

biblio.ugent.be

The UGent Institutional Repository is the electronic archiving and dissemination platform for all
UGent research publications. Ghent University has implemented a mandate stipulating that all
academic publications of UGent researchers should be deposited and archived in this repository.
Except for items where current copyright restrictions apply, these papers are available in Open
Access.

This item is the archived peer-reviewed author-version of:

Big Linked Data ETL Benchmark on Cloud Commodity Hardware

Dieter De Witte, Laurens De Vocht, Ruben Verborgh, Kenny Knecht, Filip Pattyn, Hans Constandt, Erik
Mannens, and Rik Van de Walle

In: Proceedings of the International Workshop on Semantic Big Data, 12:1–12:6, 2016.

http://doi.acm.org/10.1145/2928294.2928304

To refer to or to cite this work, please use the citation to the published version:

De Witte, D., De Vocht, L., Verborgh, R., Knecht, K., Pattyn, F., Constandt, H., Mannens, E., and Van
de Walle, R. (2016). Big Linked Data ETL Benchmark on Cloud Commodity Hardware. Proceedings of
the International Workshop on Semantic Big Data 12:1–12:6. 10.1145/2928294.2928304

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/74615188?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Big Linked Data ETL Benchmark
on Cloud Commodity Hardware

Dieter De Witte1 Laurens De Vocht1 Ruben Verborgh1 Kenny Knecht2

Filip Pattyn2 Hans Constandt2 Erik Mannens1 Rik Van de Walle1

1iMinds - Data Science Lab, Ghent University 2Ontoforce
{firstname.lastname}@ugent.be {firstname}@ontoforce.com

ABSTRACT
Linked Data storage solutions often optimize for low latency query-
ing and quick responsiveness. Meanwhile, in the back-end, offline
ETL processes take care of integrating and preparing the data. In
this paper we explain a workflow and the results of a benchmark that
examines which Linked Data storage solution and setup should be
chosen for different dataset sizes to optimize the cost-effectiveness
of the entire ETL process. The benchmark executes diversified stress
tests on the storage solutions. The results include an in-depth analy-
sis of four mature Linked Data solutions with commercial support
and full SPARQL 1.1 compliance. Whereas traditional benchmarks
studies generally deploy the triple stores on premises using high-end
hardware, this benchmark uses publicly available cloud machine im-
ages for reproducibility and runs on commodity hardware. All stores
are tested using their default configuration. In this setting Virtuoso
shows the best performance in general. The other tree stores show
competitive results and have disjunct areas of excellence. Finally,
it is shown that each store’s performance heavily depends on the
structural properties of the queries, giving an indication of where
vendors can focus their optimization efforts.

CCS Concepts
•Information systems→ Database query processing; Database
performance evaluation; Resource Description Framework (RDF);

Keywords
Big Data; Linked Data; Benchmark; SPARQL; Cloud Computing

1. INTRODUCTION
Linked Data has the potential to alleviate the burden of data inte-

gration by explicitly incorporating the semantics in the data using
standardized ontologies. Integrating multiple datasets is especially
beneficial for multidisciplinary research domains such as Life Sci-
ences. Integration of multiple datasets though, introduces a set of
Big Data related problems, requiring data management solutions
offering scalable performance.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SBD’16, July 01 2016, San Francisco, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4299-5/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2928294.2928304

Scaling up has been the preferred method in the past: adding more
RAM memory and CPUs in a single high-end machine, and indeed
it has been shown that a single high-memory machine provides a
very attractive platform to perform graph analytics [10]. Scaling up
is further explored in for example Blazegraph which can make use
of GPU accelerations.1.

The scaling out approach relies on low-end commodity hardware
but uses many nodes in a distributed system. When looking at
distributed systems, multiple approaches to query “Resource De-
scription Framework” (RDF)2 data sources co-exist.

• Specialized scalable RDF stores, the focus of this paper;

• Translating SPARQL and RDF to existing NoSQL stores [3];

• Translating SPARQL and RDF to existing Big Data approaches
such as MapReduce [11], Impala [12], Apache Spark [4];

• Distributing the data in physically separated SPARQL end-
points over the Semantic Web, using federated querying tech-
niques [14] to resolve complex questions.

