A Scalable, High-performance Algorithm for Hybrid Job
Recommendations

Toon De Pessemier
iMinds - Ghent University
Technologiepark 15
B-9052 Ghent, Belgium
toon.depessemier@Qugent.be

ABSTRACT

Recommender systems can be used as a tool to assist people
in finding a job. However, this specific domain requires ex-
pert algorithms with domain knowledge to recommend jobs
conformable to people’s expertise and interests. This is the
topic of the Recsys Challenge 2016, which aims for an algo-
rithm that predicts the job postings that a user will posi-
tively interact with. Our solution is a hybrid algorithm com-
bining a content-based and KNN approach. The content-
based algorithm matches features of candidate recommenda-
tions and job postings of historical interactions. The KNN
approach searches for the job postings that are the most
similar to the postings the user interacted with in the past.
The resulting combination is a lightweight algorithm that is
fast and scalable, generating recommendations with a proper
evaluation score.

CCS Concepts

eInformation systems — Recommender systems;

Keywords
content-based, KNN, light-weight, scalable, high-performance

1. INTRODUCTION

Recommender systems are software tools and techniques
providing suggestions for items to be of interest to a user
such as videos, songs, or news articles. Driven by this suc-
cess, more application domains have adopted recommender
systems to reduce the information overload by generating
personalized suggestions. Also for recruitment scenarios, in
which applicants search for suitable job offers, recommender
systems are a useful tool for job candidates, recruiters, as
well as platforms that connect both. Specific characteristics
of the domain require special attention for job recommenda-
tions. Given the typical features of a job (such as discipline
or industry), content-based recommender systems are often

Kris Vanhecke
iMinds - Ghent University
Technologiepark 15
B-9052 Ghent, Belgium
kris.vanhecke@ugent.be

Luc Martens
iMinds - Ghent University
Technologiepark 15
B-9052 Ghent, Belgium
luc.martens@intec.ugent.be

used to match user profile and job description [4]. Job spe-
cific restrictions (such as education level or location) can be
an obstacle for job applicants. And job offers typically have
a limited lifetime, unlike videos, books, or songs. As soon
as the vacancy is filled, the job offer will be unavailable and
removed from the platform. Despite these metadata depen-
dencies, the use of machine learning algorithms can further
improve the results obtained with CB similarity measures.

Job recommendation is also the topic of the RecSys Chal-
lenge 2016 [2], which is co-organized by XING. XING is a
social network for business. XING assists applicants in the
search for a job and helps recruiters to find the right candi-
date for a job. The aim of the job recommendation system
of XING is to predict the job postings that are likely to be
relevant to the user. This is also the viewpoint of the chal-
lenge. Though “being relevant to the user” is very difficult
to measure in an offline setting, i.e. based on historical data
without any engagement or interaction of the user. There-
fore, evaluation is performed through an evaluation metric
that reflects the typical XING use cases and that is based on
precision, recall, and user success (i.e. whether at least one
relevant item is recommended for a given user). For calculat-
ing the recommendations, various data sources can be used
such as a user profile (with personal information such as uni-
versity degree, home region, years of work experience, etc.),
a list of impressions (i.e. items which were shown to the user
by the existing XING job recommender), a list of interac-
tions that the user performed on the job postings (clicking,
replying, bookmarking, or deleting a recommended item),
and details about the job postings that should be recom-
mended to the user (such as discipline, industry, tags, etc.).
For specific details regarding the evaluation and the data,
we refer to the GitHub page of the challenge [1].

In the context of this challenge, we developed a hybrid rec-
ommendation algorithm for jobs. Since complex and compu-
tationally intensive algorithms sometimes require excessive
engineering costs to be applied in a practical case [3], we fo-
cused on a fast and lightweight algorithm with a reasonable
evaluation score.

Besides offering relevant recommandations to the user, we
formulate the following goals for the hybrid recommendation
algorithm of this paper:

e Scalable in terms of the number of users and jobs in
the system. Given the growing importance of digital
communication tools, social networking services offer-
ing job postings have the potential to grow consid-
erably in the next decade. Therefore, the algorithm

vdels
Rectangle

should still be usable if the number of users and items
increases rapidly.

