantly better (p < 0.001) and 

completely protected Fcgr3-/- mice from lethal infection and severe morbidity (Figure 6). To further 

narrow down the differential requirement for the activating FcγRs, we performed challenge studies 

in mice deficient in Fcgr1 and Fcgr3. In these double-deficient mice, mAb 65 provided full protection 

against virus challenge, whereas all control-treated and mAb 37-treated mice died (Figure 7). 
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Figure 6: Protection by M2e-specific IgG1 mAb depends on FcRIII. (A) Wild type BALB/c mice (n = 6 per group, 

except PBS: n = 5) received 100 µg of mAb 37, mAb 65, negative control IgG1 or IgG2a mAb or PBS by i.p. 

injection. Twenty-four h later, mice were challenged with 4 LD50 of mouse-adapted X47 virus and body weight 

(left) and survival (right) were monitored. In the left hand graph, data points represent averages and error bars 

standard deviations. (B) M2e-specific IgG2a protects better than M2e-specific IgG1 against influenza A virus 

challenge. Fcgr3-/- BALB/c mice (n = 6 per group) received the same treatment as in A and morbidity and 

mortality were monitored for 2 weeks after challenge. Both mice groups were treated with antibody and 

challenged in parallel in the same experiment. Body weight changes of the Fcgr3-/- mice that received mAb 65 

are significantly different from those of mice that received mAb 37 or control mAbs (p<0.001; REML variance 

components analysis). The survival rate of the mice that received mAb 65 is significantly different from the 

mAb 37 recipient mice (*: p = 0.0178, Log-rank test) and from the control groups (***: p<0.001, Log-rank test). 

The survival rate of the mAb 37 recipient mice is significantly different from the control groups (*: p<0.05, Log-

rank test). 
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Figure 7: Protection by IgG2a subclass antibodies in the absence of FcRI and FcRIII. (A) Wild type BALB/c 

mice (n = 6 per group) received 100 µg of mAb 37, mAb 65, a 1:1 mix of negative control IgG1 and IgG2a mAb 

or PBS by i.p. injection. Twenty-four h later, mice were challenged with 4 LD50 of mouse-adapted X47 virus and 

body weight (left) and survival (right) were monitored. In the left hand graph, data points represent averages 

and error bars standard deviations. (B) IgG2a mAb 65 protects against influenza A virus challenge in the 

absence of FcRI and –III. (Fcgr1, Fcgr3)-/- BALB/c mice (n = 6 per group, except mAb37: n = 7) received 100 µg 

of mAb 37, mAb 65, negative control IgG1 or IgG2a mAb or PBS by i.p. injection, followed by viral challenge as 

in A, with both mice groups treated with antibody and challenged in parallel in the same experiment. 

Differences in body weight between the (Fcgr1, Fcgr3)-/- mice that received mAb 65 are significant from mAb 37 

(p <0.001; REML variance components analysis). The survival rate of the groups that received mAb 65 is 

significantly different from mAb 37 and the control groups (***: p<0.001, Log-rank test). The graphs are 

representative of one out of 2 repeat experiments with similar results. The data in (A) are the same as in Figure 

5.A but are also included here to make direct comparison between the protective effect of the M2e-specific 

mAbs in mice differing in their FcγR compartment possible. 
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Figure 8: FcRIV contributes to protection by M2e-specific IgG2a antibodies against influenza A virus 

challenge. (A) Wild type mice were treated with 100 µg of mouse IgG1 mAb 37, IgG2a mAb 65, isotype control 

mAb or PBS 24 h before intranasal infection with 4 LD50 of influenza A virus strain X31. (B) Fcgr4-/- mice were 

treated with 100 µg of mouse IgG1 mAb 37, IgG2a mAb 65, isotype control mAb or PBS 24 h prior to challenge 

with 4 LD50 of X31. Wild type and Fcgr4-/- mice were treated with antibody and challenged in parallel in the 

same experiment. In (A) and (B) body weight (left) and survival (right) of mice are shown. In the left hand 

graphs, data points represent averages and error bars standard deviations. (C) Reduced protection by IgG2a 

mAb 65 in Fcgr4-/- mice. The data are from panels (A) and (B) but represented as a direct comparison of wild 

type and Fcgr4-/- mice treated in the same way. The data are pooled from two independent experiments. In 

total 6 mice were used in the PBS groups and 8 or 9 in mAb treated groups. Differences in body weight change 

between wild type and Fcgr4-/- mice that had received mAb 65 prior to challenge were statistically significant (p 

< 0.001, REML variance components analysis).  
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We hypothesized that FcγRIV could be responsible for protection by mAb 65 in the absence of FcγRI 

and FcγRIII. To test this wild type and C57BL/6 Fcgr4-/- mice were treated with mAb 65 or mAb 37 and 

infected with a lethal dose of X31 (H3N2). Both mAb 37 and 65 protected, whereas control-treated 

wild type C57BL/6 and C57BL/6 Fcgr4-/- mice did not survive the virus challenge (Figure 8). Similar to 

wild type mice, Fcgr4-/- mice treated with mAb 65 displayed significantly less body weight loss than 

mAb 37 recipients (p < 0.001, Figure 8). Body weight loss after challenge was the same in Fcgr4-/- and 

wild type C57BL/6 mice treated with mAb 37 (p = 0.114), in line with a lack of FcγRIV engagement by 

mouse IgG1 isotype antibodies (Figure 4 and 8). Protection by mAb 65 was partially dependent on 

FcγRIV since Fcgr4-/- mice showed significantly different body weight loss after infection when 

compared to wild type mice (p < 0.001, Figure 8). Taken together, these results suggest that FcγRIV 

contributes to protection by M2e-specific IgG2a. 

DISCUSSION 

We isolated and characterized a pair of M2e-specific murine mAbs with similar affinity for M2e and a 

comparable N-glycan profile of their Fc parts. We compared the potency of this antibody pair to 

activate individual FcRs in vitro in the context of a viral infection, and their protective potential in 

wild type and FcR-deficient mice. mAb 65 activated all FcR-s in the presence of influenza A virus-

infected cells. In contrast, mAb 37 only triggered the activating FcRIII- and the inhibitory FcRII-

with the latter activation being remarkably higher compared to mAb 65. The two M2e-specific 

mAbs thus differentially activate FcRs in vitro. These in vitro results also highlighted that FcγRIV can 

contribute to anti-M2e immune complex recognition on influenza A virus-infected target cells. 

The in vitro results correlated surprisingly well with the in vivo experiments in which we compared 

protection by mAb 37 and 65 against influenza A virus challenge in mice with different deficiencies in 

their FcR compartment. M2e-specific IgG2a antibody protected better than IgG1 against influenza A 

virus challenge, presumably because as detected in vitro, mAb 65 could engage all three activating 

receptors, which are expressed on natural killer cells, neutrophils, monocytes and macrophages [28, 

29]. This is in agreement with the finding that active vaccination strategies with M2e fusion 

constructs that predominantly induce M2e-specific IgG2a/c antibodies result in better protection 

against challenge [30, 31]. 

In the absence of FcγRIII, the IgG1 mAb largely failed to protect against influenza A virus challenge 

while mAb 65 was still protective. Therefore, FcγRIII is not strictly required for mAb 65-mediated 

protection, but significantly contributes to mAb 37-mediated protection This suggests also that 

natural killer cells, which in mice only express FcγRIII [28], do not play an indispensable role in M2e-

based immune protection provided by IgG2a isotype antibodies. In the absence of both FcγRI and 

FcγRIII, mice were still fully protected against death caused by influenza virus challenge. However, 

compared to wild type, Fcgr1-/-, Fcgr3-/- double deficient mice exhibited significantly more body 
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weight loss (Figure 6). The possible contribution of FcγRIV in protection by M2e-specific antibodies 

has not yet been reported. We observed that Fcgr4-/- mice are protected by mAb 65, but displayed 

significantly more body weight loss after influenza A virus challenge than wild type mice. In contrast, 

mAb 37 protected wild type and Fcgr4-/- mice equally well, although worse than mAb 65 did in terms 

of weight loss (Figure 7). These results also accord with the finding that FcγRIV, which is expressed on 

monocytes, macrophages and neutrophils, plays an important role for IgG2a-dependent effector 

activities in vivo, including IgG2a-mediated killing of tumor cells [32]. FcγRI and FcγRIV are both 

expressed on alveolar macrophages, which play an essential role in M2e antibody-mediated immune 

protection [2, 27, 33, 34]. In our model, we find a contribution but not a determining role for FcγRIV 

in protection by M2e-specific IgG2a against influenza A virus challenge. Future studies comparing 

FcγRI mice and triple-deficient mice lacking functional FcγRI, FcγRIII and FcγRIV will be required to 

determine the relative contribution of the latter two high affinity activating Fc receptors. 

What are the implications of our findings for the clinical development of M2e-based vaccines? M2e 

immunity appears to operate in the absence of demonstrable virus-neutralizing activity but rather 

engages Fcγ receptor-expressing myeloid cells. Human IgG1 and -3 isotype antibodies can be 

considered the counterparts of mouse IgG2a antibodies. Therefore, vaccine formulations should be 

used that promote the induction of antigen-specific IgG1 and -3 in humans. MF59, AS03 and AS04 

adjuvants promote such a Th1-specific response [35]. Human IgG1 and -3 have the highest affinity for 

FcγRI, which, as in mouse, has a broad expression pattern (dendritic cells, monocytes and 

macrophages) [27]. The sequence of mouse FcγRIV suggests that it is related to human FcγRIIIA 

(expressed on natural killer cells, monocytes and macrophages) [26, 34]. Therefore, protection by 

M2e-specific IgG antibodies could be possible through multiple effector cells that are resident or 

recruited to the site of infection. 

We still know surprisingly little about how effective antimicrobial vaccines work. It was reported that 

Fcγ receptor-dependent phagocytosis of influenza A virions opsonized with HA-specific antibodies is 

a strong contributor of protection by a conventional influenza A vaccine [36]. In addition, protection 

against influenza A virus infection by broadly neutralizing antibodies directed against the HA stalk 

largely depends on FcRs [16]. Recently, another report even suggested that broadly neutralizing 

anti-influenza antibodies, regardless of their epitope, require interaction with FcγRs to mediate in 

vivo protection [37]. Therefore, future developments towards antibody-based universal influenza 

vaccines should consider the role of the Fcγ receptor repertoire in vaccine efficacy. 
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MATERIAL AND METHODS 

Ethics statement. 

All animal experiments described in this study were conducted according to the national (Belgian Law 

14/08/1986 and 22/12/2003, Belgian Royal Decree 06/04/2010) and European legislation (EU 

Directives 2010/63/EU, 86/609/EEC). All experiments on mice and animal protocols were approved 

by the ethics committee of Ghent University (permit numbers LA1400091 and EC2012-034).  

Monoclonal antibodies and their epitope specificity. 

Hybridomas that produce M2e-specific mAbs 37 and 65 were isolated as described [17]. After 

subcloning, these two hybridoma cultures were scaled up and mAb 37 and 65 were purified from the 

culture supernatant by protein A sepharose (GE Healthcare). M2e-Ala scan analysis was performed as 

described [17] and visualized by Western blot using mAb 37, mAb 65 or anti-Flag (Sigma-Aldrich) 

antibody followed by HRP-conjugated sheep anti-mouse IgG (GE Healthcare). Isotype control mAbs 

directed against Hepatitis B core (IgG1) or the Small Hydrophobic protein of human respiratory 

syncytial virus (IgG2a) were produced and purified as above.  

Affinity measurement by ELISA and flow cytometry.  

The affinity of mAb 37 and mAb 65 for M2e was determined by ELISA with M2e peptide 

(SLLTEVETPIRNEWGCRCNDSSDSG, used at 2 µg/ml in 50 µl/well), as described in [17], or MDCK cells 

infected with A/Puerto Rico/8/34 (H1N1) (PR8). A dilution series of mAb 65 or mAb 37 was applied to 

infected cells on ice. Subsequently, cells were fixed with 4% paraformaldehyde and antibody binding 

was detected using HRP-conjugated sheep anti-mouse IgG (GE Healthcare). 

In flow cytometry analysis, PR8-infected HEK 293T cells were incubated on ice with a dilution series 

of mAb 65 or mAb 37 in 0.5% BSA in PBS, and subsequently fixed with 4% PFA. After permeabilization 

(10x Permeabilization buffer diluted in bidi, eBioscience), cells were stained with 1/2000 diluted 

polyclonal goat anti-influenza ribonucleoprotein (RNP) (Biodefense and Emerging Infections 

Resources Repository, NIAID, NIH, NR-4282). Binding of primary antibodies was revealed with 

donkey-anti-mouse IgG coupled to Alexa Fluor 488 (Invitrogen, 1/600) and donkey-anti-goat IgG 

coupled to Alexa Fluor 647 (Invitrogen, 1/600). The median fluorescence intensity (MFI) of the cells 

was determined with a FACS Calibur (BD) flow cytometer. The influenza virus-specific MFI was 

calculated by subtracting the MFI of mAb 37 or mAb 65 positive cells in the RNP negative population 

(uninfected HEK cells stained with 10 µg/ml mAb 37 or mAb 65 and anti-RNP) from the MFI of mAb 

37 or mAb 65 positive cells in the RNP positive population (infected HEK cells stained with dilution 

series of mAb 37 or mAb 65 and RNP). 

Affinity measurement by Surface Plasmon Resonance.  

The affinities of mAbs 37 and 65 for M2e peptide were determined using a Biacore T200 instrument 

(GE Healthcare). Anti-M2e mAbs were immobilized on flow cells of a CM5 sensor chip (GE 

Healthcare) by amine coupling according to the manufacturer’s instructions. A flow cell blocked with 
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ethanolamine served as a reference. M2e peptide in HBS-EP buffer (0.01 M HEPES pH 7.4, 0.15 M 

NaCl, 3 mM EDTA, 0.005% v/v Surfactant P20) was added at concentrations of 0.39, 0.78, 3.13, 6.25, 

12.5, 25 and 50 nM. The samples were injected at 50 µl/min for 180s, after which dissociation was 

monitored for 1000s. The sensor chip surface was regenerated by injecting 10 mM HCl for 60s, and 

20 mM HCl for another 60s. The Biacore T200 Evaluation Software v1.0 was used to calculate the 

association rate constants (kon), dissociation rate constants (koff) and the equilibrium dissociation 

constants (KD = koff/kon) by fitting a 1:1 binding model with drifting baseline. 

N-glycan analysis. 

N-linked oligosaccharides were isolated, derivatized with APTS and analyzed by capillary 

electrophoresis on an ABI3130 capillary DNA sequencer using in-house produced PNGaseF (15.4 IUB 

mU/µl) as described [38]. As electrophoretic mobility references, labeled dextran ladder and N-

glycans from bovine RnaseB were included. The data were analyzed using the Genemapper software 

(Applied Biosystems) and N-glycan profiles were exported as Scalable Vector Graphics (svg) for 

manual alignment and annotation in Inkscape 0.91. Exoglycosidase treatments to determine the 

degree of fucosylation were carried out overnight at 37°C in 20 mM sodium acetate (pH 5.0) on 

labeled glycans using 20 mU Arthrobacter ureafaciens α-2,3/6/8-sialidase (produced in-house), 2.2 

mU α-1,2/3/4/6-fucosidase from bovine kidney (Prozyme), or both. 

In vitro FcγR activation assay. 

FcγR activation by mAb 37 and 65 was compared using a recently developed in vitro FcγR activation 

assay [24, 25, 39]. Cloning of FcγR-ζ constructs and generation of FcγR-ζ BW5147 reporter cells was 

performed as reported [24, 25]. Activation of stably transduced FcγR-ζ BW5147 reporter cells by 

immune complexes results in the production of IL-2 which is quantified by ELISA [24, 25]. MDCK cells 

were seeded in 96 well flat bottom plates and infected with PR8 virus (MOI 5). After one h incubation 

at 37°C, unbound virus particles were removed by washing and serial dilutions of the mAbs were 

added followed by 1.5x105 BW-FcγR-ζ BW5147 reporter cells in a total volume of 200 µl RPMI with 

10% FCS per well. Co-cultures were incubated overnight at 37°C in a 5% CO2 atmosphere. To increase 

the release of produced IL-2 from reporter cells, 100 µl PBS with 0,1% Tween was added to each well 

and 150 µl was used in an anti-IL2 sandwich ELISA as described [24, 25]. 

Challenge experiments in mice. 

BALB/c mice were purchased from Harlan (The Netherlands), BALB/c Fcer1g-/- mice from Taconic 

(Denmark) and C57BL/6 mice from Charles River (France). BALB/c Fcgr3-/- and BALB/c Fcgr1-/- Fcgr3-/- 

double-deficient mice and C57BL/6 Fcgr4-/- mice were bred in-house under SPF conditions. Mice 

were used at the age of 7-8 weeks and were housed in individually ventilated cages, in a 

temperature-controlled environment with 12 h light/dark cycles with food and water ad libitum. To 

evaluate protection, mice were injected intraperitoneally with 100 µg of mAb 37, mAb 65, or 

negative control mAbs. Twenty-four h later, mice were anesthetized with a mixture of ketamine (10 

mg/kg) and xylazine (60 mg/kg) and challenged by intranasal administration of 50 µl PBS containing 4 
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LD50 of mouse-adapted X47 (A/Victoria/3/75 (H3N2) x PR8) influenza A virus for the wt BALB/c, 

BALB/c Fcer1g-/-, BALB/c Fcgr3-/- and BALB/c Fcgr1-/- Fcgr3-/- double knock-out mice. Four LD50 of 

mouse-adapted X31 (A/Aichi/2/68 (H3N2) x PR8) influenza A virus was used to challenge wt C57BL/6 

and C57BL/6 Fcgr4-/- mice. X31 and X47 thus have an identical gene segment 7. Body weight and 

survival of mice was monitored for two weeks after challenge and animals that had lost more than 

25% body weight compared to the time of challenge, were euthanized. 

Statistics. 

Statistical significance between the different mAbs in the FcRs activation assay was analysed using 

two-way ANOVA with Sidak correction for multiple comparisons. Statistical analysis of the differences 

in survival rates was performed by comparing Kaplan-Meier curves using the Log-rank test. Both tests 

were performed in GraphPad Prism version 6.07 for Windows (GraphPad Software, San Diego 

California; www.graphpad.com). Statistical comparison of differences in bodyweight loss was 

performed using Restricted Maximum Likelihood (REML) variance components analysis in Genstat 

64.bit version 18.1. The following linear mixed model (random terms underlined) was fitted to the 

data: Yijkt =  + genotypej + treatmentk + timet + (genotype.treatment)jk + (genotype.time)jt + 

(treatment.time)kt +(genotype.treatment.time)jkt + (mouse.time)it + residualijkt, where Yijkt is the 

relative body weight of i-th mouse having genotype j, k-treated and measured at time point t (t = 1 – 

14 days; equally spaced), and  is the overall mean calculated for all mice considered across all time 

points. A first order autoregressive covariance structure was used to model the within-subject 

correlation and allowed for heterogeneity across time. Significance of the fixed main and interaction 

effects was assessed by an F-test. A value of p ≤0.05 was considered statistically significant. 
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Abstract 

The ectodomain of matrix protein 2 (M2e) of influenza A viruses is a universal influenza A vaccine 

candidate. In this study, we explored the potential evasion strategies of influenza A viruses under in 

vivo M2e-based immune selection pressure induced by passively transferred M2e-specific IgG 

antibodies. PR8-infected SCID mice were chronically treated with one of three anti-M2e mouse IgG 

monoclonal antibodies (mAb) that differ in epitope and/or antibody isotype. mAb65 (IgG2a) and 

mAb37 (IgG1) recognize an M2e epitope that involves amino acids 5 to 15 and bind to M2e with a 

similar affinity. mAb148 (IgG1) binds to the invariant N-terminus of M2e. Treatment of challenged 

SCID mice with these mAbs significantly prolonged survival compared to control IgG treatment. 