Compression (in-memory) is an alternative for the distributed
approaches. RDF datasets can be compressed using for example
the “Header Dictionary Triples” HDT [6] format and queried using
Apache Jena Fuseki3. HDT has demonstrated compression ratios
up to 20, pre-empting the need for a distributed environment. HDT-
MR [7] is a recent HDT extension which allows the compression
of big datasets which overcomes the in-memory constraints of the
original HDT implementation by relying on a MapReduce pipeline.
HDT is also the preferred choice in a new Semantic Web querying
approach, called Linked Data Fragments [15] which offers linked
data interfaces over the web excelling in availability.

This research was conducted in collaboration with Ontoforce4, a
company specializing in semantic search solutions for Life Sciences
data. They require RDF query solutions which are mature, have reli-
able support backing their product, are rich in features and embrace
the full SPARQL 1.1 standard. The strength of their product lies in
the ability to find (unexpected) links between different datasets. In
order for link discovery to be combined with a responsive product
much of the heavy lifting should be offloaded into a preparatory
ETL process. The latter explains the need for a benchmark which
focuses on ETL as opposed to query responsiveness and latency in
most other benchmark studies.

1https://www.blazegraph.com/product/gpu-accelerated/
2RDF is the generally accepted method for conceptual description or modeling of
information in which data is represented as triples.
3http:// jena.apache.org/documentation/serving_data/ index.html
4http://www.ontoforce.com

1

http://dx.doi.org/10.1145/2928294.2928304
https://www.blazegraph.com/product/gpu-accelerated/
http://jena.apache.org/documentation/serving_data/index.html
http://www.ontoforce.com

1.1 Problem Definition
Since the focus of this paper is on Extract Transform Load (ETL)

pipelines, execution cost and total runtime are the two most impor-
tant success measures as opposed to low latency and responsiveness
which are less crucial in this context. Robustness under long periods
of heavy stress loads, the absence of fails and timeouts are essential
for ETL. The influence of the performance of an individual query
on the total ETL workload is often negligible. However, an RDF
solution’s performance on certain query types might have a large
impact on the total cost.

In this paper we address the following research questions:

• What is the most cost-effective storage solution to support
Linked Data applications that need to be able to deal with
heavy ETL query workloads? Which performance trade-offs
do storage solutions offer in terms of vertical and horizontal
scalability?

• What is the best configuration of a distributed solution to deal
with different dataset sizes?

• What is the impact of different query types (templates)? Is
there a difference in performance between the stores based on
the structural properties of the queries?

We do not take into account implicitly derived facts or reasoning
on the datasets. We turned off the reasoning feature in all stores.

1.2 Related Work
Artificial benchmarks are often used to assess the performance

of triple stores. Some examples are the Lehigh University Bench-
mark [8] (LUBM), the Berlin SPARQL Benchmark [2] (BSBM),
DBPBM[9], and the SP2Bench [13].

Recently, an in-depth study of the university of Waterloo has
shown that all existing artificial benchmark suites are lacking in
diversity, both in the diversity of the structural properties of the
queries they offer and in the data-driven properties [1]. The latter
are related to the connectedness of the data and therefore have a high
influence on the selectivity of query fragments and the performance
of the query planner. As a result they offer a benchmark suite
which generates more diverse queries and more diverse benchmark
datasets: The Waterloo SPARQL Diversity Test Suite (Watdiv).

Apart from a lack of diversity another criticism is that artifi-
cial benchmarks do not generalize well to real-world datasets [5].
BioBenchmark Toyama 2012 [16] is the most recent large scale
RDF benchmark on real Life Sciences data. They evaluated the
runtime of 5-10 queries on 5 real datasets varying in size from 10
million to 8 billion triples (DDBJ) on high-end single node triple
store installations.

Mauroux [3] evaluated the performance of NoSQL stores to han-
dle RDF data workloads and uses the notion of cost to evaluate
different data management solutions, a metric also used in this
study.

1.3 Our Contributions
The main contribution of this paper is the re-usability, straightfor-

ward interpretation of the test results and very detailed insights it
offers without reinventing well-proven SPARQL benchmarks. The
results presented in this paper can be easily applied to other storage
solutions.

