
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/282862409

Micro-CT	supporting	structural	analysis	and
modelling	of	ropes	made	of	natural	fibers

Article		in		Textile	Research	Journal	·	October	2015

DOI:	10.1177/0040517515609259

CITATION

1

READS

23

3	authors,	including:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

Modelling	of	human	body	and	protective	textiles	for	estimation	of	skin	sensorial	comfort	and

life	risk	of	fire-fighters	working	in	extreme	external	conditions	View	project

Katarzyna	Ewa	Grabowska

Lodz	University	of	Technology

24	PUBLICATIONS			99	CITATIONS			

SEE	PROFILE

Izabela	Ciesielska

North	Carolina	State	University/Ghent	Univer…

29	PUBLICATIONS			108	CITATIONS			

SEE	PROFILE

All	in-text	references	underlined	in	blue	are	linked	to	publications	on	ResearchGate,

letting	you	access	and	read	them	immediately.

Available	from:	Izabela	Ciesielska

Retrieved	on:	22	November	2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/74614125?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.researchgate.net/publication/282862409_Micro-CT_supporting_structural_analysis_and_modelling_of_ropes_made_of_natural_fibers?enrichId=rgreq-63b30f8b47810a3433feb5a0a04f8a4d-XXX&enrichSource=Y292ZXJQYWdlOzI4Mjg2MjQwOTtBUzoyODQ5MTkxMzA1NDIwODBAMTQ0NDk0MTQyMjI2Mg%3D%3D&el=1_x_2
https://www.researchgate.net/publication/282862409_Micro-CT_supporting_structural_analysis_and_modelling_of_ropes_made_of_natural_fibers?enrichId=rgreq-63b30f8b47810a3433feb5a0a04f8a4d-XXX&enrichSource=Y292ZXJQYWdlOzI4Mjg2MjQwOTtBUzoyODQ5MTkxMzA1NDIwODBAMTQ0NDk0MTQyMjI2Mg%3D%3D&el=1_x_3
https://www.researchgate.net/project/Modelling-of-human-body-and-protective-textiles-for-estimation-of-skin-sensorial-comfort-and-life-risk-of-fire-fighters-working-in-extreme-external-conditions?enrichId=rgreq-63b30f8b47810a3433feb5a0a04f8a4d-XXX&enrichSource=Y292ZXJQYWdlOzI4Mjg2MjQwOTtBUzoyODQ5MTkxMzA1NDIwODBAMTQ0NDk0MTQyMjI2Mg%3D%3D&el=1_x_9
https://www.researchgate.net/?enrichId=rgreq-63b30f8b47810a3433feb5a0a04f8a4d-XXX&enrichSource=Y292ZXJQYWdlOzI4Mjg2MjQwOTtBUzoyODQ5MTkxMzA1NDIwODBAMTQ0NDk0MTQyMjI2Mg%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Katarzyna_Grabowska2?enrichId=rgreq-63b30f8b47810a3433feb5a0a04f8a4d-XXX&enrichSource=Y292ZXJQYWdlOzI4Mjg2MjQwOTtBUzoyODQ5MTkxMzA1NDIwODBAMTQ0NDk0MTQyMjI2Mg%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Katarzyna_Grabowska2?enrichId=rgreq-63b30f8b47810a3433feb5a0a04f8a4d-XXX&enrichSource=Y292ZXJQYWdlOzI4Mjg2MjQwOTtBUzoyODQ5MTkxMzA1NDIwODBAMTQ0NDk0MTQyMjI2Mg%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Lodz_University_of_Technology?enrichId=rgreq-63b30f8b47810a3433feb5a0a04f8a4d-XXX&enrichSource=Y292ZXJQYWdlOzI4Mjg2MjQwOTtBUzoyODQ5MTkxMzA1NDIwODBAMTQ0NDk0MTQyMjI2Mg%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Katarzyna_Grabowska2?enrichId=rgreq-63b30f8b47810a3433feb5a0a04f8a4d-XXX&enrichSource=Y292ZXJQYWdlOzI4Mjg2MjQwOTtBUzoyODQ5MTkxMzA1NDIwODBAMTQ0NDk0MTQyMjI2Mg%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Izabela_Ciesielska?enrichId=rgreq-63b30f8b47810a3433feb5a0a04f8a4d-XXX&enrichSource=Y292ZXJQYWdlOzI4Mjg2MjQwOTtBUzoyODQ5MTkxMzA1NDIwODBAMTQ0NDk0MTQyMjI2Mg%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Izabela_Ciesielska?enrichId=rgreq-63b30f8b47810a3433feb5a0a04f8a4d-XXX&enrichSource=Y292ZXJQYWdlOzI4Mjg2MjQwOTtBUzoyODQ5MTkxMzA1NDIwODBAMTQ0NDk0MTQyMjI2Mg%3D%3D&el=1_x_5
https://www.researchgate.net/profile/Izabela_Ciesielska?enrichId=rgreq-63b30f8b47810a3433feb5a0a04f8a4d-XXX&enrichSource=Y292ZXJQYWdlOzI4Mjg2MjQwOTtBUzoyODQ5MTkxMzA1NDIwODBAMTQ0NDk0MTQyMjI2Mg%3D%3D&el=1_x_7


