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Abstract.  A framework based on generalized hierarchical random graphs 
(GHRGs) for the detection of change points in the structure of temporal networks 
has recently been developed by Peel and Clauset (2015 Proc. 29th AAAI Conf. 
on Artificial Intelligence). We build on this methodology and extend it to also 
include the versatile stochastic block models (SBMs) as a parametric family 
for reconstructing the empirical networks. We use five dierent techniques 
for change point detection on prototypical temporal networks, including 
empirical and synthetic ones. We find that none of the considered methods 
can consistently outperform the others when it comes to detecting and locating 
the expected change points in empirical temporal networks. With respect to 
the precision and the recall of the results of the change points, we find that 
the method based on a degree-corrected SBM has better recall properties than 
other dedicated methods, especially for sparse networks and smaller sliding 
time window widths.
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1.  Introduction

Networks are currently widely used to map and study interacting systems of animate 
and inanimate objects [2–4]. Often, the methodologies and measures developed within 
the context of network theories allow one to identify the central players [5–7] and to 
find structures in the nodal interactions of the network [8]. Thereby one often identifies 
groups of nodes—communities—which interact more within a group than across groups 
[9–11]. Other frequently obtained topologies of social networks include the core-periph-
ery structure [12, 13] with a small group of highly interconnected core nodes and a 
large group of peripheral nodes that do mostly interact with core nodes.

As the dynamical origins of the interactions evolve over time, the topology of the 
network can change [14, 15]. For example, a social network of high-school students 
changes between ‘normal classes’ mode and ‘summer break’ mode, not to speak about 
what happens to the network after graduation [16]. There are many time evolving net-
works, however, for which the identification of the changes in the topological structure 
of the network is not that obvious. Recently, Peel and Clauset [1] proposed a frame-
work to locate the structural breaks in the large-scale structure of time-evolving net-
works. The proposed change point detection methodology of [1] develops in four steps:

	 (1)	Select the generalized hierarchical random graph (GHRG) parametric family of 
probability distributions appropriate for reconstruction of the empirical network 
data.

	 (2)	Select an appropriate width w of a sliding time window.

	 (3)	For each time window, use the proposed parametric family of probability distri-
butions to infer two versions for the model: one corresponding with a change of 
parameters at a particular instance of time within the window, and an alternate 
one corresponding with the null hypothesis of no change point over the entire 
time window.
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	 (4)	Conduct a statistical hypothesis test to determine whether the ‘change’ or  
‘no-change’ mode provides the better fit to the empirical network data.

In this paper we build on this methodology, but introduce also stochastic block models 
(SBM) as a parametric family for reconstructing the empirical network in step (1) of 
the above-mentioned procedure. The SBMs have the advantage of being very flexible. 
Indeed, they can capture for example both assortative and disassortative behaviour, 
and core-periphery networks [17–19]. An alternate method for change point detection 
with an adaptive time window based on Markov chain Monte Carlo and SBMs has 
recently been outlined in [16].

In what follows, we first introduce the concept of SBMs to capture a given empiri-
cal network. Next, we detail a new method to fit a model to a given empirical net-
work and to find the change points in a sliding time window of size w. In section 4 we 
apply our proposed methodology to a number of prototypical temporal networks. We 
introduce several strategies to detect change points and compare the quality of their 
results. First, we conduct a study with synthetic temporal networks. Next, we apply 
the change-point detection methods to three empirical temporal social networks: the 
Enron e-mail network, the MIT proximity network, and the international trade net-
work after 1870. For these three networks the empirical change points are documented 
and we compare those with the numerical predictions.

2. Fitting stochastic block models to a network

In its simplest form, an SBM distributes the N nodes of a network into K groups. With 
nr we denote the prior probability that a node is classified in group r. Obviously, one 
has that ∑ =n 1r r . Let Qrs be the probability that a link exists between a node u in 
block r and a node v in block s. The parameters Qrs form a ×K K matrix ( ⩽ ⩽ )K N1 . 
We call gu  =  r (gv  =  s) the block assigned to node u (v). With these conventions, the 
probability of having a link between nodes u and v is Bernoulli distributed with param

eter Qg gu v
. One can determine the likelihood of a given network (as fully determined 

by its adjacency matrix A) with a given node partitioning {gu} given the SBM model 
parameters {nr} and { }Qrs . This can be expressed either in terms of a product over all 
nodes, or in terms of a product over all blocks.