Rather than focusing on high-end infrastructure or case-specific
benchmarks, this benchmark supports enterprise scenarios where
the data endpoint is not used for interactive querying but used as a
system in an ETL pipeline used to interlink RDF data of multiple
(open) data sources.

Section 2 explains the benchmark and how it can be reused: data
and queries can be replaced to suit test case needs and we explain
the choice of RDF stores to include in our benchmark. The main
results of the benchmark are summarized in terms of execution time,
and cost ($) in section 3.1 and an in-depth analysis of the results
focusing on scalability and the influence of different query types is
presented in section 3.2 and 3.3.

2. METHODOLOGY
The methodology for executing the benchmark consists of three

major steps: (i) generating the RDF data and the ETL queries; (ii)
set-up storage solutions; (iii) load data into the store and run the
ETL queries while performing time measurements.

2.1 Data and Query Generation
WatDiv provides stress testing tools to address the observation

that existing SPARQL benchmarks are not suitable for testing sys-
tems for diverse queries and varied workloads [1]. In this ETL
benchmark we decided to choose Watdiv because it is a generic
benchmark which is not application specific. It covers a broad spec-
trum in terms of result cardinality and triple-pattern selectivity. This
is ensured through the way it generates data and queries. Further-
more, others can repeat the benchmark, even with different dataset
set sizes or different numbers of queries available 5.

For this study three datasets have been generated via the Watdiv
Suite of resp. 10, 100 and 1000 million RDF triples. For each
dataset a set of 2000 queries is generated in a randomized fashion.
The queries are generated from 20 query templates which can be
classified in 4 more general template types, this will be discussed in
section 3.3.

2.2 Selection of RDF Storage Solutions
The selection of triple stores to benchmark is guided by the re-

quirement that the RDF store should be capable of serving in a
production environment with Life Sciences RDF data. The initial
selection was made by choosing stores with a) a high adoption/pop-
ularity as defined by DB-Engines ranking for RDF stores6, b) en-
terprise support, c) support for distributed deployment and d) full
SPARQL 1.1 compliance.

The four stores we selected all comply with the 4 constraints
put forward in the previous section. Two stores opted for under
nondisclosure and will be labeled as Entreprise Store I and II (ESI
and ESII) All stores support running in a high availability mode,
(automated replication), and all but ESI allow for automated shard-
ing. The latter implies that the dataset must fit into a single machine
for ESI.

2.3 Infrastructure Setup
We choose to execute all benchmarks on the Amazon Webser-

vices Elastic Compute Cloud (EC2) and Simple Storage Solutions
(S3). We use the default commercial deployments of the storage
solutions under test because we want the results to be completely
reproducible: both the hardware and the machine images can be eas-
ily acquired. More generally cloud deployments offer the advantage
of not requiring dedicated on-premises hardware.

A PAGO license was used for Virtuoso7, Blazegraph8 is an open-
source product which was installed manually with the default con-

5http://dsg.uwaterloo.ca/watdiv/
6http://db-engines.com/en/ranking/rdf+store
7https://aws.amazon.com/marketplace/pp/B011VMCZ8K/ref=srh_res_product_
title?ie=UTF8&sr=0-5&qid=1455494788712
8https://www.blazegraph.com/product/

2

http://dsg.uwaterloo.ca/watdiv/
http://db-engines.com/en/ranking/rdf+store
https://aws.amazon.com/marketplace/pp/B011VMCZ8K/ref=srh_res_product_title?ie=UTF8&sr=0-5&qid=1455494788712
https://aws.amazon.com/marketplace/pp/B011VMCZ8K/ref=srh_res_product_title?ie=UTF8&sr=0-5&qid=1455494788712
https://www.blazegraph.com/product/

Table 1: Runtime and cost for an ETL run of 2000 unique queries evaluated on 4 RDF solutions and 2 distributed setups.
Store Dataset

size
(million
triples)

Load
Time (s)

Median
Runtime
(s)

Median
Respon-
setime
(s)

Instance
cost
($/Hr)

Load cost
($)

Run cost
($)

Total cost
($)