Original article

Micro-CT supporting structural
analysis and modelling of ropes
made of natural fibers

Marta Toda1, Katarzyna E Grabowska1 and
Izabela L Ciesielska-Wrobel2,3

Abstract

This paper describes the modelling of the structure and mechanical parameters of rope components made of natural

fibers. Modern X-ray micro-tomography (Micro-CT) was employed to measure the parameters of the internal structure

of the multi-component yarns making up rope and utilized as a basic model of twisted rope. The results allowed

calculation of the tensions generated in the component yarns and detection of the unevenness of the filling of the

component yarns by fibers, which was clearly visible in cross-section. The unevenness of twist measured as a function of

distance from the center of the yarn was also detected. The unevenness of fiber distribution in the twisted element

decreased its intensity, starting from the surface of the yarn and going deeper into the structure. Migration of the fibers in

the frame of the circumference of the component yarns was associated with the mutual slide of single fibers.

Keywords

fibers, rope, yarn, twisting, Micro-CT, tomography, fabrication

Modern ropes are highly specialized technical products,
which are utilized in extremely demanding and varied
conditions, e.g. the marine offshore industry and deep
water installations, heavy lift slings, sailing, fishing,
etc.1–3 Different ropes can be distinguished depending
on their final application, technical parameters and
construction. Common raw materials utilized for pro-
duction of ropes are semi-aromatic (polyethylene ter-
ephthalate) and aromatic polyester (liquid–crystal
polymers, especially Vectran),4,5 high-density polyethy-
lene (HDPE, especially Dyneema and Spectra),6,7 aro-
matic polyamides (Twaron, Technora and Kevlar),8

natural staple fibers (flax, hemp, cotton, jute, sisal)9

and metals (steel or its alloys). The nature of ropes
made of wires and synthetic materials is relatively
easy to predict as it depends mainly on the mechanical
parameters of these materials. The interaction of ele-
mentary structural components of such ropes is limited
compared with ropes made of natural raw materials,
where the uneven linear density of the fibers and their
structure, length and surface impact on the mechanical
properties of the final product. Although ropes made of

staple fibers have been used by humans since the develop-
ment of fishery and shipping, they have not been charac-
terized well mathematically. However, phenomena inside
rope, namely tensions and friction between its compo-
nents (fibers, threads), were noticed and described.

Until the middle of the twentieth century, most stu-
dies were on idealized staple fiber yarn, which was
assumed to consist of a very large number of fibers of
limited length, uniformly distributed in a uniform cir-
cular yarn. It was believed that the fibers were arranged
in a helical pattern, following an idealized migration
pattern, where each fiber followed a helical path, with
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a constant number of turns per unit length along the
yarn. In the second half of the twentieth century this
approach started to shift in the direction of a theory
describing fiber migration as less uniform.10–19 It has
been demonstrated that if staple fibers in the threads
are arranged uniformly in the ideal helical pattern, they
will slip out along the thread (yarns) after applying
tension to both ends of the thread. This breaks the
continuity of the yarn structure.20–22

The strength of the rope and the component yarns
depend on the migration of staple fibers inside the yarn,
which are not arranged along helical lines but migrate
between different cross-sections of yarn. In other
words, the arrangement of staple fibers in yarns is sto-
chastic, but it is possible to describe this phenomenon
using a probability density function.