Furthermore, M2e-specific IgG2a protected significantly better than IgG1, and was associated with 

virus-clearance in some of the SCID mice. Whole virus genome next-generation sequence analysis of 

the virus population that persisted in mice treated with mAb37 or mAb65, revealed that viruses 

emerged with a proline to histidine or leucine mutation at position 10 and/or an isoleucine to 

threonine mutation at position 11 in M2. These mutations abolished recognition by mAb37 and -65 

and occurred at diverse frequencies, either alone or combined in the viral population. Polyclonal 

anti-M2e serum, induced by vaccination with an M2e-virus-like particle vaccine, still recognized these 

M2e variants. Remarkably, in half of the samples isolated from moribund mAb37-treated mice and in 

all mAb148-treated mice, virus was isolated with a wild type M2 sequence but with non-synonymous 

mutations in the polymerases and/or the hemagglutinin. Some of these mutations, when combined, 

were associated with a delay in M2 expression. We conclude that immune protection by M2e-

specific mAbs selects for viruses with limited variation in M2e, which can still be recognized by 

polyclonal anti-M2e serum. Our results also suggest that influenza A viruses may undergo an 

alternative escape route from M2e-specific mAbs by acquiring mutations elsewhere in their genome 

that results in delayed M2 expression. 
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Introduction 

Human influenza is a highly contagious respiratory disease and remains a major cause of morbidity 

and mortality each year. The licensed influenza vaccines are mainly based on inducing virus 

neutralizing antibodies against hemagglutinin (HA), the major membrane protein of influenza [1]. 

However, these vaccines are strain-specific and their protective effect is limited by antigenic drift, 

which necessitates annual vaccination with an updated vaccine composition. Expanding the antigenic 

breath of influenza vaccines by targeting more conserved antigenic portions of the virus, could lead 

to a new generation of influenza vaccines that protect against disease caused by antigenically drifted 

viruses or even provide protection against multiple influenza A virus subtypes. The protective 

potential of the conserved ectodomain of the matrix protein 2 (M2, ectodomain of M2: M2e) has 

been explored extensively, and supports the inclusion of an M2e-based vaccine in a yet to be 

licensed 'Universal' influenza A vaccine [2-6]. 

M2 is a 97-amino acid homotetrameric transmembrane protein of influenza A viruses with selective 

ion channel activity [7, 8]. In contrast to HA and neuraminidase (NA), only a small number of M2 

molecules (20 to 60/virion) are present in the influenza virion, but M2 is highly expressed on the 

infected cell surface [9-12]. M2e is 23 amino acids long and its sequence is evolutionary conserved 

between human, avian as well as swine influenza viruses [13]. This sequence conservation of M2e 

can be explained by the very limited immune pressure imposed by the host immune system against 

M2e and the overlap of its coding information with the open reading frame of M1, one of the most 

conserved influenza proteins [14, 15]. M2 is translated from a spliced M1 mRNA, with the first 9 aa 

shared between both proteins [16-18]. These residues are almost completely conserved in all 

influenza A virus strains, even in the recently isolated H17N10 and H18N11 viruses from bats [13, 16, 

19]. Amino acids 10 to 23 of M2e are located downstream of the 3' splice acceptor site and are 

translated out-of-frame with the M1 protein, with somewhat more sequence variation observed at 

these positions [13]. 

Influenza viruses can escape from the current vaccination pressure as a consequence of the relatively 

high error rate (2.3 × 10−5) of their RNA-dependent-RNA-polymerase, together with the fact that their 

HA and NA can accommodate almost any amino acid substitution in their dominant antigenic sites, 

without the loss of functions essential for virus replication [20]. Such substitutions can result in 

escape from immune pressure, which provides a selective advantage over the parental virus 

population and can result in outgrowth of the mutant virus. The mechanisms of influenza virus 

escape from monoclonal and polyclonal antibodies that target HA can be recapitulated in vitro and 

has been extensively studied [1, 21, 22]. In contrast, M2e-specific antibodies are not virus 

neutralizing but are protective by binding to Fcγ Receptor expressing immune cells such as alveolar 

macrophages and natural killer cells [23-25].  
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Only two studies have reported on the characteristics of mutant influenza A viruses that emerged 

under M2e-specific immune selection pressure, both using M2e-specific mAbs. In the first study, 

anti-M2e escape mutants were generated by in vitro selection of A/Udorn/72 virus, which, unlike 

most other influenza A viruses, is sensitive in vitro to the direct action of anti-M2e IgG [26]. The 

resistant phenotype was in most escape viruses linked to single amino acid substitutions in the 

cytoplasmic domain of M2 or the N terminus of M1 [26]. In only one escape virus, resistance was 

linked to a glutamic acid to glycine mutation at position 8 in M2 (and M1) and resulted in loss of anti-

M2e IgG binding [26]. The second study, performed by Zharikova and colleagues, made use of SCID 

mice that were infected with PR8 virus and that were treated with anti-M2e mAbs [27]. Escape 

viruses presented with a change in M2e at position 10, where a proline was mutated to either a 

histidine or leucine [27]. Although only the M2e sequence was thoroughly investigated, sequencing 

of 10,641 M1-encoding nucleotides of M2e-escape mutants also revealed six synonymous and two 

nonsynonymous mutations (A127T and V228L) in M1 [27]. These mutations were based on sequence 

analysis of a virus sample that had been amplified on MDCK cells using virus present in the lung 

homogenates of treated mice as the starting inoculum. As such, cell culture adaptation may have 

disturbed the original variant frequencies of the virus that was present in the lung and therefore 

some of the in vivo viral diversity may have been missed. Sequence analysis of the MDCK grown virus 

was performed by direct Sanger sequencing of purified RT-PCR product [27]. Although state of the art 

in 2005, this method has a relatively limited sensitivity of approximately 20 % to detect variant 

sequences. In addition, the anti-M2e mAbs used in the study of Zharikova et al. were all IgG2a and 

recognized the same epitope. It is now clear that the B cell response against M2e-based vaccines is 

oligoclonal, and M2e-specific mAbs that bind to different parts of M2e have been described [28-30]. 

Moreover, FcγRs play a very important role in anti-M2e based immunity and these receptors 

differentially engage different antibody isotypes [23, 31, 32]. Therefore, it would be interesting to 

explore the escape routes of influenza A viruses from selection imposed by different anti-M2e IgG 

isotypes. 

Here, we used a next-generation sequencing (NGS) approach to explore the possible escape routes of 

influenza viruses in SCID mice under anti-M2e mAb pressure. We previously described a workflow to 

study the genetic diversity of influenza A viruses using NGS [33]. This approach allows whole genome 

sequence analysis with higher sensitivity compared to Sanger sequencing of PCR products, and thus 

may allow the identification of minor variants in the viral population. Importantly, bias introduced by 

in vitro amplification of the virus on cells and cloning of viral isolates is bypassed, since sequence 

analysis is performed directly on RT-PCR products prepared from influenza viral genomic RNA 

present in BAL fluid. 

Anti-M2e mAbs of the IgG2a (mAb65) and IgG1 (mAb37) isotype that recognize a similar epitope in 

M2e with the same affinity were used for in vivo escape selection [28, 34] (see also Chapter 7). In 

addition, an anti-M2e mAb (mAb148, IgG1) was included that binds to the very conserved first 8 aa 

of the N-terminal part of M2e [29]. We found that treatment of infected mice with anti-M2e mAbs 
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resulted in significant longer survival when compared to control mAb treated mice. In addition, M2e 

escape mutants were selected in vivo in mAb37 or mAb65 treated mice, but not in mice treated with 

mAb148. However, escape in M2e was limited to a proline to histidine or leucine mutation at 

position 10 and/or a isoleucine to threonine mutation at position 11. These M2e-mutants retained 

sufficient antigenicity for recognition by a polyclonal anti-M2e immune serum. Remarkably, in half of 

the mAb37 treated and in all mAb148 treated mice that eventually succumbed to infection, only virus 

with wild type M2e was detected. Instead, several mutations with a frequency above 50% were 

observed in PB2, PA and HA in these samples. We found that a combination of some of these 

mutations was associated with delayed M2 expression. 

Results 

Experimental conditions that result in sufficient rounds of viral replication to select for M2e escape 

mutants. 

A well-characterized, plasmid-derived PR8 viral stock was used to infect SCID mice [33]. To select for 

M2e escape variants in this virus upon treatment with M2e mAbs, a suitable infection dose had to be 

determined which allows multiple replication cycles before the ethical experimental endpoint of 25% 

body weight loss is reached. Therefore, SCID mice were infected with 10 or 50 PFU of PR8 virus. 

BALB/c mice infected with 50 PFU of PR8 virus were included as control. The ethical experimental 

endpoint was reached in 75% of the SCID mice on day 11 after infection and in 50% of the SCID mice 

on day 7 after infection with 10 and 50 PFU of PR8 virus, respectively (Figure 1). One mouse still 

retained 92.59% of its initial bodyweight on day 11 after infection with 10 PFU of PR8 virus, the time 

at which the remaining three mice in that group had reached the ethical endpoint. This difference in 

morbidity within that group may have been due to the random variation in the amount of infectious 

virus particles (10 PFU) present in the inoculum (50 µl). The possible variation in the inoculum stock 

was therefore determined by performing a plaque assay in triplicate immediately after the mice were 

infected. This revealed that the number of plaques in 50 µl of the 10 PFU/50 µl inoculum ranged 

from 4 to 8. Therefore, it is possible that the SCID mouse that displayed limited weight loss after 

challenge may in practice have had received too few PFUs. 
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Figure 1: 10 PFU of PR8 virus is a suitable infection dose to allow multiple rounds of viral replication in SCID 

mice. SCID (n = 4 per group) or BALB/c (n = 2) mice were infected with 10 or 50 PFU of PR8, or mock-infected (n 

= 2). Shown is the relative bodyweight per mouse after infection.  

A viral dose of 10 PFU allows at least 11 days of viral replication before the mice reach their ethical 

experimental endpoint. We reasoned that this was a convenient time span to allow the emergence 

of anti-M2e IgG escape mutants. Next, the influenza-specific RT-PCR protocol was optimized for 

samples with a low viral titer, such as bronchoalveolar lavage (BAL) fluid isolated from infected mice, 

to ensure successful amplification of all eight genomic RNA segments (Figure 2) [33]. 

 

Figure 2: Whole genome amplification of influenza A viruses isolated from BAL fluid of infected mice. 

Bronchoalveolar lavage (BAL) fluid was isolated 11 dpi from SCID mice infected with 10 PFU of PR8. An 

influenza-specific RT-PCR was performed on 200 µl of BAL fluid using primers targeting the conserved 5' and 3' 

termini of each genomic segment. After DNA purification, 500 ng of each sample was separated on length by 

gel electrophoresis on a 1% agarose gel. DNA fragments were stained using ethidium bromide. 1-4: influenza 

specific RT-PCR products on vRNA extracted from BAL fluid isolated from four different SCID mice. + = 500 ng of 

RT-PCR product of RNA isolated from PR8 stock virus. - : negative control for RT-PCR. 
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Figure 3: Anti-M2e mAbs significantly prolong survival in SCID mice. One day before infection, SCID mice were 

i.p. injected with 100 µg and at weekly intervals thereafter with 50 µg of mAb37, mAb65, mAb148 or negative 

control mAbs. Twenty-four h after the first mAb injection, mice were challenged with 10 PFU (two groups of 

mice treated with mAb65 were infected with either 50 (n = 4) or 100 PFU (n = 2), as mentioned in panel B) of 

PR8 virus. Survival (left) and body weight (right) were monitored daily. In the right hand graphs, data points 

represent averages and error bars standard deviations. (A) Treatment with mAb65 significantly prolonged 

survival compared to all other groups (n = 4, **: p = 0,0067). Treatment with mAb37 significantly prolonged 

survival compared to control treated groups (mAb37: n = 4, *: p = 0,0101; IgG1 and IgG2a controls: n = 3). (B) 

Treatment with mAb37, mAb148 and mAb65 (when infected with 50 PFU) significantly prolong survival 

compared to control treated groups (mAb37: n = 6, **: p = 0,0018; mAb148: n = 7, ***: p = 0,0008; mAb65: n = 

4, *: p = 0,0101, IgG1 control: n = 3). The survival between groups was compared using the Logrank test. 

Treatment with anti-M2e mAbs significantly prolongs survival of challenged SCID mice  

Next, the protective effect of and genetic diversity induced by treatment of PR8-infected SCID mice 

with three different well-characterized anti-M2e mAbs was analysed. mAb37 (IgG1) and mAb65 

(IgG2a) recognize a part of M2e that involves residues 5 to 15 in M2e and bind human consensus 

M2e with similar affinity, while mAb148 (IgG1) binds the 8 N-terminal aa residues in M2e [28, 29, 

34]. Mice were treated with 100 µg of one of the three anti-M2e mAbs or isotype control mAbs one 

day before infection by intraperitoneal injection. This resulted in a serum antibody concentration of 

40 to 80 µg/ml, based on M2e peptide ELISA, on the day of challenge (unpublished results). To 

compensate for the IgG half-life and to ensure constant M2e antibody pressure over time, 

subsequent antibody injections of 50 µg per mice were given in weekly intervals [35]. 
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All anti-M2e mAbs significantly prolonged survival of PR8 challenged SCID mice compared to isotype 

control treated animals in two independent experiments (Figure 3). All mice that had been 

challenged with 10 PFU of virus and treated with mAb65 survived and displayed limited transient 

body weight loss early after infection (Figure 3.A). Using a five times higher infection dose, half of the 

mice treated with mAb65 were still alive at 50 days post infection whereas two of the SCID mice had 

to be euthanized on days 28 and 37 after challenge (Figure 3.B). mAb65-treated mice that had been 

challenged with 100 PFU of PR8 virus succumbed to infection by day 38 after infection. Treatment 

with mAb37 and mAb148, both IgG1 but recognizing a different epitope in M2e, resulted in 

comparable, significant prolongation of survival compared to control treatment and a statistically 

insignificant trend in favour of mAb148 (Figure 3.B).  

mAb65 treatment of PR8 infected SCID mice reduces lung viral loads 

Vaccination strategies based on M2e enhance the clearance of virus from the lungs and result in 

reduced lung viral titers in immune competent mice [2]. To evaluate the influence of M2e-specific 

mAbs on viral titer in the SCID model, we determined the viral titer in BAL fluid on day 7 and day 14 

after infection and when mice had lost 25% of their initial body weight in the first experiment. Time 

points for the assessment of lung virus loads in the second mice experiment were 13 dpi (the day 

that the last control mouse had lost 25% of her initial bodyweight) and when the mice had lost 25% 

of their initial body weight. The viral titer in mice infected with 10 PFU and treated with mAb65 was 

significantly different from the IgG2a control group 7 dpi (p = 0.0378), 14 dpi (p = 0.0380) and at the 

end of the experiment (38 dpi, p = 0.0148) (Figure 4.A). Administration of mAb 65 even resulted in 

virus-clearance in most of the SCID mice in the first experiment. Challenge with 50 PFU of PR8 virus 

was still associated with viral clearance in half of the samples (Figure 4.B). In all anti-M2e treated 

moribund mice, viral titers were similar to the control antibody treated mice. No significant 

differences in viral titer between mice treated with M2-specifc mAbs mAb37 or mAb148 or control 

antibodies could be detected. 
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Figure 4: mAb65 treatment of PR8 infected SCID mice reduces lung viral titer. Mice were infected with 10 PFU 

of PR8 (unless otherwise mentioned) and BAL fluid was isolated on the indicated time point. The viral titer in 

BAL fluid was determined by viral plaque titration on MDCK cells. Panel A and B represent data obtained from 

independently performed mice experiments. (A) The viral titer in mAb65 treated mice was significantly 

different (Unpaired T-test, * = p < 0.05) from the IgG2a control group after infection with 10 PFU on 7 dpi (p = 

0.0378 ), 14 dpi (p = 0.0380) and at the end of the experiment (38 dpi, p = 0.0148). (B) No significant 

differences in viral titer between mice treated with M2e-specific or control mAbs could be detected (unpaired 

T-test, p > 0.05). BAL fluid from mAb65 treated mice infected with 50 PFU was isolated at 50 dpi (n = 2, no virus 

detected) or when mice had lost at least 25% of their initial bodyweight (n = 2). 25% bw: viral titer in BAL fluid 

samples isolated from mice on the day when the ethical experimental endpoint of at least 25% loss of the initial 

body weight loss was reached. 

Whole viral genome NGS sequence analysis 

Whole genome analysis was performed using the workflow described before [33], with some 

adaptations in the influenza-specific RT-PCR protocol to allow amplification of viral RNA in samples 

with a lower viral titer. The purified RT-PCR samples of both mouse experiments (first experiment: n 

= 18, second experiment: n = 25) were sequenced in two separate Illumina MiSeq runs and the 

minimum, maximum and average coverage depth are listed in supplementary table S1. All variants 

detected at a frequency above 10% in these samples are listed in supplementary tables S2-S14.  

A high sequence diversity within a given virus sample is often associated with increased viral fitness 

of the viral population. This has been shown e.g. for poliovirus, where a mutant virus carrying a 

polymerase with a higher than natural replication fidelity, which resulted in lower genetic diversity in 

the viral population, turned out to be less fit in competition assays [36, 37]. We therefore first 

determined the Shannon entropy, which is a direct measure for the variation in a given sample, for 

each position in the PR8 sequence to investigate if any of the viral populations present in the BAL 

fluid had an altered nucleotide sequence diversity, e.g. as a result of anti-M2e IgG selection pressure. 
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Within the same experiment, the Shannon entropy was similar in all samples for all conditions and all 

eight segments (Supplementary Figure S1). However, the mean Shannon entropy was significantly 

higher in the second compared with the first experiment (Supplementary Figure S1; p<0.001, 

unpaired two-sided Student t-test). In both experiments a different version of the 'MiSeq Reagent 

Kit' was used (v1 in the first and v2 in the second experiment), in which a different DNA polymerase 

is present and can perhaps explain the observed higher Shannon entropy in the second experiment  

We next mapped all sequence variants that were detected at frequencies above 50% in M2e mAb 

treated samples to the primary structural maps of the viral proteins (Figure 5). The highest number 

of variants were present in the polymerases PB2 and PA and in HA. Distance-based clustering showed 

that the variants in the M2e antibody and control treated groups clustered in the same group. The 

variants detected in the M2e treated mice are thus not more closely related to each other than to 

the variants that were present in the control treated groups. In addition, no predictive polymorphism 

for either anti-M2e mAb-treated or control mAb treated viral samples could be determined using 

logistic regression.  