Blazegraph 2.0.0
10 246 1,578 142 0.33 0.02 0.15 0.17
100 5,784 13,343 754 0.33 0.54 1.23 1.77
1000 181,362 141,897 83,442 0.33 16.78 13.13 29.90

Enterprise Store I
10 641 1,069 721 0.33 0.06 0.10 0.51
100 10,457 29,776 22,832 0.33 0.97 2.75 12.10
1000 168,780 285,350 262,672 0.33 15.61 26.39 136.62

Enterprise Store II
10 601 3,242 3,047 0.33 0.06 0.30 1.41
100 5,498 33,524 33,522 0.33 0.51 3.10 14.34
1000 58,912 357,478 357,460 0.33 5.45 33.07 153.02

Virtuoso 7.2
10 68 152 138 0.33 0.01 0.01 0.06
100 1,290 797 778 0.33 0.12 0.07 0.57
1000 13,940 9,802 9,629 0.33 1.29 0.91 6.48

Enterprise Store II (3 nodes) 1000 56,915 86,757 86,754 1.00 15.79 24.08 158.40
Virtuoso 7.2 (3 nodes) 1000 54,850 20,570 20,392 1.00 15.22 5.71 61.78

figuration. SPARQL Query Benchmarker 9 is a general purpose API
that was originally designed primarily for testing remote SPARQL
servers but can be extended to test much more than that. One of
the main advantages is that the actual benchmark consists of some
number of runs of the operation mix. By default operations are run
in a random order for each run to try and avoid the system under test
(SUT) learning the pattern of operations and aggressively caching
and thus gaming the benchmark.

A single benchmark consists of N (we consider N = 1 and N = 3)
triple store nodes of the type r3.xlarge (4 vCPU, 30.5 GB RAM)
and a c3.2xlarge (8 vCPU, 15 GB RAM) node to run the SPARQL
benchmarker software, more instance details can be found on the
AWS site10.

2.4 Benchmark process
The benchmark process consists of a data loading phase, followed

by running the SPARQL benchmarker. The data is loaded in com-
pressed format (gzip). The benchmarker runs in multi-threaded
mode (8 threads), runs a set of 2000 queries and does so multiple
times. These runs consists of at least one warm-up run which is
not used in the results and multiple regular runs. In order to obtain
robust results the tail results (most extreme) are discarded before
calculating average query runtimes. The benchmarker generates a
CSV file containing the run times and response times etc. of all
queries. We made all detailed results of the benchmark process
online11.

3. RESULTS
The results after executing the benchmark allow analysis of the

tested storage solutions and focus on three main aspects: (i) cost-
effectiveness; (ii) scalability; and (iii) influence of different query
types (templates). This section goes over each of these aspects in de-
tail applied to the four RDF storage solutions we tested: Blazegraph,
Virtuoso, ESI and ESII.

3.1 ETL Runtimes and Cost
Apart from individual query runtimes the SPARQL Benchmarker

also records the overall ETL process runtimes and response times.

9http:// sourceforge.net/p/sparql-query-bm/wiki/ Introduction/
10https://aws.amazon.com/ec2/ instance-types/
11http:// lddemo.datasciencelab.be/sequel

The response time is considered to be the time from when the query
is fired by the client to when the store starts responding with its
first results. The load times are reported by the RDF databases or
extracted from their logs.

Table 1 shows the runtimes and associated costs for full ETL runs
on 3 different dataset sizes of respectively 10, 100 and 1000 million
(M) triples. For every dataset size the best value is highlighted, the
worst is bold-faced.

Each of the data stores has a bulk loading functionality to insert
RDF triples without transactional overhead. Virtuoso outperforms
other solutions by an order of magnitude in terms of loading time.
ESI spends the most time in the loading phase except for the 1000M
dataset where suddenly the loading time of Blazegraph takes over.
ESII, although on average 5 times slower than Virtuoso holds the
second place for all datasets.

A longer load time might prove beneficial in the subsequent query
runtimes. This is immediately obvious for the case of ESII which is
worse for all dataset sizes. For small dataset sizes ESI ranks second,
while for the other datasets Blazegraph is at least twice faster than
the other two. Virtuoso, also for the ETL runtimes proves superior
to the other 3 stores with runtimes over 10 times lower than the
second in rank. In order to compare the performance on load and
a single run combined, the column showing the total cost (without
license) can be used. In general Blazegraph holds the second rank
while ESI performs best for small datasets and ESII the other way
around.