Staple fibers migrate not only inside the structure of
component yarns while they are produced, but also as a
consequence of tensions working on the yarns. It is
suspected that the level of migration of staple fibers in
the component yarns depends on both tensions work-
ing on the component yarns and on the final number of
twists per meter of the yarns. The magnitude of the real
twist of staple fibers in the component yarns of the rope
is based on the measurement of the helix pitch of the
staple fibers on the surface of the yarn. This approach is
questioned in this study, together with the application
of the ideal helix as a model of the structure of compo-
nent yarn.

It is possible to verify the internal structure of yarn/
rope using a non-invasive structure verification techni-
que allowing identification of each single fiber’s posi-
tion, but no research has reported on this as yet.

The density distribution of the staple fibers of the
filaments inside rope is also uneven and changes
depending on the distance from the axis of the compo-
nent thread. An invasive intervention is to pour resin
on the thread and then cut it into segments, and one
study has examined the resulting cross-sections under a
microscope.23 However, this method is not accurate,
because it does not allow the identification of the
same fiber in the various cross-sections of the thread.
The results of this study, although very interesting, are
not precise and do not allow the mathematical identi-
fication of staple fiber density in the yarn.23

The application of X-ray micro-tomography (micro-
CT) for identification of the structural internal para-
meters of rope allows the utilization of mathematical
models for the verification of the phenomena inside the
component yarns and between fibers, e.g. migration of
the fibers owing to slide of fibers across each other.

The paper presents the results of studies on five-
component yarn as a simplified experimental model
of twisted textile rope analyzed by the means of
micro-CT.

Thus, the aims of this study are:

(a) identification of the phenomena which appear
during the process of twisting the staple fibers
and stretching the rope;

(b) making assumptions concerning ropes made of nat-
ural staple fibers;

(c) constructing a mathematical model describing the
migration of the staple fibers in the twisting and
stretching processes.

The following steps were taken to achieve these aims:

(a) analysis of the arrangement (position) of the staple
fibers in relation to the longitudinal axis of the rope
in the three-dimensional (3-D) coordinate system;

(b) analysis of the real twist distribution of the staple
fibers at different distances from the axis of the
component yarns and the axis of the whole rope;

(c) analysis of the packing density of the staple fibers
in the whole rope in terms of their distance
from the axis as in (b) and in the cross-section of
the rope;

(d) analysis of the migration of the staple fibers during
the twisting of components of the rope and the
rope itself.

Materials and methods

Micro-CT uses X-rays to create cross-sections of a phy-
sical object that can be used to recreate virtual models
without destroying the original object. Pixel sizes of the
cross-sections are in the micrometer range.24,25 These
pixel sizes have also resulted in the terms high-resolu-
tion X-ray tomography, micro-computed tomography
(micro-CT or mCT), and similar terms. Sometimes the
terms high-resolution CT (HRCT) and micro-CT are
differentiated26,27 but usually the term high-resolution
micro-CT is used.26–28 Virtually all tomography today
is computed tomography.

The penetration of the tested objects by X-ray pro-
vides greyscale images. The level of grey depends on the
quantity of the radiation absorbed by the objects. The
lighter the grey, the greater is the amount of radiation
absorbed by the object. The raw images are subject to
correction, which compensates for inhomogeneity and
corrects X-ray beam hardening. The image reconstruc-
tion process begins by establishing the field of view
(FOV). It is a matrix composed of pixels. The pixel is
the smallest imaging unit in two dimensions (2-D).
A voxel is the equivalent of a pixel in 3-D. Voxels are
described as 3-D data blocks representing a specific
X-ray radiation.
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For each point (pixel) of the image a special coeffi-
cient is determined by the average values for all rays of
the beam which passes through the pixel. This method
is called a back projection technique.

The last stage is formation of the images’ contours as
a consequence of mathematical filtration.25–28 The sec-
tional image reconstructed from measurements using a
quantitative CT scanner is a linear map of the radiation
absorption coefficient that makes up the scanned layer.

