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Preface 

Enterohaemorhagic E. coli (EHEC) are zoonotic pathogens that can cause hemorraghic 

diarrhoea and haemolytic uremic syndrome in humans. E. coli O157:H7 is the most well 

known serotype of this group. Ruminants are the main reservoir of these bacteria and 

contaminated food is the main source of the infection. Therefore, a key step towards 

protecting humans from E. coli O157:H7 infection is controlling E. coli O157:H7 infection in 

ruminants. Several approaches have been suggested to control the infection, including 

vaccination (Peterson et al., 2007a; Potter et al., 2004), antibiotic treatment (Molbak et al., 

2002), probiotics (Callaway et al., 2004), bacteriophages (Callaway et al., 2008) and dietary 

changes (Callaway et al., 2009). These strategies are either too expensive, too labor intensive, 

only show a limited effect or hold the risk of an increase in antibiotic resistance. Therefore, 

there is need for new intervention strategies. 

This thesis focuses on inhibition of E. coli O157:H7 infection in sheep by using lactoferrin as 

a natural antimicrobial protein or by vaccination using type III secretion system (TTSS) 

proteins. In the literature review of this thesis we will first highlight the most known 

strategies to inhibit E. coli O157:H7 infection particularly in ruminants. Subsequently we will 

review the role of lactoferrin as natural antimicrobial protein of milk in inhibiting bacterial 

infection. 
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CHAPTER 1 

E. coli O157:H7; pathogenesis, infection and control 

1.1 Introduction 

Escherichia coli (named after Dr. Theodor Escherich and abbreviated E. coli), is a facultative 

anaerobic Gram-negative rod-shaped bacterium belonging to the family of 

Enterobacteriaceae. The optimal growth temperature of this family is 37°C. However, 

various E. coli are capable of surviving in water and food and the environment. Only 90% of E. 

coli serotypes are able to ferment lactose while 99% are indole positive. Other 

characteristics are: oxidase negative, catalase positive, methyl red positive, citrate negative 

and negative for H2S (Orskov et al., 1984).  

Most E. coli strains are commensals which are important for the maintenance of intestinal 

physiology. Beneficial effects for the host include production of vitamin K and prevention of 

the establishment of pathogenic bacteria within the intestine. Commensal E. coli comprise 

almost 1% of the bacterial population in the gut, with approximately 108 -109 bacteria/g 

human faecal material (Callaway et al., 2009). However, certain strains are pathogenic and 

have acquired virulence factors to cause intestinal disease (Kaper et al., 2004). A conserved 

core genomic structure is common to both commensal and pathogenic strains, providing the 

microorganisms with mechanisms required for survival under the competitive conditions in 

the gut, as well as the ability to spread among hosts and survive in the environment (Dougan 

et al., 2001). In pathogenic bacteria, virulence factors are often found in genetic islands 

(Wain et al., 2001). These genes provide the bacteria with a higher level of adaptation, 

leading to specific tissue targeting and facilitating efficient dissemination to new hosts 

(Garmendia et al., 2005). Diarrheagenic E. coli are divided in at least six different categories 

including enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), enteroinvasive E. 

coli (EIEC), enteroaggregative E. coli (EAEC), diffuse adherent E. coli (DAEC), Shiga toxin 

producing E. coli (STEC) and its subgroup enterohaemorrhagic E. coli (EHEC).  

The term enterohaemorhagic E. coli (EHEC) denotes strains that are associated with 

haemorrhagic colitis (HC) and the haemorrhagic uremic syndrome (HUS) in humans, express 

Shiga toxins (Stx), colonise the intestine by causing a typical lesion known as attaching-

effacing (A/E) lesion and possess a specific 60-MDa EHEC plasmid (Nataro and Kaper, 1998). 

From this group, E. coli O157:H7 is the most well known strain. 
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1.2. E. coli O157:H7 

This organism was first recognized in 1982 following an outbreak of haemorrhagic colitis (HC) 

in Oregon and Michigan linked to the consumption of ground beef (Riley et al., 1983). Since 

then, many outbreaks have been reported in developed countries and E. coli O157:H7 

became one of the most important life-threatening foodborne pathogens (Nyachuba, 2010).  

E. coli O157:H7 has unique biochemical characteristics: delayed D-sorbitol fermentation (>24 

h) and inability of producing β-glucuronidase, which hydrolyzes a synthetic molecule, 4-

methyl umbelliferyl-D-glucuronide (MUG). Thus, sorbitol MacConkey (SMAC) agar 

supplemented with MUG is used for detection of E. coli O157:H7. Additionally cefixime, 

potassium tellurite, and vancomycin can be added to SMAC agar as inhibitors of other Gram 

negative bacteria. This supplementation increases the chance of E. coli O157:H7 selection 

(March, 1986). A suspected E. coli O157:H7 colony can be further confirmed by a 

commercially available latex agglutination assay (Oxoid Ltd) to determine whether the 

isolate belongs to the O157 serogroup. 

The annual incidence of reported clinical E. coli O157:H7 infection in humans in the United 

States is around 73,000 resulting in more than 2,000 hospitalizations and 60 deaths. The 

annual cost is estimated to be 405 million $ and includes productivity losses, medical care 

costs and premature deaths (Frenzen, 2003). The number of infections in developed 

countries is increasing and in 2005 alone 26 countries (principally European but including 

Japan) reported a total of 2937 E. coli O157:H7 infections (La Ragione et al., 2009). The 

reported incidence of E. coli O157:H7 infection is inceased from 1.05 to 1.12 cases per 

100,000 inhabitants during the period 2005 till 2008 (Nyachuba, 2010). According to the 

most recent available data from the European Food safety Authority (EFSA) 3159 cases of 

STEC infection occurred in 2008 in European Union (EU) member states. Fifty-three percent 

of these cases were caused by serotype O157:H7 and the reported incidence of E. coli 

O157:H7 infection in Belgium was 1 case per 100,000 inhabitants (European Food safety 

Authority, 2010). 

Most cases of E. coli O157:H7 infection are connected to food contamination (Armstrong et 

al., 1996). An epidemiological study showed that from 1982 till 2002, among 183 outbreaks 

in the USA, 41% were the result of consumption of ground beef (Rangel et al., 2005). Person 
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to person transmission is also reported as a source of infection, as 50 outbreaks (out of 183) 

reported in the USA were spread by the faecal-oral route (Rangel et al., 2005). Although 

consumption of contaminated food and/or direct contact with contaminated faecal material 

are still the most common routes for transmission of E. coli O157:H7, new transmission 

routes are becoming an important concern. Visiting dairy farms with contaminated dairy 

products, drinking fruit juice and even eating contaminated vegetables have been reported 

to be sources of infection (Grant et al., 2008). Interestingly, Varma et al., (2003) reported a 

potential airborne transmission of E. coli O157:H7 to people in a building where animals had 

been kept before.  

 

1.2.1. Pathogenesis 

The most important virulence characteristics of E. coli O157:H7 are the formation of A/E 

lesions and their ability to produce one or more Stx, since the role of the latter in causing HC 

and HUS in humans is very well established (Karmali, 2009). The contribution of Shiga toxins 

in colonization is of less concern, although they can bind to enterocytes and subsequently 

influence the colonization receptors. The role of some of the other virulence factors, such as 

long polar fimbriae and enterohemolysin is not fully established and may have less effect in 

the pathogenesis of E. coli O157:H7 (Torres et al., 2007; Khare, et al., 2010). Here we explain 

the most well studied virulence factors of E. coli O157:H7 and their contribution in 

pathogenesis. 

 

1.2.2. Shiga toxin 

Shiga toxin (Stx) was first discovered in Shigella dysenteriae by Kiyoshi Shiga in 1898 and its 

production by E. coli O157:H7 was confirmed by O’Brien  (O'Brien, 1982; O'Brien et al., 1983). 

Shiga toxin is thought to be responsible for the development of HC and HUS. There are two 

main types of Stx produced by EHEC, namely Stx1 and Stx2. Stx1 is almost identical to the 

Shiga toxin produced by Shigella dysenteriae (Beutin, 2006), whereas Stx2 is a more diverse 

molecule, with only 56% amino acid homology to Stx1 (Paton and Paton, 1998). Most E. coli 

O157:H7 strains produce Stx2 and epidemiologic data suggest that isolates producing only 

Stx2 are more likely to cause severe disease than those producing only Stx1 or a combination 

of Stx1 and Stx2. Both Stx1 and Stx2 are made up of five identical 7.7 kDa B-subunits and a 
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single 32 kD A- subunit (Fraser et al., 1994; Stein et al., 1992). The B-subunit binds 

specifically to the Gb3 receptor, which is a glycolipid found in varying degrees in membranes 

of eukaryotic cells including human gastrointestinal tract (GIT) and renal epithelium. Shiga 

toxins have further been reported to bind to globotetraosylceramide (Gb4) that is connected 

to the trisaccharide of Gb3 (Waddell et al., 1996). After endocytosis, the A subunit is cleaved 

into an A1 (27.5 kDa) and A2 (4.5 kDa) subunit, but they remain covalently bound through a 

disulfide bond between two cysteine residues. When the cysteines are reduced, the 

catalytically active A1 enzyme cleaves a specific adenine from the 28S rRNA of the 60S 

ribosomal subunit (Endo et al., 1988) resulting in inactivation of the 60S ribosomal subunit 

and subsequently blockage of protein synthesis and cell death (O'Brien and Holmes, 1987). 

Villous cells are more sensitive than crypt cells to the Stx-induced inhibition of protein 

synthesis as expression of the Stx receptor Gb3 is greater in the villi cells (Kandel et al., 1989).  

Translocation of the toxin into the blood stream is necessary to reach the kidney, which 

leads to HUS. The first evidence for the possibility of Stx translocation through the intestinal 

barrier was obtained in vitro by Acheson et al. (1996), who showed Stx translocation across 

the intestinal barrier in intact polarized intestinal epithelial cells (Caco-2 and T84 cells) 

without apparent cellular disruption in an energy-requiring system. Later, it has been shown 

that the transmission of Stx through the intestinal barrier is different for Stx1 and Stx2. 

While Stx1 translocation through intestinal epithelial cells occurs via a transcellular route, 

Stx2 uses a paracellular pathway (Hurley et al., 1999; Philpott et al., 1997).  

Once in the bloodstream, Stx binds to monocytes, platelets and polymorphonuclear 

leukocytes and is transferred to the kidney, thereby inducing a prothrombotic state that 

contributes to the pathogenesis of HUS (Stahl et al., 2009). The renal tissue expresses higher 

concentrations of Gb3 than other tissues, and the cytotoxic effect of Stx in human renal 

endothelial cells is more pronounced. Expression of Gb3 is higher in the renal cortex than in 

the medulla. Glomerular capillaries of infants express higher Gb3 receptor levels than adults, 

explaining the higher risk of developing HUS following E. coli O157:H7 infection in children 

compared to adults (Lingwood, 1994). 

Unlike humans, cattle lack the vascular Gb3 receptor which explains why ruminants are 

symptomless carriers of E. coli O157:H7 (Pruimboom-Brees et al., 2000). Although in vitro 

experiments showed that Stx1 blocks differentiation and proliferation of bovine 
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lymphoblasts (Menge et al., 2003), in vivo studies clearly show that Stx negative mutants of E. 

coli O157:H7 are also able to colonize ruminants leading to persistent infection in cattle and 

sheep (Woodward et al., 2003).  

 

1.2.3. A/E lesion 

Attachment of EHEC to epithelial cells is accompanied by striking changes in the local 

morphology of the host cell named “attaching and effacing (A/E) lesion” which is encoded by 

the genes on the LEE pathogenicity island (Nataro and Kaper, 1998). The term A/E lesion was 

first described by Moon et al. (1983) for the lesion characterized by intimate adherence 

between the bacterium and the host epithelial cell membrane with an intervening gap of 

about 10 nm, plus effacement of enterocyte microvilli. Characteristic cytoskeletal 

rearrangement, including the accumulation of filamentous actin (F-actin) underneath 

adherent bacteria is also a feature of the A/E lesion. The bacteria often sit upon a pedestal-

like structure, which can extend up to 10 µm away from the epithelial cell surface (Kaper, 

1998). The lesion is typically described as being formed in three stages: (i) early adhesion 

followed by (ii) signal transduction (leading to cytoskeletal reorganization and microvillus 

effacement) and finally (iii) intimate attachment. 

Initial adhesion of E. coli O157:H7 to intestinal epithelial cells is poorly understood. Like most 

other bacteria, the motility of E. coli is due to expression of flagella, and H7 flagellin is 

important for motility of E. coli O157:H7. Besides motility, recent evidence indicates a role 

for H7 in primary adherence of E. coli O157:H7 to epithelial cells. Time-dependent 

expression of H7 flagella was recently reported. While Type III secretion system (TTSS) 

proteins becomes up-regulated after initial bacterial contact with the host cell (described 

further), H7 expression becomes downregulated. This can show that H7 contributes to the 

initial non-intimate attachment of E. coli O157:H7 to epithelial cells (Mahajan et al., 2009). 

Some studies have indicated a role for the long polar fimbriae (LPF), which are homologous 

to Salmonella Typhimurium fimbriae. They suggest a primary interaction between LPF and 

the mucus, that probably increases the survival of E. coli O157:H7 in many different 

physiological environments (Torres et al., 2007).  

The second step in EHEC attachment is mainly characterized by signal transduction and 

cytoskeletal reorganization of epithelial cells, which ends up in formation of the A/E lesion 



Part I: Review of the literature 

 

  
 

20 

(Figure 1). LEE encodes a type-III secretion apparatus, which resembles a molecular needle 

extending to the surface of the host cell and through which effector molecules are injected 

into the host cell (Elliott et al., 1998). EspA filaments form a transport channel between the 

bacteria and the host cell, while EspB and EspD form the translocation pore in the plasma 

membrane of the host cell through which bacterial effector proteins are delivered into the 

host cell (Figure 2) (Lai et al., 1997; Kresse et al., 1999; Ide et al., 2001; Buttner and Bonas, 

2002). Following the translocation of effector proteins, the EspA filaments are eliminated 

from the bacterial cell surface; this is necessary to allow intimate bacterial attachment 

through intimin interaction with translocated intimin receptor (Tir) (Frankel et al., 1998). Tir 

is injected by the TTSS into the host cell membrane and adopts a hairpin loop conformation, 

allowing its extracellular domain to interact with intimin in the bacterial outer membrane. 

This interaction initiates a signalling cascade, leading to actin polymerization and pedestal 

formation finally resulting in strong attachment of E. coli O157:H7 to the host cell. The C-

terminal part of intimin is responsible for the binding to Tir, and is highly variable. Intimin α 

is generally found in EPEC strains, whereas intimin β is produced by both EPEC and EHEC 

strains and intimin γ is produced by E. coli O157. Evidence suggests that intimin also binds a 

host-cell-encoded receptor(s) (Hir), and interaction of different intimin types with Hir 

contributes to tissue tropism of the bacteria (Mundy et al., 2007). For instance in vitro 

studies show that intimin γ is associated with colonization of the large intestinal epithelium 

while bacteria expressing intimin α colonize both the small and large intestine (Mundy et al., 

2007). However the interaction of bacteria with the host cells is a multifactorial process and 

involves also other bacterial and host factors as well as intimin. 
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Figure 1: Initial attachment of EHEC (Left) and subsequently the strong attachment to host cells (Right), 

(Adapted from Campellone and Leong, 2003) 

 

 

 

Figure  2. Schematic representation of the EPEC/EHEC type III secretion system apparatus (TTSS). The 

basal body of the TTSS is composed of the secretin EscC, the inner membrane proteins EscR, EscS, EscT, 

EscU, and EscV, and the EscJ lipoprotein, which connects the inner and outer membrane ring structures. 

EscF constitutes the needle structure, whereas EspA subunits polymerize to form the EspA filament. EspB 

and EspD form the translocation pore in the host cell plasma membrane, connecting the bacteria with the 

eukaryotic cell via EspA filaments. The cytoplasmic ATPase EscN provides the energy to the system by 

hydrolyzing ATP molecules into ADP. SepD and SepL have been represented as cytoplasmic components of 

the TTSS. (Adapted from Garmendia et al, 2005) 
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1.2.4. Plasmid (O157) 

In addition to Stx and LEE, E. coli O157:H7 possesses a virulence plasmid named pO157. 

This plasmid encods several putative virulence factors including ehxA, etpC to etpO, espP, 

katP, toxB, ecf, and stcE. Among these genes, ehxA is the most well known which expresses 

Hemolysin A. Some studies show that the genes encoded on the pO157 can influence 

bacterial adherence to eukaryotic cells, colonization of cattle, and acid resistance. However, 

conflicting evidence exists and more studies have to be performed to determine the exact 

role of pO157 in EHEC pathogenesis (Lim et al., 2007; Sheng et al., 2008; Lim et al., 2010). 

 

1.2.5. E. coli O157:H7 infection 

 1.2.5.1. Humans 

Patients infected with E. coli O157:H7 initially experience watery diarrhoea although 

some individuals may be asymptomatic. The infectious dose for E. coli O157:H7 is very low 

and it has been reported that less than 100 organisms can cause an infection in humans 

(Williams et al., 2000). The incubation period for an E. coli O157:H7 infection ranges from 

one to eight days, but is usually three to four days. Most cases progresses to HC with severe 

abdominal cramps. The majority of the cases are self-resolving within a week (Figure 3). 

 

 

Figure 3: Progress of an E. coli O157:H7 infection in humans (adapted from Mead and Griffin, 1998 and Tauxe, 

1991) 
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The infection can be complicated by the development of HUS. The mechanisms by which 

E. coli O157:H7 causes HC and HUS in humans are not fully understood. The organism is 

believed to adhere closely to intestinal mucosal cells, disrupting the brush border and 

leading to non-bloody diarrhoea (Figure 4). Shiga toxins (Stx) probably play a critical role in 

this process. Histopathological changes associated with the infection include haemorrhage 

and oedema in the lamina propria with areas of superficial focal necrosis. Post diarrhoeal 

HUS is primarily a disease of the microvasculature, thought to develop when Stx produced in 

the intestine enters the blood and binds to Gb3-rich endothelial cells in the kidneys. Damage 

of the endothelial cells, mediated by Stx, may trigger platelet and fibrin deposition, leading 

to injury of passing erythrocytes (haemolysis) and occlusion of renal microvasculature (renal 

failure). Inflammatory cytokines and circulating bacterial lipopolysaccharide may play an 

important part in augmenting this process (Van Setten et al., 1998). It was shown that 

inflammatory cytokines such as TNFα can increase Gb3 expression and Stx toxicity. On the 

other hand Stx increases the expression of TNFα by monocytes/macrophages. In vivo and in 

vitro studies showed that the pro-inflammatory cytokines TNFα, IL-1β, IL-6 and IL-8 are 

highly expressed during the acute phase of Stx expression (Van Setten et al., 1996; Inward et 

al., 1997; Sakiri et al., 1998) leading to inflammation in Stx-associated HUS and renal failure. 

Renal failure mostly occurs in children (Siegler et al., 1994). The reason why children are 

more susceptible to develop HUS is not known. The difference in immune system, Stx 

transport effectors and Stx receptors expression may explain the age-associated difference 

in developing HUS in E. coli O157:H7 infection in children. 

Recently Khan et al.,  (2009) reported that Stx1 and Stx2 bind less to glomeruli of adults 

compared to children glomeruli, and that Stx binding in adults could be “unmasked” by 

removal of the lipids of the plasma membranes with detergents or by cholesterol-removing 

drugs, thus possibly clarifying the age-restricted pathology of Stx-associated HUS. Although 

the kidneys are preferentially involved in the pathogenesis of HUS, other organs including 

the brain may be affected. Thirty-three percent of patients with HUS experience neurologic 

symptoms such as irritability, seizures, and altered mental status (Walker et al., 2004) 

resulting in a wide range of complications (Mead and Griffin, 1998). 

At the moment there is no specific therapeutic agent available for HUS and supportive care 

is the only generally approved therapy for the patient. Novel strategies are still under 
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investigation, including vaccination, Stx receptor mimicking agents and antibodies against 

Stx.  

 

 

 

 

Figure 4. Overview of disease in humans due to enterohemorrhagic Escherichia coli (EHEC). Infection begins 

with entry of the bacteria through food or water taken in the mouth. Acid resistance of EHEC facilitates their 

survival through the low pH of the stomach. The bacteria pass through the small intestine, and virulence genes 

are turned on by environmental signals in the colon. The EHEC adhere to the enterocytes of the colon in a 

characteristic intimate adherence and cause effacement of the microvilli and diarrhoea. If sufficient Shiga toxin 

(Stx) is produced, local damage to blood vessels in the colon result in bloody diarrhoea. If sufficient Stx is 

absorbed into the circulation, vascular endothelial sites rich in the toxin receptor are damaged, leading to 

impaired function. The kidneys and central nervous system are sites that are frequently affected, and hemolytic 

uremic syndrome (HUS) may develop (Adapted from Gyles, 2007) 

 

 

1.2.5.2. Cattle 

Cattle are the most important source of human E. coli O157:H7 infections (Figure 5). Up 

to 30% of all cattle are asymptomatic carriers of E. coli O157:H7 (Stanford et al., 2005; 

Callaway et al., 2006; Reinstein et al., 2007) and the prevalence of E. coli O157:H7 in cattle 

varies according to the sensitivity of the detection technique, the sampling method and the 

age of the animals.  

A recent study in Belgium in different cattle farms indicated an overall farm prevalence 

of E. coli O157:H7 of 37.8% (68 of 180 farms). The highest prevalence was found in dairy 

cattle farms (61.2%, 30 of 49 farms) and the prevalence in beef, mixed dairy and beef, and 

veal calf farms was 22.7% (17 of 75 farms), 44.4% (20 of 45 farms), and 9.1% (1 of 11 farms), 

Central nervous 

system 
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respectively (Cobbaut et al., 2009). A recent study in cattle slaughter houses in the US 

(Walker et al., 2004) indicated that in 20.3% of cattle, the gut contents were positive for the 

presence of E. coli O157:H7 by selective enrichment, immunomagnetic separation, plating 

on selective medium, agglutination for O157 antigen, and presence of virulence genes. E. coli 

O157:H7 excretion in cattle is thought to be influenced by the age of the animals. 

Epidemiological studies in the US show that up to 5% of calves under 4 months of age 

excrete the bacteria while this number decreases by age. In an experimental infection model 

with E. coli O157:H7, Dean-Nystrom et al., (1999) have demonstrated that E. coli O157:H7 

could cause A/E lesions and diarrhoea in both colostrum-deprived and colostrum-fed 

neonatal calves. The same experimental infection could not induce diarrhoea in 3-4 months 

old weaned calves. They also reported that age-related pathogenesis of E. coli O157:H7 

appears even during the neonatal period, since the virulence of E. coli O157:H7 was greater 

in 12-hour-old calves than in 30- and 36-hour-old calves.  

It was in 1999 that Dean-Nystrom et al (1999) identified the rectum as the major site of E. 

coli O157:H7 colonization in cattle. Later Grauke et al. (2002) found evidence that the lower 

part of the GIT and specifically the cecum and the colon, are the most important colonization 

sites in ruminants (sheep and cattle). This work has been followed by a study of naturally-

colonised cattle where significant numbers of E. coli O157:H7 were found on the mucosal 

surface of the terminal rectum (Naylor et al., 2003; Low et al., 2005). Although these findings 

indicate the terminal rectum as the principal colonisation site of E. coli O157:H7 infection in 

cattle, Naylor et al., (2003) showed that the rumen, the small intestine, the proximal colon 

and the cecum can be other sites of E. coli O157:H7 colonization in cattle.  

Bacterial colonization of the intestine results in bacterial faecal shedding. The number of 

bacteria excreted by an infected animal and the duration of shedding is highly variable and 

there is evidence suggesting that a kind of individual preference contributes towards the 

duration and the number of bacteria excreted by animals (Hancock et al., 1997). Naylor et al., 

(2005a) showed that certain positive animals, so-called “super shedders”, shed E. coli 

O157:H7 at much higher concentrations than others. A recent longitudinal study using 

recto–anal mucosal swabs (RAMS) defined a super-shedder on the basis of both mean 

concentration ( 104 CFU/g faeces) and persistent colonization ( 4 consecutive positive 

RAMS) for samples taken twice a week for 14 weeks (Cobbold et al., 2007). Super shedders 
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are thought to have a substantial impact on the on-farm epidemiology of E. coli O157:H7; 

while they constitute only a small proportion of cattle, it has been estimated that they may 

be responsible for over 95% of the E. coli O157:H7 bacteria shed by cattle (Naylor et al., 

2005b).  

The occurrence of E. coli O157:H7 infection also depends on the season, with shedding 

being more pronounced in summer than in winter (Chapman et al., 1997; Hancock et al., 

1997; Van Donkersgoed et al., 1999).  

 

1.2.5.3. Sheep 

Sheep are the second most important reservoir of E. coli O157:H7 and the bacteria have 

been frequently isolated from both milk and meat (Espie et al., 2006; Beneduce et al., 2008; 

King et al., 2009; Solomakos et al., 2009). Sheep can be colonized by E. coli O157:H7 and 

excretion of the bacteria up to 50 days after infection has been reported (La Ragione et al., 

2009). The prevalence of E. coli O157:H7 in small domestic ruminants is less well 

documented than in cattle, and reports vary between 0.2 to 35% in different surveys in 

developed countries (Kudva et al., 1996; Battisti et al., 2006). Sheep have been identified as 

a source of human infections and a large outbreak occurred at a boy scout camp where 

some of the scouts played with sheep dung (Ogden et al., 2002). In addition, a high 

prevalence of E. coli O157:H7 was observed in a sheep flock in Scotland, with individuals in 

the flock shedding up to 106 CFU per gram faeces. The studies conducted by La Ragione et al. 

