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In this paper, we show that a higher order Borel–Pompeiu (Cauchy–Pompeiu) formula, associated with an arbitrary orthog-
onal basis (called structural set) of a Euclidean space, can be extended to the framework of generalized Clifford analysis.
Furthermore, in lower dimensional cases, as well as for combinations of standard structural sets, explicit expressions of
the kernel functions are derived. Copyright © 2015 John Wiley & Sons, Ltd.
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1. Introduction and preliminaries

Clifford analysis in its basic form [1] deals with the study of so-called monogenic functions, that is, null solutions of the Cauchy–Riemann
operator, which are an appropriate higher-dimensional analog of holomorphic functions in the complex plane. One of the key results in
this function theory is the Borel–Pompeiu representation formula, as is the case in the theory of holomorphic functions in the complex
plane, leading in the present context to various higher–dimensional analogs of classical theorems.

Integral representation formulae of Borel–Pompeiu type, expressing Clifford algebra valued functions, play an essential role in solv-
ing certain kinds of boundary value problems for partial differential equations related to the Cauchy–Riemann operator. During the
last decades, there has been much interest to study such higher-order representation formulae, see for example [2–10]. However, all
these results only consider the standard orthogonal basis, whereas in this paper, we generalize this setting to an arbitrary orthogonal
basis (or structural set) of Euclidean space and establish a higher-order Borel–Pompeiu (or Cauchy–Pompeiu) formula in that setting.
Furthermore, in low dimensional cases, explicit expressions of the kernel functions are derived, also for combinations of standard
structural sets.

Let fe1, e2, : : : , eng be an orthonormal basis of Rn, underlying the construction of the 2n dimensional real Clifford algebra R0,n,
according to the multiplication rules

eiej C ejei D �2ıij ,

where ıij is Kronecker’s symbol. Then for A D fh1, : : : , hkg .1 � h1 < � � � < hk � n/, the elements eA D eh1 � � � ehk together with
e; D 1 define a basis of R0,n, whence any a 2 R0,n may be written as a D

P
A aAeA, where aA 2 R or still as a D

Pn
kD0Œa�k , where

Œa�k D
P
jAjDk aAeA is a so-called k-vector. If we denote the space of k-vectors by R.k/0,n , then

R0,n D

nM
kD0

R.k/0,n .

In this way, the spaces R and Rn are identified with R.0/0,n and R.1/0,n .
Each element x D .x0, x1, : : : , xn/ 2 RnC1 may then be rewritten as

x D x0 C

nX
iD1

xiei 2 R.0/0,n ˚R.1/0,n
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and is called a paravector. For each such x 2 R.0/0,n ˚R.1/0,n it holds that

x Nx D Nxx D x2
0 C x2

1 C � � � C x2
n D jxj

2. (1)

The extension of (1) to a norm on R0,n is straightforward and leads to

jaj2 D ŒaNa�0 D ŒNaa�0 D
X

A

a2
A.

Here, the (Clifford) conjugation has been used, which is defined by Na D
P

A aA NeA, where

NeA :D .�1/kehk � � � eh1 D .�1/
k.kC1/

2 eA,

when eA D eh1 � � � ehk . The following properties of the norm and the conjugation in a Clifford algebra are well–known, see for
instance [11].

Proposition 1
For any a, b 2 R0,n, it holds that

(1) ab D Nb Na,
(2) j Naj D j � aj D jaj,
(3)

�
aNb
�

0
D
�
Nab
�

0
D ha, bi, where h�, �i denotes the standard inner product in R2n

,
(4) jabj � 2n=2jajjbj,
(5) if b ¤ 0 is such that bNb D jbj2, then b is invertible and jabj D jbaj D jajjbj.

