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In this paper, we show that a higher order Borel-Pompeiu (Cauchy-Pompeiu) formula, associated with an arbitrary orthog-
onal basis (called structural set) of a Euclidean space, can be extended to the framework of generalized Clifford analysis.
Furthermore, in lower dimensional cases, as well as for combinations of standard structural sets, explicit expressions of
the kernel functions are derived. Copyright © 2015 John Wiley & Sons, Ltd.
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1. Introduction and preliminaries

Clifford analysis in its basic form [1] deals with the study of so-called monogenic functions, that is, null solutions of the Cauchy-Riemann
operator, which are an appropriate higher-dimensional analog of holomorphic functions in the complex plane. One of the key results in
this function theory is the Borel-Pompeiu representation formula, as is the case in the theory of holomorphic functions in the complex
plane, leading in the present context to various higher-dimensional analogs of classical theorems.

Integral representation formulae of Borel-Pompeiu type, expressing Clifford algebra valued functions, play an essential role in solv-
ing certain kinds of boundary value problems for partial differential equations related to the Cauchy-Riemann operator. During the
last decades, there has been much interest to study such higher-order representation formulae, see for example [2-10]. However, all
these results only consider the standard orthogonal basis, whereas in this paper, we generalize this setting to an arbitrary orthogonal
basis (or structural set) of Euclidean space and establish a higher-order Borel-Pompeiu (or Cauchy-Pompeiu) formula in that setting.
Furthermore, in low dimensional cases, explicit expressions of the kernel functions are derived, also for combinations of standard
structural sets.

Let {e1,ey,...,en} be an orthonormal basis of R”, underlying the construction of the 2" dimensional real Clifford algebra Rq,
according to the multiplication rules

eiej + ejej = —25,‘/‘,

where §; is Kronecker’s symbol. Then for A = {hy,...,h} (1 < hy < .-+ < he < n), the elements e, = ey, --- ep, together with
ey = 1 define a basis of R, whence any a € Rg, may be writtenasa = ) _, dses, where a4 € Rorstillasa = ZZ:O[a]k’ where
[alk = /=« 9aea is a so-called k-vector. If we denote the space of k-vectors by Ré’ﬂ, then

n
k
Ron = PR
k=0

In this way, the spaces R and R" are identified with Ré%) and Ré,]n)'
Each element x = (xo, X1, . ..,X,) € R"T" may then be rewritten as

n
X =Xo+ Zx;e; € R((,f’,f &) R(()l]n)

i=1
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and is called a paravector. For each such x € ]Rié?,? @ Rgn) it holds that
XX = XX —{—x1 + - +x |x|2. (1)
The extension of (1) to a norm on Ry, is straightforward and leads to

jaf? = [adlo = [aalo = Y @3-
A

Here, the (Clifford) conjugation has been used, which is defined by a = ), dsea, where

k(k+1)

ér:=(—1en,---en, = (—1) 2 ea

when eq, = ey, ---ep,. The following properties of the norm and the conjugation in a Clifford algebra are well-known, see for
instance [11].
Proposition 1
Foranya, b € Ry, it holds that

(1) ab="ba,

@) |a|=|—al =al .

(3) [ab], = [ab], = (a,b), where (-,-) denotes the standard inner product in R?’,

(4) |ab] < 2"/zlallbl
(5) if b £ 0is such that bb = |b|?, then b is invertible and |ab| = |ba| = |a||b].

Let  be a bounded domain in R"T", with sufficiently smooth boundary I'. We will consider functions f : @ — R ,, which may be
written as

00 = Y faes
A

with f4 R-valued, whence properties such as continuity, differentiability, integrability, and so on, are attributed componentwise. In
particular, we define in this way, for any suitable subset £ of R"1", the following sets:

o the set CX(E, Ro,n) of Ros-valued, k times continuously differentiable functions on E;
e the set C°(E,Ro,) i= (Neey CX(E, Ro,p).

