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ABSTRACT 

In the last decade floating-point matrix multiplication on 

FPGAs has been studied extensively and efficient 

architectures as well as detailed performance models have 

been developed. By design these IP cores take a fixed 

footprint which not necessarily optimizes the use of all 

available resources. Moreover, the low-level architectures 

are not easily amenable to a parameterized synthesis. In this 

paper high-level synthesis is used to fine-tune the 

configuration parameters in order to achieve the highest 

performance with maximal resource utilization. An 

exploration strategy is presented to optimize the use of 

critical resources (DSPs, memory) for any given FPGA. To 

account for the limited memory size on the FPGA, a block-

oriented matrix multiplication is organized such that the 

block summation is done on the CPU while the block 

multiplication occurs on the logic fabric simultaneously. 

The communication overhead between the CPU and the 

FPGA is minimized by streaming the blocks in a Gray code 

ordering scheme which maximizes the data reuse for 

consecutive block matrix product calculations. Using high-

level synthesis optimization, the programmable logic 

operates at 93% of the theoretical peak performance and 

the combined CPU-FPGA design achieves 76% of the 

available hardware processing speed for the floating-point 

multiplication of 2K by 2K matrices. 

1. INTRODUCTION 
Ever since the seminal paper by Gerald Estrin about 

extending a fixed CPU with a variable part [2], the idea to 

accelerate computations by an algorithm in hardware has 

been a tantalizing prospect. Nowadays, the major players in 

the computer industry offer silicon-on-chip solutions where 

a multicore ARM processor or softcore is tightly integrated 

with the configurable logic fabric. High-level synthesis 

(HLS) tools are closing the gap between the huge 

programming effort and the effective performance of these 

systems.  The idea to configure hardware using a high-level 

language has shifted the focus from low-level design to C, 

C++ or OpenCL code annotated with directives and vendor 

supplied hardware libraries. The quality of the result 

largely depends on the sophistication of the compiler and 

the programmer's ability to generate efficient hardware 

using the multitude of pragmas and design options. Yet the 

development time is much shorter and the design 

exploration is guided by useful resource and timing reports. 

In recent years, low level architectures for floating-point 

matrix multiplication have been studied extensively. 

Detailed analysis of the algorithm resulted in designs in 

which the bandwidth of the streaming data matches the 

speed of the execution pipeline. The maximum size of the 

matrices is defined by the availability of the critical 

resources (DSPs, Block RAMs) needed for the 

implementation. Despite the performance of these 

solutions, they do not optimize the global resource budget, 

e.g. by maximizing the use of both DSPs and available 

memory to allow larger matrices and higher calculation 

speeds. Moreover, the detailed descriptions of the low-level 

architectures are not easily amenable to a parameterized 

implementation using high-level synthesis tools. In this 

paper a matrix algorithm described in C is analyzed with 

respect to two design objectives: maximize the parallelism 

and minimize the pipeline cycle time. A stepwise 

refinement of the algorithm, loop directives and interface 

definition leads to a balanced allocation of the different 

resource types which maximizes the on-chip memory use 

and realizes a speed up to 93% of the peak performance for 

a single matrix multiply. In order to accommodate larger 

matrices, a block oriented algorithm is developed in which 

the block matrices are multiplied on the FPGA and the 

resulting blocks are added in the CPU. A Gray code block 

ordering scheme maximizes the data reuse. The resulting 

CPU-FPGA block oriented multiplication achieves 76% of 

the FPGA floating point performance using the ZedBoard 

[10], a development board based on the Xilinx Zynq-7000 

SoC combining a Series 7000 programmable logic (PL) 

FPGA with a dual ARM-A9 processing system (PS).  

2. RELATED WORK 
Being one of the corner stones of linear algebra, matrix 

multiplication has received much attention in all kinds of 

accelerators, such as GPUs, systolic architectures, multi-

cores, heterogeneous clusters and FPGAs. Zhuo et al. [11] 

use a linear array architecture and propose three algorithms 

which differ by the use of storage size and memory 

bandwidth. They obtain a performance of 2.06 GFLOPS for 

a 1K by 1K matrix multiply on a Cray XD1 accelerator.  