Let � be a bounded domain in RnC1, with sufficiently smooth boundary � . We will consider functions f : � ! R0,n, which may be
written as

f .x/ D
X

A

fA.x/eA

with fA R-valued, whence properties such as continuity, differentiability, integrability, and so on, are attributed componentwise. In
particular, we define in this way, for any suitable subset E of RnC1, the following sets:

� the set Ck.E,R0,n/ of R0,n-valued, k times continuously differentiable functions on E;
� the set C1.E,R0,n/ :D

T1
kD0 Ck.E,R0,n/.

For f 2 Ck.E,R0,n/, we will write

D˛f D
@j˛jf

@x˛0
0 � � � @x˛n

n
, j˛j � k,

where ˛ D .˛0, : : : ,˛n/ 2 .N [ f0g/
nC1 is a multi-index and j˛j D ˛0 C � � � C ˛n. Furthermore, we consider

� the set C0,�.E,R0,n/ (� 2 .0, 1�) of R0,n-valued, �-Hölder continuous functions on E;
� the set Ck,�.E,R0,n/ (k 2 N) of functions in C0,�.E,R0,n/whose partial derivatives D˛f belong to C0,�.E,R0,n/ for j˛j � k.

Next, let  :D f 0, 1, : : : , ng � R.0/0,n ˚R.1/0,n and denote  :D f 0, 1, : : : , ng. Then, we define the left and the right  -Cauchy–
Riemann operator by their respective actions on functions f 2 C1.�,R0,n/:

 DŒf � :D
nX

iD0

 i @f

@xi
, D Œf � :D

nX
iD0

@f

@xi
 i . (2)

It is easy to prove that the equalities

 D D D  D D D D D D D D D �nC1 (3)

hold, where�nC1 is the .nC 1/-dimensional Laplace operator, if and only if

 i  j C  j  i D 2ıij , i, j D 0, : : : , n.

Note that last equality yields

2ıij D  
i  j C  j  i D  i  j C  i  j D 2

h
 i  j

i
0
D 2

˝
 i , j

˛
RnC1 , (4)

whence (3) holds if and only if  represents an orthonormal basis of RnC1 Š R.0/0,n ˚R.1/0,n .
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Any set  showing the property (4) is called a structural set; it is clear that  and  are structural sets simultaneously. The standard
basis of RnC1 given by  st :D f1, e1, : : : , eng thus can be considered as the particular structural set generating the standard Cauchy–
Riemann operator DŒf � :D  st DŒf �.

Basic properties of structural sets can be found in [12, 13] and the references therein. In particular, the following properties connect
the left and right Cauchy–Riemann operators and can be obtained by direct calculation.

Lemma 1
Let  and' be two structural sets. Then it holds that

(1)  DŒf � D D ŒNf � , and D Œf � D  DŒNf �.
(2) D'  D D  D D' in C2.�,R0,n/.

For fixed  and�, we introduce the spaces of functions

 M.�,R0,n/ :D ker D D ff 2 C1.�,R0,n/ :  DŒf � D 0 in �g,

and
M .�,R0,n/ :D ker D D ff 2 C1.�,R0,n/ : D Œf � D 0�g,

the elements of which are called  -hyperholomorphic functions (left and right, respectively).
It is of central importance in the development of a function theory for  -hyperholomorphic functions to establish the fundamental

solution of the operators  D and D , also called the Cauchy kernel. To this end, we first consider the fundamental solution ‚.k/nC1 of
the iterated Laplace operator�k

nC1, k 2 N , given by

‚
.k/
nC1.x/ D

jxj2k�.nC1/

jSnj2k�1.k � 1/Š
Qk

vD1.2v � n � 1/
.

In view of (3), the Cauchy kernel may then be obtained as:

K .x/ :D  D
h
‚
.1/
nC1

i
.x/ D D 

h
‚
.1/
nC1

i
.x/ D

x 
jSnj jxjnC1

,

where

x :D
nX

iD0

xi i if x D
nX

iD0

xiei ,

and jSnj is the area of the unit sphere Sn in RnC1.
The kernel K has the following important properties:

(1) K 2 C1.RnC1nf0g,R0,n/.
(2) K 2  M.RnC1nf0g,R0,n/ \M .RnC1nf0g,R0,n/.

