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Abstract

A vast array of pathologies is typified by the presence of nuclei with an abnormal morphol-

ogy. Dysmorphic nuclear phenotypes feature dramatic size changes or foldings, but also

entail much subtler deviations such as nuclear protrusions called blebs. Due to their unpre-

dictable size, shape and intensity, dysmorphic nuclei are often not accurately detected in

standard image analysis routines. To enable accurate detection of dysmorphic nuclei in con-

focal and widefield fluorescence microscopy images, we have developed an automated

segmentation algorithm, called Blebbed Nuclei Detector (BleND), which relies on two-pass

thresholding for initial nuclear contour detection, and an optimal path finding algorithm,

based on dynamic programming, for refining these contours. Using a robust error metric, we

show that our method matches manual segmentation in terms of precision and outperforms

state-of-the-art nuclear segmentation methods. Its high performance allowed for building

and integrating a robust classifier that recognizes dysmorphic nuclei with an accuracy

above 95%. The combined segmentation-classification routine is bound to facilitate

nucleus-based diagnostics and enable real-time recognition of dysmorphic nuclei in intelli-

gent microscopy workflows.

Introduction

Nuclear shape changes are present in a broad range of pathologies. Depending on the origin

and cell type, nuclei of cancer cells display strikingly different sizes and overt shape alterations

such as grooves, folds or lobes, as compared to normal cells [1,2]. Numerous disorders also

demonstrate subtler morphological aberrations such as invaginations or protrusions. These

protrusions are often referred to as nuclear blebs and they are characteristic for diseases of the

nuclear lamina, i.e., laminopathies [3,4]. In various laminopathies, these blebs represent weak

spots, which can sometimes rupture causing illegitimate exchange of nuclear and cytoplasmic

proteins [5–8]. Bleb formation has also been observed in viral infections, where it is considered
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to represent a correlate of nuclear entry and/or egress [9,10]. Despite a clear correlation with

disease, not all nuclei in a cell culture display crevices or blebs, and since their formation is

time-dependent, it is imperative that they can be automatically detected with high fidelity,

preferably in a large number of cells.

In fluorescence microscopy, nuclei are usually labelled using a DNA binding fluorescent

dye, which facilitates their segmentation. Many automated nuclear segmentation methods

have been described that rely on such a counterstain, including intensity-based [11], active

contour [12,13], graph cut [14,15], region growing/merging [16] and dynamic programming-

based methods [17,18]. These algorithms often require prior knowledge on the location

(dynamic programming), intensity (graph cut) or shape (region merging) of the objects in the

image. Unfortunately, dysmorphic nuclei, and more specifically, nuclei with blebs, are typified

by subtle shape alterations and lower intensities inside blebs, thereby presenting a difficulty to

most existing nuclear segmentation algorithms. To resolve this, we have devised a segmenta-

tion method for the detection of dysmorphic nuclei, called BleND (Blebbed Nuclei Detector).

It is based on a two-pass thresholding to identify the approximate contours of nuclei, and an

optimal path finding algorithm to refine these contours. We have used the algorithm to seg-

ment nuclei from a variety of cell types, and we have validated it on a ground truth data set

using an integrated error metric. Its high performance allowed for building a robust classifier

that accurately discriminates dysmorphic from normal nuclei.

Methods

Image data sets

To optimize and benchmark the BleND algorithm, an image data set (widefield microscopy)

from DAPI-counterstained human dermal fibroblasts from a compound progeroid syndrome

patient (HDF-NCP) was used [19]. This dataset was chosen because it shows high variability in

nuclear phenotypes, with both normal and blebbed nuclei being present in the same culture.

Additionally, the algorithm was validated with images of other DAPI-counterstained cell types

acquired with different imaging modalities: human dermal fibroblasts with a lethal laminopa-

thy phenotype due to a nonsense Y259X homozygous null mutations in the LMNA gene

(HDF-NULL) [20], which show extremely dysmorphic nuclei, often with an intensity gradient

in the nuclear DAPI signal due to chromatin reorganisation (here referred to as chromatin ruf-

fling [21]); human dermal fibroblasts from a Hutchinson—Gilford Progeria syndrome patient

(HDF-HGPS, widefield microscopy) [19]; CRISPR/CAS9-genome edited ZMPSTE24 knock-

out HeLa cells (HeLa-ZKO; point scanning confocal microscopy); genome-edited LMNA
knockout human HT-1080 fibrosarcoma cells (HT-LKO, widefield microscopy) [8]; mouse

primary hippocampal neurons (spinning disk confocal microscopy) [22].

Widefield images were acquired using a Nikon Ti fluorescence microscope equipped with

an Andor DU-885 X-266 camera. Point scanning confocal images were acquired with a Nikon

A1R system and spinning disk confocal images were acquired with a Perkin Elmer Ultraview

system both mounted on a Nikon Ti microscope. Acquisitions were performed using either a

40x dry (NA = 1.0) objective, 40x oil (Plan Apo, NA = 1.30) objective, or 60x oil objective

(Plan Apo VC, NA = 1.40).