( { } { } { }) ( )

( )
⩽

∏ ∏

∏ ∏

| = −

= −
<

−

−

Q Q Q

Q Q

P A g n n

n

, , 1
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u r rs
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g g
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N m
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u u v

uv

u v
uv

r rs rs rs
�

(1)

Here, mrs is the number of actual links between nodes in block r and nodes in block s. 
Further, Nrs is the total number of possible links between the nodes in block r and the 
nodes in block s. For multigraphs, where Auv can be larger than one, the distributions 
in the right-hand-sides of (1) can be replaced by Poisson distributions. One finds for the 
multigraph versions of the likelihood of (1)
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These expressions for the probability distributions make the SBM a powerful and ver-
satile tool for the analysis of complex networks.

With the eye on community detection in networks, one often uses the degree-
corrected (DC) version of SBM [19]. Thereby, one introduces for all nodes u an extra 
parameter θu proportional to the ratio of u’s degree to the sum of all degrees in block gu. 

By doing so, the link probability Qg gu v
 can be replaced by θ θQg g u vu v

 as the probability for 
a link between nodes u and v. This replacement diminishes the dependence of Qg gu v

 on 

the magnitude of the degrees of nodes u and v. As a consequence, the likelihood that a 
node with low degree and a node with high degree belong to the same group increases, 
provided that their θ is low and high, respectively. The sketched degree correction 
makes sure that a separation into modules is more likely than a separation into groups 
with similar degrees as often happens with the regular SBM version. We refer to [19] 
for more details concerning the degree correction.

We now detail our proposed method to fit a parametric distribution to a given 
empirical network. As in [20, 21] we use belief propagation to fit an SBM to a given 

network. Thereby, each node u sends a ‘message’ →ψr
u v to every other node v in the 

network. The →ψr
u v indicates the probability that node u would belong to block r, in 

the absence of node v. These conditional probabilities can be iteratively updated with 
the aid of the expression

→
→ ( ) →⎛
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with the normalization coecient,
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� (4)

The marginal probability ψr
u that node u belongs to block r can then be obtained from 

the following expression
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with the normalization coecient
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In order to make the algorithm scalable, it is worth remarking that up to ( )O
N

1
 terms, 

the ‘messages’ between two unconnected nodes (u,v) (with Auv  =  0) can be approxi-
mated by the marginal probability (see [20] for details)
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→ψ ψ≈ .r
u v
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� (7)

With this approximation, for each node u one stores and updates the ψr
u and the 

→ψr
u v for u’s neighbours { }| ≠ >v v u A, 0uv . This reduces the number of ‘messages’ to 

be updated to N  +  M, with M the total number of links in the network. Without the 

approximation (7), N2 probabilities →ψr
u v need to updated and stored.

The ‘messages’ of (3) and (5) allow one to put forward estimates of the SBM 
parameters

ψ
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Using (3) one can update the ‘messages’ { → }ψr
u v  given the current estimates of the SBM 

parameters {nr} and { }Qrs . The expressions (8) and (9), on the other hand, provide a 
way to estimate the SBM parameters, given the ‘messages’. Fitting the SBM to an 
empirical network can then be done as follows:

	 (1)	 Initialise { → }ψr
u v  for each node u, and the parameters {nr} and { }Qrs  randomly.

	 (2)	Update the SBM parameters using (8) and (9).

	 (3)	 Iteratively update the ‘messages’ { → }ψr
u v  and { }ψr

u , using (3) and (5) respectively, 
until they converge.

	 (4)	Repeat steps (2) and (3) until both the parameters ({ } { })Qn ,r rs  and the ‘mes-

sages’ ({ → } { })ψ ψ,r
u v

r
u  have converged.

This is a variant of the expectation–maximisation algorithm. Because this approach 
can cause convergence to a local minimum, it is safer to execute this algorithm multiple 
times with dierent random initialisations, and accept the solution with the highest 
likelihood.