A first important result then is given by Stokes’ formula, which takes, for an arbitrary structural set  , the following form. For f , g 2
C1.�,R0,n/ \ C0.�,R0,n/ it holds thatZ

�

g.�/ n .�/ f .�/ dS� D

Z
�

�
D Œg�.�/ f .�/C g.�/ DŒf �.�/

�
d� , (5)

where

n .�/ D
nX

iD0

ni.�/ 
i

with ni.�/ the i-th component of the outward unit normal vector on � at the point � 2 � . This Stokes’ formula immediately leads to
two important consequences, which are widely known and can be found, for the standard setting, in many sources.

Theorem 1
(Cauchy integral theorem). Let f 2  M.�,R0,n/ \ C0.�,R0,n/ and g 2M .�,R0,n/ \ C0.�,R0,n/. Then it holds thatZ

�

g.�/ n .�/ f .�/ dS� D 0. (6)

Theorem 2
(Borel–Pompeiu (Cauchy–Green) formula). Let f 2 C1.�,R0,n/ \ C0.�,R0,n/. Then it holds that

Z
�

K .� � x/ n .�/ f .�/ dS� �

Z
�

K .� � x/ DŒf �.�/d� D

(
f .x/ if x 2 �,

0 if x 2 RnC1 n�.
(7)

Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2015
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The Cauchy kernel thus generates the following two important integrals:

 T�Œf �.x/ :D �

Z
�

K .� � x/ f .�/ d� , x 2 RnC1,

and

 K� Œf �.x/ :D

Z
�

K .� � x/ n .�/ f .�/ dS� , x … � .

The first is a generalization of the usual Téodorescu transform; the second represents the usual Cauchy type integral. Note that the
 -Téodorescu transform is the right-inverse to the operator  D [14].

Theorem 3
For every f 2 Lp.�,R0,n/, p 2 .1,1/, we have

 D T�Œf �.x/ D

(
f .x/ if x 2 �,

0 if x 2 RnC1 n�.

2. Iterated Cauchy–Riemann operators

The main goal of this section is to study the properties of the fundamental solution of so–called iterated Cauchy–Riemann operators,
which are obtained by the composition of k generalized Cauchy–Riemann operators associated to different structural sets.

Let ‰ :D f 1, 2, : : : , kg be a collection of k structural sets of R0,n and denote ‰ :D
˚
 k , k�1, : : : , 1

�
. Then the left and right

‰-iterated Cauchy–Riemann operators are defined as:

‰D D  k D k�1 D � � � 1 D, D‰ D D k D k�1 � � �D 1 .

Note that as a consequence of (3), we have

‰D‰D D ‰D‰D D D‰ D‰ D D‰ D‰ D �k
nC1.

It then is easy to see that

K‰.x/ :D ‰D
h
‚
.k/
nC1

i
D  1 D 2 D � � � k D

h
‚
.k/
nC1

i
, (8)

constitutes a fundamental solution to these iterated Cauchy–Riemann operators.
Given a collection of structural sets‰, we will define the subcollections

‰i D f 1, 2, : : : , ig � ‰,

where 1 � i � k. Note that‰k D ‰. Then the following properties hold.

Proposition 2

(i) K‰.x/ 2 C1.RnC1 n f0g,R0,n/.

(ii) K‰.x/ D
P‰.x/

jSnj2k�1.k � 1/ŠjxjnC1
, where P‰.x/ is an homogeneous polynomial of degree k.

(iii)  1 DŒK‰� D K Q‰ where Q‰ D f 2, : : : , kg.

(iv) K‰ D D k � � �D 2 D 1

h
‚
.k/
nC1

i
.

(v) D k ŒK‰� D K‰k�1 .