Enabling incremental updates of the model. In an of-
fline test case, such as the RecSys Challenge, all his-
torical data is available at the start of the calculation
process. In contrast in a real-life case, new users, job
postings, and user interactions with these job postings
are continuously added. Since calculating recommen-
dation models can be a computationally intensive pro-
cess, recomputing the models can be an inefficient use
of the computational resources. Updating the existing
models with additional data at a small computational
cost is a desirable feature of the algorithm.

e Fast score calculation for new job postings. When new
job postings are inserted into the system, suitable ap-
plicants want a recommendation for these job items as
soon as possible. Also for recruiters, a fast distribution
of their job postings is important. Algorithms that re-
quire hours or even days to generate recommendations
for new items introduce an undesirable slowdown in
the information chain.

2. FINDINGS
2.1 The challenge is a prediction task.

In a real-life case, recommendations are personal sugges-
tions for the user. This means that the recommendations are
offered to the user who can consider the content and decide if
the recommendation is useful or not. Usefulness is an impor-
tant quality metric from the user perspective [5]. Moreover,
the user’s interaction behavior with the content is influenced
by observing the recommendations. In contrast, the goal of
the RecSys Challenge is to predict the interaction behavior
of the users without these recommendations. In this offline
evaluation, the recommendations of the algorithm are not
offered to the user and a personal evaluation of the useful-
ness is not possible. The difference in evaluation methodol-
ogy between online and offline cases is especially noticeable
for surprising or serendipitous items, i.e. job items that are
difficult to find but interesting for the user. A significant
probability exists that the user will interact with recom-
mendations for these jobs. So, it is a good recommendation
in an online case. However in the offline case, the user will
not find the item without recommendation, and there will
be no interactions. Since the recommendations are evalu-
ated based on the interactions, the serendipitous items are
unfairly evaluated as “poor recommendations”.

2.2 The information value of impressions is
limited.

Impressions are defined as a subset of the items that were
shown by the existing job recommender. Since not all rec-
ommended items are available as impression, and there is no
guarantee that the item was in the viewpoint of the user, we
consider an impression as a weak expression of interest for
the item. Since these impressions are originating from an-
other recommmender system, any recommendations based
on these impressions might be biased. Therefore, our al-
gorithm uses only the impressions of users who have fewer
interactions than a cold-start threshold. For the other users,
the impressions are neglected without decreasing the score of

the recommendations. Reducing the dataset by neglecting
part of the impressions reduces the complexity of the rec-
ommender and offers an advantage in terms of computation
load.

2.3 Items with a limited visibility get a penalty.

The goal of the challenge is to predict which items a user
will positively interact with within the next week. Quality
metrics such as serendipity and novelty are not taken into
account. Since job items with a low visibility have a low
probability of interaction, these job items get a penalty in
our algorithm. The visibility of a job item is estimated by
the number of interactions in the dataset. Although this
penalty favors the popular items, and is not always desir-
able in a real-world recommender, it is used to increase the
evaluation score in this challenge.

2.4 The influence of the user’s region should
not be overestimated.

One might expect that the user’s interest for jobs is fo-
cused on job items located in the region of the user, or in an
adjacent region. However, in a considerable number of cases,
a user interacts with a job item located in an non-adjacent or
far away region with respect to the home region of the user.
E.g., although Lower Saxony and Baden-Wiirttemberg are
not adjacent, there is a considerable interest of inhabitants
from the former region for jobs in the latter region.

2.5 'Traditional classification does not work.

