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Birefringent dispersive FDTD subgridding
scheme

Bert De Deckere, Arne Van Londersele, Daniël De Zutter,
Dries Vande Ginste

A novel 2D FDTD subgridding method is proposed, only subject to
the Courant limit of the coarse grid. By making µ or ε inside the
subgrid dispersive, unconditional stability is induced at the cost of a
sparse, implicit set of update equations. By only adding dispersion along
preferential directions, it is possible to dramatically reduce the rank of
the matrix equation that needs to be solved.

Introduction: The FDTD method was first introduced by Kane Yee in
1966 [1] and it allows the efficient computation of Maxwell’s equations
in the time domain. However, it suffers from two serious drawbacks. First,
the maximum time step is limited by the smallest cell size, which makes it
hard to model multiscale devices. Second, any straightforward refinement
is obtained by squeezing the grid together, such that the refinement has a
global influence along one (or more) of the main axes of the grid. Both of
these problems can be tackled by introducing a subgrid where the update
equations are solved implicitly. This allows for local refinement without
the need to reduce the time step.

Many methods have been put forward to locally refine the grid. In
essence, there are always two problems that need to be solved: a set
of update equations needs to be defined in the refined region and a
method has to be constructed to deal with the interface between the
main grid and the subgrid. Using Huygens surfaces [2] for example, it is
possible to transfer fields between the main grid and the (implicit) subgrid
using equivalent currents. This method, however, suffers from late-time
instability.

New implicit subgrid update equations in x- and y-direction: The
discussion below is restricted to the 2D TE-case. The whole simulation
space, i.e. main grid and subgrid, is modeled by Yee cells (see Fig. 1).
Hz is discretized at integer space steps i∆x, j∆y and half-integer time
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Fig. 1. Classical 2D Yee-cell for the TE mode.

steps (n+ 1/2)∆t, with the usual FDTD-notation Hz |n+1/2
i,j . Similarly,

the discretized electric fields are denoted Ex|ni,j+1/2
, Ey |ni+1/2,j

. For
conciseness, we first define the following difference operator

Dxf |mp,q =
f |m
p+1/2,q

− f |m
p−1/2,q

∆x
, (1)

i.e. the x-derivative of f at p∆x, q∆y and time instant m∆t. The
analogous difference operators with respect to y and t are denoted Dy
and Dt. We also introduce the interpolation operator defined by

Itf |np,q =
f |n+1
p,q + 2f |np,q + f |n−1

p,q

4
, (2)

Using (1), the conventional FDTD update equations [1] can be written as

DtHz |ni,j =
1

µ
DyEx|ni,j −

1

µ
DxEy |ni,j (3)

DtEx|n+1/2
i,j+1/2

=
1

ε
DyHz |n+1/2

i,j+1/2
(4)

DtEy |n+1/2
i+1/2,j

=−
1

ε
DxHz |n+1/2

i+1/2,j
, (5)

The set of equations (3)-(5) can be combined to yield the discrete version
of the wave equation

µεD2
tHz |ni,j =D2

xHz |ni,j +D2
yHz |ni,j , (6)

with, e.g.,

D2
xHz |ni,j =

Hz |i+1,j − 2Hz |ni,j +Hz |ni−1,j

∆x2
. (7)

The reader can check that D2
x indeed corresponds to the repeated

application of Dx, i.e. D2
xf =Dx(Dxf). As in [3], we can define the

extended Z-transform of Hz , with U, V and Z the transform variables
corresponding to x, y and t.

Ĥz(U, V, Z) =

∞∑

i=−∞

∞∑

j=−∞

∞∑

n=−∞
Hz |ni,jZnU iV j (8)

Applying this transformation to (6) yields

µε
(Z − 1)2

Z∆t2
Ĥz =

(U − 1)2

U∆x2
Ĥz +

(V − 1)2

V∆y2
Ĥz . (9)

The response for a plane-wave is obtained by setting [3]

Z = ejω∆t, U = ejkx∆x, V = ejky∆y , (10)

such that we arrive at the well-known dispersion relation

µε sin2

(
ω∆t

2

)
=

∆t2

∆x2
sin2

(
kx∆x

2

)
+

∆t2

∆y2
sin2

(
ky∆y

2

)
.

(11)
The reason for instability is that the right-hand side can assume values
larger than µε, whereas the left-hand side cannot. This leads to the
traditional Courant limit

∆t <

√
µε

1
∆y2

+ 1
∆x2

. (12)

This limit can therefore be traced back to the fact that the sin2-function
in the left-hand side of (11) is bounded by unity. To mitigate this, we can
make either ε or µ dispersive. Let us first modify ε by introducing the
following substitution in the Z-domain.

1

ε
→

1

ε

(Z + 1)2

4Z
. (13)

The action of this operator on a function f translates to the time domain
as

1

ε

(Z + 1)2

4Z
f̂→

1

ε
Itf. (14)

Applying this to (3)-(5) yields

DtHz |ni,j =
1

µ
DyEx|ni,j −

1

µ
DxEy |ni,j (15)

DtEx|n+1/2
i,j+1/2

=
1

ε
ItDyHz |n+1/2

i,j+1/2
(16)

DtEy |n+1/2
i+1/2,j

=−
1

ε
ItDxHz |n+1/2

i+1/2,j
. (17)

The corresponding dispersion relation (13) now takes the form

µε tan2

(
ω∆t

2

)
=

∆t2

∆x2
sin2

(
kx∆x

2

)
+

∆t2

∆y2
sin2

(
ky∆y

2

)
.