Response times are less important in an ETL context, but it is
worth mentioning that Blazegraph is the only store who has a large
difference in response time compared to the runtime. For small
datasets the stores starts responding in 5 to 10% of the total runtime,
while for the largest 1000 M dataset response time is close to 60%
of the total runtime.

The right hand side of Table 1 focuses on the cost. This can lead
to a different ranking due to the difference in license costs of the
PAGO instances. Blazegraph can be used without any license fees
widening the cost gap with ESII and ESI, to a factor of 4 for the
1000M dataset. For the single instance solutions ESII is the most
expense on all three datasets.

The speed-up for ESII in distributed mode in terms of runtime
is remarkable, almost 5 times as fast as ESII on a single instance,
even though the number of nodes increased from 1 to 3. This
speedup factor can at least partially be attributed to query timeouts,

3

r3.xlarge
c3.2xlarge
http://sourceforge.net/p/sparql-query-bm/wiki/Introduction/
https://aws.amazon.com/ec2/instance-types/
http://lddemo.datasciencelab.be/sequel

Blazegraph ESI ESII Virtuoso
10-3

10-2

10-1

100

101

102

103
Runtime distributions (10M)

Blazegraph ESI ESII Virtuoso

Runtime distributions (100M)

Blazegraph ESI ESII Virtuoso

Runtime distributions (1000M)

Figure 1: Boxplot (log scale) of the runtime distribution of a query mix per storage solution for three dataset sizes. The query mix
consists of 2000 queries. Note that data points on the 300 seconds line correspond to timeouts.

0 500 1000 1500 2000

10-2

10-1

100

101

102

103 Query runtimes sorted

Blazegraph1

ESI1

ESII1

Virtuoso1

ESII3

Virtuoso3

Figure 2: For every store the query runtimes are sorted in in-
creasing size for a dataset of 1 billion triples. Note that ESII on
three instances has a standard timeout of 60 seconds, explain-
ing the early asymptotic behavior.

Figure 2 shows that the speedup for the other queries is significant.
Nonetheless is this option still the most expensive one because of
the higher infrastructure costs. If we focus on run cost alone the cost
is actually over 25% less for the distributed mode. The load time
for both modi is approximately equal. This can be attributed to the
recommended configuration on AWS using only a single datanode.
It can be assumed that in a different configuration scaling out will
be beneficial for ESII.

3.2 Scaling from 10 million to 1 billion triples
Figure 1 shows the distribution of all average query runtimes

of the datastores on the three different datasets. The warm-up and
outlier values are excluded from the calculation of the average.
Points of interests for the ETL case are the median runtime, the
presence of a long tail and the 75% quartile (i.e. the upper side of
the box).

Along all summary statistics Virtuoso is showing the best results.
For the 10M dataset all stores perform within a similar range, except
for ESII which is on average slower by at least an order of magnitude.
For 10M the main differences for the ETL lies in the position of

the datapoints in the outliers. Blazegraph is not capable to generate
very low latency responses to the ETL queries, but manages to
have the same runtime cap for 75% of the queries as Virtuoso for
10M and 100M dataset sizes, for 1000M the superiority of Virtuoso
becomes more outspoken with a difference of an order of magnitude.
While ESI’s performance is close to that of Virtuoso on 10M, this
observation cannot be made for the larger datasets where ESI in
general ranks third.

It might seem counter-intuitive at first, but the tails of the distri-
butions contribute the most to the ETL cost in Table 1. This can be
seen in the 100M panel where ESII has a superior median and 75%
runtime value, the heavy tail though is responsible for making ESII
50% slower as compared to ESI. In section 3.3 we further examine
if and how this can be attributed to certain queries types.

The SPARQL benchmarker uses a timeout parameter to cap the
maximum runtime of a query, this parameter is set to 300 seconds.
For the 10M and 100M datasets timeouts do not come into play,
except for ESII where in 3.85% of the queries a timeout occurs at
least once, but there are no queries which always timeout. With
the 1000M dataset only Virtuoso is completely free from timeouts.
The three other stores, Blazegraph, ESI and ESII, have a number
of queries which timeout with every time: this is the case in re-
specitvely 7%, 5% and 47% of the cases. The timeouts are an
important means to control the ETL runtime since they limit the
effect of the extremely long running queries (even if it is only a
single one).