Proof

(ii) As a first step, we show that, for i D 0, 1, : : : k � 1 and m 2 N fixed:

 k�i D : : : k�1 D k D Œjxjm� D
iY

vD0

.m � 2v/ jxjm�2.iC1/Q.i/
‰
.x/, (9)

where Q.i/
‰
.x/ is a homogeneous polynomial of degree iC 1. Indeed, for i D 0, we have that  k D Œjxjm� D mx k

jxjm�2, whence
(9) is fulfilled in this case. Next, we proceed by induction: suppose that (9) holds for i D 1, : : : , j .j < k � 1/ then, for i D j C 1,
we have:

Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2015
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 k�.jC1/D �  k�j D � � � k D Œjxjm� D
jY

vD0

.m � 2v/  k�.jC1/D
h
jxjm�2.jC1/Q.j/

‰
.x/
i

D

jY
vD0

.m � 2v/
�
 k�.jC1/D

h
jxjm�2.jC1/

i
Q.j/
‰
.x/C  k�.jC1/D

h
Q.j/
‰

i
.x/jxjm�2.jC1/

�

D

jC1Y
vD0

.m � 2v/

0
@x k�.jC1/

jxjm�2.jC2/Q.j/
‰
.x/C

 k�.jC1/D
h

Q.j/
‰

i
.x/jxjm�2.jC1/

m � 2.jC 1/

1
A

D

jC1Y
vD0

.m � 2v/ jxjm�2.jC2/Q.jC1/
‰

.x/,

where

Q.jC1/
‰

.x/ D x k�.jC1/
Q.j/
‰
.x/C jxj2

 k�.jC1/D
h

Q.j/
‰

i
.x/

m � 2.jC 1/

clearly is a homogeneous polynomial of degree jC 2.
Now putting i D k � 1 in (9), m D 2k � .nC 1/ and P‰.x/ :D Q.k�1/

‰
.x/, we obtain:

K‰.x/ D
 1 D 2 D � � � k D

�
jxj2k�.nC1/

�
jSnj2k�1.k � 1/Š

Qk
vD1.2v � n � 1/

D

Qk�1
vD0 .2.k � v/ � n � 1/ jxj�.nC1/P‰.x/

jSnj2k�1.k � 1/Š
Qk

vD1.2v � n � 1/
D

P‰.x/

jSnj2k�1.k � 1/ŠjxjnC1
.

(iii) Taking into account (8) and (i), we obtain

 1 DŒK‰� D �nC1
 2 D : : : k D

h
‚
.k/
nC1

i
D  2 D : : : k D�nC1

h
‚
.k/
nC1

i
D  2 D : : : k D

h
‚
.k�1/
nC1

i
D K Q‰ .

(iv) Because‚.k/nC1 is a real valued function, we can write  k D
h
‚
.k/
nC1

i
D D k

h
‚
.k/
nC1

i
. Then successively applying Lemma 1 (ii), we

obtain

K‰.x/ D
 1 D 2 D : : : k D

h
‚
.k/
nC1

i
D  1 D 2 D : : : k�1 D D k

h
‚
.k/
nC1

i
D D k  1 D 2 D : : : k�1 D

h
‚
.k/
nC1

i
D D k D k�1  1 D : : : k�2 D

h
‚
.k/
nC1

i
D : : :

D D k D k�1 : : :D 1

h
‚
.k/
nC1

i
.

(v) From (iv), it follows that

D k ŒK‰� D D k D k D k�1 : : :D 1

h
‚
.k/
nC1

i
D D k�1 : : :D 1 �nC1

h
‚
.k/
nC1

i
D D k�1 : : :D 1

h
‚
.k�1/
nC1

i
D K‰k�1 .

3. Higher order Borel–Pompeiu representations

Given a collection of structural sets‰, we will now define integral operators generalizing the classical concepts of a Cauchy type integral
and a Téodorescu transform.

