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Abstract

It was shown recently that Birkhoff’s theorem for doubly stochastic matrices
can be extended to unitary matrices with equal line sums whenever the di-
mension of the matrices is prime. We prove a generalization of the Birkhoff
theorem for unitary matrices with equal line sums for arbitrary dimension.

Keywords: Birkhoff’s Theorem, Doubly Stochastic Matrix, Unitary
Matrix, Irreducible Representation.

1. Introduction

LetM be an arbitrary n×n doubly-stochastic matrix. Hence, each matrix
entry Mjk is a real number satisfying 0 ≤ Mjk ≤ 1 and each line sum, both
∑

j Mjk and
∑

k Mjk equal 1. Then, the Birkhoff theorem [1] tells us that
M can be written as a weighted sum of the n! permutation matrices Pm of
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dimension n:
M =

∑

m

cmPm (1)

such that all coefficients cm are real and satisfy 0 ≤ cm ≤ 1 and
∑

m cm = 1.
Let U be an arbitrary n × n unitary matrix, such that each line sum

equals 1, i.e.
∑

j Ujk = 1 and
∑

k Ujk = 1. Then, De Vos and De Baerdema-
cker [2] conjectured that U can be written as a weighted sum of the n!
permutation matrices Pm of dimension n:

U =
∑

m

cmPm (2)

such that all coefficients cm are complex and satisfy both
∑

m cm = 1 and
∑

m |cm|2 = 1. They proved this fact for the case of prime n. In the present
paper we demonstrate that the conjecture, which we will refer to as “Con-
jecture 1”, is also valid for composite n.

Before investigating the mathematics of the proof of Conjecture 1, we
stress here three important differences between the ‘classical’ Birkhoff theo-
rem and the present ‘unitary’ Birkhoff theorem:

• Whereas the n×n doubly stochastic matrices form an (n−1)2-dimensional
semigroup, the n × n unit-linesum unitary matrices form an (n− 1)2-
dimensional group, isomorphic to the unitary group U(n − 1) and de-
noted XU(n) [3].

• The unitary theorem is ‘stricter’ than the classical theorem, in the sense
that

∑

m |cm|2 = 1 implies 0 ≤ |cm| ≤ 1 for all m, whereas 0 ≤ |cm| ≤ 1
for all m does not necessarily imply

∑

m |cm|2 = 1.

• Let X(n) be the 2(n−1)2-dimensional group of all invertible n×n ma-
trices with complex entries and all line sums equal to 1. The (n− 1)2-
dimensional group XU(n) is a compact subgroup of X(n). Also the
(n− 1)2-dimensional semigroup DS(n) of n× n doubly stochastic ma-
trices resides within X(n). The intersection of the two subsets XU(n)
and DS(n) consists of the finite (and thus 0-dimensional) group of n×n
permutation matrices. Proof is in Appendix A. Let P and Q be two
arbitrary n × n permutation matrices. The classical Birkhoff interpo-
lation (1 − c)P + cQ with c real and 0 ≤ c ≤ 1 is a line segment in
the (n − 1)2-dimensional space of DS(n), constituting an edge of the
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so-called Birkhoff polytope [4]. In contrast, the quantum Birkhoff in-
terpolation (1 − c)P + cQ with c complex and |c|2 + |1 − c|2 = 1 is a
closed line in the compact (n − 1)2-dimensional space of XU(n). The
line segment and the closed curve have only the points P and Q in
common. This also implies that the classical Birkhoff theorem is not a
corollary of the unitary Birkhoff theorem.

The following sections are devoted to the proof and discussion of Conjecture
1 on the unitary Birkhoff theorem. Section 2 recapitulates necessary basic
ideas from representation theory, and sections 3 & 4 present the proof of
Conjecture 1. Sections 3 and 4 are different in the sense that the former
gives an existence proof, whereas the latter presents an explicit construction
based on the proof. We conclude the paper with a couple of examples in
section 5, and give our conclusions in section 6.

