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ABSTRACT
The generic framework for formalising the subjective inter-
estingness of patterns presented in [2] has already been ap-
plied to a number of data mining problems, including item-
set (tile) mining [3, 8, 9], multi-relational pattern mining [18,
19, 20], clustering [10], and bi-clustering [12, 11]. Also, it has
been pointed out without providing detail that also Princi-
pal Component Analysis (PCA) [7] can be derived from this
framework [2]. This short note describes work-in-progress
aiming to show in greater detail how this can be done. It
also shows how the framework leads to a robust variant of
PCA when used to formalise the subjective interestingness
of a data projection for a user who expects outliers to be
present in the data.
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1. INTRODUCTION
This short note gives two examples of how the framework

from [2], can be used to formalise the subjective interesting-
ness of a linear projection of a data set. Thus it illustrates
how the framework can lead to different approaches for lin-
ear dimensionality reduction depending on the prior beliefs
of the user, illustrating the importance of this initial inter-
action with the user.

We consider two types of prior beliefs in particular. The
first one of these leads to an algorithm identical to Princi-
pal Component Analysis (PCA). The second one, which is
suited for users who feel they have no accurate belief about
the spread of the data but only about the order of magni-
tude of that spread, can be thought of as a robust (outlier
insensitive) alternative to PCA that appears to be novel.

This note sweeps all details under the carpet, and leaves
a number of important questions unanswered. These details
and questions will be resolved in a later publication. The
hope is that this short note further demonstrates the use-
fulness of the framework from [2] across the breadth of ex-

ploratory data mining research. It helps in elucidating when
a certain pattern is interesting to a given user, depending on
the beliefs of that user.

In this particular study, it shows that PCA is not the best
approach for users who anticipate the presence of outliers.
While this will come as no surprise to many, this is a formal
and rigorous demonstration of why that is the case, and
additionally offers an alternative method that is appropriate
when outliers are expected by a user.

2. SUBJECTIVE INTERESTINGNESS IN A
NUTSHELL

2.1 Notation
Scalars are denoted with standard face, vectors with bold

face lower case, and matrices with bold face upper case let-
ters. The i’th data point is denoted as xi ∈ Rd with d the
dimensionality of the data space. The matrix containing
all data points transposed x′i (i = 1, . . . , n) as its rows is
denoted as X ∈ Rn×d.

2.2 Projection patterns
In the general framework of [2], we formalised patterns as

any property the data satisfies. In this paper, the particular
kind of pattern considered can formalised as a constraint on
the data of the form:

Xw = p,

where w ∈ Rd, referred to as a weight vector (also known as
the loadings), has unit norm and parameterises the pattern.
The vector p ∈ Rn specifies the value of the projections of
the data points onto the weight vector w. The fact that the
projections of all data points onto a given weight vector w
are equal to specific values is clearly a property a data set
may or may not have, and revealing it to a user provides
clear information to that user restricting the set of possible
values the data set can have.

Although ideally any possible w ∈ Rd can be considered,
in practice only a finite though large number of them can
be considered due to the lack of finite code for the set of
real numbers. Similarly, the values of p cannot be specified
to an infinite accuracy. This short note brushes over these
issues, which can be dealt with rigorously by assuming they
are specified up to a certain accuracy. A rigorous treatment
of these issues is deferred to a later publication.
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2.3 The subjective interestingness of projec-
tion patterns

In [2], the interestingness of a pattern (defined generically
as any constraint on the value of the data) is formalised as
the trade-off between the description length of the pattern,
and its subjective information content. More specifically,
the subjective interestingness of a pattern is formalised as
its subjective information content divided by its description
length. Here we very briefly summarize this framework, and
start outlining how it can be applied to the kind of patterns
of interest in this paper, namely projection patterns.

It is reasonable to consider the description length as con-
stant, independent of w and p. Indeed, this amounts to as-
suming that each possible w requires the same description
length, and that p is shown with constant absolute precision.
The latter is the case when e.g. the projections are visual-
ized on a computer screen or printed on paper. If the values
of p are normalised before visualizing, then the description
length is not exactly constant as also the normalising factor
needs to be specified, which requires a variable length code
if the normalisation factor is unbounded. However, in prac-
tice this should always account for a very small part of the
description length of the pattern.

