
978-1-5090-4361-3/16/$31.00 ©2016 European Union

Wi-Fi helping out Bluetooth Smart for an
improved home automation user experience

Jen Rossey, Ingrid Moerman, Piet Demeester, Jeroen Hoebeke
Ghent University – iMinds, Department of Information Technology (INTEC)

Technologiepark-Zwijnaarde 15, 9052 Ghent, Belgium
{firstname.lastname}@intec.ugent.be

Abstract— Home automation devices are becoming
increasingly popular in the field of consumer electronics. Various
appliances like thermostats, smoke detectors, intelligent lighting
systems, etc., have appeared on the market to create a smart home.
Vendors have the availability over multiple wireless technologies
to connect their products to the smart home and communicate
with the user. The most adopted technologies are the ones that can
interface directly with a mobile device such as a smartphone or
tablet, without the need for an additional gateway. Within this
context, Wi-Fi and Bluetooth are the dominant technologies. In
this paper we look at home automation devices that have chosen to
solely support Bluetooth 4.0 as communication interface. We
highlight the downsides of this technology in a home setting and
try to mitigate this problem by exploiting the Wi-Fi capabilities of
other devices, in particular smartphones. The proposed solution
realizes a Wi-Fi bridge on the smartphone that is connected to the
Bluetooth device. This enables other smartphone users to connect
to the Bluetooth device over the Wi-Fi network, alleviating some
of the downsides of the Bluetooth technology.

Keywords— Building automation; Bluetooth Smart; Bluetooth
Low Energy; Wi-Fi; Smartphone; Internet of Things

I. INTRODUCTION
Due to the advances in electronics, miniaturization, wireless

communication, batteries, etc., more and more devices are being
connected to the Internet, resulting in what is being called the
Internet of Things (IoT). By 2020, a projected 30 billion devices
will enter the IoT ecosystem by 2020 [1]. A major IoT
application domain is home or building automation. Within this
domain, the connected devices will enable you to control the
lights, temperature, household appliances, window and door
locks and security systems. With all these possibilities, your
home will become a truly smart home.

 Many of these devices will make use of wireless
communication technologies in order to realize their
interconnection to the Internet. A wide range of wireless
communication technologies exist, such as IEEE 802.11, IEEE
802.15.4, Bluetooth, Z-Wave, etc. One of the key factors for
vendors to select a particular wireless technology is the ability
for users to directly interact with their connected devices from
their smartphones and tablets, without having to purchase an
additional gateway. Looking at the capabilities of current
smartphones, this reduces the number of candidate technologies
strongly, leaving only Wi-Fi and Bluetooth.

Bluetooth has always been a popular technology to be used
in combination with mobile devices such as phones. In the past

Bluetooth was mainly used for wireless transmission of audio
and direct communication between phones and computers. With
the introduction of the power-friendly version Bluetooth Smart
or Bluetooth Low Energy (BLE) it has opened up a multitude of
possibilities to create Internet of Things (IoT) devices that can
directly connect to your smartphone [2] and that can run on
batteries for several months or even years. In this paper we will
focus on Bluetooth Smart devices and the implications of
choosing Bluetooth Smart on the interactions with the user

The design of Bluetooth Smart has implications on the
interactions with users, especially in settings where multiple
users are present, such as a smart home. Only one user is able to
connect to a device at the same time, complicating multi-user
interactions. To alleviate this problem, we propose to exploit the
availability of Wi-Fi connectivity on the users’ devices, in order
to facilitate multi-user multi-device interactions in a seamless
way. To our knowledge, this is the first work that explores this
possibility and presents concrete performance measurements. It
shows that a combined solution, where Wi-Fi is helping out
Bluetooth Smart can contribute to an enhanced user experience.

The remainder of this article is organized as follows. In
Section 2, we first discuss some key features of Bluetooth Smart
and explain their implications on the interactions with users.
Next, in section 3, we present our approach to enable Wi-Fi
assisted interactions from different smartphones with a single
Bluetooth Smart device. In Section 4, we evaluate the
performance of our design. In section 5 we look at related work.
Finally, we conclude this paper in Section 6.

II. USER INTERACTIONS WITH BLUETOOTH SMART DEVICES

A. Bluetooth Smart
Bluetooth Smart or Bluetooth Low Energy is the power-

friendly, low cost version of the well-known Bluetooth
technology. Bluetooth Smart is used in power-constrained
devices such as wireless sensors and controls. These kinds of
devices have limited data transmission and communication
happens infrequently. This is different from classic Bluetooth
applications like audio streaming. Bluetooth Smart utilizes 40
channels of 2 MHz in the 2.4GHz ISM band, 37 channels are for
data transfer and 3 channels are for advertising. Bluetooth smart
uses TDMA and frequency hopping to limit interference with
other wireless technologies.