(18)
As the sin2 function in the l.h.s. is replaced by tan2, this readily
implies that the update scheme (15)-(17) is unconditionally stable, but
no longer explicit. Note that this dispersion relation is the same as for
the unconditionally stable Crank-Nicholson scheme [4]. Further note that
(15) does not differ from (3). This is crucial as this will later allow us to
use Ex and Ey in the classical Yee grid and glue it together with Hz
of the subgrid in a stable way. An alternative set of update equations is
obtained by making µ dispersive in a similar way to ε.

Birefringent subgridding: Above, the subgridding simultaneously affects
the x- and y-direction. Let us now switch to a birefringent (or biaxial)
medium with the following dielectric tensor, while leaving µ unchanged

¯̄ε= ε0diag(εxx, εyy , εzz) (19)

Suppose we are only interested in applying the subgridding in the
x-direction (using an implicit FDTD-scheme) but want to leave the
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y-direction unchanged, i.e. explicit. To this end the following substitution
is invoked

1

εyy
→

1

εyy

(Z + 1)2

4Z
. (20)

The FDTD update equations (3)-(5) are now transformed to

DtEx|ni,j+1/2 =
1

ε0εxx
DyHz |ni,j+1/2 (21)

DtEy |ni+1/2,j =−
1

ε0εyy
ItDxHz |ni+1/2,j (22)

DtHz |n+1/2
i,j =

1

µ
DyEx|n+1/2

i,j −
1

µ
DxEy |n+1/2

i,j . (23)

When setting εxx = εyy = εr and µ= µ0µr the dispersion relation
corresponding to (21)-(23) is readily found to be

εrµr

(c∆t)2
=

1

∆x2

sin2
(
kx∆x

2

)

tan2
(
ω∆t

2

) +
1

∆y2

sin2
(
ky∆y

2

)

sin2
(
ω∆t

2

) , (24)

which indeed shows unconditional stability along x. Based on all of the
above, it can in general be stated that the transformation

Dα→ItDα (α= x or y), (25)

in either the E or H update equations, yields unconditional stability
along the spatial dimension α. For clarity, the losses have been neglected
up until now. These can however easily be incorporated. The update
equations for a lossy medium are

DtHz |ni,j =
1

µ
DyEx|ni,j −

1

µ
DxEy |ni,j (26)

Ex|n+1
i,j+1/2

=C1Ex|ni,j+1/2 + C2DyHz |n+1/2
i,j+1/2

(27)

Ey |n+1
i+1/2,j

=C1Ey |ni+1/2,j − C2DxHz |n+1/2
i+1/2,j

(28)

C1 =
2ε− σ∆t

2ε+ σ∆t
, C2 =

2∆t

2ε+ σ∆t
. (29)

The substitution (25) remains applicable for lossy media.

Interface main grid and subgrid: Using the interface depicted on Fig. 2,
it is possible to obtain a provably stable asymmetric refinement of the
grid. The fields are denoted with uppercase letters in the main grid and
lowercase letters in the subgrid. If a field component from the subgrid
hz |i,j is used for the update of Ex|i,j+1/2 from the main grid, or
similarly in the reverse direction, then a weight factor w is defined as

Ex|n+1
i,j+1/2

=Ex|ni,j+1/2 +
∆t

ε

Hz |n+1/2
i,j+1 − w

∑
m
h

(m)
z |n+1/2

i,j

∆yj+1/2

. (30)

These weight factors depend on the refinement ratio, as illustrated in
Fig. 2.
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Fig. 2 Part of an interface between the main grid and the subgrid with
asymmetric refinement ratio of 3× 2. The weights next to the blue arrows
are the weight factors w defined in (30).

Accuracy: The set of update equations remain second-order accurate in
time and space in the bulk of the subgrid, just as is the case for the regular
FDTD update equations.

Transmission through a conductive slab: To illustrate the accuracy, we
investigate the transmission through a conductive slab (σ= 500 S/m)
with thickness d= 3 mm and height 2 m, illuminated by a broadband
z-oriented magnetic line source at x0 =−0.1 m. At the backside of the
conductive slab, is a sensor at height h, which monitors the Hz field. In
the main grid, ∆x= ∆y= 5 mm. The slab is embedded at the center of a
birefringent subgrid with width 15 mm and height 1.98 m. The height is
chosen such that edge diffraction effects at the location of the sensor can
be neglected. The refinement ratio in the x-direction is 100, i.e.w= 0.01.
The equations governing the subgrid are (26)-(28) with Dx→ItDx in
(28). The results are presented in Fig. 4 for two values of h and, compared
to an analytical solution, demonstrate an excellent accuracy.

subgrid

copper slab

dipole sourcex
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Fig. 3 Setup to measure the transmission through a conductive slab
illuminated by a dipole source.
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Fig. 4 Ratio of field amplitudes with and without conductive slab. At 3 GHz
the course grid sampling is λ/20.

Conclusion: A novel implicit, unconditionally stable FDTD subgridding
method was proposed and numerically validated. Although not discussed
here, this method is provably stable. Further, the proposed method allows
for refinement along preferential directions to reduce the rank of the
sparse matrix involved.
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