Image processing

BleND was implemented as a Java plugin in the image processing software FIJI [23], a pack-

aged version of ImageJ [24], and is freely available at https://github.com/VerschuurenM/

BLEND. The general pipeline is depicted in Fig 1A. In brief, after pre-processing, an intensity-

based segmentation (two-pass thresholding) of the pre-processed image allows identifying

Accurate Detection of Dysmorphic Nuclei

PLOS ONE | DOI:10.1371/journal.pone.0170688 January 26, 2017 2 / 19

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing Interests: The authors have declared

that no competing interests exist.

https://github.com/VerschuurenM/BLEND
https://github.com/VerschuurenM/BLEND


Fig 1. Overview of the BleND segmentation algorithm. (A) Workflow of the algorithm built on (B) intensity-based segmentation, (C)

contour refinement, and (D) conditional watershed; (B) The segmentation process is implemented as a two-pass thresholding algorithm

that generates “initial ROIs” of nuclei in the preprocessed image (i: dysmorphic nucleus, ii: two juxtaposed normal nuclei). A global

thresholding is performed on the image, which creates a binary mask (1). The objects identified herein are dilated by 3 μm and combined

(Boolean AND operation) with a Voronoi tessellation mask to ascertain that the dilated objects do not fuse. For each resulting “seed ROI”

(4), a local threshold (5) is determined yielding an initial nuclear ROI (6) that is more accurate than the seed ROI (note the improved
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initial nuclear regions of interest (ROIs) in the image and generates contours that are refined

using the contour refinement algorithm. Subsequently, adjacent nuclei are split using a condi-

tional watershed algorithm. The contours (ROIs) that are newly generated in this process,

will again be refined using the same contour refinement algorithm. The separate steps are

described in more detail below.

Pre-processing. Background subtraction and multiple standard available linear and non-

linear image filters (Gaussian, Median, Mean, Minimum, Maximum and Variance) are imple-

mented in BleND; the scale of which can be defined by the user. This allows correcting for

imperfect illumination, noise and intranuclear intensity variations (e.g., chromocenters in

mouse nuclei).

Segmentation. Since not all nuclei have the same average intensity, a global threshold can

under- or overestimate their boundaries. In addition, blebs can have significantly lower inten-

sities, causing them to become falsely assigned to the background (Fig 1B, inset i). To account

for this problem, a two-pass thresholding was integrated that performs a rough global (image-

based) thresholding, followed by a local (region-based) thresholding. Global thresholding

serves to estimate the approximate location of all nuclei, whether they are clustered or not. The

result is a set of “seed ROIs”. These seed ROIs are conditionally dilated by maximally 3 μm,

with their expansion being restricted by boundaries defined via Voronoi tessellation on the

same seed ROIs. This prevents neighbouring regions from merging during the dilation pro-

cess. Next, a local threshold is calculated within the conditionally dilated seed ROIs so as to

obtain a better delineation of the actual contours (Fig 1B, inset i) and separation of neighbour-

ing nuclei (Fig 1B, inset ii). The end result of two-pass thresholding is a set of “initial ROIs” for

individual nuclei. All the automatic threshold algorithms that are implemented in FIJI were

assessed for global and local thresholding (Huang [25], Intermodes [26], (IJ_)Isodata [27], Li

[28], Maximum entropy [29], Mean [30], Minimum error [31], Minimum [26], Moment pre-

serving [32], Otsu [33], Percentile [34], RenyiEntropy [29], Shanbhag [35], Triangle [36], and

Yen [37]).

Contour refinement. After two-pass thresholding, crevices and invaginations surround-

ing blebs are not yet accurately delineated. In order to improve the initial ROIs, a contour

refinement step was implemented (Fig 1C), which relies on contour straightening, a direc-

tional derivative and an optimal path finding algorithm. First, the boundary of the nucleus is

straightened using an algorithm based on two-dimensional cubic splines [38], thereby generat-

ing a rectangular representation of a 2μm-wide region (1μm in both directions) surrounding

the initial ROI (Fig 1C-7). Next, the edge of the nucleus is specifically enhanced by calculating

the vertical derivative of the straightened image (Fig 1C-8). Finally, the exact contour is deter-

mined on the derivative image using an optimal path finding (OPF) algorithm (Fig 1C-9).