In Figure 2 the individual runtimes are sorted for each store,
which implies that the X-axis corresponds to the rank of an in-
dividual query per store. The chart shows clearly the amount of
timeouts in the 1000M dataset at the location where the asymp-
totic behaviour starts separates the successful from the unsuccessful
queries which timed out. The results for ESII in distributed mode
with three instances in the same chart expose that: (i) an internal
timeout parameter is set, explaining why no queries can last longer
than 60 seconds. 61% of the queries therefore are showing timeouts
in every turn, for five minute timeouts this percentage is expected to
be well below the one instance percentage; and (ii) the difference
between single and three instance mode for ESII corresponds to a
speedup of approximately 3.3. In Virtuoso the speed-up is less than
1. This is because the 1000M dataset’s size does not exceed the
capabilities of a single-server instance set-up of Virtuoso. As soon

4

C
3

C
2

C
1 L5 L4 F4 F3 S
2

S
5

S
4 L2 F2 S
3

S
6 F1 S
1 F5 L1 S
7 L3

template

10-3

10-2

10-1

100

101

102

103 Runtime Average per query template

Blazegraph

ESI

ESII

Virtuoso

Figure 3: Behavior of storage solutions given 20 different query templates. Results are averaged of 100 queries per template. The
query templates on the X axis are sorted by descreasing average runtime.

as a dataset size reaches a level that surpasses the memory available
to a single-server instance, the scalability benefits of a multi-node
configuration become clear. This occurs as a result of creating a
greater memory pool, in that case, across multiple instances.

C L F S

template_type

10-1

100

101

102

103 Runtime Average per query type

Blazegraph

ESI

ESII

Virtuoso

Figure 4: Behavior of storage solutions given different query
template types: C (=complex), L (=linear), F (=snowflake), S
(=star). Virtuoso is more than an order of magnitude faster
than the other stores except of the query template type C.

3.3 Query template type performance
Each of the query types (templates) that Watdiv used to generate a

query consists of basic graph patterns (BGPs). Every BGP combines
triple patterns into query structures. This query structure is either a
linear chain (L); a star (S), with a single node in the middle and one
or more neighboring nodes; a snowflake (F), a combination of stars,
and a combination (C) of all three. Given a set of query templates,
the query generator instantiates these templates with actual RDF
terms from the dataset. We instantiated 20 of these templates each
with 100 queries, so in total we got the 2000 unique queries, more
details of the templates can be found on the Watdiv website12.

Figure 4 shows the overall performance per query template type,
while Figure 3 goes into more detail by showing the performance
on the 20 query templates. In Figure 4, the C-type is a summary
result, containing structural properties of both L, F and S-types.
An interesting observation is that the overall ranking of the RDF
solution per template is in general consistent except for the linear
queries. This is a clear indication that Blazegraph should direct
their optimization efforts towards providing better performance on

12http://dsg.uwaterloo.ca/watdiv/basic-testing.shtml

linear chain queries. Another curious result is that for the C-type
queries the results of ESI and ESII are almost the same, while they
differ a lot on the other query template types, clearly ESI has been
optimized for low complexity queries. The results of Virtuoso are
in general better by an order of magnitude but interestingly for the
linear chain queries they are better by even two orders of magnitude.
The underlying data layout of Virtuoso 7.2 is a columnar while ESI
and Blazegraph store the data as graphs. Therefore one would not
expect the difference to benefit Virtuoso for this type of queries.

In Figure 3 we get a more detailed overview of the performance
on individual query templates. The templates are sorted on the
runtimes averaged over all stores in ascending order. ESI and ESII
are the only two stores which have maximum query runtimes for
a fraction of the queries. For ESI the worst runtime behavior is
seen for 6 templates, for ESII this for 14 templates. This difference
is also dependent on the average template runtime: for the longer
running queries ESII has the longest runtime while for the faster
queries ESI has the worst runtime.