Kumar et al. [4] use a rank-1 update scheme to implement 

parallel processing elements. Sub blocks of the matrices are 
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streamed to the architecture and intermediate results are 

accumulated, allowing communication and computation 

overlap. Theoretical analysis of an 800 × 800  matrix 

multiplication shows an execution time of 107  cycles. 

Jovanović and Milutinović [3] present an architecture of  

𝑝 = 252 processing elements with local memories to store 

the input matrices. Large matrices are multiplied by 

sending blocks to the accelerator. Simulation shows that the 

design matches the theoretical speedup of  2𝑝  flops per 

cycle. In the previous cases, each design required a 

thorough examination of the control and data paths. 

Although most designs are offering good performance, they 

are less effective in two ways. First the development time is 

excruciatingly long and second the design cannot easily be 

adapted to make full use of the available resources. The 

abstraction offered by high-level synthesis decreases the 

design effort by an order of magnitude and permits a 

flexible design exploration. E.g. in [1] a floating-point 

matrix multiplication has been synthesized using the 

Vivado HLS suite. The design is generated using HLS-

directives and is connected to an AXI-4 streaming interface 

for data exchange with the processor cache of a Zynq 7000 

SoC. A performance of 1.82 GFLOPS is obtained on a 

32x32 square matrix multiplication with a clock period of 

8.41 ns. This design uses 72% of the DSP resources and is 

limited to matrix sizes up to 42x42, due to exhausting the 

DSP budget. The approach presented in this paper balances 

DSP and BRAM resources to store larger matrices in the 

BRAM blocks. Furthermore a block oriented computation 

on the embedded processor using the hardware design as 

accelerator allows matrix sizes exceeding 2K by 2K. The 

global design optimization to maximize DSP and BRAM 

utilization, I/O overlap and data reuse is able to more than 

double the achievable performance on the same hardware.  

3. COMPILING FOR FPGAs 
In a well-organized FPGA operation, the data streams to 

the computing elements produce a new result in each 

execution cycle, multiplied by the number of parallel data 

streams. How is a program converted into a dataflow graph 

and how is this graph mapped onto the computing elements 

of an FPGA? For this, we will consider a program as a set 

of statements operating on a stream of data. Each statement 

is realized as a combinatorial function implemented by a 

LUT (Lookup Table) or a number of LUTs in sequence. 

The combinatorial function is computed in one clock cycle 

and the result is stored in a flip-flop. The computing time 

for 𝑛  functions or statements equals therefore 𝑛  clock 

cycles for one data element. When this pipeline is fed with 

one data element per cycle, we obtain one result per cycle 

as soon as the pipeline is filled. The challenge for the 

compiler is to create deep pipelines using look up tables, 

DSPs and Block RAM in order to avoid bubbles and gaps 

and to minimize the pipeline length.  

Let us therefore take a look at a multiply add statement and 

see how it is analyzed by the compiler (Figure 1). Assume 

that each arithmetic operation takes one clock cycle; 

therefore flip-flops are needed to store the intermediate 

results. Now consider the same statement operating on 

arrays of n elements. The previous sequence of computing 

blocks can be reused, but the compiler has to add control 

logic to organize the stream of data from the memory and 

pipelining the results back to memory. This simple example 

illustrates the steps a compiler has to take in order to create 

an intellectual property or IP core. It has to analyze the 

program, create a dataflow graph subject to the dependence 

constraints, map the operations onto the available resources 

and construct the control and data paths. 

 

Figure 1. Control path and data path generation for 

loop 𝒚[𝒊]  =  𝒂[𝒊] ∗ 𝒙[𝒊] + 𝒃[𝒊], 𝒊 = 𝟎. . 𝒏. Squares denote 

flip-flops. 

 

From the same example we can also observe some factors 

defining the performance of an FPGA. The first is the cycle 

time of the clock which drives the logic fabric. A small 

clock cycle time limits the amount of work that can be done 

in one cycle and therefore more flip-flops and cycles will 

be needed to implement the design. This has an impact on 

the speed and the resource consumption. A very large cycle 

time will require fewer flip-flops but may leave cycles 

underutilized and therefore create a slower design. A 

compiler will adapt itself to a given clock frequency, which 

is part of the resource description.  