(2006) and Wales (2005) suggest that, unlike in calves, in sheep the rectoanal junction (RAJ) 

is not the site of primary colonization leading to persistent colonization and shedding of E. 

coli O157:H7 (Wales et al., 2005; La Ragione et al., 2006). Interestingly Woodward et al., 

(2003) showed that animals colonized beyond 14 days post-infection, and therefore 

considered to be persistent shedders, had E. coli O157:H7 organisms throughout the entire 

gastrointestinal tract, rather than just the large intestine which support the hypothesis that 

the entire gastrointestinal tract or at least other parts of GIT rather than only RAJ are the 

principal colonisation site in sheep. 
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Figure 5:  Schematic presentation of the spread of EHEC from cattle to humans (Adapted from Hovde, 2010) 

 

 

1.2.6. Inflammatory response in EHEC infection 

 

Although E. coli O157:H7 is a significant human enteropathogen and ruminants are the 

most important reservoir, information on the immune response in humans and ruminants 

against this pathogen is limited. In humans, Fitzpatrick et al., (1992) reported the increase of 

serum IL-8 levels in patients who developed HUS. Later on, the possible involvement of 

other inflammatory cytokines such as TNF was reported and the role of several virulence 

factors was studied such as Stx. However, the effect of Stx on intestinal epithelial cells 

remains controversial. Some studies demonstrate the induction of chemokines such as IL-8 

and growth regulated protein (GRO)-alpha, beta and gamma in a human colonic cell lines 

(Thorpe et al., 1999). Others have shown that E. coli O157:H7, even in the absence of Stx, is a 

potent activator of NF-kB, and can markedly upregulate epithelial IL-8 production (Berin et 

al., 2002). Besides on epithelial cells, Stx also acts on macrophages, inducing the expression 

of TNF-alpha, IL-1 beta and IL-6 and on granulocytes, delaying the onset of apoptosis and 

triggering the generation of reactive oxygen intermediates (Harrison et al., 2004). 

Interestingly, studies in cattle, which excrete the bacteria for a long time without clinical 

signs, suggest not only a stimulatory effect but also a suppressive effect for Stx in E. coli 

O157:H7 infected bovines. Indeed, although cattle lack the receptor for Stx in their blood 

vessels, the Stx receptor is expressed on intestinal epithelial cells, B cells, CD4+ and CD8+T 

cells, in contrast to humans where it is expressed on endothelial cells, intestinal epithelial 
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cells, monocyte/macrophages and B cells, but no T cells (Lindberg et al., 1987; Menge et al., 

1999; Stamm et al., 2002). Binding of the toxin to the receptor on intraepithelial T 

lymphocytes can subsequently suppress the expression of IL-8 and accelerate the synthesis 

of IL-4 (Menge et al., 2004). However, this effect was observed in vitro on isolated cells but 

could not be reproduced in a ligated intestinal loop model. Here the main toxin effect was a 

decrease in CD8+ T cells (Menge et al., 2004). Bovine granulocytes do not express the Stx 

receptor (Gb3), which could be an additional reason for the absence of intestinal 

inflammation during a bovine EHEC infection (Menge et al., 2006). In contrast, ovine 

granulocytes constitutively express Stx1 receptors, but although the toxin can delay 

apoptosis only little effect is seen on oxidative burst activity and phagocytosis (Menge et al., 

2006). 

These data provide evidence that Stx subverts the inflammatory response and underline 

an essential role for Stx in the initial step of the colonization of the intestinal mucosa. 

Moreover, they suggest that in cattle Stx may suppress mucosal immunity, enabling the 

bacterium to escape the host innate defences, enhancing its colonization. 

Another virulence factor of E. coli O157:H7 which has been studied is the H7 flagellin 

(Berin et al., 2002). It was shown that Stx and intimin are not required for the activation of 

the NF-kB signalling pathways in epithelial cells. H7 flagellin is the key factor activating this 

pathway leading to a proinflammatory response with up-regulated expression and 

production of IL-8 by human intestinal epithelial cells. Flagellin is doing this via binding to 

Toll-like receptor TLR-5 (Steiner et al., 2000; Gewirtz et al., 2001; Berin et al., 2002). Isogenic 

mutants of EHEC lacking flagellin do not significantly upregulate prototypic neutrophil and 

dendritic cell chemoattractants in human colon epithelia, irrespective of Stx production. This 

could indicate that H7 flagellin and not Stx is the major EHEC virulence factor involved in vivo 

in upregulation of proinflammatory cytokines by the human colon epithelium (Miyamoto et 

al., 2006). 

It seems that although E. coli O157:H7 infection stimulates the inflammatory responses 

in infected patients; this activation is somehow suppressed during the colonization steps. 

Since H7 is thought to play a role in initial colonization of EHEC, the inflammatory response 

might occur only in this step and then by secretion of Stx and suppression of inflammatory 
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cytokines, bacteria get more chance to colonize the intestine. However more investigation is 

needed to confirm this hypothesis. 

 

1.2.7. Control of EHEC infection 

Ground beef is the main source of E. coli O157: H7 infection for humans and the cause of 

severe outbreaks in the world and thus cattle were soon recognized as important reservoirs 

(Martin et al., 1986; Borczyk et al., 1987; Currie et al., 2007; Hussein, 2007; King et al., 2009). 

Indeed, it is well established that cattle and sheep can excrete E. coli O157:H7 for months in 

their faeces (La Ragione et al., 2009). Moreover, traceable links have been established 

between human infection and ruminant faeces via water or direct contact  indicating that 

contact with animal faeces is a strong risk factor for E. coli O157: H7 (Locking et al., 2001). 

Therefore, methods that reduce the E. coli O157:H7 populations in food animals at the farm 

level and before entry in the food chain have great potential to reduce human illnesses 

(Callaway et al., 2004b; Loneragan et al., 2005; Sargeant et al., 2007). 

As for other zoonotic agents, obtaining animals that are free from EHEC is impossible in 

practice. However, their occurrence can be minimized. At the farm level, classical eradication 

strategies based on the elimination of positive animals is not feasible, due to the high 

prevalence of colonisation, its transient nature, and the technical difficulties in detection of 

low levels of the microorganism in animal faeces. Due to survival of E. coli O157:H7 during 

extended periods in faeces, soil and water, complete eradication of the bacteria from bovine 

populations is unlikely. Indeed, E. coli O157:H7 could survive in lake water at 15°C for 13 

weeks (Wang and Doyle, 1998) and in animal faeces from several weeks to many months 

(Kudva et al., 1998). In the USA, one well-identified E. coli O157:H7 strain persisted in a farm 

environment for more than two years (Shere et al., 1998).  

Therefore, control of this foodborne pathogen on the farm and preharvest interventions 

which should be economical, practical, and suitable from an animal welfare perspective, 

should be pursued. Probiotics, antibiotics, feed additives, vaccines and management 

procedures all have been actively evaluated as methods for reducing the shedding of E. coli 

O157:H7 by ruminants. However, until now these approaches have not been effective to 

reduce E. coli O157:H7. The reasons are unknown. At the moment no effective strategy 

against E. coli O157:H7 is available. Thus other strategies or combinations of strategies are 
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needed. Here we briefly discuss the most well known strategies to control EHEC infection in 

ruminants. 

 

                                                                                                                                                                                                                                                                                                              

1.2.7.1. Antibiotics 

Antibiotics have been shown to fail preventing progression of E. coli O157:H7 from 

diarrhoea to HUS in human and even increase the risk (Carter et al., 1987; Pavia et al., 1990; 

Safdar et al., 2002; Dundas et al., 2005; Panos et al., 2006). These results gave arguments 

against the use of antibiotics for treating E. coli O157:H7 infection in man. A first argument is 

the risk for increasing the concentration of Stx in the gut lumen due to the effect of the 

antibiotic on the bacteria (Zhang et al., 2000; Ochoa et al., 2007). A second argument against 

the use of antibiotics is the high risk for development of antibiotic resistance of the E. coli 

O157:H7 strains. Antibiotic resistance, including multiple drug resistance to streptomycin, 

sulfisoxazole and tetracycline, is common in E. coli O157:H7 (Kim et al., 1994; Mora et al., 

2005). Some studies have shown a higher rate of antimicrobial resistance in E. coli O157:H7 

bovine strains compared to human strains (Meng et al., 1998; Maurer et al., 2009; Mora et 

al., 2005). 

1.2.7.2. Probiotics 

Probiotics are defined as commensal bacteria used to reduce pathogenic bacteria in the 

gut (Fuller, 1989; Schrezenmeir and de Vrese, 2001). Probiotics have been used in humans to 

promote intestinal health, and in animals to improve nutrition. Various probiotics (including 

yeast cultures, competitive exclusion (CE) products, and direct-fed microbials (DFM) have 

been widely used in the cattle industry (Yoon and Stern, 1996). Some probiotics have been 

developed to specifically reduce E. coli O157:H7 in cattle. A Lactobacillus acidophilus (L. 

acidophilus) culture, isolated from cattle rumen, reduced E. coli O157:H7 shedding by more 

than 50% (Brashears et al., 2003; Gragg and Brashears, 2010). This product recently became 

available on the market and is being used in the cattle industry.  

The use of probiotics in the control of EHEC infection of sheep is not well studied. In one 

study a mixture of the probiotics S. faecium, L. acidophilus, L. casei, L fermentatum and L 

plantarum reduced shedding of E. coli O157:H7 with 2-4 log10 CFU/g faeces (Lema et al., 

2001).  
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1.2.7.3. Vaccination 

Vaccination to prevent E. coli O157:H7 intestinal colonization and faecal excretion should 

be based on priming of the animal’s mucosal immune system against antigens of the 

bacterium involved in colonization of the gastrointestinal tract. In vitro experiments showed 

that E. coli O157:H7 attachment to HEp-2 cells is strongly inhibited by adding sera from 

cattle immunized with E. coli O157:H7 Type III secretion (TTSS) proteins. This finding 

supported the hypothesis that vaccination with TTSS proteins may reduce intestinal 

colonization (Asper et al., 2007). Several researchers have developed experimental vaccines 

using bacterial proteins which have a critical role in bacterial adherence to the intestinal 

epithelial cells of calves for instance using one or more TTSS proteins (Konadu et al., 1999; 

Dean-Nystrom et al., 2002; Potter et al., 2004). Some of the strategies were promising, while 

others were not successful in protecting animals from E. coli O157:H7 infection (See Table 1). 

Vaccination with EspA induced high antibody responses but was unable to protect animals 

against oral challenge (Dziva et al., 2007). Also vaccination with intimin in combination with 

the putative adhesion factor Efa was unsuccessful (Van Diemen et al., 2007). So far, the most 

promising vaccinations against E. coli O157:H7 infection in literature is with a vaccine 

containing several TTSS proteins either EspA, EspB and Tir or these proteins combined with 

intimin (Potter et al., 2004; Naylor et al., 2005a; Naylor et al., 2005b; Peterson et al., 2007a; 

Peterson et al., 2007b; Nart et al., 2008a; Nart et al., 2008b;) These TTSS proteins could be 

produced from culture supernatant (Potter et al., 2004). Three vaccinations with maximal 

200 µg of culture supernatant proteins significantly reduced the number of bacteria shed in 

the faeces, the number of animals that shed the bacteria as well as the duration of shedding 

in experimentally infected cattle (Potter et al, 2004). Already after the first immunization 

significant antibody responses against TTSS proteins appeared (Potter et al., 2004). The 

effect of the immunization was dose dependent with three doses inducing the highest 

responses. If a two dose regime was used,  the vaccination could not protect or reduce E. coli 

O157:H7 infection in a field trial (Van Donkersgoed et al., 2005). Several reasons may explain 

the different outcome of different vaccination strategies including the use of different 

adjuvants, different intervals, different ratios of the antigens in the antigen-mixture and 

possible variability in pen prevalence of E. coli O157:H7 (infection pressure) (Van 

Donkersgoed et al., 2005; McNeilly et al., 2008). More recently, it was shown that 
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vaccination with the H7 flagellin could increase and prolong bacterial shedding compared to 

immunization with TTSS antigens alone. McNeilly et al. (2010) found evidence that IgG 

antibodies against H7 could block the TLR5 binding domain of flagellin (H7) so inhibiting TLR5 

activation in vitro. This might explain the decreased efficacy of the TTSS proteins vaccine in 

combination with H7 which significantly reduces the efficacy of TTSS proteins vaccine in 

cattle (McNeilly et al., 2010). 

Apart from TTSS proteins and vaccination with E. coli O157:H7antigens, recently a novel 

vaccination strategy has been developed to reduce the ability of Gram-negative bacteria to 

acquire iron. Results of vaccination of cattle against EHEC with this strategy seem promising. 

Animals are immunized against the outer membrane siderophore receptor and porin (SRP) 

proteins, the animals develop antibodies and iron transport into the cell is blocked. Blocking 

iron transport renders the bacteria into a competitive disadvantage in a mixed microbial 

environment. Thornton et al. (2009) showed that two time vaccinations with E. coli O157:H7 

SRP vaccine significantly reduced the number of calves that were faecal culture positive for E. 

coli O157:H7 in an experimental infection. However, three vaccinations were more effective 

than two. A feedlot study of the same group demonstrated that the E. coli O157:H7 SRP 

vaccine reduces the prevalence of E. coli O157:H7, the number of days cattle tested positive 

and the number of days cattle were identified as high-shedders. They also showed that a 

lower dose of vaccine induced the same effect but the differences between vaccinated and 

non-vaccinated animals were not significant (Fox et al., 2009). 
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Table 1: Cattle vaccination strategies against E. coli O157:H7 

NA: not applicable. Exp: Experimental infection. E. coli O157 SRP vaccine: the vaccine targeting siderophore receptor and porin proteins (of E. coli O157). 

 

Antigen Adjuvant and  Route  Number of immunizations and 

the dose 

Protection effect Reference 

Exp: Purified EspA, Tir 

and intimin 

QuilA 

IM 

3x (60 µg proteins) Reduced shedding less than 10
4
 CFU/g McNeilly et al., 2010 

Exp: Supernatant 

proteins (Esps and Tir) 

VSA3 

SC and IM 

3X (200µg proteins) Reduced shedding, colonization and duration and the 

number of animals which shedd the bacteria 

Potter et al.,  2004 

Feedlot pen 

Supernatant  

(Esps and Tir) 

Oil-water emulsion 

SC and IM 

2x (50 µg) No significant vaccine effect Van Donkersgoed et al., 

2005 

Feedlot 

E. coli O157 SRP 

vaccine 

NA 

SC 

2 X 

(2  or 3 ml of concentrated SRP 

supernatant) 

3ml vaccine: reduced prevalence, duration of shedding, 

duration of being high shedder 

 (results of  2 ml was the same but not significant) 

 

Fox et al., 2009 

Exp 

Recombinant EspA 

Freund incomplete adjuvant 

IM and  Intranasal 

 

3X IM (100 µg) and 

1X Intranasal (300 µg) 

Not effective Dziva et al., 2007 

Feedlot 

TTSS proteins (Esp and 

Tir) 

VSA3 

SC 

2X 

SC (50 mg protein) 

 

Reduced the probability for E. coli O157:H7 colonization of the 

terminal rectum 
Smith et al., 2008 

Exp: Recombinant 

Salmonella Dublin 

expressing intimin 

NA 

Oral 

3X Reduced shedding and colonization, not associated with 

an enhanced IgA 
Khare et al., 2010 

Feedlot 

E. coli O157 SRP 

vaccine 

MVP 

Oral 

2 or 3X 

3X vaccination significantly 

reduced the shedding and 

colonization (2X : not significant) 

Reduced shedding and colonization Thomson et al., 2009 

Feedlot 

TTSS proteins (Esp and 

Tir) 

VSA3 

SC 

2X 

N/A 

Reduced the probability for E. coli O157:H7 colonization 

of the terminal rectum 

Smith et al., 2009 
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CHAPTER 2 

Lactoferrin 

Lactoferrin (LF) is an 80-kDa iron binding glycoprotein which was first recognized as an 

unknown “red fraction” from cow’s milk by Sorensen et al. in 1939.  In 1960, the red protein 

from both human and bovine milk was defined as a transferrin-like glycoprotein (Groves, 

1960; Montreuil et al., 1960). Studies of the antimicrobial activities by Arnold et al. (1977), of 

the immunomodulatory activities by Broxmeyer et al.  (1978) and of the structure by Spik et 

al. (1982) have been recognized as early basic research on human lactoferrin. Subsequently, 

a lot of research on bovine LF (bLF) was performed, from basic to clinical studies (Tomita et 

al., 2009). Problems with multiple antimicrobial resistant pathogens and the ban on 

antibiotics as growth-promoter in Europe, has increased the interest in lactoferrin as an 

antibacterial protein as well as its availability. At the moment human and bovine lactoferrin 

are brought on the market by several companies as food additive. Bovine lactoferrin is more 

available and cheaper than human lactoferrin. It is affordable for big scale operations in 

animal industries and can be used in human clinical trials even in developing countries.  

Several biological functions have now been ascribed to lactoferrin, including iron 

homeostasis, cellular growth and differentiation, host defence against microbial infection, 

anti-inflammatory activity and cancer protection. Here we will provide an overview of the 

current knowledge on the role of lactoferrin in host protection against microbial infections. 

 

2.2. Lactoferrin structure 

Lactoferrin belongs to the transferrin family of non-haem proteins. In 1984, the amino acid 

sequence of human lactoferrin was determined, showing 60% sequence identity with human 

transferrin (Metzboutigue et al., 1984). The 3D structure of lactoferrin was identified three 

years later (Anderson et al., 1987) and revealed a single polypeptide chain consisting of two 

lobes (N-lobe and C-lobe) linked by a short alpha-helix. Each of the lobes binds one ferric 

atom with very high affinity (K~ 1022  M) (Aisen and Liebman, 1972). Iron binding is partly due 

to a cooperative interaction between the two lobes. Therefore iron-saturated (holo) 

lactoferrin becomes a more “closed” protein with more resistance against proteolysis 

whereas the non-saturated (apo) form is more “open” and relatively flexible in its structure 
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(Baker and Baker, 2004). The unique iron binding structure of lactoferrin lies in the two 

domains of each lobe that can bind to one Fe3+ ion and one CO-2 ion. The latter may play a 

role in pH dependent release of iron in low pH conditions (pH 3) (Baker and Baker, 2005; 

MacGillivray et al., 1998). Lactoferrin is remarkably resistant to trypsin and trypsin-like 

enzymes making it more resistant to the destructive environment in the digestive tract. 

However, pepsin is able to cut lactoferrin and some of the pepsin-derived peptides are more 

potent than the parental protein (see 2.8). Lactoferrin exists in various isoforms: two with 

RNase activity (namely lactoferrin–β and lactoferrin–γ) and one without RNase activity 

(named lactoferrin–α). The latter exhibits functional iron-binding ability, whereas the ones 

with RNase activity show no iron binding activity (Furmanski et al., 1989). 

 

2.3. Source, location and concentration of lactoferrin 

Lactoferrin is found in mucosal secretions, including tears, saliva, vaginal fluids, semen, nasal 

and bronchial secretions, bile, gastrointestinal fluids and urine. However, the highest 

concentrations are found in milk and colostrum, making it the second most abundant protein 

after caseins. So, milk is the main source of lactoferrin with 1 mg/ml in natural human milk 

which is only 8% iron-saturated, while human colostrum contains up to 7 mg/ml (Masson 

and Heremans, 1971). In bovine, lactoferrin concentration in milk normally varies from 0.01 

to 1 mg/ml, depending on to the stage of lactation (Cheng et al., 2008; Newman et al., 2009).  

There is a great variation in the concentration of lactoferrin in other body fluids. The 

concentration in human tears is as high as 2 µg/ml whereas blood contains normally only 1 

µg/ml, although it can rise as high as 200 µg/ml in an inflammatory situation (Masson and 

Heremans, 1971). Lactoferrin is also found in considerable amounts in secondary neutrophil 

granules, where it plays a significant physiological role (Bennett and Kokocinski, 1978). 

Neutrophils are rapidly acquired to the site of inflammation during the acute phase of 

microbial infection where rich lactoferrin granules play a role in the innate immune response 

against bacterial infections. As a result, the concentration of lactoferrin in biological fluids 

may greatly increase during the inflammatory response.  

2.4. Antibacterial effect: Mechanisms of action 

The antibacterial activity of lactoferrin has been widely documented both in vitro and in vivo 

for Gram-positive and Gram-negative bacteria. It has been shown that lactoferrin decreases 
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bacterial growth and this bacteriostatic function is due to its ability to take up the Fe3+ ion 

and limit the use of this nutrient by bacteria at the infection site. The strong iron-binding 

properties of lactoferrin, coupled with its iron-free state in body secretions and neutrophil 

granules, allows the protein to sequester free iron and maintain an environment refractory 

to microbial growth (Levay and Viljoen, 1995; Ward et al., 2005). 

In 1977, Arnold et al. suggested that lactoferrin could exert an antibacterial action distinct 

from a simple iron deprivation. Besides this bacteriostatic effect, lactoferrin exerts a direct 

bactericidal activity against pathogens, resulting in disruption of LPS in the bacterial cell wall 

with an associated increase in membrane permeability (Ellison et al., 1988). Hereto binding 

occurs between the cationic N-terminal part of lactoferrin and the phosphate group within 

the lipidA part of the bacterial membrane. Interestingly, it may be noted that most 

interactions of lactoferrin with cell receptors and inflammatory molecules also involve the N-

terminal domain of lactoferrin.  

Besides the bacteriostatic and bactericidal activities of lactoferrin, also some additional 

activities on bacterial attachment can have important role in the antimicrobial activity of this 

protein (summarized in Table 2). 
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Table2: Biological activity of lactoferrin on bacterial attachment to host cells 

 

 

Strain Mode of action Lactoferrin origin Effect Reference 

Shigella  flexneri 

 

Degradation of invasion 

plasmid antigens IpaB and 

IpaC, the key proteins 

responsible for bacteria-

directed phagocytosis by 

mammalian cells 

Human lactoferrin Reduce bacterial 

attachment 

Gomez et al.,  (2002) 

Haemophilous  

influenzae 

 

Cleavage and removal of 

two putative colonization 

factors: IgA1 protease 

protein and the Hap 

adhesin 

Human lactoferrin Reduce bacterial 

attachment 

Hendrixson et al.,  (2003) 

Enteropathogenic 

E. coli (EPEC) 

Proteolysis of EspA, EspB 

and EspD 

Human lactoferrin 

Bovine lactoferrin 

Reduce bacterial 

attachment 

Ochoa et al.,  (2003, 2004) 

Enterotoxigenic 

E. coli (ETEC) 

Binds to fimbrial 

colonization factor 

adhesion (CFA) I 

Human lactoferrin 

Bovine lactoferrin 

Reduce bacterial 

attachment 

De Oliveira  et al., (2001) 

Giugliano et al.,  (1995) 

Kawasaki et al.,  (1999) 

Salmonella 

Typhimurium 

Possible direct interaction 

with bacterial surface 

Human lactoferrin 

Bovine lactoferrin 

Reduce bacterial 

growth and 

attachment 

Ochoa  et al., (2007) 

Bessler et al.,  (2006) 

Chlamydophila  

psittaci 

Possible interactin with 

TTSS 

Human lactoferrin 

Bovine lactoferrin 

Avian transferring 

(Lactoferrin) 

Reduce bacterial 

growth and 

attachment 

Beeckman et al., (2007) 

Streptococcus 

mutans  

Binding to the bacterial 

surface 

Decaseinated human 

colostral whey 

Reduce biofilm 

formation 

Arnol et al., 1981 

Dalmastri et al.,  1988 

Bortber et al., 1989 

Pseudomonas 

aeruginosa 

 

Inhibiting biofilm formation 

by  decreasing the 

expression of cellulose 

Bovine lactoferrin Inhibit biofilm 

production 

Odeh et al., 2000 

Xu et al., 2010 
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2.5. Effect on bacterial adhesion: in vitro studies 

In 1995 Alugupalli et al. showed that human and bovine lactoferrin can both reduce 

Actinobacillus actinomycetemcomitans adhesion to HEp-2 and Hela cells in a dose-

dependent manner. It was the first report to suggest a kind of adhesion-counteracting 

mechanism in addition to lactoferrin’s bacteriostatic and bactericidal properties (Alugupalli 

and Kalfas, 1995; Alugupalli et al., 1995). It was hypothesized that the decreased adhesion 

may be due to blocking of both specific adhesin-ligands interaction sites as well as non-

specific charge-dependent interactions (Alugupalli and Kalfas, 1997).  

It has been shown that lactoferrin is capable of inhibiting the intracellular invasion of 

pathogens such as Escherichia coli, Listeria monocytogenes and Shigella flexneri. An in vitro 

adhesion-invasion study (Conte et al., 1999) showed that bovine lactoferrin decreases the 

number of L. monocytogenes internalized by Caco-2 cells. They found two bacterial surface 

proteins, of approximately 80 and 60 kDa, which bind to lactoferrin. These findings strongly 

support the hypothesis that the anti-invasive mechanism of lactoferrin is due to its 

interaction with bacterial proteins. 

A proteolytic effect of lactoferrin was first reported by demonstrating that lactoferrin 

attenuates the pathogenicity of Haemophilus influenzae by cleavage and removal of two 

putative colonization factors, namely the IgA1 protease protein and the Hap adhesin (Qiu et 

al., 1998). Lactoferrin acts as a serine protease capable of cleaving arginine-rich sequences. 

Proteolytic activity of lactoferrin has also been demonstrated in Shigella and EPEC where 

lactoferrin induces release and degradation of key virulence proteins contributing to 

bacterial attachment to host cells. In Shigella, invasion plasmid antigens B and C (IpaB and 

IpaC), which are necessary for the adhesion to and subsequent invasion into the host cell, 

are degraded in presence of lactoferrin. In EPEC, lactoferrin degrades EspA and EspB, which 

contribute to initial attachment of bacteria to host cells (Ochoa and Clearly, 2004; Ochoa et 

al., 2004; Ochoa et al., 2003). In Chlamydophila psittaci (Cp.), lactoferrin irreversibly inhibits 

bacterial attachment to and entry into HD11 cells. The latter is accompanied by a dose-

dependent reduction of actin recruitment at the bacterial entry site. However, once bacteria 

have entered the cells, lactoferrin apparently has no effect on intracellular replication. 

Interestingly, the attachment inhibition of Chlamydia to the chicken cell line is more 
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pronounced when ovoTF (Lactoferrin from poultry) is used than using human or bovine 

lactoferrin (Beeckman et al., 2007). 