By using (8) and (9) we obtain estimates of the network’s parameters that are less 
prone to overfitting than an update mechanism that assigns the nodes to blocks deter-
ministically. This is because a node u that has a high probability to reside in block r 
(ψ � 1r

u ), retains a small probability of residing in block ≠s r (ψ > 0s
u ). Accordingly, it 

contributes to the estimate of Qss through (9). This avoids the following problem that 
occurs with the deterministic assignment of the nodes to blocks. Suppose that a block s 

http://dx.doi.org/10.1088/1742-5468/2016/11/113302
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has a deterministically assigned set of nodes. In situations whereby those nodes have no 
links in the underlying network, Qss is estimated as zero. By the same token, using (1) 
or (2) the likelihood of a network with one link in block s is also zero. In the approach 
adopted in this work, the estimate of Qss diers from zero which implies that the likeli-
hood of a link within block s diers from zero. Indeed, this is guaranteed through the 
use of (8) and (9), and the fact that ψ > 0s

u  for all or nearly all nodes u. An alternate 
way of circumventing the sketched problem is to introduce Bayesian priors for the ψs

u, 
as was done in [1].

We now discuss the method used to determine the number of blocks K. To this end, 
we repeat the above fitting procedure for various choices of K, and select the one with 
the minimum description length (DL). We use the definition of the DL proposed in [22]. 
It consists of the sum of an entropy term S accounting for the amount of information 
in the network that is described by the model, and of a model information term L that 
quantifies the information needed to describe the model. After a deterministic assign-
ment of the nodes to blocks using ψ=g arg maxu

r
r
u, the DL Σ can be written as:

N

m

N N
m

K

M

K
M
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r
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(10)

where ( )( ) ( )= + −N

m

N m

m

1
 is a combination with repetitions. For directed networks, the 

first two terms of (10) become ( )( )∑ lnrs
N N

m
r s

rs
. For the degree-corrected model, and for 

more information on the MDL for SBMs, we refer to [18] and [22]. In particular, appen-
dix A of [22] points out that the use of the MDL is equivalent to a Bayesian model 
selection of the parameter K.

3. Method for detection and localization of change points

In this work, we define a temporal network as a time series of consecutive snapshots 
of a network. Using the methodology of the previous section to fit an SBM to a given 
network, we can now proceed to develop a technique appropriate for the detection of 
change points in a temporal network. The methodology rests on the idea to use an 
overlapping sliding time window with width w and to statistically determine for each 
time window whether it contains a change point or not. With this procedure, one can 
detect change points without taking the full time series of networks into consideration.

For each time window, we label the graphs by means of their time coordinate 
( )… −t t t, , , w0 1 1  (see figure 1). We can test the hypothesis that a change point occurs 
in a particular window by considering all w  −  1 times ( )… −t t, , w1 1  as possible change 
points. Of those the most likely one is selected. As a basis of reference, we start from 
the null hypothesis of no occurrence of a change point in the considered time window. 
This hypothesis assumes no change point in the window of networks, and can therefore 
be based on an average model for all the networks in the window. In order to construct 
such an average model in a given time window, we proceed as follows:

http://dx.doi.org/10.1088/1742-5468/2016/11/113302
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	 (1)	 In any given time window, add all the links between every pair (u,v) of nodes 

and construct [ ] = ∑−
=
−A Auv

w
t t
t

uv
t0, 1 w

0

1 . This then forms a multigraph or a weighted 

network with discrete weights ⩽ ⩽[ ]−A w0 uv
w0, 1 .

	 (2)	Using (2) a Poisson-distributed SBM is fitted to the obtained multigraph [ ]−Auv
w0, 1  

using the belief propagation technique detailed in the previous section. Thereafter, 
the corresponding parameters { }Qrs  are divided by the window length w. This 
ensures that the expected number of links between two nodes is the average 
number for all network realisations in the window, rather than the sum.

This model then forms the null model Φ0 in a conventional likelihood-ratio test. The 
alternative hypothesis states that a change point occurs just before the network realisa-
tion at time instant tn, with t t tn w0 ⩽< . For the alternative hypothesis, two other mod-
els can be constructed by re-estimating the SBM-parameters for the networks before tn 
(resulting in Φa), and for the networks from tn on (resulting in Φb) (figure 1). There are 
w  −  1 such hypotheses, each of which results in a log-likelihood ratio

( ) ( ) ( )∑ ∑ ∑Λ = |Φ + |Φ − |Φ
=

−

=

+ −

=

+ −

P A P A P Aln ln ln .t

t t

t
t

a

t t

t w
t

b

t t

t w
t

1 1 1

0n

n

n0

0

0

0

� (11)

In order to determine the potential change point tn we select the maximum of these 
log-likelihood ratios,