For f € CK(E,Rq,), we will write
olalf

Dof = ————,
« AXGO -+ Oxpn

|| <k,

where ¢ = (ap,...,an) € (N U {0})"'H is a multi-index and |¢| = ag + - - - + «p. Furthermore, we consider

o the set CO*(E,Ry,) (1 € (0, 1]) of R -valued, u-Hélder continuous functions on E;
e the set CH*(E,Rq,) (k € N) of functions in C**(E, R,,) whose partial derivatives D, f belong to C%*(E, Ry,,) for || < k.

Next, let ¢ := {y°,v',...,¥"} C ]R((,?n) @ R((,?n) and denote ¥ := {y%,¥1,...,¥"}. Then, we define the left and the right y-Cauchy-
Riemann operator by their respective actions on functions f € C' (R, Rq):

o= Y v, o=y 2y @
i=0 ox; i=0 ox;
It is easy to prove that the equalities
YDYD=YD¥D=DY DY =D¥ DY = Apq, 3)

hold, where A+ is the (n + 1)-dimensional Laplace operator, if and only if
Vil + Yyl =28, 0j=0,...,n

Note that last equality yields

265 = Y'Y+ WU =Y+ i = 2[W 9] =200 W) @

whence (3) holds if and only if i represents an orthonormal basis of R"+" =~ ]R{(O) <) ]R{m
e
Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2015
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Any set ¥ showing the property (4) is called a structural set; it is clear that v and y are structural sets simultaneously. The standard
basis of R"*" given by ¥ := {1,e1,...,e,} thus can be considered as the particular structural set generating the standard Cauchy-
Riemann operator D[f] := ¥ DI[f].

Basic properties of structural sets can be found in [12, 13] and the references therein. In particular, the following properties connect
the left and right Cauchy-Riemann operators and can be obtained by direct calculation.

Lemma1
Let ¥/ and ¢ be two structural sets. Then it holds that

(1) ¥D[f] = DV[f] ,and DY [f] = VDI[f].
(2) D YD =¥YDD? in C3(Q,Ry,p).

For fixed ¥ and €2, we introduce the spaces of functions
VIR, Rop) :=ker VD = {f € C'(2,Ro,) : VD[f] = 0in Q},

and
MY (Q,Rg,p) := kerD¥ = {f € C'(2, Rq,) : DY[f] = 0},

the elements of which are called ¥-hyperholomorphic functions (left and right, respectively).

It is of central importance in the development of a function theory for ¥ -hyperholomorphic functions to establish the fundamental
solution of the operators ¥ D and DV, also called the Cauchy kernel. To this end, we first consider the fundamental solution ®f,k_,)_1 of
the iterated Laplace operator Af,_,’_], k € N, given by

|X|2k7(n+1)

®(k) .
ISP|2k=1(k — ) T* v —n—1)

n+1(X) =

In view of (3), the Cauchy kernel may then be obtained as:

Ky () := "D [@)(”

0o =07 [0l ] 00 =

|7 x|t

where
n n
Xy = Zx,-wi if x = Zx,»e,-,
i=0 i=0

and |S"| is the area of the unit sphere S” in R"17,
The kernel Ky, has the following important properties:

(1) Ky € C®R"TN\{0},Ro,).
(2) Ky € YIMRTI\{0}, Rgn) N MY (R"T1\{0}, Ro,y).

A first important result then is given by Stokes’ formula, which takes, for an arbitrary structural set v, the following form. For f, g €
C'(Q,Ron) N C°(KR, Ry,) it holds that

[F 9(€) ny (€) F(€) dSe = /Q (0¥ [g1(&) F(&) + 9(&) ¥ DIFI(E)) d, )

where
ny €)=Y niEy’
i=0

with n;(§¢) the i-th component of the outward unit normal vector on I' at the point £ € T'. This Stokes’ formula immediately leads to
two important consequences, which are widely known and can be found, for the standard setting, in many sources.