The test method relays on directing an X-ray beam
on the object, and then the intensity of the radiation is
recorded on the other side by detectors. This radiation
is weakened by moving the object. Weakening is
dependent on the radiation intensity and the type
and thickness of the test object. Therefore, the change
in radiation intensity of parallel beams of equal
intensities passing through the test object can be calcu-
lated by:

I ¼ I0e
�� g ð1Þ

A linear attenuation coefficient � is dependent on
the atomic number and the density of the material
object and it is characterized by the Bragg–Pierce law
for the photoelectric absorption of a homogeneous
piece of elemental matter16

� ¼ k�3Z3 ð2Þ

Computed tomography distinguishes two basic types
of projection systems.26,28

1. A system with a parallel beam – one obtains a flat
(2-D) X-ray image of a single section. A 3-D image
of the object can be obtained as a result of computer
reconstruction of planar images.

2. A conical beam system. This system is characterized
by the fact that the subject property is located on a
movable table, which rotates 360� and the lamp and
the detector matrix remain stationary. Using a con-
ical beam of radiation and detector arrays, and as a
result of the full rotation of the object, we can obtain
a cross-section of the entire facility. Next, using the
Radon transform, 3-D image reconstruction of the
object can be carried out. The system with the con-
ical beam is most commonly used in industrial com-
puted tomography thanks to the speed of
calculations and image reconstruction.

The current studies used the conical beam system.
Projection images obtained by scanning tomography
must then transform or reconstruct the images. It can
be done using two different methods: algebraic iterative
or analytical. The study used a combination of analy-
tical and iterative methods.

Iterative image reconstruction is based on the gra-
dual displaying of an image which is that most similar
to the real one. Similarity in this method is based, for
example, on mean square error. The lower the value of
the reconstruction error, the more faithful it is.

The analytical method is based on the application of
the Radon transform and 2-D Fourier transform.

The Rodon transform of the image f(x,y) is the
following integral:

Rf ð�, tÞ ¼

Z
f ðx, yÞ�ðx cosð�Þ þ y sinð�Þ � tÞdxdy ð3Þ

Using the Fourier transform allows us to pass from
the spatial domain image x, y to the frequency domain
of complex numbers. The basis of the Fourier theory is
the assertion that any signal that meets certain condi-
tions can be decomposed into an infinite number of
sinusoidal components, which are characterized by
appropriate frequency, amplitude and phase. In prac-
tice, this signal is assessed by a few sinusoidal compo-
nents. In the case of digital image analysis, 2-D discrete
Fourier transform (Discrete Fourier Transform – DFT)
is used.

As a result of the scanning of the object using a
micro-CT and X-ray beam, one obtains a linear distri-
bution of X-ray coefficient attenuation. Micro-CT test
result is most often given as a map of the attenuation
coefficients in X Hounsfield units (HU).

Structure of a rope made of natural fibers

Rope has an ability to bear significant tension along its
length. The textile rope can be divided into two major
groups: (a) braided ropes and (b) twisted ropes as well
as (c) ropes for special purposes with a low twist per
meter.

The most common, basic ropes are made of two,
three or four yarns (strands) comprising several plies
of threads twisted together. Each can have a different
twist direction (Figure 1.)

First, natural fibers are twisted into yarn in a
Z-direction. Next, these yarns are twisted in an
S-direction, and finally twisted again with another com-
ponent with S-direction into Z-direction.

An example of a four-yarn rope and its cross-section
is presented in Figure 2.

Model assumptions and simplifications

In order to analyze the internal structure of the rope
and the parameters influencing its ability to bear ten-
sion we utilized the structure of a multi-component
rope as a model. This simplification was introduced
after geometric assessment of the model and its physical
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properties using a finite element method. The simplified
model was made of five component threads, each
twisted in an S direction. The produced yarn is pre-
sented in Figure 3.

Raw materials

In order to produce 25 tex component yarn we utilized
cotton fibers, which were twisted by applying 400 tpm.
The diameter of a single fiber was 1.2*10e� 6m and its
density was 1540 kg/m3; the average length of the fibers
was 0.02m. The maximum length of a single fiber in the
thread was 0.037m and the minimum length was
0.003m). The coefficient of friction was assumed to be
0.25 on the basis of other studies.29 The breaking force
of the single fiber utilized to create the rope was 0.2N/
tex and its elongation while breaking was 5.5 %. The
breaking force of the component thread was 0.12N/tex
and its elongation while breaking was 4.66 %. The final
linear density of the whole rope was 129.4 tex. Its
breaking force was 0.17N/tex and its elongation while
breaking was 7.29 %.