� ‰-Cauchy type integral:

‰K� Œf �.x/ :D

Z
�

K‰.� � x/ n k .�/ f .�/ dS� x … � ;

Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2015
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� ‰-Téodorescu transform:

‰T�Œf �.x/ :D .�1/k

Z
�

K‰.� � x/ f .�/ d� , x 2 RnC1.

Observe that, for x 2 � the integral ‰T�Œf �.x/ is to be understood in the sense of the Cauchy principal value. Yet, the existence of this
integral for every x 2 RnC1 still has to be carefully proven.

Theorem 4
Let f 2 L1.�,R0,n/. Then the integral ‰T�Œf �.x/ exists for every x 2 RnC1.

Proof
If x 2 RnC1 n�, then K‰.� � x/ is a bounded continuous function of � 2 �, from which the existence of ‰T�Œf � in RnC1 n� follows.
Next, suppose that x 2 �. Then for every � 2 � (� ¤ x), we obtain, in view of Propositions 1 and 2, the following estimation:

jK‰.� � x/ f .�/j � 2n=2 jK‰.� � x/j jf .�/j �
2n=2C‰

jSnj2k�1.k � 1/Š

jf .�/j

j� � xjnC1�k
. (10)

In fact, because

K‰.y/ D
P‰.y/

jSnj2k�1.k � 1/ŠjyjnC1

with P‰.x/ a homogeneous polynomial of degree k, there exist a constant C‰ > 0 such that

jK‰.y/j �
C‰jyjk

jSnj2k�1.k � 1/ŠjyjnC1

for every y 2 RnC1 (y ¤ 0). The obtained estimate (10) reduces the problem to the existence of the real integrals

Z
�

jf .�/j

j� � xjnC1��
d�

for � > 0 and f 2 L1.�,R0,n/. These integrals have been considered in many sources (see e.g. [15]) and indeed exist for all � > 0.

Theorem 5
Let f 2 C.�,R0,n/. Then it holds that

(i)  1 D‰T�Œf � D
Q‰T�Œf �where Q‰ D f 2, : : : , kg, k � 2.

(ii) ‰D‰T�Œf �.x/ D f .x/ for every x 2 �.

Proof

(i) For k � 2, the singularity of the kernels K‰.� � x/ is not worse than O
�

1
j��xjn

�
, allowing for differentiation under the integral of

‰T�Œf �. Observe moreover, on account of Proposition 2, that

 1 Dx K‰.� � x/ D .�1/K Q‰.� � x/

and in consequence,

 1 Dx
‰T�Œf �.x/ D .�1/k

Z
�

 1 Dx ŒK‰.� � x/� f .�/ d� D .�1/k�1

Z
�

K Q‰.� � x/ f .�/ d� D
Q‰T�Œf �.x/.

(ii) Applying several times (i), and taking into account Theorem 3, we obtain (ii).

Theorem 6
[Borel–Pompeiu formula of higher order] Let � � RnC1 be a bounded domain with sufficiently smooth boundary � D @�. Let
‰ D f 1, 2, : : : , kg be a collection of k structural sets, k 2 N , and let f 2 Ck.�,R0,n/. Then for x 2 � it holds that

f .x/ D
kX

iD1

.�1/i�1 ‰i
K‰

i�1

� DŒf �.x/C ‰T�
‰DŒf �.x/, (11)

where ‰
0

DŒf � D f .

Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2015
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Proof
We will proceed by induction on k. First, for k D 1, formula (11) coincides with the classical Borel–Pompeiu formula (7) for the structural
set  1. Next, assume that every function g 2 Ck�1.�,R0,n/, k � 1, can be represented as

g D
k�1X
iD1

.�1/i�1 ˆi
Kˆ

i�1

� DŒg�C ˆT�
ˆDŒg�,

where ˆ is an arbitrary collection of k � 1 structural sets. Then, given f 2 Ck.�,R0,n/ and ‰ D f 1, 2, : : : , kg, we can apply the
previous representation to the function  1 DŒf � 2 Ck�1.�,R0,n/with the collection Q‰ D f 2, : : : , kg:

 1 DŒf � D
k�1X
iD1

.�1/i�1 Q‰i
K
Q‰i�1

� D 1 DŒf �C
Q‰T�

Q‰D 1 DŒf �.