Among all possible paths that can be drawn from left to right, the optimal path is found by

maximizing the mean intensity of the path, defined as the ratio of the total intensity of the path

segmentation for the dysmorphic and juxtaposed nuclei); (C) In the subsequent contour refinement procedure, the initial ROI is used (6) to

straighten a 2μm wide region along the nuclear periphery (white dot indicates the point where the contour was opened and the white arrow

indicates the direction of the straightening) (7). In this rectangular representation, the edge of the nucleus is enhanced by convolution with

a vertical Sobel kernel (8). Then, an optimal path finding (OPF) algorithm determines the path with the highest path strength (9). The OPF

algorithm effectively detects crevices surrounding nuclear blebs (red arrowhead). The contour of the nucleus is then reconstructed to

generate a “refined ROI” and this process is repeated until the optimal path no longer changes (10); (D) To segment neighboring nuclei

that could not be separated in the previous steps, a conditional watershed was implemented in which correct and incorrect splits were

discriminated based on a size criterion and an intensity drop along the separation line (red arrowhead). This intensity drop is calculated as

a median intensity profile perpendicular to the separation line (13). The user defines a threshold for the acquired intensity drop. In this

example, the threshold is set at 0.75. If there is an intensity drop in the median profile of less than 25%—Min/Max intensity ratio above the

75% (dotted red) line (14)—the split is regarded as incorrect and the two parts of the nucleus are merged (15). If the drop is bigger, the split

is regarded as being correct and it is retained to generate new nuclear ROIs.

doi:10.1371/journal.pone.0170688.g001
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(gain) to the total path length (loss). We refer to this parameter as the “path strength”. The

underlying assumption is that the edge response (i.e., the intensity of the derivative) will be the

strongest at the true boundary of the nucleus. However, to prevent intranuclear intensity fluc-

tuations or debris (also having a strong edge response) from skewing the boundary detection,

a penalty is introduced for the total distance of the calculated path.

A numerical example of the OPF is represented in Fig 2. The derivative of the straightened

image serves as input matrix P with dimensions (q, r), for the OPF algorithm (Fig 2A). The col-

umns of the input matrix P are first divided by the column maxima (yielding normalized

matrix N) to account for any declines in intensity that might occur in blebs or invaginations,

so that they have an equal contribution to the average path strength. The optimal path is then

calculated on the normalized matrix N using a dynamic programming approach. Starting

from the left side of matrix N, the strength matrix S, gain matrix G and loss matrix L are simul-

taneously calculated (Fig 2B). Individual elements of each matrix (respectively si,j, gi,j and li,j)
are recursively determined per column according to the strength function displayed in Eq 1.

For all possible paths to element ni,j of N, a value for s is calculated, only to retain the path that

provides the maximal path strength si,j (Fig 2C). Since the elements of the preceding columns

have already been determined, this procedure boils down to finding the optimal node (element

with row index d) in the q rows of the former column (with index j-1). The corresponding gain

(gi,j) is determined by summing the value of this node (gd,j-1) in matrix G, with the values of the

elements of matrix N that lie in between nd,j-1 and ni,j. The corresponding loss (li,j) is deter-

mined by summing the value of this node (ld,j-1) in matrix L with the number of matrix ele-

ments that lie in between nd,j-1 and ni,j (|nx,j-1| + 1 with x an element of [i,d[).

sðN;G; L; i; j; kÞ ¼
gk;j� 1 þ

P
x nx;j� 1 þ ni;j

lk;j� 1 þ jnx;j� 1j þ 1
with x 2 ½i; k½

d ¼ argmaxk2½1;q�½sðN;G; L; i; j; kÞ�

si;j ¼
gi;j

li;j
¼ sðN;G; L; i; j; dÞ

li;j ¼ ld;j� 1 þ jnx;j� 1j þ 1 with x 2 ½i; d½

gi;j ¼ sðN;G; L; i; j; dÞ � li;j ¼ gd;j� 1 þ
P

x nx;j� 1 þ ni;j with x 2 ½i; d½

ð1Þ

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

The optimal path is defined as the elements in each column of S with the highest value,

allowing propagation angles up to 90˚ to accurately describe crevices surrounding blebs; this is

in contrast with previously described methods where only angles < 45˚ were allowed [17,18]

(Fig 1C-9). Once the optimal path is found on the derivative of the straightened image, it is

converted to a closed contour, yielding the “refined ROI” for that specific nucleus (Fig 1C-10).

The OPF is iteratively applied, each time using the newly created contour as substrate, for a

defined number of cycles, to enable the detection of crevices that are bigger than 1μm, the half

width of the rectangular region.

Conditional watershed. To separate clustered nuclei but prevent small structures like

blebs from being disconnected, the watershed algorithm [39] was modified with two criteria

for merging objects that were split incorrectly. The first criterion is based on object size: sepa-

rate objects should not have an area below the minimal size assigned by the user. The second

criterion is based on the presence of a sufficiently strong intensity decay (background signal)

between adjacent nuclei, assuming that incorrectly split nuclei do not show this decay (Fig 1D)

[8]. To robustly detect an intensity decay, a 3μm wide subregion is created around the separa-

tion line that arises from watershed segmentation (Fig 1D-13). For every pixel of the separation
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line, a perpendicular intensity profile is measured along the width of the subregion, and the

median of these individual intensity profiles is calculated (Fig 1C-14). If the min/max ratio of

the median intensity profile is larger than a user-assigned cut-off (typically set at 75%), the

split is regarded as incorrect and the two parts of the nucleus are merged. If the min/max ratio