2. Schur decomposition of the permutation matrices

The set of permutation matrices {Pσ|σ ∈ Sn} forms a reducible represen-
tation of Sn. It is straightforward to show that it decomposes into a direct
sum of the trivial and standard representation,

P = D(0) ⊕D(s), (3)

by means of a similarity transformation with the n-dimensional Fourier ma-
trix Fn. The permutation matrices Pσ form a discrete subgroup of XU(n),
and can therefore be brought into block diagonal form by means of [5]

F †
nPσFn =

(

1 0
0 D(s)(σ)

)

, (4)

with the trivial representation D(0)(σ) = 1 (∀σ ∈ Sn) on the upper-left
block, and an (n − 1)-dimensional representation D(s) on the lower-right
block. The latter representation can be identified with the so-called standard
(irreducible) representation for three reasons. First, the representation is
faithful, because the set of permutation matrices forms a faithful representa-
tion and Fn is unitary. Second, the representation is irreducible thanks to the
orthogonality theorem on the characters of irreducible representations (see
Appendix B) [6]. Third, the characters of the irrep depend on the number
of invariant points in the permutation (σ(k) = k), typical for the standard
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representation. As an example, we explicitly construct the standard repre-
sentation of S3 by means of the formula in eq. (4). The permutation matrices
{Pσ} in S3 are given by

P0 =





1 0 0
0 1 0
0 0 1



 , P(123) =





0 0 1
1 0 0
0 1 0



 , P(132) =





0 1 0
0 0 1
1 0 0



 , (5)

P(12) =





0 1 0
1 0 0
0 0 1



 , P(13) =





0 0 1
0 1 0
1 0 0



 , P(23) =





1 0 0
0 0 1
0 1 0



 ,

and the Fourier transform F3 is given by (with ω3 = 1)

F3 =
1√
3





1 1 1
1 ω ω2

1 ω2 ω



 , (6)

so the standard representation becomes

D(s)(0) =

(

1 0
0 1

)

, D(s)(123) =

(

ω2 0
0 ω

)

, D(s)(132) =

(

ω 0
0 ω2

)

D(s)(12) =

(

0 ω2

ω 0

)

, D(s)(13) =

(

0 ω
ω2 0

)

, D(s)(23) =

(

0 1
1 0

)

.

(7)

Note that the characters of the standard representation indeed correspond
with the character table of S3 (see table 1).

(13) (2, 1) (3)

D(0) 1 1 1
D(−) 1 −1 1
D(s) 2 0 −1

Table 1: Character table of S3 [6]. The conjugacy classes are labeled by their Young
tableaux, and the irreps are the trivial irrep D

(0), the sign irrep D
(−) and the standard

irrep D(s).

4



3. Birkhoff’s theorem for unitary matrices

The existence proof of the unitary Birkhoff theorem is a corollary of
two theorems, the first being provided by some of us [2] and the second
by Klappenecker & Rötteler [7].

Theorem 1 (De Vos & De Baerdemacker [2]). If a matrix belongs to
XU(n), then it can be written as a weighted sum of permutation matrices
with the sum of the weights equal to 1.

This theorem was proven by induction in [2]. Before phrasing the second
theorem, we need to introduce the concept of a group-circulant matrix of a
finite group G of order d, associated to a vector |c〉 ∈ Cd. Assume a one-
to-one mapping between the elements g ∈ G and the components cg of the
vector |c〉, then the (d× d)-matrix

circG(|c〉) := (cg−1h)g,h∈G (8)

is called the group-circulant for the group G, associated to |c〉. The second
theorem now states

Theorem 2 (Klappenecker & Rötteler [7]). Let D be a matrix repre-
sentation of a finite group G (g → D(g)). If a unitary matrix A can be
expressed as linear combination

A =
∑

g∈G

cgD(g), cg ∈ C, (9)

then the coefficients cg of the vector |c〉 can be chosen such that the associated
group-circulant matrix is also unitary.