 

 

 

 

 

Figure 5 (next page): Mutations selected under M2e-specifc mAbs mapped to the primary structures of the 

viral proteins. Mutations detected above 50% are mapped to the primary structural maps of the viral proteins. 

Mutations are indicated with arrowheads and mutations that were detected in more than one sample are 

marked with an asterisk. The interaction domains or functional sites are labeled and colour coded as described 

in [38], except for HA which is labeled as in [39]. Nuclear localisation signals (NLS) are indicated in black. The 

cap-binding domain of PB2 is marked in orange. Impα5: importin subunit α5, hCLE: human transcription factor, 

RBS: Receptor binding site, F: fusion peptide, TM: transmembrane domain, D: dsRNA/PABP1/RIG-1/E1B-AP5 

interacting domain, E: eIF4G1/CPSF interacting domain, PABPI and II: poly-A binding protein 1, respectively 2; 

RIG-I: retinoic acid inducible gene I, E1B-AP5: E1B associated protein 5; CPSF: cleavage and polyadenyaltion 

specificity factor; eIF4GI: eukaryotic translation initiation factor 4G1 and PKR: Protein kinase R and NES: nuclear 

export signal. 
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M2e escape mutants are selected in vivo with mAb37 or mAb65 but not with mAb148 

The sequence variation of M2e in the viral stock used to infect the mice and in all mice that received 

control treatment in the first mice experiment, was below the detection limit [33]. Three types of 

variation were detected in M2e in virus samples that were derived from mAb37 and mAb65 treated 

mice: M2-P10H, -P10L and -I11T. These M2e mutations were either present alone, or in combination 

in the samples (Figure 6). The M2e mutations were detected in 6 out of 10 mice that were treated 

with mAb37 that reached the ethical endpoint at a frequency that ranged from 0.62% to 90.26% 

(Figure 6). In the second experiment, where mice were infected with a viral dose of 50 or 100 PFU, a 

change in predicted M2e sequence was detected in all four mice that had lost 25% of their initial 

body weight (and thus were euthanized) after mAb65 treatment with a frequency that ranged from 

4.11% to 99.96% (Figure 6). Interestingly, virus in the BAL fluid of all mAb148 treated mice still had a 

wild type M2e sequence.  

 

Figure 6: Changes in M2e after treatment with M2e-specific mAbs is limited to P10H, P10L and I11T. Infected 

SCID mice were treated with M2e-specific mAbs (mAb37 or mAb65). BAL fluid was isolated at the indicated 

time points, or when mice had lost 25% of their original body weight, followed by influenza-specific RT-PCR and 

the variation in M2e was determined by Illumina MiSeq sequencing. The results for mAb37.1 and mAb37.2 are 

from two independent experiments and mice were infected with 10 PFU of PR8 virus. BAL fluid from mAb65 

treated mice was isolated when mice had lost at least 25% of their initial body weight after infection with 

either 50 or 100 PFU of PR8 virus.  

The variation in the M2e sequence was limited to position C762A (P10H) or C762T (P10L) for mAb65. 

In mAb37 treated mice, also an additional mutation at position T765C (I11T) was detected. These 

three mutations are all synonymous in M1, hinting for a strong genetic selection pressure on M1. We 

previously reported that mAb37 and -65 recognize an overlapping epitope in M2e and bind to M2e 

as present in PR8 virus with similar affinity [34]. However, the I11T mutation in M2e is only detected 



 

194 

 

in mAb37 treated mice, suggesting that position 11 of M2e is less critical for binding of mAb65 to 

M2e. A difference in epitope specificity between mAb37 and mAb65 was confirmed by ELISA using 

different M2e variant peptides (Supplementary Figure S2). 

To confirm that the observed mutations in M2e that were present in virus samples from mAb37 and -

65 treated SCID mice are genetically stable and abolish binding by these anti-M2e mAbs, we 

generated recombinant PR8 virus with these mutations by reverse genetics [40]. The rescued viruses 

were plaque purified and the presence of the introduced mutations after large-scale virus production 

of the viruses was confirmed by Sanger sequencing of the RT-PCR-amplified M segment. All three 

mutations were homogenously present in the respective virus stocks, which suggests that they are 

not detrimental for in vitro viral replication (Figure 7). 

 WT PR8 PR8-M2 P10H (C762A) 

  

PR8-M2 P10L (C762T) PR8-M2 I11T (T765C) 

  

Figure 7: The P10H, P10L and I11T mutations in M2e of PR8 virus are stable during in vitro virus growth. Wild 

type PR8, PR8-M2 P10H, PR8-M2 P10L and PR8-M2 I11T viruses were amplified on MDCK cells to produce the 

respective stock viruses. The Sanger sequencing profile of RT-PCR amplified M segment, isolated from the 

different stock viruses with the introduced mutation highlighted in red, is shown. The introduced single 

nucleotide substitution (M segment numbering) which results in the mutated M2e sequence is added in 

parenthesis. 

The ability of the M2e-specific mAbs to bind to these M2 mutant viruses was investigated using cell-

ELISA. mAb148 bound to cells that had been infected with any of the four M2e variant PR8 viruses 

(Figure 8). In contrast to wild type virus, foci of PR8 viruses with M2e-P10L or -P10H were not 

recognized by mAb37 or mAb65 (Figure 8). In addition, mAb37 bound only weakly to PR8-M2 I11T 

while mAb65 retained a similar binding capacity as for the wild type PR8 foci. mAb148 could bind to 

all tested M2e variants (Figure 8) This differential recognition of virus with M2e-I11T is in line with 

the NGS results of the in vivo escape selection. 
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Figure 8: mAb65 and mAb37 fail to bind to M2e when a proline or histidine is present at position 10. MDCK 

cells were infected with A/Puerto Rico/8/34 (PR8) virus or a PR8 virus that carries a P10L, P10H or I11T M2e 

variant. Twenty-four hours later, the cells were incubated with a dilution series of mAb37, mAb65, mAb148 or 

negative control (0.5% BSA in PBS) and fixed with 4% paraformaldehyde. Binding of the M2e-specific mAbs was 

determined using horseradish peroxidase-conjugated sheep anti-mouse IgG as secondary Ab. 

The M2e escape mutants were selected using monoclonal antibodies whereas the humoral immune 

response elicited by M2e-based vaccines is polyclonal. Consequently, the potential of polyclonal M2e 

immune serum to bind these M2e variant viruses was analyzed using cell-ELISA. Foci of cells that had 
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been infected with PR8 viruses carrying wild type M2e, M2e-P10L, -P10H or -I11T mutations were 

still recognized by serum IgG derived from mice that had been vaccinated with M2e-HBc virus-like 

particles that contained three tandem copies of M2e: human consensus M2e, P10L M2e and M2e 

containing both P10L and I11T (Figure 9). In addition, antibodies of both the IgG1 and IgG2a isotype 

in this M2e vaccine induced mouse serum could bind to the different M2e escape viruses (Figure 9). 

These results suggest that monoclonal antibody escape in the M2e epitope still retains sufficient 

antigenicity for recognition by a polyclonal anti-M2e immune serum. 

 

Figure 9: M2e variant viruses are recognized by polyclonal M2e immune serum. MDCK cells were infected 

with A/Puerto Rico/8/34 (PR8) virus or a PR8 virus carrying an M2 variant (PR8 M2-P10H, -P10L or -I11T). 

Twenty-four hours later, the cells were fixed with 4% paraformaldehyde and incubated with an individual 

dilution series of immune serum per M2e-HBc vaccinated mouse (n = 10). Binding of the M2e-specific mAbs 

was determined using horseradish peroxidase-conjugated sheep anti-mouse IgG, goat anti-mouse IgG2a or 

goat anti-mouse IgG1 as secondary Ab. Error bars represent the standard deviation. 

 

Delayed M2 expression represents a possible alternative route of escape from anti-M2e IgG immune 

pressure. 

While determining the virus titers present in the BAL samples of the SCID mice that had been treated 

with mAb37 and which had a wild type M2 sequence, we noticed a remarkable plaque morphology. 

The plaque immune-staining with mAb37 resulted in a smaller halo compared to plaques from 

control antibody-treated mice (Figure 10.A). NGS analysis of virus in this sample, had revealed five 

mutations that were present in more than half of the viruses in the sample: 62.7 % K443R in PB2, 

98.09% I550T in PA and 99.80% silent mutation (G679A), 96.32% A231S and 96.15% I361M (I18M in 

HA2) in HA. Recombinant mutant viruses were created containing one or a combination of these 

sequence variants. The recombinant virus containing all five mutations was named PR8-HPP virus. 

Compared to wild type PR8, plaques of PR8-HPP infected MDCK cells had a smaller halo after anti-
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M2e mAb staining (Figure 10.B). This smaller halo compared to the one visualized with anti-vRNP 

serum suggests that the timing or levels of M2 expression could possibly be altered in the PR8-HPP 

virus (Figure 10.B and Supplementary Figure S3).  

 

A. BAL fluid  B. Viral stocks 

mAb37 staining  mAb37 staining 

IgG1 control mAb37  PR8 PR8-HPP 

  

 

  

Polyclonal anti-RNP staining  Polyclonal anti-RNP staining 

IgG1 control mAb37  PR8 PR8-HPP 

  

 

  

Figure 10: Plaques of virus isolated from a PR8-infected, mAb37-treated mouse and PR8-HPP show reduced 

M2e staining. MDCK cells were infected and fixed with 4% paraformaldehyde two days later. The plaques were 

revealed by immunostaining using an anti-M2e specific mAb (mAb37) or polyclonal anti-RNP Abs, followed by 

horseradish peroxidase-conjugated sheep anti-mouse IgG, respectively donkey anti-goat IgG, and TMB staining. 

(A) MDCK cells were infected with virus present in BAL fluid isolated from mice that had to be euthanized after 

infection with PR8 and IgG1 control mAb (left panel) or mAb37 (right panel) treatment. Plaques were first 

stained with mAb37 (upper panel) and subsequently with polyclonal anti-RNP (lower panel). Sequence analysis 

revealed that viruses in these BAL samples had a wild type M2e sequence. However, five mutations were 

present above 50% in the viral population of the mAb37-treated sample: K443R in PB2, I550T in PA and a silent 

mutation (G679A), A231S and I361M (I18M in HA2) in HA. (B) MDCK cells were infected in parallel with PR8 

(left panel) or PR8-HPP virus (right panel). The latter virus was generated by reverse genetics and carries 

mutations K443R in PB2, I550T in PA and a silent mutation (G679A), A231S and I361M (I18M in HA2) in HA. 

Plaques from different wells were stained with mAb37 (upper panel) or polyclonal anti-RNP (lower panel). 

The hypothesis that influenza viruses can escape from anti-M2e mAbs selection pressure by delaying 

M2 display on the infected cell surface was investigated by performing in vitro virus growth kinetics 

experiments, in which surface expression of M2 and NA was determined at different time points 

after infection. Flow cytometric analysis of these samples did not show delayed surface expression of 

M2 for the PR8-HPP virus, compared to surface expression of NA (Figure 11). In addition, the kinetics 
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of surface expression of M2 and NA are similar to the ones observed for wild type PR8 virus, 

suggesting similar replication kinetics for both viruses (Supplementary Figure S4). 

 

Figure 11: The kinetics for surface expression of M2e and NA are similar for PR8-HPP. HEK cells were infected 

with a moi of 0.5 and fixed with 2% paraformaldehyde at the indicated time points. The cells were either 

stained with mAb37 (M2e-specific mAb, blue) or 7D3 (NA-specific mAb, red), followed by a secondary anti-

mouse antibody coupled to Alexa Fluor 488 and analysis on an LSRII HTS (BD) flow cytometer. The graphs are 

the representative of one out of two experiments. 
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Figure 12: Expression of M2 is delayed in the PR8-HPP virus. HEK cells were infected at a moi of 0.5 with the 

indicated wild type or mutant PR8 viruses. Cell lysates were made on the indicated time points, followed by 

separation of the proteins on size on a 15% SDS-PAGE gel, western blotting and detection of M2e, RNP and 

actin. The graphs are the representative of one out of two experiments. 

A delay in M2 expression of PR8-HPP was, however, evident after analyses of the cell lysates from 

the kinetics experiment by Western blotting (Figure 12). RNP-staining shows detectable expression of 

the vRNP proteins for both PR8 and PR8-HPP starting from five hours post infection. In contrast, M2 

is detected starting from 7 hpi for PR8 and only from 9 hpi onwards for PR8-HPP (Figure 12).  

In summary, these data shows that M2 expression is delayed in the PR8-HPP virus, when compared 

to wild type virus by Western blotting analysis. However, this observation is not reflected in the M2e 

surface expression based on flow cytometric analysis. 

Discussion 

Influenza is a vaccine preventable disease, but the current vaccination strategies are limited by their 

strain specificity and the ease by which the virus can mutate and evade the evoked humoral immune 

response. Currently, several influenza vaccines are being developed against conserved epitopes, 

aiming for broad-spectrum, long-lasting immunity. An important question to answer is: "Can 

influenza viruses also escape from immune pressure directed against more conserved epitopes?". 

The sequence conservation of an influenza peptide or protein sequence can be due to functional 

constraints or the consequence of a poor immune pressure against such epitopes. It is thus 
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important to investigate if and how influenza viruses can escape from the immunity elicited by 

broadly protective influenza vaccines. 

In this study, we analyzed the genetic variability of influenza A viruses under immune pressure 

evoked by three different M2e-specific monoclonal antibodies in SCID mice, at levels similar to the 

M2e-specific serum antibody titers obtained after prime-boost vaccination of mice with M2e-MAP 

[41]. The absence of T- and B-cells in SCID mice creates a very controlled environment to study the 

viral diversity under chronic M2e treatment. All three M2e-specific mAbs significantly prolonged the 

survival of infected mice when compared to the control group. In addition, IgG2a mAb65 significantly 

prolonged the survival of challenged mice when compared to mAb37 (IgG1) treatment. This is in line 

with our previous results, showing that mAb65 can bind to all activating FcγRs, while mAb37 is 

limited in binding to activating receptor FcγRIII [34]. 

Whole genome analysis of the isolated viruses suggests that the virus can follow different pathways 

to circumvent the M2e-specific antibody pressure. The most obvious one is by favouring the 

outgrowth of a virus that has a mutation in the epitope recognized by the mAbs. Mutations in M2 

were detected in mice that had been treated with mAb37 and mAb65, but not in virus derived from 

mice that were treated with mAb148. In the mAb37 and mAb65 treated mice, diversity was only 

observed at positions 10 and 11 and limited to P10L/H and I11T, which appeared either alone or 

combined. These mutations are all silent for M1, suggesting that variation in M2e is limited by 

genetic restriction to M1. A threonine at position 11 in M2 is the consensus in avian influenza viruses, 

demonstrating the genetic flexibility at that position. The observed variants are also in line with the 

crystal structure of mAb65 that showed a critical role for Glu6, Pro10, Ile11 and Trp15 for mAb 

binding, although it was surprising that none of the mAb65-treated mice had virus with a Ile11 

alteration in M2 as was found in mAb37-treated mice [28]. The absence of variation at Glu6 and 

Trp15 is due to genetic constraints in M1: Glu6 is translated in frame with M1 and every nucleotide 

substitution in the codon encoding for Trp15 results in alteration of Met244 or Gly245 in M1. 

Active vaccination strategies induce an oligoclonal anti-M2e response [42]. We showed that the M2e 

escape mutants are still recognized by M2e immune serum that was raised with an M2e-virus like 

particle construct. In addition, Wolf et al. reported that mice vaccinated with M2e-MAP, which 

carries four identical human consensus M2e side chains, were fully protected against challenge with 

PR8-M2 P10L or PR8-M2 P10H virus [43]. Moreover, in a review article by Gerhard et al., it was 

stated that when PR8 infected SCID mice were treated with a combination of mAbs which can bind to 

wild type M2e and the P10H and P10L M2e variants, also no escape mutants emerged [44]. The same 

review also states that eleven consecutive passages of PR8 virus in M2e-vaccinated BALB/c mice did 

not result in selection of a single M2e escape virus [44].  

Virus isolated from mAb148 treated mice carried wild type M2. This suggests that there is no or very 

little room for alterations in the sequence encoding the first nine amino acids of M2. In addition, 
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mAb148 could still bind to cells that had been infected with the P10H/L and I11T M2e escape variant 

viruses. This is in line with the crystal structure of mAb148 bound to M2e, where the deep and 

narrow binding pocket formed by the complementarity-determining regions (CDRs) of mAb148 

accommodates the N-terminal part of M2, with Pro10 and Ile11 emerging out of the binding pocket 

[29]. Furthermore, treating experimentally infected individuals with a human M2e-specific 

monoclonal antibody (TCN-032), did not result in low frequency variations within the SLLTE (M2e 

amino acid residues 2-6) epitope or elsewhere in the M2 sequence in the virus that was present at 

the latest time points in positive nasal swab samples, as determined by 454 deep sequencing [3]. All 

these findings suggest that only limited variability in M2e is tolerated, presumably as a consequence 

of the genetic constraint imposed by M1. 

In half of the BAL fluid samples of moribund mAb37 and mAb65 treated mice, and in all moribund 

mAb148-treated mice, virus was isolated with a wild type M2 sequence, but with non-synonymous 

mutations in other gene segments, principally in the polymerases and HA. In addition, mutations at 

high frequency were also detected in other viral proteins in samples containing variation in the M2 

sequence. The high diversity in these selected variants demonstrates that the virus can follow 

multiple evolutionary pathways to escape to M2e immune pressure. The functions of some of these 

mutations have been described in literature. E.g. the I504V mutation in PB2 of PR8 displays a higher 

replication efficiency than the parental virus [45, 46]. Several of the mutations that were found in the 

current study (Supplementary tables S1-S13) have also been acquired during viral mouse-adaptation 

experiments, e.g. D740N in PB2, M205I in PB1 and P199S in HA [38, 47, 48]. 

Our results reveal that escape by delayed M2 production compared to wild type viruses represents a 

possible alternative escape route. It should be mentioned that the kinetic experiments were 

performed in HEK cells, which are of human kidney origin. To better mimic the in vivo situation, the 

kinetic should be repeated using a more homologous system, such as the mouse MLE-15 cell line. 

Determination of the viral titer in the supernatants should then also be included since this will learn 

if the window between the start of M2 expression and viral release in the mutant virus is shorter 

compared to that of wild type virus. A shorter window may enable virus release before the immune 

cells can attack the antibody-bound M2 expressing cells. Determination of the viral dose that results 

in 50% lethality (LD50) will allow us to compare the pathogenicity of PR8-HPP with that of wild type 

virus. Subsequently, the delayed M2 expression should be verified in vivo by immunochemistry. In 

addition, the potential of PR8-HPP to evade M2e immune pressure should be studied in vaccinated, 

immunocompetent mice. 

