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Abstract— The power consumption of wireless access 
networks is an important issue. In this paper, the power 
consumption of LTE base stations is optimized. We consider the 
city of Ghent, Belgium with 75 possible LTE base station 
locations. We optimize the network towards two objectives: the 
coverage maximization and the power consumption 
minimization.  We propose a design framework based on 
Differential Evolution with eigenvector-based crossover 
operator. The results of the proposed method indicate the 
advantages and applicability of our approach. 

Index Terms—power consumption, base station, coverage, 
LTE, differential evolution, network planning. 

 

I.  INTRODUCTION 

 
Wireless access networks are currently large power 

consumers within ICT. In five years’ time (from 2007 till 
2012), this power consumption has increased yearly with 10% 
[1]. It is expected that this amount will even increase in the 
next few years, as these networks need to expand in order to 
deal with the extreme growth of mobile devices and the higher 
bit rate demands required by these mobile devices. For the 
development of future wireless access networks, power 
consumption will become a key parameter [2, 3]. A specified 
area, the target area, needs to be covered with a certain 
wireless technology. In this paper we consider Long Term 
Evolution (LTE) with a minimal power consumption. By 
selecting the most appropriate base station locations from a set 
of existing locations (from operators active in the target area) 
and tuning base station parameters such as the antenna’s input 
power, an energy-efficient network is obtained. Evolutionary 
algorithms (EAs) are suitable optimization techniques for 
solving the above-described problem. The purpose of this 
paper is to solve this problem using a recently introduced 
Differential Evolution (DE) [4] variant.   

 DE is a population-based stochastic global optimization 
algorithm that has been applied to a variety of design problems 
in electromagnetics. Several DE variants or strategies exist. 
One of the DE advantages is that very few control parameters 
have to be adjusted in each algorithm run. The DE 
performance depends on control parameters, mutation 
strategies, and crossover operators.   Most of the DE strategies 
or variants use the binomial crossover operator, which has 

been found to produce better results than the exponential 
crossover operator [5].  The authors in [6] propose an 
alternative crossover operator, namely the eigenvector-based 
crossover. This operator utilizes the eigenvector information of 
the covariance matrix of the population to rotate the coordinate 
system. In this paper, we apply the DE-EIG to the LTE 
network-planning problem. More specifically, we utilize the 
DE-EIG algorithm for designing different LTE networks cases 
that maximize coverage and reduce power consumption. 

This paper is organized as follows. We describe the 
problem formulation in Section II. The details of the DE-EIG 
algorithms are given in Section III. In Section IV we present 
the numerical results. Finally, the conclusion is given in 
Section V. 

II. PROBLEM DEFINITION 

We consider 75 possible LTE base stations locations in the 
city of Ghent, Belgium to which the network planning 
optimization will be applied (Fig. 1). This area covers about 
6.85 km2.  

 
Fig. 1. Map of the city of Ghent, Belgium with the possible LTE base 
stations locations.  

The network optimization problem is to find the least 
possible number of base stations that operate with such input 
power so that the coverage area is maximized.  Therefore, 
there are two requirements; to minimize power consumption 
and to maximize coverage. The power consumption objective 



can be expressed as [7]: 
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where x  is the vector of a given solution, ( )P x  is the 

power consumption in Watts of the solution, and maxP  is the 

maximum power consumption assuming that all base station 
are active and operate at maximum input power. The details of 
the power consumption formulation can be found in [7].  

The second objective is to cover the maximum possible 
percentage of the given area (Ghent in this case).  This is 
given by: 
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where targetA  is the area of the target area to be covered (in 

km2), ( )A x is the area covered by a given solution (in km2), 

and   represents the intersection of the two areas. In order to 
calculate the ( )A x  we need first to calculate for each active 

base station the maximum allowable path loss, PLmax (in 
dB).  For this case, the link budget parameters for the LTE 
network of Table 1 are taken into account. Then the maximum 
range R (in meters) covered by each base station can be 
computed [7]. The area covered by a given solution is the 
union of all base stations coverage areas that are determined 
by each maximum range R.  

The above objectives can be combined using the following 
objective function [7]: 
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where the minus sign is used for minimization. The 

minimum value (-600) is obtained when both cov ( )f x  and 

( )powf x  equal to 100. This kind of global fitness function is 

chosen because of the trade-off between coverage and power 
consumption.  