The second factor is the amount of pipelining achievable 

from the algorithm. If the compiler is able to create 

pipelines with 𝑛 stages, the speed may rise to 𝑛-fold the 

execution speed of the non-pipelined version.  

And last but not least there is the parallelism.  When an 

algorithm has 𝑛 independent data streams, the compiler can 

organize 𝑛  parallel pipelines and therefore multiply the 

speed up of the pipeline by the number of pipelines, 

creating a very fast implementation. Examples are parallel 

pipelined operations on the rows of a matrix or the family 

of systolic algorithms. As we will see the challenge there is 

to create parallel streams to feed the pipelines 

simultaneously. The bottom line is that the performance of 

an FPGA depends on two basic principles: cram as much as 

possible operations into a pipeline and create as many 

pipelines as possible which can be fed simultaneously. 

4. HLS DESIGN OPTIMIZATION 
The successful implementation of an algorithm on an 

FPGA involves the combined optimization at three levels: 
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1) pipelining and parallelizing the code to maximally use 

the computing resources, 2) organizing the memory in 

order to ensure a continuous data stream and 3) balancing 

the work between the CPU and the FPGA.  

The feasibility of the design can be analyzed using 

synthesis reports, which mention the usage of the four basic 

resource types: lookup tables, flip-flops, DSPs and Block 

RAMs.  

In order to focus the attention, we consider the 

multiplication of two square matrices of size 𝑛2.  

 
The computation requires 𝐸 = 2𝑛3  floating-point 

operations, executable at one operation per cycle with an 

optimized IP-core [6].  The design goal is twofold. First we 

want to maximize the computation load in a single clock 

cycle. The objective is to obtain one scalar product 

𝑐𝑖𝑗 =  ∑ 𝑎𝑖𝑘𝑏𝑘𝑗𝑘  of a row and a column per time step. This 

is achieved using a 𝐷-stages deep pipeline of floating-point 

multiply add operations. The second objective is to create 

parallel streams to feed the pipeline such that one element 

of the product matrix is output per clock tick. The expected 

computation time is therefore 𝑡𝑐𝑜𝑚𝑝 =  𝑛2 − 1 + 𝐷 cycles, 

i.e. 𝐷 steps for the first element and 1 step for each of the 

𝑛2 − 1  remaining elements. This yields a speedup 𝑆 =
𝑂(2𝑛3 𝑛2⁄ ) =  2𝑛, which is proportional to the square 

matrix dimension 𝑛  when there are unlimited resources 

available. E.g. with a clock cycle time 𝑡𝑐 =  1. 𝑒−8  and 

𝑛 = 32 , this gives 3.2 GFLOPS. However the speed is 

limited by the number of DSPs to create the pipeline and by 

the memory bandwidth to feed the pipeline. Our platform is 

the Zedboard with a Zynq 7020 FPGA and our goal is to 

maximize the floating-point performance. Similar to the 

operation of a GPU, the data has to be brought into the 

FPGA, and the results have to be copied back to the 

memory.  

4.1 Directive based optimization 
4.1.1 Bare program execution 
Without any directives or other optimizations, the 

performance of  a 32 x 32 matrix multiply on the FPGA is 

18 MFLOPS, single precision. This is close to the 

performance of a single floating-point multiplication, 

which takes 5 cycles at 10 ns per cycle. In contrast, the 

embedded Zynq ARM A9 Application Processor Unit  

(APU) realizes 253 megaflops for the same matrix size.  

4.1.2 Unroll inner loop k 
In order to increase the performance we will need to 

activate more DSPs. The first approach is to unroll the 

inner loop in order to get more parallel iterations. Unrolling 

the inner loop more than doubles the speed to 38 MFLOPS. 

The inner loop creates a loop carried dependence on the 

variable 𝑠𝑢𝑚 and therefore the iterations have to be carried 

out sequentially. Still, the compiler is able to overlap the 

addition in one iteration with the multiplication of the next 

iteration.  