In all the treatment groups, both control mice and mice treated with M2e-specific mAbs, virus with 

mutations in the polymerases emerged above 10%. The I504V mutation in PB2 was present above 

10% in virus isolated from half of the anti-M2e mAb treated mice, and virus isolated from 20 % of the 

mice carry a mutated position 550 in PA. It has been reported that the I504V mutation in PB2 and 

I550L in PA have enhanced in vitro polymerase activity and higher pathogenicity in mice [45, 46]. In 
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addition, several other mutations that have been linked to increased virulence are present in the 

polymerases at frequencies above 10%: e.g. D309N [49], R318K [47, 50], R355K [50-52] in PB2 and 

V127I [47, 53] in PA. Another strategy to escape to M2e immune pressure could thus be by gaining 

faster replication and associated enhanced pathogenicity in the host. HvPR8, a PR8 variant which is 

virulent in Mx1-congenic mice although it exhibits normal sensitivity to growth restriction by this 

protein, can escape to the induced antiviral response by enhanced replication [48]. Several variants 

in PB2 and PA - some with unknown function together with some for which the increased 

polymerase activity has been described - were tested using a minireplicon system in HEK cells. 

However, in all tested combinations, the mutant polymerase complex showed no significant 

increased activity compared to the wild type polymerases (unpublished results). It remains possible, 

however, that the selected mutants are optimized for replication in murine cells. This should be 

verified using the minireplicon in murine cells, e.g. L929 cells. 

The fitness of influenza viruses can also increase by a mutation in the receptor binding domain (RBD) 

of HA that increases the binding to its receptor. The crystal structure of HA from the PR8 virus 

revealed that it can bind similarly to α2,3- and α2,6 linked sialic acids (SA) [54]. However, the mouse 

lung predominantly contains α-2,3 linked SA's [55]. A D238G (D225G in H3 numbering) mutation was 

detected in several samples at a high concentration. This mutation is described to increase binding to 

α2,3-linked SA [56, 57]. In addition, the detected E169K (E156K in H3 numbering) mutation in HA 

increases its avidity for receptor binding [58]. 

Escape from M2e-specific immune pressure in a chronically infected immune compromised host is 

thus a complex process for which influenza viruses may use several strategies. Escape in the M2e 

epitope can likely be prevented by including different M2e variants in the vaccine. The chance that 

viruses will emerge with increased virulence in the human population when applying M2e 

vaccination, is unclear. Since M2e-based vaccines are not virus neutralizing but infection-permissive, 

both the humoral and cellular immune system will be stimulated upon infection, which will likely 

result in viral clearance before virus adaptation can take place. Consequently, an important next step 

is to mimic a more natural situation by evaluating the viral diversity in immunocompetent mice after 

M2e-based vaccination. This would require serial passaging of the virus, using samples taken prior to 

virus control by the adaptive immune response that is elicited in such a host.  
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Material and Methods 

Ethics statement.  

All animal experiments described in this study were conducted according to the national (Belgian Law 

14/08/1986 and 22/12/2003, Belgian Royal Decree 06/04/2010) and European legislation on the 

protection of animals used for scientific purposes (EU Directives 2010/63/EU, 86/609/EEC). All 

experiments on mice and animal protocols were approved by the ethics committee of Ghent 

University (permit numbers EC2012-034). All efforts were made to avoid and ameliorate suffering of 

animals. 

Cell lines.  

MDCK cells were cultured in Dulbecco's Modified Eagle medium (DMEM) supplemented with 10% 

fetal calf serum, non-essential amino acids, 2 mM L-glutamine, 100 U/ml penicillin and 0.1 mg/ml 

streptomycin at 37°C in 5% CO2. HEK293T cells were cultured in the same medium, with the addition 

of 0.4 mM sodium pyruvate. 

Generation of monoclonal antibodies.  

Hybridomas were derived from splenocytes isolated from BALB/c mice i.p. immunized three times 

(three weeks interval) with 10 µg M2e-tGCN4, a soluble tetrameric M2e-antigen described in [59], 

adjuvanted with MPL+TDM adjuvant system (Sigma). Hybridomas were screened in M2e peptide and 

M2e-tGCN4 ELISA for the presence of M2e-specific IgG. After subcloning, scaled up cultures of 

hybridomas 37, 65 and 148 were used for purification of mAb37, -65 and -148 using protein A 

sepharose columns (GE Healthcare, Uppsala, Sweden). Isotype control mAb directed against the 

ectodomain of NB of influenza B virus (IgG1) or the Small Hydrophobic protein of human respiratory 

syncytial virus (IgG2a) were produced and purified as above and were used as irrelevant antigen-

specific controls in passive transfer experiments. 

Infection, treatment, and analysis of mice.  

C.B-17/IcrHan®Hsd-Prkdcscid (SCID) mice were purchased from Harlan and BALB/c mice from Charles 

River (France). Mice were used at the age of 7-8 weeks and were housed in individually ventilated 

cages, in a temperature-controlled environment with 12 h light/dark cycles and food and water ad 

libitum. Influenza virus challenge experiments were performed in biosafety level 2+ facilities. To 

determine the viral inoculum which allows sufficient rounds of viral replication to select for M2e 

escape mutants, mice were anesthetized with a mixture of ketamine (10 mg/kg) and xylazine (60 

mg/kg) and challenged by intranasal administration of 50 µl PBS containing 10 or 50 PFU of PR8 or 

mock-infected with PBS only. To select for M2e escape mutants, mice were first injected i.p. with 100 

µg (in a 200 µl volume) of mAb37, -65, -148, or isotype control mAbs. Twenty four h later, mice were 

anesthetized with a mixture of ketamine (10 mg/kg) and xylazine (60 mg/kg) and challenged by 

intranasal administration of 50 µl PBS containing 10 PFU of PR8 (50 or 100 PFU for the mAb65 

treatment in the second experiment). Body weight and survival of mice was monitored daily after 
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challenge. When mice lost more than 25% of their body weight, or on different dates as mentioned 

otherwise, the mice were euthanized and bronchoalveolar lavage (BAL) fluid prepared by flushing the 

lungs two times with 600 µl of PBS. Cells in this BAL fluid were pelleted by centrifugation and the 

supernatants stored at -80°C.  

Peptide ELISA and cell-based ELISA. 

For peptide ELISA, 50 µl of 2 µg/ml wild-type M2e (SLLTEVETPIRNEWGCRCNDSSDSG) or M2e variants 

were used to coat the wells of a 96-well Maxisorp plate overnight at 37°C. Wells were blocked with 

3% skim milk in PBS buffer, followed by incubation with a dilution series of mouse serum as primary 

antibody. After vigorous washing with 0.1% Tween-20 in PBS buffer, binding was detected using 

horseradish peroxidase (HRP)-conjugated sheep anti-mouse IgG Abs. For cell-based ELISA, MDCK cells 

were seeded in a 96-well plate at 25.000 cells per well. Sixteen hours later, the cells were infected 

with a multiplicity of infection (MOI) of 1 of PR8 virus or the PR8-M2e mutant viruses (PR8-M2 P10H, 

PR8-M2 P10L or PR8-M2 I11T). For cell-ELISA using mAb37, mAb65 and mAb148: Twenty-four hours 

later, the cells were blocked with 0.5% BSA in PBS and incubated with mAb37, mAb65 or mAb148, 

followed by fixation with 4% PFA. For cell-ELISA using M2e-HBc immune serum: Twenty-four hours 

later, the cells were fixed with 4% paraformaldehyde (PFA), blocked with 3% skim milk in PBS buffer, 

followed by incubation with a dilution series of polyclonal M2e-HBc serum. This serum was obtained 

two weeks after prime-boost vaccination (intramuscular immunization using Alum adjuvant, with 3 

weeks interval) with 10 µg M2e-HBc, containing three tandem copies of M2e: wild type M2e, P10L 

M2e and M2e containing both P10L and I11T. The detection was performed in the same way as 

described above in the peptide ELISA. For the cell-ELISAs using M2e-HBc immune serum, also 

detection with HRP-conjugated sheep anti-mouse IgG1 or IgG2a was included. The antibody titer in 

the individual immune serum of mice vaccinated with M2e-HBc was determined as the last antibody 

dilution having at least a two-fold higher OD450-655 compared to the same dilution of negative control 

HBc-only serum.  

Plaque assay.  

MDCK cells were seeded in complete DMEM in 12-well plates at 3 x 105 cells per well. After 18 h, the 

cells were washed once with serum-free medium and incubated (in triplicate) with a ten-fold dilution 

series of the virus (made in serum-free cell culture medium containing 0.1% BSA) in 500 µl medium. 

After 1 h incubation at 37°C, an overlay of 500 µl of 1.2% Avicel RC-591 (FMC Biopolymer) in serum-

free medium with 4 µg/ml TPCK-treated trypsin (Sigma) was added. After incubation at 37°C for 40 h, 

the overlay was removed and the cells were fixed with 4% paraformaldehyde and permeabilized with 

20 mM glycine and 0.5% (v/v) Triton X-100. Plaques were stained with anti-M2e mAb37 (final 

concentration 0.5 µg/ml) or polyclonal goat anti-influenza ribonucleoprotein (RNP) (Biodefense and 

Emerging Infections Resources Repository, NIAID, NIH, NR-4282, dilution: 1/3000), followed by a 

secondary anti-mouse, respectively anti-goat, IgG HRP-linked antibody (GE Healthcare). After 

washing, TrueBlue peroxidase substrate (KPL) was used to visualize the plaques. 
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RT-PCR on BAL fluid samples 

The previously described RT-PCR protocol for full genome influenza virus amplification was used to 

amplify the viral RNA present in BAL fluid samples [33]. However, the lower viral titer in BAL fluid 

required further optimization of the RT-PCR conditions and the following adaptations were made to 

the protocol: the addition of 20 µg polyA RNA carrier to the lysis buffer used for RNA extraction, 

including the DNase I digestion step during RNA isolation, preheating of the RNA elution buffer at 

70°C and the first 5 PCR cycli should be performed at a lower annealing temperature (45°C instead of 

72°C). In addition, two separate cDNA synthesis reactions were performed, using primers specific for 

the influenza A vRNAs: CommonUni12G (GCCGGAGCTCTGCAGATATCAGCGAAAGCAGG) and 

CommonUni12A (GCCGGAGCTCTGCAGATATCAGCAAAAGCAGG). Subsequently, all eight genomic 

segments were amplified in one PCR reaction of 100 µl using a mix containing 5 µl of 

CommonUni12G and CommonUni12A cDNA, 200 nM primer CommonUni13 

(GCCGGAGCTCTGCAGATATCAGTAGAAACAAGG) and the Phusion High Fidelity polymerase (Thermo 

Scientific) [33, 60, 61]. PCR products were purified using the High Pure PCR Product Purification kit 

(Roche) according to the manufacturer’s instructions, and the product was eluted in 50 μl sterile 

ultrapure water (preheated to 65°C).  

Illumina MiSeq library preparation and sequencing 

300 ng (first experiment) or 150 ng (second experiment) of each RT-PCR sample was sheared with an 

M220 focused-ultrasonicator (Covaris) set to obtain peak fragment lengths of 300-400 bp. Next, the 

NEBNext Ultra DNA Library Preparation kit (New England Biolabs, second experiment: dual-indexing 

using NEBNext Multiplex oligos for Illumina) was used to repair the ends and to add the Illumina 

MiSeq-compatible barcode adapters to 100 ng of fragmented DNA. The resulting fragments were 

size-selected using Agencourt AMPure XP bead sizing (Beckman Coulter). Afterwards, indexes were 

added in a limited-cycle PCR (10 cycles), followed by purification on Agencourt AMpure XP beads. 

Fragments were analysed on a High Sensitivity DNA Chip on the Bioanalyzer (Agilent Technologies). 

The multiplex sample was heat denatured for 2 min at 96°C before loading on the Illumina MiSeq 

chip. After the 2×250 bp Illumina MiSeq paired-end sequencing run, the data were base called and 

reads with the same barcode were collected and assigned to a sample on the instrument, which 

generated Illumina FASTQ files (Phred +64 encoding).  

Data analysis 

The downstream data analyses were performed on the resulting Illumina FASTQ files (Phred +64 

encoding) using CLC Genomics Workbench (Version 7.0.3) following the analysis pipeline as described 

in Van den Hoecke, et al., with quality trimming of the sequencing reads to a Phred score of 30 [33]. 

For variant calling, the A-to-G variant introduced by the primer at position 24 in the HA, NP, NA, M 

and NS segments was not taken into account during the influenza quasispecies variant analysis. In 

addition, the Val458Met variant can be neglected since this mutation was already present for 95% in 

the PR8 virus stock and is possibly the result of plaque purification [33]. 
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Generation and production of plasmids with escape mutations.  

Reverse genetics plasmids for PR8 virus were kindly provided by Dr. Robert G. Webster (St. Jude 

Children's Research Hospital, Memphis, USA) [40]. The mutations in pHW197-M, pHW193-PA and 

pHW191-PB2 were introduced using quickchange site-directed mutagenesis (Stratagene). The HA 

segment carrying the G679A (silent), G743T (Ala231Ser), A1135G (Ile361Met) and G1424A 

(Val458Met) mutations was introduced by Gibson cloning into the pHW2000 vector. The HA gene 

was first amplified by RT-PCR on vRNA using HAfw (GAAGTTGGGGGGGAGCAAAAGCAGGgga) for 

cDNA synthesis (Transcriptor First Strand cDNA synthesis kit), and HAfw and HArv 

(CCGCCGGGTTATTAGTAGAAACAAGGgtg) for PCR. In parallel, overlapping ends were added to the 

pHW2000 vector by PCR following the manufacturer's protocol and flu-pHW-R 

(CCTGCTTTTGCTCCCCCCCAACTTC) and flu-pHW-F (CCTTGTTTCTACTAATAACCCGGCGG) as primers. 

DNA products were either purified from gel (for pHW2000) or from solution (for HA) using the High 

Pure PCR Product Purification kit (Roche). The Gibson reaction was performed according to the 

manufacturer’s instructions. All plasmids encoding either the wild type or mutant PR8 genome 

segments were transformed and amplified in E. coli DH5α. Plasmid DNA was isolated with the 

Plasmid Midi Kit (Qiagen) according to the manufacturer’s instructions. The resulting air-dried pellet 

was dissolved in 50 µl of sterile ultrapure water. The presence of the introduced mutations was 

confirmed by Sanger sequencing on a capillary sequencer (Applied Biosystems 3730XL DNA 

Analyzer). 

Generation of wild type or mutant recombinant PR8 virus. 

To generate recombinant wild type PR8 virus, 1 µg of pHW191-PB2, pHW192-PB1, pHW193-PA, 

pHW194-HA, pHW195-NP, pHW196-NA, pHW197-M and pHW198-NS was transfected using calcium 

phosphate co-precipitation into a HEK293T-MDCK cell co-culture in Opti-MEM (3 x 105 HEK293T and 

2 x 105 MDCK cells in a 6-well plate). To generate mutant PR8 virus, the same set-up was followed, 

but one or more of the wild type pHW plasmids were replaced by the corresponding mutant plasmid. 

After 30 h, L-1-tosylamide-2-phenylethyl chloromethyl ketone (TPCK)-treated trypsin (Sigma) was 

added to a final concentration of 2 µg/ml. After 72 h, the culture medium was collected and the 

presence of virus was confirmed by hemagglutination of chicken red blood cells. Reverse genetics-

generated PR8 and PR8 mutant viruses were plaque-purified on MDCK cells as follows. Confluent 

MDCK cells in a six-well plate were infected with a serial dilution series of virus. After 1 h, an overlay 

of low melting agarose (Type VII agarose, Sigma; final concentration 1%) in serum-free cell culture 

medium containing 4 µg/ml TPCK-treated trypsin (Sigma) was added. After 56 h, cytopathic effect 

was checked, agar overlaying viral plaques were selected with a pipette tip, and virus was allowed to 

diffuse from the agar for 24 h at 4°C in serum-free medium. Afterwards, virus derived from one 

plaque was amplified on MDCK cells in serum-free cell culture medium in the presence of 2 µg/ml 

TPCK-treated trypsin (Sigma). After 96 h, the culture medium was collected, and cell debris was 

removed by centrifugation for 10 min at 2,500 g at 4°C, and the virus was pelleted from the 

supernatants by overnight centrifugation at 16,000 g at 4°C. The pellet was dissolved in sterile 20% 
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glycerol in PBS, aliquoted and stored at -80°C. The infectious titer of the obtained virus stocks was 

determined by plaque assay on MDCK cells, on three different aliquots each performed in triplicate. 

Determination of M2e sequence in viral stocks of PR8, PR8-M2 P10H, PR8-M2 P10L and PR8-M2 I11T 

RNA was isolated using the High Pure RNA Isolation Kit (Roche) according to the manufacturer’s 

instructions. cDNA synthesis was performed using the influenza Uni12 (AGCAAAAGCAGG) primer and 

the Transcriptor First Strand cDNA synthesis kit (Roche) according to the manufacturer's instructions 

for cDNA synthesis using gene-specific primers. The M segment was amplified using pHW-MPf 

(GAAGTTGGGGGGGAGCAAAAGCAGGTAG), pHW-MPr (CCGCCGGGTTATTAGTAGAAACAAGGTAG), 

Phusion polymerase (Thermo Scientific) and the following conditions: an initial denaturation step of 

98°C for 30'', followed by 5 cycli of 98°C for 10'', 45°C for 30'' and 72°C for 2' and 30 cycli of 98°C for 

10'' and 72°C for 2'30'', and a final elongation step of 72°C for 7' [62]. Subsequently, the M segment 

was purified from 1% agarose gel (High Pure PCR Product Purification Kit, Roche) and the presence of 

the introduced mutations confirmed by Sanger sequencing on a capillary sequencer (Applied 

Biosystems 3730 XL DNA Analyzer). 

Flow cytometric analysis 

HEK293T cells were infected with moi 0.5 of either PR8, PR8-HAmut, PR8-PB2 R443K, PR8-PA I550T, 

PR8-PA I550T HAmut, PR8-HPP or uninfected. One hour later, the inoculum was removed, the cells 

washed once with PBS and replaced with Optimem (Gibco). Cells were detached with EDTA and 

successively washed with Optimem and PBS. One-tenth of these cells was used to make lysates for 

Western blot analysis. The remaining cells were fixed in 2% paraformaldehyde, followed by blocking 

the aspecific binding sites on the cells with 1% BSA in PBS. Half of the cells were stained with M2e-

specific mAb37 (10 µg/ml) and the other half with NA-specific mAb 7D2 (10 µg/ml) in 0.5% BSA in 

PBS. Donkey anti-mouse Alexa-Fluor 488 (1/600, Invitrogen) was used as secondary antibody, 

followed by analysis on a LSRII HTS (BD) flow cytometer. 

Western blot analysis 

HEK cells were lysed in low salt lysis buffer containing 50 mM Tris-HCl (pH 8.0), 150 mM NaCl, 1% 

Igepal (NP-40) and 5 mM EDTA. The samples were separated by SDS-PAGE (15%) and visualized by 

Western Blotting with antibodies directed against M2e (1,3 µg/ml, mAb37), RNP (1/3000, polyclonal 

goat anti-RNP, Biodefense and Emerging Infections Resources Repository, NIAID, NIH, NR-4282) or 

actin (1/3000, mouse anti-actin monoclonal (clone: C4), Bio-connect). 