In this paper, we consider the Walfisch–Ikegami 
propagation model for path loss calculations. The above-
mentioned problem can be solved using an evolutionary 
algorithm. It is an integer-programming problem, for which 
several different solutions exist. In this paper, we will apply 
the DE-EIG algorithm.  

TABLE I.  LINK BUDGET PARAMETERS FOR THE LTE NETWORK 

Parameter Value 
Frequency 2.6 GHz 

Maximum input power base station 
antenna 

43 dBm 

Antenna gain of base station 18 dBi 
Antenna gain of receiver 0 dBi  
Feeder loss base station 2 dB 

Feeder loss receiver 0 dB  
Fade margin  10 dB 

Yearly availability  99.995% 
Interference margin 2 dB 

Noise figure of receiver  8 dB 
Implementation loss of receiver 0 dB 

MIMO 1x1 
Receiver SNR 1/3 QPSK = -1.5 dB 

1/2 QPSK = 3 dB 
2/3 QPSK = 10.5 dB 
1/2 16-QAM = 14 dB 
2/3 16-QAM = 19 dB 
1/2 64-QAM = 23 dB 

2/3 64-QAM = 29.4 dB 
Bandwidth 5 MHz 

Soft handover gain receiver 0 dB 
Building penetration loss 0 dB (only outdoor 

coverage considered) 
Height mobile station 1.5 m 

 

III. DIFFERENTIAL EVOLUTION WITH EIGENVECTOR-BASED 

CROSSOVER OPERATOR (DE-EIG) 

A population in DE consists of NP  vectors 

, , 1,2,......G ix i NP , where G  is the generation number. 

The population is initialized randomly from a uniform 
distribution. Each D-dimensional vector represents a possible 
solution, which is expressed as: 

, ,1 ,2 , ,( , ,... ,....., )G i G i G i G ji G Dix x x x x   (4) 

The population is initialized as follows:

 0, [0,1) , , ,    1,2,.....,ji j j U j L j Lx rand x x x j D    (5) 

where ,j Lx  and ,j Ux  are the lower and upper bounds of 

the jth dimension  respectively and [0,1)jrand  is a uniformly 

distributed random number within [0,1). 
The initial population evolves in each generation with the 

use of three operators: mutation, crossover, and selection. 
Depending on the form of these operators, several DE variants 
or strategies exist in the literature [4, 8]. The choice of the 
best DE strategy depends on problem type [5]. A mutant 

vector 1,G iv   is generated using  

1 2 31, , , , 1 2 3( ),    G i G r G r G rv x F x x r r r                 (6) 

 

where 1 2 3, ,r r r are randomly chosen indices from the 

population, which are different from index i, F  is a mutation 

control parameter, and [0,1)rand  is a randomly generated 

number from a uniform distribution within the interval [0,1). 



In the popular DE/rand/1/bin strategy the binary crossover 

operator is applied to generate a trial vector  1,G iu   whose 

coordinates are given by: 
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The authors in [6] propose an eigenvector-based crossover 
operator, which utilizes eigenvectors of covariance matrix of 
individual solutions. Thus, the crossover is rotationally 
invariant. To avoid losing diversity of population, the 
offspring can be stochastically born from the parents with 
either the standard coordinate system or the rotated coordinate 
system. The authors in [6] also introduce a new parameter to 
control the probability of selecting one of the coordinate 
systems.  They have shown that this scheme can increase the 
population diversity and prevent premature convergence. 
Additionally, another significant advantage of this operator is 
that it can be applied to any crossover strategy with minimal 
changes. Therefore, it can enhance any existing DE variant. 
The main idea is to exchange the information between the 
target vector and the mutant vector in the eigenvector basis 
instead of the natural basis.   The covariance between m-th 
and n-th dimension of the population in the G-th generation is 
given by [6]
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where ,G m , ,G n  are the mean values of the variables in 

the m-th and n-th dimension respectively.  
To compute the eigenvector basis we need to factorize the 

covariance matrix ( , cov( , ))G mn nmc c m n C into a 

canonical form 

  1
G G G G

 C Q Q   (9) 