These two theorems essentially prove the Birkhoff theorem for unitary matri-
ces of arbitrary dimensions. Indeed, the permutation matrices form a matrix
representation of the symmetric group for any dimension. Theorem 1 ensures
that any matrix X ∈ XU(n) can be expressed as a linear combination of the
permutation matrices

X =
∑

σ∈Sn

cσPσ, (10)

so the two prerequisites of Theorem 2 are met. Therefore, one can choose
the vector |c〉 such that its associated group circulant matrix circSn

(|c〉) is

5



unitary. More specific, this implies that |c〉 can be chosen such that

∑

σ∈Sn

|cσ|2 = 1. (11)

This essentially proves our Conjecture 1 on the Birkhoff theorem for uni-
tary matrices. However, we will go one step further and present explicit
expressions for the cσ coefficients in Theorem 3 in the following section.

Before presenting Theorem 3, it is useful to recapitulate the key concepts
in the proof of Theorem 2 by Klappenecker & Rötteler [7]. The proof relies
entirely on the Schur orthonormality of the irreps of finite groups. Just like
in the previous paper [2], it is most instructive to consider the n = 3 example
before illustrating the general case. The claim is that any X ∈ XU(3) can
be written as

X =
∑

σ∈S3

cσPσ. (12)

with
∑

σ∈S3
cσ = 1 and

∑

σ∈S3
|cσ|2 = 1. Performing a similarity transforma-

tion with the F3 Fourier matrix of eq. (6) on the lhs and rhs of eq. (12) gives
rise to

(

1 0
0 U (s)

)

=
∑

σ∈S3

cσ

(

1 0
0 D(s)(σ)

)

, (13)

with U (s) ∈ U(2), and the standard representation D(s)(σ) of S3 given by the
matrices (7). By equating all matrix elements explicitly, this gives rise to the
following set of (five) equations

1 = c0 + c(123) + c(132) + c(12) + c(13) + c(23), (14)

U
(s)
11 = c0 + ω2c(123) + ωc(132), (15)

U
(s)
22 = c0 + ωc(123) + ω2c(132), (16)

U
(s)
12 = c(23) + ω2c(12) + ωc(13), (17)

U
(s)
21 = c(23) + ωc(12) + ω2c(13). (18)

Note that the first equation 1 =
∑

σ cσ confirms Theorem 1. The linear set
of equations contains six variables, so one needs one additional equation to
find a closed solution. Remark that the sign representation D(−)(σ) is the
only irrep missing in eq. (13). Indeed, one can augment the 3 × 3 matrix
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equality to a 4×4 matrix equality by adding the sign representation D(−)(σ)
on the diagonal





1 0 0
0 U (s) 0
0 0 eiφ



 =
∑

σ∈S3

cσ





D(0)(σ) 0 0
0 D(s)(σ) 0
0 0 D(−)(σ)



 , (19)

where we have used that 1 = D(0)(σ) for all σ, and eiφ ∈ U(1) is an arbitrary
1× 1 unitary matrix. This extra equation reads

eiφ = c0 + c(123) + c(132) − c(12) − c(13) − c(23). (20)

Solving eqs. (14-18,20) for cσ, we obtain

c0 =
1
3
[1
2
(1 + eiφ) + U

(s)
11 + U

(s)
22 ] (21)

c(123) =
1
3
[1
2
(1 + eiφ) + ωU

(s)
11 + ω2U

(s)
22 ] (22)

c(132) =
1
3
[1
2
(1 + eiφ) + ω2U

(s)
11 + ωU

(s)
22 ] (23)

c(23) =
1
3
[1
2
(1− eiφ) + U

(s)
12 + U

(s)
21 ] (24)

c(12) =
1
3
[1
2
(1− eiφ) + ωU

(s)
12 + ω2U

(s)
21 ] (25)

c(13) =
1
3
[1
2
(1− eiφ) + ω2U

(s)
12 + ωU

(s)
21 ]. (26)

Taking into account that U (s) is unitary, it is straightforward to verify that
∑

σ |cσ|2 = 1, which again proves the unitary Birkhoff theorem for n = 3.
Note that the choice φ = 0 coincides exactly with the choice p = 1 in [2].
More generally, the correspondence between the present solution and the one
presented in [2], is p = 1

2
(1+ eiφ), coinciding with the observation that p had

to lie on a circle in the complex plane with radius 1
2
and center 1

2
.