Shannon entropy 

To detect instances of convergent evolution we compared the mother stock’s segment sequences 

with the newly assembled sample-specific majority rule consensus sequences [63]. The de novo 

assembly was successful for 340/344 (98.8%) segments. Failure due to a wet-lab error was ruled out 

because a check with the Mosaik aligner revealed that numerous reads (>20,000) mapped to the 

corresponding segment of the mother stock for each of the four erroneous assemblies [64]. All 
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assemblies were visually inspected and, if required, manually edited in AliView [65]. For optimal 

alignment accuracy, the newly generated segment assemblies were concatenated into sample-

specific full genomes that served for the read mappings upon which a site-specific measure of 

nucleotide diversity (the standard Shannon entropy) was calculated [66]. The corresponding 

segments of the closely related mother stock served in place of the four failed segment assemblies, 

and in the full genomes the segments were separated from each other by strings of 50 Ns. Estimates 

of the synonymous and non-synonymous nucleotide diversity were obtained with SNPGenie [67]. 

The entropy levels of the virus populations from mice that received the same treatment (i.e. IgG1 

and mAb37) in both sequencing experiments were contrasted with unpaired two-sided t-tests, and 

for these populations the proportion of sites with non-zero Shannon entropy levels was compared 

with Pearson’s Chi-squared test with Yates’ continuity correction. R was used for the statistical 

analyses, and p ≤ 0.05 was taken as the cut-off for statistical significance [68]. 

Distance-based clustering 

To in silico evaluate whether lower frequent variants can have a synergetic anti-M2e vaccine effect 

we clustered the virus populations using several distance measures that are based on the presence 

and prevalence of SNPs measured against the mother stock reference sequence. The used rules are: 

1) The distance is defined by the sum of unique polymorphic sites. In this setup, a site that is 

polymorphic in one population but homogenous in the other increases the distance between both 

populations with 1. 2) As in 1, but the type of polymorphism is also taken into account. In an example 

in which a site in population 1 has 7% A and 9% G as polymorphic content, and the corresponding 

site in population 2 has 9%A and 0% G as non-reference nucleotides, the distance increases with 1. 3) 

As in 2, but now the frequency of polymorphisms is also considered, and the distance increases with 

increasing prevalence differences. In the previous example the distance increases with 2+9=11%. 4) 

Same as in 3, but the distance is averaged over the number of involved characters. In the example, 

the distance increases with 5,5%. 5) Instead of the count, the distance is defined by the proportion of 

unique polymorphic sites. For example, population 1 has 10/40 popymorphic sites shared with 

population 2, and population 2 has 10/50 of its polymorphic sites in common. The distance between 

both is calculated as 30/40+40/50=1.55. 6) Same as in 5, but the average proportion is used as a 

proxy for the distance. In the previous example the distance becomes 0.775. Distance calculations 

and hierarchical clustering visualisations were done in R for each of three SNP prevalence cutoffs (> 

5%, > 25% and > 50%). 

Logistic regression  

We determined the association between the frequencies of SNPs and anti-M2e mAb treatment using 

a logistic regression. To increase the observation count for each outcome the results of both 

sequencing experiments were combined; the no compound, IgG1 and IgG2a treated populations 

were labeled as ‘controls’, and the other populations as ‘treatment’. Because using the same lower 

thresholds for polymorphic sites as above (e.g. > 5%, > 25% and > 50%) created a quasi-complete 

segregation, parameter estimates were obtained with penalised likelihood methods [69]. 
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Supplementary figures 

 
Supplementary Figure S1: Influenza A virus populations isolated from infected SCID mice treated with anti-

M2e mAbs or isotype controls have a similar sequence diversity. The standard Shannon entropy was 

calculated per segment and treatment (IgG1 or IgG2a isotype controls, anti-M2e mAbs (mAb37, mAb65 or 

mAb148) or no treatment (noCPD: no compound)) after mapping the reads to the sample-specific majority rule 

consensus sequence [67]. Panel A and B represent data obtained from independently performed mice 

experiments. 



 

215 

 

 

  

  

  
Supplementary Figure S2: mAb65 and mAb37 bind a different epitope in M2e. Human consensus M2e 

(SLLTEVETPIRNEWGCRCNDSSD) and variants hereof (variation marked in grey) were used for coating in M2e 

peptide ELISA. Binding of mAb37, mAb65 and mAb148 was determined using horseradish peroxidase-

conjugated sheep anti-mouse IgG as secondary Ab. 
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Supplementary Figure S2 (continued): mAb65 and mAb37 bind a different epitope in M2e. Human consensus 

M2e (SLLTEVETPIRNEWGCRCNDSSD) and variants hereof (variation marked in grey) were used for coating in 

M2e peptide ELISA. Binding of mAb37, mAb65 and mAb148 was determined using horseradish peroxidase-

conjugated sheep anti-mouse IgG as secondary Ab. 
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Supplementary Figure S2 (continued): mAb65 and mAb37 bind a different epitope in M2e. Human consensus 

M2e (SLLTEVETPIRNEWGCRCNDSSD) and variants hereof (variation marked in grey) were used for coating in 

M2e peptide ELISA. Binding of mAb37, mAb65 and mAb148 was determined using horseradish peroxidase-

conjugated sheep anti-mouse IgG as secondary Ab. 
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mAb37 staining 

PR8-HAmut PR8-PB2 R443K PR8-PA I550T 
PR8-PA I550T 

HAmut 

    

polyclonal anti-RNP staining 

PR8-HAmut PR8-PB2 R443K PR8-PA I550T 
PR-PA I550T 

HAmut 

    

Supplementary Figure S3: Plaque staining of mutant PR8 viruses. Confluent layers of MDCK cells were infected 

in parallel with mutant PR8 viruses. Two days later, the cells were fixed with 4% paraformaldehyde and stained 

with M2e-specific mAb (mAb37, upper panel) or polyclonal anti-vRNP (lower panel). Plaques were revealed 

using horseradish peroxidase-conjugated sheep anti-mouse IgGs, respectively donkey anti-goat IgGs, followed 

by visualization with TrueBlue Peroxidase substrate (KPL). 
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Supplementary Figure S4: Kinetics of M2e and NA expression on the surface of infected cells. HEK cells were 

infected with a moi of 0.5 and fixed with 2% paraformaldehyde at the indicated time points. The cells were 

either stained with mAb37 (M2e-specific mAb, upper panel) or 7D3 (NA-specific mAb, lower panel), followed by 

a secondary anti-mouse antibody coupled to Alexa Fluor 488 and analysis on an LSRII HTS (BD) flow cytometer. 
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Supplementary Table S1: minimum, maximum and average sequencing coverage depth of PR8 virus genome 

after influenza-specific RT-PCR on RNA isolated from BAL fluid of mice infected with 10 PFU of PR8 

1st mice experiment   
Coverage 

 
Treatment Mouse Dpi Minimum Maximum Average SD (average) 

Untreated 1 11 1619 57657 13005.40 12709.66 
Untreated 2 11 2710 55245 13884.97 11506.39 

Untreated 3 11 2222 64189 15135.92 14878.89 

Untreated 4 11 2836 54232 13955.97 11021.56 

IgG1 control 1 11 1359 88877 16647.49 16018.01 

IgG1 control 2 15 1873 64429 15462.90 12603.65 

IgG1 control 3 19 2056 59312 14943.63 11954.40 

IgG2a control 1 12 2663 54214 14101.85 10369.01 

IgG2a control 2 21 4781 51052 15286.96 9641.71 

IgG2a control 3 12 4707 54629 15250.58 10161.71 

mAb37 1 7 3423 63688 14835.94 11152.37 

mAb37 2 7 3288 63826 14894.45 11863.82 

mAb37 3 7 1795 81620 14582.97 13612.95 

mAb37 1 14 5042 50911 14898.04 8684.95 

mAb37 1 33 3801 51537 13466.80 11267.94 

mAb37 2 23 5011 46412 15005.92 8403.85 

mAb37 3 30 6450 45178 14918.95 8500.65 

mAb37 4 29 5183 38011 14585.29 6299.66 

2nd mice experiment 
  

Coverage 
 

Treatment Mouse Dpi Minimum Maximum Average SD (average) 

IgG1 control 1 12 2782 38222 11108.53 8591.69 
IgG1 control 2 10 287 4125 1369.99 838.77 

IgG1 control 3 13 2255 35760 11113.39 8062.81 

mAb37 1 13 4065 27855 10199.13 5189.11 

mAb37 2 13 2749 33030 10877.47 5856.87 

mAb37 3 13 2722 35154 10890.29 6177.49 

mAb148 1 13 3453 38264 11670.28 6955.30 

mAb148 2 13 3644 34769 10252.30 5950.33 

mAb148 3 13 2229 32028 10294.68 5757.00 

mAb37 1 23 3656 30083 12114.02 5725.89 

mAb37 2 39 2880 28117 11167.71 5770.04 

mAb37 3 20 3365 23340 8569.41 4455.49 

mAb37 4 29 2804 28465 10403.31 5662.53 

mAb37 5 23 4404 30516 11989.59 5585.34 

mAb37 6 20 3672 27747 11047.84 5350.47 

mAb148 1 27 3248 27188 10132.95 5965.50 

mAb148 2 33 4499 31041 11259.96 6287.84 

mAb148 3 28 3838 34936 13185.26 6993.80 

mAb148 4 30 4723 36606 13174.48 7726.44 

mAb148 5 33 2877 27126 10216.37 5347.08 

mAb148 6 28 3000 26067 9699.04 5555.26 

mAb65 (50 PFU) 1 37 2754 61111 16909.90 13575.29 

mAb65 (50 PFU) 2 28 3162 27188 9459.08 5384.61 

mAb65 (100 PFU) 1 38 4504 34914 11287.38 6016.42 

mAb65 (100 PFU) 2 32 5149 49035 16497.54 9415.52 

SD = standard deviation 
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Supplementary Table S2: Variants detected above 10% in BAL fluid from untreated, PR8-infected SCID mice, 

isolated at 11 dpi (First experiment) 

Mouse 1 
   Segment Position Frequency Amino acid change 

PB2 181 12.85 PB2:p.Leu45Pro 

PB2 184 15.61 PB2:p.Arg46fs 

PB2 340-354 10.22 PB2:p.Trp98_Gly103delins* 

PB1 74-87 26.05 PB1:p.Leu10fs 

HA 648 11.66 HA:p.Pro199His 

HA 749 13.79 HA:p.Arg233Gly 

HA 765 24.44 HA:p.Asp238Gly 

HA 1424 97.55 HA:p.Val458Met 

NP 1249 32.99 NP:p.Asn395Ser 

    Mouse 2 
   Segment Position Frequency Amino acid change 

PB2 50 14.24 PB2:p.Met1? 

HA 217 12.43 
 HA 495 13.9 HA:p.Val148Ala 

HA 765 12.16 HA:p.Asp238Gly 

HA 770 18.02 HA:p.Ala240Thr 

HA 847 12.83 HA:p.Ile265Met 

HA 1424 86.94 HA:p.Val458Met 

M 149 10.86 M1:p.[Lys35Arg] 

    Mouse 3 
   Segment Position Frequency Amino acid change 

PB1 95-96 12.09 PB1:p.Ala17fs 

HA 647 23.23 HA:p.Pro199Phe 

HA 765 14.29 HA:p.Asp238Gly 

HA 1424 99.94 HA:p.Val458Met 

M 453 27.32 
 

    Mouse 4 
   Segment Position Frequency Amino acid change 

PB2 2036 11.95 
 PA 1265 10.09 
 HA 497 11.06 HA:p.Thr149Ala 

HA 749 14.38 HA:p.Arg233Gly 

HA 765 21.37 HA:p.Asp238Gly 

HA 1424 99.88 HA:p.Val458Met 

NA 1240 12.89 
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Supplementary table S3: Variants detected above 10% in BAL fluid from IgG1 control-treated mice infected 

with PR8, when mice lost 25% of their initial body weight (First experiment). 

Mouse 1 11 dpi 
  Segment Position Frequency Amino acid change 

PB1 675 11.99 PB1:p.[Arg211Gly]; PB1-N40:p.[Arg172Gly] 

HA 493 18.87 
 HA 765 26.48 HA:p.Asp238Gly 

HA 770 21.87 HA:p.Ala240Thr 

HA 847 10.54 HA:p.Ile265Met 

HA 1424 75.32 HA:p.Val458Met 

NP 1161 12.62 NP:p.Ala366Ser 

NP 1249 16.42 NP:p.Asn395Ser 

M 657 15.95 
 

    Mouse 2 15 dpi 
  Segment Position Frequency Amino acid change 

PB2 2240 10.44 
 PB1 675 13.51 PB1:p.[Arg211Gly]; PB1-N40:p.[Arg172Gly] 

HA 765 45.79 HA:p.Asp238Gly 

HA 823 11.68 HA:p.Ile257Met 

HA 1424 90.79 HA:p.Val458Met 

NP 1249 15.08 NP:p.Asn395Ser 

    Mouse 3 19 dpi 
  Segment Position Frequency Amino acid change 

PB2 716 18.4 
 PB2 972 10.07 PB2:p.Asp309Asn 

PB1 675 13.58 PB1:p.[Arg211Gly]; PB1-N40:p.[Arg172Gly] 

PA 188 49.4 
 PA 2035 49.46 PA:p.[Lys664Arg]; PA-N155:p.[Lys510Arg]; PA-N182:p.[Lys483Arg] 

HA 497 17.12 HA:p.Thr149Ala 

HA 689 17.85 HA:p.Ala213Thr 

HA 765 32.95 HA:p.Asp238Gly 

HA 1424 99.94 HA:p.Val458Met 

NP 434 45.62 
  

Supplementary table S4: Variants detected above 10% in BAL fluid isolated from IgG2a control-

treated mice infected with PR8, when mice lost 25% of their initial body weight (First experiment). 

Mouse 1 12 dpi 
  Segment Position Frequency Amino acid change 

PB2 1355 16.14 
 PB1 1187 25.89 
 PB1 1331 12.2 
 HA 442 34.4 
 HA 749 10.64 HA:p.Arg233Gly 

HA 765 12.15 HA:p.Asp238Gly 

HA 847 36.14 HA:p.Ile265Met 

HA 1424 98.44 HA:p.Val458Met 

HA 1474 33.64 
 NA 1251 11.29 NA:p.Arg404Lys 

M 603 28.4 
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Supplementary table S4 (continued): Variants detected above 10% in BAL fluid isolated from IgG2a control-

treated mice infected with PR8, when mice lost 25% of their initial body weight (First experiment). 

Mouse 2 21 dpi 
  Segment Position Frequency Amino acid change 

PB2 416 18.01 PB2:p.Glu123Asp 

PB2 1557 17.21 PB2:p.Ile504Val 

PA 102 14.61 PA-X:p.[Thr20Ala]; PA:p.[Thr20Ala] 

PA 104 11.41 
 HA 765 29.54 HA:p.Asp238Gly 

HA 1424 99.88 HA:p.Val458Met 

NP 1208 12.46 
 

    Mouse 3 12 dpi 
  Segment Position Frequency Amino acid change 

HA 765 22.62 HA:p.Asp238Gly 

HA 1424 94.28 HA:p.Val458Met 

 

Supplementary table S5: Variants detected above 10% in BAL fluid from mAb37-treated mice infected with 

PR8, isolated at 7 dpi (First experiment). 

Mouse 1 
   Segment Position Frequency Amino acid change 

HA 1424 100 HA:p.Val458Met 

NP 1249 37.76 NP:p.Asn395Ser 

    Mouse 2 
   Segment Position Frequency Amino acid change 

PB1 159-167 12.63 
PB1:p.[Thr39_Asp41del]; PB1-F2:p.[Thr7_Ile10delinsThr]; PB1-
N40:p.[Met1?] 

PB1 164 59.42 PB1:p.[Met40fs]; PB1-F2:p.[Trp9fs]; PB1-N40:p.[Met1?] 

PA 136-139 12.19 PA-X:p.[Glu31fs]; PA:p.[Glu31fs] 

PA 314-320 24.28 PA-X:p.[Val90fs]; PA:p.[Val90fs] 

HA 1424 100 HA:p.Val458Met 

NP 1249 73.26 NP:p.Asn395Ser 

    Mouse 3 
   Segment Position Frequency Amino acid change 

HA 1424 100 HA:p.Val458Met 

HA 1426 99.72 
 NP 1249 99.93 NP:p.Asn395Ser 

 

Supplementary table S6: Variants detected above 10% in BAL fluid isolated from mAb37-treated mice 

infected with PR8, isolated at 14 dpi (First experiment). 

Mouse 1 
   Segment Position Frequency Amino acid change 

PB2 2218-2220 13.98 PB2:p.Val724_Leu725delinsVal 

PA 166-175 14.55 PA-X:p.[His41fs]; PA:p.[His41fs] 

PA 398 25.34 
 HA 856 20.82 HA:p.Met268Ile 

HA 1424 99.93 HA:p.Val458Met 
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Supplementary table S7: Variants detected above 10% in BAL fluid isolated from mAb37-treated mice 

infected with PR8, when mice lost 25% of their initial body weight (First experiment). 

Mouse 1 33 dpi 
  Segment Position Frequency Amino acid change 

PB2 1375 62.7 PB2:p.Lys443Arg 

PB1 737 13.03 
 PA 1693 98.09 PA:p.[Ile550Thr]; PA-N155:p.[Ile396Thr]; PA-N182:p.[Ile369Thr] 

HA 557 12.75 HA:p.Glu169Lys 

HA 679 99.8 
 HA 743 96.32 HA:p.Ala231Ser 

HA 748 34.89 HA:p.Glu232Asp 

HA 1135 96.15 HA:p.Ile361Met 

HA 1424 99.6 HA:p.Val458Met 

NP 267 22.87 NP:p.Leu68Ile 

    Mouse 2 23 dpi 
  Segment Position Frequency Amino acid change 

PB2 1557 94.76 PB2:p.Ile504Val 

PB1 1050 78.6 PB1:p.[Val336Ile]; PB1-N40:p.[Val297Ile] 

PA 2006 10.64 
 HA 191 18.29 HA:p.Val47Ile 

HA 823 44.45 HA:p.Ile257Met 

HA 1424 99.93 HA:p.Val458Met 

M 765 90.26 M2:p.[Ile11Thr] 

    Mouse 3 30 dpi 
  Segment Position Frequency Amino acid change 

PB2 796 12.21 PB2:p.Val250Ala 

PB2 1557 67.64 PB2:p.Ile504Val 

PB2 2102 13.29 
 PB1 686 18.26 
 PB1 1457 17.52 
 HA 1244 11.82 HA:p.Val398Ile 

HA 1424 99.81 HA:p.Val458Met 

HA 1486 38.83 
 M 762 60.95 M2:p.[Pro10His] 

    Mouse 4 29 dpi 
  Segment Position Frequency Amino acid change 

PB2 1525 88.17 PB2:p.Arg493Lys 

PB2 1557 12.88 PB2:p.Ile504Val 

PB1 925 12.03 PB1:p.[Gln294Arg]; PB1-N40:p.[Gln255Arg] 

HA 738 10.49 HA:p.Glu229Val 

HA 749 21.77 HA:p.Arg233Gly 

HA 765 36.33 HA:p.Asp238Gly 

HA 1039 25.66 
 HA 1424 99.72 HA:p.Val458Met 

HA 1426 11.09 
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Supplementary table S8: Variants detected above 10% in BAL fluid isolated from IgG1 control-treated mice 

infected with PR8, when mice lost 25% of their initial body weight (Second experiment). 

