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We demonstrate the deterministic incorporation of colloidal CdSe/CdS core-shell 

quantum dots emitting at λ = 620 nm into the gap of plasmonic Ag bowtie antennas. The 

antennas were fabricated using a lift-off process employing electron beam lithography 

and electron gun evaporation of silver on a copper seed layer. Nano-patterning of the 

wet-chemically synthesized quantum dots was done using a previously devised lift-off 

process and a state-of-the-art electron beam lithography system for the alignment. 

Placing colloidal quantum dots in the gap of plasmonic antennas can significantly reduce 

their intrinsic radiative lifetime and hence increase the emission rate for the application 

as a room-temperature single-photon source. 

Introduction 

Colloidal quantum dots (QDs) usually consist of a 2-20 nm diameter semiconductor core 

embedded in a higher bandgap shell material for electronic passivation. Organic ligands 

covering the shell prevent agglomeration of the QDs when they are suspended in an 

appropriate solvent. Due to the quantum confinement effect colloidal QDs exhibit size 

tuneable emission, combined with high photoluminescence quantum yield. The discovery 

of these favourable intrinsic properties almost thirty years ago [1, 2] has sparked extensive 

research into amongst other areas the application of colloidal QDs for optical and 

optoelectronic devices [3]. Examples range from of light emitting devices (LEDs) [4] to 

fluorescent labelling [5] and room-temperature single photon emitters [6].  

In their application as on-demand single photon sources, wet-chemically synthesized 

colloidal QDs compete with matured single photon sources based on epitaxially grown 

quantum dots operating at cryogenic temperatures [7, 8]. The stronger electronic 

confinement in colloidal QDs allows for room temperature operation, the brightness of 

such a single-photon source is however limited by the intrinsic radiative lifetime, which 

is typically in the range of ~10 ns for colloidal QDs compared to typically ~100 fs for 

epitaxial QDs at a temperature of ~5 K [9]. A way to overcome this limitation is to 

incorporate the emitter in a cavity, where in the weak coupling regime the intrinsic 

radiative lifetime is decreased by the Purcell Effect [10]. Plasmonic gap antennas can 

offer high radiative enhancement due to their small mode volume, which comes at the 

cost of additional loss, limiting the quantum efficiency of the source. Up to 540-fold 

decrease in the emission lifetime has been shown, while retaining single-photon emission 

for colloidal QDs incorporated into plasmonic nanocavities using a purely probabilistic 

method [11]. Though, for practical applications and simplified characterisation a more 

deterministic fabrication approach would be desirable. In this work we demonstrate the 

incorporation of patches of colloidal quantum dots into the gap of plasmonic bowtie 

antennas by overlay alignment using electron beam lithography as a pathway towards a 

deterministically defined, bright room-temperature single photon source with colloidal 

QDs. 



Antenna design and simulation 

To show the capabilities of our process we chose the frequently used plasmonic bowtie 

antenna geometry for which up to 1240-fold single molecule fluorescence enhancement 

has been reported [12]. Figure 1a illustrates the simulated geometry with a single colloidal 

QD incorporated in the gap of a plasmonic silver bowtie antenna. The dipole moment 𝑑 

of the QD is aligned with the dipole mode of the plasmonic antenna. For efficient 

collection of the vertically emitted light by a microscope objective, the antenna is placed 

on a 50 nm thick SiO2 spacer above a silver mirror. 
 

 

Figure 1: Illustration of the simulated Ag bowtie antenna with a colloidal QD incorporated into 

the gap (a). Comparison of the simulated radiative enhancement 𝛾𝑟𝑎𝑑 with the emission spectrum 

of an individual and an ensemble of colloidal CdSe/CdS core-shell QDs (b). 

 

For the application as a single photon source the radiative enhancement 𝛾𝑟𝑎𝑑 of a dipole 

emitter in a plasmonic cavity is a relevant figure of merit, since it ultimately limits the 

achievable brightness of the source and the excitation power usually has to be limited to 

retain anti-bunched emission.  

We used a commercial FDTD solver (Lumerical [13]) to simulate and optimize the 

antenna design in order to match it to the emission of colloidal CdSe/CdS core-shell 

quantum dots emitting at λ = 620 nm. Figure 1b compares the simulated radiative 

enhancement of a QD placed in the gap of a bow-tie antenna with the emission spectrum 

of colloidal CdSe/CdS QD synthesized with the flash method [14]. The antenna 

dimensions chosen for the simulation were a gap-width of d = 15 nm, an antenna height 

of H = 60 nm, a corner fillet radius 10 nm, a thickness of 2 nm for the copper seed layer 

and a 20 nm thick silver layer topped with a 2 nm thick gold layer for oxidation protection. 