However, for 2 � i � k, we have Q‰
i�1

D 1 DŒf � D
�
 i D � � � 2 D

�
 1 D D ‰i

D, whence

 1 DŒf � D
k�1X
iD1

.�1/i�1 Q‰i
K�
‰i

DŒf �C
Q‰T�

‰DŒf �.

Now, substituting the previous expression in the classical Borel–Pompeiu formula (11) for the structural set  1, we obtain

f D  1 K� Œf �.x/C
 1 T 1

�
DŒf � D ‰1

K‰
0

� DŒf �C  1 T 1
�

DŒf � (12)

D ‰1
K‰

0

� DŒf �C
k�1X
iD1

.�1/i�1  1 T
Q‰i

� K�
‰i

DŒf �C  1 T
Q‰
�T�

‰DŒf �. (13)

By Fubini’s theorem we have, for 1 � i � k � 1, that

.�1/i�1 1 T
Q‰

i

� K�
‰i

DŒf �.x/ D .�1/i

Z
�

K 1.� � x/

	Z
�

K Q‰i .	 � �/n iC1.	/
‰i

DŒf �.	/dS�



d�

D .�1/i

Z
�

	Z
�

K 1.� � x/K Q‰i .	 � �/d�



n iC1.	/

‰i
DŒf �.	/dS�

D .�1/i

Z
�

‰iC1

.x, 	/ n iC1.	/

‰i
DŒf �.	/ dS� ,

(14)

where‰
iC1

.x, 	/ :D

Z
�

K 1.� � x/K Q‰i .	 � �/d� . However, by classical Borel–Pompeiu formula for K‰iC1.x� 	/ and 1, and in view of

Proposition 2 ((ii) and (iii)), we have

K‰iC1.x � 	/ D

Z
�

K 1.� � x/n 1.�/K‰iC1.� � 	/ dS� �

Z
�

K 1.� � x/ 1 D� ŒK‰iC1.� � 	/� d�

D ‰iC1 Q
.x, 	/ �

Z
�

K 1 .� � x/K Q‰i .� � 	/ d� D ‰iC1 Q
.x, 	/C .�1/iC1 ‰iC1

.x, 	/,

where ‰
iC1 Q
.x, 	/ D

Z
�

K 1 .� � x/n 1.�/K‰iC1.� � 	/ dS� , whence we obtain

‰iC1

.x, 	/ D .�1/iC1

h
K‰iC1.x � 	/ � ‰

iC1 Q
.x, 	/
i

. (15)

Substituting in (14), we obtain

.�1/i�1  1 T
Q‰i

� K�
‰i

DŒf �.x/

D �

Z
�

K‰iC1.x � 	/n iC1.	/
‰i

DŒf �.	/ dS� C

Z
�

‰iC1 Q
.x, 	/n iC1.	/
‰i

DŒf �.	/ dS�

D .�1/i ‰iC1
K‰

i

� DŒf �.x/C

Z
�

‰iC1 Q
.x, 	/n iC1.	/
‰i

DŒf �.	/ dS� ,

(16)

Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2015



J. B. REYES ET AL.

and from Stokes formula (5) for  iC1 it then follows that

Z
�

‰iC1 Q
.x, 	/n iC1.	/
‰i

DŒf �.	/ dS� D

Z
�

�
D
 iC1
�

h
‰iC1 Q
.x, 	/

i
‰i

DŒf �.	/C ‰
iC1 Q
.x, 	/‰

iC1
DŒf �.	/

�
d	 .