User interactions are characterized by a type: click, book-
mark, reply, or delete, which can be used to partition the
interactions into distinct classes. Based on the historical in-
teractions of a user, a model can be constructed to classify
the other job postings into one of the three positive classes
(click, bookmark or reply) or the negative class (delete).
From the classification of job items, recommendations can
be inferred by selecting the items that are most character-
istic for one of the positive interaction classes with an ac-
tive user engagement (bookmark or reply). However for the
use case of the RecSys Challenge, recommendation based
on classification of the job items resulted in a poor score.
The reason might be the underlying meaning of the user in-
teractions. Interactions of the type ‘delete’ are originating
from delete actions of the users on their list of recommen-
dations. These ‘deletes’ are performed by clicking on the
“X” button. This action has the effect that the recommen-
dation will no longer be shown to the user and that a new
recommendation item will be loaded and displayed to the
user. The way in which interactions of the type ‘delete’ are
gathered does not necessarily imply a disinterest of the user
or a negative feeling towards the job item. Users might have
a neutral feeling towards the job, without the intention to
interact. Besides, users might click on the “X” to receive
a new recommendation without having an aversion for the
item or even without thoroughly inspecting the item. More-
over, the delete interactions are not sampled from the set of
available job items, but are interactions on the user’s per-
sonal recommendations. Therefore these delete interactions
on job items are biased. These items might be more similar
to the user’s interests than items covering the whole range
of job postings. As a result, for items outside the user’s
recommendations, negative evaluations are missing.

2.6 The data contains many cold start users.

The dataset contains 150,000 users for whom recommen-
dations have to be calculated. However for 39,755 of these
users, no interactions with job items are registered in the
data set. Impressions can be used to enrich the profile of
25,238 of these cold start users. As a result, for 14,517 users
or 9.7% no information about interactions or impressions is
available. So, a fallback solution in case of none or insuf-
ficient interactions and impressions is very important. For
these users, only some basic profile information might be
available, without links to specific job items. As a result,
collaborative filtering approaches cannot handle these users.
But also content-based techniques can experience difficul-
ties if interaction and impression data is missing. If profile
data is rather general (e.g., by specifying a very broad disci-
pline or industry), too many job items might be considered
appropriate, all ending in a tie. If the profile data is too spe-
cific (e.g., in case of a very niche discipline or industry), the
number of matching job items can be very limited, resulting
in too few recommendations. Moreover, job applicants do
not always update their user profile in a timely manner [6],
making it quickly obsolete without dynamic updates based
on interactions or impressions.

3. HYBRID JOB RECOMMENDATIONS

The recommendation algorithm consists of two approaches,
a content-based and a KNN approach, which are combined
using a weighted average, depending on the number of in-
teractions of the user. The weight of the KNN approach
increases as more interaction data of the user is available.

3.1 Content-Based

The base of the content-based approach is a user profile
with the explicitly specified user information. The profile
can be updated offline using historical interaction data of
the user. For each interaction that the user performed on
the job postings, a set of positive counters is updated. For
each metadata attribute of the item (title, career level, disci-
pline, industry, country, region, location, employment, and
tags) the associated counter is incremented. If an attribute
of the item contains the IDs of multiple features, multiple as-
sociated counters are incremented. This is often the case for
the fields title, discipline, industry, and tags. The increment
value of the counter is determined by the interaction type.
We assume that bookmarking an item or the intention to re-
ply on a job posting is a much stronger expression of interest
than a click on an item. In our implementation, we used the
increment values 0 (delete), 1 (click), 10 (bookmark) and 10
(reply). Since no significant effect on the score was witnessed
for different positive or negative values of delete events, the
value of 0 was used. For clicks, bookmarks and replies, the
weight of the interaction type is significantly influencing the
score with differences up to 5% compared to the unweighted
case.

Besides the positive counters, the profile also contains a
set of negative counters, which represent the user’s disin-
terest in a specific metadata feature. For each interaction,
IDs of features that are not associated with the item get
a penalty by increasing the negative counters. Again, the
increment value of the counter is determined by the interac-
tion type. The reasoning behind the combination of positive
and negative counters is as follows. The user’s preferences
are characterized by the number of times the user selects a

job item with a set of specific features. But also the number
of times the user selects a job item without a specific feature
is important to characterize the missing link between that
feature and the user.