Mouse 1 12 dpi 
  Segment Position Frequency Amino acid change 

PB2 2009 11.8 
 HA 1424 88.5 HA:p.Val458Met 

NP 1187 19.98 NP:p.Met374Ile 

    Mouse 2 10 dpi 
  Segment Position Frequency Amino acid change 

PB2 1000 10.6 PB2:p.Arg318Lys 

PA 104-106 13.31 PA-X:p.[Thr20_Met21delinsThr]; PA:p.[Thr20_Met21delinsThr] 

HA 500 10.43 HA:p.Ala150Thr 

HA 765 14.49 HA:p.Asp238Gly 

HA 770 10.61 HA:p.Ala240Thr 

HA 1424 92.43 HA:p.Val458Met 

HA 1528 25.22 HA:p.Met492Ile 

    Mouse 3 13 dpi 
  Segment Position Frequency Amino acid change 

PB2 561 39.56 PB2:p.Val172Met 

PB2 1169 23.33 
 PB2 2158-2167 24.37 PB2:p.Tyr704fs 

PB1 79-91 10.99 PB1:p.Val12fs 

HA 672 27.73 HA:p.Leu207His 

HA 765 49.35 HA:p.Asp238Gly 

HA 1424 99.98 HA:p.Val458Met 

NP 1249 13.44 NP:p.Asn395Ser 

Supplementary Table S9: Variants detected above 10% in BAL fluid from mAb37-treated mice infected with 

PR8, isolated at 13 dpi (Second experiment). 

Mouse 1 
   Segment Position Frequency Amino acid change 

PB2 165-182 13.72 PB2:p.Glu40_Leu45del 

PB2 238 12.97 PB2:p.Thr64fs 

PB2 1557 72.44 PB2:p.Ile504Val 

PB1 1364 18.6 
 HA 933 10.75 HA:p.Lys294Arg 

HA 1424 99.93 HA:p.Val458Met 

HA 1426 11.31 
 HA 1619 99.88 HA:p.Ser523Pro 

    Mouse 2 
   Segment Position Frequency Amino acid change 

PB1 794 35.47 
 HA 611 20.64 HA:p.Lys187Glu 

HA 1424 99.73 HA:p.Val458Met 

NP 1324 24.49 NP:p.Phe420Cys 

M 1024 10.87 
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Supplementary Table S9 (continued): Variants detected above 10% in BAL fluid from mAb37-treated mice 

infected with PR8, isolated at 13 dpi (Second experiment). 

Mouse 3 
   Segment Position Frequency Amino acid change 

PB2 1111 22.57 PB2:p.Arg355Lys 

PB1 1650 99.87 PB1:p.[Asn536Asp]; PB1-N40:p.[Asn497Asp] 

HA 740 20.69 HA:p.Ile230Val 

HA 1424 99.91 HA:p.Val458Met 

Supplementary table S10: Variants detected above 10% in BAL fluid from mAb148-treated mice infected with 

PR8, isolated at 13 dpi (Second experiment). 

Mouse 1 
   Segment Position Frequency Amino acid change 

PB2 1525 23.08 PB2:p.Arg493Lys 

HA 689 66.48 HA:p.Ala213Thr 

HA 1424 99.91 HA:p.Val458Met 

NP 972 95.2 NP:p.Pro303Ser 

NA 1180 21.04 
 

    Mouse 2 
   Segment Position Frequency Amino acid change 

HA 1424 100 HA:p.Val458Met 

NP 284 15.79 
 NS 278 10.75 NS1:p.Lys78Glu 

 

Mouse 3 
   Segment Position Frequency Amino acid change 

PB2 972 14.51 PB2:p.Asp309Asn 

PB2 1000 46.72 PB2:p.Arg318Lys 

PB2 1110 10.69 PB2:p.Arg355Gly 

HA 765 25.59 HA:p.Asp238Gly 

HA 790 10.85 
 HA 1424 100 HA:p.Val458Met 

NA 916 11.23 
  

Supplementary table S11: Variants detected above 10% in BAL fluid isolated from mAb37-treated mice 

infected with PR8, when mice lost 25% of their initial body weight (Second experiment). 
 

 

 

Mouse 1 23 dpi 
  Segment Position Frequency Amino acid change 

PB2 1557 15.7 PB2:p.Ile504Val 

PB2 2265 72.61 PB2:p.Asp740Asn 

HA 765 99.96 HA:p.Asp238Gly 

HA 1424 99.91 HA:p.Val458Met 

NP 212 96.29 
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Supplementary table S11 (continued): Variants detected above 10% in BAL fluid isolated from mAb37-

treated mice infected with PR8, when mice lost 25% of their initial body weight (Second experiment). 

Mouse 2 39 dpi 
  Segment Position Frequency Amino acid change 

PB2 1557 89.1 PB2:p.Ile504Val 

PA 413 70.91 
 PA 423 65.84 PA-X:p.[Val127Ile]; PA:p.[Val127Ile] 

PA 1258 64.84 
PA:p.[Ser405Asn]; PA-N155:p.[Ser251Asn]; 
PA-N182:p.[Ser224Asn] 

HA 427 85.24 
 HA 660 87.75 HA:p.Glu203Gly 

HA 747 10.4 HA:p.Glu232Gly 

HA 1424 98.25 HA:p.Val458Met 

NA 415 90.07 
 NA 492 27.7 NA:p.Ala151Val 

M 765 12.86 M2:p.[Ile11Thr] 

    Mouse 3 20 dpi 
  Segment Position Frequency Amino acid change 

PB2 992 51.5 PB2:p.Met315Ile 

PB1 490 11.15 PB1:p.[Val149Ala]; PB1-N40:p.[Val110Ala] 

PA 51 33.07 PA-X:p.[Asp3Asn]; PA:p.[Asp3Asn] 

PA 1421 42.22 
PA:p.[Ile459Met]; PA-N155:p.[Ile305Met];  
PA-N182:p.[Ile278Met] 

HA 765 70.77 HA:p.Asp238Gly 

HA 1424 100 HA:p.Val458Met 

NP 925 12.71 NP:p.Ser287Asn 

    Mouse 4 29 dpi 
  Segment Position Frequency Amino acid change 

PB2 864 23.52 PB2:p.Ser273Thr 

PB2 1132 22.55 PB2:p.Glu362Gly 

PB2 2120 62.96 
 PB2 2216-2217 31.18 PB2:p.Asn723fs 

PB1 1434 11.42 PB1:p.[Asp464Asn]; PB1-N40:p.[Asp425Asn] 

PB1 2214 23.74 PB1:p.[Ile724Val]; PB1-N40:p.[Ile685Val] 

PA 753 47.09 
PA-X:p.[Glu237Lys]; PA:p.[Glu237Lys]; PA-N155:p.[Glu83Lys]; PA-
N182:p.[Glu56Lys] 

HA 359 13.66 HA:p.Glu103Lys 

HA 1217 24.86 HA:p.Asn389Asp 

HA 1409 26.78 HA:p.Phe453Leu 

HA 1424 72.17 HA:p.Val458Met 

NA 820 26.12 
 M 155 42.29 M1:p.[Thr37Ile] 

M 762 15.25 M2:p.[Pro10His] 

NS 592 15.31 NS2:p.[Ser25Leu] 
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Supplementary table S11 (continued): Variants detected above 10% in BAL fluid isolated from mAb37-

treated mice infected with PR8, when mice lost 25% of their initial body weight (Second experiment). 

Mouse 5 23 dpi 
  Segment Position Frequency Amino acid change 

PB2 1091 13.68 
 PB2 1557 33.28 PB2:p.Ile504Val 

PB2 1570 12.85 PB2:p.Arg508Gln 

PB1 67 11.77 PB1:p.Leu8Pro 

PB1 1244 10.55 
 PA 1887 17.54 PA:p.[Lys615Glu]; PA-N155:p.[Lys461Glu]; PA-N182:p.[Lys434Glu] 

HA 748 99.96 HA:p.Glu232Asp 

HA 1424 99.95 HA:p.Val458Met 

NP 110 13.76 
  

Mouse 6 20 dpi 
  Segment Position Frequency Amino acid change 

PB1 2214 15.49 PB1:p.[Ile724Val]; PB1-N40:p.[Ile685Val] 

PA 1292 10.41 PA:p.[Glu416Asp]; PA-N155:p.[Glu262Asp]; PA-N182:p.[Glu235Asp] 

PA 1661 11.37 
 PA 1692 19.66 PA:p.[Ile550Val]; PA-N155:p.[Ile396Val]; PA-N182:p.[Ile369Val] 

PA 1694 11.45 
PA:p.[Ile550Met]; PA-N155:p.[Ile396Met];  
PA-N182:p.[Ile369Met] 

HA 678 89.88 HA:p.Gln209Arg 

HA 1424 99.79 HA:p.Val458Met 

 
Supplementary table S12: Variants detected above 10% in BAL fluid isolated from mAb148-treated mice 

infected with PR8, when mice lost 25% of their initial body weight (Second experiment). 

Mouse 1 27 dpi 
  Segment Position Frequency Amino acid change 

PB2 1557 98.42 PB2:p.Ile504Val 

PA 1534 19.07 
PA:p.[Lys497Arg]; PA-N155:p.[Lys343Arg];  
PA-N182:p.[Lys316Arg] 

HA 765 84.22 HA:p.Asp238Gly 

HA 1135 24.05 HA:p.Ile361Met 

HA 1217 23.22 HA:p.Asn389Asp 

HA 1424 99.91 HA:p.Val458Met 

NP 1063 11.24 NP:p.Cys333Phe 

NA 206 15.48 NA:p.Tyr56His 

NS 657 92.63 NS1:p.[Arg204Lys]; NS2:p.[Glu47Lys] 

    Mouse 2 33 dpi 
  Segment Position Frequency Amino acid change 

PB2 1557 25.88 PB2:p.Ile504Val 

PA 981 40.03 
PA:p.[Thr313Ala]; PA-N155:p.[Thr159Ala];  
PA-N182:p.[Thr132Ala] 

PA 1784 25.55 
PA:p.[Glu580Asp]; PA-N155:p.[Glu426Asp];  
PA-N182:p.[Glu399Asp] 

HA 647 18.29 HA:p.Pro199Ser 

HA 719 18.85 HA:p.Asn223Tyr 

HA 823 15.2 HA:p.Ile257Met 

HA 1424 99.79 HA:p.Val458Met 

NP 542 12.71 NP:p.Met159Ile 

NA 201 15.62 NA:p.Ile54Asn 
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Supplementary table S12 (continued): Variants detected above 10% in BAL fluid isolated from mAb148-

treated mice infected with PR8, when mice lost 25% of their initial body weight (Second experiment). 

Mouse 3 28 dpi 
  Segment Position Frequency Amino acid change 

PB2 741 99.82 
 PB2 2223 53.35 PB2:p.Ile726Val 

PB1 1586 11.89 
 PA 1052 10.46 
 

PA 1071 43.77 
PA:p.[Ala343Thr]; PA-N155:p.[Ala189Thr];  
PA-N182:p.[Ala162Thr] 

PA 1293 12.33 
PA:p.[Leu417Met]; PA-N155:p.[Leu263Met];  
PA-N182:p.[Leu236Met] 

PA 1711 10.34 
PA:p.[Gln556Arg]; PA-N155:p.[Gln402Arg];  
PA-N182:p.[Gln375Arg] 

HA 775 10.43 
 HA 1085 61.7 HA:p.Leu345Ile 

HA 1419 38.43 HA:p.Ser456Leu 

NP 212 99.97 
 NS 151 12.18 
 

    Mouse 4  30 dpi 
  Segment Position Frequency Amino acid change 

PB2 1111 44.08 PB2:p.Arg355Lys 

PB1 2164 18.48 PB1:p.[Arg707Lys]; PB1-N40:p.[Arg668Lys] 

PA 1692 28.84 
PA:p.[Ile550Val]; PA-N155:p.[Ile396Val];  
PA-N182:p.[Ile369Val] 

PA 1887 24.51 
PA:p.[Lys615Glu]; PA-N155:p.[Lys461Glu];  
PA-N182:p.[Lys434Glu] 

HA 611 44.59 HA:p.Lys187Glu 

HA 765 85.81 HA:p.Asp238Gly 

HA 1424 98.35 HA:p.Val458Met 

HA 1598 37.88 HA:p.Val516Ile 

NP 921 13.13 NP:p.Ala286Ser 

NP 972 69.78 NP:p.Pro303Ser 

NP 1420 18.4 NP:p.Arg452Ile 

    Mouse 5 33 dpi 
  Segment Position Frequency Amino acid change 

PB2 782 10.39 
 PB2 1184 21.59 
 PB2 1557 75.24 PB2:p.Ile504Val 

PA 51 49.46 PA-X:p.[Asp3Asn]; PA:p.[Asp3Asn] 

PA 971 12.62 PA:p.[Lys309Asn]; PA-N155:p.[Lys155Asn]; PA-N182:p.[Lys128Asn] 

HA 823 57.75 HA:p.Ile257Met 

HA 856 15.1 HA:p.Met268Ile 

HA 1135 10.93 HA:p.Ile361Met 

HA 1415 15.23 HA:p.Asp455Tyr 

HA 1417 50.34 HA:p.Asp455Glu 

HA 1424 20.36 HA:p.Val458Met 

HA 1537 49.52 
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Supplementary table S12 (continued): Variants detected above 10% in BAL fluid isolated from mAb148-

treated mice infected with PR8, when mice lost 25% of their initial body weight (Second experiment). 

Mouse 6 28 dpi 
  Segment Position Frequency Amino acid change 

PB2 1165 59.34 PB2:p.Ile373Thr 

PB1 659 13.03 PB1:p.[Met205Ile]; PB1-N40:p.[Met166Ile] 

PA 1887 34.76 
PA:p.[Lys615Glu]; PA-N155:p.[Lys461Glu];  
PA-N182:p.[Lys434Glu] 

PA 1933 26.24 
PA:p.[Glu630Gly]; PA-N155:p.[Glu476Gly];  
PA-N182:p.[Glu449Gly] 

HA 557 77.46 HA:p.Glu169Lys 

HA 765 16.91 HA:p.Asp238Gly 

HA 1424 99.11 HA:p.Val458Met 

NA 190 21.83 NA:p.Asn50Lys 

NA 670 14.03 
 NS 151 28.01 
  

Supplementary table S13: Variants detected above 10% in BAL fluid isolated from mAb65-treated mice 

infected with 50 PFU of PR8, when mice lost 25% of their initial body weight (Second experiment). 

Mouse 1 37 dpi 
  Segment Position Frequency Amino acid change 

PB2 972 93.76 PB2:p.Asp309Asn 

PB2 1112 45.16 PB2:p.Arg355Ser 

PB1 157-158 11.89 PB1:p.[Tyr38fs]; PB1-F2:p.[Thr7fs] 

PA 524 32.55 
 

PA 1165 95.69 
PA:p.[Met374Lys]; PA-N155:p.[Met220Lys];  
PA-N182:p.[Met193Lys] 

PA 1712 95.55 
PA:p.[Gln556His]; PA-N155:p.[Gln402His];  
PA-N182:p.[Gln375His] 

HA 497 22.57 HA:p.Thr149Ala 

HA 501 10.28 HA:p.Ala150Glu 

HA 765 91.15 HA:p.Asp238Gly 

HA 771 31.66 HA:p.Ala240Asp 

HA 834 31.44 HA:p.Asn261Ser 

HA 1424 98.03 HA:p.Val458Met 

NP 64 28.89 
 NA 973 11.9 
 M 762 99.96 M2:p.[Pro10His] 

M 1014 11.22 M2:p.[Ile94Thr] 

    Mouse 2 28 dpi 
  Segment Position Frequency Amino acid change 

PB2 1165 54.83 PB2:p.Ile373Thr 

PB2 1495 18.28 PB2:p.Met483Thr 

PB2 1527 53.78 PB2:p.Val494Ile 

HA 823 96.38 HA:p.Ile257Met 

HA 1424 98.85 HA:p.Val458Met 

NP 1390 12.75 NP:p.Thr442Ile 

M 762 90.99 M2:p.[Pro10His] 
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Supplementary table S14: Variants detected above 10% in BAL fluid isolated from mAb65-treated mice 

infected with 100 PFU of PR8, when mice lost 25% of their initial body weight (Second experiment). 

Mouse 1 38 dpi 
  Segment Position Frequency Amino acid change 

PB2 1243 36.9 PB2:p.Ile399Thr 

PB2 1557 59.6 PB2:p.Ile504Val 

PB2 1570 37.57 PB2:p.Arg508Gln 

PB1 1025 15.36 
 PB1 1397 30.03 
 PB1 1583 15.01 
 PA 1739 96.89 
 HA 765 88.98 HA:p.Asp238Gly 

HA 1217 85.99 HA:p.Asn389Asp 

HA 1424 78.96 HA:p.Val458Met 

NP 1037 29.96 
 

    Mouse 2 32 dpi 
  Segment Position Frequency Amino acid change 

PB2 972 13.75 PB2:p.Asp309Asn 

PB2 2265 89.13 PB2:p.Asp740Asn 

HA 557 72.51 HA:p.Glu169Lys 

HA 563 17.87 HA:p.Glu171Lys 

HA 719 17.94 HA:p.Asn223Asp 

HA 1003 21.76 
 HA 1424 99.96 HA:p.Val458Met 

NP 1195 67.07 NP:p.Ser377Asn 

M 762 96.47 M2:p.[Pro10His] 

NS 681 12.46 NS1:p.[Pro212Leu]; NS2:p.[Leu55Phe] 

NS 703 26.74 NS1:p.[Lys219Asn]; NS2:p.[Asn62Thr] 
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Part IV: 

Conclusions, discussion 

and future perspectives 
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M2e as candidate for a 'universal influenza A vaccine' 

The high economical and social cost associated with the annual disease burden of influenza 

epidemics, together with the fear for a next influenza pandemic, demonstrate the need for a so 

called 'universal influenza vaccine'. Such a vaccine should ideally result in effective, broad-spectrum 

and long-lasting protection against disease caused by influenza virus infection. Our lab, followed by 

several others, has demonstrated that a vaccine based on the conserved ectodomain of the influenza 

virus membrane protein M2 is a valuable 'universal influenza A vaccine' candidate [1, 2]. Some M2e-

vaccine constructs as well as M2e-specific monoclonal IgG antibodies have been evaluated in early 

phase clinical trials [3-6]. To further optimize M2e-based immune protection strategies against 

influenza, it is important to have a detailed understanding of their mechanism of action. This is a 

challenging task because M2e-specific antibodies lack virus neutralizing activity, which is the 

conventional correlate of protection for most licensed anti-microbial vaccines. In addition, the high 

genetic diversity of influenza viruses ­ a consequence of their error-prone replication - necessitates to 

investigate how these viruses may evolve under M2e-based immune pressure. These two key issues 

concerning M2e-based vaccines were addressed in this PhD project. 