 

2.6. Effect of oral lactoferrin on bacterial attachment and colonization 

Whereas the antibacterial effect of lactoferrin has been very well studied in vitro by several 

investigators, there is little proof of this activity in vivo. Most of these studies have been 

performed in mice. In germ-free mice, oral administration of bovine lactoferrin inhibited 

adherence of E. coli to the intestinal tract (Kawasaki et al., 2000). In addition, daily 

administration of 2.5 mg lactoferrin decreased hepatic colonization of Listeria 

monocytogenes, hepatic necrosis and expression of inflammatory cytokines including IL-1, 

TNF-α and IFN-γ in mice compared to non-treated mice in an oral infection model (Lee et al., 

2005). Daily oral administration of 2 mg bovine lactoferrin to mice from 2 hours before until 

7 days after inoculation, could control an experimental Salmonella Typhimurium infection 

and reduced the severity, mortality and the degree of inflammation of this infection 

(Mosquito et al., 2010). It was speculated that lactoferrin bound to LPS with disruption of 

the TTSS, blockage of actin polymerization, and stimulation of the immune system. 

In rabbits recombinant lactoferrin could protect the animals against Shigella flexneri-induced 

inflammatory enteritis (Gomez et al., 2002). 

So the in vivo effects of lactoferrin have mainly been analyzed in rodent models. It should be 

noted that the mechanisms of action and more importantly the immune system in 

laboratory animals may vary from that of the true infection host. 
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Figure 6: Deduced mechanism of action underlying the host-protective effects of orally administered bovine LF (bLF). After 

ingestion, bLF is partially digested to peptides by proteases in the stomach and intestine. In the small intestine, bLF and its 

peptides bind to receptors on enterocytes and immune cells such as dendritic cells and lymphocytes residing in the 

intestinal epithelium. bLF/peptides may be internalized into the cells and/or trigger intracellular signaling so activating 

transcription of genes. Humoral factors like cytokines become secreted and act on neighbouring cell or can reach via the 

circulation other target cells. The stimulated immune cells can subsequently migrate to infected and inflamed sites where 

they try to control the infection and inflammation and where they can also act to prevent carcinogenesis (Adapted from 

Tomita et al., 2009). 

 

2.7. Evidence for lactoferrin modulation of the immune system: cytokine production  

Immunomodulatory effects of lactoferrin have been illustrated in several in vitro and in vivo 

experiments. Lactoferrin modulates the inflammatory process mainly by preventing the 

release of cytokines, which induce recruitment of immune cells to inflammatory sites as well 

as their activation. Some in vivo studies showed a protective effect in inflammatory 

processes such as septic shock, allergy or cancer (Figure 6). Injection of lactoferrin 
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(intraperitoneal or intravenous) could protect against lethal bacteraemia (Lee et al., 1998; 

Zagulski et al., 1989). Other studies showed that lactoferrin administration reduces gastritis 

induced by Helicobacter felis in mice and protects gut mucosal integrity during LPS-induced 

endotoxemia (Dial et al., 2000a; Dial et al., 2000b; Kruzel et al., 2000).  

At the molecular level, lactoferrin inhibits LPS-induced IL-6, TNF-α and IL-1β expression in 

mice (Mattsby-Baltzer, 1996; Choe and Lee, 2000; Haversen et al., 2002). Additionally, 

lactoferrin up-regulates the secretion of anti-inflammatory cytokines IL-10 and IL-4 in rats 

with colitis (Guillen et al., 2002; Togawa et al., 2002a; Togawa et al., 2002b). Guillen et al. 

(2002) showed an enhanced Th1 response to Staphylococcus aureus infection by modulation 

of the iron supply to the spleen in lactoferrin transgenic mice. It is most likely that the 

immunomodulatory effect of lactoferrin is somehow related to its cell binding property. In 

this respect, the capacity of lactoferrin to influence cytokine production is at least partly due 

to its binding to both LPS and the LPS-receptor CD14 (Figure 7).  

LPS is a potent activator of the immune system and stimulates host cells, mainly 

monocytes/macrophages and neutrophils, to produce cytokines  (Elass-Rochard et al., 1998).  

Therefore the high affinity binding of lactoferrin to LPS prevents activation of the pro-

inflammatory pathways (Elass-Rochard et al., 1998; Otsuki et al., 2005). Lactoferrin 

competes with LPS-binding protein (LBP) for LPS binding and therefore prevents transfer of 

LPS to membrane CD14, the membrane receptor of LPS presented at the surface of 

macrophages (Elass-Rochard et al., 1998). Furthermore, the interaction between lactoferrin 

and soluble CD14 (sCD14), the secreted receptor of LPS, inhibits the secretion of 

inflammatory cytokines by endothelial cells induced by the sCD14-LPS complex.  

More importantly, a high-affinity interaction was reported between lactoferrin and 

membrane CD14 (mCD14) expressed on monocytes, suggesting a direct effect via receptor-

mediated signalling pathways including the NF-kB pathway (Haversen et al., 2002). The LPS-

neutralizing effect of lactoferrin together with the great iron binding capacity which reduces 

the availability of iron and subsequently the toxic oxidative reactions in inflammation sites, 

would at least partly explain the mechanism by which lactoferrin modulates immune 

responses in inflammatory processes. 

In contrast with the anti-inflammatory role of lactoferrin, its effect as an inflammatory 

stimulator has recently attracted the attention. Hwang et al., (2009) showed that mice 
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immunized with the Bacillus Calmette-Guerin (BCG) vaccine in the presence of bovine 

lactoferrin demonstrated increased host protection after challenge with Mycobacterium 

tuberculosis. This protection was induced by an enhanced T-cell specific response, suggesting 

that bovine lactoferrin facilitates efficacy of BCG vaccination via development of Th1 cells. It 

has also been demonstrated that the development of Th1 and Th2 in response to lactoferrin 

occurs by a relative increase in the production of IL-12 while decreasing IL-10, a negative 

regulator of IL-12 (Fischer et al., 2006; Wakabayashi et al., 2006; Hwang et al., 2007). 

 

 

Figure 7. Regulation of the inflammatory response by Lf. Blue arrows indicate physiological processes. Red 

arrows indicate biological responses induced by infection, aggression or neurodegenerative diseases and green 

arrows indicate downregulation induced by the release of lactoferrin upon inflammatory process (Adapted 

from Legrand et al., 2005)  

 

2.8. Lactoferricin 

Lactoferricin (LFcin) was initially identified as a cationic antimicrobial peptide derived in vitro 

via pepsin digestion from lactoferrin (Tomita et al., 1991). Later on, the presence of this 

peptide was reported in human stomach fluid, confirming the occurrence of pepsin digestion 

of lactoferrin in vivo (Kudva et al., 1998). 
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LFcin consists of the N-terminal region of LF which is believed to be involved in many LF 

functions. Various synthetic analogues of LFcin have been reported. LFcin H and LFcin B were 

isolated from pepsin digestion products of human LF and bovine LF respectively, and it has 

been shown that the antimicrobial activity of LFcin B is greater than that of LFcin H (Chen et 

al., 2006). LFcin displays higher antimicrobial activity than its parent protein lactoferrin 

(Bellamy et al., 1992; Bellamy et al., 1993a; Bellamy et al., 1993b; Kuwata et al., 1998; 

Munoz and Marcos, 2006; Haney et al., 2007). Although it lacks the iron-binding region of 

lactoferrin, it can rapidly bind to bacteria in a pH-dependent manner (Bellamy et al., 1993a; 

Bellamy et al., 1993b) and induce the loss of membrane integrity (Yamauchi et al., 1993). 

Following its binding, LFcin crosses the bacterial membrane to interact with the bacterial 

cytoplasmic membrane. Little is known about this process, but it has been shown that this 

binding results in LFcin entry to the bacterial cell and acts on intracellular targets (Yamauchi 

et al., 1993; Shin et al., 1998). Moreover, it has been shown that LFcin binding to some 

target molecules in E. coli can inhibit RNA and DNA synthesis and also expression of bacterial 

proteins (Ulvatne et al., 2004).  

 

2.9. Effect of lactoferrin on E. coli O157:H7 

It has been shown that lactoferrin and its peptides reduce/inhibit E. coli O157:H7 growth, 

however this effect is variable in different studies. This variation could be related to 

differences in strain susceptibility, lactoferrin purity, its iron saturation level, and difference 

in amounts of cations present in the media used (Al-Nabulsi and Holley, 2006). 

Griffiths et al. (2003) showed that non-iron saturated bovine and human lactoferrin reduced 

E. coli O157:H7 growth, but after 24 hours treated and non-treated bacteria reached the 

same stationary growth phase. However, iron saturated human and bovine lactoferrin had 

no antibacterial effect on E. coli O157:H7. For 66% iron saturated bovine lactoferrin could 

reduce bacterial growth. 

Another study using E. coli O157:H7 and 15% iron saturated bovine lactoferrin demonstrated 

that even up to 5000 µg/ml of lactoferrin was not inhibitory on E. coli O157:H7 growth. It 

could only reduce growth (Murdock et al., 2007). This finding was confirmed by another 

group studying the effect of lactoferrin on E. coli O157:H7 growth, indicating that 
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concentrations from 6000 µg/ml are inhibitory to E. coli O157:H7 under similar assay 

conditions (Murdock and Matthews, 2002). 

Unfortunately, the above reviewed antimicrobial effect of lactoferrin on E. coli O157:H7 in 

simple broth systems such as peptone or buffered phosphate has not been achieved in food 

or complex media because the antimicrobial activity of lactoferrin appears to be reduced in 

the presence of divalent cations like Ca2+ and Mg2+ (Ellison et al., 1988; Shimazaki et al., 

2000). Shimazaki (2000) reported that divalent cations protect bacteria from lactoferrin by 

inducing changes in its tertiary structure yielding a tetrameric form of lactoferrin with 

reduced bio-functionality and at the same time generating bacterial cell membranes with 

increased stability (Shimazaki et al., 2000). Recent studies suggest that increased NaCl 

concentration and lower temperatures improve the antimicrobial effect of lactoferrin 

towards E. coli O157:H7 (Al-Nabulsi and Holley, 2006). 

In addition to lactoferrin, some of its peptides can also reduce E. coli O157:H7 growth. 

Shin et al. (1998) studied the antimicrobial activities of bLF, its pepsin hydrolysate (bLFH) and 

the active peptide LFcin B against four clinical isolates of E. coli O157:H7. They showed 

membrane blisters on the cell surface of two bacterial strains after treatment with Lfcin B for 

30 min. A progressive increase in cytoplasmic debris was also observed after 60 and 120 min. 

This finding confirmed that Lfcin B exerts its bactericidal effect on E. coli O157:H7 by acting 

on the bacterial cell surface initially, and then on the cytoplasmic contents. They also 

showed that 1 µg/ml Lfcin B in 1% Bactopeptone suppressed the growth of E. coli O157:H7 

within 3 h. This peptide reduced the number of viable cells from approximately 106 cfu/ml, 

to the limit of detection (20 cfu/ml) within 3 h at concentrations above 10 µg/ml. The results 

indicate LfcinB as the most effective peptide which inhibits E. coli O157:H7 growth. Changing 

either the pH between 5.5 and 7.2 or the temperature from 4 till 10 °C in 1% Bactopeptone 

could not influence the growth inhibitory effect of bLFcin (Venkitanarayanan et al., 1999).
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Aims of the study 

 

An EHEC infection, especially with the serotype O157:H7, can lead to bloody diarrhea, 

HUS, HC and even death in humans. Until now, there is neither a specific treatment available 

nor a vaccine or therapeutic agent which completely prevents E. coli O157:H7 infection. 

Antibiotic therapy does not represent a valid alternative, since it might lead to the release of 

the Stx from the bacteria resulting in even more severe symptoms. 

The majority of the human infections are foodborne and the origin of the E. coli O157:H7 

is mainly ruminant’s feces. In this context, reduction, inhibition or clearance of an intestinal 

colonization of ruminants may be the strategy to protect humans. Although many 

intervention strategies have been studied to reduce the level of E. coli O157:H7 colonisation 

in ruminants, non of those strategies seems to be sufficient effective. 

The aim of the present thesis was to evaluate two different strategies to reduce E. coli 

O157:H7 colonisation of sheep namely the use of a natural antimicrobial protein and 

vaccination.  

Hereto the following questions were addressed: 

1. What is the pattern of antibiotic resistance among E. coli isolates from Iranian dairy cows 

(Chapter 3)? 

2. Can lactoferrin, a natural antimicrobial protein in milk, be used to prevent colonisation of 

E. coli O157:H7 in sheep?  

a. Does lactoferrin influence E. coli O157:H7 growth and if so, which mechanisms could 

be involved (Chapter 4)? 

b. Does lactoferrin reduce E. coli O157:H7 attachment to a human epithelial cell line 

(Chapter 4) and if so, is this also the case for adhesion to sheep epithelial cells of 

explants from different sites of the intestinal tract (Chapter 5).  

c. Can lactoferrin influence the cytokine response induced by E. coli O157:H7 in these 

explants (Chapter 5)?  

d. Does lactoferrin reduce E. coli O157:H7 excretion in sheep and does it influence the 

immune response in these animals (Chapter 6)? 

3. Is vaccination of sheep with type III secretion system proteins and intimin γ a possible 

strategy to reduce fecal shedding of E. coli O157:H7 as in cattle (Chapter 7)?



 

 

 

49 



 

 

 

 
 

 

 

Part III: Experimental studies



 

 

 

51 

 



 

 

Chapter 3 

 

Antimicrobial resistance of Escherichia coli isolates from dairy cows 

in Iran  

 

 

Atef Yekta, M.*, Boyen, F.*, Nematollahi, A., Bonyadian, M., Vanrompay, D., Haesebrouck, 

F.**, Cox, E.** 

 

* Equally contributed 

**Shared senior authorship 
          (Manuscript in preparation) 

 

 



 

 

53 



 

 

3.1. Abstract 

In the present study, 63 Escherichia coli (E. coli) isolates from raw milk and faeces of healthy 

dairy cows from West Central Iran were assessed for their susceptibility to 11 antimicrobial 

agents used in Iran: ampicillin, amoxicillin-clavulanic acid, ceftiofur, chloramphenicol, colistin, 

enrofloxacin, florfenicol, spectinomycin, sulfafurazole, tetracycline and trimethoprim. 

Seventy-five percent of the isolates showed acquired resistance to three or more 

antimicrobial agents. The highest percentage of acquired resistance was detected for 

tetracycline (46%), followed by ampicillin (43%), the highest susceptibility was found to 

ceftiofur (94%) followed by colistin (86%). Even though resistance against colistin is low, it is 

higher than in most other studies. The overall high antimicrobial resistance and a high 

multiple antimicrobial resistance of the commensal E. coli should alert veterinarians and 

authorities to take measures for decreasing antimicrobial usage.  

 

3.2. Introduction 

Acquired antimicrobial resistance is an increasing threat to human and animal health. 

Several data suggest that antimicrobial use in live stock industry may have an impact on 

antimicrobial resistance of human bacterial pathogens (Bywater et al., 2004; Aarestrup et al., 

1998). One possible route of transfer of resistance genes from animal-associated to human-

associated bacteria is through the presence of resistant commensal bacteria in the food 

chain (Guillemot, 2001). Escherichia coli (E. coli) is an important commensal of the intestinal 

tract of different animal species and humans, and may serve as a reservoir for antimicrobial 

resistance genes. Internationally, it is often used as an indicator bacterium reflecting 

resistance levels present in Gram-negative bacterial populations (Osterblad et al., 2000). 

Animal-associated E.coli strains may be present on the carcass of slaughtered animals and in 

raw milk, especially if collected in less hygienic conditions. Resistance genes from these 

strains may be transferred to bacteria belonging to the normal commensal human 

microbiota through handling and consumption of meat and milk (Smet et al., in press).  

Currently, very little data are available regarding the presence of antimicrobial resistance in 

animal-associated commensal bacteria in developing countries such as Iran, where 

antimicrobial agents are often overused in veterinary medicine and especially in food 

animals such as cattle. Therefore, in the present study, the presence of antimicrobial 

resistance in E. coli isolates from raw milk and faeces of healthy dairy cows was studied. 
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3.3. Materials and methods 

3.3.1. Isolation and identification of E. coli 

Thirty-nine  and 24 E. coli isolates were obtained from raw bulk milk and faecal samples, 

respectively. Samples were collected between March and September 2007 in West Central 

Iran (Chaharmahal Bakhtiari province) on 35 dairy farms with an average of 50 cows per 

farm. For raw bulk milk samples, 200 ml tank milk was collected. The faecal samples were 

collected from healthy dairy cows using rectal swabs. Milk samples and swabs were 

transported on ice to the lab where samples were plated onto Mac Conkey agar (Oxoid, 

Basingstoke, United Kingdom) and incubated aerobically for 20 h at 37°C. The isolates were 

identified as E. coli by colony morphology and standard biochemical methods (Quinn et al., 

1994). 

The strains were transported to Belgium in bacterial transport tubes (Venturi Transystem, 

Copan, Brescia, Italy) under a transport licence of the“Federal Agency for the Safety of the 

Food Chain” (FASFC) (n.191362). At the day of arrival, bacteria were cultured on Luria 

Bertani (LB) agar at 37°C, and subsequently confirmed as E. coli by positive glucose/lactose 

fermentation, gas production, absence of H2S production (Kligler iran agar; Oxoid), indole 

production and absence of aesculin hydrolysis (bile aesculin agar; Oxoid). Then one colony 

was picked up and incubated overnight in LB broth at 37°C, whereafter 0.6 ml of the broth 

was mixed with 0.6 ml of sterile glycerol in a 2 ml Sarstedt tube (Corning, Mexico) and frozen 

at -80°C until tested for antimicrobial susceptibility. 

 

3.3. 2. Antimicrobial susceptibility by agar dilution method  

A quantitive agar dilution method using Mueller Hinton II agar (Becton, Dickinson and 

Company, Cockeysville, US) supplemented with 5% lysed horse blood was used for 

determination of the minimal inhibitory concentrations (MIC) of 11 antimicrobials (ampicillin, 

amoxicillin-clavulanic acid, ceftiofur, chloramphenicol, colistin, enrofloxacin, florfenicol, 

spectinomycin, sulfafurazole, tetracycline and trimethoprim) as described by De Leener et al. 

(2005). Hereto, two-fold dilutions of the antimicrobials were incorporated in the agar in final 

concentrations ranging from 0.03 till 128 µg/ml, except for the sulfonamide sulfafurazole for 

which additionally the concentrations of 256, 512 and 1024 µg/ml were tested. Clinical 



 

 

Laboratory Standards Institute (CLSI) standards guidelines were followed for inoculum 

standardization, medium and incubation conditions and internal quality organisms (CLSI, 

2009).  E. coli ATCC 25922 and Staphylococcus aureus ATCC 29213 were used as internal 

control strains. The inoculum was standardized in phosphate-buffered saline to 0.5 

McFarland (Densimat Biomerieux, France) and triple streaked on the agar. MIC values were 

recorded after incubation for 16-18 h at 35°C and were determined as the lowest 

concentration that inhibited visible growth. The strains were considered to have acquired 

resistance when their MIC was higher than the wild type cut-off value as described by 

EUCAST (2009). 

 

3.4. Results and discussion 

E. coli are prevalent enteric bacteria in healthy animals which rapidly acquire antimicrobial 

resistance and therefore are internationally used as Gram-negative indicator bacteria for 

monitoring the selection pressure on Gram-negative bacteria exerted by antibiotic use (Van 

den Bogaard and Stobberingh, 2000; Saenz et al., 2001). Their high prevalence increases the 

risk of a transfer of these strains between animals or from animals to man via faecal 

contamination (Costa et al., 2008).  These resistant commensal E. coli provides a pool of 

transferable resistance genes (Schmieger and Schicklmaier, 1999; Winokur et al., 2001; 

(Smet et al., in press).   

The distribution of the MICs for the 63 E. coli isolates is given in Table 1. For 93% of these 

isolates, resistance to at least one of the antimicrobial agents was detected. The highest 

resistance occurred against tetracycline (46%) followed by ampicillin (43%) and the lowest 

against ceftiofur (6%), followed by colistin (14%).  For the  other antibiotics resistance varied 

between 30 and 17%.  Recently a survey in five European countries of antimicrobial 

susceptibility towards human-use antimicrobials was published demonstrating a high 

susceptibility of faecal commensal E. coli isolated from cattle at the slaughterhouse to most 

of the tested antimicrobials (de Jong et al., 2009). Nevertheless, there were difference 

between countries with a significantly higher resistance in Italy for e.g. tetracycline (20%), 

ampicillin (12%) and trimetroprim/sulfamethoxazole (11%)  than in Germany, France, Ireland 

and the UK. However, this is still clearly lower than in our study. In the European study, 

resistance was overall the highest for tetracycline going from 20% in Italy to 3% in the UK. 

Also in the Iranian isolates, tetracycline resistance was most prevalent, but resistance was 
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more than two times as high as in Italy. In the European study, no resistance was observed 

against colistin, whereas in the Iranian isolates 14% of the isolates where resistant.  

Higher resistance rates than in Europe were observed in a recent study in the western 

United States (Berge et al., 2010). Faecal samples were collected on farms. Again, the 

highest resistance was observed against tetracycline (50 %), followed by streptomycin (47%), 

sulfisoxazole (45%) and ampicillin (31%). Resistance against the other tested antibiotics was 

much lower and varied between 16 and 1%. Colistin was not tested. The study compared the 

prevalence of multiple antimicrobial resistance between different farm types namely calf 

ranches, feedlots, dairies and beef cow-calf operations. The lowest multiple antimicrobial 

resistance was observed in isolates from dairies and from beef cow-calf operations. Within 

dairies, the antimicrobial resistance was higher in calves than in adult cows, probably 

reflecting the higher exposure of calves to antimicrobials. In our study, samples were 

collected from cows. Increase in antimicrobial resistance by farm type has been described in 

other studies and could reflect differential antimicrobial selective pressure on the faecal E. 

coli by these different farm types  (Sawant et al., 2007; Call et al., 2008).  

Only few data have been published on the use of antibiotics in veterinary medicine in Iran 

(Salehi and Bonab, 2006; Moniri et al., 2007). These data and information obtained via 

personal communications suggests that sulfonamides, beta-lactams, tetracyclines and 

enrofloxacin are the most frequently used antimicrobials in veterinary medicine in Iran, 

followed by trimethoprim, spectinomycin and aminoglycosides.  This could be one of the 

reasons for the very high resistance in our study against ampicillin and tetracycline followed 

by amoxicillin-clavulanic acid, trimethoprim and suflafurazole (Table 1).  

Nevertheless, except for ceftiofur, there was also an important resistance of the Iranian 

isolates against the other tested antimicrobials. For florfenicol, only 10 years ago introduced 

into the veterinary practice in Iran (Zahraei et al., 2006), resistance was clearly higher in our 

study (20%) (Table 1) than observed by Sawant et al. (2007) for E. coli isolates from dairy 

cattle in Pennsylvania (5%).  

Also for colistin, a remarkably high resistance was observed (14%). In the past, acquired 

resistance to colistin has only occasionally been described. However, the last years, this is 

becoming more common (Boyen et al.,2010) . In the present study 14% of the E. coli isolates 

were resistant to colistin which was higher than in most previous studies (Harada et al., 2005, 

Wang et al., 2008, de Jong et al., 2009; Stannarius et al., 2009; Boyen et al., 2010). Harada et 



 

 

al. (2005) observed a higher resistance in isolates from pigs (36%) as in isolates from cattle 

(12%) using 2 µg/l as cut-off and Magwira et al. (2005) found a high resistance in O157:H7 

isolates from beef products (26 %). We found eight isolates (12.6%) resistant to 16 µg/ml 

colistin and one isolate from bulk milk was even resistant to 32 µg/ml colistin. A previous 

study in Iran by Ebrahimi et al. (2007a), using 4 µg/ml as cut-off, found even 53% of 17 E. coli 

isolates from mastitis resistant against colistin. This high percentage of resistance against 

colistin in Iranian pathogenic E. coli together with our finding in commensal E. coli isolates, 

seems to suggest that colistin is extensively used in Iran. It highlights the urgent need to 

perform constant monitoring of E. coli isolates for resistance against this antimicrobial agent. 

As in our study, in most other studies, susceptibility of E. coli isolates to cephalosporins such 

as ceftiofur is very high, varying between 89 and 100% (Hariharan et al., 2004; Harada et al., 

2005; Sawant et al., 2007; de Jong et al., 2009; Berge et al., 2010). 

Although the overall antimicrobial resistance in the present study was high, it was still lower 

than in a previous Iranian study (Ebrahimi et al., 2007a). In the latter study only pathogenic E. 

coli have been studied. Pathogenic E. coli tend to be more resistant to antimicrobials than 

commensal E. coli, due to constant exposure to antimicrobials (Chulasiri and Suthienkul, 

1989; Holland et al., 1999).  

The multi antimicrobial resistance (MAR) rate of isolates in our study was higher than has 

been reported for pathogenic E. coli from humans in Iran (Moniri et al., 2003). In the present 

study 75% of the isolates were resistant to al least three, 43% to at least four and 32% to at 

least five antimicrobials. In a study on dairy cattle in Pennsylvania, MAR (resistance to at 

least 3 antimicrobials) was observed in 40% of the E. coli isolates (Sawant et al., 2007), in a 

study in western United States in < 48% E. coli isolates (Berge et al., 2010) and in a European 

study 0,2 % of the isolates showed MAR against at least four antimicrobials (de Jong et al., 

2009).  

We are aware that our study shows serious limitations. The sample size was rather small not 

enabling us to perform statistical analysis and no information on usage of antibiotics within 

the herds was available. More continuous sampling on more animals of different age groups 

(calves versus cows), at different time points throughout the year and in more Iranian 

provinces with a questionary on antimicrobials usage, housing, management, etc., should 

allow us to generalize results and to analyze some of the factors responsible for the 

antimicrobial resistance determined.  
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There still is debate on the risks antimicrobial resistance in non-pathogenic animal E. coli 

exerts for public health. Nevertheless, the potential of animal-associated strains to transfer 

resistance genes to the normal commensal human microbiota has been demonstrated in 

vitro (Zhao et al., 2001; Costa et al., 2008, Smet et al., in press). Irrespective of such in vitro 

prove, given the uncertainty principle, measures should be taken to reduce antimicrobial 

resistance in production environments. Therefore, the high prevalence of antimicrobial 

resistance and the multiple antimicrobial resistance in the Iranian E. coli isolates observed in 

our study should alert the veterinarians and authorities to take all necessary measures for 

decreasing antimicrobial usage in Iran. 
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Table 1: Distribution of minimal inhibitory concentrations (MIC) for 63 Escherichia coli isolates from milk and faecal samples of 35 Dairy farms in the Iranian province of 

Chaharmahal Bakhtiari.
 