There are two main network topologies that are used with
Bluetooth Smart. The first one, shown in Figure 1, is the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/74710235?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

broadcast topology where one device broadcasts advertisement
messages to all the observers that are listening. In this topology,
only one-way communication is possible from the broadcaster
to the observer. This topology is used when applications use
beacons for localization or advertisement purposes.

Figure 1: Broadcast topology

The second topology, shown in Figure 2, is the connections

topology where one central device can connect to one or
multiple peripheral device. With connections, there is two-way
communication between the central and the peripheral device. A
typical central device is a smartphone or tablet.

Figure 2: Connections topology

A smart home setting with peripheral devices can be seen in

Figure 3. There are multiple users that have a smartphone
(central) and there are multiple smart home devices (peripheral)
like a thermostat, smart lightning, etc. Next to the Bluetooth
devices, there is a Wi-Fi network where all the smartphones are
connected to so they can access the Internet. This Wi-Fi network
can also be used to establish communication between the
smartphones.

Figure 3: Smart home with multiple users

B. Bluetooth Smart problems
One of the problems with the most widespread version of
Bluetooth Smart (4.0) is that a peripheral device can only
connect to one central at the same time. This means that only
one user can connect to the smart home device at the same time,
as shown in Figure 4. If a different user wants to connect to the
device, it will not discover the device because it will not be
sending advertisement beacons to make itself discoverable. This
is not desirable as users will not be able to interact with the smart
home device, while they think they are in range.

Figure 4: Peripheral can only connect to one central

III. COMBINING BLUETOOTH AND WI-FI
The network context of this paper will be a smart home

environment where there is one Wi-Fi network and multiple
users that are connected to this network with their smartphone
Figure 3. There is at least one Bluetooth enabled smart home
device (heating system, lights, etc.).

A. Connecting to a peripheral through the Wi-Fi network
When no smartphone is connected to the smart home device

(peripheral), the peripheral is broadcasting connectable
advertisement packets. When a smartphone (central) receives
one of these advertisement packets, it knows the peripheral is
in range and is able to connect to it. When a peripheral is
connected to a central, it stops sending these advertisement
packets, as it can only connect to one central. If a second central
wants to discover the peripheral, it will have no way of knowing
that the peripheral is in range or that it is occupied by a different
smartphone.

Figure 5 shows the general architecture of our solution, the

client smartphone can communicate with the peripheral, while a
different smartphone (bridge) already has an active Bluetooth
Smart connection to the peripheral.

Figure 5: Interaction between peripheral, bridge and client

smartphone

Using our proposed solution, the smartphone that connects
to the peripheral will start a network service on the connected
Wi-Fi network which tells other smartphones on the same
network that it is currently connected to a specific peripheral.
This network service is the Network Service Discovery (NSD)
that is available on Android smartphones [3]. We focussed on
android devices, but a similar multicast DNS service is also
available on Apple devices with the Bonjour protocol [4]. Both
of these services are based on the multicast DNS [5]. The name
of the NSD service will be a service identifier, the hardware
address and the device name of the connected peripheral.

When other smartphones scan for Bluetooth devices, they
also check if there are any NSD services with the correct service
identifier available on the network that show that a different
smartphone is already connected to a peripheral. By checking
the advertised name of the NSD service, the smartphone
immediately knows the address and name of the peripheral.
Depending on the type of smartphone application, this device
can be shown to the user as available.

 Figure 6 shows a discovered NSD service with the name
of the service including the service identifier ‘bt-wifi’ to specify
that this service shows the connected Bluetooth device, the
hardware address and the name of the peripheral. It also shows
the IP address of the smartphone that is connected to the
peripheral and the port that is accepting incoming TCP
connections.

Figure 6: Discovered NSD service

In Figure 7 a screenshot is shown of an example application

that lists all discovered Bluetooth devices. In Figure 8, the same
application shows how it has discovered the same peripheral,
but now through NSD.