Virtuoso has the best performance for all but 2 templates: C1 and
S7. Together with F2, S1 and S6 it might be worthwile to perform a
more thorough analysis to understand the cause of this behaviour.
For Blazegraph a number of templates have worse runtimes than
ESI: L5, L4 and L2. This is consistent with the conclusion from the
previous paragraph that linear chain queries prove to be somewhat
problematic for Blazegraph.

4. CONCLUSIONS AND FUTURE WORK
The results of different benchmark studies might depend on many

(hidden) factors leading to different or even contradicting results.
The goals of this work is to identify the most suitable RDF database
for ETL workloads in terms of total runtime and execution cost. An
additional goal is to make the results as neutral and reproducible
as possible. We tested four interesting solutions in this work and
found that Virtuoso is still 2x - 20x cheaper and up to an order of
magnitude faster than the other three stores. In general Blazegraph
ranks second in the majority of the results which is a rewarding
result for the open source community backing its development. ESI
is most suitable for small datasets and ESII is interesting for its
ability to scale out, the performance speed-up is a factor 3. It seems
that Virtuoso lacks this ability to scale out: the cost of Virtuoso with
3 nodes is much more expensive while the cost for ESII remains the
same. The difference in performance between the stores might be
attributed to the use of commodity hardware. The choice for this

5

http://dsg.uwaterloo.ca/watdiv/basic-testing.shtml

hardware was made with the affordability of scaling out to even
larger datasets in mind. Very important to take into consideration is
that the benchmark was run with the recommended configuration
parameters offered by the PAGO machine images. The difference
between the results might at least be partially attributed to the quality
of the recommended configuration parameters for this benchmark.
Note that one should be careful with generalizing the results to other
use cases than the ETL case considered here. One minor result
backing this warning is the fact that the response times for queries
on Blazegraph are much lower than their full runtimes. The results
of the queries may also be influenced in a nonlinear manner in
workloads with less simultaneous query threads and different query
types. One of the limitations of the Watdiv benchmark is that only
BGPs and Filters occur in the queries. There are many SPARQL
1.1 features which are not covered by these two types, and although
most queries can be rewritten in terms of BGPs and Filters, that does
not imply that every storage solution will create an equally efficient
query plan for these.

In terms of ETL runtime and cost Virtuoso dominates but there
is no clear second place. Whereas ESI performs well on small
datasets, Blazegraph shows better results for larger datasets. ESII’s
performance on a single instance benchmark is worse than the others,
but its claim of being highly scalable is confirmed in a configuration
with three instances where it performs significantly better. All data
stores have acceptible results for 10 and 100 million triples and
the choice to go by one or the other could depend on additional
features each of the stores has to offer such as support for full-text
indexing, support for linked data fragment interfaces or superior
automatic inferencing. For the larger datasets Virtuoso should be
the first choice as a single instance solution. The initial results in
a distributed setup with ESII shows promising results in terms of
scaling out, proving that this store’s power might only be revealed in
large multi-instance benchmarks. Also Blazegraph should definitely
be analyzed in a distributed setting. As a final conclusion it is shown
that the structural properties of the queries can play a major role in
the ETL performance, with the most concrete example being the
lesser performance of Blazegraph on linear chain queries, which can
be a worthwile pointer for the team backing its development.

The benchmark results in this paper compare RDF stores with
default configuration and without the intervention of Enterprise
support. We plan to publish results in the future with the stores
running in their optimal configuration. Multi-instance benchmarks
will be the subject of follow-up research with even larger datasets.
Future work should result in a more complete overview of the most
suitable RDF solution for different use cases, different configuration
possibilities and for real-world datasets. Part of the future work
will focus on investigating whether the Watdiv results generalize to
other query types and real life sciences datasets. Eventually we plan
to release a set of publicly available tools for easily repeating the
benchmark with new datastores of interest to the end-user.

5. REFERENCES
[1] G. Aluç, O. Hartig, M. T. Özsu, and K. Daudjee. Diversified

stress testing of RDF data management systems. In The
Semantic Web–ISWC 2014, pages 197–212. Springer, 2014.

[2] C. Bizer and A. Schultz. The Berlin SPARQL Benchmark.
International Journal on Semantic Web and Information
Systems (IJSWIS), 5(2):1–24, 2009.