The output of the content-based approach is a recommen-
dation score for each user-item pair s(u,?). This recom-
mendation score is a linear combination of the differences
between the positive (posy,.,) and negative (negy,.,) feature-
based profile counters. The parameter « (0.5 in our imple-
mentation) represents the relative importance of the positive
and negative profile counters. These differences are multi-
plied by the logarithm of the ratio of the total number of
items N and the number of items characterized by the spe-
cific feature ny. This logarithm is the analog of the inverse
document frequency (IDF) used for ranking documents’ rel-
evance. The IDF compensates for the frequency of a feature
across all job postings in the system. This way, rare tags
or disciplines get a higher weight than common titles or in-
dustries. The relative influence of various metadata features
(title, country, career level, etc.) can be reflected by a weight
wy. The denominator stands for the number of features that
characterize the item and compensates for a different num-
ber of features for various job items.

(1) = Ty ;wf-<posf,u—a~negf,u>-zog<£> 1)

This light-weight content-based recommender was designed
keeping in mind the scalability and high-performance on big
data sets. To speed up the computations, various factors
of equation 1 can be precomputed, before the candidate job
items are available. The logarithm (IDF) is rather stable
over time and can be calculated offline. The counters are
depending only on the historical interactions of the user and
are calculated offline as well. If new information becomes
available, such as additional interactions, the counters can
be incremented to update the user model. As a result, the
online calculation load is limited when a new job item is
introduced into the system. Calculating recommendations
for a new user-item pair is extremely fast. Moreover, the
calculations of the recommendations for all users can run in
parallel and scale linearly in terms of the number of users
and job items in the system.

3.2 KNN

As counterpart of the content-based recommender, a k-
nearest neighbor (KNN) algorithm is used. In this KNN
approach, the search space consists of all job items that the
user positively interacted with (click, bookmark, or reply).
In contrast to traditional NN solutions, in which only inter-
actions are used for calculating the distance, our implemen-
tation uses a combination of features (two items are similar
if they share the same metadata features) and interactions
(two items are similar if users have interacted with both
of them). The dimensions of the search space are the fea-
tures of the item (such as discipline, industry, country, tags,
etc.) as well as the IDs of the users who interacted with the
job item. Metadata attributes of items that are specified
as a comma-separated list of various terms, are expanded
into multiple nominal features; one for every option. The
various dimensions are normalized to compensate for scale
differences. This results in a fine-grained distance function
for the items in which differences in interactions as well as

metadata are taken into account and the risk of ties is re-
duced.

To calculate the distance Dist(i, k) between an active item
i and neighbor k over all dimensions, the Euclidean metric is
used with a weight for each dimension. To take into account
the relative frequency of the various features, the distance
in one dimension (i.e. the distance due to a single metadata
feature f) is multiplied with the IDF: log(%) as a weight.

For each active item, i.e. each candidate recommendation,
the k-nearest neighbors are selected in the search space. In
other words, for each active item the algorithm selects the
most similar items that the user interacted with in the past.
The reasoning is a follows. If a candidate item is very similar
to the items that the user interacted with in the past, it will
probably be an interesting item to recommend. To obtain
the recommendation score, the distances to these neighbors
are calculated. These distances are converted into relative
proximities. The relative proximity of a candidate item to
the user’s interactions is defined as the difference between
the maximum distance and the item’s distance to the near-
est job item that the user interacted with. To normalize this
difference, it is divided by the maximum distance. The rec-
ommendation score s(u,) is than calculated as the average
of the relative proximity to the k-nearest neighbors.

(2)

. 1 Distmaz — Dist(i, k)

Our KNN approach is built on top of the Weka Frame-
work [7]. More specifically, the BallTree implementation of
the NearestNeighbourSearch package is used. The value of
k is determined as a linear function of the number of inter-
actions the user has performed on job items.