 

a
 MIC for the wild-type (WT) organism according to EUCAST in µg/ml. 

b 
The results in bold  show number of isolates with MIC that exceeds the breakpoint criteria for resistance. 

c
 %R, percentage of isolates showing acquired resistance to the respective antimicrobial agent. 

d
 MIC is not available in EUCAST. The MIC for CLSI has been used. 

_: not applicable. 

 MIC  WT
a
   Number of isolates

b
 with MICs (µg/ml)  % R

c
 

Antimicrobial agent µg/ml
 

≤0.03 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 >128 256 512 1024 >1024  

Amoxicillin-clavulanic acid (2/1) 16        3 23 19 5 2 8 1 2 _ _ _ _ 29 

Ampicillin 16        1 19 16 2 1 10 1 13 _ _ _ _ 43 

Ceftiofur 2    3 18 31 7 2 1  1     _ _ _ _ 6 

Chloramphenicol 32        2 5 39 6 5   6 _ _ _ _ 17 

Colistin 4     4 50     8 1    _ _ _ _ 14 

Enrofloxacin 0.25 37  10 2 5 1 1    6   1  _ _ _ _ 22 

Florfenicol 32        4 5 30 10 4  5 5 _ _ _ _ 22 

Spectinomycin  128           9 36 7 7 4 _ _ _ _ 17 

Sulfafurazole 512
d 

  2     1  2 10 17 5 8 _ 1   17 27 

Tetracycline 16       6 26 1 1 6 2 8 13  _ _ _ _ 46 

Trimethoprim 4 1  1 7 31   4 7     1 11 _ _ _ _ 30 
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4.1. Abstract 

Enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 strains are associated with 

haemorraghic colitis and haemolytic uremic syndrome (HUS) in humans. Cattle are a 

reservoir of E. coli O157:H7. We studied the ability of bovine and human lactoferrin, two 

natural antimicrobial proteins present in milk, to inhibit E. coli O157:H7 growth and 

attachment to a human epithelial colorectal adenocarcinoma cell line (Caco-2). The direct 

antibacterial effect of bLF on E. coli O157:H7 was stronger than for hLF. Nevertheless, both 

lactoferrins had bacteriostatic effect even at high concentration (10 mg/ml), suggesting 

blocking of LF activity by a yet undefined bacterial defence mechanism. Additionally, both 

lactoferrins significantly inhibited E. coli O157:H7 attachment to Caco-2 cells. However, hLF 

was more effective than bLF, probably due to more efficient binding of bLF to intelectin 

present on human enterocytes leading to uptake and thus removal of bLF from the 

extracellular environment. Inhibition of bacterial attachment to Caco-2 cells was at least 

partly due to the proteolytic effect of lactoferrins on the type III secreted proteins EspA and 

EspB. 

 

4.2. Introduction 

The enterohemorrhagic Escherichia coli (EHEC) strain O157:H7 is a major food-borne 

pathogen causing severe disease in humans worldwide. Healthy cattle are a reservoir of E. 

coli O157:H7. Bovine food products and fresh products contaminated with bovine waste are 

the most common sources for haemorrhagic colitis (HC) and the haemolytic uremic 

syndrome (HUS) (reviewed by Callaway et al., 2009).  

Three major virulence factors of E. coli O157:H7 have been identified including a 

pathogenicity island called the Locus of Enterocyte Effacement (LEE), Shiga toxins (Stx) and 

the plasmid (pO157) encoded enterohaemolysin gene (E-hlyA) that codes for a pore-forming 

cytolysin. E. coli O157:H7 colonization of the intestinal mucosa induces a histopathologic 

lesion defined as “attaching and effacing” (A/E) lesion characterized by localized destruction 

of brush border microvilli and intimate attachment of the bacteria to the host cell plasma 

membranes (Frankel et al., 1998; Karpman et al., 2002). The Locus of Enterocyte Effacement 

(LEE), genetically governs adhesion and subsequent pathology (Nataro and Kaper, 1998). It 
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contains the eae gene, encoding the outer membrane protein intimin and its receptor Tir 

(Translocated intimin receptor) (Jerse et al., 1990). In addition, LEE encodes proteins of the 

type III secretion system (TTSS), which is made up of an EspA multifilament needle complex, 

used for insertion of the bacterial effector proteins EspB, EspD and Tir into the host cell. 

Injection of bacterial virulence factors via the TTSS and binding of intimin to Tir leads to 

strong interaction between bacteria and host cells (Cookson and Woodward, 2003; Vilte et 

al., 2008). Virulence arises also from Shiga toxins- production, coded by Shiga toxin genes 

(stx1 and stx2), which are the primary factors responsible for the hemorrhagic aspect of the 

diarrhoea and systemic complications (HUS). Shiga toxins act as N-glycosidases, cleaving 

ribosomal RNA leading to the inhibition of host cell protein synthesis (Endo et al., 1988). 

Most adults recover from an E. coli O157:H7 infection without sequelae. Children and 

the elderly however are more likely to develop complications such as HUS and even death. 

The use of antibiotics in treatment for E. coli O157:H7 infections in humans is highly 

controversial as antibiotics might increase the risk of HUS (Safdar et al., 2002; Dundas et al., 

2005; Panos et al., 2006). Thus, treatment is largely supportive. Nonetheless, innovative 

therapies such as the use of probiotics, monoclonal antibodies or recombinant bacteria to 

neutralize or bind toxins, are currently being explored, (reviewed by Bavaro, 2009).  

Natural anti-microbial proteins, such as lactoferrin might assist in treatment. Therefore, 

we examined the effect of human and bovine lactoferrin on E. coli O157:H7. Lactoferrin (LF) 

is abundantly present in colostrum and milk and belongs to the transferrin family. Human 

colostrum contains 5.3 ± 1.9 mg/ml LF, while human milk contains 1 mg/ml LF after the first 

month of lactation. Bovine colostrum contains 1.5 mg/ml LF and the LF concentration in milk 

ranges from 0.02 mg/ml to 0.20 mg/ml (Shimazaki et al., 2000; Ochoa and Cleary, 2009). 

However, large-scale production of bovine LF is relatively easy rendering the price more 

feasible, especially for developing countries.  

Lactoferrin exhibits anti-oxidant, antiviral, anti-inflammatory, immune modulating as 

well as anti-cancer activities, and interestingly can promote the growth of probiotic bacteria 

such as Bifidobacterium (Aguila et al., 2001; Al-Nabulsi and Holley, 2007; Jenny et al., 2010; 

Tsuda et al., 2010; Xu et al., 2010). Lactoferrin’s bacteriostatic effect is due to its ability to 
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bind iron and limit its availability in the growth environment (Orsi, 2004). Binding of 

lactoferrin to the surface of Gram-negative bacteria initiates bactericidal effects by releasing 

lipopolysaccharide (LPS) from the membrane (Ellison et al., 1988; Orsi, 2004). Additional 

antimicrobial functions ascribed to LF are selective permeation of ions and due to its serine 

protease activity, disruption of the bacterial TTSS, thereby blocking bacterial adhesion 

(Ochoa et al., 2003).  

 

4.3. Material and methods 

4.3.1. Organisms and cell culture 

E. coli O157:H7 strain NCTC 12900, a well-characterized Shiga-toxin negative EHEC strain 

of human origin (Dibb-Fuller et al., 2001) was used in both bacterial growth and host cell 

attachment studies. We used this Stx negative strain for biosafety reasons, as in future 

experiments this strain was also going to be used in vivo in ruminants. The non-attaching, E. 

coli strain DH5α, extensively used in recombinant DNA technology, served as negative 

control.  

Host cell attachment in the presence and absence of LF was evaluated using the Caco-2 

human epithelial colorectal adenocarcinoma cell line, a well-established in vitro model for 

studying EHEC attachment (Izumikawa et al., 1998). Caco-2 cells were seeded into 24-well 

flat-bottom plates (Corning Inc., Corning, NY) at a density of 1 × 105 cells/well in Dulbecco's 

modified Eagle's medium (Gibco, Grand Island, NY) containing 1% L-glutamine and 5% heat-

inactivated fetal bovine serum (Gibco), without antibiotics. Cells were grown to confluence 

at 37°C in a humidified atmosphere of 5% CO2 (approximately 72 h). 

 

4.3.2. Recombinant intimin, EspA and EspB 

Plasmids pCVD468 and pCVD469 (kind gift of Dr. D. Karpman, Lund, Sweden) were used 

for recombinant expression of respectively EspA and EspB as described earlier (Karpman et 

al., 2002). Plasmid pMW103 (kind gift of Dr. A. O’Brien, Bethesda, USA) was used to express 

the Cterminal 380 amino acids of intimin-g (referred to as intimin) as previously described 

(Sinclair and O’Brien, 2002). 
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4.3.3. Lactoferrins 

Iron saturated bovine lactoferrin (bLF) (Sigma, Bornem, Belgium), with 90% purity (SDS-

PAGE) and > 85% iron saturation (as describe by manufacturer) purified from bovine 

colostrum, and iron saturated human lactoferrin (hLF) (Sigma, Bornem, Belgium), with the 

same purity and level of iron saturation, purified from human milk were used in this study. 

 

4.3.4. Effect of lactoferrins on E. coli O157:H7 growth  

E. coli O157:H7 overnight cultures were prepared by inoculating a colony into a 10-ml 

tube containing LB (Becton Dickinson, Claix, France) and incubating the tube at 37°C for 12 

to 18 h with shaking (200 rpm). Overnight E. coli O157:H7 cultures (1 ml) were pelleted by 

centrifugation (11,337 × g, 5 min) and reconstituted in 1 ml of LB medium. 

Bacteria (107 CFU/ml) were incubated at 37°C for 8 hours in LB broth supplemented with 

different concentrations (zero, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 5.0 and 10 mg/ml) of 

human or bovine LF. Selected concentrations were within the physiological range. Bacterial 

growth was monitored spectrophotometrically (OD600nm) by hour for 8 subsequent hours. At 

the same time, viable bacteria were counted by spread plating appropriate bacterial serial 

dilutions onto LB medium plates. After 8 hours, bacteria were washed three times with LB 

medium and inoculated into a 10-ml tube containing LB broth and incubating the tube at 

37°C for 5h with shaking (200 rpm). In addition, we also examined the surface of lactoferrin 

treated bacteria, one and 8 h after adding lactoferrin using scanning electron microscopy 

(SEM) as described by Vandekerckhove et al. (2009). Briefly bacterial pellet were fixed in a 

HEPES-buffered 2% paraformaldehyde-2.5% glutaraldehyde solution for 24 hours and were 

critical point dried using CO2 (CDP 030, Balzers, Sercolab), mounted on metal stubs, 

platinum- coated (JFC-1300 autofine coater, Jeol) and finally examined by a Jeal JSM 5600 LV 

SC. El. Microscope (Jeol, Germany).Thus, we studied the effect of lactoferrins on bacterial 

growth but at the same time we also defined the maximum human and bovine lactoferrin 

concentration, which did not inhibit bacterial growth. They were subsequently used in cell 

attachment assays. 
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4.3.5. Lactoferrin cytotoxicity assay 

The cell attachment assay was performed using Caco-2 cells. To check the putative 

cytotoxic effect of lactoferrins, Caco-2 cells were first seeded in 96-well plates at a 

concentration of 5 ×10 3 cells/ml and exposed for 4 h to concentrations of zero, 0.001, 0.005, 

0.01, 0.05, 0.1, 0.5, 1.0, 5.0 or 10 mg/ml human or bovine lactoferrins in culture medium. 

Incubations were performed in duplicate. Cytotoxicity, was assessed in a dose dependent 

manner by the 3- (4, 5-dimethylthiazol -2 -yl - 2, 5 diphenyltetrazolium bromide) MTT assay, 

actually measuring mitochondrial activity (Mosmann, 1983). Viable cells reduce the 

tetrazolium salt MTT to a colored water-insoluble formazan salt. After it is solubilized, 

formazan can be quantified spectrophotometrically at 585 nm. The MTT assay was 

performed as follows. Ten μL MTT (5 mg/mL, Sigma) in Hanks ballanced salt solution 

(Invitrogen) was added to each well and after 3.5 h of incubation at 37°C, the MTT solution 

was replaced by 200 μL DMSO in ethanol (1/1 v/v). The plates were agitated for 15 min on a 

platform shaker (450 RPM) to dissolve the formazan crystals and subsequently analyzed 

spectrophotometrically at both 585 nm (OD1) and 620 nm (OD2). The latter wavelength was 

used to correct for cell debris and well imperfections. Final optical densities obtained from 

formazan formation were presented as OD1 minus OD2. 

 

4.3.6. Effect of lactoferrins on E. coli O157:H7 attachment to Caco-2 cells 

The attachment efficiencies of E. coli O157:H7 in the presence and absence of 

lactoferrins were determined by performing attachments assays using the Caco-2 human 

intestinal cell line. Lactoferrins were used at the highest concentration, which did not 

decrease E. coli O157:H7 growth in LB broth.  Thus, maximum concentrations of 0.1 mg/ml 

and 0.05 mg/ml of human and bovine LF were used, respectively. For each LF, 3 additional 

lower concentrations (0.01, 0.005 and 0.001 mg/ml) were used to study concentration 

dependent effects. Effect of lactoferrins on Caco-2 cells was monitored using an Olympus 

IX81 microscope equipped with a cell*M Imaging system (Olympus). E. coli O157:H7 

overnight cultures were prepared by inoculating a colony in a single well into a 10-ml tube 

containing LB broth and incubating the tube at 37°C for 12 to 18 h with shaking (200 rpm). 
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Overnight E. coli O157:H7 cultures (1 ml) were pelleted by centrifugation (11,337 × g, 5 min) 

and reconstituted in 1 ml of DMEM. 

Confluent Caco-2 monolayers were infected with E. coli O157:H7 (107 CFU/ml) in the 

presence or absence of different concentrations of bovine or human LF and further 

incubated for 4 hours at 37°C and 5% CO2. After incubation for 4 h at 37°C, non-adherent 

bacteria were removed by washing preparations three times with PBS. Caco-2 cells were 

lysed by adding 0.25% trypsin for 15 min (37°C) and vigorous pipetting, followed by 

vortexing of the cell suspension. Adherent E. coli O157:H7 cells were enumerated by spread 

plating appropriate serial dilutions onto LB medium plates, in duplicate. The LB medium 

plates were incubated at 37°C for 24 h, and the CFU were enumerated. The attachment 

efficiency of E. coli O157:H7 was expressed as a percentage based on the CFU that was 

recovered as adherent E. coli O157:H7 cells to the control cells have not been treated with 

LF. The attachment efficiency of each isolate was measured in duplicate wells in at least 

three independent experiments (Fig 5). 

 

4.3.7. Effect of lactoferrins on TTSS proteins  

Proteolysis of E. coli O157:H7 recombinant intimin, EspA and EspB by lactoferrins was 

determined as follows. Intimin, EspA and EspB (10 µg/ml) were incubated in DMEM in the 

presence or absence of 10 mg/ml LF for 4 hours at 37°C. Subsequently, His-labelled 

fragments were identified by Western blotting using a mouse monoclonal antibody against 

histidine (Sigma, Bornem, Belgium). Lactoferrin is a member of the serine protease family. 

Therefore, as a control, recombinant proteins were also incubated with lactoferrins (10 

mg/ml) in the presence of the serine protease inhibitor phenylmethyl sulfonyl fluoride 

(PMSF), (0.25mM) (Sigma, Bornem, Belgium), for 4 h at 37°C. Proteolysis was again analysed 

by Western blotting.  

 

4.3.8. Statistics 

Statistical analysis was performed by the Proc MIXED test using SAS software S version 

8.2 (SAS Institute Inc., Cary, NC, USA). Results were presented as mean CFU ± SD and mean 
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colony forming units (CFU) ± SD for the bacterial growth studies. The model was used to 

analyze the effect of hLF and bLF in different time points on the growth of bacteria, included 

the fixed effect of LF dose, time and two ways interaction terms of fixed effects. 

For the cell adhesion study, the results were presented as mean percentage of bacterial 

attachment ± SD. The above software was used to analyze the effect of hLF and bLF on the 

reduced bacterial attachment with the repeated measurement (n# 3). The statistical model 

was used to analyze the data included the fixed effect of hLF and bLF doses in two separate 

statistical analyzes. The significant level in all the stadies was p<0.05. 

 

4.4. Results 

4.4.1. Effect of lactoferrins on E. coli O157:H7 growth 

To determine the effect of LF on E. coli O157:H7 growth, bacteria were incubated with 

several concentrations of human and bovine LF. E. coli O157:H7 growth was significantly 

inhibited during 3 to 6 hours post incubation (PI) using 0.5 to 10 mg/ml and 0.1 to 10 mg/ml 

of bovine or human LF, respectively (Fig 1 and 2).  
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 Figure1: Inhibitory effect of bovine lactoferrin on the growth of E. coli O157:H7. The results are represented as 

the mean CFU ± S.E.M. (n = 3). Error bars are only mentioned for the 0.05 mg/ml bovine lactoferrin. The data in 

the rectangles are significantly different from the control (0 mg/ml bovine lactoferrin). 
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Figure2: Inhibitory effect of human lactoferrin on the growth of E. coli O157:H7. The results are represented as 

the mean CFU ± S.E.M. (n = 3). Error bars are only mentioned for the 0.1 mg/ml human lactoferrin. The data in 

the rectangles are significantly different from the control (0 mg/ml human lactoferrin). 

 

Thus, bLF had a stronger inhibitory effect on E. coli O157:H7 growth than hLF. However, 

at 8 hours PI, all growth curves of LF-treated bacteria and untreated controls reached the 

same OD value, even at the highest LF concentration used. Human and bovine LF had no 

effect on E. coli O157:H7 growth at concentrations of 0.1 and 0.05 mg/ml, respectively.  

After 8 hours, lactoferrins were removed and bacteria were allowed to grow again in fresh 

medium. Resulting growth curves were identical to the ones of untreated controls (data not 

shown). 

The maximum non-growth-inhibitory concentrations, to be used in subsequent cell 

attachment assays were 0.1 mg/ml and 0.05 mg/ml for human or bovine LF, respectively.  

Scanning electron microscopy of bacteria incubated with lactoferrins revealed no obvious 

findings except for the presence of significant fewer bacteria when using 10 mg/ml bLF (Fig 

3).  

 

hLF 
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Figure 3: Scanning electron microscopy of E. coli O157:H7 after 8 hours incubation with 10 mg/ml bovine 

lactoferrin (left) and no lactoferrin (right).  

 

 

4.4.2. Lactoferrin cytotoxicity assay 

None of the lactoferrin concentrations tested was cytotoxic to Caco-2 cells, as compared 

to untreated control cells (Fig 4). Thus, maximum non-growth-inhibitory concentrations of 

lactoferrins could be used in a subsequent cell attachment assay.  

 

 

Figure 4: Light microscopic view of Caco-2 cells after 4 hours incubation with 0.1 mg/ml human lactoferrin (left) 

and no lactoferrin (right). Bars represent 20 μm. 
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4.4.3. Effect of lactoferrins on E. coli O157:H7 attachment to Caco-2 cells. 

Lactoferrins had no effect on Caco-2 cells (Fig 4). In the absence of LF, a mean of 4×104 

CFU/well (100%) was recovered from Caco-2 cells. In the presence of lactoferrins, E. coli 

O157:H7 attachment to Caco-2 cells decreased in a concentration dependent manner (Fig 5).  
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Figure 5: Lactoferrin significantly reduced E. coli O157:H7 attachment to Caco-2 cells. Results are represented 

as the mean values ± S.E.M (n=3). Asterisks indicate statistically significant different between lactoferrins 

treated groups and the control (0 mg/ml lactoferrin) (p < 0.05).   

 

 

Overall, hLF inhibited E. coli O157:H7 attachment more effectively, also at 0.05 mg/ml 

hLF. At the highest LF concentrations used, namely 0.1 mg/ml for hLF and 0.05 mg/ml for bLF, 

bacterial attachment reduced with 78% and 57%, respectively as compared to untreated 

bacteria (100% attachment; p < 0.05).  

 

4.4.4. Effect of lactoferrins on TSSS proteins 

Lactoferrins both reduced E. coli O157:H7 attachment to Caco-2 cells significantly at non-

growth-inhibitory concentrations indicating that other mechanisms than growth reduction 
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are involved. We examined the effect of LF on the bacterial TTSS of E. coli O157:H7. As 

shown by Western blotting, LF degraded EspA and EspB (Fig 6), but not intimin (Data not 

shown). The proteolytic effect of LF was prevented by the serine protease inhibitor. 

 

 

Figure 6: Illustration of the proteolytic effect of LF on EspA and EspB (Western blot). The degradation by LF was 

prevented by adding the serine protease inhibitor PMSF (0.25mM). Molecular mass (kilodaltons) is shown on 

the right. Lane 1: EspA; lane 2: EspA + LF; lane 3: EspA + LF + PMSF. Lane 4: EspB; lane 5: EspB + LF; lane 6: EspB 

+ LF + PMSF. 

 

 

4.5. Discussion 

Even though the use of antibiotics for treating E. coli O157:H7 infections in humans is 

typically avoided and remains controversial, increasing antibiotic resistance in this bacterium 

is a concern. Several studies already demonstrated that antibiotic resistant E. coli O157:H7 

could be isolated from humans, cattle, feed and even form surface waters (Schroeder et al., 

2002; Fincher et al., 2009). Thus, there are several reasons for developing new anti-microbial 

strategies for treatment of human infections and preventing E. coli O157:H7 infections in 

cattle or at least reduce faecal shedding significantly in these animals. At present, we 

examined the effect of human and bovine lactoferrin on E. coli O157:H7 growth and on 

attachment to human cells. Growth inhibition was more pronounced when using bLF. 

Groenink et al., (1999) observed the same. Bovine LF inhibited the growth of S. aureus, S. 

mutans, S. sobrinus, S. salivarius as well as of E. coli, K. pneumoniae, P. intermedia, P. 

gingivalis, and F. nucleatum, while hLF only inhibited growth of S. mutans, S. salivarius and P. 

intermedia (Groenink et al., 1999).  Different antimicrobial activities could be due to more 
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efficient bLF binding to E. coli O157:H7. Naidu et al., (1991) studied the binding of hLF and 

bLF to 169 E. coli strains (ETEC and EHEC) isolated from human intestinal infections and 

found large variations in the range of 3.7 to 73.4% and 4.8 to 61.6% for hLF and bLF, 

respectively (Naidu et al., 1991). On the other hand, result could also be attributed to 

structural and functional differences between bovine and human LF. The primary structure 

of bLF is 69% identical to hLF (reviewed by Baker and Baker 2005). However, the 

antimicrobial activity resides mainly in the basic N1-domain of lactoferrins containing two 

stretches, designed lactoferricin and lactoferrampin (reviewed by Baker and Baker, 2009). 

Others observed the same. Lactoferricin (25-residue cationic disulphide cross-linked peptide 

of lactoferrins) of bovine origin was more active on E. coli (ATCC 25922) and S. aureus (ATCC 

25923) than lactoferricins of human, caprine and murine origin (Vorland et al., 1999). Anti-

microbial properties of bovine lactoferrampin are also stronger than for their human 

counterparts (Haney et al., 2009).  

Nevertheless, none of the lactoferrin concentrations used in our study gave 100% killing. 

To our knowledge 100% killing has only been observed when using lactoferricin or 

lactoferrampin, which are more potent bacterial killers than the larger protein. Bovine 

lactoferricin and lactoferrampin are normally both internalized within few minutes in E. coli 

K12, concurrently with disrupting membrane integrity and killing of E. coli (Van der Kraan et 

al., 2005). However, in the present study, CFU’s for controls and treated bacteria were 

statistically the same till 2 h and SEM revealed no obvious surface changes, which means 

that bacterial killing by lactoferricin or lactoferrampin is not important in our experiment.  

Growth inhibition by lactoferrins was significant (at 0.1 to 10 mg/ml) from 3 to 6 h post 

incubation. Thus, it takes time to notice a significant anti-microbial effect, which was also 

observed by Ellison and Giehl, (1991) and Kawasaki et al. (2000). This could be due to the 

relatively slow interaction of LF with bacterial LPS, known to result in bacterial killing. 

Bacterial outer membranes are usually asymmetric membranes containing the polyanionic 

glycolipid lipopolysaccharide (LPS) in the outer leaflet and phospholipids in the inner leaflet. 

To stabilize the anionic surface of the outer membrane, the LPS is partially neutralized by 

divalent cations, such as Mg2+ and Ca2+. Cationic peptides, such as LF derived anti-microbial 
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peptides can interact with the divalent cation-binding sites of LPS, thereby distorting the 

integrity of the outer membrane (Chapple et al., 2004).  

However, only at high LF concentrations (1.0, 5.0 and 10 mg/ml), bacterial growth was 

completely arrested for 1 hour. Thus, at sublethal concentrations, human and bovine 

lactoferrins acted bacteriostatic on E. coli O157:H7. The bacteria recovered and started to 

grow again. Chapple et al., (2004) observed the same while studying the association of 

human lactoferricin peptides with E coli NCTC 8007 serotype O111. Thus, other events are 

maybe required for lactoferrins to be highly effective and simply coating the bacterial 

surface is not adequate. On the other hand, E. coli O157:H7 might also have developed a 

bacterial defence system leading to blockage of lactoferrins. Maybe, this explains why low 

and high (1, 5 and 10 mg/ml) LF concentrations had no effect or only a temporary growth 

inhibitory effect, respectively. Blockage of LF could be due to LPS-mediated shielding of 

porins from the LF interaction (Naidu et al., 1991) and/or to an interaction with a bacterial 

surface protein, as described by Senkovich et al. (2007) for the pneumococcal surface 

protein A (PspA). Two helices of PspA bind in grooves in the human lactoferrin bactericidal 

domain and make specific interactions with basic residues from helix 1 and the N-terminus, 

thereby blocking LF activity (Baker and Baker, 2009). However, further research is needed to 

explore this hypothesis. 

Lactoferrin and the avian homologue ovotransferrin impair bacterial type III secretion 

system function in respectively enteric Gram-negative pathogens, reviewed by Ochoa and 

Cleary (2009) and the avian respiratory pathogen Chlamydophila psittaci (Beeckman et al., 

2007), thereby decreasing their ability to adhere and invade host cells. Both human and 

bovine lactoferrin inhibited E. coli O157:H7 adherence to Caco-2 cells in a dose-dependent 

manner. Overall, the anti-adhesive effect of hLF was higher than for bLF. This could be due 

to the fact that hLF was more effective in destroying E. coli O157:H7 virulence factors 

required for attachment to human cells. Beeckman et al. (2007) described a similar finding. 