Figure 7: Discovered Bluetooth devices

Figure 8: Discovered Peripheral through NSD

Figure 9: Connecting to peripheral through other smartphone

This way, a client smartphone can ‘connect’ to a peripheral

that is already connected to a different smartphone. When a
smartphone (client) wants to connect to a specific peripheral,
and it finds a NSD service with the address of the peripheral, it
can ‘connect’ to this peripheral using the connected smartphone
as a bridge as illustrated in Figure 9.

B. Communicating to the peripheral
The connection between the client smartphone and the

peripheral is not a Bluetooth connection but a TCP socket that is
set up between the client and bridge smartphone over the Wi-Fi
network. This connection is set up when the client smartphone
wants to connect to the peripheral. When the bridge receives an
incoming TCP connection from a client smartphone, it sends the
list of resources that are supported on the peripheral device. The
communication between the client and bridge smartphone is
done using object serialization over the socket. These objects
contain all the relevant data that is typically sent between the
central and peripheral device.

When the client smartphone wants to query a specific
resource, it sends this query to the bridge and the bridge then
relays the request to the peripheral. When the bridge receives a
reply from the peripheral, this is then sent back to the client. The
upper layers of the client application have no idea that the
smartphone is not directly connected to the peripheral, as it still
has access to all the relevant data it would have access too if it
was directly connected.

C. Disconnecting or losing the connection
There are multiple ways that the bridge smartphone can lose

the connection to the peripheral. The bridge smartphone can turn
off, manually disconnect, turn the Bluetooth off, go out of range,
etc. When this happens, the client smartphone is no longer able
to communicate with the peripheral through the bridge. The
bridge notifies the client by sending a disconnect message to the
client when it is aware that it lost the connection to the
peripheral. It is however also possible that the bridge can’t notify
the client of a disconnection, this can happen if airplane mode is
activated, if the bridge suddenly stops working, if the bridge
goes out of range of the Wi-Fi network, etc. In this case the client
has to automatically detect that the socket to the bridge is no
longer working. This is done using heartbeat packets and is
further explained in Section 4.C.

 When the bridge smartphone can no longer function as a
bridge for whatever reason, the client smartphone will try to
connect to the peripheral directly and resume normal Bluetooth
connectivity. If the client cannot find the peripheral, it will again
search for NSD services because a different smartphone can
already be connected to the peripheral and function as a new
bridge. Finally, in case the client smartphone cannot reconnect
to the peripheral, the user will be notified that the smartphone is
out of range to the peripheral, or that the peripheral is offline.

IV. EVALUATION
When a bridge is used to connect to a peripheral, there will

be an added delay for the communication between the client and
the peripheral. We tested the delay in different steps of the
communication with a Google Nexus 6 running Android 5.1.1
that functions as the bridge and a OnePlus One running Android
5.0.2 as the client. The bridge is connected to a Nordic nRF51
development kit, shown in Figure 10, that runs as a peripheral
device simulating a smart home lighting control system. The
nRF51 has basic resources for the device name, serial number,
etc. It also has a resource that enables to read and change the
status of the LEDs and a generic resource that returns a big
payload to test performance.

Figure 10: Nordic nRF51 DK as a smart home lighting peripheral

A. Discovery
The first step for the client smartphone to communicate with

the peripheral while it is connected to a bridge smartphone is
discovering the NSD service. We connected the bridge
smartphone to the peripheral and let the client smartphone scan
for NSD services. We measured the time it takes from beginning
the scan to finding a NSD service. The results of this test can be
found in Table 1.

Table 1: NSD discovery measurements
Number of tests 50

Mean discovery time 8.1ms
Standard deviation 5ms
Min discovery time 3ms
Max discovery time 19

After discovering a NSD service, the service name of the

found service is compared to the bt_wifi service name, because
other NSD services can also be active on the network. After the
correct NSD service is discovered, the connection information
for the service has to be resolved. The connection information
contains the IP address of the bridge smartphone and the port
that the bridge can receive incoming connections on.

We measured the time it takes to resolve the NSD service
after discovery. The results can be found in Table 2.

Table 2: NSD resolve measurements
Number of tests 50

Mean resolve time 41ms
Standard deviation 82ms
Min resolve time 3ms
Max resolve time 355ms

If we add the time it takes to discover and resolve the correct

NSD service, we have the total time before we can connect the
client smartphone to the bridge smartphone. You can find the
results of this in Table 3. The big difference between the
minimum and the maximum resolve time is most likely caused
by heavy usage of the used Wi-Fi network.