Theorem 1
(Cauchy integral theorem). Let f € Y IM(Q, Rg,,) N C°(2,Ro,) and g € MY (2, Ro,) N C°(R, Ry,n). Then it holds that

/F 9() ny (6) F(§) dS¢ = . ©)

Theorem 2 .
(Borel-Pompeiu (Cauchy-Green) formula). Let f € C'(,Rq,) N C°(RQ, Ro,). Then it holds that

B B v ) ifxeQ,
[F Ky (& = x) ny (€) F(£) dS¢ [Q Ko =0 0l@dE =17 g

. ______________________________________________________________________________________________________|
Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2015
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The Cauchy kernel thus generates the following two important integrals:

Talfl(0) = — /Q K& —x)f(E) de,  xeR™,
and
VKR = /r Ku (6 —x)ny ()F(6) dSe,  x ¢ T

The first is a generalization of the usual Téodorescu transform; the second represents the usual Cauchy type integral. Note that the
y-Téodorescu transform is the right-inverse to the operator ¥ D [14].

Theorem 3
Forevery f € L,(2,Ro,), p € (1,00), we have

f(x) ifxeQ,

VDY Tqlfl(x) = %0 ifx € R\ G

2. Iterated Cauchy-Riemann operators

The main goal of this section is to study the properties of the fundamental solution of so—called iterated Cauchy-Riemann operators,
which are obtained by the composition of k generalized Cauchy-Riemann operators associated to different structural sets.

Let W := {1, ¥, ..., ¥x} be a collection of k structural sets of Rq, and denote W := {¥,, ¥4, ..., ¥;}. Then the left and right
W-iterated Cauchy—Riemann operators are defined as:

YD =vp¥=1p...vip, DY = pYkpVi-r...pVn,
Note that as a consequence of (3), we have
¥p¥p="p¥p=p¥YD¥ =D¥YD¥ = Ak, ..
It then is easy to see that
ke = ¥D[0%,] = "10"D-- Vip[0W, ], (8)

constitutes a fundamental solution to these iterated Cauchy-Riemann operators.
Given a collection of structural sets ¥, we will define the subcollections

U= (Y1, Y, ..., ¥t C U,

where 1 < i < k. Note that W¥ = W. Then the following properties hold.

Proposition 2

() Ka(x) € C®R™\ {0}, Rop).

.. _ w (X

(i) Kw(x) = [SP2F=T (k= D)X
(i) V'D[Kw] = Kg where U = {y5,, ..., V).

(iv) Kg = D%k ...pV2 p¥ [0221]
(v) Dw‘( [K\Il] = K\I/k—1.

where Py (x) is an homogeneous polynomial of degree k.

Proof

(i) As afirst step, we show that, fori = 0,1,...k—1and m € N fixed:
Vicip Ve pVeD (x| = [ (m = 2v) X" 20 (), 9)

v=0

where Ofpi) (x) is a homogeneous polynomial of degree i + 1. Indeed, for i = 0, we have that kD (x| = mx@|x|’"—2, whence
(9) is fulfilled in this case. Next, we proceed by induction: suppose that (9) holds fori = 1,...,j (j < k— 1) then,fori =j+ 1,
we have:

Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2015
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_ _ _ J _ ‘ A
VoD VD VD[] = [T (m—2v) VoD [Ix" 20 )]

v=0
j
= 1_[ (m—2v) (Wk—wnD [|X|m—2(i+1)] O(\Q (x) + Vk=6+0p [Q(\Q] x) |X|m—2(j+1))
v=0
j+1

T D [Q(\g] () |x| 26+

= [T m=29) X, W20 00 +

v=0 m— Z(i + 1)
j+1
—2(j i+1
= [ (m—2v) Ix"20+2Q4 " v),
v=0
where
Ve[
GHD ) — o 2 v
Qu' 0 =Xg,_ 1) Qu ) + X — =i —
clearly is a homogeneous polynomial of degree j + 2.
Now puttingi =k —1in(9),m = 2k — (n + 1) and Py (x) := QEI'j_”(X), we obtain:
'z DWzD,,,JkDUXPk—(n-H)]
K\IJ(X) = k
k=1 [,=,Qv—n—
[Sr2k=1(k — ! [T,=, (2 1)
_ D= @k=v) —n— D) X~ VPy 0 _ Pw(x)
ST 26T (k — )T, v —n—1) ISP[26=1 (k — 1)!x|"+T

(iii) Taking into account (8) and (i), we obtain

U1DKy] = Apir %D...%D[@ffid

=70 VDA [01,] = VoD, D [0l )] = Ky

(iv) Because ®ff3_1 is a real valued function, we can write YD [@g&] = DV« [@f,ﬁ)q] Then successively applying Lemma 1 (ii), we

obtain

Kot ="D"D..."p[6f, ] = "1D07D.. VDDV [0, ]

— Dl//k$1D$zD“_$k—1D|:@g’2_1] — Dak DJk—1 $1D"'$k_zD|:®gi{)—1:|
— p¥k p¥i— 2 k)
=p%p¥ . o" [0, ].