For the proof of the general case, we proceed in a similar manner. Theo-
rem 1 states that any X ∈ XU(n) can be written as

X =
∑

σ∈Sn

cσPσ. (27)

Applying the similarity transform with the Fn Fourier transform, we obtain

(

1 0
0 U (s)

)

=
∑

σ∈Sn

cσ

(

D(0)(σ) 0
0 D(s)(σ)

)

, (28)
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with U (s) ∈ U(n − 1). This results in a set of (n − 1)2 + 1 equations with
n! variables cσ, so we need n!− (n− 1)2 − 1 more equations to find a closed
solution via linear algebra. Now, one can augment the n × n matrix with
all other possible irreps D(ν) of Sn on the (block) diagonal in the rhs sum-
mation, and arbitrary nν dimensional unitary matrices U (ν) ∈ U(nν) on the
corresponding (block) diagonal parts in the lhs, with nν the dimension of
irrep D(ν)











1
U (s)

U (2)

. . .











=
∑

σ∈Sn

cσ











D(0)(σ)
D(s)(σ)

D(2)(σ)
. . .











.

(29)
The resulting matrix has dimension d(n) =

∑k−1
ν=0 nν with k the number of

conjugacy classes of Sn, i.e., the number of partitions of integer n [8]. The
number d(n) equals the number of involutions on n objects and is tabulated
in [9]. The augmented matrices in the rhs summation in (29) form again a
reducible representation, known as the regular representation [10]. We will
label the standard representation D(s) = D(1) from now on for the sake of
notation.

The key observation is that there are as many irrep matrix elements
D

(ν)
ij (τ) (ν = 0, . . . , k− 1 & i, j = 1, . . . nν) for any τ ∈ Sn as there are group

elements σ in Sn. Therefore, D
(ν)
ij (σ) can be regarded as a matrix element

of an n! × n! matrix D with indices {ν, i, j} for the “rows” and σ for the
“columns”. Due to Schur’s orthogonality theorems,

nν

∑

σ∈Sn

D
(ν)∗
ij (σ)D

(µ)
lm (σ) = n!δµνδilδjm (30)

k−1
∑

ν=0

nν

nν
∑

ij=1

D
(ν)∗
ij (σ)D

(ν)
ij (τ) = n!δστ (31)

it follows directly that the (rescaled) matrix D̃ is a unitary matrix, with

D̃
(ν)
ij (σ) =

√

nν

n!
D

(ν)
ij (σ). This means that the set of n! equations

U
(ν)
ij =

∑

σ∈Sn

cσD
(ν)
ij (σ), ∀ν, i, j, (32)

extracted from the block diagonals of eq. (29) can be solved uniquely by
inverting the non-singular matrix D. This is exactly what has been done in
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Theorem 3 in the following section to construct explicit expressions for the
coefficients cσ in the Birkhoff summation.

4. Explicit decomposition

Theorem 3. Every matrix X ∈ XU(n) can be written as a weighted sum of
permutation matrices

X =
∑

σ∈Sn

cσPσ, (33)

with the coefficients cσ given by

cσ =
1

n!

∑

ν

nν

nν
∑

ij=1

D
(ν)∗
ij (σ)U

(ν)
ij , (34)

=
1

n!