Figure 1.  Window of five consecutive snapshots (t t t t t, , , ,0 1 2 3 4) of a temporal 
network containing a change point between t2 and t3. Before the change point there 
are two distinct communities. After the change point the green nodes change sides 
and now make up a new community with the yellow nodes. Model Φ0 represents 
the null hypothesis that there is no change point in the considered time window. 
A change point is detected when the combination of the two models Φa (fit to 
( )t t t, ,0 1 2 ) and Φb (fit to ( )t t,3 4 ) are statistically identified as a better fit to the 
empirical network data at five time instances.

http://dx.doi.org/10.1088/1742-5468/2016/11/113302
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= Λg max .
t

t
n

n� (12)

What remains to be done is to determine whether the potential change point tn is 
significant. This selection can be done by choosing a threshold value for g. The tra-
ditional method to model the distribution of the log-likelihood ratios, using Wilks’ 
theorem, is with a χ2-distribution. It has been shown [21], however, that this asymp-
totic approximation does not apply to a SBM. Therefore, as in [1], we make use of 
bootstrapping. Bootstrapping is a way to model the distribution of the log-likelihood 
ratio for windows that fall under the null model, called the null distribution. This is 
achieved by generating a large number of networks from the null model, and calculat-
ing the log-likelihood ratio ′g  using (12) for every w of these networks. As for these 
networks no change point should be detected, these { }′g  can be assumed to be samples 
from the distribution of the null model. We can then use the distribution of these { }′g  as 
an approximation of the real null distribution. A decision for the detection of a change 
point can then be made by selecting a confidence level and corresponding significance 
level, e.g. α− =1 95%. We calculate the p-value of the log-likelihood ratio g as

{ }
{ }

=
>′
′

p
g g

g
.� (13)

The p-value determines the significance of the log-likelihood ratio, and the change point 
is only accepted if the condition α<p  is met.

4. Results

In this section we present the results of our numerical studies of change-point detection. 
We use both synthetic (section 4.1) and empirical (section 4.2) temporal networks. For 
all those temporal networks we use in total five methodologies to detect and locate the 
change points. First, the degree-corrected and the regular SBM techniques introduced 
in this work (DC-SBM, SBM) and the GHRG method introduced in [1]. We confront 
the results of those three involving methodologies with those of two rather straightfor-
ward local methods based on the mean degree and mean geodesic of the network. For 
these local methods, we calculate the specified scalars for each network in a given time 
window and for the network at the time instance just after the considered time window. 
The value for this last network is then compared to the mean value for the networks 
in the window, by means of a two-tailed Student’s t-test. Thereby we adopt the same 
significance level α as used for the other methods ( α− =1 95%).

4.1. Analysis with synthetic temporal networks

In this section we compare the performance of the proposed techniques at the retrieval 
of planted change points in synthetic temporal networks. We apply the methodology 
outlined in sections 2 and 3 to the synthetic transition from an Erdős–Rényi (ER) net-
work into a network with two communities (2C), and from a network with two com-
munities into a network with a core-periphery (CP) structure.

http://dx.doi.org/10.1088/1742-5468/2016/11/113302
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We report results of four rounds of studies each covering 50 simulations of 32 time 
instances. Thereby, the change point is planted at t  =  16. The temporal synthetic net-
works of the ‘ER’, ‘2C’ and ‘CP’ type are generated from their defining SBMs, with a 
fixed number of nodes in each block. More specifically, the results reported are gener-
ated from:

NER 2C : 0.1 0.1
0.1 0.1

0.15 0.05
0.05 0.15

, 22
28

,( ) ( ) ( )→ → =� (14)

( ) ( ) ( )→ → =N2C CP : 0.2 0.01
0.01 0.2

0.3 0.09
0.09 0.01

, 20
30

,� (15)

NCP 2C : 0.3 0.09
0.09 0.01

0.2 0.01
0.01 0.2

, 20
30

.( ) ( ) ( )→ → =� (16)

For each simulation of a given set-up, 16 networks are independently generated from 
the first SBM, followed by 16 independent networks from the second SBM. This cre-
ates a time series of networks with larger variations than those typically found in the 
empirical temporal networks that will constitute the study of section 4.2. We stress 
that the GHRG model would be an equally good choice to generate the synthetic tem-
poral networks.

Figure 2 summarizes the results of the detection eciencies for the ‘ER  →  2C’ and 
‘2C  →  CP’ transitions, using a sliding window of size w  =  16, and a significance level of 
α− =1 95 %. We observe that the regular SBM method (and for the formation of two 

communities also the DC-SBM method) has a very high detection rate at the change 
point. The GHRG and the local methods have a significantly lower detection rate.