4.1.3 Pipeline inner loop k 
Obviously, the next step is to examine if the loop iterations 

can be pipelined. The difference between unrolling and 

pipelining is that with unrolling each iteration is scheduled 

independently in parallel with the other iterations, therefore 

each iteration may require a duplication of resources. With 

pipelining the iterations are scheduled in sequence, using 

the same resources shifted in time. An additional advantage 

of pipelining is that it works well with loop carried 

dependencies. The single most important performance 

parameter of a pipelined loop is the initiation interval, II. 

The initiation interval is the minimum number of clock 

cycles between the start of two pipelined iterations. Ideally 

II=1, but the initiation interval may be larger because of 

delays in the data stream, dependences in the algorithm or 

due to lack of resources.  

Let us first try to pipeline the inner loop. In this case the 

compiler warns that II=4 due to a loop carried dependence 

because the summation value from the previous iteration is 

only available after 4 cycles. The performance is 48 

MFLOPS which is still slightly better than unrolling the 

inner loop, because now the same operations (addition, 

multiplication) of adjacent iterations are overlapped.  

4.1.4 Pipeline loop j 
 In order to create longer and independent pipelines, the 

next higher loop 𝑗 is pipelined.  This has two effects. First, 

pipelining an iteration containing an inner loop 𝑘 requires 

that the whole inner loop is unrolled. This creates a long 

pipeline to calculate the scalar product of a row and a 

column. Second, all scalar products 𝑐𝑖𝑗 ,   𝑗 = 0. . 𝑛 − 1 can 

be calculated independently. Therefore we expect an 

initiation interval of 1 between the iterations of the 

pipelined loop.  However, this appears not to be the case. 

While achieving 310 MFLOPS, the compiler warns that it 

cannot feed the pipeline fast enough and it ends up with an 

initiation interval II=16 between the scalar product 

computations of 𝑛 = 32 elements. The reason is that the 

Block RAM memory in the FPGA has only two ports, so 

only two new elements can be fetched in each cycle. 

Fortunately, there is a directive to distribute an array over 

several Block RAMs.  

4.1.5 Array partitioning 
The distribution of an array over multiple Block RAMs is 

transparent to the program and does not affect the code. 

Since matrix A is accessed by rows and matrix B is 

accessed by columns, the array  partitioning is applied such 

that the row elements of A and the column elements of B 

are located in different memory banks which can be 

accessed in parallel. The combined effect of pipelining and 

array partitioning results in a speed of 1,382 MFLOPS with 

for i=0; i<n; i++ 

   for j= 0; j<n; j++ { 

      sum=0; 

      for k=0; k<n; k++ 

         sum+=a[i][k]*b[k][j]; 

      c[i][j] = sum;  

  } 
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𝑛 = 32 and an initiation interval II=1, which corresponds 

to one scalar product per cycle. This is the best we can 

achieve, since the matrix product is calculated in 𝑛2 cycles, 

and this is the time to fetch the source matrices A and B in 

parallel.  

4.1.6 Performance parameters n and II 
In the pipelined schemes one element of the result matrix is 

computed in II time steps, yielding a computation time 

𝑡𝑐𝑜𝑚𝑝 =  𝐼𝐼 𝑛2. Fetching and storing the matrices requires a 

communication time of 𝑡𝑐𝑜𝑚𝑚 =  3𝑛2. The execution time 

is therefore 

 

𝑡𝑒𝑥𝑒𝑐 =  𝑡𝑐𝑜𝑚𝑝 + 𝑡𝑐𝑜𝑚𝑚 =  (𝐼𝐼 + 3)𝑛2     (1) 

 

cycles and the  computation performance is 

 

𝑃(𝑛, 𝐼𝐼) =
2𝑛3

(𝐼𝐼 + 3)𝑛2
=

2𝑛

𝐼𝐼 + 3
      (2) 

 

flops/cycle. Consequently the performance increases with 

the matrix size and decreases with the initiation interval. 

The maximum performance is obtained by looking for the 

best combination of n and II. 