(v) From (iv), it follows that

DY Ky) = 0¥ D7+ D71 .71 [0 ] = D71 DV Agys [0]

= Dak—1 “ee DJ1 |:®f’l:11):| = K\I/k—h

3. Higher order Borel-Pompeiu representations

Given a collection of structural sets ¥, we will now define integral operators generalizing the classical concepts of a Cauchy type integral
and a Téodorescu transform.

e W-Cauchy type integral:

YKr[flx) 1=/FK\IJ(S—X)nwk(E)f(E)d5$ x¢T;

. ______________________________________________________________________________________________________|
Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2015
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e W-Téodorescu transform:

YT lf00) == (—1)F /Q Ko(e —x)f(E)ds,  x e R™,

Observe that, for x € Q the integral ¥ T [f](x) is to be understood in the sense of the Cauchy principal value. Yet, the existence of this
integral for every x € R" 1 still has to be carefully proven.

Theorem 4
Let f € L1(82, Rq,). Then the integral ¥ T [f](x) exists for every x € R"T'.

Proof
If x € R\ @, then Ky (£ — x) is a bounded continuous function of £ € £, from which the existence of YT [f] in Rt \ Q follows.
Next, suppose that x € Q. Then for every £ € Q (£ # x), we obtain, in view of Propositions 1 and 2, the following estimation:

2/2Cy 6]
ST k=D =T

[Kw (& —x) F(§)] < 2”2 |Kw (& —x)| |f(§)] < (10)

In fact, because
Py (y)

0= e i

with Py (x) a homogeneous polynomial of degree k, there exist a constant Cy > 0 such that

Culyl*

K <
Ol fo=a— T

foreveryy € R"T" (y # 0). The obtained estimate (10) reduces the problem to the existence of the real integrals

L¢3
/Q o %

fory > 0andf € [1(Q2, Rg,). These integrals have been considered in many sources (see e.g.[15]) and indeed exist forally > 0. O

Theorem 5
Let f € C(2,Ro,p). Then it holds that

(i) V'D¥Tq[f] = YTalfl where & = (s, ..., Y} k > 2.
(i) ¥D¥Tq[f]l(x) = f(x) forevery x € Q.

Proof

(i) For k > 2, the singularity of the kernels Ky (§ — x) is not worse than O (ﬁ), allowing for differentiation under the integral of

¥ T [f]. Observe moreover, on account of Proposition 2, that

"1DxKw (§ —x) = (=1)Kg (§ —x)

and in consequence,

VDY Tl = (—1)F /Q VD, [Ka (€ — )] F(E) dE = (—1)F /Q Ke (& — x) F(€) dE = YTo[f(0).

(i) Applying several times (i), and taking into account Theorem 3, we obtain (ii). O

Theorem 6
[Borel-Pompeiu formula of higher order] Let @ c R"T' be a bounded domain with sufficiently smooth boundary I' = 9Q. Let
W = {y1,Y3, ..., ¥k} bea collection of k structural sets, k € N, and let f € CX(R2, Rg,,). Then for x € & it holds that

k
fo0 =Y (=D VKE DI (x) + YT VDI (0), (11)

i=1

where ¥°D[f] = f.

Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2015
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Proof
We will proceed by induction on k. First, for k = 1, formula (11) coincides with the classical Borel-Pompeiu formula (7) for the structural
set 1. Next, assume that every function g € C<='(2, Ro,), k > 1, can be represented as

k—1
9=y (=1~ ¥kE"'Dlg] + *T®D[g],

i=1

where @ is an arbitrary collection of k — 1 structural sets. Then, given f € (R, Ron) and ¥ = {y1, ¥2,..., Yi}, we can apply the
previous representation to the function ¥1D[f] € C~'(Q, Ro,,) with the collection ¥ = {315, ..., ¥k}

k—1
V”D[f] — Z(_1)i—1 \IJ'KI\_II’_1D1//1 D[f] + Y1o¥D wlD[f]‘
i=1
However, for 2 < i < k, we have ¥'~' D¥1D[f] = (“D---¥2D) V1D = ¥ D, whence
k_1 ~ . N ~
ipff] = (=17 ke D[] + YT Y DIf].

i=1

Now, substituting the previous expression in the classical Borel-Pompeiu formula (11) for the structural set y;, we obtain

f=VKe[flx) + VTS DIf) = ¥ K DIf] + V1 T DIf] (12)
k—1 . ~ . . ~
= V'KEDIf + Y (1) 1 TE ke VDI + VT TR Y DIf]. (13)

=1
By Fubini’s theorem we have, for 1 < i < k — 1, that
T ke VDI = 1) [ K€ -x) ( [ Ko =6, (r)“D[f](r)dsf) d
«Q T
=y /F ( /Q K (€ — x)Kg (7 — E)dé) Mg, ()Y DIF(2)dS, (14)
= 1y /F Y, 7) g (1) Y'DIF(D) s,

where V' d(x,7) = /Q Ky, (§ —x)Kg,i(t — §)d&. However, by classical Borel-Pompeiu formula for Kyi+1 (x — ) and ¥, and in view of

Proposition 2 ((ii) and (iii)), we have

Kyit1 (= 0) = | Ky (€ =300y, (O)Kyit1 (§ = 1) dSe — | Ky (§ =)' DKy (§ — )] dE
r Q

=Yg 1) - /Q Ky (6 = 0Kg (6 — 0 dg = Vg0 1) + (1T ¥ g(x, 1),
where V"' (x, 1) = / Ky, (€ — )Ny, (€)Kgi1 (€ — T) dSg, whence we obtain
T

Yg000) = ()T K =) = g 0. (1s)
Substituting in (14), we obtain
()" T K YDl (0
- - /r Ky, (X = D)y, () ¥ DIf)(z) dS; + /F ¥ (x, )y, (1) Y DIFY (1) dS: (16)

= (1Y K DI () + /F Y B, DNy, (1) Y DIA() dSe,

. ______________________________________________________________________________________________________|
Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2015
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and from Stokes formula (5) for ;44 it then follows that

¥ 0 oma, @¥ i@ dse = [ (00 [ g0 0] Yoim + ¥ g ol o
r Q
Invoking Proposition 2 (v), we have
o [¥ o) = / Kun (5 =) 1, (€) DY (K (€ = 0)] dSg
r
= [ K =0 m0 € Kar6 = 0 st == x,),

whence

[ ¥ g0 om0 D@ dse = [ (Vgm0 ¥ 00 - Y0 YoI) d.

r «Q

Hence, from (16), we obtain

k—1 o _
DTG Ke Y DIl ()
i=1

=
1

k—1

)" KDl + /Q [ (“*‘&(x,r)““’*‘o[ﬂ(r)—‘%(x,r)k”"o[ﬂ(r))} dv

i=1
]

= YR + [ (Vde 0V oim ¥ g ) Y i) d.
i=1

i=1

»
|

Now applying Cauchy’s integral theorem in the multiple-connected domain 2 \ (B[x, €] U B[z, €]) forx,7 € ,x # t and € > 0 small,
we have

Vg 1)
- /F K (6 — X) 1y (8) Ky (€ — 1) IS

—tim ([ K 0mn @k - ndse+ [ K- 0min @k € - ndse)
e 9B(x,€) 9B(7,€)

B(T,

=Kw1(X—‘L')+K,J,1(‘L'—X)=O.
Then

k—1 k—1
ST T ke DI = D=1 KV DIf00 + /Q Y (x, ) ¥DIf](r) dr. (17)
i=1

i=1

On the other hand, (15) yields

“TTa 0100 = 1 [ K =) ( [ K-8 “”D[f]mdr) de
= 1) / ( / K (6 — %) K ( — £) ds) Y Dif](r) de
= (1) /Q Y (x, 1) ¥ DIf] (r) dr