Figure 3 shows the change-point detection eciencies for two transitions related 
to those of figure 2. The first is the ER  →  2C transition with a window size w  =  4. 
Comparison to the upper panel in figure 2 illustrates that a shorter window size causes 
the SBM method to predict more false predictions for local change points. We stress 
that those can be partially attributed to the adopted algorithm that generates the 
networks independently. Figure 3 also shows the detection eciency results for the 
CP  →  2C transition with w  =  16. This is the time reversed process of the one shown in 
the lower panel of figure 2. The DC-SBM method shows a noticeable increase in detec-
tions of a change point. This is in line with the expectations, as the DC-SBM is more 
adept at discovering community structure than the regular SBM. This indicates that 
the DC-SBM method is better at discovering the formation of a community structure 
than it is at discovering its dissolution.

In the studies summarized in figures 2 and 3 the GHRG method seems to under-
perform. The underlying reasons can be understood by inspecting figure 4 showing for 
one specific studied transition the mean of one minus the p-value of the likelihood ratio 
statistic, which can be interpreted as the probability of occurrence of a change point. 
We see that the GHRG, like the other methods, produces a peak in this probability, 
centred around the real change point. The mean, however, doesn’t rise above the 95 % 
that was put forward as the detection threshold. This indicates that at lower values of 
this threshold, the GHRG method would be equally ecient at predicting the t  =  16 
peak. We stress that similar observations are made for all the transitions considered.

http://dx.doi.org/10.1088/1742-5468/2016/11/113302
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Figure 2.  The eciency of detecting a change point in two synthetic temporal 
networks with the SBM, DC-SBM, GHRG, mean-degree, and mean-geodesic 
methods. The true location of the change point is t  =  16. Upper panel: t  =  16 
marks the change from an Erdős–Rényi (ER) network to a network with two 
communities (2C). Lower panel: t  =  16 marks the change from a network with 
two communities to a network with a core-periphery (CP) structure. At all time 
instances, the height of the bar indicates the fraction of the 50 simulations that 
detect a change point. A sliding time window of size w  =  16 was used.

Figure 3.  As in figure 2 but for a dierent value of w (upper panel) and for the 
time reversed process (bottom panel).

http://dx.doi.org/10.1088/1742-5468/2016/11/113302
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4.2. Analysis with empirical temporal networks

We now apply the methodology outlined in the sections 2 and 3 to three empirical 
temporal networks: the Enron e-mail network, the MIT proximity network and the 
international trade network. The first two datasets were also used in the change point 
analysis of [1]. First, we briefly describe the three datasets that underlie the temporal 
networks used in our analysis.

Enron is a U.S. energy company that filed for bankruptcy back in 2001 due to 
accounting scandals. As a result of an ocial inquiry, a dataset of e-mails exchanged 
between members of the Enron sta was made public4. With those data, one can con-
struct a temporal network with Enron’s sta members as nodes, and links which reflect 
the e-mail exchanges in a particular working week. In this way, one creates a sparse 
network with an average of 0.43 links per node.

The MIT reality mining project is an experiment conducted by the Media Laboratory 
at the Massachusetts Institute of Technology (MIT) during the 2004–2005 academic 
year [23]. In this experiment, ninety-four subjects, both MIT students and sta, were 
monitored by means of their smartphone. Thereby, the Bluetooth data give a measure 
of the proximity between two subjects5. This proximity can be interpreted as a link 
between two subjects. As the time of proximity is also recorded, one can produce a 
weekly empirical temporal network by grouping the links per week. In this way, a dense 
network with an average of 9.07 links per node is obtained.

The study of international trade before the 1950s is hampered by the limitations 
imposed by the scarcity of data. Thanks to a technique developed in [24], a reliable cov-
erage of the data on international trade between 1880 and 2011 could be accomplished. 
Note that during the world wars data collection on trade was almost halted. Hence, we 
exclude these periods from the sample. We construct a temporal international trade 
network with countries as nodes and establishing links whenever the countries have a 

Figure 4.  The estimated probability of detecting a change point in a synthetic 
temporal network with the SBM, DC-SBM, GHRG, mean-degree, and mean-
geodesic methods. The true location of the change point is t  =  16. It marks the 
change from a network with a core-periphery (CP) structure to a network with two 
communities. At all time instances, the height of the bar indicates one minus the 
p-value of the likelihood ratio statistic, averaged over all time windows containing 
the candidate change point for the SBM, DC-SBM and GHRG methods, and over 
the 50 simulations. A sliding time window of size w  =  16 was used.