The subjective information content is minus the logarithm
of the probability that the pattern is present, where the
probability is computed with respect to the so-called back-
ground distribution, which represents the belief state of the
user about the data.

The belief state can be modelled assuming a certain set of
prior beliefs (expressed as constraints on the expected val-
ues of certain test statistics given the background distribu-
tion). Among all distributions satisfying these constraints,
the background distribution is the one with maximum en-
tropy.

Each time a pattern is revealed to the user, the user’s
background distribution changes. More specifically, it is con-
ditioned on the presence of the pattern just revealed.

3. INTERESTING PROJECTIONS WHEN NO
OUTLIERS ARE EXPECTED

3.1 Prior beliefs and the background distribu-
tion

A user not expecting any outliers will be able to express
an expectation about the value of the average two-norm
squared of the data points:

EX∼P

{
1

n

n∑
i

x′ixi

}
= σ2.

To determine the value for σ user involvement appears to
be inevitable at first sight. However, below it will become
clear that the ordering of projection patterns according to
interestingness is in fact independent of the value of σ, so in
practice the exact value will not need to be known.

It is well known (and easy to derive) that the distribution
of maximum entropy given this prior belief constraint on the
scatter matrix of the data points is a product distribution
of multi-variate normal distributions with mean 0 and co-
variance matrix σI. I.e. the density function for each of the

data points x is:

p(x) =
1
√

2π
d

exp

(
−x′x

2σ2

)
.

Thus, the product of n such distributions, one for each of
the data points, is the background distribution formalising
a user’s prior belief state about the data set, when that user
does not anticipate the presence of outliers.

3.2 The subjective interestingness of a projec-
tion pattern

It is well-known that the probability distribution of an
orthogonal transformation of a normal random variable is
again a normal random variable, with the same mean and
with a covariance matrix that is transformed accordingly.
In the current context, with W an orthogonal matrix (i.e.
W′W = WW′ = I), and with z = W′x, it holds that:

p(z) =
1
√

2π
d

exp

(
− z′z

2σ2

)
,

=

d∏
k=1

1√
2π

exp

(
− z2k

2σ2

)
.

I.e., the distribution of z is a product distribution with a
factor for each of the components of z. Thus, the marginal
distribution for the first component, z1, is given by:

p(z1) =
1√
2π

exp

(
− z21

2σ2

)
.

Referring to the first column of W as w (and note that
w′w = 1 follows from W′W = I), this means that the
projections Xw = p of all data points follow this normal
distribution, and thus the subjective information content of
a projection pattern specified by this equality is equal to:

SubjectiveInformationContent (Xw = p)

= − log (p(Xw = p)) ,

=
n

2
log(2π) +

1

2σ2
w′X′Xw.

As the descriptional complexity is constant, this is propor-
tional to the subjective interestingness.

3.3 The maximiser of the interestingness is the
maximiser of the variance

PCA’s goal is to maximise w′X′X′w subject to the con-
straint w′w = 1, which is clearly equivalent with maximising
this subjective interestingness. PCA can thus be regarded
as finding the projection pattern with maximal subjective
interestingness for the user not expecting any outliers.

3.4 Subsequent iterations
After revealing the first projection pattern, the background

distribution is conditioned on the fact that Xw = p. The
updated background distribution is then a product distri-
bution of multivariate standard normal distributions on the
subspace orthogonal to w. The result of that is that the
subjective information of patterns in subsequent iterations
is computed as for the first pattern after deflating the data:
considering only the component of the data points orthogo-
nal to w. This is precisely the way PCA works.
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4. INTERESTING PROJECTIONS WHEN OUT-
LIERS ARE EXPECTED

With a slightly different prior belief that assumes the pres-
ence of outliers (leading to a heavy-tailed background distri-
bution), a method that can be thought of as a robust version
of PCA is obtained.

4.1 Prior beliefs and the background distribu-
tion

As prior beliefs, now the following is used:

EX∼P

{
1

n

n∑
i

log

(
1 +

1

ρ
x′ixi

)}
= c.

This kind of prior belief specifies an expectation on a mea-
sure of the spread of the data, which amplifies contributions
from points with small norm relative to the data points with
large norm through a log transformation. Thus, using such
a prior belief rather than say a prior belief on the second mo-
ment considers outliers in the data relatively more probable.
The smaller the value of ρ, the less important the constant
term in the argument of the logarithm will be, the more log-
arithmic this statistic will therefore vary with the norm of
xi, and thus the more tolerant this model will be to outliers.
Informally: rather than determining an expectation on the
spread of the data, for small values of ρ it determines an
expectation on the order of magnitude of the spread of the
data.

