
High-Level Synthesis Optimization for Blocked
Floating-Point Matrix Multiplication

Erik H. D’Hollander
Electronics and Information Systems Department

Ghent University, Ghent, Belgium

Erik.DHollander@ugent.be

ABSTRACT

In the last decade floating-point matrix multiplication on

FPGAs has been studied extensively and efficient

architectures as well as detailed performance models have

been developed. By design these IP cores take a fixed

footprint which not necessarily optimizes the use of all

available resources. Moreover, the low-level architectures

are not easily amenable to a parameterized synthesis. In this

paper high-level synthesis is used to fine-tune the

configuration parameters in order to achieve the highest

performance with maximal resource utilization. An

exploration strategy is presented to optimize the use of

critical resources (DSPs, memory) for any given FPGA. To

account for the limited memory size on the FPGA, a block-

oriented matrix multiplication is organized such that the

block summation is done on the CPU while the block

multiplication occurs on the logic fabric simultaneously.

The communication overhead between the CPU and the

FPGA is minimized by streaming the blocks in a Gray code

ordering scheme which maximizes the data reuse for

consecutive block matrix product calculations. Using high-

level synthesis optimization, the programmable logic

operates at 93% of the theoretical peak performance and

the combined CPU-FPGA design achieves 76% of the

available hardware processing speed for the floating-point

multiplication of 2K by 2K matrices.

1. INTRODUCTION
Ever since the seminal paper by Gerald Estrin about

extending a fixed CPU with a variable part [2], the idea to

accelerate computations by an algorithm in hardware has

been a tantalizing prospect. Nowadays, the major players in

the computer industry offer silicon-on-chip solutions where

a multicore ARM processor or softcore is tightly integrated

with the configurable logic fabric. High-level synthesis

(HLS) tools are closing the gap between the huge

programming effort and the effective performance of these

systems. The idea to configure hardware using a high-level

language has shifted the focus from low-level design to C,

C++ or OpenCL code annotated with directives and vendor

supplied hardware libraries. The quality of the result

largely depends on the sophistication of the compiler and

the programmer's ability to generate efficient hardware

using the multitude of pragmas and design options. Yet the

development time is much shorter and the design

exploration is guided by useful resource and timing reports.

In recent years, low level architectures for floating-point

matrix multiplication have been studied extensively.

Detailed analysis of the algorithm resulted in designs in

which the bandwidth of the streaming data matches the

speed of the execution pipeline. The maximum size of the

matrices is defined by the availability of the critical

resources (DSPs, Block RAMs) needed for the

implementation. Despite the performance of these

solutions, they do not optimize the global resource budget,

e.g. by maximizing the use of both DSPs and available

memory to allow larger matrices and higher calculation

speeds. Moreover, the detailed descriptions of the low-level

architectures are not easily amenable to a parameterized

implementation using high-level synthesis tools. In this

paper a matrix algorithm described in C is analyzed with

respect to two design objectives: maximize the parallelism

and minimize the pipeline cycle time. A stepwise

refinement of the algorithm, loop directives and interface

definition leads to a balanced allocation of the different

resource types which maximizes the on-chip memory use

and realizes a speed up to 93% of the peak performance for

a single matrix multiply. In order to accommodate larger

matrices, a block oriented algorithm is developed in which

the block matrices are multiplied on the FPGA and the

resulting blocks are added in the CPU. A Gray code block

ordering scheme maximizes the data reuse. The resulting

CPU-FPGA block oriented multiplication achieves 76% of

the FPGA floating point performance using the ZedBoard

[10], a development board based on the Xilinx Zynq-7000

SoC combining a Series 7000 programmable logic (PL)

FPGA with a dual ARM-A9 processing system (PS).

2. RELATED WORK
Being one of the corner stones of linear algebra, matrix

multiplication has received much attention in all kinds of

accelerators, such as GPUs, systolic architectures, multi-

cores, heterogeneous clusters and FPGAs. Zhuo et al. [11]

use a linear array architecture and propose three algorithms

which differ by the use of storage size and memory

bandwidth. They obtain a performance of 2.06 GFLOPS for

a 1K by 1K matrix multiply on a Cray XD1 accelerator.