The full width at half maximum (FWHM) of the simulated antenna resonance was 95 nm, 

compared to a FWHM of 51 nm for a QD ensemble and 23 nm for an individual 

CdSe/CdS QD. The simulation further predicts radiative enhancement factors 𝛾𝑟𝑎𝑑 >
200 with quantum efficiencies > 50% for this particular geometry. 

Fabrication process flow 

The bowtie antenna structures and alignment markers were produced with a lift-off 

process using AR-P 6200.09 (All Resist) positive electron beam resist. Therefore the 
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resist was diluted with anisole at the ratio of 1:1, spin-coated at 3000 rpm on silicon 

samples with a prefabricated silver mirror and a 50 nm SiO2 spacer layer and baked on a 

hot-plate set to 150°C for 1 min, resulting in a resist thickness of 80 nm. The design was 

exposed with a 50 kV electron beam lithography system (Raith Voyager) using an area 

dose of 180 µC/cm2 and a 5 nm step size. The samples were developed in n-Amyl acetate 

for 1 min, rinsed with isopropanol and dried with a nitrogen gun before a 10 s O2 plasma 

cleaning step (AV Vision 320 RIE) to improve the metal adhesion. A 2 nm copper seed 

layer was evaporated (Leybold 560) prior to 20 nm of silver and the 2 nm gold layer for 

oxidation protection, the metal lift-off was done with the dedicated remover AR 600-71 

using ultrasonic agitation. 

For the overlay-patterning of the colloidal QDs we adapted a lift-off procedure [15] using 

again 1:1 diluted AR-P 6200.09 positive resist spin-coated at 5000 rpm and baked on a 

hot-plate set to 150°C for 1 min. A 10 s O2 plasma cleaning step was performed to thin 

the resist down to a thickness of 40 nm before overlay exposure of the openings. Dot 

doses were varied from 5 – 50 fC to change the diameter of the holes and the samples 

were developed in n-Amyl acetate for 1 min. Figure 2a shows a SEM micrograph of an 

Ag antenna covered with 40 nm of AR-P 6200 resist and an opening (15 fC dot dose) 

overlaid with the gap of the antenna. For better contrast the SEM pictures in Figure 2 are 

of structures fabricated on bare silicon samples. Colloidal CdSe/CdS core-shell QDs with 

a diameter of ~10 nm were deposited on the samples using a Langmuir Blodgett (LB) 

through system (Nima 312D) set to a target pressure of 25 mN/m. The QD lift-off was 

done using a 1:1 mixture of Toluene and the dedicated remover AR 600-71 and ultrasonic 

agitation, subsequently rinsing the sample with isopropanol. Figure 2b shows a resulting 

partial patch of colloidal QDs overlaid with the gap of the plasmonic Ag bowtie antenna 

(30 fC dot dose). 

To further enhance the reliability of the overlay alignment, we plan to use automated 

marker recognition instead of manual alignment for future samples. In addition, the QD 

patterning efficiency can be improved by reducing both the thickness of the Ag antennas 

and of the AR-P 6200.09 resist for the overlay step. We foresee that these improvements 

will enable the incorporation of single colloidal QDs into the gap of plasmonic bowtie 

antennas.  

 

Figure 2: SEM micrographs of the fabricated structures, (a) shows the antenna covered with 40 

nm of AR-P 6200 resist with an opening (highlighted by the dashed circle) overlaid with the 

antenna gap for the following colloidal QD deposition. A different structure after QD lift-off in 

(b) shows a partial QD patch (highlighted by the dashed circle) in the gap of the antenna. For 

better contrast the SEM pictures are of structures fabricated on bare silicon samples. 
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Conclusion 

We demonstrate the deterministic incorporation of colloidal CdSe/CdS core-shell 

quantum dots emitting at λ = 620 nm into the gap of plasmonic Ag bowtie antennas. 

Scaled down to the level of single QD emitters this process promises to enable the 

fabrication of arrays of high brightness single photon sources using colloidal QDs. 

Photoluminescence lifetime and intensity measurements on the fabricated samples are 

currently underway to confirm the radiative enhancement predicted by simulations. 
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