where GQ  is the square matrix (D×D) whose m-th column 

is the eigenvector ,G mq  of GC , and G  is the diagonal 

matrix whose diagonal elements are the corresponding 
eigenvalues. The factorization of a matrix into a canonical 
form is called Eigen decomposition. The authors in [6] use the 
Jacobi's method [9] for Eigen decomposition. When the 

eigenvector basis is found, the i-th target vectors ,G ix  can be 

expressed by   ,G G ixQ ; the i-th mutant vectors 1,G iv   can 

be expressed by  1,G G iv Q . Then, a predefined crossover 

operator, such as binomial crossover, will exchange some of 

the elements of the mutant vector with some of the elements 
of its target vector to form a trial vector. The trial vector is 
then given by [6] 
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where *
GQ  is the conjugate transpose of the eigenvector 

basis GQ , and  ,xover x y  is a crossover operator on two 

vectors x and y , where P is a new control parameter 

introduced in [6] which is called eigenvector ratio. 
Eigenvector ratio is between 0 and 1 and determines the ratio 
of the eigenvector based crossover operator and the other 
crossover operator. It must be noted that when P=1 then only 
the eigenvector crossover operator is used, while when P=0 
then only the binary crossover operator is used. The main 
feature of this approach is that no matter how the crossover 
operator exchanges the elements in the eigenvector basis, the 
crossover behavior will become rotationally invariant in the 
natural basis.  

  

IV. NUMERICAL RESULTS 

We consider the 75 possible LTE base stations given in 
Fig. 1. Each one can be active (1) or not (0). If the base station 
is active then the range of the input power of the base station 
antenna is from 0 to 43 dBm with a step of 1dBm.  

 

 
Fig. 2. Map of the city of Ghent with the active LTE base 

stations for the SISO case. The circles represent the coverage 
area of each base station.  

The algorithm is executed 20 times. The results are 
compared. The DE-EIG algorithm is initialized with a 
population size of 100 and run for 1000 iterations. The first 
case is  that of  an LTE network without Multiple Input 
Multiple Output (MIMO). The total number of decision 
variables is 75X2 for this case (each base station can be active 
or not and have a value of input power).  

The best-obtained result is that of a network with about 
82.6% coverage and 48% power consumption (which means 
that the power consumption is 48% of the maximum power 
consumption assuming that all base stations are active and 



operate at maximum input power). The solution consists of 50 
base stations. This solution is visualized in Fig. 2.  

The second case is that of an LTE network supporting 
MIMO. In this case each base station could support MIMO and 
therefore an additional decision variable is required. The total 
number of unknowns is 75X3. The number of antennas is 
limited to 1X1, 2X2, 4X4 for both transmission and reception. 
DE-EIG has produced a network that has 95%  coverage and 
22.14% power consumption. The number of base stations in 
this network is 36. Fig. 3 visualizes this case.  

The final example is that of an LTE network supporting 
MIMO but with a different number of transmitting and 
receiving antennas. Therefore, the total number of unknowns 
increases to 75X4. The best-obtained result for this case is a 
network with 95% and 19% power consumption. This solution 
requires 31 LTE base stations. The network is shown in Fig.4. 

 

 
Fig. 3. Map of the city of Ghent with the active LTE base 

stations for the first MIMO case. The circles represent the 
coverage area of each base station. 

TABLE II.  COMPARATIVE RESULTS FOR THE THREE CASES OBTAINED BY 
DE-EIG 

Case Best Worst Mean Std. 
Dev. 

SISO -310.05 -259.59 -290.58 15.06 
MIMO case 1 -484.32 -461.82 -476.63 7.6 
MIMO case 2 -500.33 -473.17 -483.81 8.12 

 

Table II summarizes the obtained results for the three cases 
by the DE-EIG algorithm. We notice that as expected the value 
of the objective function increases in the MIMO cases. The 
MIMO cases present lower standard deviation values than the 
SISO case. The best objective function value is that of the 
second MIMO case.  

 

 

Fig. 4. Map of the city of Ghent with the active LTE base 
stations for the second MIMO case. The circles represent the 
coverage area of each base station. 

V. CONCLUSION 

The problem of designing LTE networks for optimal 
coverage with the lowest power consumption is addressed in 
this paper. We have presented a novel design approach based 
on Differential Evolution with Eigenvector-based crossover 
operation. The numerical results that we have shown have 
proven the effectiveness of this approach 
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