= / Kw(x — 7) YD[f](r) dT — / Y (x, ) YD[f](7) dr.
Q Q
Finally, substitution of (18) and (17) in (13) yields (11). O

3.1. Particular cases

This section is dedicated to some important particular consequences of formula (11).
|

Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2015
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Casek = 2.
In this case, we have
|X|3—n
0(2)1( X) = )
(1—=m@—n)IS"|
Then for W = {yn, ¥, }, we obtain
211‘”1‘/’2)(2 SRV X7 (X C +X*)
_ + x5 X 7 X Cuny v
ko) = 710720 [0, ] 0) = —= W4 Ao, T v D),
" 2|Sn||x|"+1 2|Sn||x|"+!
where
no o0 0
Clbmﬁz = ZITI 1/f;’ ‘/fz.

In this case, formula (11) will take the form
f(x) = / Ky (§ — )Ny, (§)F(§) dS¢ —/ K (& —x)ny, (§)V' DIf](§)dSe + / Ky (€ —x)V2DV D[f](£)dE.
r r Q

Casek = 3.
Here,

09 (x) = |x]>~"
ot 8(1—nB—n)(5—n)sS"|’

and ¥ = {yn, ¥, ¥3}. By straightforward computations, we obtain

27:1 EXW ;1 2
(Xm Coos + =7 + CurunXy, | X2+ Xy, Xy, Xy,

8[S7||x|"+

Ky (x) = Vip¥ap¥sp [9,521] (x) =

’

and from the previous case, we have

Xz, (XVM Cyy, + XJZ)

K\IjZ(X) = 2|Sn||x|n+1

Then

Fx) = /r K (6 — %) g, () F(8) S5 — /r Kaa (€ — ) ny, (¢) V' DIFI(E) dSe
+ f Ka (& — %) iy, (€) “2DV DIF|(&) dS¢ / Ku (& — x) ¥*DV2DV DIf)(£) dE
T «Q

Casek =2m—t1and ¥ = {Vrst, Vst, ..., Vst, Vst Vst -

In this case, YD = DA’"+11,and‘I’D DAm+11,whence

)7|X|2(m—1)—(n+1)

ISP 2m=1(m — "= @v—n—1)

ko) = DATE [6907" 00 = B[6\7 ] 00 =

Casek =2mand ¥ = {Y, Yt, . .., Vist, Vst |-
In this case, YD = A, = ¥D,and

Kw(x) = AT, [e,fi"?] () = 6,7, (0.

Taking into account the previous case, we obtain from (11) the following representation for C2™(Q, Ry,,) functions in terms of powers
of the Laplacian:

Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2015
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(E —x)|& — x|2i=D=(+D)
= ,_1“ IS121 (G — Ty @v—n—1) n(§) AL IA(E) dSe

& — x|~ +D . B
_/FIS"IZ"—‘(i—1)!1‘[321(2\,_,,_1) n(€) DALY IF1(§) dS¢

I — x[2n—(+D)
+/§2 IS"2m=T(m — ) ], v —n—1) 1 [F1(E) dE.

This is the same formula as obtained in [2], Theorem 3.

Case ¥ = {WSU 1//Stl e '(/fsf}'

In this case, we have YD = DX, and Ky (x) = gk (x). Direct computation fork = 1,...,6 yields
n+1
g® X(x +x)*!
Ku (x) = [ n+1]( ) = ISP|2K=T (k — 1)!]x [T

Hence, in this case and for these values of k, (11) is in accordance with [2] Theorem 1. On the other hand, it is easy to check that

)7(X + ﬂk—1
[S7126" (k = )lx|"

is a fundamental solution for D¥ for every k € N. In view of the previous results for k = 1,. .., 6, we thus conjecture that

® _ X(x +x)*
[9~+1] 0 = |SP|2k=1(k — 1)!|x|»+1"

for every k € N.

If this conjecture is true then, we can conclude that formula (11) is a generalization of formula (2.4), [2].
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