For convenience in the following derivations, let us intro-
duce the function

κ(ν) = ψ

(
ν + d

2

)
− ψ

(ν
2

)
,

where ψ represents the digamma function. In the sequel
the value of κ−1(c) will need to be used, denoted as ν for
brevity. Then, the initial background distribution can be de-
rived by relying on [22], where it is shown that the maximum
entropy distribution subject to the specified prior informa-
tion is the product of independent multivariate standard t-
distributions with density function p defined as:

p(x) =
Γ
(
ν+d
2

)√
(πρ)dΓ

(
ν
2

) · 1(
1 + 1

ρ
x′x
) ν+d

2

,

with one factor in this product distribution for each data
point. Here Γ represents the gamma function.

Note that for ρ, ν → ∞, ρ
ν
→ σ2 this tends to the mul-

tivariate normal distribution with mean 0 and covariance
matrix σ2I. For ρ = ν = 1 this is a multivariate standard
Cauchy distribution, which is so heavy-tailed that its mean
is undefined and its second moment is infinitely large. Thus,
this type of prior beliefs can clearly model the expectation
of outliers to varying degrees.

4.2 The subjective interestingness of a projec-
tion pattern

To compute the subjective information content, note that
the density function for the transformed variable z = W′x
with W an orthogonal matrix is given as:

p(z) =
Γ
(
ν+d
2

)√
(πρ)dΓ

(
ν
2

) · 1(
1 + 1

ρ
z′z
) ν+d

2

.

Now, the density function for the marginal distribution of
a t-distribution with given covariance matrix is again a t-
distribution density with the same number of degrees of free-
dom, obtained by simply selecting the relevant part of the
covariance matrix [13, 15]. With w denoting the first column
of W, this means that the density function for z1 = w′x,
the first component of z, is:

p(z1) =
Γ
(
ν+1
2

)
√
πρΓ

(
ν
2

) · 1(
1 + 1

ρ
z21

) ν+1
2

.

Written in terms of x, this is:

p(x′w) =
Γ
(
ν+1
2

)
√
πρΓ

(
ν
2

) · 1(
1 + 1

ρ
w′xx′w

) ν+1
2

.

Thus, the subjective information content of a pattern stating
that Xw = p is:

SubjectiveInformationContent (Xw = p)

=
ν + 1

2

n∑
i=1

log

(
1 +

1

ρ
(x′iw)2

)
+ a constant.

Again, as the description length is constant, this is propor-
tional to the subjective interestingness.

4.3 Maximising the interestingness using a ro-
bust version of PCA

Taking into account that w′w = 1 (as required in the pat-
terns considered and as imposed by the orthogonality of W),
maximising the subjective interestingness is thus equivalent
to solving the following problem:

maxw

n∑
i=1

log
(
ρ+ (x′iw)2

)
,

s.t. w′w = 1.

The method of Lagrange multipliers leads to the following
optimality condition for the subjective information content:(

n∑
i=1

xix
′
i

ρ+ (x′iw)2

)
w = λw.

Note that the matrix on the left hand side is propotional
to essentially a weighted empirical covariance matrix for the
data, where points contribute more if they have a smaller
value for (x′iw)2: the weight for xix

′
i is 1

ρ+(x′iw)2
.

Although this optimisation problem is not convex and the
optimality conditions do not admit a closed form solution
in terms of e.g. an eigenvalue problem, a modified version
of the power method for solving eigenvalue problems empir-
ically appears to be a good heuristic approach. The algo-
rithm goes as follows:

1. Solve the eigenvalue problem
(∑n

i=1 xix
′
i

)
w = λw for

the dominant eigenvector,1 further denoted w(0). This
vector is normalised to unit norm.

1This amounts to solving the problem for ρ → ∞, which
is essentially equivalent to PCA. This is no coincidence as
for ρ, ν → ∞, ρ

ν
→ σ2 the background distribution is an

isotropic multivariate Gaussian distribution, as noted above.
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2. Iterate from k = 1 until convergence or maximum
number of iterations reached:

(a) v(k) =
(∑n

i=1

xix
′
i

ρ+(x′iw
(k−1))2

)
w(k−1).