4 Available at www.cs.cmu.edu/~enron.
5 Available at http://realitycommons.media.mit.edu/realitymining.html.

http://dx.doi.org/10.1088/1742-5468/2016/11/113302
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significant level of trade integration in a specific year. We treat the international trade 
data as undirected in order to make a change point analysis with the GHRG method 
possible.

For the Enron e-mail and MIT proximity networks we consider all nodes (includ-
ing those with no links) in the time windows. For the international trade network, 
however, we retain the nodes with at least one link throughout the window. In this 
way a more dense network is obtained, creating improved conditions for change point 
detection.

For each of the three considered temporal networks, there are a number of known 
dates corresponding with events that are likely to have impacted the network’s struc-
ture. We treat those dates as if they were the ‘empirical’ change points, realizing that 
they merely mark dates with an enhanced likelihood for changes in the network to 
occur. The major purpose of the introduction of ‘empirical’ change points is to develop 
a quantitative measure to compare the figure of merit of the dierent change point 
detection methodologies. In order to quantify the quality of the various change point 
detection techniques, we use the ‘precision’ and ‘recall’ in function of a delay s as it 
was introduced in [1]

Figure 5.  The detected change points in the Enron e-mail network for w  =  4 weeks 
(upper panel) and w  =  16 weeks (lower panel). Use has been made of the SBM, 
DC-SBM, GHRG, mean-degree and mean-geodesic methods. The red vertical lines 
correspond with the time instances of documented events in the Enron company.

http://dx.doi.org/10.1088/1742-5468/2016/11/113302
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( ) ( ⩽ )∑ δ= −s
N

t t sRecall
1

min ,
j i

i j
known

found known
� (18)

where Nfound (Nknown) is the total number of detected (‘empirical’) change points. The 

precision is the fraction of detected change points ti
found that have an ‘empirical’ event 

ti
known within a time range of s. The recall is the fraction of ‘empirical’ events that have 

a detected change point within a time range of s.
Figures 5–7 show the ‘empirical’ and the detected change points for the Enron, MIT 

and trade networks for two dierent time window widths. The corresponding results for 
the precision and recall are contained in figures 8–10. In order to get a better feeling of 
the eect of the width of the sliding time window in the change point searches, for each 
temporal network we have been running the algorithms for a ‘small’ width of 4 (w  =  4) 
and a ‘larger’ width of 16 (w  =  16).

When it comes to detecting the ‘empirical’ change points, we find that the DC-SBM 
method is at least equally ecient as the SBM. Furthermore, we observe a strong 
sensitivity of the detected change points to the value of w. For example, whereas the 
SBM and DC-SBM predict more change points than the GHRG for the Enron(w  =  4), 
Enron(w  =  16) and MIT(w  =  4) combinations, just the opposite is observed for the 

Figure 6.  As in figure 5 but for the MIT proximity network.

http://dx.doi.org/10.1088/1742-5468/2016/11/113302
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Figure 8.  The computed precision (top) and recall (bottom) for the Enron e-mail 
network. Results are shown for window sizes of 4 (left) and 16 weeks (right) and 
for five change point detection methods.

Figure 7.  As in figure 5 but for the international trade network. The widths of the 
sliding time windows are expressed in years.

http://dx.doi.org/10.1088/1742-5468/2016/11/113302
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other three combinations. This illustrates the sensitivity of the algorithms to the choice 
made with regard to the value of w.

One also faces some situations where the algorithms fail to detect the ‘empirical’ 
change points. In other situations the algorithms predict a high density of change 
points, whereas there are no direct empirical indications that point into that direc-
tion. For example, for the international trade network, the combination DC-SBM with 
w  =  4 leads to many detected change points. One could argue, however, that 4 years is 
too small a window for dramatic changes in the international trade network to occur. 
For the MIT proximity network, on the other hand, all methods are performing badly 
for the w  =  16 option. Here, one could argue that a time window of 4 weeks is a more 
natural choice to detect changes in the proximity network.