Also for the KNN approach, the focus was on scalability
and high-performance. As common in collaborative filter-
ing implementations, the item similarities (or distances) can
be calculated offline and stored for future recommendation
calculations. If item distances are precomputed, calculating
the recommendation score consists of a fast look-up opera-
tion of item-item distances and aggregating the distances of
item-item pairs through averaging. Similar to the content-
based calculations, the KNN calculations are parallelized
in our implementation. The distance calculation provides
additional opportunities to speed-up the recommendation
process. E.g., if the partially computed distance exceeds
a threshold that precludes the item from being one of the
k-nearest neighbors, calculations can stop early.

3.3 Results and Fallback

Using the evaluation measure of the challenge, the pure
content-based approach obtains a score of 286041.10. The
NN recommender scored 298316.85 for all target users. With
the hybrid combination of both algorithms, we obtained a
score of 344264.37. If the KNN algorithm is unable to gener-
ate recommendations (e.g. for cold start users), the hybrid
recommender is replaced by the content-based (26.5% of the
users have no interactions). For users without explicit pro-
file, the hybrid recommender can be replaced by the KNN
algorithm (but this was not necessary in the challenge). If
the algorithms fail to generate recommendations based on
interactions, the impressions of the user are used to generate
recommendations (16.8% of the users). A solution without
fallback to impressions, only based on the explicit profile for

cold-start users, scored 292909.26.

If the combination of the user’s explicit profile, interac-
tions, and impressions is still insufficient information for
generating recommendations, the system falls back on rec-
ommending the most popular items. For 1485 of the tar-
get users, the 30 most popular items are recommended as
a fallback mechanism. The most popular items are de-
fined as those items that received the most positive inter-
actions in the data set. The hybrid solution with fallback
to impressions but without fallback to popular items scored
344241.51. Recommending the most popular items for all
users resulted in a score of 73298.13.

4. CONCLUSIONS

Recommendation challenges are a playground for math-
ematicians and statisticians to design complex and exotic
algorithms. However, these algorithms often come with the
risks of extreme hardware demands (e.g. computational and
memory requirements) and/or scaling problems. Therefore,
we proposed a light-weight solution that is fast, scalable, and
allows incremental data updates. Hybrid recommendations
combining a content-based and KNN approach can handle
the user and item metadata, interactions and impressions,
and cold-start users for whom this data is missing. The re-
sulting recommendations have shown to be well above aver-
age in terms of the evaluation score. For future work, we see
some opportunities for improvement, such as the hybridiza-
tion of the algorithms and the optimization of the feature
weights.

5. REFERENCES

[1] F. Abel, D. Kohlsdorf, and R. Pélovics. Training Data
of the RecSys Challenge 2016, 2016. Online available at
https://github.com/recsyschallenge/2016 /blob/master/
TrainingDataset.md.

[2] ACM - Xing. RecSys Challenge 2016, 2016. Online
available at https://recsys.xing.com/.

[3] C. Johnston. Netflix Never Used Its $1 Million
Algorithm Due Do Engineering Costs, 2016. Online
available at
http://www.wired.com/2012/04 /netflix-prize-costs/.

[4] M. Diaby, E. Viennet, and T. Launay. Toward the next
generation of recruitment tools: An online social
network-based job recommender system. In Advances in
Social Networks Analysis and Mining (ASONAM),
2013 IEEE/ACM International Conference on, pages
821-828, Aug 2013.

[5] S. Dooms, T. De Pessemier, and L. Martens. A
user-centric evaluation of recommender algorithms for
an event recommendation system. In Proceedings of the
RecSys 2011 : Workshop on Human Decision Making
in Recommender Systems (Decisions@RecSys’11) and
User-Centric Evaluation of Recommender Systems and
Their Interfaces - 2 (UCERSTI 2), pages 6773, 2011.

[6] W. Hong, S. Zheng, and H. Wang. Dynamic user
profile-based job recommender system. In Computer
Science Education (ICCSE), 2013 8th International
Conference on, pages 1499-1503, April 2013.

[7] T. C. Smith and E. Frank. Statistical Genomics:
Methods and Protocols, chapter Introducing Machine
Learning Concepts with WEKA, pages 353—-378.
Springer, New York, NY, 2016.