Kumar et al. [4] use a rank-1 update scheme to implement

parallel processing elements. Sub blocks of the matrices are

ACM SIGARCH Computer Architecture News 74 Vol. 44 No. 4 September 2016

Copyright held by author/owner (s).

streamed to the architecture and intermediate results are

accumulated, allowing communication and computation

overlap. Theoretical analysis of an 800 × 800 matrix

multiplication shows an execution time of 107 cycles.

Jovanović and Milutinović [3] present an architecture of

𝑝 = 252 processing elements with local memories to store

the input matrices. Large matrices are multiplied by

sending blocks to the accelerator. Simulation shows that the

design matches the theoretical speedup of 2𝑝 flops per

cycle. In the previous cases, each design required a

thorough examination of the control and data paths.

Although most designs are offering good performance, they

are less effective in two ways. First the development time is

excruciatingly long and second the design cannot easily be

adapted to make full use of the available resources. The

abstraction offered by high-level synthesis decreases the

design effort by an order of magnitude and permits a

flexible design exploration. E.g. in [1] a floating-point

matrix multiplication has been synthesized using the

Vivado HLS suite. The design is generated using HLS-

directives and is connected to an AXI-4 streaming interface

for data exchange with the processor cache of a Zynq 7000

SoC. A performance of 1.82 GFLOPS is obtained on a

32x32 square matrix multiplication with a clock period of

8.41 ns. This design uses 72% of the DSP resources and is

limited to matrix sizes up to 42x42, due to exhausting the

DSP budget. The approach presented in this paper balances

DSP and BRAM resources to store larger matrices in the

BRAM blocks. Furthermore a block oriented computation

on the embedded processor using the hardware design as

accelerator allows matrix sizes exceeding 2K by 2K. The

global design optimization to maximize DSP and BRAM

utilization, I/O overlap and data reuse is able to more than

double the achievable performance on the same hardware.

3. COMPILING FOR FPGAs
In a well-organized FPGA operation, the data streams to

the computing elements produce a new result in each

execution cycle, multiplied by the number of parallel data

streams. How is a program converted into a dataflow graph

and how is this graph mapped onto the computing elements

of an FPGA? For this, we will consider a program as a set

of statements operating on a stream of data. Each statement

is realized as a combinatorial function implemented by a

LUT (Lookup Table) or a number of LUTs in sequence.

The combinatorial function is computed in one clock cycle

and the result is stored in a flip-flop. The computing time

for 𝑛 functions or statements equals therefore 𝑛 clock

cycles for one data element. When this pipeline is fed with

one data element per cycle, we obtain one result per cycle

as soon as the pipeline is filled. The challenge for the

compiler is to create deep pipelines using look up tables,

DSPs and Block RAM in order to avoid bubbles and gaps

and to minimize the pipeline length.

Let us therefore take a look at a multiply add statement and

see how it is analyzed by the compiler (Figure 1). Assume

that each arithmetic operation takes one clock cycle;

therefore flip-flops are needed to store the intermediate

results. Now consider the same statement operating on

arrays of n elements. The previous sequence of computing

blocks can be reused, but the compiler has to add control

logic to organize the stream of data from the memory and

pipelining the results back to memory. This simple example

illustrates the steps a compiler has to take in order to create

an intellectual property or IP core. It has to analyze the

program, create a dataflow graph subject to the dependence

constraints, map the operations onto the available resources

and construct the control and data paths.

Figure 1. Control path and data path generation for

loop 𝒚[𝒊] = 𝒂[𝒊] ∗ 𝒙[𝒊] + 𝒃[𝒊], 𝒊 = 𝟎. . 𝒏. Squares denote

flip-flops.

From the same example we can also observe some factors

defining the performance of an FPGA. The first is the cycle

time of the clock which drives the logic fabric. A small

clock cycle time limits the amount of work that can be done

in one cycle and therefore more flip-flops and cycles will

be needed to implement the design. This has an impact on

the speed and the resource consumption. A very large cycle

time will require fewer flip-flops but may leave cycles

underutilized and therefore create a slower design. A

compiler will adapt itself to a given clock frequency, which

is part of the resource description.

The second factor is the amount of pipelining achievable

from the algorithm. If the compiler is able to create

pipelines with 𝑛 stages, the speed may rise to 𝑛-fold the

execution speed of the non-pipelined version.