Fig 2. Numerical example of the optimal path finding algorithm. (A) Schematic representation of the generation of input matrix P. The vertical

derivative of the straightened representation of the nuclear periphery—defined as 2μm wide band surrounding the initial ROI—serves as input matrix

P for the optimal path finding algorithm (OPF); (B) Columns of P are first normalized (divided by the resp. maximum) after which the optimal path is

calculated on the normalized matrix N using a dynamic programming approach. Starting from the left side of the matrix, a strength function si,j

(strength matrix S) is calculated for every matrix element ni,j that takes the ratio of the sum of the intensity along the path (gi,j; gain matrix G) and the

total path length (li,j; loss matrix L). The optimal path in S is defined by the elements with the highest value per column; (C) Optimal path calculation

for the element on row 3 and column 4 of matrix N (n3,4, marked green in B). The algorithm calculates the gain (g3,4), loss (l3,4) and strength (s3,4 =

g3,4/l3,4) for all 4 possible paths starting in the previous column—in this case column 3—to element n3,4. Since the algorithm is progressive, the

values for gain, loss and strength have already been calculated for all elements in column 3. Thus, for element n3,4, calculation of the gain comes

down to summing the value of the first element k of the path in the gain matrix (gk,3, the total gain up to that point) with the values of N along the rest of

the path. Likewise, the loss for element n3,4 is calculated by summing the value of the first element k of the path in the loss matrix (lk,3, the total loss up

to that point) with the total number of steps to n3,4.

doi:10.1371/journal.pone.0170688.g002
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is smaller, the split is regarded as being correct and two new nuclear ROIs are generated (Fig

1C-15).

Validation

Validation of the BleND segmentation algorithm was done by comparing the automatically

detected contours (C) with manual delineations of 104 nuclei obtained from three indepen-

dent observers (ground truth, GTk, k = {1,2,3}). To quantify the segmentation performance,

two error metrics were used: the average Hausdorff distance (AHD) and non-similarity index

(NSI). The AHD is a proxy for the minimal distance between the automatically detected con-

tours C and manually delineated contour GT (Eq 2) [40] and is calculated as follows: for all p
points of contour C describing nucleus i, the minimum Euclidian distance (d) to contour GTk

is calculated. The average of these distances is the AHD for nuclei i with contour C as reference

(h(Ci, GTk,i)). Since h(Ci, GTk,i) is not equal to h(GTk,i, Ci), both are calculated and the maxi-

mum of these two values is retained as AHD between contour Ci and the kth ground truth for

nucleus i. The NSI is calculated as the ratio of the non-overlapping area and the sum of the

total area enclosed by both contours (C and GT, Eq 3) (Fig 3) [41]. For every nucleus i, both

error metrics are scaled to a positive control (PC, Eq 4), which is defined as the average error

of pairwise comparisons between the three independent GTs (Eq 5). The global error that was

used to quantify the actual precision of the automated segmentation is the mean of both scaled

parameters (Eq 6).

hðCi;GTk;iÞ ¼
1

p

X

a2Ci
minb2GTk;i

dða; bÞ

AHDi ¼
1

3

X

k2f1;2;3g
max½hðCi;GTk;iÞ; hðGTk;i;CiÞ�

ð2Þ

8
>><

>>:

NSIi ¼
1

3

X

k2f1;2;3g
1 �

AreaðC ^ GTk;iÞ

AreaðCiÞ þ AreaðGTk;iÞ
ð3Þ

AHDi;scale ¼
AHDi

AHDi;PC

NSIi;scale ¼
NSIi

NSIi;PC

ð4Þ

8
>>><

>>>:

AHDi;PC ¼
1

6

X

k2f1;2;3g

X

l2f1;2;3g
max½hðGTk;i;GTl;iÞ; hðGTl;i;GTk;iÞ�

NSIi;PC ¼
1

6

X

k2f1;2;3g

X

l2f1;2;3g
1 �

AreaðGTk;i ^ GTl;iÞ

AreaðGTk;iÞ þ AreaðGTl;iÞ

ð5Þ

8
>>><

>>>:

Errori ¼
1

2
ðNSIi;scale þ AHDi;scaleÞ ð6Þ

Data analysis

Classification of the nuclei, identified by the segmentation algorithm, was achieved using a

morpho-textural feature set, including all standard ImageJ/FIJI shape attributes (area, perime-

ter, descriptors of the fitted ellipse, circularity, solidity) as well as curvature and texture
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descriptors. The curvature of the nuclear boundary (defined by the refined ROI) was depicted

as the alteration of the orientation of subsequent edge segments. The total curvature was then

calculated as the summation of the absolute values of the first derivatives of these segments.