4.1.7 Maximize DSPs 
According to equation (2), the performance increases with 

the matrix size. Therefore one improvement is to look for 

the largest possible matrix until one of the resources is 

exhausted. E.g. a matrix multiplication with 𝑛 = 43 

maximizes the DSP use and achieves 1,956 MFLOPS. The 

resource utilization  is given in Table 1. 

 

Table 1. Resource budget when maximizing DSP  usage 

n II D BRAM DSP LUT FF 

43 1 221 90 218 31728 18128 

   32% 99% 59% 17% 

 

4.1.8 Maximize DSP and BRAM with II>1 
Table 1 shows that there is still plenty of Block RAM 

(68%) available and we know that the performance 

increases with the matrix size. On the other hand we did 

use the available DSPs with the requirement that II=1. If 

we would relax this requirement then we may handle larger 

matrices and improve the performance.  

 

Table 2. Design exploration for II=1..5  

II n limit MFLOPS 

1 43 DSP 1,956 

2 86 DSP 3,217 

3 124 BRAM 4,081 

4 124 BRAM 3,393 

5 124 BRAM 2,984 

The result is a trade-off between DSPs and Block RAM as 

illustrated in Table 2, showing the maximum value of 𝑛 for 

𝐼𝐼 = 1. .5. The third column indicates the limiting resource. 

The combined optimization of 𝑛  and 𝐼𝐼  increases the 

performance up to 4,081 MFLOPS for 𝐼𝐼 = 3 and 𝑛 = 124. 

 

4.2 Optimizing I/O 
Is this the best we can do? The answer is yes for optimizing 

the computation with respect to the available resources and 

no for the input-output and data stream organization. Two 

extra steps are: increasing the I/O bandwidth and 

overlapping I/O streaming and computation.   

4.2.1 Improving the I/O bandwidth 
The standard interfaces to connect customized IP-cores 

with the ARM processor follow the AXI-protocol. The 

maximum data-transfer between the programmable logic 

(PL) and the cache of the processor uses the AXI_ACP 

(Accelerator Coherency Port) interface which limits the 

read- and write-bandwidth to 1.2 GB/s and the bus width to 

64 bits [9]. Since our core uses a 100 MHz clock and 32-bit 

I/O, the data stream operates at 400 MB/s, i.e. only one 

third of the available maximum. Two modifications enable 

the full bandwidth use. At the PL-side, the data stream is 

increased from 32 to 128 bits using a resource and interface 

specification in the high-level language. Furthermore, the 

AXI-DMA bridge is customized to use a 200 MHz clock at 

the processor side to compensate for the 64-bit bus limit. 

These changes lead to a maximum bandwidth of 1.6 GB/s, 

which is topped by the practical bound of 1.2 GB/s 

imposed by the hardware characteristics, see Figure 2. 

 

 
Figure 2. Increasing bus width and DMA clock speed 

As a result, the communication cost is reduced by a factor 

of 3, i.e. 𝑡𝑐𝑜𝑚𝑚 =  𝑛2 cycles. 

4.2.2 Overlapping computation and communication 
The present program separates the data movement and the 

computation. In order to overlap computation and 

communication, there are two options. Either the incoming 

data are sent directly to the computing elements without 

copying them into Block RAM, or the output data are sent 

directly to the CPU memory instead of buffering them in 

the FPGA. The first approach requires a revision of the 

whole algorithm by making inner loop 𝑘 the outer loop, a 

technique used in [4], while the second approach is much 

simpler and has the same performance. Note that the matrix 

elements of the product matrix are available one by one at 

the end of the inner loop 𝑘 , which calculates the scalar 

product of a row of A and a column of B. Instead of storing 

the result matrix C locally, the computed elements can 

immediately be put into a streaming buffer which is sent to 
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the memory of the CPU. This has two advantages: first 

sending output matrix C creates no overhead, i.e. the 

communication cost is further reduced to 𝑡𝑐𝑜𝑚𝑚 = 2 3⁄  𝑛2 

cycles. As a consequence, the optimized performance 

equation (2) becomes 

𝑃𝑜(𝑛, 𝐼𝐼) =
2𝑛

𝐼𝐼 + 2 3⁄
       (3) 

 

Furthermore, extra memory is gained in the FPGA because 

we don't have to store matrix C. This allows to multiply 

larger matrices, however then the LUTs become the 

limiting resource. The data streaming protocol is provided 

by a special streaming class in the HLS language which 

seamlessly interacts with the DMA and IP cores connecting 

the logic fabric with the CPU. The efforts to optimize the 

I/O result in a significant performance increase to 6,295 

MFLOPS for 𝑛 = 124  and 𝐼𝐼 = 3 , i.e. 93% of the 

theoretical performance 𝑃0(124,3) using equation (3). 