And last but not least there is the parallelism. When an

algorithm has 𝑛 independent data streams, the compiler can

organize 𝑛 parallel pipelines and therefore multiply the

speed up of the pipeline by the number of pipelines,

creating a very fast implementation. Examples are parallel

pipelined operations on the rows of a matrix or the family

of systolic algorithms. As we will see the challenge there is

to create parallel streams to feed the pipelines

simultaneously. The bottom line is that the performance of

an FPGA depends on two basic principles: cram as much as

possible operations into a pipeline and create as many

pipelines as possible which can be fed simultaneously.

4. HLS DESIGN OPTIMIZATION
The successful implementation of an algorithm on an

FPGA involves the combined optimization at three levels:

ACM SIGARCH Computer Architecture News 75 Vol. 44 No. 4 September 2016

1) pipelining and parallelizing the code to maximally use

the computing resources, 2) organizing the memory in

order to ensure a continuous data stream and 3) balancing

the work between the CPU and the FPGA.

The feasibility of the design can be analyzed using

synthesis reports, which mention the usage of the four basic

resource types: lookup tables, flip-flops, DSPs and Block

RAMs.

In order to focus the attention, we consider the

multiplication of two square matrices of size 𝑛2.

The computation requires 𝐸 = 2𝑛3 floating-point

operations, executable at one operation per cycle with an

optimized IP-core [6]. The design goal is twofold. First we

want to maximize the computation load in a single clock

cycle. The objective is to obtain one scalar product

𝑐𝑖𝑗 = ∑ 𝑎𝑖𝑘𝑏𝑘𝑗𝑘 of a row and a column per time step. This

is achieved using a 𝐷-stages deep pipeline of floating-point

multiply add operations. The second objective is to create

parallel streams to feed the pipeline such that one element

of the product matrix is output per clock tick. The expected

computation time is therefore 𝑡𝑐𝑜𝑚𝑝 = 𝑛2 − 1 + 𝐷 cycles,

i.e. 𝐷 steps for the first element and 1 step for each of the

𝑛2 − 1 remaining elements. This yields a speedup 𝑆 =
𝑂(2𝑛3 𝑛2⁄) = 2𝑛, which is proportional to the square

matrix dimension 𝑛 when there are unlimited resources

available. E.g. with a clock cycle time 𝑡𝑐 = 1. 𝑒−8 and

𝑛 = 32 , this gives 3.2 GFLOPS. However the speed is

limited by the number of DSPs to create the pipeline and by

the memory bandwidth to feed the pipeline. Our platform is

the Zedboard with a Zynq 7020 FPGA and our goal is to

maximize the floating-point performance. Similar to the

operation of a GPU, the data has to be brought into the

FPGA, and the results have to be copied back to the

memory.

4.1 Directive based optimization
4.1.1 Bare program execution
Without any directives or other optimizations, the

performance of a 32 x 32 matrix multiply on the FPGA is

18 MFLOPS, single precision. This is close to the

performance of a single floating-point multiplication,

which takes 5 cycles at 10 ns per cycle. In contrast, the

embedded Zynq ARM A9 Application Processor Unit

(APU) realizes 253 megaflops for the same matrix size.

4.1.2 Unroll inner loop k
In order to increase the performance we will need to

activate more DSPs. The first approach is to unroll the

inner loop in order to get more parallel iterations. Unrolling

the inner loop more than doubles the speed to 38 MFLOPS.

The inner loop creates a loop carried dependence on the

variable 𝑠𝑢𝑚 and therefore the iterations have to be carried

out sequentially. Still, the compiler is able to overlap the

addition in one iteration with the multiplication of the next

iteration.

4.1.3 Pipeline inner loop k
Obviously, the next step is to examine if the loop iterations

can be pipelined. The difference between unrolling and

pipelining is that with unrolling each iteration is scheduled

independently in parallel with the other iterations, therefore

each iteration may require a duplication of resources. With

pipelining the iterations are scheduled in sequence, using

the same resources shifted in time. An additional advantage

of pipelining is that it works well with loop carried

dependencies. The single most important performance

parameter of a pipelined loop is the initiation interval, II.

The initiation interval is the minimum number of clock

cycles between the start of two pipelined iterations. Ideally

II=1, but the initiation interval may be larger because of

delays in the data stream, dependences in the algorithm or

due to lack of resources.