Ovotransferrin was namely more effective than human and bovine lactoferrin in preventing 

attachment and entry of Chlamydophila psittaci in avian macrophages (Beeckman et al., 

2007). On the other hand, uptake of bLF in Caco-2 cells might be more effective than for hLF 

as demonstrated by Shin et al. (2008), studying the interaction between human and bovine 
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LF and intelectin, a lectin present on the brush border of intestinal cells. So, internalized bLF 

could no longer prevent bacterial attachment to host cells.  

Ochoa et al., (2003) demonstrated the effect of human lactoferrin on enteropathogenic 

E. coli (EPEC) (Ochoa et al., 2003). Lactoferrin blocked EPEC-mediated actin polymerization in 

HEp2 cells and blocked EPEC-induced hemolysis. The mechanism of these actions was 

lactoferrin-mediated degradation of Type III secreted proteins necessary for bacterial 

contact and pore formation, particularly EspB. Lactoferrin is also responsible for the 

degradation of the Shigella TTSS proteins IpaB and IpaC (Gomez et al., 2003). In our study, 

lactoferrin degraded recombinant EHEC EspA and EspB, which indeed could contribute to its 

antimicrobial activity. 

In conclusion, the direct antibacterial effect of bLF on E. coli O157:H7 was stronger than 

for hLF. Nevertheless, both lactoferrins acted bacteriostatic even at high LF concentrations 

(10 mg/ml), suggesting blocking of LF activity by a yet unknown bacterial defence 

mechanism. Additionally, both lactoferrins significantly inhibited E. coli O157:H7 attachment 

to Caco-2 cells. However, hLF was more effective than bLF. This is maybe due to more 

efficient binding of bLF to intelectin on human enterocytes and subsequent uptake and thus 

removal of bLF from the extracellular environment. Inhibition of attachment was at least 

partly due to the catalytic effect of lactoferrins on the type III secreted proteins EspA and 

EspB. Further research is needed towards the use of LF for supporting human treatment 

and/or for preventing E. coli O157:H7 infections in ruminants. 
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5.1. Abstract 

The present study investigates the potential use of lactoferrin, a natural antimicrobial-

immunomodulatory protein of milk, for preventing intestinal E. coli O157:H7 colonization in 

sheep. Sheep intestinal explants of ileal sections with and without Peyer’s patches and of 

colon were infected with E. coli O157:H7 in the presence or absence of lactoferrin. At the 

same time, IL-8 and TNF-α gene expression was investigated by real-time RT-PCR. In the 

absence of lactoferrin, E. coli O157:H7 preferably attached to ileal explants with Peyer’s 

patches as compared to ileal explants without Peyer’s patches or to colon explants. 

Attachment to the latter two explants was not significantly different. Interleukine-8 gene 

expression was significantly upregulated following bacterial attachment to ileal explants with 

and without Peyer’s patches. On the other hand, tumor necrosis factor-α gene expression 

was only significantly upregulated following bacterial attachment to ileal explants with 

Peyer’s patches. Lactoferrin (0.05 mg/ml) significantly inhibited E. coli O157:H7 attachment 

to all explants. Attachment inhibition gave reduced IL-8 and TNF-α gene expression levels, 

although IL-8 and TNF-α gene expression was still significantly upregulated as compared to 

non-treated infected control explants or to treated non-infected control transplants. Results 

could contribute to the development of a preventive strategy for diminishing E. coli O157:H7 

infections in ruminants, with the purpose of reducing food-borne EHEC infection in humans. 

 

5.2. Introduction 

Enterohemorrhagic Escherichia coli (EHEC) are emerging foodborne pathogens leading to 

HC and HUS characterized by thrombocytopenia, hemolytic anemia, and kidney lesions and 

to hemorrhagic colitis in humans. The majority of EHEC infections are caused by the serotype 

O157:H7, a member of the Shiga-toxin producing E. coli (Nataro and Kaper, 1998), frequently 

isolated from ruminant feces. In ruminants, this microorganism resides in the gut without 

causing apparent illness (Besser et al., 1999). Many human E. coli O157:H7 infections 

originate, either directly or indirectly from exposure to ruminant’s feces. Knowledge on the 

pathogenesis of EHEC infections in ruminants is crucial to control and/or prevent faecal 

shedding. However, less is known regarding the pathogenesis and of EHEC and in particular E. 

coli O157:H7 infection. 
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In humans, E. coli O157:H7 colonization generally results in a striking histopathological 

future known as the attaching and effacing (A/E) lesion characterized by an actin-rich 

pedestal formed by the host cell around the bacteria, destruction of brush border microvilli, 

and intimate adhesion of EHEC to the enterocyte surface. Bacterial genes, expressed from a 

chromosomal pathogenicity island named locus for enterocyte effacement (LEE), are 

essential for adherence. The attachment factor intimine, encoded by the eae gene, binds to 

Tir and nucleolin on the host cell membrane. Tir, a bacterial effector protein secreted though 

the bacterial type III secretion system of the LEE locus, is inserted into the host cell 

membrane to serve as a receptor for intimin (Hartland et al., 2000; Wolff et al., 1998).  

 Milk feeding protects young mammals from intestinal infections. Protection is attributed 

to multiple anti-microbial, anti-inflammatory and immunoregulatory milk components 

(Morrow et al., 2004). Lactoferrin (LF) is the main multifunctional protein in milk. It is also 

present in mucosal secretions like tears and saliva and in surface fluid of vaginal and 

respiratory tissues (Beisswenger and Bals, 2005). Anti-microbial functions ascribed to 

lactoferrin or its peptides include iron sequestration, destabilization of the outer membrane 

of Gram-negative bacteria through binding of bacterial lipopolysaccharides (LPS), selective 

permeation of ions, modulation of bacterial entry into host cells through host gene 

regulation and disrupting the bacterial type III secretion system (Arnold et al., 1977, Ashida 

et al., 2004, Ellison, 1994, Rossi et al., 2002, Orsi, 2004).  

Previously, we demonstrated the direct bactericidal activity of bovine and human 

lactoferrin on E. coli O157:H7. Moreover, bovine and human lactoferrin inhibited E. coli 

O157:H7 attachment to HEp-2 (human laryngeal carcinoma cells) and Caco-2 cells (human 

epithelial colorectal adenocarcinoma cells). Attachment inhibition was more pronounced 

when using bovine lactoferrin and was attributed to proteolysis of EspA and EspB, two 

structural proteins of the EHEC type III secretion system (TTSS) (Atef Yekta et al., 2010).  

In the present study, we investigated whether bovine lactoferrin can prevent E. coli 

O157:H7 colonization of sheep intestinal explants. Concurrently, we examined the 

expression of sheep IL-8 (CXCL8), one of the major mediators of the local inflammatory 

response, and of sheep TNF-α, a cytokine involved in systemic inflammation and member of 

a group of cytokines stimulating the acute phase reaction. Lactoferrin can bind and 

sequester bacterial LPS, one of the most powerful bacterial virulence factors in terms of pro-
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inflammatory properties. Thus, lactoferrin could prevent pro-inflammatory pathway 

activation, sepsis and tissue damage. However, the interplay between lactoferrin and LPS is 

complex, and may result in different outcomes, including both suppression of the 

inflammatory response and immune activation (Puddu et al., 2010). The outcome of this 

interplay is critically relevant in the development of a LF-based prophylactic strategy for 

ruminants. Reduction in carriage in ruminants is likely to lower the incidence of human 

infections.  

 

 

5.3. Material and methods 

 

5.3.1. Bacterial strain 

NCTC12900, a well characterized Shiga toxin (Stx) negative, nalidixic acid (Nal) resistant E. 

coli O157:H7 strain was kindly provided by Prof. M. Woodward (Woodward et al., 2003). A 

Stx negative strain was used since this allowed us to perform experiments in a BSL2 

laboratory. Bacteria were grown overnight in Luria Bertani broth at 37°C while shaking (200 

rpm), centrifuged (550 g, 10 min, 4°C) and subsequently re-suspended in sterile phosphate-

buffered saline (PBS) at a concentration of 106 CFU. 

 

5.3.2. Lactoferrin 

Bovine lactoferrin (bLF; Sigma, Bornem, Belgium), originated from bovine milk. The purity  

(SDS-PAGE) and iron saturation (manufacturer information) were 90% and > 85%, 

respectively. Lactoferrin was iron-saturated to avoid the occurrence of an anti-EHEC effect 

by iron-sequestration. This allowed the examination of direct anti-EHEC effects of bLF. 

 

 

5.3.3. Generation of intestinal tissue explants 

Sheep intestinal tissue explants were generated as previously described (Baehler et al., 

2000). Briefly, 4 months-old sheep (n = 3) were euthanized to collect ileal segments with and 

without Peyer’s patches (ileum PP and ileum, respectively) as well as segments of the distal 

colon. Intestinal segments (1 cm2) were rinsed using cold (4°C) sterile PBS and subsequently 
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immersed in cold (4°C) RPMI 1640 medium (Invitrogen, Merelbeke, Belgium) for 30 min. 

Tissue explants were deposed, mucosal side up, on biopsy foam pads (Fisher Scientific 

Company, USA). All biopsy foam paths were placed individually in 6-wells tissue culture 

plates and submersed in 5 ml RPMI 1640 medium/well. Plates were incubated at 37°C and 

5% CO2. All animal procedures were in accordance with the animal welfare regulations of the 

Veterinary Ethical Committee of Ghent University.  

 

 

5.3.4. Inoculation and examination of tissue explants 

To determine the anti-adhesive effect of bLF, the highest possible concentration with no 

effect on E. coli O157:H7 growth, as determined in previous experiments (0.05 mg/ml) (Atef 

Yekta et al., 2010) was added to each submersed biopsy foam pad. Subsequently, E. coli 

O157:H7 (106 CFU/well) were added. For each sheep, an equal number of uninfected 

explants and infected explants without the addition of bLF served as controls. After 6 h, 

wells were washed three times to remove non-adherent bacteria. Explants were cut in half, 

using one part for bacterial culture and the other for scanning electron microscopy (SEM). 

Parts for bacterial culture were immediately examined by direct plating according to the 

method described by Laegreid et al., (1999). Briefly, explant parts were individually 

homogenized (Lab Blender - Stomacher, Labequip, Canada) in modified tryptone soy broth 

(Bio Rad, Eke, Belgium) containing novobiocin (20 mg/ml) (Sigma, Bornem, Belgium). 

Subsequently, ten-fold dilution series of all individually homogenized tissue explant parts 

were plated onto cefixime-tellurite sorbitol MacConkey agar supplemented with nalidixic 

acid (15 µg/ml) (Nal CT-SMAC plates, MERCK, Darmstadt, Germany). Plates were incubated 

at 37°C for overnight. EHEC identification was confirmed by the latex agglutination test 

(Oxoid, Ltd, Basingstoke, UK). Counted colony numbers were log10 transformed. 

Explant parts for SEM were submersed (24 h) in HEPES-buffered 2% paraformaldehyde 

and 2.5% glutaraldehyde (VWR, Brussels, Belgium). Scanning electron microscopy was 

performed as described by Vandekerckhove et al. (2009). Briefly, post-fixation was 

performed in osmium tetroxide (1%) (EMS, Hatfield, USA) for 2 h and dehydrated in 

ascending grades of alcohol. Hereafter, the specimens were critical point dried with CO2 

(CDP 030, Balzers, Sercolab, Germany), mounted on metal stubs, platinum-coated (JFC-1300 
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Auto Fine Coater, Jeol, Germany) and finally examined using a JSM 5600 LV scanning 

electron microscope (Jeol).  

 

5.3.5. Cytokine expression analysis 

Total RNA was extracted from all explants at 6 h post infection using the RNeasy Mini 

kit (Qiagen, West Sussex, UK) according to the manufacturer’s instructions, including the 

column DNaseI digestion step to remove contaminating genomic DNA. RNA integrity was 

assessed by visualization (UV transillumination) of amplified 18S and 28S rRNA bands on 

agarose gels. Fifteen µl of RNA from each sample was reverse-transcribed into cDNA using 

the High-Capacity cDNA Archive Kit (Applied Biosystems, Warrington, Cheshire, UK) 

according to the manufacturer’s instructions. cDNA was stored at -20°C until use 

(Wattegedera et al., 2010).The quality of the cDNA was tested (Nano Drop ND-1000, Thermo 

Fisher, Belgium). cDNA was subsequently used for real time qPCR Quantitative PCR’s for IL-8 

and TNF-α were performed as described by Leuteneger et al. (2000) and Budhia et al. (2006), 

respectively. Primers and probes for IL-8, TNF-α and for the housekeeping gene 

glyceraldehyde 3-phosphate dehydrogenase (GADPH) are mentioned in Table 1 (Montagne 

et al., 2001; Tudor et al., 2009). Amplification was achieved by use of the TaqMan Universal 

PCR Master Mix (Applied Biosystems). Each sample (5 µl) was PCR amplified (in triplicate) 

using thermal cycling conditions of 50°C for 2 min, 95°C for 10 min and 40 cycles of 95°C for 

15 s and 60°C for 1 min. Cycle threshold (Ct) values were converted into template quantities 

using the ABI Prism 7000 SDS software 1.2.3. Relative quantification was performed as 

described by Wattegedera et al. (2010), using the comparative cycle threshold (CT) method. 

The method measures the relative difference in IL-8 and TNF-α gene expression for EHEC 

infected and non-infected explants, and for EHEC infected explants in the presence or 

absence of bLF. Explants submersed in medium alone served as calibrator. The cytokine gene 

expression CT values were normalized against the GADPH CT values for each sample, giving 

∆CT values. The ∆∆CT was calculated by subtracting the calibrator ∆CT from each sample ∆CT, 

and the fold-change determined by the equation 2-∆∆C
T (Cikos et al., 2007).  
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Table 1: Sequence of primers and probes for ovine IL-8, TNF-α and GADPH 

Primer or Probe Sequence (5΄-3΄) Length 

(bp)
 

Accession 

No.
 

Ref. 

Ov TNF-α F4 GGTGCCTCAGCCTCTTCTC 136 X56756 Budhia et al. (2006) 

Ov TNF-α R3 GAACCAGAGGCCTGTTGAAG    

Ov TNF-α probe TGGTTCAGGAGCCACCACG    

Ov IL-8.177f CACTGTGAAAAATTCAGAAATCATTGTTA 113 S74436 Leutenegyer et al. (2000) 

Ov IL-8.282r CTTCACCAAATACCTGCACAACCTTC    

Ov Il-8 probe AATGGAAACGAGGTCTGCTTAAACCCCAG    

Ov GAPDH F1 GGCGTGAACCACGAGAAGTATAA 120 AF030943 Montagne et al., (2001) 

Ov GAPDH R1 CCCTCCACGATGCCACCGT    

Ov GAPDH probe CACTGTCCACGCCATCACTGCCA    

 

 

5.3.6. Statistical analysis 

To analuze the data with repeated measures, the MIXED procedure of the SAS software 

program (version 8.2, SAS Institute Inc, USA) was used. The statistical model used to analyze 

the data included the fixed effect of animal (sheep), tissue, treatment, three ways 

interaction terms of fixed and the residual errors. The significant difference level was set as p 

< 0.05. 

 

5.4. Results 

5.4.1. Attachment of E. coli O157:H7 to ovine intestinal explants  

First, we determined the amount of bacteria recovered from 3 ileum PP, 3 ileum and 3 

colon explants per sheep. For each sheep (A, B and C), the amount of bacteria isolated within 

the group of ileum PP, ileum and colon explants was statistically the same. The highest 

number of E. coli O157:H7 (1.9 x 108) was recovered from an ileum PP explant of sheep A, 

while the lowest number of E. coli O157:H7 (1.17 x 107) was obtained of an ileum explant of 

the same sheep. For all sheep, the number of E. coli O157:H7 recovered from ileum PP 

explants was significantly higher than those recovered from ileum or colon explants (p> 

0.001). Attachment to ileum and colon explants did not significantly differ, although E. coli 
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O157:H7 was found more often on colon explants (Figure 2). Results were confirmed by SEM, 

as we observed differences in the presence of well-developed EHEC micro-colonies, which is 

typical for intimately attached E. coli O157:H7 (Figure 1).  

 

 

 

Figure 1: Scanning electron microscopy of sheep intestinal explants (ileal Peyer’s patches) infected with E. coli 

O157:H7. Arrows: E. coli O157:H7 colonization. 

5.4.2. Lactoferrin reduces E. coli O157:H7 attachment to ovine intestinal explants 

Bovine lactoferrin significantly reduced E. coli O157:H7 attachment to ileum PP, ileum 

and colon explants, as compared to the controls for each tissue (p< 0.05) (Figure 2).  
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Figure 2: Mean number of E. coli O157:H7 attached to intestinal explants. Results present mean values for ileal 

Peyer’s patches, ileum and colon explants of 3 sheep. Bovine lactoferrin significantly inhibited E. coli O157:H7 

attachment to all intestinal explants. Error bars: SEM. * represents significant difference in bacterial 

attachment to Ileal peyer’s patches (inoculated with bacteria) compare with colon and Ileum. P< 0.05. + 

represents significant difference in bacterial attachment to Ileal peyer’s patches inoculated with EHEC compare 

with Ileal peyer’s patches inoculated with the bacteria and incubated with LF. 

*  + 
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5.4.3. Cytokine gene expression in sheep intestinal explants  

E. coli O157:H7 attachment resulted in an upregulation of IL-8 gene expression in ileum 

PP and ileum explants of all sheep (p< 0.05) (Fig 3) and in an upregulation of TNF-α gene 

expression in ileum PP explants of all sheep. 

E. coli O157:H7 attachment did not significantly change mean cytokine expression levels in 

the colon, although the level of IL-8 and TNF-α expression in the colon explant of one sheep 

significantly increased (data not shown). 

We also examined the effect of bLF on IL-8 and TNF-α gene expression induced by E. coli 

O157:H7 attachment to intestinal explants. Lactoferrin itself seemed to have no effect on IL-

8 or TNF- α gene expression at 6 h post infection, as ∆∆CT values of all non-infected bLF-

treated controls and all non-infected, non-bLF treated controls were statistically the same. 

However, bLF significantly inhibited E. coli O157:H7 induced expression of TNF-α and IL-8 at 

6 h post infection, as shown by the ∆∆CT values for E. coli O157:H7 infected explants, non-

bLF treated explants and for infected, bLF treated explants (Figure 3). 
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Figure 3: Expression of IL-8 (a) and TNF-α (b) genes in sheep intestinal explants. BAC: E. coli O157:H7. B+LF: E. 

coli O157:H7 + Lactoferrin. LF: Lactoferrin, no E. coli O157:H7. 0: explants + culture medium. E. coli O157:H7 

infection of intestinal explants significantly up-regulated IL-8 and TNF-α gene expression. Bovine lactoferrin (LF) 

significantly suppressed the expression of E. coli O157:H7 induced IL-8 and TNF- α genes. *: Significant 

difference in the expression of cytokine compare with non-infected, non-bLF treated control. +: Significant 

difference in the expression of cytokine in the presence or absence of bLF in E. coli O157:H7 infected explants. 

Error bars: SEM. P< 0.05 

 

5.5. Discussion 

Previously we have shown that bLF inhibited E. coli O157:H7 adhesion to Caco-2 cells 

(Atef Yekta et al., 2010). In the present study we examined the effect of bLF on E. coli 
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O157:H7 attachment to sheep intestinal tissues using an ex vivo model. Indeed, bLF 

significantly reduced E. coli O157:H7 attachment to epithelial surfaces of sheep intestinal 

explants. Moreover, bLF significantly reduced E. coli O157:H7-induced upregulation of IL-8 

and TNF-α genes in sheep intestinal explants.  

E. coli O157:H7 attached preferably to ileum PP explants. This appears to agree with a 

previous report wherein Girard et al. (2007) showed variation in tissue tropism for E. coli 

O157:H7 attachment using calf intestinal explants. In their study, E. coli O157:H7 attached 

significantly better to terminal ileum explants as compared to colon explants. Similar was 

observed in a study using human intestinal explants, in which E. coli O157:H7 strongly 

attached to ileal Peyer’s patches (Philips et al., 2000). However, we have shown that E. coli 

O157:H7 adhesion to ovine intestinal tissue is not limited to the distal part of the small 

intestine, but includes regions with normal absorptive epithelium.  

Cantey et al. (1989), infecting rabbits with EPEC, showed that EPEC initially colonized 

Peyer’s patches and afterwards spread to other intestinal parts. Since we also found more 

attachment to ileal Peyer’s patches, we suggest that colonization of the other intestinal 

regions by E. coli O157:H7 might be a subsequent event following colonization of ileal 

Peyer’s patches. However, to proof this hypothesis, we have to exam bacterial attachment at 

earlier stages, before 6 h post infection. The specificity of this initial adherence is uncertain 

as Peyer’s patches are considered to be sites of antigen sampling. However, M cells in the 

epithelial surface above the ileal Peyer’s patches express β-1 integrins, a receptor for intimin 

γ. This could explain the selective attachment of E. coli O157:H7 to ileal Peyer’s patches. The 

infective dose for E. coli O157:H7 is very low (102 CFU/ml) (Cornick et al., 2004) which is 

possibly due to selective attachment and colonization of Peyer’s patches allowing 

subsequent spread to lower intestinal parts. Unfortunately, we were unable to examine a 

possible spread, as we could not monitor E. coli O157:H7 attachment as the cells died after 

more than 6 h post infection.  

In our previous study we showed that a non-cytotoxic, non bactericidal concentration of 

bLF inhibited E. coli O157:H7 attachment to Caco-2 cells and this inhibition was at least 

partly due to the proteolytic effect of bLF on EspA and EspB, both secreted by the E. coli TTSS 

(Atef Yekta et al., 2010). Results generated by use of our ex vivo explant model suggest that 

this mechanism might also be active in sheep.  
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In the second part of our study we investigated the expression of IL-8 and TNF-α genes in 

sheep intestinal explants at 6 h post E. coli O157:H7 infection in the presence or absence of 

bLF. We were the first to provide evidence that an E. coli O157:H7 infection increased both 

sheep IL-8 and TNF-α gene expression in ileal Peyer’s patches and ileal epithelium.  

Bacterial LPS is a strong mediator of the inflammatory response. Although Cario et al. 

(2000) reported that LPS activates NF-κB probably through Toll-like receptors (TLR-4), 

activation depends on the presence of serum soluble factors including CD14 and BLP (Cario 

et al., 2000). Since our experiments were conducted in serum-free medium, we speculated 

that LPS is not the major player in the observed pro-inflammatory response following E. coli 

O157:H7 infection of sheep intestinal explants, even if LPS is a key activator of subepithelial 

macrophages. Recently it has been shown that other bacterial factors including flagellin and 

TTSS proteins mediate the pro-inflammatory responses of E. coli infected cells by activating 

the NF-κB signaling pathway (Steiner et al., 2000; De Grado et al., 2001). In agreement with 

our results, Zhou et al., (2003) showed that E. coli O157:H7 lacking Stx is able to activate IL-8 

expression and they suggested that additional factors like flagellin and TTSS were 

responsible for IL-8 up-regulation following E. coli O157:H7 infection. 

Previously, we have shown that bLF exerts a proteolytic effect on the E. coli O157:H7 

TTSS proteins EspA and EspB (Atef Yekta et al., 2010). Although the lower E. coli infection 

rate in the presence of bLF could simply explain the reduction of cytokine expression in bLF 

treated samples, the above findings suggests additional mechanisms, such as the inhibition 

of the NF-κB pathway, for down-regulating IL8 and TNF-α gene expresssion by bLF (Haversen 

et al., 2002). Lactoferrin itself did not stimulate the intestinal tissues and in most of the bLF 

treated explants even a slight suppression of cytokine gene expression, compare with non-

treated controls, was observed. 

In conclusion, the present study shows that: 1) E. coli O157:H7 preferentially binds to 

ileal Peyer’s patches of sheep, 2) binding is inhibited by bLF, 3) E. coli O157:H7 attachment 

induces IL-8 and TNF-α gene expression and the gene expression levels correlate with the 

amount of bacteria attached to the sheep intestinal explants, 4) bLF inhibits E. coli O157:H7 

induced IL-8 and TNF-α gene expression. Our data provide insights regarding the intestinal 

immune response triggered by an E. coli O157:H7 infection in ruminants. Moreover, the 
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present study implies that bLF could reduce E. coli O157:H7 colonization and subsequent 

excretion in ruminants diminishing the risk for E. coli O157:H7 transmission to humans.  
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6.1. Abstract 

The majority of human Escherichia coli O157:H7 infections are the result of exposure to 

ruminant’s feaces, therefore reducing E. coli O157:H7 excretion by ruminants could play a 

key role in reducing human infections. 

The present study investigates the potential of bovine lactoferrin, a natural antimicrobial-

immunomodulatory protein of milk, to prevent colonization and excretion of E. coli O157:H7 

in sheep. The effect of two different doses of lactoferrin (1.5 g or 0.15 g per 12 hours) was 

evaluated on colonization of sheep intestine and faecal excretion of the NCTC12900 strain. 

Hereto, lactoferrin was orally administered to sheep during 30 consecutive days and sheep 

were experimentally infected with E. coli O157:H7 on the second day of the lactoferrin 

administration. Interestingly, both lactoferrin dosages significantly reduced the number of E. 

coli O157:H7 in faeces as well as the duration of faecal excretion. The high dose group 

showed a significantly higher antibody response against EspA and EspB, two structural 

proteins of the bacterial type III secretion system (TTSS), than the infection control. The 

results suggest that oral lactoferrin administration could be used to reduce persistent 

colonization of sheep with E. coli O157:H7.  