Invoking Proposition 2 (v), we have

D
 iC1
�

h
‰iC1 Q
.x, 	/

i
D

Z
�

K 1 .� � x/ n 1.�/D
 iC1
� ŒK‰iC1.� � 	/� dS�

D �

Z
�

K 1 .� � x/ n 1.�/ K‰i .� � 	/ dS� D �
‰i Q
.x, 	/,

whence Z
�

‰iC1 Q
.x, 	/n iC1.	/
‰i

DŒf �.	/ dS� D

Z
�

�
‰iC1 Q
.x, 	/‰

iC1
DŒf �.	/ � ‰

i Q
.x, 	/‰
i
DŒf �.	/

�
d	 .

Hence, from (16), we obtain

k�1X
iD1

.�1/i�1  1 T
Q‰i

� K�
‰i

DŒf �.x/

D

k�1X
iD1

.�1/i ‰iC1
K‰

i

� DŒf �.x/C

Z
�

"
k�1X
iD1

�
‰iC1 Q
.x, 	/‰

iC1
DŒf �.	/ � ‰

i Q
.x, 	/‰
i
DŒf �.	/

�#
d	

D

k�1X
iD1

.�1/i ‰iC1
K‰

i

� DŒf �.x/C

Z
�

�
‰k Q
.x, 	/‰

k
DŒf �.	/ � ‰

1 Q
.x, 	/‰
1

DŒf �.	/
�

d	 .

Now applying Cauchy’s integral theorem in the multiple–connected domain� n .BŒx, �� [ BŒ	 , ��/ for x, 	 2 �, x ¤ 	 and � > 0 small,
we have

‰1 Q
.x, 	/

D

Z
�

K 1.� � x/ n 1 .�/ K 1.� � 	/ dS�

D lim
�!0

	Z
@B.x,�/

K 1.� � x/ n 1 .�/ K 1.� � 	/ dS� C

Z
@B.� ,�/

K 1 .� � x/ n 1.�/ K 1.� � 	/ dS�



D K 1 .x � 	/C K 1.	 � x/ D 0.

Then

k�1X
iD1

.�1/i�1  1 T
Q‰i

� K�
‰i

DŒf �.x/ D
k�1X
iD1

.�1/i ‰iC1
K ‰i

� DŒf �.x/C

Z
�

‰ Q
.x, 	/‰DŒf �.	/ d	 . (17)

On the other hand, (15) yields

 1 T
Q‰
�T�

‰DŒf �.x/ D .�1/k

Z
�

K 1 .� � x/

	Z
�

K‰k�1.	 � �/‰
k

DŒf �.	/ d	



d�

D .�1/k

Z
�

	Z
�

K 1.� � x/ K‰k�1.	 � �/ d�



‰k

DŒf �.	/ d	

D .�1/k

Z
�

‰k

.x, 	/‰

k
DŒf �.	/ d	

D

Z
�

K‰.x � 	/
‰DŒf �.	/ d	 �

Z
�

‰ Q
.x, 	/‰DŒf �.	/ d	 .

(18)

Finally, substitution of (18) and (17) in (13) yields (11).

3.1. Particular cases

This section is dedicated to some important particular consequences of formula (11).
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Case k D 2.
In this case, we have

�
.2/
nC1.x/ D

jxj3�n

2.1 � n/.3 � n/jSnj
.

Then for‰ D f 1, 2g, we obtain

K‰.x/ D
 1 D 2 D

h
�
.2/
nC1

i
.x/ D

Pn
iD1 

i
1  

i
2

1�n jxj2 C x 1
x 2

2jSnjjxjnC1
D

x 1

�
x 1 C 1, 2 C x 2

�
2jSnjjxjnC1

,

where

C 1, 2 :D

Pn
iD1  

i
1  

i
2

1 � n
.