[3] P. Cudré-Mauroux, I. Enchev, S. Fundatureanu, P. Groth,
A. Haque, A. Harth, F. L. Keppmann, D. Miranker, J. F.
Sequeda, and M. Wylot. NoSQL databases for RDF: an
empirical evaluation. In The Semantic Web–ISWC 2013, pages
310–325. Springer, 2013.

[4] O. Curé, H. Naacke, M.-A. Baazizi, and B. Amann. On the
Evaluation of RDF Distribution Algorithms Implemented over
Apache Spark. arXiv preprint arXiv:1507.02321, 2015.

[5] S. Duan, A. Kementsietsidis, K. Srinivas, and O. Udrea.
Apples and oranges: a comparison of RDF benchmarks and
real RDF datasets. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages
145–156, 2011.

[6] J. D. Fernández, M. A. Martínez-Prieto, C. Gutiérrez,
A. Polleres, and M. Arias. Binary RDF representation for
publication and exchange (HDT). Journal of Web Semantics,
19:22–41, 2013.

[7] J. M. Giménez-García, J. D. Fernández, and M. A.
Martínez-Prieto. HDT-MR: A Scalable Solution for RDF
Compression with HDT and MapReduce. In The Semantic
Web. Latest Advances and New Domains - 12th European
Semantic Web Conference ESWC, pages 253–268, 2015.

[8] Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for OWL
knowledge base systems. Web Semantics: Science, Services
and Agents on the World Wide Web, 3(2):158–182, 2005.

[9] M. Morsey, J. Lehmann, S. Auer, and A.-C. Ngonga Ngomo.
DBpedia SPARQL benchmark–performance assessment with
real queries on real data. The Semantic Web–ISWC 2011,
pages 454–469, 2011.

[10] Y. Perez, R. Sosič, A. Banerjee, R. Puttagunta, M. Raison,
P. Shah, and J. Leskovec. Ringo: Interactive graph analytics
on big-memory machines. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data,
pages 1105–1110. ACM, 2015.

[11] A. Schätzle, M. Przyjaciel-Zablocki, T. Hornung, and
G. Lausen. PigSPARQL: A SPARQL Query Processing
Baseline for Big Data. In Proceedings of the ISWC 2013
Posters & Demonstrations Track, Sydney, Australia, October
23, 2013, pages 241–244, 2013.

[12] A. Schätzle, M. Przyjaciel-Zablocki, A. Neu, and G. Lausen.
Sempala: Interactive SPARQL Query Processing on Hadoop.
In The Semantic Web - ISWC 2014 - 13th International
Semantic Web Conference, Proceedings, Part I, pages
164–179, 2014.

[13] M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel. SPˆ
2Bench: a SPARQL performance benchmark. In Data
Engineering, 2009. ICDE’09. IEEE 25th International
Conference on, pages 222–233. IEEE, 2009.

[14] A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt.
FedX: Optimization Techniques for Federated Query
Processing on Linked Data. In The Semantic Web - ISWC
2011 - 10th International Semantic Web Conference,
Proceedings, Part I, pages 601–616, 2011.

[15] R. Verborgh, O. Hartig, B. De Meester, G. Haesendonck,
L. De Vocht, M. Vander Sande, R. Cyganiak, P. Colpaert,
E. Mannens, and R. Van de Walle. Querying Datasets on the
Web with High Availability. In The Semantic Web - ISWC
2014 - 13th International Semantic Web Conference,
Proceedings, Part I, pages 180–196, 2014.

[16] H. Wu, T. Fujiwara, Y. Yamamoto, J. Bolleman, and
A. Yamaguchi. BioBenchmark Toyama 2012: an evaluation of
the performance of triple stores on biological data. Journal of
biomedical semantics, 5(1):1, 2014.

6

	Introduction
	Problem Definition
	Related Work
	Our Contributions

	Methodology
	Data and Query Generation
	Selection of RDF Storage Solutions
	Infrastructure Setup
	Benchmark process

	Results
	ETL Runtimes and Cost
	Scaling from 10 million to 1 billion triples
	Query template type performance

	Conclusions and Future Work
	References