Other features describing the shape of the nuclei are the rotation-invariant elliptic Fourier

descriptors (EFD) [42]. The gray-level co-occurrence matrix (GLCM) was calculated to extract

features describing the texture of the cell nuclei [43]. The GLCM attributes obtained under

different angles (0˚, 45˚, 90˚ and 135˚) were averaged to obtain rotation invariant parameters

describing the texture.

The HDF-NCP data set consisted of 162 dysmorphic nuclei and 831 normal nuclei from

which 162 were randomly sampled to obtain a dataset with equal fractions for the two classes.

Fig 3. Schematic representation of the error metrics used for validation of the segmentation

algorithm. Individual BleND segmentations (red line) were compared to the respective GTs (green line) using

two error metrics: the average Hausdorff distance (AHD) and a non-similarity index (NSI). The AHD is

calculated as the average of the minimal distances (yellow arrows)–selected among all possible distances

(examples in dotted grey arrows)–between the pixels of both contours. The NSI is derived as the non-

overlapping area (red and green area) divided by the sum of the total area described by these contours (red

and green line).

doi:10.1371/journal.pone.0170688.g003
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Data analysis was done in R [44]. To explore the data and select the most informative features,

principal component analysis (PCA) was performed. Selected features were used for training

supervised classification schemes based on linear discriminant analysis (LDA), quadratic dis-

criminant analysis (QDA), regularized discriminant analysis (RDA), mixture discriminant

analysis (MDA), naive Bayes (NB), flexible discriminant analysis (FDA), support vector

machine (SVM), bagging (BAG), boosting (BOO) and random forest (RF). Different kernels

were used in NB and SVM classifiers, whereas different regression methods were used to train

FDA classification schemes. For classification, the dataset was split up in a test set (1/3) and

training set (2/3) with equal class ratios. Using 10-fold cross-validation in the training set, the

classification algorithms were trained and then used on the test set to determine misclassifica-

tion rate (MCR) and false negative rate (FNR).

Results

Automatic segmentation matches manual delineation

To quantify the accuracy of the detection algorithm, the method was compared to three inde-

pendent GTs of manually delineated HDF-NCP nuclei, using an integrated performance

error, based on the average of AHD and NSI as described in the M&M section. The inter-indi-

vidual variability of the GTs—calculated as the standard deviation of the error scores obtained

after pairwise comparison of all GTs—was 7% for all nuclei and 9% for the dysmorphic nuclei

only. Using the same error metric, a quantitative comparison was made of the segmentation

algorithm using single (n = 16 threshold methods) or two-pass (n = 16 x 16 = 256 threshold

combinations) thresholding, with and without contour refinement (Fig 4). On the complete

dataset (Fig 4A), a single threshold could not attain the precision of the manual segmentation,

since all of the obtained error scores were higher than those observed when comparing the

GTs (grey dots). Two-pass thresholding improved the segmentation and resulted in 3 thresh-

old combinations that lied within the GT error range (i.e., the range of errors obtained by pair-

wise comparison of individual GT’s, green-coded dots). Contour refinement boosted the

performance and reduced the error scores significantly, resulting in 100 threshold combina-

tions (39% of the 256 combinations) that resulted in values within this error range. The fact

that multiple threshold combinations yielded errors within the GT error range indicates that

the BleND algorithm attains the precision of manual delineation. For segmentation of dysmor-

phic nuclei, both 2-pass thresholding (P = 0.04756; Mann—Whitney U test, one-sided) and

contour refinement (P = 0.004939; Mann—Whitney U test, one-sided) enhanced segmenta-

tion error scores in a statistically significant manner (Fig 4B). Some threshold methods served

better as global method (e.g. Max Entropy) or as local method (e.g. Li), whereas others per-

formed poorly throughout (e.g. Shanbhag).

BleND accurately delineates nuclei in a variety of cell types and data

sets

To assess the generic value of the segmentation algorithm, BleND was also tested on images of

a variety of cell types with aberrant nuclei such as HDF-HGPS, HDF-NULL, HeLa-ZKO,

HT-LKO and mouse primary hippocampal neurons acquired with different imaging modali-

ties at 40x or 60x magnification (Fig 5A). Lower magnifications were not considered since the

main objective of BleND is to detect subtle deviations of nuclear shapes, which are not clearly

visible at low resolution. All cells are characterised by dysmorphic nuclei, but they differ

strongly in shape and texture: nuclei of HDF-NULL and HT-LKO cells are severely deformed

and often show an intensity gradient due to chromatin ruffling, whereas HeLa-ZKO cells and
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primary hippocampal neurons have nuclei with small blebs and especially the latter show high

intranuclear intensity spots (chromocenters). For all image types, suitable segmentation set-

tings could be defined (Fig 5A).

Comparison with nuclear segmentation methods

Next, error scores of the BleND algorithm were compared with other state-of-the-art algo-

rithms used for the analysis of nuclear morphology [12,45]. For this, a rough segmentation

was performed using the 2-pass thresholding algorithm implemented in BleND, after which

different refinement steps were compared: dynamic programming (BleND), level set (LS)

active contour (Fiji) [23,45] and gradient vector flow (GVF) active contour (Matlab1)

[12,13,46]. To allow accurate delineations of blebs and crevices, curvature penalty weights

were decreased for both LS and GVF active contour. The results are represented in Table 1.