Table 3: Combined discovery and resolve measurements
Number of tests 50

Mean resolve time 49ms
Standard deviation 82ms
Min resolve time 7ms
Max resolve time 361ms

The average discovery time of a Bluetooth Smart peripheral

varies based on the advertisement interval. A peripheral sends
advertisement packets to let other devices discover the
peripheral. This interval ranges from 20ms to 10.24s [6] and this
affects the power consumption of the peripheral, the more radio
activity on the device, the greater the consumption.

If the advertisement interval is set to the minimum (20ms),
the discovery of a Bluetooth device takes on average half the
time of the discovery of a NSD service. Most Bluetooth Smart
applications don’t use the minimum advertisement interval as
this has a big impact on the power consumption. The difference
between the NSD discovery time and the minimum Bluetooth
Smart discovery time is negligible for a user interacting with an
application on the client smartphone. If the peripheral is set with
a very high interval (e.g. 10.24s), the discovery time with the
NSD service is a lot faster.

B. Connection and communication
We define the setup of a connection when there is a TCP

connection between the client and the bridge smartphone and
when the bridge has sent the available GATT resources on the
peripheral to the client. The time needed to setup such a
connection between the client and bridge smartphone is very low
as shown in Table 4.

Table 4: Client – Bridge connection time measurements
Number of tests 50

Mean connection time 15ms
Standard deviation 5ms

Min connection time 8ms
Max connection time 31ms

Table 5 shows the time for a smartphone to connect to a

peripheral that has a connection advertisement interval of 50ms.
It is very clear that a connection over Wi-Fi is a lot faster than
over Bluetooth. When a client wants to connect to a peripheral

over a bridge smartphone, it is significantly faster than directly
connecting to the peripheral.

Table 5: Peripheral connection time measurements
Number of tests 10

Mean connection time 2.83s
Standard deviation 0.2s

Min connection time 2.54s
Max connection time 3.16s

When a connection is made between the client and the bridge

smartphone, the client can communicate with the peripheral. The
extra delay introduced by the communication between the bridge
and client is not noticeable for the end user. This extra delay is
almost never longer than 30ms.

C. Handover
There are several scenarios where a handover is necessary,

implying that he client smartphone has to terminate the
connection to the bridge and has to start a direct Bluetooth
connection to the peripheral. These scenarios can be split up in
controlled and uncontrolled handovers. A controlled handover
happens when the bridge notifies the client that is has
disconnected from the peripheral, this way the client
immediately knows that there is no longer an indirect connection
with the peripheral and that he has to try to either connect
directly over Bluetooth or via a different bridge smartphone that
is now connected to the peripheral. In the following paragraph,
we assume that the client is in range of the peripheral. If the
client is not in range of the peripheral, a handover using a direct
Bluetooth connection will not be possible.

The average time it takes the bridge to disconnect from the
peripheral is 40ms. The bridge notifies the client right before it
is going to disconnect from the peripheral, which takes less than
40ms. This can be done in parallel with the disconnection from
the peripheral so we can ignore this. Table 5 shows the
connection time for a smartphone to connect to a peripheral.
When we combine the disconnection time of the bridge and the
connection time of the client to the peripheral, we can conclude
that the handover time will always be less than 3s.

There are multiple cases where the bridge will not notify the
client when disconnecting from the peripheral (airplane mode,
out of Wi-Fi range, etc.). When this happens, the client has to
detect that the TCP connection with the bridge has been
terminated. The TCP protocol does not support any fast means
of detecting a broken connection. Therefore, we implemented a
heartbeat packet that is sent every 100ms between the client and
the bridge if there is no other communication. If the client does
not receive a reply on the heartbeat packet after 250ms, it
assumes the bridge has gone offline and will try to repair the
connection to the peripheral by either directly connecting to the
peripheral over Bluetooth or by finding a different NSD service
representing the peripheral.

V. RELATED WORK
Other work also focusses on the problem of gateway devices

and proposes an architecture that leverages the ubiquitous
presence of Bluetooth Smart to connect IoT peripherals to the
Internet [7]. In this architecture, a smartphone device functions

as a bridge device between the peripheral and the Internet. The
difference with our work is that we implemented a working
communication and discovery solution. Another paper that
bridges Bluetooth connectivity uses a bridge architecture to
enable web applications that can use the Bluetooth
communication module of the client device [8]. This way, web
applications can manage the Smartphone’s Bluetooth
communication module and use information from nearby
electronic devices. Our solution is different and focuses on other
end users and smartphones that exploit Wi-Fi connectivity to
access peripherals.