NGS as tool to study the genetic diversity of influenza A viruses 

The study of the evolution of influenza and other viruses has been facilitated by the recent progress 

in the field of next-generation sequencing (NGS). At the beginning of this PhD project, controversial 

results on the accuracy of the different sequencing platforms were reported [7, 8]. Consequently, we 

first compared the suitability of the two most potent NGS platforms to study the genetic diversity in 

a viral population with high sensitivity: the Illumina MiSeq and the Ion Torrent Personal Genome 

Machine (PGM). In addition, reports on how the sequencing data is processed or analyzed are often 

either lacking or ill-explained in the literature, which impedes the comparison of results obtained by 

different NGS studies. Consequently, we designed an NGS data analysis pipeline for variant calling of 

genetically diverse RNA virus populations. We opted for the user-friendly bioinformatics program CLC 

Genomics Workbench (Qiagen Bioinformatics), which makes it possible for virologists to generate 

and analyse their data themselves. We think that such a user-friendly program will lower the 

threshold for virologist to perform NGS experiments, since knowledge on command lines, which is 

mostly linked to large data analysis, is not required. Multiple open-source software tools are also 

available to perform NGS data analysis [9]. However, their use is often restricted by the limited 

number of possible applications, the scarce maintenance of the software and/or the limited 

availability of computation and data storage resources on their servers. 

We first applied this NGS data analysis pipeline on sequencing reads obtained for plasmid DNA 

samples and found that the accuracy of the reads sequenced on the Illumina MiSeq was one and a 

half times higher than on the Ion Torrent PGM. A higher accuracy for Illumina MiSeq was also 

observed by Loman et al. and Quail et al., who compared the characteristics of both sequencers by 
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sequencing either the O104:H4 isolate of Escherichia coli, isolated during an event of food poisoning 

in Germany in 2011, or four different microbial genomes differing in mean GC-content from 19.3 to 

67.7% [7, 8]. However, we observed a lower substitution error rate on the Ion Torrent PGM 

compared to the Illumina MiSeq, which is in contrast with Loman et al. who compared the 

characteristics of both sequencers on the raw sequencing data [7]. The obtained sequence read 

length was similar on both sequencers (+/- 215 nucleotides) after processing the data, although the 

400 base pair kit was used for sequencing on the Ion Torrent PGM. This relative short average 

sequence length obtained on the Ion Torrent PGM is not the result of the small size of the sequenced 

DNA fragments, since the peak fragment length of the DNA fragments before emPCR was situated 

around 450 base pairs. However, the default settings in the Ion Torrent PGM sequencing software 

('Ion Torrent suite') were used to obtain the sequencing output. These default settings also include 

the removal of low quality 3' ends (mean Phred score of at least 15 in a base window of 30). This 

suggests that the advantage of long reads obtained on the Ion Torrent PGM is cancelled by their 

relatively low quality. This finding is in agreement with a report by Jünemann et al., where read 

lengths of 194 (+/- 89.08) nucleotides were obtained with the 400-bp PGM chemistry [10].  

To sequence the viral diversity in an influenza virus population on the NGS platforms, the segmented 

RNA genome had to be converted to DNA. We designed an RT-PCR protocol in which we took 

advantage of the conserved sequences at the influenza genome ends, which resulted in efficient 

amplification of all eight genome segments of the influenza A/Puerto Rico/8/34 (PR8) virus. Critical 

steps in this protocol appeared to be the primer concentration and annealing and elongation times. 

The primers used for full-length amplification of all eight influenza A vRNA segments have a relatively 

limited sequence homology with their target RNA sequences. Therefore, it is very important to run 

the RT-PCR at precise primer concentrations and annealing temperature conditions. Indeed, we 

noticed that tuning these conditions was important to avoid the "aspecific" amplification of the first 

847 nucleotides of the HA segment, due to partial overlap of one of the primers with the coding 

region of HA. This sequence of nine nucleotides is also present in the HA consensus sequence of 

H1N1 influenza A viruses (unpublished results). An advantage of this influenza-specific RT-PCR 

protocol compared to others, is the amplification of the full influenza genome in a single reaction, 

using a single set of primers. Consequently, performing multiple PCRs is omitted, which decreases 

the change of contamination [11-13]. The sequence of the segment ends is conserved between all 

subtypes of influenza A viruses and can thus be used to study all influenza A virus strains. The broad 

applicability of this RT-PCR protocol was also verified for other influenza A viruses: mouse-adapted 

PR8 (H1N1), H9N2/CA09 (A/quail/Hong Kong/G1/1997 (H9N2) x A/California/04/2009 (H1N1)), 

A/quail/Hong Kong/G1/1997 (H9N2), A/Belgium/145-ma/2009(H1N1), X47 (A/Victoria/3/75 (H3N2) x 

PR8), NIBRG-14 (A/Vietnam/1194/04 (H5N1) x PR8), PR8-NS1(1–73)GFP (H1N1) and 

A/Brisbane/59/2007 (H1N1) (unpublished results, and Mancera Gracia et al., submitted) [14]. This 

demonstrated that the RT-PCR protocol, along with the NGS data analysis pipeline, is broadly 

applicable and can be used e.g. for viral resistance testing and the study of virus evolution. 
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The influenza-specific RT-PCR protocol was performed on the PR8 virus, created by reverse genetics, 

to compare the suitability of both sequencers to determine the variants present in a viral population. 

The influenza reference sequence could be obtained for both sequencers by de novo assembly using 

de Bruijn graphs. Mapping the reads to the influenza reference genome, based on the eight plasmids 

to generate the virus, resulted in ample coverage across all segments. However, the segments ends 

were underrepresented after transposase-based Nextera XT DNA fragmentation followed by Illumina 

MiSeq sequencing. This is the result of the intrinsic nature of the transposition reaction since the 

transposon sequence cannot be inserted at the genome ends. In addition, a significant coverage dip 

near the middle of the NP segments as well as a dip around position 600 of the PA segment was 

observed. When the same sample was sequenced after Covaris shearing, this bias in sequencing 

coverage was absent, indicating that Nextera XT fragmentation is partially sequence dependent as a 

consequence of the sequence bias of its transposase [15]. A bias in genomic coverage was also 

observed after Nextera fragmentation and Illumina sequencing of the small genome of the PA1 

bacteriophage [16]. Random fragmentation by mechanical shearing is thus preferred for smaller 

genomes to ensure comparable coverage across the genome.  

It is important to distinguish variants in the viral population from technical errors introduced during 

RT-PCR amplification and the NGS chemistry. Consequently, we verified our NGS data analysis 

pipeline on wild type and mutant samples in duplicate, and mixed at different ratios. We concluded 

that variants in the influenza virus genome that appear with a frequency below 0.5% are very difficult 

to distinguish from the background noise and that a threshold of 0.5% should be used to interpret 

the genetic diversity of RNA viruses. Applying this threshold to our samples, resulted in 19 detected 

mutations in PR8 virus and 29 mutations (including the two tracer mutations) in PR8mut virus. The 

highest variation was detected in HA, being 13 out of 19 mutations for PR8 and 16 out of 29 for 

PR8mut, which is also the most variable viral protein in nature [17]. The empirical determined 

threshold of 0.5% makes it thus possible to sensitively study the variants present in a viral 

population. However, the errors introduced during RT-PCR, together with the error-rate of the NGS 

platforms, limits their use for the identification of each variant present in the viral quasispecies. 

Another drawback of the NGS platforms is their relatively short read length which limits their use for 

detecting mutations that are linked in a genome segment. The long read-length reported for the 

single-molecule sequencers will probably fill this gap in the future, although the use of these 

sequencers for the detection of viral diversity is currently limited by their low sequencing accuracy. 

Recently, different techniques have been applied to further reduce the error threshold of NGS, each 

with their own benefits and drawbacks. One of these techniques is CirSeq, developed by Acevedo 

and colleagues [18]. In this technique, RNA fragments of 80 to 90 bases are circularized, followed by 

'rolling circle' reverse transcription, resulting in DNA fragments containing three repeats of physically 

linked cDNA fragments [18]. Consequently, real mutations that are present in the viral RNA will be 

shared by all repeats in the DNA fragment. In contrast, variation introduced during RT-PCR or 

sequencing, will not be present in all repeats and can be filtered out. This reduces the estimated 
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error probability to 10-6 per base, which is below the estimated mutation rate of influenza viruses 

and makes it thus possible to study each variant in a viral population [19]. This technique has been 

successfully applied to define the mutation rate of poliovirus and to resolve the mutational 

landscape of its viral population [19]. However, this technique requires a large amount of pure viral 

RNA (1 to 5 µg) and is not applicable for de novo assembly, since a reference genome is required to 

map the tandem repeat reads [18]. In addition, due to the limited read lengths of current NGS 

platforms, only tandem fragments with units of 80 to 90 nucleotides can be sequenced. Furthermore, 

since each fragment is sequenced three times, the sequencing throughput drops with the same 

factor.  

Another method to reduce the error-threshold is 'primer ID sequencing' [20]. In this technique, a 

random barcode, 'the primer ID', is added to the primer used for cDNA synthesis. This makes it 

possible to cluster the sequenced DNA fragments carrying the same primer barcode afterwards. By 

doing so, a real mutant can be discriminated from technical errors as it will be present in all 

sequencing reads of a barcoded cluster. A major limitation of this technique is that errors introduced 

during reverse transcription, which is an error-prone step, cannot be corrected. Ideally, to eliminate 

all errors and biases introduced during RT-PCR and sequencing, direct RNA sequencing of genomic 

viral RNA should be performed [21]. Oxford Nanopore Technologies recently released the first results 

of direct RNA sequencing on their MinION platform [22]. The long read length of this platform makes 

it also possible to study linkage of viral variants. However, the use of the MinION system to study 

variants in a viral population is currently limited because of its high reported error rate of about 10%, 

although its accuracy is steadily improving [23-25]. 

From the NGS platform comparison, we concluded that the Illumina MiSeq is most suitable to detect 

variant sequences in a viral population since this platform has the lowest total error rate. In addition, 

the output of the Illumina MiSeq, which is at least four times larger than the Ion Torrent, makes it 

possible to analyse many more samples in parallel. However, the time to data of Ion Torrent PGM is 

significantly shorter, which can be an important advantage in a clinical setting.  

The field of NGS is fast evolving with the first NGS platform - the 454 Genome Sequencer 20 (Roche) - 

only released eleven years ago. This platform was characterized by a read length of approximately 

100 bases and a total throughput of 20 Mb per run. In the meanwhile, the 454 pyrosequencing 

platforms have been discontinued in 2016, the sequencing read length is increased up to 400 

nucleotides (Ion Torrent PGM and S5) and the maximal sequencing throughput on the market is 

obtained on the Illumina HiSeq X (up to 1800 Gb). In addition, single-molecule sequencers were 

brought to the market, which eliminate the sequencing bias introduced during library preparation 

and make it possible to sequence DNA fragments of several kilobases [26]. However, their use in 

influenza research is currently limited by their high error rate. 
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Illumina MiSeq sequencing disfavours the 'CCNGCC' sequence motif  

Influenza reporter viruses are of use in several applications, e.g. to study the kinetics of viral 

replication, virus tropism or to screen for influenza antivirals. However, the reporter gene has no 

selective advantage for the virus and can thus be deleted upon viral replication. Gradual loss of 

reporter gene expression has been reported for GFP-expressing influenza viruses [27]. However, we 

note that recently, the group of Dr. Kawaoka, described a PR8-based backbone vector for reporter 

genes that seems to be exceedingly more stable in vitro and in vivo than the earlier developed 

influenza reporter viruses [28].  

The high sequencing throughput of NGS makes it a useful tool to study the genetic stability of 

influenza reporter viruses. We verified the suitability of NGS to study the genetic stability of a GFP-

expressing influenza reporter virus, recently developed in our lab, using the aforementioned 

influenza-specific RT-PCR protocol and NGS data analysis pipeline [14]. The detected total variation 

and the variation per viral genome segment between the virus stock of this GFP-expressing influenza 

reporter virus and the wild type PR8 virus was similar, which suggests that both viruses are equally 

genetic stable. Interestingly, a remarkable drop in sequencing coverage was detected at the GFP 

coding sequence, although this virus appeared to be genetically stable based on phenotypic analysis 

of this virus upon multiple cycles of viral replication [14]. This drop in sequencing coverage could be 

linked to a sequencing bias of the Illumina MiSeq for the 'CCCGCC’ motif in the GFP coding sequence, 

since mutating this motif resolved the bias in sequencing coverage. A similar drop in sequencing 

coverage upstream of the 'CCNGCC' motif was previously reported by Ekblom and colleagues in 

mitochondrial DNA, after deep sequencing the whole genome of wolverine (Gulo gulo) and collared 

flycatcher (Ficedula albicollis) [29]. This study demonstrated an inverse relation between sequence 

coverage and error rate, based on the presence of a position with high error rate and low sequencing 

coverage directly upstream of the 'CCNGCC' sequence motif [29]. A high error rate for the 'GGCGGG' 

motif was also reported by Quail et al. after Illumina MiSeq sequencing of microbial genomes which 

differ in mean GC-content from 19.3 to 67.7% [8].  

We have tried to explain why the drop in sequencing coverage was observed only at two out of the 

twelve 'CCNGCC' motifs in the pHW-NS1(1-73)Dmd-GFP-NEP plasmid, and why this motif is required 

but not sufficient for the adjacent drop in sequencing coverage. We hypothesised that the sequences 

upstream and downstream of the 'CCNGCC' motif may also play a role. Therefore, we tried to identify 

a recurrent primary sequence pattern in the flanking regions of such motifs. We generated a 

sequence logo based on the 150 nucleotides upstream and downstream, since the sequenced DNA 

fragments have a length of approximately 300 bases, of the ‘CCNGCC’ and the shorter ‘CNGCC’ 

motifs present in the pHW-NS1(1-73)Dmd-GFP-NEP plasmid encoding the NS-GFP segment and in the 

plasmids containing the other GFP variants. Unfortunately, due to the limited number of motifs, no 

additional sequence pattern that was under or overrepresented in the regions flanking a ‘CCNGCC’ or 

‘CNGCC’ motif could be revealed (unpublished results). More extensive studies on coverage analysis 
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are thus required to investigate if it is possible to come up with a sequence pattern that can predict 

the sequence bias at a given 'CCNGCC' motif. Such a discriminatory sequence motif would be widely 

applicable to correct for sequencing bias e.g. during RNA sequencing data analysis, where sequencing 

coverage is linked to gene expression levels.  

We can conclude from this study that it is important to take a potential sequencing bias into account 

when performing NGS coverage analysis. In our study, we could have come to the false conclusion 

that our GFP-expressing influenza reporter virus was genetically unstable. The real genetic stability of 

the GFP sequence in this recombinant virus can be determined by creating a variant virus through 

reverse-genetics which carries a C504T and/or C507T (GFP numbering) mutation in the sequence 

encoding for GFP. Alternatively, one can use an alternative reporter gene to create a reporter virus 

after having ensured that the corresponding coding sequence is not subject to potential coverage 

bias for the anticipated NGS analysis. Next to this, the genetic stability of this GFP-expressing 

influenza reporter virus can be analyzed on a sequencing platform that uses a different sequencing 

chemistry, such as the Ion Torrent PGM. 

The protective potential of M2e-based vaccines can be enhanced by directing the elicited immune 

response towards the induction of IgG2a antibodies 

The protective mechanism underlying M2e-based vaccines was further unravelled in this PhD project 

by investigating the functional engagement of FcγR family members by two mouse monoclonal 

antibodies (mAbs) that bind M2e with similar affinity, but are either of the IgG1 or IgG2a antibody 

isotype. In collaboration with the group of Dr. Harmut Hengel, we could directly correlate findings 

from an in vitro assay in which all mouse FcγRs were evaluated one by one for the binding of these 

two mAbs, which were bound in turn to M2 on influenza A virus infected cells; to protection against 

viral challenge in mice that differ in their deficiencies in the FcγR compartment. We showed that 

M2e-specific antibodies of the mouse IgG1 isotype require low affinity receptor FcγRIII to accomplish 

protection upon infection, whereas the IgG2a antibodies can protect against influenza A virus 

challenge via any of the three activating FcγRs. This study thus confirms the essential role of Fcγ 

receptors in protection by M2e-specific IgG. In addition, the superior protection of M2e-specific 

IgG2a over IgG1 against influenza A virus challenge can be linked to its potential to bind all three 

activating receptors on effector cells, such as NK cells, macrophages and neutrophils [30].  

An important role has also been assigned to FcγRs in protection against influenza A virus infection by 

broad-spectrum HA-stem specific IgG mAbs, with a higher protective potential for IgG2a mAbs 

compared to their IgG1 counterpart [31, 32]. DeLillo et al. even suggested that all broadly 

neutralizing anti-influenza antibodies require FcγRs to protect against influenza infection, based on 

an in vivo comparison of broadly neutralizing as well as strain-specific anti-HA and anti-NA IgG2a 

mAbs, with their mutant counterparts that lack FcγR binding [33]. 
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The anti-M2e antibody pair used in this study originates from splenocytes isolated after vaccination 

of mice with soluble tetrameric M2e and are hence not identical in their antigen binding site. 

However, we have proven that both antibodies bind peptide M2e and M2e expressed on infected 

cells with similar affinity. In addition, Ala-scan analysis showed that both antibodies require similar 

amino acid residues in M2e for their binding. The impact of antibody isotype on binding to the 

specific FcγRs should ideally be studied using recombinant produced mAbs which share the same 

variable region and only differ in their constant region. However, it has been shown that the constant 

heavy chain domains may affect the structure of the antigen binding site and the herewith associated 

antibody binding specificity and affinity [34, 35]. In addition, we demonstrated that both mAbs carry 

a similar glycosylation pattern at the conserved N-glycosylation site in their antibody Fc tail, which 

has an important role in Fc-dependent effector functions [36-39]. Consequently, we considered that 

this antibody pair was well suited to investigate the impact of antibody isotype and their binding to 

specific FcγRs on effector cells, on the protective effect of M2e-specific antibodies.  

We demonstrated an essential role for FcγRs in M2e-based protection, which is in agreement with 

former studies [40, 41]. Furthermore, we showed that IgG2a mAbs were still protective in mice that 

lack FcγRIII, while M2e-specific IgG1 mAbs largely failed to protect these mice [30]. These results are 

in line with prefacing studies, which indicate that NK cells may contribute to M2e-based protection, 

although their role is probably not essential [30, 41-45]. We also reported for the first time that 

FcγRIV, which plays an important role in IgG2a-dependent effector activities in vivo, contributes to 

M2e-based protection [46]. A possible role for FcγRIV in protection by M2e-specific IgG2a mAbs was 

first suggested in the FcγRI and FcγRIII double knock-out mice, since these mice were fully protected 

against viral infection when treated with M2e-specific IgG2a mAbs. This was later confirmed in fcgr4-

/- mice, which were protected by IgG2a but displayed significantly more body weight loss after 

influenza A virus challenge than wild type mice. In contrast, wild type and fcgr4-/- mice were equally 

well protected by M2e-specific IgG1 mAbs, although worse than IgG2a in terms of weight loss. FcγRIV 

thus contributes to protection, but has no determining role. An important role has also been 

assigned to FcγRIV in protection against influenza viruses by the broadly neutralizing HA stalk-specific 

antibodies [31]. The higher morbidity observed in challenged FcγRI and FcγRIII double knock-out mice 

after treatment with M2e-specific IgG2a mAbs, compared to wild type mice and mice that lack 

FcγRIII, also suggests that FcγRI significantly contributes to their protection. However, future studies 

comparing FcγRI knock-out mice, FcγRI and FcγRIV double knock-out mice and triple-deficient mice 

lacking functional FcγRI, FcγRIII and FcγRIV, will be required to determine the relative contribution of 

the two high affinity activating FcγRs in M2e-based protection. 