GVF active contour and BleND showed a similar error and generated segmentations that

attain the precision of the GT for normal nuclei. On the other hand, for dysmorphic nuclei,

Fig 4. Comparison of performance errors for dysmorphic nuclei. Boxplots and dot plots of the performance errors of

all threshold combinations using 1-pass (only global) or 2-pass thresholding (global and local), with (+CR) or without

(-CR) contour refinement for (A) all nuclei, and (B) for dysmorphic nuclei only. Asterisks mark statistically significant

differences according to the Wilcoxon rank-sum test (one sided) (* P < 0.05, *** P < 0.005). The outliers in the boxplots

represent inadequate segmentations caused by an error-prone thresholding method. The color in the dot plots represents

the error, with values falling within the error range of the ground truth (GT) comparisons displayed in green hues, and

values exceeding this range in light grey. The numbers on the axes of the dot plots represent different threshold methods:

1: Huang, 2: Intermodes, 3: IJ_Isodata, 4: Isodata, 5: Li, 6: Maximum entropy, 7: Mean, 8: Minimum error, 9: Minimum,

10: Moment preserving, 11: Otsu, 12: Percentile, 13: RenyiEntropy, 14: Shanbhag, 15: Triangle, 16: Yen.

doi:10.1371/journal.pone.0170688.g004
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Fig 5. Segmentation results for different cell types and contour refinement algorithms. (A) Segmentation results for DAPI counterstained

nuclei of HDF-NCP (widefield microscopy), HDF-HGPS (widefield microscopy), HDF-NULL (widefield microscopy), HeLa-ZKO (point scanning

confocal microscopy), HT-LKO (widefield microscopy) cells and mouse primary hippocampal neurons (spinning disk confocal microscopy).

Blebbed (red arrowheads) and/or severely deformed nuclei (blue arrowheads) are accurately delineated; (B) Comparison of BleND with level

set active contour and gradient vector flow active contour algorithms on an image of HDF-NCP cells. Insets show contrast-stretched, magnified

views of selected regions. Due to locally weaker signals, blebs (red arrowheads) are poorly detected with the level set active contour algorithm.
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BleND was the only algorithm that could attain GT precision (Fig 5B). In general, the LS active

contour algorithm resulted in inaccurate segmentations of nuclei with lower intensity or inten-

sity gradients (Fig 5B).

Clustering of normal and dysmorphic nuclei

After validation of the algorithm, morpho-textural features were extracted from the segmented

nuclei of HDF-NCP (Fig 6A). Hierarchical clustering of the normalized data based on Man-

hattan distance and Ward’s clustering method, identified two major clusters, largely corre-

sponding to the normal and dysmorphic nuclei, with ~ 89% correspondence to the manually

assigned classes (Fig 6B). Visual inspection of incorrectly clustered nuclei revealed that their

classification is often dubious, due to the presence of rough boundaries (in normal nuclei) or

absence of overt blebs (for aberrant nuclei) (Fig 6C). The heatmap revealed a higher correla-

tion of several shape parameters and the lack of correlation with textural features, as could be

expected for this specific dataset since the HDF-NCP nuclei do not show any discriminating

intensity-based characteristics. Indeed, EFD, curvature, solidity and circularity features com-

prised the most relevant information. This qualitative evaluation was confirmed by PCA,

which revealed that the first principal component (PC1), explaining 29.25% of the variance

within the dataset, contained no texture feature and determined the strongest direction of class

separation. PC1 was defined by the EFD, curvature, solidity and circularity features (Fig 6D

and 6E). The performance of hierarchical clustering could however not be improved signifi-

cantly by using a reduced feature subset from PC1 (absolute correlation with PC1 larger than

0.7) (data not shown). As could be expected, EFD parameters dominated both clustering and

PCA. Tracing the values of the summed EFD back to the segmented nuclei revealed a strong

correlation between the severity of the shape alterations and the EFD value (Fig 7A). However,

the summed EFD score by itself was not enough to distinguish all nuclei, since there was an

overlap in the 0.4–0.5 range between normal and dysmorphic nuclei, thus calling for integra-

tion of other morphological parameters. In the NCP dataset, textural parameters had little

impact on the classification result, but there were conditions were texture did significantly add

to the discriminatory power. Indeed, in many HDF-NULL cells, nuclei are not only

The gradient vector flow algorithm performs better, but fails to detect subtler blebs (region 1) and does not accurately delineate deep crevices

surrounding blebs (regions 2,3).

doi:10.1371/journal.pone.0170688.g005

Table 1. Performance errors of automatic segmentation methods.