A lot of the related work has focused on the coexistence
between Wi-Fi and Bluetooth and the impact on interference [9].
Next to this, there are commercial solutions available that create
a ‘Bluetooth to Wi-Fi’ bridge service [10]. This is a different
solution for the problems described in this paper. However, such
a solution requires a dedicated gateway device, something we
wanted to avoid.

There is also work that focusses on gateway architectures to
enable communication between devices that use different
communication protocols [11]. Such solutions do not implement
an actual solution to communicate between Wi-Fi and Bluetooth
devices and is again reliant on a gateway device. Other work is
focussing on combining the strong points of Wi-Fi and
Bluetooth. For instance, [12] uses the high-speed data
transmission rate of Wi-Fi P2P and the low power consumption
communication of Bluetooth, whereas [13] looks into using
Bluetooth Smart to start an initial connection before using Wi-
Fi P2P to have a fast data transmission. However, these
approaches tackle a different problem.

VI. CONCLUSIONS
BLE is popular technology for connected IoT devices.

Nevertheless, it has some drawbacks in settings where multiple
users need to interact with the same BLE device. When one user
is already connected to a BLE device, another user within the
same range is not able to communicate with the very same
device. In case the other user is out of range, no interaction with
the device is possible at all. In this paper we have shown that the
collaboration between different wireless technologies, in this
case Wi-Fi and BLE, can mitigate the identified problems. We
have presented a design where Wi-Fi helps out BLE, by acting
as a bridging technology. Our experiments show that our
approach is fast enough to allow for seamless communication
between a peripheral device, and a user that connects to this
device with his own smartphone through a bridge smartphone.

As such this paper illustrates that a converged approach,
where higher-layer protocols are designed in such a way that
they can operate beyond a single lower-level technology, can
improve the way users interact with their IoT devices.

ACKNOWLEDGMENT
The research leading to these results has been carried out

within the ITEA2 FUSE-IT project (13023) and has received
funding from the agency for Innovation by Science and
Technology (IWT).

REFERENCES
[1] ABI Research. (2013, May 09). More Than 30 Billion Devices Will

Wirelessly Connect to the Internet of Everything in 2020. Retrieved from
ABI Research: https://www.abiresearch.com/press/more-than-30-billion-
devices-will-wirelessly-conne/

[2] Bluetooth SIG, Inc. (2015). Bluetooth Smart Technology: Powering the
Internet of Things. Retrieved from
http://www.bluetooth.com/Pages/Bluetooth-Smart.aspx

[3] Google. (n.d.). Using Network Service Discovery. Retrieved from
Android Developers: http://developer.android.com/training/connect-
devices-wirelessly/nsd.html

[4] Apple. (2015). Bonjour for Developers. Retrieved from
https://developer.apple.com/bonjour/

[5] Cheshire, S., Krochmal, M., & Inc., A. (2013, February). Multicast DNS.
Retrieved from The Internet Engineering Task Force :
https://tools.ietf.org/html/rfc6762

[6] Townsend, K., Cufí, C., Akiba, & Davidson, R. (2014). Getting started
with Bluetooth Low Energy. O'Reilly Media.

[7] Zachariah, T., Klugman, N., Campbell, B., Adkins, J., Jackson, N., &
Dutta, P. (2015). The Internet of Things Has a Gateway Problem.
HotMobile '15 Proceedings of the 16th International Workshop on Mobile
Computing Systems and Applications. Ann Arbor: ACM New York.

[8] Espada, J. P., Díaz, V. G., Crespo, R. G., Martínez, O. S., G-Bustelo, B.
P., & Lovelle, J. M. (2015). Using extended web technologies to develop
Bluetooth multi-platform. Information Fusion.

[9] Silva, S., Fernandes, T., & Moreira, A. V. (2014). Coexistence and
Interference Tests on a Bluetooth. Science and Information Conference .
London.

[10] bluvision. (2015). BluFI Bluetooth-to-WiFi Sensor. Retrieved from
bluvision: http://bluvision.com/blufi-wifi-sensor

[11] Starsinic, M. (2010). System Architecture Challenges in the Home M2M.
InterDigital Communications.

[12] Joh, H., & Ryoo, I. (2015). A hybrid Wi-Fi P2P with bluetooth low energy
for optimizing. Peer-to-Peer Networking and Applications.

[13] Joh, H., Yang, I., & Ryoo, I. (2015). The internet of everything based on
energy efficient P2P transmission technology with Bluetooth low energy.
Peer-to-Peer Networking and Applications