In this case, formula (11) will take the form

f .x/ D

Z
�

K 1.� � x/n 1.�/f .�/ dS� �

Z
�

K‰.� � x/n 2.�/
 1 DŒf �.�/dS� C

Z
�

K‰.� � x/ 2 D 1 DŒf �.�/d� .

Case k D 3.
Here,

�
.3/
nC1.x/ D

jxj5�n

8.1 � n/.3 � n/.5 � n/jSnj
,

and‰ D f 1, 2, 3g. By straightforward computations, we obtain

K‰.x/ D
 1 D 2 D 3 D

h
�
.3/
nC1

i
.x/ D

	
x 1

C 2, 3 C

Pn
iD1 

i
1x 2

 i
1

1�n C C 1, 2 x 3



jxj2 C x 1

x 2
x 3

8jSnjjxjnC1
,

and from the previous case, we have

K‰2.x/ D
x 1

�
x 1 C 1, 2 C x 2

�
2jSnjjxjnC1

.

Then

f .x/ D

Z
�

K 1 .� � x/ n 1.�/ f .�/ dS� �

Z
�

K‰2.� � x/ n 2 .�/
 1 DŒf �.�/ dS�

C

Z
�

K‰.� � x/ n 3 .�/
 2 D 1 DŒf �.�/ dS� �

Z
�

K‰.� � x/ 3 D 2 D 1 DŒf �.�/ d� .

Case k D 2m � 1 and‰ D
˚
 st , st , : : : , st , st , st

�
.

In this case, ‰D D D�m�1
nC1 , and ‰D D D�m�1

nC1 , whence

K‰.x/ D D�m�1
nC1

h
�
.2m�1/
nC1

i
.x/ D D

h
�
.m/
nC1

i
.x/ D

xjxj2.m�1/�.nC1/

jSnj2m�1.m � 1/Š
Qm�1

vD1 .2v � n � 1/
.

Case k D 2m and‰ D
˚
 st , st , : : : , st , st

�
.

In this case, ‰D D �m
nC1 D

‰D, and

K‰.x/ D �
m
nC1

h
�
.2m/
nC1

i
.x/ D � .m/nC1.x/.

Taking into account the previous case, we obtain from (11) the following representation for C2m.�,R0,n/ functions in terms of powers
of the Laplacian:
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f .x/ D
mX

iD1

( Z
�

.� � x/j� � xj2.i�1/�.nC1/

jSnj2i�1.i � 1/Š
Qi�1

vD1.2v � n � 1/
n.�/�i�1

nC1Œf �.�/ dS�

�

Z
�

j� � xj2i�.nC1/

jSnj2i�1.i � 1/Š
Qi

vD1.2v � n � 1/
n.�/D�i�1

nC1Œf �.�/ dS�

)

C

Z
�

j� � xj2m�.nC1/

jSnj2m�1.m � 1/Š
Qm

vD1.2v � n � 1/
�m

nC1Œf �.�/ d� .

This is the same formula as obtained in [2], Theorem 3.
Case‰ D f st , st , : : : , stg.

In this case, we have ‰D D Dk , and K‰.x/ D D
k
h
�
.k/
nC1

i
.x/. Direct computation for k D 1, : : : , 6 yields

K‰.x/ D D
k
h
�
.k/
nC1

i
.x/ D

x.x C x/k�1

jSnj2k�1.k � 1/ŠjxjnC1
.

Hence, in this case and for these values of k, (11) is in accordance with [2] Theorem 1. On the other hand, it is easy to check that

x.x C x/k�1

jSnj2k�1.k � 1/ŠjxjnC1

is a fundamental solution for Dk for every k 2 N . In view of the previous results for k D 1, : : : , 6, we thus conjecture that

D
k
h
�
.k/
nC1

i
.x/ D

x.x C x/k�1

jSnj2k�1.k � 1/ŠjxjnC1
, for every k 2 N .

If this conjecture is true then, we can conclude that formula (11) is a generalization of formula (2.4), [2].
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