 

6.2. Introduction 

Enterohemorrhagic Escherichia coli (EHEC) are zoonotic pathogens associated with 

haemorrhagic colitis (HC) and haemolytic uremic syndrome (HUS) in humans (Mead and 

Griffin, 1998). The main EHEC serotype responsible for these clinical signs is E. coli O157:H7 

(Nataro and Kaper, 1998). Ruminants are the main reservoir of this microorganism which 

normally resides in their gut without causing apparent illness (Besser et al, 1999). Many 

human E. coli O157:H7 infections originate, either directly or indirectly via contaminated 

food or water, from exposure to ruminant’s feces. Therefore a key step towards protecting 

humans from E. coli O157:H7 infection could be the control and/or prevention of E. coli 

O157:H7 colonization of the ruminant’s intestine. Several approaches have been suggested 

with variable success including vaccination, probiotic and antibiotic treatment and even diet 

management (Molbak et al., 2002; Potter et al., 2004; Callaway et al., 2004, 2009). Although 

some of these approaches seem promising, non of them stop bacterial excretion for a 100 %.  
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Milk feeding protects young mammals from intestinal infections. This protection is 

attributed to the multiple anti-microbial, anti-inflammatory and immunomodulatory factors 

present in milk of which lactoferrin (LF) is one of the more important (Gallois et al., 2007; 

Walker, 2010). This molecule which is also present in mucosal secretions like tears, saliva 

and vaginal and airway surface fluid (Travis et al., 1999; Gonzalez-Chavez et al., 2009), is 

involved in host defense against pathogenic bacteria, fungi and protozoa, both directly and 

through regulation of the inflammatory response (Vorland, 1999;  Tian et al., 2010). 

Previously we showed that lactoferrin reduces E. coli O157:H7 growth and its attachment to 

epithelial cells in vitro (Atef Yekta et al., 2010). This reduction is at least partly due to a 

proteolytic effect of lactoferrin on the bacterial type III secretion system (TTSS) proteins such 

as EspA and EspB. This effect has also been shown on other bacteria (EPEC) (Ochoa et al., 

2003; Ashida et al., 2004). The potential for using oral lactoferrin in animals has been 

validated with studies that showed no toxic effect attributed to oral delivery of lactoferrin in 

rats (Appel et al., 2006). 

Many studies on the control of E. coli O157:H7 focus on cattle, but sheep are also an 

important well-established model (Vande Walle et al., 2010 b; Woodward et al., 2003). The 

aim of the present study was to investigate the potential of lactoferrin to prevent E. coli 

O157:H7 excretion in a sheep model.  

6.3. Materials and methods 

6.3.1. Bacterial inoculum 

NCTC12900, a well characterized Shiga toxin (Stx) negative, nalidixic acid (Nal) resistant E. 

coli O157:H7 strain was kindly provided by Prof. M. Woodward (Woodward et al., 2003). A 

Stx negative strain was used since this allowed us to perform experiments in A2 isolation 

units. Bacteria were grown overnight in Luria Bertani broth (LB) at 37°C while shaking (200 

rpm), centrifuged (550 g, 10 min, 4°C) and subsequently re-suspended in sterile phosphate-

buffered saline (PBS) to a concentration of 1010 CFU.  

6.3.2. Lactoferrin 

Non-iron-saturated bovine lactoferrin (Ingredia nutritional, France) with 90% purity was 

used. 

6.3. 3. Animals 
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Seventeen 3-month-old male sheep (Belgian cross-breed, Zootechnical Centre, Leuven, 

Belgium) were used in this study. The faeces of these sheep were free of E. coli O157:H7 as 

demonstrated by immunomagnetic separation (IMS) and culturing (procedure described 

further). Animals were seronegative for antibodies against EspA, EspB and intimin, as 

determined by ELISA (described further). Selected animals were allowed to acclimatise for 

one week after arrival in our animal facility. Sheep were housed in groups of 8, 7 and 2 

animals per pen and received grain-based pellets and water ad libitum.  

6.3.4. Experimental procedures 

Five animals received lactoferrin at a high dose (1.5 g per 12 hours) (high LF group) and 

three animals at a 10 times lower dose (0.15 g per 12 hours) (low LF group) for 30 days. 

Lactoferrin was given orally in a volume of 10 ml sodium bicarbonate buffer (10%) via a 

syringe allowing the sheep to drink the solution. As control, seven animals received sodium 

bicarbonate buffer (Infection control group) and two animals received the high lactoferrin 

dose (LF control group) (Table 1). The LF control group allowed us to see if: a) no 

spontaneous or cross infection occurred, b) no antibodies appeared against the E. coli 

O157:H7 or c) visual side effects of the lactoferrin administration occurred.  

After 1 day of lactoferrin administration the first 3 groups received 1010 E. coli O157:H7 

in 10 ml PBS orally for 2 consecutive days, whereas the LF control was not infected. Excretion 

of E. coli O157:H7 was monitored twice a week. Blood was collected weekly from the vena 

jugularis to test for serum antibodies against intimin, EspA and EspB. All animal experiments 

were approved by the ethical committee of the Faculty of Veterinary Medicine (approval 

2009/074). 

Table 1: Experimental set-up 

 

G r o u p Number of sheep 

 

E. coli O157:H7 

 

Lactoferrin 

high LF
 

5 + 

 

3 g/day day: (high dose) 

 

low LF 3 + 

 

0.3 g/day: (low dose) 

 

Infection control 7 + - 

LF control 2 - 

 

3 g/day day: (high dose) 
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6.3.5. Monitoring of E. coli O157:H7 excretion  

Faecal excretion of E. coli O157:H7 was monitored as described by Vande Walle et al. 

(2010 a), who formerly demonstrated the reproducibility of the E. coli O157:H7 excretion 

pattern in this sheep model. Briefly, 10 g faeces were diluted in modified tryptone soy broth 

(Oxoid Ltd, Hanst, UK) supplemented with 20 mg/ml novobiocin and subsequently 

homogenized using a stomacher. Ten-fold serial dilutions were spread-plated onto 

MacConkey agar plates supplemented with sorbitol, cefixime and tellurite and Nal (NalCT-

SMAC) (MERCK, Darmstadt, Germany). Remaining broth was enriched for 6h at 42°C and 

subjected to immuno-magnetic separation (IMS) with O157 Dynabeads® (Invitrogen, 

Merelbeke, Belgium) according to the manufacturer’s instructions. Finally, 100 µl was plated 

onto NalCT-SMAC. Colonies were confirmed to be E. coli O157 by a latex agglutination test 

(Oxoid Ltd, Basingstoke, UK). Colony counts were log10 transformed for data analysis. If E. 

coli O157 was not detected by direct plating, but only detected by enrichment, a 

concentration of 10 CFU/g was assigned (Vande Walle et al., 2010 a). Excretion results were 

considered negative after 2 successive negative IMS results.  

 

6.3.6. Serum antibody response against virulence factors of E. coli O157:H7 

As described by Vande Walle et al., (2010 a), sera were tested for the presence of 

antibodies against the following E. coli O157:H7 virulence factors: intimin, EspA and EspB. 

Briefly, sera were heat-inactivated (30 min. at 56°C) and kaolin-treated. Polysorb 96-well 

plates (NUNC, Polysorb Immuno Plates, Roskilde, Denmark) were coated with 200 ng/well of 

recombinant intimin, EspA or EspB in PBS for 2h at 37°C and subsequently blocked overnight 

at 4°C using PBS + 0.2% Tween®80.  After washing with PBS + 0.2% Tween®20, plates were 

incubated with two-fold serial dilutions of serum in PBS + 0.05% Tween®20 and with HRP-

conjugated anti-sheep IgG-specific donkey antibodies (AbD Serotec, UK). Sera of sheep 

intramuscularly immunized with intimin, EspA and EspB during a former study (Vande Walle 

et al., 2010 a), served as positive control. The cut-off values were calculated as the mean 

OD405-values of all sera (dilution 1/10) obtained at day 0 increased with three times the 

standard deviation (cut-off values for intimin, EspA and EspB were 0.387, 0.412 and 0.312, 

respectively). 
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6.3.7. Statistical analysis 

Statistical analyses were performed using SAS software. The Proc MIXED test was used to 

analyse the excretion of the bacteria. The statistical model used to alanyse data included the 

fixed effect of LF dose (low, high), the random effect of sheep nested within treatment and 

the residual errors. The duration of the excretion was compared in three groups of infected 

animals by using t-test.  Statistical analysis of serum antibody titers was done by using 

General linear Model (repeated mesures analysis of variance). Differences were considered 

statistically significant at p < 0.05. 

 

6.4. Results 

6.4.1. Effect of lactoferrin on faecal E. coli O157:H7 excretion in sheep 

To analyze the effect of lactoferrin on E. coli O157:H7 colonization, eight sheep receiving 

lactoferrin (five the high dose and three the low dose) in sodium bicarbonate buffer during 

30 days and seven sheep receiving only the buffer, were inoculated on the second and third 

day of the lactoferrin administration with E. coli O157:H7. Four days after the first 

inoculation, animals in the infection control group shed between 105 and 108 CFU E. coli 

O157:H7/g faeces with an average of 7x107 CFU/g (Fig. 1). 
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Figure 1: Effect of lactoferrin administration on faeacal excretion of E. coli O157:H7 by sheep. Results are 

presented as the mean log10 values of colony forming units (CFU)/ g faeces ± SEM. Significant differences at p < 

0.05. × between Infection Control and LF high group; +  between Infection Control and LF low group. 
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Subsequently, the number of excreted bacteria declined gradually and five of seven 

animals stopped shedding between 18 and 28 days post inoculation (PI). The two remaining 

animals excreted E. coli O157:H7 till the end of the experiment (day 28 PI). 

In the LF high group, reduced faecal shedding was observed from day four onwards. On 

day seven, two animals already ceased excreting E. coli O157:H7. One week later, the faeces 

of two additional animals became negative (day 14 PI), while bacterial excretion in the single 

remaining animal ceased at day 21 PI. The shedding period for the LF high group (12.6 ± 1.17 

days (mean ± SEM)) was significantly shorter than for the colonization control group (24.71 ± 

0.68 days (mean ± SEM)) (p < 0.05). 

Reduced faecal shedding was observed in the LF low group from day four PI onwards, 

however this reduction was only significant on day 4 and 7 PI. On day 14, one of the animals 

stopped excreting and on day 17 the two remaining animals became negative. Nevertheless, 

during the second week of the experiment the number of bacteria excreted by the LF low 

group was higher than for the LF high group (Fig 1). However, again the duration of excretion 

(16.66 ± 0.76 days (mean ± SEM)) was significantly shortened in comparison with the 

colonization control group (p < 0.05), but not in comparison with the LF high group. The LF 

control group remained negative throughout the experiment.  

 

6.4.2. Effect of lactoferrin on the IgG response against E. coli O157:H7 antigens 

Since lactoferrin has been described to modulate the adaptive immunity (Legrand and 

Mazurier, 2010), the effect of oral lactoferrin treatment on the serum antibody response 

against virulence factors of E. coli O157:H7 including EspA, EspB and intimin was determined 

(Fig. 2). Two weeks after the experimental inoculation, the colonization control group, 

receiving E. coli O157:H7 only, showed a very low serum IgG response against intimin, EspA 

and EspB with maximal log2 titres of 4.54, 4.05 and 4.62, respectively. A similar response 

was observed in the low lactoferrin group. However, for the high lactoferrin dose group, the 

IgG response against EspA and EspB significantly (p < 0.05) increased with a peak at 2 and 3 

weeks post infection for EspB and EspA, respectively. The IgG response against intimin did 

not significantly raise, as compared to the LF control and the infection control group.  
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Figure 2: Mean serum antibody responses in the 3 groups infected with E. coli O157:H7. Results are 

presented as the mean log2 values of antigen-specific IgG titers. DPI: days post inoculation. × marks a 

significant difference between the high dose LF group and the E. coli O157:H7 group. Error bars 

indicate SEM. p < 0.05. 
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6.5. Discussion 

Escherichia coli O157:H7 colonizes the intestinal tract of ruminants, often leading to a 

persistent bacterial excretion making ruminants the main reservoir for this human pathogen 

(Dean-Nystrom et al., 1999; La Ragione et al., 2009). Therefore, reducing or eliminating E. 

coli O157:H7 excretion by ruminants is important to decrease the rate of human infection. 

Several strategies have been described to reduce excretion such as isolating animals 

which excrete more than 104 CFU/g E. coli O157:H7, the so called ”super shedders” 

(Stephens et al., 2008; Stephens et al., 2009), vaccination (Potter et al., 2004; Peterson et al., 

2007), antibiotic treatment (Molbak et al., 2002), probiotics (Callaway et al., 2004), 

bacteriophages (Callaway et al., 2008) and dietary changes (Callaway et al., 2009). These 

strategies are either too expensive, too labor intensive, only show a limited effect or hold 

the risk of an increase in antibiotic resistance. Therefore there is need for new intervention 

strategies. 

Lactoferrin has a direct antimicrobial effect on E. coli O157:H7 (Atef Yekta et al., 2010) 

and is responsible for the proteolytic degradation of EspA and EspB (Atef Yekta et al., 2010). 

In addition, lactoferrin is an immunomodulatory protein (Legrand and Mazurier, 2010). 

These findings resulted in the following hypothesis: lactoferrin might be used to reduce E. 

coli O157:H7 colonization of the intestinal tract and consequently, faecal shedding by sheep.   

Previously, we developed an oral infection model in sheep creating persistent E. coli 

O157:H7 shedders (Vande Walle et al., 2010 b). This model was used to study the effect of 

the natural antimicrobial-immunomodulatory milk protein lactoferrin on E. coli O157:H7 

excretion. Moreover, the sheep infection model was used to examine the antibody 

responses against intimin and the E. coli O157:H7 type III secretion proteins EspA and EspB.  

In our study, lactoferrin was administered in bicarbonate buffer. The buffer closes the 

esophageal groove, so that lactoferrin passes rumen, reticulum and omasum and directly 

reaches the abomasum (Rosenberger, 1979). Delivering lactoferrin in the abomasum will 

prevent its bacterial degradation in rumen and reticulum and will enhance its degradation by 

pepsin. Pepsin cuts lactoferrin in different peptides of which one peptide, lactoferricin, has 

been demonstrated to exert a stronger bactericidal, immunomodulatory and inflammatory 

effect than lactoferrin (Gifford et al., 2005). Once lactoferrin reaches the small intestine it 
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probably is only slowly degraded, since it is strongly resistant to trypsin and trypsin-like 

enzymes (Brines and Brock, 1983). Whether lactoferricin shows a similar resistance, has not 

been tested yet. 

Both lactoferrin dosages were capable to significantly reduce the concentration of E. coli 

O157:H7 in the faeces and to shorten the duration of faecal excretion, indicating that 

sufficient functional active lactoferrin reaches the intestine to interfere with bacterial 

colonization. Interestingly, sheep, which received the high dose of lactoferrin, showed a 

higher antibody response against EspA and EspB in comparison to the control group. The 

peak of the antibody response was 2 to 3 weeks post inoculation, when the excretion of E. 

coli O157:H7 had completely ceased. A similar increase in antibody response was observed 

in chickens orally fed lactoferrin from birth on and orally vaccinated with an infectious bursal 

disease (Gumboro) vaccine at 1 and 3 weeks of age (Hung et al., 2010). As in our study, this 

effect was observed with the highest dose. Furthermore, a significant increase in total serum 

IgA and IgG and an increased mitogen-induced proliferation of peripheral blood lymphocytes 

was demonstrated. Studies in mice demonstrated increases in total antibody, B-, T- and NK-

cells amounts (Teraguchi et al., 2004; Varadhachary et al., 2004; Wolf et al., 2007). In 

humans, oral supplementation resulted in an enhanced T cell activation, but no effects on B-

cells or antibody production have been described (Mulder et al., 2008).  

Lactoferrin has important immunomodulatory activities such as increased maturation of 

B- and T-lymphocytes and increased recruitment and maturation of antigen-presenting cells 

which occur by influencing pattern recognition receptor-mediated cell signaling (Curran et 

al., 2006; De la Rosa et al., 2008; Legrand and Mazurier, 2010). Whether such effects are 

responsible for the increased antibody response in our study still has to be determined. 

 

6.6. Conclusion 

This is the first study demonstrating the reduction of E. coli O157:H7 excretion by oral 

administration of the natural antimicrobial protein, lactoferrin. Moreover, the results 

suggest that lactoferrin could become an important tool to decrease colonization pressure 

on farms and to prevent contamination of food by E. coli O157:H7 and, consequently to 

decrease E. coli O157:H7 associated illness in humans. 
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7.1. Abstract 

Enterohaemorrhagic Escherichia coli O157:H7 are zoonotic pathogens associated with 

haemorrhagic colitis (HC) and the haemolytic uremic syndrome (HUS). Ruminants are the 

main reservoir of this organism and most outbreaks of E. coli O157:H7 infections are food 

borne. Food contamination by ruminant manure has been reported as the primary source of 

human infection, therefore inhibition of E. coli O157:H7 colonization and shedding in 

ruminants could control the risk of human exposure to this pathogen. In the present study a 

vaccine based on the translocon proteins EspA and EspB and the outer membrane adhesion 

factor intiminγ significantly reduced faecal shedding of E. coli O157:H7 by orally infected 

sheep. Protection correlates with serum antibody responses to the defined antigens and 

validates the targeting of these colonization factors. Whereas vaccination has been 

described in cattle, this is the first study describing a significant decrease in faecal shedding 

following systemic immunization of sheep.  

 

7.2. Introduction 

Enterohaemorrhagic Escherichia coli (EHEC) O157:H7 is a serious human health risk in 

many countries with ruminants recognized as asymptomatic carriers (Borczyk et al., 1987; 

Besser et al., 1999). Following initial adherence of E. coli O157:H7 to the intestinal 

epithelium, a LEE-encoded type III secreted protein translocation tube is formed, which 

connects the pathogen with its target cell (Frankel et al., 1998). EspA is a major component 

of this tube (Ebel et al., 1998; Knutton et al., 1998), through which EspB, EspD and Tir are 

delivered to the host cell. EspB and EspD form pores in the host cell membrane. EspB is also 

translocated into the host cell cytosol, where it triggers signal transduction events that 

mediate effacement of the microvilli and replacement with a pedestal-like structure. Tir 

becomes translocated to the host cell membrane, where it forms the receptor for intimin γ, 

expressed on the surface of the bacteria, resulting in intimate attachment to the host cell 

(Wolff et al., 1998; Hartland et al., 2000). A consequence of this interaction is a striking 

histopathological change known as attaching and effacing (A/E) lesion. Meanwhile, the 

bacteria produce toxins such as the Shiga toxins Stx1 and Stx2 (variants). However, unlike 

humans, ruminants lack vascular receptors for Stxs. They do have Gb3 on their intestinal 

crypt epithelial cells. Nevertheless, binding does not result in cytotoxicity due to exclusion of 
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the toxin from the endoplasmatic reticulum (reviewed by Moxley, 2004). In neonatal 

colostrum-deprived calves experimental E. coli O157:H7 infection could induce oedema of 

the colon and diarrhoea (Dean-Nystrom et al., 1997) and even in 3 to 4 month old weaned 

calves A/E lesions could be found in cecum and rectum following experimental infection 

(Dean-Nystrom et al., 1999). Therefore, E. coli O157:H7 appear to readily induce disease in 

young calves. However, this serotype is generally considered non-virulent in older cattle 

(Naylor et al., 2003). One of the reasons for the absence of clinical signs in older cattle could 

be a quite localized colonization. Indeed, E. coli O157:H7 can colonize the large intestine, but 

preferentially colonizes the terminal rectum where it binds to the lymphoid follicle dense 

mucosa (Naylor et al., 2003). Furthermore, large numbers of bacteria need to be present 

before sufficient A/E lesions occur. Indeed 106 CFU/g is the threshold for recognition of 

adherent layers of bacteria in histological sections, suggesting that A/E lesions will not be 

detected unless bacterial counts in the gut lumen are quite large, which only seems to occur 

at the preferential sites (Cray and Moon, 1995). In sheep no clinical signs have been 

attributed to E. coli O157:H7 infections, even though A/E lesions can be observed  (Naylor et 

al., 2005b). 

Reduction of E. coli O157:H7 infection and faecal excretion of these asymptomatic 

shedders will seriously reduce the risk of human exposure to this pathogen. Therefore, 

several studies focused on interventions which could limit colonization and shedding from 

ruminants including vaccination, probiotic and antibiotic treatment (Brashears et al., 2003; 

Callaway et al., 2004; Moxley, 2004; Potter et al., 2004; Dziva et al., 2007). Vaccination of 

cattle showed variable results depending on antigens (type III secretion proteins; 

siderophore receptor and porin-protein), doses (2 or 3) and adjuvant (Moxley et al., 2009; 

Smith et al., 2009). In bovine, intramuscular immunization with type III secretion proteins of 

E. coli O157:H7 resulted in a significant reduction in shedding. Such vaccinations have not 

yet been performed in sheep. The present study was the first to examine if vaccination of 

sheep with intimin, EspA and Esp B is capable of reducing fecal shedding of E. coli O157:H7 

in an oral infection model.  

7.3. Material and methods 

7.3.1. Bacterial strains and culture conditions 
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NCTC12900 is a well characterised Shiga toxin-negative E. coli O157:H7 strain with 

spontaneous nalidixic acid (Nal) resistance (Dibb-Fuller et al., 2001; Wales et al., 2002; 

Woodward et al., 2003). For preparation of bacterial inocula, NCTC12900 was grown 

overnight in Luria Bertani broth at 37°C while shaking (200 rpm). Following centrifugation 

(2000 rpm, 10 min, 4°C), the pellet was resuspended in sterile phosphate-buffered saline 

(PBS) to a concentration of 109 CFU per ml for inoculating sheep (1010 CFU/ animal). 

 

7.3.2. Preparation of proteins and vaccine formulation 

Plasmids pCVD468 and pCVD469 were used for recombinant expression of EspA and 

EspB, respectively and plasmid pMW103 to express the C-terminal 380 amino acids of 

intimin-γ (referred to as intimin. Briefly, transformed bacteria were induced with 1 mM 

isopropyl-β-d-thiogalactopyranoside and recombinant His-tagged proteins were purified by 

nickel-affinity chromatography. For intramuscular (i.m.) vaccination, intimin, EspA and EspB 

were formulated at 100 µg/ protein in total volume of 1 ml PBS. Subsequently, this solution 

was suspended 1/1 (vol/vol) in incomplete Freund’s adjuvant (Sigma, Bornem, Belgium).  

 

7.3.3. Vaccination and experimental infection of sheep 

Eight 3-month-old male sheep (Belgian crossbreed, Zootechnical Centre, Leuven, 

Belgium) were used in this study. Sheep were housed at the Faculty of veterinary medicine 

where they were divided into two groups of three and five animals per pen, respectively. 

They received daily a pelleted grain-based diet and water ad libitum. The experiments were 

approved by the ethical committee of Ghent University, Faculty of Veterinary Medicine and 

Bioscience Engineering (n°: 2009/074). All animals were screened prior to immunization to 

be negative for serum antibodies against intimin, EspA and EspB as well as for faecal 

shedding of E. coli O157:H7.  

Five animals were intramuscularly immunized three times with two weeks interval in the 

neck (m. rectus capitis) with 2 ml of vaccine (Vaccine group). At the same time, three sheep 

were injected with the suspension without antigen (Placebo group). Animals were 

challenged 10 days after the last immunization with 1010 CFU of E. coli O157:H7 on two 

consecutive days and the faecal excretion was monitored twice a week for three weeks as 

described by Tutenel et al. (2003). Briefly, 10 g feces was diluted in modified tryptone soy 
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broth supplemented with 20 mg/ml novobiocin and homogenized in a stomacher. Ten-fold 

dilution series were spread-plated onto cefixime-tellurite sorbitol MacConkey agar (CT-

SMAC) containing nalidixic acid. Remaining broth was enriched for 6h at 42°C and subjected 

to IMS with O157 Dynabeads® (Invitrogen, Merelbeke, Belgium) according to the 

manufacturer’s instructions. Finally, 100 µl was plated onto the CT-SMAC. Colonies were 

confirmed to be E. coli O157 by a latex agglutination test (Oxoid, Ltd, Basingstoke, UK). 

Colony counts were log10 transformed for data analysis. If E. coli O157 was not detected by 

direct plating but only by enrichment the assigned concentration was 10 CFU/g (Vande 

Walle et al, 2010a).  

7.3.4. Antibody response 

The antibody response following immunization was measured in serum samples taken at 

the time of each vaccination and weekly after the challenge using enzyme-linked 

immunosorbent assays (ELISA) (Vande Walle et al., 2010a). Briefly serum samples were heat-

inactivated (30 min. at 56°C) and kaolin-treated. Polysorp 96-well plates (NUNC, Polysorb 

Immuno Plates, Roskilde, Denmark) were coated with 200 ng/well of intimin, EspA or EspB in 

PBS for 2h at 37°C and blocked overnight at 4°C with PBS supplemented with Tween®80. 

After washing with PBS supplemented with Tween®20 (washing solution and diluent), plates 

were subsequently incubated with two-fold serial dilutions of serum and with HRP-

conjugated anti-sheep IgG-specific donkey antibodies (AbD Serotec, UK). Sera from animals 

intramuscularly immunized with intimin, EspA and EspB were used as positive controls. The 

cut-off values were calculated as the mean OD405-values of all sera (dilution 1/10) at day 0 

increased with 3 times the standard deviation. Cut-off values for intimin, EspA and EspB 

were 0.365, 0.329, and 396, respectively. 

7.3.5. Localisation of E. coli O157:H7  

One non-vaccinated (placebo) and three vaccinated animals were euthanized 21 days 

after the E. coli O157:H7 challenge, to determine the intestinal localisation of E. coli O157:H7. 

The intestinal tissues were examined by direct culturing and IMS as described by Vande 

Walle et al., (in press) except intestinal tissue was used instead of faeces. Tissue samples 

were collected from the rectoanal junction (RAJ), rectum, colon, spiral colon, cecum, ileum, 

jejunum, duodenum, rumen and abomasum of all four animals. 
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7.3.6. Statistical analysis 

Statistical analyses were performed using SAS software. The Proc MIXED test was used to 

analyse the excretion of the bacteria. The statistical model used to alanyse data included the 

fixed effect of vaccination, the random effect of sheep nested within treatment and the 

residual errors. The duration of the excretion was compared in two groups of infected 

animals by using t-test.  Statistical analysis of serum antibody titers was done by General 

linear Model (repeated mesures analysis of variance). Differences were considered 

statistically significant at p < 0.05. 

 

7.4. Results 

The first intramuscular immunization with intimin, EspA and EspB at day 0, resulted in 

significant (p<0.05) increases in serum IgG responses against all 3 antigens 15 days later, at 

the moment of the second immunization (Fig. 1). 