∑

ν

nνTr(D
(ν)†(σ)U (ν)) (35)

where the sum ν runs over all possible irreps D(ν) of Sn, nν is the dimension
of D(ν), and U (ν) ∈ U(nν) is a unitary matrix associated to D(ν). All unitary
matrices U (ν) can be chosen arbitrarily, with the exception of U (0) = 1 ∈ U(1)
and U (1) = U (s) ∈ U(n−1) associated to respectively the trivial and standard
representation, which are found by

F †
nXFn =

(

U (0) 0
0 U (s)

)

. (36)

In addition, the sum of the moduli squared equals 1

∑

σ∈Sn

|cσ|2 = 1. (37)

The proof goes by straightforward application of Shur’s orthogonality rela-
tions. First, we verify that eq. (36) holds when the cσ coefficients are taken
as in expression (35) (from which X follows directly by means of the simi-
larity transform Fn(F

†
nXFn)F

†
n = X .). Because of the Schur decomposition

(4) of the permutation matrices Pσ, F
†
nXFn is also block diagonal. We first

investigate the upper left matrix element

(F †
nXFn)11 =

∑

σ∈Sn

cσ(F
†
nPσFn)11 =

∑

σ∈Sn

cσD
(0)
11 (σ) (38)

9



in which we prefer to keep the explicit notation for the trivial representation
D

(0)
11 (σ) = 1 in the Schur decomposition of the permutation matrices (4).

We now insert the explicit expression (35) for cσ in (38) and rearrange the
summation

(F †
nXFn)11 =

1

n!

∑

ν

nν

nν
∑

ij=1

U
(ν)
ij

∑

σ∈Sn

D
(ν)∗
ij (σ)D

(0)
11 (σ) = U

(0)
11 , (39)

where the Schur orthogonality relation (30) has been used in the last step.
Because U (0) ≡ 1 in the present theorem, we get that the upper left element
of F †

nXFn equals 1. The other matrix elements can be obtained analogously
from Schur’s orthogonality relation (30)

(F †
nXFn)lm = U

(1)
l−1,m−1 ≡ U

(s)
l−1,m−1, ∀l, m = 2, . . . , n. (40)

The compactness of the cσ coefficients (37) can also be proven similarly

∑

σ∈Sn

|cσ|2 =
∑

σ∈Sn

cσc
∗
σ (41)

=
1

n!2

∑

νµ

nνnµ

nν
∑

ij=1

nµ
∑

lm=1

U
(ν)
ij U

(µ)∗
lm

∑

σ∈Sn

D
(ν)∗
ij (σ)D

(µ)
lm (σ) (42)

=
1

n!

∑

ν

nν

nν
∑

ij=1

U
(ν)
ij U

(ν)∗
ij (43)

=
1

n!

∑

ν

nνTr(U
(ν)U (ν)†). (44)

Because U (ν) are unitary, we have that Tr(U (ν)U (ν)†) = nν , so

∑

σ∈Sn

|cσ|2 =
1

n!

∑

ν

n2
ν = 1. (45)

This completes the proof.
Theorem 3 allows for a large freedom of choice, associated with all unitary

matrices U (ν) (ν > 1) that can be chosen arbitrarily. As an example, we
investigate the choice U (ν) (for ν > 1) equal to D(ν)(τ), where τ is one
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particular permutation, i.e. a particular member of Sn. Eq. (35) thus becomes

cσ =
1

n!

k−1
∑

ν=0

nνTr
(

D(ν)(σ)†D(ν)(τ)
)

− n1

n!
Tr
(

D(1)(σ)†D(1)(τ)
)

+
n1

n!
Tr
(

D(1)(σ)†U (1)
)

. (46)

Taking into account that n1 = n−1, D(1)(σ)† = D(1)(σ−1), and that the first
term in the equation is Shur’s orthogonality relation, we obtain

cσ = δστ −
n− 1

n!
χ(1)(σ−1τ) +

n− 1

n!
Tr
(

D(1)(σ−1)U (1)
)

. (47)

For instance, substituting n = 3 and τ = (0) the identity, we immediately
recover (19-24) with φ = 0.

Note that in contrast to eq. (35), only the standard representation D(s)

occurs in the expression (47) for the cσ coefficient. From a practical point of
view, this is very convenient because the standard representation can quickly
be obtained by reducing the n-dimensional permutation representation (4).
Hence, no other representations need to be constructed from other means.