The precision of the various methods for the Enron e-mail network (figure 8) is 
roughly the same. The GHRG method outperforms the other methods at larger window 
sizes. The SBM methods, in particular the DC-SBM version, perform better for the 
recall. The simple mean-degree and mean-geodesic methods have a decent precision but 
lag behind for the recall. For the precision and recall for the MIT proximity network 
(figure 9), the GHRG method ([1]) displays a slightly better precision, but the SBM 
methods are slightly better at recall. Again, the simple mean-degree and mean-geodesic 
methods perform well for the precision but are worse for the recall. For the computed 
precision of the international trade network (figure 10) all methods perform compara-
bly. For the recall at w  =  4, however, only the DC-SBM method performs better than 
the local methods. For a larger window size, both the SBM methods and the GHRG 
method perform very well.

When comparing our results for the Enron e-mail and the MIT proximity networks 
with those of [1], we note some dierences, especially for the Enron network. We see 
three possible explanations, which may together constitute a plausible explanation. 
Firstly, the original datasets were preprocessed in order to turn them into temporal net-
works. For the Enron data, a person uses several e-mail aliases, inducing uncertainties 

Figure 9.  As in figure 8 but for the MIT proximity network.

http://dx.doi.org/10.1088/1742-5468/2016/11/113302
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in the preprocessing of the data. Secondly, the choice of the time window width is not 
specified in [1] and, as shown above, the results for the change point candidates depend 
on that choice. Thirdly, the detected change points are sensitive to whether only active 
nodes or all nodes are included in the sliding time window.

5. Conclusion

The pioneering work of [1] developed a framework to detect change points in temporal 
networks based on GHRGs. In this paper we extend their methodology by adapting it 
to the use of SBMs as a parametric family of probability distributions for the recon-
struction of empirical networks. We have made a comparative study of the detected 
change points on three prototypical empirical temporal networks using the GHRG and 
SBM based methodologies. We have done this for dierent sizes of the sliding time 
window and have also included two more simple change point detection methods in the 
comparison.

We find that the GHRG method and SBM methods are comparably eective in 
identifying the change points. In some sense, the SBM is more versatile in that it can 
also deal with directed networks for example. No systematic conclusions could be drawn 
for the density of the detected change points. Whereas the SBM models detect more 
change points than the GHRG for the combinations Enron(w  =  4), Enron(w  =  16), 
MIT(w  =  4), just the opposite is found for the other three combinations analysed in this 
work. This also indicates that the choice of the size of the sliding time window aects 
the detected change points. When comparing the SBM and DC-SBM methodologies, 
the DC-SBM version has the tendency to identify a larger amount of change points. 
We also find some situations in which the methodologies (even dramatically) over- or 

Figure 10.  As in figure 8 but for the international trade network. The widths of 
the sliding time windows are expressed in years.
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under-predict the amount of ‘empirical’ change points. Note that the SBM and GHRG 
are very similar models, as for an appropriate value of the number of blocks K an SBM 
equivalent to any GHRG can be constructed. The main dierence between the two 
models being that the GHRG automatically determines the number of blocks at the 
cost of only being able to recursively partition along the block diagonal of the adja-
cency matrix. The SBM on the other hand can freely parametrise the full block struc-
ture but requires the number of blocks K to be specified. Given the similarity between 
SBM and GHRG it seems reasonable that they would perform similarly overall, but 
perform dierently for dierent types of changes.

With respect to the precision and the recall, we conclude that the SBM method 
produces a better recall than the GHRG method, especially for sparse networks in com-
bination with a ‘small’ window size. The precision is only significantly outperformed 
by the GHRG method for one of the three studied networks. In general, the simple 
mean-degree and mean-geodesic methods do reasonably well for the precision but are 
outperformed by the sophisticated GHRG and SBM methods for the recall. This leads 
us to conclude that SBMs, and especially the degree-corrected SBM, are a good versa-
tile tool for inference and analysis of complex networks. The inference of change points 
in temporal networks, however, is subject to some uncertainties which are connected 
with the adopted method and the widths of the considered sliding time windows. 
Methodologies based on parametric families for reconstructing the empirical networks, 
however, outperform the more simple methodologies.

An implementation of the proposed algorithm is available at https://github.ugent.
be/pages/sidridde/sbm_cpd. The independence between the runs in the dierent time 
windows makes parallelisation easily attainable. In each time window, the sparse 
version of the belief propagation algorithm leads to a computational complexity of 

(( ) )+O MN N K2 2 , and a memory complexity of the order ( )O M .
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