Let us first try to pipeline the inner loop. In this case the

compiler warns that II=4 due to a loop carried dependence

because the summation value from the previous iteration is

only available after 4 cycles. The performance is 48

MFLOPS which is still slightly better than unrolling the

inner loop, because now the same operations (addition,

multiplication) of adjacent iterations are overlapped.

4.1.4 Pipeline loop j
 In order to create longer and independent pipelines, the

next higher loop 𝑗 is pipelined. This has two effects. First,

pipelining an iteration containing an inner loop 𝑘 requires

that the whole inner loop is unrolled. This creates a long

pipeline to calculate the scalar product of a row and a

column. Second, all scalar products 𝑐𝑖𝑗 , 𝑗 = 0. . 𝑛 − 1 can

be calculated independently. Therefore we expect an

initiation interval of 1 between the iterations of the

pipelined loop. However, this appears not to be the case.

While achieving 310 MFLOPS, the compiler warns that it

cannot feed the pipeline fast enough and it ends up with an

initiation interval II=16 between the scalar product

computations of 𝑛 = 32 elements. The reason is that the

Block RAM memory in the FPGA has only two ports, so

only two new elements can be fetched in each cycle.

Fortunately, there is a directive to distribute an array over

several Block RAMs.

4.1.5 Array partitioning
The distribution of an array over multiple Block RAMs is

transparent to the program and does not affect the code.

Since matrix A is accessed by rows and matrix B is

accessed by columns, the array partitioning is applied such

that the row elements of A and the column elements of B

are located in different memory banks which can be

accessed in parallel. The combined effect of pipelining and

array partitioning results in a speed of 1,382 MFLOPS with

for i=0; i<n; i++

 for j= 0; j<n; j++ {

 sum=0;

 for k=0; k<n; k++

 sum+=a[i][k]*b[k][j];

 c[i][j] = sum;

 }

ACM SIGARCH Computer Architecture News 76 Vol. 44 No. 4 September 2016

𝑛 = 32 and an initiation interval II=1, which corresponds

to one scalar product per cycle. This is the best we can

achieve, since the matrix product is calculated in 𝑛2 cycles,

and this is the time to fetch the source matrices A and B in

parallel.

4.1.6 Performance parameters n and II
In the pipelined schemes one element of the result matrix is

computed in II time steps, yielding a computation time

𝑡𝑐𝑜𝑚𝑝 = 𝐼𝐼 𝑛2. Fetching and storing the matrices requires a

communication time of 𝑡𝑐𝑜𝑚𝑚 = 3𝑛2. The execution time

is therefore

𝑡𝑒𝑥𝑒𝑐 = 𝑡𝑐𝑜𝑚𝑝 + 𝑡𝑐𝑜𝑚𝑚 = (𝐼𝐼 + 3)𝑛2 (1)

cycles and the computation performance is

𝑃(𝑛, 𝐼𝐼) =
2𝑛3

(𝐼𝐼 + 3)𝑛2
=

2𝑛

𝐼𝐼 + 3
 (2)

flops/cycle. Consequently the performance increases with

the matrix size and decreases with the initiation interval.

The maximum performance is obtained by looking for the

best combination of n and II.

4.1.7 Maximize DSPs
According to equation (2), the performance increases with

the matrix size. Therefore one improvement is to look for

the largest possible matrix until one of the resources is

exhausted. E.g. a matrix multiplication with 𝑛 = 43

maximizes the DSP use and achieves 1,956 MFLOPS. The

resource utilization is given in Table 1.

Table 1. Resource budget when maximizing DSP usage

n II D BRAM DSP LUT FF

43 1 221 90 218 31728 18128

 32% 99% 59% 17%

4.1.8 Maximize DSP and BRAM with II>1
Table 1 shows that there is still plenty of Block RAM

(68%) available and we know that the performance

increases with the matrix size. On the other hand we did

use the available DSPs with the requirement that II=1. If

we would relax this requirement then we may handle larger

matrices and improve the performance.

Table 2. Design exploration for II=1..5

II n limit MFLOPS

1 43 DSP 1,956

2 86 DSP 3,217

3 124 BRAM 4,081

4 124 BRAM 3,393

5 124 BRAM 2,984

The result is a trade-off between DSPs and Block RAM as

illustrated in Table 2, showing the maximum value of 𝑛 for

𝐼𝐼 = 1. .5. The third column indicates the limiting resource.