 The second immunization only increased antibodies against EspA and EspB but not 

against intimin. No further significant rise was seen after the third immunization, suggesting 

that the antibody response had reached its peak with mean log2 titers ranging between 

14.34 and 15.68. Indeed also after the infection, no increase in IgG response was observed 

in the immunized animals. In the placebo group, there were no antibodies against intimin, 

EspA and EspB before the infection while after the infection the mean log2 titers increased 

till 4.32, 4.54 and 5.05, respectively.  
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Figure 1: Serum IgG responses following intramuscular immunisation of sheep with intimin, EspA and EspB 

and challenge infection with E. coli O157:H7. Broken lines represent vaccinated sheep and full lines placebo-

injected sheep. Results are presented as log 2 values of mean total IgG titre per group and per antigen. * = 

Intramuscular immunization. Arrows = E. coli O157:H7 oral inoculation. 
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After the challenge infection, vaccinated animals shed significantly less E. coli O157:H7 

than sheep of the placebo group (p< 0.05) (Fig. 2). Four days post challenge, animals in the 

placebo group shed between 105 and 106  CFU O157:H7/g feces while vaccinated animals 

excreted 104  CFU/g feces (p<0.05).  

These numbers gradually declined in both groups during the experiment. Nevertheless, 

the duration of bacterial excretion by the vaccinated sheep was significantly shorter than by 

the placebo-vaccinated animals (p< 0.05).  Interestingly, E. coli O157:H7 could not be 

detected in the feces of two vaccinated animals from day five on, even using IMS.  A third 

animal became negative on day 17 and the last two animals, were only positive by IMS and 

not with direct culture at the end of the experiment, whereas all three animals in the 

placebo group remained positive in direct culture till the end of the experiment (Day 21). 
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Figure 2: Excretion of E. coli O157:H7 in sheep. Results are represented as log values of 

colony forming units (CFU)/g faeces. Black line: vaccinated group, Gray line: non-vaccinated 

group. +: significant differences of log values of colony forming units (CFU)/g faeces between 

vaccinated and non-vaccinated group (P<0.05). 
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After euthanasia, direct culture was only positive for RAJ of the placebo-vaccinated 

animal (6x10 2  CFU E. coli O157:H7 /g. After the enrichment and IMS, all tissues throughout 

the intestinal tract of the placebo-vaccinated animal were positive, whereas E. coli O157:H7 

was only found in RAJ of two and the abomasums of one vaccinated animal indicating that 

only a low amount of bacteria remained in the intestinal tract after the vaccination (Table 1).  

 

Table 1: Intestinal localization of E. coli O157:H7 in vaccinated and non-vaccinated (placebo) animals three 

weeks after bacterial inoculation. 

 

Sheep RAJ Rectum Colon 
Spiral 

colon 
Cecum Ileum Jejenum Deudenum Rumen Abomasum 

Con * + + + + + + + + + + 

V 1 + - - - - - - - - + 

V 2 + - - - - - - - - - 

V 3 - - - - - - - - - - 

 

+ = Positive after the enrichment and IMS 

* = Direct culture was only positive for RAJ of the placebo-vaccinated animal (6x10 
2  

CFU E. coli O157:H7 /g) 

 

7.5. Discussion 

This is the first study demonstrating that systemic vaccination of sheep against E. coli 

O157:H7, using antigens which play a role in intestinal colonization, can significantly reduce 

bacterial shedding following a challenge with E. coli O157:H7. In cattle, vaccination with 

TTSS proteins of E. coli O157:H7 has been analysed before (Potter et al., 2004; Smith et al., 

2008; Smith et al., 2009). A variable efficacy has been reported depending on the selected 

antigen(s). For instance, a subunit vaccine using EspA as well as intimin in combination with 

the putative adhesion factor Efa elicited non-protective humoral immune responses (Dziva 

et al., 2007; Van Diemen et al., 2007). In contrast, vaccination of cattle with the supernatant 

of E. coli O157:H7 culture containing TTSS factors offered partial protection in challenged 

animals, characterized by decreased shedding (Potter et al., 2004; Van Donkersgoed, et al., 
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2005). Beside TTSS colonisation factors, bacterial supernatant can contain other adherent 

factors that may contribute to vaccine efficacy including flagellin and LPS whereas it does 

not contain or contains only low amounts of non-secreted proteins such as intimin, the 

critical intimate colonization factor of E. coli O157:H7 (McNeilly et al., 2010). 

In the present study we wanted to evaluate whether a combination of purified 

recombinant TTSS proteins and intimin would protect against E. coli O157:H7 colonization 

and excretion. Intimin, EspA and EspB were chosen because they could induce an immune 

response which would affect different stages of the attachment process. Antibodies that 

bind to EspA and EspB could inhibit the assembly and the insertion of the delivery channel 

via which different colonization factors are translocated into the host cell. Targeting intimin 

may block its binding to host cells and the interaction with Tir. 

Furthermore we have chosen incomplete Freund’s adjuvant since this is effective for 

inducing high antibody response and increased T-helper1/ T-helper2 responses (Cox et al., 

2006). Another study in cattle used IFA adjuvant in combination with EspA, whereas clear 

antibody responses were induced, no protection was observed (Dziva et al., 2007). In our 

study, EspA was combined with EspB and intimin.  The immunization induced high serum 

antibody titres against all three antigens and a reduced bacterial colonisation. The 

mechanism for this reduction needs further investigation, but preliminary data show the 

presence of antigen-specific IgG ASC in the mucosa, suggesting that antibodies might play a 

role (Vande Walle et al., unpublished data). 

 Previous studies showed that EHEC is not maintained in a group of infected calves if the 

shedding counts decreased to less than 104 CFU/g faeces (Matthews et al., 2006). 

Interestingly in the present study, our vaccine formulation restricted shedding of all five 

vaccinated animals below 104 CFU/g faeces at day 7 day after the infection while the non-

vaccinated animals where still excreting between 105 and 106 CFU/g faeces suggesting that 

this vaccination might have a significant impact on the spread of the bacteria among a group 

of animals. This is supported by the observation that bacterial shedding in non-vaccinated 

sheep was still 103 till 104 CFU/g feces three weeks after the infection whereas most 

vaccinated animals stopped excreting or where only positive after enrichment and IMS. In 

line with the decreased excretion was the low prevalence of E. coli O157:H7 in the intestinal 

tract of vaccinated animals and not of the placebo injected animal. 
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7.6. Conclusion 

In conclusion, the present study shows that vaccination with TTSS proteins EspA, EspB 

and intimin can reduce E. coli O157:H7 excretion in a sheep infection model. Our data 

suggest that systemic vaccination of sheep can control the spread of E. coli O157:H7 which 

would be an important step in preventing E. coli O157:H7 infections in humans. 
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Chapter 8 

 

 

General discussion 

 

Ruminants are the main reservoir of E. coli O157:H7, which can be associated with diarrhoea, 

HC and HUS in humans (Borczyk et al., 1987; Besser et al., 1999) 

Recent investigation has shown that 80% of the E. coli O157:H7 strains isolated from beef 

carcasses at processing did not originate from the feedlot where the cattle came from (Arthur et 

al., 2007). The origin of these isolates was determined to be the environment or even the 

trailers used to transport the animals (Arthur et al., 2007). In areas where there is high cattle 

density and a rapid turnover, a few animals shedding bacteria can contaminate the hides of 

many animals. Indeed, nine percent of cattle presented for slaughter at an abattoir were 

responsible for 96% of all E. coli O157 shed by all animals entering the abattoir at that time 

(Omisakin et al., 2003). Therefore reducing the number of bacteria shed by the animals and at 

the same time decreasing the number of animals shedding the bacteria, could dramatically 

reduce the contamination of carcasses and as a consequence of meat so decreasing the 

numbers of humans infected by the pathogen.  

The specific mechanisms responsible for the persistence of E. coli O157:H7 in ruminants are 

unknown, making it difficult to find an appropriated approach to combat this pathogen. Many 

strategies have been tested to reduce E. coli O157:H7 prevalence in cattle including vaccination, 

use of antibiotics and probiotics and even diet management. Although some of these 

approaches seem promising, a 100% fail-proof method is currently not available.  

Some interventions may have a direct anti-bacterial effect, while others stimulate the 

immune system, allowing it to better resist the pathogen. By reducing the fecal pathogen load, 

the pathogen prevalence and the amount of contamination on hides will be reduced and 

consequently, carcass contamination rates decrease. Therefore there is a definite need to find 

new strategies, which could effectively reduce E. coli O157:H7 infection at the farm level. Most 

importantly, the chosen approach should be practically implementable on the farms and 

feedlots, as well as affordable even for the local farmers.  



 

 

The use of natural antimicrobial agents which form part of the immune system can be an 

alternative for antibiotics since i) no resistance seems to occur against these molecules and ii) 

they could have a broad activity against different stages of the interaction of the bacterium with 

the host.  

One of the aims of the present thesis was to learn more about the effect of lactoferrin, a 

natural antimicrobial protein of milk, on E. coli O157:H7 infection in sheep. 

The choice of lactoferrin as a therapeutic or prophylactic agent for E. coli O157:H7 was 

based on several factors. Lactoferrin exhibits anti-oxidant, antiviral, anti-inflammatory, 

immunomodulating as well as anti-cancer activities, and interestingly, lactoferrin can also 

promote the growth of probiotic bacteria such as Bifidobacterium (Aguila et al., 2001; Al-Nabulsi 

and Holley, 2007; Jenny et al., 2010; Tsuda et al., 2010; Xu et al., 2010).  

Besides the need of finding new strategies to control E. coli O157:H7 infection on farms, the 

lack of an optimal treatment for E. coli O157:H7 infections in humans, rather than simply 

supportive care, motivated us to examine an approach which possibly could be used in both 

reservoir (farm animals) and actual host (humans). The high concentration of lactoferrin in milk 

and the reported therapeutic effect on gastrointestinal infections of several species makes 

lactoferrin a potential candidate for the treatment of E. coli O157:H7 (Yamauchi, et al., 2006; 

Teraguchi et al., 2004).  

However, whereas lactoferrin could be therapeutically used or even prophylactic in well-

defined conditions, it is unlikely to continuously administer this kind of proteins via the food. 

Therefore a vaccine, which will completely protect animals against colonization, is another 

important approach. Vaccination studies in cattle showed promising results (Potter et al., 2004; 

Smith et al., 2008; Smith et al., 2009). Vaccination of cattle could decrease the number of 

animals colonized as well as the degree and duration of excretion of individual animals. 

However, complete protection was not obtained. Until now, no such vaccination studies had 

been performed in sheep. So, an additional aim of this thesis was to evaluate if vaccination of 

sheep could result in a similar protection as in cattle. 
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8.1. Antimicrobial susceptibilities of commensal Escherichia coli isolates from cattle in Iran  

 

Concerns for the spread of resistant bacteria from the large reservoirs in food animals led 

the countries in the European Union to abandon the use of antimicrobial agents for growth 

promotion in food animals by 1 January 2006 (Anette and Heuer, 2009). The USA, Canada and 

most of the developing countries, such as Iran, did not show the same concern and still use 

many antimicrobial agents in animals and animal feed for therapeutic or prophylactic purposes. 

Almost no data are available regarding the epidemiology and prevalence of antimicrobial 

resistance in domestic animals in Iran.  

Indicator bacteria, next to pathogenic and zoonotic bacteria, are used for resistance 

monitoring in animals and humans. Indicator bacteria are of special interest because of their 

possible role as a resistance reservoir, harbouring resistance genes that may be transmitted to 

other bacterial populations within the same host or other hosts. E. coli isolates from food 

animals are a potential reservoir of resistance genes which could transfer this resistance to 

organisms that might cause disease in animals and/or humans, making them important 

indicator bacteria (Aarestrup, 2004, Smet et al., 2008, Checkley et al., 2010). 

In Chapter 3, the antimicrobial susceptibility profile of E. coli isolates obtained from raw milk 

and feces of healthy dairy cows for 11 antimicrobial agents was determined. Seventy-five 

percent of the isolates showed acquired resistance to three or more antimicrobial agents. The 

highest resistance was detected for tetracycline (46%) followed by ampicillin (43%).  Around 30 

% of the isolates showed resistance against trimethoprim, amoxicillin-clavulanic acid and 

sulfafurazole. The highest susceptibility was seen for the cephalosporin, ceftiofur (94%), 

followed by colistin (86%). This order in resistance with the highest resistance against 

tetracyclins is comparable with results of several other studies (Sawant et al., 2007; de Jong et 

al., 2009; Berge et al., 2010). However, the percentages of isolates with resistance against one 

of the tested antimicrobials as well as the percentage with multiple antimicrobial resistance, 

resistance, is higher than in most other studies. Also in a previous Iranian study, very high 

resistance rates were found (Ebrahimi et al., 2007a). Even though we only tested a limited 

number of isolates (63) from a limited number of farms (35) in only one Iranian Province, so that 



 

 

results can not be generalized, the high antimicrobial resistance in our study and in the previous 

Iranian study are serious arguments for a restriction of the use of antimicrobials.  These data are 

arguments for the development of alternative strategies for treatment of diseases or for 

reducing colonization with potential zoonotic microorganisms. 

 

8.2. Lactoferrin reduces E. coli O157:H7 growth and attachment to epithelial cells 

Several studies have already demonstrated that antibiotic resistant E. coli O157:H7 can be 

isolated from humans, cattle, feed and even from surface waters (Schroeder et al., 2002; 

Magwira et al., 2005; Fincher et al., 2009). In addition, treatment with antibiotics cannot always 

shorten the duration of diarrhoea and can even increase the risk of developing HUS (Besser et 

al., 1999; Wong et al., 2000). Thus, there are several reasons for developing new strategies to 

control an O157:H7 infection.  

 In the present PhD thesis one of the strategies examined was to use a natural antimicrobial 

agent. As already mentioned, one of the advantages of using natural antimicrobial proteins is 

that no antimicrobial resistance seems to occur against these molecules. One of the important 

challenges was to implement such a therapy in ruminants in order to prevent E. coli O157:H7 

infections or at least reduce fecal shedding significantly.  

As already mentioned, lactoferrin, a natural protein of milk, has not only antimicrobial 

effects, but also immunomodulatory properties (Tomita et al., 2009). Moreover, recent studies 

propose lactoferrin as a bactericidal agent for antibiotic resistant strains of E. coli. This effect 

was more pronounced against a multidrug resistant E. coli O157:H7 strain than against EPEC and 

Staphylococcus aureus with a growth inhibition of 81, 76.8 and 36.7%, respectively (Flores-

Villasenor, et al., 2010). These properties of lactoferrin and the fact that bulk amounts can be 

produced from milk are important reasons why we have selected this protein as an interesting 

candidate.  

 In Chapter 4 we could demonstrate that lactoferrin is capable to reduce in vitro the growth 

of E. coli O157:H7. This effect was more pronounced for lactoferrin purified from bovine milk 

than for human lactoferrin. Although the reason for this difference is not known, a greater 
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affinity of bovine lactoferricin, a peptide derived from bovine lactoferrin, for LPS has been 

shown than of human lactoferricin (Bellamy et al., 1992).  

In our study non-iron saturated lactoferrin had a stronger effect than the saturated form.  

The non-iron saturated form can still capture iron, which is important for the growth of the 

bacteria. Important to notice is that none of the lactoferrin concentrations in any form used in 

our study resulted in 100% growth inhibition. The growth inhibition of bovine and human 

lactoferrin was significant between 3 and 6 hours after incubation. The lag period of 3 hours 

could be due to the relatively slow interaction of lactoferrin with bacterial LPS. This interaction 

is known to result in bacterial killing (Ellison et al., 1991). The fact that the effect lasted for only 

6 hours was most likely due to consumption of lactoferrin. Indeed, preliminary data of 

experiments in which lactoferrin was added repeatedly each two hours until four hours after 

the start of the experiment, showed a complete growth inhibition during at least 8 hours for the 

samples treated with 5 or 10 mg lactoferrin/ml.  

In Chapter 4 we also demonstrated that both human and bovine lactoferrin can inhibit E. 

coli O157:H7 adherence to Caco-2 cells in a dose-dependent manner. The anti-adhesive effect of 

human lactoferrin was higher than for bovine lactoferrin. This could be due to a higher 

effectiveness of lactoferrin in the homologues system (human lactoferrin and human cells). 

Beeckman et al. (2007) described a similar finding for ovotransferrin. A second explanation 

could be a more efficient binding of bovine lactoferrin to and uptake within Caco-2 cells so that 

its extracellular concentration wanes more rapidly than this of human lactoferrin (Shin et al., 

2008). 

 In this chapter, evidence was provided that the anti-adhesive effect of lactoferrin, in doses 

which cannot kill the bacteria, might be due to its proteolytic effect on the E. coli O157:H7 

colonization factors EspA and EspB. Such an effect has also been shown for the related 

pathogen EPEC (Ochoa et al., 2002, 2003).  

 

8.3. Lactoferrin downregulates the inflammatory cytokine response of E. coli O157:H7 in a 

sheep intestinal explant model 



 

 

So, lactoferrin can inhibit E. coli O157:H7 growth and its adhesion to Caco-2 cells. To 

investigate the effect of lactoferrin in a system closer to the in vivo situation, and to get more 

insights in the effect of lactoferrin on E. coli O157:H7 infection in sheep, an ex vivo model was 

developed in Chapter 5 in which intestinal explants were incubated with E. coli O157:H7 and cell 

tropism and cytokine responses were studied.  Results showed for the first time that in sheep, in 

contrast to humans, E. coli O157:H7 does not only have a tropism for the FAE of ileal Peyer’s 

patches but also for the normal ileal absorptive epithelium. However, the adhesion to the FAE 

was almost nine times higher than to the absorptive ileal epithelium and more than 3 times 

higher than to the colonic epithelium. Due to this higher tropism, one could hypothesize that 

the ileal FAE of sheep might be the initial attachment site for E. coli O157:H7, whereafter the 

microorganism spreads to the ileal absorptive epithelium and the colon. Although it is not 

known why E. coli O157:H7 targets ileal FAE of sheep, evidence from mice studies showed that 

β-1 integrin, a receptor for intimin γ, is highly expressed on M cells of the ileal FAE. Such an 

expression still has to be demonstrated for cattle and sheep. Interestingly, initial attachment to 

the FAE followed by spread to other parts of the intestine has previously been shown for EPEC 

infections in rabbits (Cantey et al., 1981). 

One of the aims of this chapter was to determine if lactoferrin could diminish the bacterial 

adhesion to explants, similar as it did to the human epithelial cell line. The effect of lactoferrin 

was quite consistent over the different tissues and a reduction in adhesion with a factor 2.5 to 

3.1 was observed. Effects could have been more pronounced if lactoferrin was submitted with 

intervals or if we could have simulated intestinal peristalsis. The latter could flush away bacteria, 

which initially are prevented to adhere, but in a static system can try to adhere again.  

Nevertheless we clearly demonstrated that lactoferrin could inhibit E. coli O157:H7 attachment 

to the sheep intestinal mucosa.  

It was unclear until now, whether E. coli O157:H7 infection in sheep could induce 

inflammatory signals. Especially, since we could not demonstrate an antibody response and only 

a low cellular immune response in rectally inoculated sheep (Vande Walle et al., 2010a). This 

seemed to suggest that the colonic colonization could dampen the immune system. However, 

oral inoculation resulted in a clear antibody and cellular immune response, suggesting that small 
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intestinal mucosa might respond differently to colonisation than colonic mucosa (Vande Walle 

et al., 2010b). Therefore, another aim of this chapter was to analyze the cytokine response of 

the intestinal explants following incubation with the E. coli O157:H7 strain. The data of this 

study seem to confirm our hypothesis that the infection has a different effect in ileum and colon 

since the strain significantly induced IL-8 mRNA in ileal explants with and without Peyer’s 

patches and TNF-α mRNA in the explants with Peyer’s patches, whereas no such response was 

seen for the colon explants. We did not identify the mechanism by which E. coli O157:H7 

stimulated IL-8 and TNF-α mRNA expression, however it has been shown that bacterial proteins 

including TTSS proteins may contribute to pro-inflammatory cytokine up-regulation (Steiner et 

al., 2000; Dahan et al., 2002; Hauf and Chakraborty, 2003).  However, this cannot explain the 

different response between ileal and colonic tissue. 

Interestingly, lactoferrin diminished the cytokine expression. Although the lower rate of 

infection due to lactoferrin (Chapter 2)  could be an explanation, we cannot rule out that TTSS 

protein degradation after lactoferrin treatment (Chapter 2 and 3) additionally helps to decrease 

cytokine expression.  

 

8.4. Lactoferrin reduces shedding of E. coli O157 in sheep 

In an effort to combat pathogenic or zoonotic bacteria from cattle, it is logical to envision 

strategies that specifically target and kill the bacteria. In this regards, the growth inhibiting 

(Chapter 4), the adhesion-inhibiting (Chapter 4 and 5), the proteolytic activities (Chapter 4) and 

the possible immunomodulatory role of lactoferrin on E. coli O157:H7 infection (Chapter 2), 

made us hypothesize that oral lactoferrin might be used to reduce in sheep the colonization of 

the intestinal tract and as a consequence, faecal shedding of E. coli O157:H7. That the adhesion-

inhibiting effect of lactoferrin on E. coli occurs fast, was an additional argument (Naidu et al., 

1991; Chapter 4 and 5), as well as, that oral lactoferrin administration to rat has been validated 

before without side effects being reported (Appel et al., 2006).   

Since it is well known that the time required for E. coli to pass the small intestine is not more 

than a few hours, a more or less continuous presence of lactoferrin in the intestinal tract had to 

be obtained. This could be achieved by supplementing sheep feed with lactoferrin. However, in 



 

 

the current experiments it was important to know the exact dose the sheep received. Therefore, 

we chose to orally administer lactoferrin twice a day.   

Another important factor we had to consider was the iron binding property of lactoferrin. 

Iron is essential for bacterial growth and therefore bacteria have efficient iron acquisition 

mechanisms (Suits et al., 2009; Torres et al., 1997). However, in body secretions, blood plasma, 

neutrophils and macrophages lactoferrin is present in a relatively iron-free state, e.g. In milk the 

saturation is 10 to 30 %, allowing the protein to sequester free iron resulting in a limited 

availability of iron for bacteria at the infection site (Rainard, 1986; Levay and Viljoen, 1995). 

Since this enhances the antibacterial effect of lactoferrin, iron-free lactoferrin was used in this 

study. Based on our finding that lactoferrin seemed to be more effective in a homologues 

system (Chapter 4), bovine and not human lactoferrin was chosen for the in vivo trial on sheep, 

since cattle and sheep are more closely related. 

In our study, the lactoferrin was given in bicarbonate buffer because this buffer is capable to 

close the oesophageal groove, so that lactoferrin could pass rumen, reticulum and omasum and 

directly reach the abomasum (Rosenberger G., 1979). This delivery in the abomasum prevents 

its consumption and/or bacterial degradation in the rumen. Furthermore, pepsin, which is 

highly present in abomasum, degrades lactoferrin in different peptides (Gifford et al., 2005). 

Some of these peptides, such as lactoferricin, show stronger antimicrobial and 

immunomodulatory properties than the intact protein, lactoferrin (reviewed by Baker and 

Baker, 2009). So this mode of administration could increase the potential of lactoferrin to 

reduce E. coli O157:H7 infection in ruminants. 

Two different dosages of lactoferrin (1.5 or 0.15 g/animal/ 12 hours) were given for 30 days 

and E. coli O157:H7 challenge infection was performed at the second day of the lactoferrin 

administration. For both dosages a reduction in the concentration of E. coli O157:H7 in feces 

and in the duration of fecal excretion was observed with the highest dose being more effective. 

Interestingly, this high dose increased the antibody response against EspA and EspB. A similar 

increase in antibody response was observed in chickens orally fed lactoferrin from birth on 

following oral vaccination with an infectious bursal disease vaccine at 1 and 3 weeks of age 

(Hung et al., 2010). It has been demonstrated that lactoferrin can stimulate maturation of B- 
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and T-lymphocytes and can increase recruitment and maturation of antigen-presenting cells. 

This occurs by influencing pattern recognition receptor-mediated cell signalling (Curran et al., 

2006; De la Rosa et al., 2008; Legrand and Mazurier, 2010). However, the immunomodulatory 

effect of lactoferrin has not been studied here and whether lactoferrin exerted a direct effect on 

the immune response or whether its degradation of EspA and EspB, as demonstrated in Chapter 

4, was responsible for the increased antibody response needs further clarification.  

 

8.5. Vaccination of sheep with TTSS proteins reduces EHEC shedding after experimental 

challenge 

Whereas oral administration of lactoferrin could be an interesting approach to use in 

specific situations such as the treatment of animals which shed high numbers of EHEC for a long 

period (super shedders) or animals which are going to be slaughtered, prevention of infection 

via vaccination could become the method of choice on a long term. Indeed, several studies in 

cattle demonstrated the possibility to decrease E. coli O157:H7 shedding via systemic 

vaccination (Chapter 1). However, variable efficacy has been reported, depending on the 

selected antigen(s), with TTSS proteins of E. coli O157:H7 seeming to be the most effective, on 

the dose, on the number of vaccinations and on the adjuvant (Potter et al., 2004; Naylor et al., 

2005a; Naylor et al., 2005b; Peterson et al., 2007a; Peterson et al., 2007b; Nart et al., 2008a; 

Nart et al., 2008b). In none of these studies complete protection was obtained. Therefore, this 

strategy needs further optimization. Furthermore, it had not yet been examined if vaccination 

could also reduce colonisation and shedding in sheep. The aim of this chapter was to evaluate if 

reduced shedding could be obtained via vaccination using the oral E. coli O157:H7 sheep model 

developed in our lab (Vande Walle et al., 2010b). 

EspA and EspB were chosen as vaccine antigens because antibody responses against both 

antigens could interfere with the assembly and the insertion of the delivery channel via which 

different colonization factors are translocated into the host cell. Intimin was chosen as a third 

antigen since intimin-specific antibodies might block the interaction of intimin expressed by the 

bacteria with receptors on the host cells such as Tir. 



 

 

In Chapter 7, we showed that the immunization induced high serum antibody titres against 

all three antigens and that this was accompanied with a reduced bacterial colonisation. Indeed, 

in line with the decreased excretion was a low presence of E. coli O157:H7 in the intestinal tract 

of vaccinated animals and not of the placebo injected animal. The mechanism for this reduction 

has not been investigated in the present study, but preliminary data of our laboratory show the 

presence of antigen-specific IgG ASC in the mucosa, suggesting that antibodies might play a role 

(Vande Walle, 2010).  

Whereas the results of the vaccination are promising some comments should be made. 