Method Class Error

BleND* Normal 0.935±0.222

Dysmorphic 0.936±0.131

LS** Normal 1.607±0.861

Dysmorphic 2.678±2.243

GVF*** Normal 1.022±0.345

Dysmorphic 1.153±0.386

*Threshold settings: Global = Triangle, Local = Mean

**LS = Level Set Active Contour: Advection 2.20, Curvature 0.10, Grayscale Tolerance 0.01, Convergence

0.0030

***GVF = Gradient Vector Flow Active Contour: Iterations 400, Tension or alpha 0, Rigidity or beta 0,

External force or kappa, 30.

doi:10.1371/journal.pone.0170688.t001
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dysmorphic, but also show local chromatin ruffling. This feature could effectively be picked up

by textural features and allowed discrimination of morphologically similar nuclei (Fig 7B).

Supervised classification enables robust detection of dysmorphic nuclei

Using the selected feature set, a classifier was built for predicting nuclear dysmorphy. Various

classification algorithms were assessed; their optimal MCR and the FNR are listed in Table 2.

A support vector machine with a radial basis function (i.e. Gaussian) kernel yielded the best

FNR, whereas a random forest classifier (300 trees, 5 features) had the best MCR on a training

set through 10-fold cross-validation. On an independent test set, the support vector algorithm

attained the best results with an MCR of 4.65% and a FNR of 0.92%. Because of their high per-

formance, trainable SVM and RF classifiers (WEKA library [47]) were integrated in BleND.

Herein, segmented nuclei can be assigned with a user-defined label through a graphical user

interface. After manually categorizing a set of nuclei, a classifier is built and used to predict the

classes for a larger set of segmented nuclei. Predictions can be improved by iterative addition

of new manually assigned classes and classifier building (S1 Fig).

Fig 6. Unsupervised classification of automatically segmented nuclei. (A) Overview of the morpho-textural feature set that was extracted

from 324 segmented nuclei; (B) Heatmap representing the grayscale-coded z-scores of all the features (columns) for all individual nuclei (rows).

Hierarchical clustering on this dataset largely, but not completely, separates normal (blue) from dysmorphic (red) nuclei populations as indicated by

the dendrogram on the left. (C) Example nuclei that have been correctly or incorrectly clustered. Colored outlines represent the manually assigned

class, whereas the colored bar represents the assigned class by clustering (blue: normal and red: dysmorphic nuclei). Numbers link segmentations

of selected nuclei to their position in the heatmap; (D) Principal component analysis of the data set yields two distinct but not fully separated clusters

for the two classes as illustrated by a bi-plot explaining 42% of the variance. Discrimination of the two groups is predominantly in the direction of

PC1; (E) The factor map reveals correlated features in PC space.

doi:10.1371/journal.pone.0170688.g006
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Fig 7. Discrimination of dysmorphic nuclei based on elliptic Fourier descriptors. (A) Morphology-based ranking of HDF-NCP

nuclei. Both dysmorphic (red) and normal (blue) nuclei of HDF-NCP are ranked according to their summed EFD value (color coded).

Severely deformed nuclei have higher EFD values than nuclei with small blebs, which in turn have larger EFD values than regular,

ovoid-shaped nuclei. (B) Texture-based ranking for HDF-NULL cells. Dysmorphic nuclei are characterized by an intensity gradient due

to an chromatin ruffling. Normal and aberrant nuclei of comparable shape (EFD value in italic and in brackets) can be distinguished

based on the value of the entropy texture parameter (color coded).

doi:10.1371/journal.pone.0170688.g007
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Discussion

Dysmorphic nuclei are characteristic for a wide range of pathologies such as cancer, viral infec-

tions and nuclear envelopathies. Automated recognition and analysis of these nuclei may

enhance the efficiency of cell-based microscopy experiments aimed at unraveling mechanisms

underlying pathology. To this end, we wrote an algorithm that is tailored towards segmenta-

tion of dysmorphic nuclei and can be used for a wide variety of cell types acquired with differ-

ent image modalities. Based on an integrated error score, we have shown that BleND attained

a precision that matched the ground truth, when taking into account an inter-individual vari-

ability of 7%. The algorithm was further used to build a classifier that accurately predicts

whether a nucleus is normal or dysmorphic.

Crevices and blebs that define dysmorphic nuclei entail major challenges due to their possi-

ble small size and lower intensity. Since there is no prior knowledge about the location, shape

or intensity other algorithms described in literature are less suitable for this purpose. Segmen-

tation algorithms relying on shape-based seed detection are not applicable to detect dysmor-

phic nuclei, since the shape of these nuclei strongly deviates from the normal convex shape

[16,17]. Other algorithms use intensity information for the segmentation of the nuclei. How-

ever, local intensity minima in blebs can negatively influence the result of level sets-based

methods as proven when comparing to BleND [48].