(b) w(k) = v(k)

‖v(k)‖ .

Clearly this is not guaranteed to converge to the global op-
timum, but in practice it appears to perform well. Whether
it always converges to a local optimum is left as an open
question in this note.

The effect of the parameter ρ is as follows. For a smaller
value of ρ, the tail of the background distribution can be
heavier, as then the nonlinearity of the logarithm in the prior
belief constraint will affect data points of smaller magnitude.
The effect of this is that outliers (for which (x′iw)2 may be
very large) will not weigh in as strongly as they would in
PCA, as the contribution of xix

′
i to what can be thought of

as a reweighted covariance matrix is reduced, and relatively
more so than for data points for which (x′iw)2 is small as
compared to ρ (for which the reduction is roughly constant).
Informally speaking, ρ is a soft threshold on the squared
distance along w beyond which data points will no longer
be able to bias the solution in their own direction.

Interestingly, just like in PCA where the value of σ has no
effect on which pattern is most interesting, here the value of
ν and thus of c has no effect on which projection is the most
interesting one. (Though σ and c do affect the value of the
interestingness in both cases.) This significantly reduces the
demands on the user in specifying their prior beliefs.

4.4 Subsequent iterations
A property of the multivariate t-distribution is that the

conditional distribution conditioned on the value of any of
the dimensions is again a multivariate t-distribution, though
with a different number of degrees of freedom and a differ-
ent covariance matrix [15]. Thus, after revealing the values
of the projections p, the updated background distribution
is again a multivariate t-distribution for the parts of the
data points orthogonal to w from the first pattern. The
next pattern can be found essentially by projecting the data
points onto the orthogonal complement of w and repeating
the same procedure.

5. EXPERIMENT
To illustrate the robustness of the PCA alternative derived

in the previous section, consider a dataset consisting of 1000
data points sampled from a Gaussian distribution with mean

0 and with covariance matrix

(
4 0
0 1

)
, to which a further

100 ‘outliers’ are added, sampled from a Gaussian distribu-

tion with mean 0 and with covariance matrix

(
16 12
12 13

)
.

The weight vector resulting from standard PCA is shown
with a full red line in Fig. 1. The black dash-dotted lines
show the weight vectors retrieved by the robust PCA method
described, with values for ρ equal to 1, 10, and 100. The
largest value of these resulted in the line closest to the PCA
result. The green dashed line shows the weight vector that
would have been found using standard PCA had there been
no outliers at all (i.e. computed just on the first 1000 data
points).

The left figure shows the resulting weight vectors on top
of a scatter plot of all data points, clearly showing that the

PCA result is determined primarily by the outliers. The
right figure shows the same resulting weight vectors on top
of a scatter plot of only the first 1000 data points (excluding
the outliers). Clearly, the robust PCA version is much less
strongly affected by the outliers and primarily determined
by the dominant variance direction in the bulk of the data
points excluding the outliers.

6. DISCUSSION AND FURTHER WORK
This note shows how PCA can be derived as an instanti-

ation of the framework from [2] for deriving subjective in-
terestingness of exploratory data mining patterns. Addi-
tionally, it shows how prior beliefs reflecting the expectation
that outliers may be present in the data lead to an alterna-
tive to PCA that is less sensitive to such outliers.

Robust PCA is an important research topic that has been
studied for decades, see e.g. [1, 14, 6, 21] for a few recent
references. Often the problem is tackled as an instance of
projection pursuit (and also our algorithm could be viewed
as such) [4, 5], by making use of a robust estimator of the
covariance matrix [17, 16], or by making additional assump-
tions about the nature of the interesting aspects of the data
and the corrupting noise process. The algorithm derived in
this note appears to be most strongly related to the algo-
rithm from [14], but further study into connections between
the two is required.

In further work we will enhance the rigour of the deriva-
tions, attempt to establish the convergence of the algorithm
for the robust version of PCA, and investigate the utility of
other alternatives to PCA that are useful for other relevant
kinds of prior belief states. E.g. it is relatively straightfor-
ward to add assumptions on anisotropy of the data to the
prior beliefs in both the derivation of PCA and of the robust
version of PCA, as well as assumptions about the expected
average of the data points not being the origin. However
also altogether different kinds of prior beliefs could be of
interest.
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