4.3 Large matrices: block computation 
An FPGA has a limited amount of fast on-chip memory, 

typically much lower than in a GPU. Therefore large 

matrices are multiplied in a block oriented fashion.  

4.3.1 Cooperating CPU-FPGA computation 
The CPU executes a traditional matrix multiplication, but 

now the matrix is divided into blocks which are sent to the 

FPGA for multiplication and the result is added to the 

proper sub-matrix in the large product matrix. The block 

computation is described by the following equation. 

 
Figure 3. Load distribution of block oriented matrix 

computation 

Large matrix 𝐶𝑛×𝑛 is subdivided in 𝑚2 blocks of block size 

𝑏 = 𝑛/𝑚 rows and columns. To calculate 𝐶𝑖𝑗 , blocks 𝐴𝑖𝑘 

and 𝐵𝑘𝑗 , 𝑘 = 0. . 𝑚 − 1 are multiplied consecutively on the 

FPGA and the resulting blocks are added to the proper 

submatrix on the CPU, as indicated in Figure 3. CPU and 

FPGA operate in parallel non-blocking mode.    On the 

ZedBoard the CPU has a memory of 512 MB. While the 

maximum square matrix size on the IP-core is 𝑛 ≤ 124, the 

block-matrix computation allows a matrix size 𝑛 > 2000. 

The performance of the combined CPU-FPGA block 

computation is 4.19 GFLOPS for 𝑛 = 2108 and 𝐼𝐼 = 3. 

4.3.2 Data reuse using Gray code block ordering 
In a naïve straightforward implementation each block 

multiplication 𝐴𝑖𝑘𝐵𝑘𝑗  requires sending two block matrices, 

i.e. 2𝑚3  block matrix transfers (see Figure 3). As a 

consequence both input matrices 𝐴  and 𝐵  are sent two 

times. It is possible to perform a loop interchange and an 

iteration reordering such that each block matrix is sent only 

once, a technique also used ad hoc in [3]. By generating the 

index tuple (𝑘, 𝑖, 𝑗) using the (𝑚, 3)-ary generalized Gray 

code [5], the 𝑘-loop becomes outermost and matrices 𝐴𝑖𝑘 or 

𝐵𝑘𝑗  can be reused in the inner loops. The Gray code which 

optimizes the data reuse in the FPGA is given in Figure 4. 

 

/* (m,3)-ary Gray code to optimize FPGA data reuse 

 * in block-oriented matrix multiplication 

 * input: block size 𝑚, block matrices 𝐴𝑖𝑘, 𝐵𝑘𝑗  

 * output: 𝐶 

 */ 

    Gmax = m*m*m; m2 = m*m; 

    for (g =0; g < Gmax; g++) { 

       kk = g/m2;         // iterate with stepsize 𝑚2 

       ii   = (g%m2)/m;  // iterate with stepsize 𝑚 

       jj   = g%m;             // iterate with stepsize 1 

       k   = kk; 

       i    = (g/m2)%2   == 0 ?  ii : m-1-ii);   // 𝑚2 steps 

       j    = ((g/m)%2    == 0 ? jj : m-1-jj);   // 𝑚   steps 

   /* if (i,k) changes  send 𝐴𝑖𝑘 

    * if (k,j) changes  send 𝐵𝑘𝑗  

    * FPGA multiplication 

    * receive product 𝐴𝑖𝑘𝐵𝑘𝑗  

    * CPU accumulate 𝐶𝑖𝑗+=  𝐴𝑖𝑘 . 𝐵𝑘𝑗  

    */ 

     } 

Figure 4. Data reuse using Gray code ordering 

The nested loops 𝑖, 𝑗, 𝑘 of the original program are merged 

into a single loop 𝑔 to avoid data stream delays due to loop 

overhead. The indexes 𝑖, 𝑗, 𝑘 are derived from index 𝑔 such 

that 𝑘  remains constant for 𝑚2 successive iterations. 