We demonstrated that FcγRI and FcγRIV are both important for the protective effect of M2e-specific 

IgG2a antibodies. These receptors are highly expressed on alveolar macrophages [30]. An essential 

role in M2e-based protection has previously been assigned to these cells, since anti-M2e immune 

serum failed to protect mice in which the alveolar macrophages were eliminated by clodronate-

loaded liposomes, although NK cells were still present [41, 47]. Moreover, protection by M2e-



 

242 

 

immune serum was restored in FcγRI and FcγRIII knock-out mice, depleted of alveolar macrophages, 

after transfer of wild type alveolar macrophages [41]. The essential role of alveolar macrophages in 

M2e-based immune protection, should be further exploited. The csf2rb-/- mice, which lack alveolar 

macrophages, are an interesting mouse model for this purpose [48, 49]. However, the influence of 

pulmonary alveolar proteinosis, as a result of defective clearance of surfactant, should be excluded 

by transferring alveolar macrophages isolated from fcer1g-/- or wild type mice, as positive control 

[50-53]. To further dissect the cell-specific contribution of FcγRs in M2e-based protection, it will also 

be interesting to create conditional FcγR knock-out mice for alveolar macrophages, and possibly NK 

cells. In addition, to extrapolate these finding to humans, which show a distinct FcγR expression 

pattern, the functional contribution of human FcγRs in the protective effect of M2e-specific 

antibodies should be investigated. Since human IgG1 and -3 isotype antibodies can be considered to 

be the functional counterparts of mouse IgG2a antibodies, it will be interesting to create humanized 

IgG1 and IgG3 anti-M2e mAbs which carry the variable domain of our murine anti-M2e mAbs. The 

FcγR humanized mice created by Smith and colleagues, in which all murine FcγRs have been deleted 

and all human FcγRs have been inserted under the control of their human regulatory elements, are a 

good mouse model to evaluate the protective effect of these humanized anti-M2e mAbs [54].  

The results from our study can be implemented to optimize M2e-based vaccine formulations. We 

showed that M2e-specific IgG2a antibodies have a higher protective effect compared to IgG1, with 

minimal morbidity and absence of mortality in wild type mice. Moreover, increased protection upon 

viral challenge is linked to the induction of IgG2a antibodies following M2e-based vaccination [55-

58]. Translating these findings to human vaccine design, will result in more potent M2e-based 

vaccines. Induction of human IgG1 an -3 isotype antibodies should thus be promoted by using an 

M2e-based vaccine formulation which stimulates a Th1-specific immune response, such as the 

licensed MF59, AS03 and AS04 adjuvants [59]. Currently, the majority of the licensed influenza 

vaccines are administered intramuscularly, which results in systemic protective immunity. However, 

the highest protective potential for M2e-based vaccines in mice is obtained when they are 

administered intranasally, which is also the site where initial influenza infection takes place [60]. In 

addition, intranasal vaccination induces mucosal as well as systemic immunity and can be applied 

needle-free, which allows self-vaccination. Further research on intranasal vaccination of humans is 

thus required.  

Next to optimizing M2e-based vaccines, there is also an important need for a read-out system to test 

their vaccine effectiveness. The efficacy of conventional influenza vaccines is currently evaluated by 

measuring the hemagglutination inhibition titers. However, this assay measures only the elicited 

number of antibodies that target epitopes in or close to the receptor binding site of influenza HA and 

can thus not be applied to evaluate the protective effect of M2e-based antibodies. The same holds 

true for broadly neutralizing antibodies elicited by vaccines that target the conserved stalk domain of 

HA [31]. Since these vaccines mainly exert their protective effect by binding to FcγRs, a novel read-

out to determine the vaccine efficacy is required. An in vitro assay that can correlate the presence of 
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antibodies in immune serum with their potential to induce ADCC and ADPC would be suitable for 

this. Consequently, a test based on the in vitro FcγR activation assay, as used in this study, could be 

implemented for this. However, further clinical studies, in the first place demonstrating a clinical 

benefit of an M2e-based vaccine, are required to reveal a correlation between the in vivo protective 

potential of M2e immune serum and the in vitro activation of FcγRs.  

M2e-based immune pressure selects for limited variation in M2e and alternative escape routes in 

immuno-deficient mice 

Influenza viruses can escape from the selection pressure imposed by the neutralizing antibodies 

targeting the highly variable antigenic sites of HA, which are elicited upon natural infection or 

vaccination with the licensed influenza vaccines. The effectiveness of the current vaccination 

strategies is limited by this antigenic drift and requires annual vaccination with the updated vaccine. 

Since M2e-based vaccines differ from the current vaccination strategies which mimic the natural 

immune response, it is important to investigate how influenza viruses evolve when immune pressure 

is imposed on a conserved epitope such as M2e. 

In this PhD project we started to investigate how influenza viruses evolve under M2e selection 

pressure. The different mode of action of the M2e-based vaccines, compared to the licensed 

influenza vaccines where antigenic drift can be mimicked in vitro, necessitates for an in vivo M2e 

escape selection model [61-63]. We opted here for immunodeficient SCID mice since they are 

proficient in antibody-dependent effector functions, on which anti-M2e immunity relies, but lack B 

and T cells and thus cannot mount an adaptive immune response that would normally lead to the 

clearance of the influenza viruses. Influenza viruses can thus replicate for a prolonged time in these 

SCID mice and are thus nicely suited as mouse model to select for escape under M2e-immune 

pressure, in the form of passively transferred M2e-specific mAbs. In the future, it will be important to 

investigate how influenza viruses evolve in the presence of a polyclonal M2e immune response in an 

immune competent host by serially passaging virus present in BAL fluid, e.g. isolated on day five post 

infection, of infected M2e-vaccinated mice. In this set-up it would also be interesting to include mice 

vaccinated with the inactivated whole virus vaccine and a vaccine based on the conserved HA-stalk 

domain, to compare the kinetics of viral escape between the different vaccine strategies. Up to now, 

there is no experimental evidence that influenza viruses can escape from a polyclonal anti-M2e 

immune reaction [64]. 

The survival of infected SCID mice was significantly prolonged in the presence of M2e-specific mAbs. 

In agreement with the aforementioned study, a significantly higher impact on survival was observed 

for M2e-specific IgG2a antibodies than IgG1. The viral diversity present in the BAL fluid of infected 

mice was analysed by NGS, and escape in the M2e sequence was only detected in mice that were 

treated with mAbs that bind an epitope spanning amino acids 5 to 15 in M2e. However, the variation 

in M2e in these samples was limited to a proline to histidine or leucine mutation at position 10 or a 
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leucine to threonine mutation at position 11, mutations that are all silent in M1. These results are in 

line with the crystal structure of M2e peptide in complex with the Fab fragment of one of these 

mAbs, which showed a critical role for Glu6, Pro10, Ile11 and Trp15 for mAb binding [65]. The impact 

of these M2e escape mutants in immune competent hosts will probably be limited, since we 

subsequently showed that these M2e escape mutants retained enough antigenicity to be bound by 

polyclonal serum of mice vaccinated with M2e-HBc. Moreover, it has been shown that the polyclonal 

immune response elicited by vaccinating mice with M2e-MAP, comprising four copies of the human 

consensus M2e sequence, resulted in cross-protection against infection with a mutant PR8 virus 

carrying M2e-P10L or P10H [66]. In nature, some genetic flexibility is also allowed at position 10 and 

11. A histidine or leucine at position 10 is usually found in the M2e sequence of the highly pathogenic 

avian influenza H5 and H7 viruses [2]. In addition, a threonine is commonly found at position 11 in 

the M2e sequence of avian and swine influenza A viruses (Chapter 2, figure 1). An M2e-vaccine 

should thus likely comprise a mixture of M2e sequences, for example arranged in tandem repeats on 

virus-like particles as reported by Kim and colleagues, to ensure maximal coverage of the M2e 

sequence diversity in circulating influenza A viruses and to reduce the risk of M2e escape virus 

emergence [67]. 

There was no variation detected in M2e when SCID mice were treated with an M2e-specific antibody 

that binds the eight N-terminal amino acids in M2e. This finding is in line with a phase 2 clinical trial 

in experimentally infected, healthy volunteers who received a human M2e-specific mAb (TCN-032) 

that binds to the SLLTE sequence at the N-terminus of M2e [68]. Deep sequencing of the last positive 

nasal swab sample did not result in the detection of low frequency variation in the M2 sequence 

[68]. The M2e sequence is thus remarkably stable, even in the presence of an immune pressure.  

The selected variation in M2e is limited to substitutions which are silent in M1, which suggests a 

strong natural selection pressure for the virus to maintain its M1 sequence conserved [69]. The 

coding sequence for the N-terminus of the M1 protein and the eight N-terminal amino acids of the 

M2 protein overlaps with the conserved 5' packaging signals of the M segment, which will contribute 

to the genetic constraint imposed on this sequence [70-72]. The three different anti-M2e mAbs used 

in this study were derived from splenocytes of mice vaccinated with tetrameric M2e (M2e-tGCN4) 

and thus reflect some of the epitope diversity elicited upon vaccination. The absence of variation in 

M2e when mice were treated with mAbs binding to its N-terminus and the presence of limited 

variation when mice were treated with the mAbs binding to amino acids 5 to 15 in M2e, suggests 

that escape in the M2e sequence will be hindered by a polyclonal immune response in an immune-

competent host.  

The wild type M2e sequence was retained in all mice that succumbed to infection after treatment 

with M2e-mAbs which recognize the N-terminus and in half of the mice treated with M2e-specific 

mAbs binding to amino acids 5 to 15. However, mutations at high frequency were observed in these 

samples, mainly in the polymerases PB2 and PA and in HA. Therefore, we considered the possibility 
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that an alternative escape route from M2e immune pressure was possible for the virus in our model. 

The detection of various combinations of different mutations suggests that the virus can follow 

multiple genetic pathways to escape from M2e-based immune pressure. A small number of these 

mutations were independently selected in multiple mice, which suggest that these mutations are 

advantageous for escape. Several of these mutations have been linked to enhanced viral replication 

or receptor binding. For example, an enhanced in vitro polymerase activity and higher pathogenicity 

in mice have been reported for the I504V mutation in PB2 [73, 74]. In addition, we noticed a 

remarkable difference in plaque morphology between the parental virus and a PR8 virus carrying the 

mutations observed in PB2, PA and HA when plaques were immunostained with anti-M2e antibodies 

and subsequently with polyclonal immune serum directed against the vRNPs. This difference in 

plaque morphology (essentially the ratio of the plaque size as revealed by anti-M2e immune staining 

over the size of the plaques visualized by anti-vRNP immune serum) was smaller in the HPP mutant 

virus compared with wild type virus. These ratios still require more objective quantification by 

appropriate imaging software, such as Volocity (Perkin Elmer). Western blot analysis of samples 

prepared at different time points after infection, appear in line with a delayed M2 expression 

compared to new vRNP synthesis. However, also here, quantification of Western blot signals (e.g. 

direct quantitative analysis of protein levels using the Amersham Imager 600) are required to 

substantiate the finding. On the other hand, flow cytometric analysis of membrane expressed M2 on 

the surface of infected HEK293T cells determined at different time points after infection, did not 

reveal such a delay in M2 display. There are several explanations possible for this seeming 

discrepancy between the total protein analysis and the flow cytometric approach that provides 

information on M2 expression at the cell surface. First, the kinetics experiments were performed 

using a human cell line and should be repeated using a mouse cell line, e.g. MLE-15 cells, to better 

recapitulate what may be going on in the SCID model. In addition, the amount and timing of virus 

released from the infected cells should be included in this kinetics experiment. This could lend 

support to the hypothesis that a shorter time between the start of M2 expression and virus budding 

could allow mutant virus to be shed before FcγR-expressing immune cells can attack infected cells 

that are opsonized with M2e-specific antibodies. The mutations in PA and PB2 that arise under anti-

M2e IgG selection pressure in SCID mice may raise the concern that these could increase the 

replication rate of the virus and possibly alter their pathogenicity. This can be tested by defining the 

LD50 of these viruses in immune competent mice. The delayed expression of M2 should also be 

verified in vivo by immunochemistry and the potential of this virus to evade M2e immune pressure 

should be confirmed either in SCID mice treated with anti-M2e mAbs and in M2e-vaccinated, 

immunocompetent mice. The polymerase complex has also been suggested to play a role, albeit 

controversial, in splicing of the M1 mRNA, hence it will also be interesting to study the impact of the 

selected mutations in PB2 and PA on M1 mRNA splicing [75, 76].  

In vivo escape selection from M2e-specific mAbs was first described by Zharikova and colleagues 

[77]. In this study, infected SCID mice were chronically treated with M2e-specific IgG2a antibodies 



 

246 

 

which all recognize a similar epitope within amino acids 4 to 16 of M2e, as determined by a 

competition assay where N- and C-terminal truncated M2e-peptides in solution interfered with 

coated full-length M2e for binding to these mAbs [78]. Our results confirm some of the findings in 

this pioneering study but also revealed new findings. First, in both studies survival was prolonged 

when infected mice were treated with M2e-specific mAbs, demonstrating their protective effect. In 

addition, we could demonstrate that M2e-specific IgG2a mAbs have a higher protective effect 

compared to their IgG1 equivalent. In both studies, escape viruses with a mutated M2e epitope, 

which abolishes recognition by the mAbs, were selected. The variation in the study of Zharikova et al. 

was restricted to a proline to histidine or leucine mutation at position 10 in M2e in 65% of all treated 

mice. We got a better understanding of the tolerated variation in M2e by using M2e-specific mAbs 

that bind different epitopes and/or are from a different antibody isotype, which resulted in the 

detection of an additional isoleucine to threonine mutation at position 11. In addition, as a 

consequence of the higher sensitivity of our deep sequencing approach compared to direct Sanger 

sequencing of purified RT-PCR products, we were able to detect a mixture of these M2e variants in a 

single sample. Furthermore, we also demonstrated that variation in the very conserved eight N-

terminal amino acids of M2e is not tolerated. Importantly, The study of Zharikova and colleagues was 

limited to Sanger sequencing of purified M2e RT-PCR products, derived from viral RNA after 

amplifying the virus present in lung homogenates on cells. Using whole genome deep sequencing, we 

were able to analyze the variation across the whole influenza virus genome, which also resulted in 

the detection of compensatory mutations outside the M2e epitope. In addition, by directly analyzing 

the shed virus in the lung, we omitted cell culture adaptation. Hence, our study demonstrates the 

benefits of whole genome sequencing of influenza viral genomes in M2e escape selection. 

Interestingly, the level on which escape from M2e-based immune pressure takes place is different 

from the current influenza vaccine strategies. Escape from the neutralizing antibodies elicited by the 

licensed influenza vaccines is limited to the level of viral entry and as such, only viruses that escape 

the immune response before the initial infection will result in viral progeny. These antigenically 

drifted escape mutants will carry substitutions in HA.This conventional type of escape is well known 

and can be taken care of by including the variant in the vaccine. However, M2e-based vaccines are 

infection permissive, and as such, selection takes place on the level of the infected cell, full of 

progeny influenza viruses. The pool of viruses on which selection takes place is thus higher when 

compared to the licensed influenza vaccines. However, the infective-permissive character of the 

M2e-based vaccines also allows the induction of B cells and a cross-reactive cellular immune 

response upon infection, which will impose an additional layer of immune selection on the challenge 

virus and little opportunity for the viruses to escape anti-M2e immunity.  

Influenza viruses which can escape to M2e-based immunity require sustained host-to-host 

transmission to emerge in the host population. Hence, it is important to investigate the impact of 

anti-M2e immunity on influenza virus transmission and to study the effect of selected M2e escape 

variants on this process. Ferrets are the favored animal model to study influenza virus transmission 
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since they are highly susceptible to these viruses and show similar disease symptoms as in humans, 

moreover, successful transmission can be obtained via aerosols and respiratory droplets ('airborne 

transmission') or direct contact [79-83]. Nachbagauer et al. recently demonstrated that ferrets with 

HA-stalk immunity, induced by a universal influenza vaccine approach using vaccination with 

chimeric HA vaccine constructs, were either protected against aerosol-transmitted H1N1 influenza 

virus infection or displayed significantly reduced virus shedding in a shorter time span in the nasal 

washes [84]. Mice can also be used to study influenza virus transmission. However, the success of 

influenza virus transmission in mice is variable and depends strongly on the mouse model and 

influenza virus strain used [85-87]. Recently, effective direct-contact transmission of mouse-adapted 

A/FM/1/47(H1N1) and A/Udorn/307/72 (H3N2) in CFW mice was reported by the group of Epstein 

[86]. Challenging CFW mice with A/FM/1/47(H1N1) resulted in significantly reduced virus 

transmission after vaccination with rAd vectors expressing NP or M2, when compared to mice 

receiving the control vaccine [86]. 

Concluding remark 

The work described in this thesis provides a workflow to study the genetic diversity of influenza 

viruses by NGS and shows that the Illumina MiSeq, due to its high accuracy, is currently the preferred 

method for this. In addition, we also showed that potential sequencing biases should be taken into 

account when performing NGS coverage analysis. This PhD thesis also contributes to the 

understanding of the protective mechanism of the M2e-based vaccines. We demonstrated that M2e-

specific IgG2a antibodies have a higher protective potential compared to IgG1, which correlates with 

their potential of binding to all activating FcγRs on effector cells. This information will be of use for 

vaccine design and vaccines should thus be designed to elicit a robust Th1-biased immune response. 

In this PhD project we also demonstrated that only limited variation is tolerated in M2e under 

immune pressure and that these M2e escape mutants can still be recognized by polyclonal anti-M2e 

immune serum. The chance that viruses will emerge with a mutated M2e sequence in an immune 

competent host upon M2e-vaccination will thus probably be low. However, the possibility that 

viruses that follow alternative escape routes will emerge in the human population should be further 

investigated.  

A vaccine based on M2e is a good candidate for a 'universal influenza A vaccine' because of their 

broad-spectrum protective effect and the genetic constraints towards variation in M2e. Several of 

these M2e-based vaccines can also be produced in bacteria at large scale and low cost, omitting the 

need for eggs or cell culture as is the case for the licensed influenza vaccines. Moreover, the 

sequence conservation of M2e between influenza A viruses, makes stockpiling of these vaccines 

possible, which is an important advantage in pandemic preparedness. Ideally, the licensed influenza 

vaccines should be replaced by an influenza vaccine targeting conserved epitopes on both the 
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influenza A and B viruses. However, the protective potential of conserved epitopes in influenza B 

viruses is less exploited. 
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