The combined optimization of 𝑛 and 𝐼𝐼 increases the

performance up to 4,081 MFLOPS for 𝐼𝐼 = 3 and 𝑛 = 124.

4.2 Optimizing I/O
Is this the best we can do? The answer is yes for optimizing

the computation with respect to the available resources and

no for the input-output and data stream organization. Two

extra steps are: increasing the I/O bandwidth and

overlapping I/O streaming and computation.

4.2.1 Improving the I/O bandwidth
The standard interfaces to connect customized IP-cores

with the ARM processor follow the AXI-protocol. The

maximum data-transfer between the programmable logic

(PL) and the cache of the processor uses the AXI_ACP

(Accelerator Coherency Port) interface which limits the

read- and write-bandwidth to 1.2 GB/s and the bus width to

64 bits [9]. Since our core uses a 100 MHz clock and 32-bit

I/O, the data stream operates at 400 MB/s, i.e. only one

third of the available maximum. Two modifications enable

the full bandwidth use. At the PL-side, the data stream is

increased from 32 to 128 bits using a resource and interface

specification in the high-level language. Furthermore, the

AXI-DMA bridge is customized to use a 200 MHz clock at

the processor side to compensate for the 64-bit bus limit.

These changes lead to a maximum bandwidth of 1.6 GB/s,

which is topped by the practical bound of 1.2 GB/s

imposed by the hardware characteristics, see Figure 2.

Figure 2. Increasing bus width and DMA clock speed

As a result, the communication cost is reduced by a factor

of 3, i.e. 𝑡𝑐𝑜𝑚𝑚 = 𝑛2 cycles.

4.2.2 Overlapping computation and communication
The present program separates the data movement and the

computation. In order to overlap computation and

communication, there are two options. Either the incoming

data are sent directly to the computing elements without

copying them into Block RAM, or the output data are sent

directly to the CPU memory instead of buffering them in

the FPGA. The first approach requires a revision of the

whole algorithm by making inner loop 𝑘 the outer loop, a

technique used in [4], while the second approach is much

simpler and has the same performance. Note that the matrix

elements of the product matrix are available one by one at

the end of the inner loop 𝑘 , which calculates the scalar

product of a row of A and a column of B. Instead of storing

the result matrix C locally, the computed elements can

immediately be put into a streaming buffer which is sent to

ACM SIGARCH Computer Architecture News 77 Vol. 44 No. 4 September 2016

the memory of the CPU. This has two advantages: first

sending output matrix C creates no overhead, i.e. the

communication cost is further reduced to 𝑡𝑐𝑜𝑚𝑚 = 2 3⁄ 𝑛2

cycles. As a consequence, the optimized performance

equation (2) becomes

𝑃𝑜(𝑛, 𝐼𝐼) =
2𝑛

𝐼𝐼 + 2 3⁄
 (3)

Furthermore, extra memory is gained in the FPGA because

we don't have to store matrix C. This allows to multiply

larger matrices, however then the LUTs become the

limiting resource. The data streaming protocol is provided

by a special streaming class in the HLS language which

seamlessly interacts with the DMA and IP cores connecting

the logic fabric with the CPU. The efforts to optimize the

I/O result in a significant performance increase to 6,295

MFLOPS for 𝑛 = 124 and 𝐼𝐼 = 3 , i.e. 93% of the

theoretical performance 𝑃0(124,3) using equation (3).

4.3 Large matrices: block computation
An FPGA has a limited amount of fast on-chip memory,

typically much lower than in a GPU. Therefore large

matrices are multiplied in a block oriented fashion.

4.3.1 Cooperating CPU-FPGA computation
The CPU executes a traditional matrix multiplication, but

now the matrix is divided into blocks which are sent to the

FPGA for multiplication and the result is added to the

proper sub-matrix in the large product matrix. The block

computation is described by the following equation.

Figure 3. Load distribution of block oriented matrix

computation

Large matrix 𝐶𝑛×𝑛 is subdivided in 𝑚2 blocks of block size

𝑏 = 𝑛/𝑚 rows and columns. To calculate 𝐶𝑖𝑗 , blocks 𝐴𝑖𝑘

and 𝐵𝑘𝑗 , 𝑘 = 0. . 𝑚 − 1 are multiplied consecutively on the

FPGA and the resulting blocks are added to the proper

submatrix on the CPU, as indicated in Figure 3. CPU and

FPGA operate in parallel non-blocking mode. On the

ZedBoard the CPU has a memory of 512 MB. While the

maximum square matrix size on the IP-core is 𝑛 ≤ 124, the

block-matrix computation allows a matrix size 𝑛 > 2000.