Firstly, unpublished data of our lab showed that the response induced by the vaccination 

followed by challenge infection did not remain very long and some months later sheep could be 

easily recolonized with the same strain of E. coli O157:H7 (Vande Walle et al., 2010). Secondly, 

it should be taken into the account that the strain we have been using is Stx negative. Recent 

data indicate a possible immunosuppressive role for Stx in ruminant’s colonisation 

(Bretschneider et al., 2007). Thirdly, results in cattle indicate that a vaccination using antigens 

from E. coli O157:H7 could reduce colonisation with the homologous strain, but were less 

protective against heterologous EHEC strains. This indicates that there is need for additional 

studies to optimize this vaccination. 
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Chapter 9 

Future perspectives 

 

The results obtained in this thesis indicate that oral lactoferrin as well as parenteral 

vaccination against TTSS proteins and intimin, could be tools to reduce E. coli O157:H7 infection 

in sheep. However, conclusions should be drawn with caution and further validation of both 

strategies has to be performed. The high variation in colonization and excretion in natural 

settings, but also following experimental infection is a complicating factor. While the size of our 

animal experiments in both lactoferrin and vaccination studies could be criticized, carrying out 

these studies in a larger number of animals was practically impossible during this thesis. This 

issue should become one of the future steps to be set.  

Apart from using a well-established in vivo model with a sufficient number of animals, there 

is an absolute need to further understand the mechanism of E. coli O157:H7 colonisation in 

ruminants and the role of the immune system. Such studies are ongoing in our laboratory and 

might help us to understand how we could manipulate the immune system of ruminants to 

improve clearance of the bacteria (Vande Walle, 2010; Vande Walle et al., 2010 a, b).  

For lactoferrin, some important issues have to be clarified. One issue is the administration 

form; giving lactoferrin twice a day orally in a buffer is impractical. Therefore a formulation has 

to be developed that can be given together with the feed. Development of novel oral delivery 

systems which allow the selective release of the drug close to its effector site, in a highly 

dispersed way, prevent lactoferrin of being consumed by ruminal bacteria. Different strategies 

could be used to achieve this objective such as the use of slow release and/or pH sensitive 

release systems to deliver lactoferrin into the small intestinal tract. 

Another question, which should be resolved is, if lactoferrin will reach in a sufficiently active 

form the rectal mucosa, a predilection site for E. coli O157:H7 in cattle. Here, mucosal adhesive 

dosage forms, which can be rectally applied, could be an option. Mucosal adhesive dosage 

forms have been extensively investigated as an external preparation that can be administrated 

effectively and safely (Machida 1979). Recent investigations in mice showed that tablets, which 

are adhesive for the mucosa and gradually release bovine lactoferrin, improved the healing of 
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artificially made oral mucosal ulcers (Takahashi et al, 2007). Applying lactoferrin to the oral 

and/or rectal mucosa of ruminants using such dosage forms might provide more effective anti-

bacterial and immunomodulatory effects. 

On the other hand, recently genetically modified rice was produced which expresses 

lactoferrin (Brooke et al., 2002). The use of such a product in animal feed could have the 

advantage of eliminating the need to purify the protein from the producing organism or milk 

and of easier administration of lactoferrin (Conesa et al., 2010). In support of this strategy, it has 

been shown that feeding genetically modified rice to mice, results in antibiotic-like and 

immunomodulatory effects (Brooke et al., 2002).  

Another issue is the optimal dose. Economically the lowest effective dose would be the 

choice. However, it is important to know if the enhanced antibody response in the animals 

which have received the highest lactoferrin dose, prevents or diminishes future infections.  

In Chapter 7, we investigated a vaccination strategy against E. coli O157:H7 infection in 

sheep. This was previously shown to be effective in cattle. The idea of ruminant vaccination 

against E. coli O157:H7 has always been interesting for many researchers, since it could have a 

huge impact on public health. Different formulations, different adjuvants and even different 

delivery methods have been developed to improve the potency of E. coli O157:H7 vaccines in 

cattle (Potter et al., 2004; Naylor et al., 2005a; Naylor et al., 2005b; Peterson et al., 2007a; 

Peterson et al., 2007b; Nart et al., 2008a; Nart et al., 2008b). At present, systemic vaccination of 

cattle against E. coli O157:H7 TTSS proteins seems very promising and a vaccine, Econiche, is 

already for a few years on the market in Canada and the USA. Recently, a second vaccine has 

been provisionally approved for cattle, namely Epitopix, based upon Siderophore Receptor and 

Porin proteins (Fox et al., 2009).  

In this thesis, we demonstrated that in sheep, E. coli O157:H7 excretion could be greatly 

reduced by vaccination against TTSS antigens, as in cattle. Although preliminary data obtained in 

our laboratory suggest a role for mucosal antibodies in protection, the exact mechanism of how 

vaccination reduces bacterial shedding needs more investigation (Vande Walle et al., 2010). 

McNeilly and co-workers (2010) showed that systemic immunization of cattle against TTSS, not 

only induced serum but also rectal IgG antibodies. Our preliminary results also showed a 
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mucosal IgG response in sheep (Vande Walle, 2010). Whether these antibodies are playing a 

role in the mechanism affecting the E. coli O157:H7 colonization in sheep or cattle still has to be 

demonstrated.  

Vaccination with different antigens and different adjuvants in cattle resulted in a variable 

protection efficacy (Potter et al., 2004; Babiuk et al., 2008; McNeilly et al., 2008). Future work 

on sheep vaccination has to target additional antigens or different combinations of antigens. 

Furthermore, our vaccination was performed using Freund’s adjuvant. This adjuvant induces a 

mixed T-helper 1 like/T-helper 2 like immune response. Other adjuvants such as ISCOMs or CpG 

motifs modulate the response towards T-helper 1 cells whereas adjuvants such as aluminium 

salts or the thermolabile enterotoxin modulates the response toward T-helper 2 cells (reviewed 

by Cox et al, 2006). A T-helper 1 like response directs the response towards cellular immunity 

and a T-helper 2 like response towards antibodies. Since it is currently not known which 

responses are involved in protection, using different adjuvants could help clarify the immune 

mechanisms as well as optimize the vaccine formulation.  
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Enterohaemorhagic Escherichia coli (EHEC) are a group of bacteria responsible for numerous 

foodborne outbreaks in humans which can lead to bloody diarrhea, haemorrhagic uremic 

syndrome and in some cases in children even in death. E. coli O157:H7 is the most well known 

serotype of this group. Ruminants are the most important reservoir of these microorganisms 

and many outbreaks have been traced to ruminant’s origin. Ruminants typically continue to 

shed bacteria in their feces for weeks to months. Carcasses of non-colonized animals have 

regularly been found to be contaminated with E. coli O157:H7 in the abattoir, suggesting that 

cross-contamination during meat processing can be a major source of the contamination of beef 

products and subsequently of human’s infection. Therefore reducing E. coli O157:H7 shedding 

by ruminants would be a way to control the infection of humans. Up till now, no efficient 

treatment is available against E. coli O157:H7 infection and some traditional treatments, 

including antibiotic therapy may even increase the chance of developing severe disease in 

humans. Therefore, there is need for alternative ways to reduce the risk of E. coli O157:H7 

infection of humans for instance by diminishing or preventing E. coli O157:H7 excretion at the 

farm level. 

 

The first part of this thesis reviews current literature. Chapter 1 of this thesis gives an 

overview of the literatures on the pathogenesis of E. coli O157:H7 in human and ruminants. Also 

the reported intervention strategies in ruminants were discussed. Chapter 2 reviews present 

knowledge on lactoferrin as the main antibacterial immunomodulatory protein of milk. The 

focus of this chapter is on the antimicrobial mechanism of lactoferrin and its peptides, in 

particular the antimicrobial mechanism against gram-negative pathogens. In addition the role of 

lactoferrin as immunomodulatory protein is briefly reviewed. 

 

A second part of the thesis describes the aims. Following questions were addressed in this 

thesis: 

√ What is the pattern of antimicrobial susceptibility among E. coli isolates from dairy cows in 

Iran? 
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√ Can lactoferrin, a natural antimicrobial protein of milk, be used to prevent or reduce 

colonisation of the ovine intestinal tract with E. coli O157:H7 and so reduce or prevent fecal 

shedding? 

√ Is systemic vaccination of sheep with type III secretion system proteins and intimin γ a possible 

strategy to reduce fecal shedding of E. coli O157:H7 as in cattle? 

 

A third part, comprising Chapters 3 to 7, presents the experimental work of this thesis. 

In Chapter 3 the antimicrobial susceptibility of E. coli isolates from milk and healthy cattle 

feces in Iran has been investigated. The results identified ceftiofur ( 6%) and colistin as the most 

effective antibiotics. However the incidence of colistin resistance (14%) among the isolates was 

remarkably higher than in previous reports on antibiotic susceptibility of commensal bacteria. 

The highest percentage of acquired resistance was detected for tetracycline (46%), followed by 

ampicillin (43%). %). For the other tested antimicrobials (amoxicillin-clavulanic acid, 

chloramphenicol, enrofloxacin, florfenicol, spectinomycin, sulfafurazole and trimethoprim) 

resistance varied between 30 and 17%. Seventy-five percent of the isolates showed multiple 

antimicrobial resistance. This means resistance to three or more antimicrobial agents. This 

overall high antimicrobial resistance should alert veterinarians and authorities to take measures 

for decreasing antimicrobial usage and should stimulate research towards alternative strategies 

for treating cattle against bacterial infections. 

Since traditional treatment including antibiotic therapy is not a suitable option in the control 

and/or treatment of E. coli O157:H7, the use of lactoferrin, a natural antimicrobial protein of 

milk has been investigated in the present thesis for reducing E. coli O157:H7 shedding in 

ruminants feces. First the effect of lactoferrin on this bacterium was tested. In Chapter 4 

lactoferrin from bovine and human milk were compared for their direct effect on E. coli 

O157:H7 growth. Bovine lactoferrin (bLF) had a significantly stronger inhibitory effect than 

human lactoferrin (hLF). The non iron-saturated form of bovine lactoferrin (apo-bLF) reduced E. 

coli O157:H7 growth significantly stronger than the iron-saturated form. In addition, all 

lactoferrins, apart of their origin or iron saturation level, reduced E. coli O157:H7 attachment to 

Caco-2 cells at a dose that had no effect on bacterial growth. Therefore other factors rather 
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than simply scavenging iron from the environment and/or reducing bacterial growth plays a role 

in the anti-adhesive effect of lactoferrin.  In Chapter 4 we showed that this effect is at least in 

part due to a catalytic effect of lactoferrin on TTSS proteins of E. coli O157:H7; EspA and EspB 

which are essential for E. coli O157:H7 colonisation were cleaved. This proteolytic activity of 

lactoferrin has already been shown on the TTSS apparatus of EPEC, a similar pathogen. In 

conclusion, the results reported in this chapter, support the idea that lactoferrin may reduce the 

colonisation of E. coli O157:H7 in vivo. 

To obtain more insights in the effect of lactoferrin on the interaction of E. coli O157:H7 with 

the sheep intestinal mucosa, a sheep intestinal explant model was developed. In Chapter 5 we 

examined using this sheep specific in vitro model 1) the tropism of E. coli O157:H7 for ileal or 

large intestinal mucosa, 2) the intestinal mucosal cytokine response induced by the mucosal E. 

coli O157:H7 colonisation and 3) the effect of lactoferrin on colonisation and cytokine response. 

The data presented in this chapter show that E. coli O157:H7 preferentially binds to ileal follicle-

associated epithelium, but can also bind to the normal absorptive ileal mucosa and colonic 

mucosa, although to a lesser extent. We also demonstrated that this bacterial attachment could 

enhance IL-8 and TNF-α mRNA expression with the increase in expression being correlated with 

the number of bacteria attaching to the sheep intestinal explant. Furthermore results presented 

in this chapter clearly showed that lactoferrin inhibits E. coli O157:H7 attachment to the 

explants with lower IL-8 and TNF-α mRNA expression as a consequence. 

In Chapter 6, we examined if lactoferrin, administered via the oral route, could reduce E. coli 

O157:H7 excretion of sheep. It is not evident that the administration via this route would be 

effective since the protein perhaps could become degraded in the rumen. Therefore, lactoferrin 

was solublized in a bicarbonate buffer which can close the esophageal groove allowing 

lactoferrin to pass rumen, reticulum and omasum so reaching the abomasum. Oral lactoferrin 

was given every 12 hours for 30 days in two different doses (1.5 or 0.15 g) and the inoculation 

with E. coli O157:H7 occurred 24 hours after the first lactoferrin administration. Both dosages 

reduced the number of E. coli O157:H7 in sheep feces as well as the duration of fecal excretion. 

Furthermore, sheep, which received the high dose of lactoferrin (1.5 g, every 12 hours) showed 

a significantly higher serum antibody response against EspA and EspB in comparison with the 



Summary 

 

 

173 

control group. Since the peak of this antibody response was seen when the excretion of E. coli 

O157:H7 had completely ceased, it could be that this immune response plays a role in reducing 

the bacterial excretion in sheep orally treated with lactoferrin. Results of this study show that 

lactoferrin can become a new tool in controlling E. coli O157:H7 but also other EHEC infections 

by decreasing their excretion by reservoir animals. 

In the last chapter of the experimental part of the present thesis, the potential of systemic 

vaccination against E. coli O157:H7 in sheep was examined. Vaccination studies have previously 

been performed in cattle. Some of these studies in which cattle were systemically vaccinated 

with an antigen mixture containing several type III secretion system (TTSS) proteins could 

significantly reduce shedding.  In this chapter we wanted to know if similar result could be 

obtained in sheep. This could allow us to study in a next step the mechanism of this protection 

and to further optimize vaccination in sheep. Sheep were intramuscularly vaccinated with a 

mixture of the TTSS proteins EspA and EspB and the surface antigen intimin γ in incomplete 

Freund’s adjuvant or received only the adjuvant. The data obtained in Chapter 7 showed that 

the vaccination significantly reduced the fecal excretion of the bacteria. These results are 

consistent with the previous studies in cattle. Although the vaccination strongly increased the 

level of serum IgG against intimin, EspA and EspB, the mechanism for the observed E. coli 

O157:H7 reduction in the feces still needs to be determined. Results suggest that besides oral 

lactoferrin treatment also vaccination could become an important tool to reduce E. coli 

O157:H7 excretion by sheep.  

 

The fourth part of the thesis consists of the general discussion and future perspectives. 

Although important steps were set towards new strategies in the control of E. coli O157:H7 

infections, many questions still remain to be resolved such as: 1) Is there a tropism for the rectal 

mucosa in sheep and can lactoferrin via the oral route reach the rectal mucosa and clear the 

colonizing bacteria?; 2) What is the mechanism for the enhanced antibody response following 

lactoferrin treatment?; 3) Is this antibody response also present in the mucosa?; 4) Can we 

develop an administration form that is feasible in practice?; 5) What is the mechanism of the 

reduction in excretion following vaccination?; 6) Can we still improve this clearance using more 
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or different antigens and different adjuvants?; 7) What is the duration of this immune 

mechanism in the mucosa? 

Future research has to direct these questions. For some of these questions the first steps to 

resolve them have already been taken. 
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Enterohaemorrhagische Escherichia coli (EHEC) vormen een groep bacteriën die 

verantwoordelijk zijn voor verscheidene voedselgerelateerde uitbraken. Ze veroorzaken bij 

de mens bloederige diarree, het hemorragisch uremisch syndroom (HUS) en kunnen leiden 

tot de dood en dit voornamelijk bij kinderen. E. coli O157:H7 is het best gekende serotype 

binnen deze groep. Herkauwers vormen het belangrijkste reservoir van dit micro-organisme 

en de bron van meerdere uitbraken werd herleid naar herkauwers. Herkauwers scheiden de 

bacterie uit in de faeces gedurende weken tot maanden. In het slachthuis wordt soms 

vastgesteld dat karkassen van niet-gekolonizeerde dieren besmet zijn met E. coli O157:H7, 

wat erop wijst dat kruiscontaminatie tijdens het vleesverwerkingsproces een belangrijke 

bron van contaminatie van vlees kan zijn, en kan leiden tot infecties bij de mens. Vandaar 

dat een reductie in E. coli O157:H7 uitscheiding bij herkauwers zou resulteren in een 

verminderde infectie bij de mens.  

Tot nu toe is er geen efficiënte behandeling van een E. coli O157:H7 infectie beschikbaar en 

bepaalde traditionele behandelingen zoals antibiotica toediening kunnen de kans op het 

ontwikkelen van complicaties bij de mens zelfs verhogen. Daarom is er nood aan 

alternatieve manieren om E. coli O157:H7 excretie door herkauwers te reduceren. 

 

Het eerste deel van deze thesis, die een literatuurstudie omvat, bestaat uit twee 

hoofdstukken. Hoofdstuk 1 geeft een overzicht van de literatuur over de pathogenese van E. 

coli O157:H7 bij mensen en herkauwers. Daarnaast worden bekende interventiestrategieën 

bij herkauwers besproken. Hoofdstuk 2 geeft de huidige kennis over lactoferrine. De focus 

ligt op het antimicrobieel werkingsmechanisme van lactoferrine en zijn peptiden. Bijkomend 

wordt de rol van lactoferrine als immunomodulatorisch eiwit kort besproken. 

 

Het tweede deel van de thesis beschrijft de doelstellingen van dit werk. Het doel van deze 

thesis was een antwoord te formuleren op volgende vragen: 

� Wat is het antibiogram van E. coli isolaten afkomstig van gezonde dieren in Iran? 

� Kan lactoferrine dienen als beschermingsmiddel om E. coli O157:H7 infectie en 

excretie bij schapen te reduceren? 

� Kan systemische vaccinatie schapen beschermen tegen E. coli O157:H7 infectie? 
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Het derde deel van de thesis, hoofdstukken 3 tot 7 omvattende, geeft het experimenteel 

werk van deze thesis weer. 

In hoofdstuk 3 wordt de antimicrobiële gevoeligheid van E. coli isolaten afkomstig van 

gezonde melkkoeien uit Iran onderzocht. De resultaten tonen aan dat ceftiofur en 

colistine de meest efficiënte antibiotica zijn, hoewel de incidentie van colistine 

resistentie (14%) opvallend hoger was dan vermeld in eerdere rapporten over 

commensale bacteriën. Daarentegen vertonen een hoog percentage isolaten resistentie 

tegen tetracycline (46%) en tegen ampicilline (43%). Voor de andere geteste 

antimicrobiële producten (amoxicillin-clavulanic acid, chloramphenicol, enrofloxacin, 

florfenicol, spectinomycin, sulfafurazole and trimethoprim) ligt de resistentie tussen 17 

en 30 %.  Ongeveer 75% van de isolaten hebben resistentie verworven tegen ten minste 

3 van 11 geteste antibiotica. Dit toont een hoge antimicrobiële resistentie die kan te 

wijten zijn aan een hoog gebruik van antimicrobiële producten bij melkkoeien . Dit wijst 

op de nood naar ontwikkeling van alternatieve therapieën voor bestrijding van infecties. 

Aangezien traditionele behandelingen inclusief het gebruik van antibiotica geen gepaste 

optie zijn voor de controle en/of behandeling van E. coli O157:H7, werden andere 

strategieën onderzocht om de hoeveelheid E. coli O157:H7 bacteriën in de faeces van 

herkauwers te reduceren. Eén van de strategiën onderzocht in deze thesis is het gebruik 

van lactoferrine, een natuurlijk antimicrobieel eiwit in melk. Om lactoferrine te kunnen 

gebruiken als bescherming van schapen tegen E. coli O157:H7, moesten we weten welk 

effect lactoferrine heeft op de bacteriën. Daarom werd in hoofdstuk 4 het effect van 

lactoferrine afkomstig uit runder- en menselijke melk bepaald op groei van E. coli 

O157:H7.  Runder lactoferrine (bLF) had een significant sterker inhibitorisch effect op de 

bacteriële groei dan menselijk lactoferrine (hLF). De niet-ijzergesatureerde vorm van 

runder lactoferrine (apo-LF) reduceerde de groei van E. coli O157:H7 significant sterker 

dan de ijzer-gesatureerde vorm. Bovendien waren alle vormen van lactoferrine, 

onafhankelijk van oorsprong of ijzersaturatie, in staat tot het reduceren van E. coli 

O157:H7 adhesie aan HEp-2 en Caco-2 cellen in dosissen die geen effect hadden op de 

bacteriële groei. Dit wijst erop dat factoren verschillend van simpelweg ijzeropname uit 

de omgeving en/of reductie van bacteriële groei een rol spelen bij het anti-adhesief 

effect van lactoferrine. In hoofdstuk 4 werd aangetoond dat dit effect op zijn minst 
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gedeeltelijk te wijten is aan het katalytisch effect van lactoferrine op type III 

secretiesysteem (TTSS) eiwitten van E. coli O157:H7, nl. EspA en EspB, welke essentieel 

zijn voor kolonisatie van E. coli O157:H7. Het katalytisch effect van lactoferrine op het 

TTSS apparaat werd reeds aangetoond voor gelijkaardige bacteriën (EPEC). Tot besluit 

kunnen we stellen dat de resultaten bekomen in dit hoofdstuk het idee ondersteunen 

dat lactoferrine de kolonisatie van E. coli O157:H7 in vivo kan reduceren. 

Om meer inzicht te bekomen in het effect van lactoferrine op kolonisatie van schapen 

met E. coli O157:H7, werd een schapendarmexplant model ontwikkeld in ons 

laboratorium. In hoofdstuk 5 werden aan de hand van dit model volgende zaken 

onderzocht: 1) het weefseltropisme van E. coli O157:H7 infectie bij schapen, 2) de 

cytokinerespons van schapen darmweefsel na infectie met E. coli O157:H7, en 3) het 

effect van lactoferrine op kolonisatie van de explanten en de daaropvolgende 

cytokinerespons. De data weergegeven in dit hoofdstuk tonen aan dat E. coli O157:H7 

sterker bindt aan het ileaal follikel-geassocieerd epitheel van schapen dan aan het 

absorptief epitheel van het ileum of het colonepitheel. Er werd ook aangetoond dat 

bacteriële adhesie de expressie van IL-8 en TNF-α mRNA verhoogt en dat het niveau van 

deze expressie gecorreleerd is met het aantal bacteriën dat vasthecht aan de intestinale 

explanten. Voorts wijzen de resultaten in dit hoofdstuk erop dat lactoferrine de E. coli 

O157:H7 adhesie inhibeert en o.a. daardoor de  IL-8 en TNF-α mRNA expressie in de 

intestinale explanten reduceert. 

In hoofdstuk 6 werd het potentieel van oraal toegediend lactoferrine om E. coli O157:H7 

excretie bij schapen te reduceren, nagegaan. Oraal lactoferrine werd gebruikt in 2 

verschillende dosissen, nl. 1,5 of 0,15 g toegediend om de 12h gedurende 30 dagen. 

Toediening van beide dosissen reduceerde het aantal E. coli O157:H7 bacteriën  in 

schapenfaeces alsook de duur van de faecale uitscheiding. Bovendien vertoonden 

schapen die de hoge dosis lactoferrine kregen (1,5 g elke 12h) een significant hogere 

serumantistoffenrespons tegen EspA en EspB in vergelijking met  de controlegroep. 

Aangezien de piek van de antistoffenrespons samenviel met het stoppen van de E. coli 

O157:H7 uitscheiding, is het waarschijnlijk dat een mucosale immuunrespons een rol 

speelt in de reductie van de bacteriële excretie bij schapen die oraal behandeld werden 

met lactoferrine. Dit levert nieuwe mogelijkheden om E. coli O157:H7 infectie en excretie 
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in het bacterieel reservoir te reduceren en daaruitvolgend ook infecties bij de mens te 

voorkomen. 

In het laatste hoofdstuk van het experimenteel deel van deze thesis werd het potentieel 

van een systemische vaccinatie tegen E. coli O157:H7 bij schapen onderzocht. Het 

experiment dat beschreven wordt in hoofdstuk 7 was opgezet om de hypothese na te 

gaan of een vaccin gericht tegen het oppervlakteantigeen intimine en de TTSS eiwitten 

EspA en EspB de kolonisatie van E. coli O157:H7 bij schapen kan voorkomen of reduceren, 

zoals reeds aangetoond werd bij runderen. De belangrijkste bevinding van dit gedeelte 

van de thesis was dat vaccinatie tegen E. coli O157:H7 TTSS eiwitten en intimine het 

niveau van bacteriële uitscheiding in schapenfaeces significant verminderde. Deze 

resultaten zijn consistent met eerdere studies bij runderen. Hoewel de vaccinatie leidde 

tot sterk verhoogde serum IgG titers tegen intimine, EspA en EspB, is er meer onderzoek 

vereist om het mechanisme achter de geobserveerde reductie van E. coli O157:H7 in de 

faeces te achterhalen. Deze resultaten suggereren dat vaccinatie van schapen een 

belangrijke methode kan worden in de controle van E. coli O157:H7.  

 

Het vierde deel van de thesis omvat de algemene discussie en het toekomstig onderzoek. 

Alhoewel in deze thesis belangrijke stappen gezet zijn naar nieuwe strategiën voor de 

bestrijding van E. coli O157:H7 blijven er meerdere belangrijke vragen te beantwoorden 

zoals: 1) Heeft E. coli O157:H7 een tropisme voor de rectale mucosa bij schapen en kan 

lactoferrine deze lokatie voldoende bereiken om de bacterie te verwijderen?; 2) Wat is 

het mechanisme voor de verhoogde antistoffenrespons gezien in de groep dieren die de 

hoge dosis lactoferrine kreeg?; 3) Is deze immuunrespons niet alleen aanwezig in het 

serum, maar ook mucosal ter hoogte van de darm?; 4) Kunnen we een toedieningsvorm 

ontwikkelen die makkelijk te gebruiken is in de praktijk en nog efficiënter werkt?; 5) 

Welk is het mechanisme voor de reductie in excretie na parenterale vaccinatie?; 6) 

Kunnen we de vaccinatie nog verbeteren door meer antigenen toe te voegen of door 

andere combinaties van antigenen en/of andere adjuvantia te gebruiken?; 7) Hoelang 

blijft het effect van een vaccinatie aanwezig?  
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Verder onderzoek moet zich vooral naar deze vragen richten. Voor sommige van deze 

vragen werden ondertussen reeds experimenten opgezet om ze te kunnen 

beantwoorden. 
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