An algorithm that is optimised for the detection of nuclei with small aberrations has been

described and is based on an GVF active contour algorithm [12]. As shown, error scores of

this algorithm were similar to those of BleND for normal nuclei, but only BleND could attain

the precision of manual delineations for dysmorphic nuclei. In line with the results of Driscoll

et al, we found that curvature and solidity are good predictors of nuclear blebbing [12]. How-

ever, we now also show that EFD parameters are stronger correlates of nuclear dysmorphy and

that the sum of these features correlates strongly with the severity of the deformation. In addi-

tion, BleND offers an alternative approach based on a simple DAPI staining rather than an

immunofluorescence labelling of lamin A/C, making it more amenable for rapid, routine

screening and multiplexing.

We have supported BleND with a framework for quantitative estimation of segmentation

performance. The scoring system is based on scaled error metrics that describe the difference

between the automated segmentation and user defined ground truths, and makes it possible to

select the best threshold combination for the image data sets at hand. Our results demonstrate

that a combination of global and local thresholding outperforms a single thresholding step.

For contour refinement, we make use of a dynamic programming approach that is preceded

by a straightening step and edge enhancement (derivative) of the initial contour. Other

dynamic programming alternatives described in literature use polar transformation instead of

bilinear interpolation for straightening of the edge [17,18]. This requires a centre and contour

point as well as a mean radius to be defined in order to transform Cartesian into polar

Table 2. Classification performance of different classifiers* on a training and test set using 10-fold cross-validation.

LDA QDA RDA MDA FDA NB SVM BAG BOO RF

TRAIN MCR 10.6 9.3 9.7 7.9 9.25 10.6 7.9 7.8 9.3 6.0

TRAIN FNR 7.9 0.9 7.0 4.1 4.2 5.1 0.9 2.3 4.6 1.9

TEST MCR 13.9 11.1 15.7 11.1 10.2 11.1 4.6 12.0 13.9 10.2

TEST FNR 10.2 4.6 13.0 7.4 5.6 6.5 0.9 5.6 7.4 4.6

*Settings: RDA: lambda 0.8997867, MDA: 3 subclasses, NB: Epanechnikov, SVM: Gaussian, BAG: 50 trees, BOO: 4561 iterations, RF: 500 trees, 3

features)

doi:10.1371/journal.pone.0170688.t002
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coordinates. Since dysmorphic nuclei are characterized by their non-circularity, a polar trans-

formation seems unfit. Normalisation of the columns equalizes the weight of all pixel values,

causing the original lower intensities of edges in blebs or crevices to have an equal influence

on the average path strength. In addition, the algorithm allows propagation angles greater than

45˚ to accurately describe crevices surrounding nuclear blebs. Segmentation results using the

contour refinement algorithm were significantly better than those using only a thresholding

step.

Morpho-textural features were extracted from the segmented nuclei and used for super-

vised classification with an accuracy up to 95%. Classification of the HDF-NCP nuclei was

mainly determined by features that describe the shape of the nuclei such as curvature and the

EFD descriptors. This is not surprising, as this type of cells does not show major textural alter-

ations. However, other cell types such as HDF-NULL cells do show biologically relevant inten-

sity variations (reflecting chromatin ruffling [21]) that may need to be discriminated. We

showed that for similarly shaped nuclei, texture metrics such as entropy can discriminate chro-

matin ruffling. Thus, including these textural features makes BleND applicable to a broad

range of cell types showing nuclear alterations.

The automated recognition is perfectly suited to be implemented in high-content perturba-

tion screens that score nuclear shape changes associated with knockdown of specific genes

[49,50] or treatment with chemical compounds [51]. A next logical step would be to integrate

this automated recognition algorithm in an intelligent imaging workflow [52–54]. During live

cell imaging, relevant events may be missed, since the observer manually has to define a region

of interest before starting the experiment and the time resolution per well or spot is limited

[55]. However, when the scope of the experiment can be limited to only those nuclei of interest

(in casu, dysmorphic nuclei), the efficiency may be significantly increased. Feedback regulation

between the microscope and the algorithm can result in automatic recognition of dysmorphic

nuclei and subsequent initiation of an appropriate acquisition. A first step towards an inte-

grated, broadly applicable intelligent imaging workflow, is the implementation of an iterative

machine learning scheme in which a classifier can be trained on the fly, i.e. whilst images are

being acquired [50]. As proof of principle, such an iterative learning process was integrated in

BleND, resulting in classification scores similar to those of the independent data analysis that

was performed. This workflow can be the starting point for high-resolution follow-up of more

deformable nuclei [56], or even more complex imaging schemes such as selective, functional

imaging (FRET, FCS, FRAP. . .) of dysmorphic nuclei, as has been demonstrated for mitotic

phenotypes [57].

In conclusion, the proposed method can accelerate both fundamental research as well as

diagnostics of the broad range of pathologies that are linked to nuclear dysmorphy.

Supporting Information

S1 Fig. Improved predictions by iterative training of implemented classifier. The misclassi-

fication rate (MCR) declines after iterative training of the implemented classification algo-

rithm through a graphical user interface. In this example, a random forest classifier was used

(100 trees, 7 features).

(TIFF)
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