The performance of the combined CPU-FPGA block

computation is 4.19 GFLOPS for 𝑛 = 2108 and 𝐼𝐼 = 3.

4.3.2 Data reuse using Gray code block ordering
In a naïve straightforward implementation each block

multiplication 𝐴𝑖𝑘𝐵𝑘𝑗 requires sending two block matrices,

i.e. 2𝑚3 block matrix transfers (see Figure 3). As a

consequence both input matrices 𝐴 and 𝐵 are sent two

times. It is possible to perform a loop interchange and an

iteration reordering such that each block matrix is sent only

once, a technique also used ad hoc in [3]. By generating the

index tuple (𝑘, 𝑖, 𝑗) using the (𝑚, 3)-ary generalized Gray

code [5], the 𝑘-loop becomes outermost and matrices 𝐴𝑖𝑘 or

𝐵𝑘𝑗 can be reused in the inner loops. The Gray code which

optimizes the data reuse in the FPGA is given in Figure 4.

/* (m,3)-ary Gray code to optimize FPGA data reuse

 * in block-oriented matrix multiplication

 * input: block size 𝑚, block matrices 𝐴𝑖𝑘, 𝐵𝑘𝑗

 * output: 𝐶

 */

 Gmax = m*m*m; m2 = m*m;

 for (g =0; g < Gmax; g++) {

 kk = g/m2; // iterate with stepsize 𝑚2

 ii = (g%m2)/m; // iterate with stepsize 𝑚

 jj = g%m; // iterate with stepsize 1

 k = kk;

 i = (g/m2)%2 == 0 ? ii : m-1-ii); // 𝑚2 steps

 j = ((g/m)%2 == 0 ? jj : m-1-jj); // 𝑚 steps

 /* if (i,k) changes send 𝐴𝑖𝑘

 * if (k,j) changes send 𝐵𝑘𝑗

 * FPGA multiplication

 * receive product 𝐴𝑖𝑘𝐵𝑘𝑗

 * CPU accumulate 𝐶𝑖𝑗+= 𝐴𝑖𝑘 . 𝐵𝑘𝑗

 */

 }

Figure 4. Data reuse using Gray code ordering

The nested loops 𝑖, 𝑗, 𝑘 of the original program are merged

into a single loop 𝑔 to avoid data stream delays due to loop

overhead. The indexes 𝑖, 𝑗, 𝑘 are derived from index 𝑔 such

that 𝑘 remains constant for 𝑚2 successive iterations.

Consequently only one matrix 𝐴𝑖𝑘 or 𝐵𝑘𝑗 is sent for the

iterations (𝑘, 𝑖, 𝑗) where 𝑘 is constant, and 2 matrices are

sent when 𝑘 changes, reducing the communication

overhead from 2𝑚3 to 𝑚3 + 𝑚 matrix transfers, roughly

halving the communication bottleneck. The Gray-code

block communication for 𝑚 = 3 is shown in Table 3.

Table 3. Optimized Gray-code ordered block matrix

communication for matrix partitioning with 𝐦 = 𝟑

kij send kij send kij send

000 A00B00 122 A21 B12 200 A02 B20

001 B01 121 B11 201 B21

002 B02 120 B10 202 B22

012 A10 110 A11 212 A12

011 B01 111 B11 211 B21

010 B00 112 B12 210 B20

020 A20 102 A01 220 A22

021 B01 101 B11 221 B21

022 B02 100 B10 222 B22

ACM SIGARCH Computer Architecture News 78 Vol. 44 No. 4 September 2016

As a result, the data reuse in the case with 𝑛 = 2108 and

𝐼𝐼 = 3 raises the performance to 4.77 GFLOPS.

5. DISCUSSION
The optimization steps for accelerating the block-oriented

floating-point matrix multiplication are shown in Figure 5.