If n > 3, then another elegant choice is possible. Again, we choose
U (ν) = D(ν)(τ), however, now with two exceptions: both U (s) = U and
U (a) = U . Here, U (s) corresponds, in (29), with the standard representation
D(s) of dimension n − 1, whereas U (a) corresponds with the other (n − 1)-
dimensional representation D(a) in (29), which we will call the ‘anti-standard’
representation. The anti-standard representation of Sn consists of the same
matrices as the standard representation, except for a minus sign in case of
an odd permutation1. Now, eq. (35) becomes

cσ = δστ −
n− 1

n!
χ(s)(σ−1τ) +

n− 1

n!
Tr
(

D(s)(σ−1)U (1)
)

− n− 1

n!
χ(a)(σ−1τ) +

n− 1

n!
Tr
(

D(a)(σ−1)U (1)
)

. (48)

1Also for n = 2 and n = 3 an anti-standard representation exists. However, for n = 2,
the anti-standard representation equals the trivial representation and for n = 3, the anti-
standard representation is equivalent to the standard representation:

D
(a)(σ) =

(

1

−1

)

D
(s)(σ)

(

1

−1

)

.

11



Restricting ourselves to the obvious choice τ = (0), we obtain,

cσ =

{

δσ0 − 2 n−1
n!

χ(s)(σ) + 2 n−1
n!

Tr
(

D(s)(σ−1)U
)

, σ even
0, σ odd.

(49)

Yet another choice is U (s) = U and U (a) = −U . It yields

cσ = δσ0 − 2
n− 1

n!
χ(s)(σ) (50)

for even σ and

cσ = 2
n− 1

n!
Tr
(

D(s)(σ−1)U
)

(51)

for odd σ. Again, only the standard representation D(s) is required.

5. Examples

We now present two examples for the non-prime n = 4 case. In the
framework of quantum multiports [11], it is important to synthesize n × n
matrices with all entries having the same modulus (and thus modulus equal
to 1/

√
n). As an example, we consider the XU(4) matrix

X =
1

2









1 −i 1 i
1 1 −1 1
1 i 1 −i

−1 1 1 1









. (52)

Up to phase changes, it equals the 4× 4 Fourier transform. Indeed:








1
1

1
−1









X









1
i

1
−i









= F4 . (53)

Applying (49) to X yields, besides the twelve zero coefficients for the odd
permutation matrices, the following weights for the twelve even permutation
matrices:

1

8
{4,−1−i, 1+i, 2−2i,−1−i,−1−i, 1+i,−1−i, 4, 1+i, 1+i,−2+2i} , (54)

satisfying
∑

σ cσ =
∑

σ |cσ|2 = 1.

12



Because a 4× 4 permutation matrix is also an XU(4) matrix, we can e.g.
apply (49) to the odd permutation matrix









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









, (55)

resulting in a Birkhoff decomposition with even permutation matrices with
weights

1

4
{2, 1, 1, 2,−1,−1,−1, 1, 0,−1, 1, 0} . (56)

Again we have
∑

σ cσ =
∑

σ |cσ|2 = 1. It is remarkable that, for n > 3, one
can decompose any permutation, either even or odd, into a sum of only even
permutation matrices.

6. Conclusion

Recently, we proved a Birkhoff theorem for unitary matrices of prime di-
mension [2]. In the present manuscript, we complete the proof of the theorem
for unitary matrices of arbitrary dimension n. The proof is based on a theo-
rem by Klappenecker and Rötteler [7], employing the Schur orthonormality
of the representations of the permutation group Sn. Furthermore, we present
an explicit construction of the weight coefficients in the Birkhoff decomposi-
tion. There is a freedom of choice in the explicit construction, allowing one to
express the coefficients exclusively in terms of the known (n−1)-dimensional
standard representation. Remarkably, this leads to a decomposition of any
unitary matrix, for n > 3, into a weighted sum of only even permutation
matrices. It would be interesting to explore the freedom of choice inherent
in the procedure in order to obtain different and possibly shorter Birkhoff
decompositions.
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Appendix A. Unitary doubly stochastic matrices

Theorem 4. The only unitary doubly stochastic matrices are the permuta-
tion matrices.