Consequently only one matrix 𝐴𝑖𝑘  or 𝐵𝑘𝑗  is sent for the 

iterations (𝑘, 𝑖, 𝑗) where 𝑘  is constant, and 2 matrices are 

sent when 𝑘  changes, reducing the communication 

overhead from 2𝑚3  to 𝑚3 + 𝑚  matrix transfers, roughly 

halving the communication bottleneck. The Gray-code 

block communication for 𝑚 = 3 is shown in Table 3. 

 

Table 3. Optimized Gray-code ordered block matrix 

communication for matrix partitioning with 𝐦 = 𝟑 

kij send kij  send kij   send 

000 A00B00 122 A21 B12 200 A02 B20 

001 B01 121 B11 201 B21 

002 B02 120 B10 202 B22 

012 A10 110 A11 212 A12 

011 B01 111 B11 211 B21 

010 B00 112 B12 210 B20 

020 A20 102 A01 220 A22 

021 B01 101 B11 221 B21 

022 B02 100 B10 222 B22 
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As a result, the data reuse in the case with 𝑛 = 2108 and 

𝐼𝐼 = 3 raises the performance to 4.77 GFLOPS. 

5. DISCUSSION 
The optimization steps for accelerating the block-oriented 

floating-point matrix multiplication are shown in Figure 5. 

The performance trail shows 4 local maxima corresponding 

to the optimization milestones. First, the combined 

optimization of DSP and BRAM usage more than doubles 

the performance, from 1.38 to 4.08 GFLOPS. Remarkably 

this result is obtained by relaxing the condition on the 

initiation interval, 𝐼𝐼 = 1.  Second, widening the bus and 

streaming the results during the computations reduces the 

communication overhead and achieves 6.30 GFLOPS. 

Third, the distribution of a blocked-matrix multiply on the 

heterogeneous CPU-FPGA multiprocessing system allows 

increasing the matrix size by one order of magnitude and 

achieving a performance of 4.19 GFLOPS. Finally, the data 

reuse of 50% using the Gray-code block ordering increases 

the performance up to 4.77 GFLOPS for O(2Kx2K) 

matrices. 

 

Figure 5. HLS synthesis optimization trail 

The experiments were carried out on a ZedBoard 

incorporating a Zynq XC7Z020 running at 100 MHz.  The 

floating multiply and add operations use 2 and 3 DSPs out 

of 220, yielding 44 multiply-add units.  The PL accelerator 

operates at 93% efficiency and the CPU-FPGA is able to 

exploit 4.771/6.295 = 76% of the PL computation speed for 

2K by 2K matrix multiplication. It is important to note that 

none of the optimizations involved any programming in 

VHDL. The software used is Vivado HLS [7] for the IP 

design source code with C-style programming directives, 

and Xilinx SDK for the ARM-processor code using NEON 

vector instructions and –O2 compiler optimizations. The 

system layout and supporting IP-cores were designed using 

the Vivado Design Suite [8]. 

6. CONCLUSION 
The use of FPGAs as compute accelerator has been 

hampered by the complexity of the design and the lack of 

supporting tools. Existing low level schemes have been 

presented which use sophisticated streaming parallel and 

pipelined architectures. While efficient, these schemes are 

not easily parameterized to take full advantage of the 

available resources in a real FPGA. In this paper it is shown 

that high level synthesis is able to capitalize on all 

resources by following a simple design strategy which 

optimizes the combined use of compute power and 

memory. Furthermore the resulting optimized IP-core is 

integrated as hardware algorithm to maximize the matrix 

multiplication of large matrices in a heterogeneous 

CPU-FPGA SoC. Experiments show that the HLS approach 

is able to achieve 6.29 GFLOPS on a single PL-based 

matrix multiply and 4.77 GFLOPS on the combined PS-PL 

block oriented matrix multiply for large matrices. 
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