The performance trail shows 4 local maxima corresponding

to the optimization milestones. First, the combined

optimization of DSP and BRAM usage more than doubles

the performance, from 1.38 to 4.08 GFLOPS. Remarkably

this result is obtained by relaxing the condition on the

initiation interval, 𝐼𝐼 = 1. Second, widening the bus and

streaming the results during the computations reduces the

communication overhead and achieves 6.30 GFLOPS.

Third, the distribution of a blocked-matrix multiply on the

heterogeneous CPU-FPGA multiprocessing system allows

increasing the matrix size by one order of magnitude and

achieving a performance of 4.19 GFLOPS. Finally, the data

reuse of 50% using the Gray-code block ordering increases

the performance up to 4.77 GFLOPS for O(2Kx2K)

matrices.

Figure 5. HLS synthesis optimization trail

The experiments were carried out on a ZedBoard

incorporating a Zynq XC7Z020 running at 100 MHz. The

floating multiply and add operations use 2 and 3 DSPs out

of 220, yielding 44 multiply-add units. The PL accelerator

operates at 93% efficiency and the CPU-FPGA is able to

exploit 4.771/6.295 = 76% of the PL computation speed for

2K by 2K matrix multiplication. It is important to note that

none of the optimizations involved any programming in

VHDL. The software used is Vivado HLS [7] for the IP

design source code with C-style programming directives,

and Xilinx SDK for the ARM-processor code using NEON

vector instructions and –O2 compiler optimizations. The

system layout and supporting IP-cores were designed using

the Vivado Design Suite [8].

6. CONCLUSION
The use of FPGAs as compute accelerator has been

hampered by the complexity of the design and the lack of

supporting tools. Existing low level schemes have been

presented which use sophisticated streaming parallel and

pipelined architectures. While efficient, these schemes are

not easily parameterized to take full advantage of the

available resources in a real FPGA. In this paper it is shown

that high level synthesis is able to capitalize on all

resources by following a simple design strategy which

optimizes the combined use of compute power and

memory. Furthermore the resulting optimized IP-core is

integrated as hardware algorithm to maximize the matrix

multiplication of large matrices in a heterogeneous

CPU-FPGA SoC. Experiments show that the HLS approach

is able to achieve 6.29 GFLOPS on a single PL-based

matrix multiply and 4.77 GFLOPS on the combined PS-PL

block oriented matrix multiply for large matrices.

7. REFERENCES
[1] Daniele Bagni, A. Di Fresco, J. Noguera and F. M.

Vallina 2016. A Zynq Accelerator for Floating Point

Matrix Multiplication Designed with Vivado HLS.

Technical Report #XAPP1170. Xilinx.

[2] Estrin, G. 2002. Reconfigurable computer origins: the

UCLA fixed-plus-variable (F+V) structure computer.

IEEE Annals of the History of Computing. 4 (2002), 3–

9.

[3] Jovanović, Ž. and Milutinović, V. 2012. FPGA

accelerator for floating-point matrix multiplication.

IET Computers & Digital Techniques. 6, 4 (2012),

249–256.

[4] Kumar, V.B.Y., Joshi, S., Patkar, S.B. and Narayanan,

H. 2010. FPGA Based High Performance Double-

Precision Matrix Multiplication. International Journal

of Parallel Programming. 38, 3–4 (Jun. 2010), 322–

338.

[5] Sankar, K.J., Pandharipande, V.M. and Moharir, P.S.

2004. Generalized Gray codes. Proceedings of 2004

International Symposium on Intelligent Signal

Processing and Communication Systems, 2004.

ISPACS 2004 (Nov. 2004), 654–659.

[6] Xilinx 2014. LogiCORE IP Floating-Point Operator

v7.0, Product Guide PG060.

[7] Xilinx 2015. Vivado Design Suite User Guide: High-

Level Synthesis (UG902 2015.1).

[8] Xilinx 2015. Vivado Design Suite User Guide:

Synthesis (UG901).

[9] Xilinx 2014. Zynq-7000 Technical Reference Manual

UG585 (v1.7).

[10] ZedBoard 2013. ZedBoard Hardware User’s Guide.

[11] Zhuo, L. and Prasanna, V. 2007. Scalable and Modular

Algorithms for Floating-Point Matrix Multiplication

on Reconfigurable Computing Systems. IEEE

Transactions on Parallel and Distributed Systems. 18,

4 (Apr. 2007), 433–448.

ACM SIGARCH Computer Architecture News 79 Vol. 44 No. 4 September 2016