Proof. Let M be an n× n matrix that is simultaneously member of XU(n)
and DS(n). Because M ∈ DS(n), all its entries are either zero or positive.
Every row of M contains at least one non-zero entry (because otherwise the
related row sum would equal 0). The row cannot contain more than one non-
zero entry. Indeed, suppose the ath row contains two positive entries Mab

and Mac (b 6= c). Then the sum
∑

j MjbMjc contains at least one positive
term, i.e. MabMac. All the other n − 1 terms in the summation are either
zero or positive, so we have

∑

j MjbMjc > 0.

Because M is a unitary matrix, we also have that
∑

j(M
†)kjMjl = δkl, or

∑

j MjbMjc = 0, which contradicts the previous paragraph.
Hence, every row of M contains exactly one non-zero entry, and so does

every column. Because all line sums are equal to 1, these non-zero entries
necessarily equal 1. We conclude that M is a permutation matrix.

Appendix B. Reducibility of the permutation matrices

The orthogonality theorem on the characters of irreducible representa-
tions (see section 3-16. in [6]) states that a representation D(ν) is irreducible
iff the sum of all characters squared |χν(σ)|2 over all possible group elements
equals the order of the group. For the symmetric group Sn, this becomes

∑

σ∈Sn

|χ(ν)(σ)|2 = n!. (B.1)

So, if this relation holds for the representation D(s) in eq. (4), it is irreducible.
The character

χ(s)(σ) = Tr[D(s)(σ)] (B.2)

can be obtained for each permutation σ explicitly. We indeed have that

Tr [D(s)(σ)] = Tr (F †PσF )− 1, (B.3)

because D(s)(σ) is obtained from F †PσF by deleting its first row and first
column. Because a trace is similarity-invariant, this yields

χ(s)(σ) = Tr (Pσ)− 1. (B.4)

14



As a result, the characters depend on the number of ones on the diagonal in
the original matrix Pσ only, in a way typical for the standard representation.
Thus, the characters χ(s) are the rational integers ranging from −1 to n− 1,
except n− 2. The character formula (B.1) becomes

∑

σ∈Sn

|χ(s)(σ)|2 =
∑

σ∈Sn

(

n
∑

l=1

δlσ(l) − 1

)(

n
∑

k=1

δkσ(k) − 1

)

(B.5)

=
n
∑

l=1

n
∑

k=1

∑

σ∈Sn

δlσ(l)δkσ(k) − 2
n
∑

k=1

∑

σ∈Sn

δkσ(k) + n!. (B.6)

Taking into account that δ2kσ(k) = δkσ(k), this can be slightly rewritten as

∑

σ∈Sn

|χ(s)(σ)|2 =
n
∑

l=1

n
∑

k 6=l

∑

σ∈Sn

δlσ(l)δkσ(k) −
n
∑

k=1

∑

σ∈Sn

δkσ(k) + n!. (B.7)

Both sums are quite straightforward to reason. There are exactly (n − 1)!
permutations σ in Sn that leave k invariant σ(k) = k, leading to

n
∑

k=1

∑

σ∈Sn

δkσ(k) =

n
∑

k=1

(n− 1)! = n!. (B.8)

Similarly, there are exactly (n − 2)! permutations σ in Sn that leave k and
l( 6= k) invariant, leading to

n
∑

l=1

n
∑

k 6=l

∑

σ∈Sn

δlσ(l)δkσ(k) =

n
∑

l=1

n
∑

k 6=l

(n− 2)! = n!. (B.9)

As a result, the character orthogonality formula (B.1) becomes
∑

σ∈Sn

|χ(s)(σ)|2 = n!− n! + n! ≡ n!, (B.10)

pointing out that the representation D(s) is indeed irreducible.

References

[1] G. Birkhoff: Tres observaciones sobre el algebra lineal. Universidad Na-
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