The twisting process of the five components was
carried out when all the yarns were introduced into
the twisting zone under the same conditions.

As a consequence of these production setting para-
meters, the core of the rope was empty. All five com-
ponent yarns were positioned evenly around the
circumference of the rope, as presented in Figure 4.

The core diameter was 12.86 % of the whole rope dia-
meter and the surface of this empty core was 31.85 %
out of the surface of the whole rope (assessment based
on the image).

A five-component rope was tested according to the
PN-EN ISO 2062:1997 standard. The test outcome
is presented in Table 1. The test parameters are:
500mm/min, tension 0,5cN/tex, sample length: 500mm.

Figure 1. Typical two-strand rope structure; image partly adapted from Leech.10

Figure 2. A four-strand rope structure showing the yarns and their cross-section.

Figure 3. Visualization of the geometry of the produced yarns

– a micro-CT image.
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Figure 5 presents the change of tension in the rope
depending on the displacement of its elements during a
unidirectional static tension test. It was noted that
under unidirectional static tension of the rope the
breaking of all components took place at the same time.

Structural parameters of a basic rope model and
their impact on rope’s durability

Special stress was put on the structural unevenness of
the analyzed rope model, inside which was an empty
space with a radius of r0¼ 4.5*10e� 6m (Figure 4.).
The radius of the rope model, Rr was 3.5*10e� 5m.
The radius of a single yarn, r twisted into the simplified
rope model was 0.00015m. All these data were collected
from micro-CT scans, which means that the measure-
ments were taken based on the micro-CT scans. The
resolution of the micro-tomography was 2.5mm.

Parameters affecting the durability of a rope made of
staple fibers were described taking into consideration
the structure of linear textile products.30 Longitudinal
static stresses in component yarns forming the rope and
durability of the basic rope model constructed of five-
component yarns were calculated, and the results were
compared to the experimental findings. The study
involved utilization of micro-CT scans to measure the
structural parameters of the rope model, calculating,
analyzing parameters that defined phenomena occur-
ring on the level of staple fibers and component yarns
and within the entire structure of the rope model during
twisting and stretching.

First, analysis of the alignment of staple fibers in
relation to the longitudinal axis of the rope model in
a 3-D system of coordinates was conducted.
Subsequently, the degree to which rope twist affects
the twist of component fibers was determined.
Equation (4), developed by Zimilki et al.,31 was used

Table 1. Breaking force parameters collected during the tests performed on five-component rope with INSTRON model 4204

Displacement at

break [mm]

Load at

break [cN]

Strain at

break [%]

Displacement at

max load [mm]

Load at max

load [cN]

Strain at max

load [%]

Young

modulus [Pa]

Mean 36.50 2208 7.30 36.50 2208 7.30 601.30

Standard deviation 1.10 70.0 0.20 1.10 70.0 0.20 114

Min 34.0 2035 6.80 34.00 2035 6.80 563.30

Max 38.30 2349 7.70 38.50 2349 7.70 620.40

CV 3.00 3.20 3.00 3.00 3.20 3.00 1.90

Average values based on 10 tests.

Figure 4. Distribution of fibers in the rope in three-

dimensional space.

Figure 5. The load burden of the investigated rope versus the

displacement of its elements during a unidirectional static tension

test. All the components of the rope are identical so the curve on

the graph represent the displacement for all these components.
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to calculate the resultant twist generated in the compo-
nent yarn when the yarn was twisted into a five-
component rope with an opposite twist to the compo-
nent fiber. The resultant twist amounted to 174.39
twist/m [tpm], which indicated that twisting the compo-
nent yarn into a rope with an opposite twist caused a
56% loss of twist in the component yarn. Staple fibers
in the outer layer of a single component yarn were tilted
towards the longitudinal axis at an angle of 9.33�. The
axis of a single component yarn was tilted towards the
vertical axis of the rope model at an angle of 41.34�.

tt ¼ tdþ ð�Þ
T

4�2Rr2T2 þ 1
¼ 174:39 tpm ð4Þ

Next, based on the tomographic image the following
parameters of the thread were measured: according to
formula presented by Z_urek:30

. a nominal twist parameter (gt) of a single component
yarn twisted into rope, with the final twist
174.39 tpm

gt ¼ 2�rðttÞ ¼ 0:1650 ð5Þ

r¼ 1.5*10e� 5m, measurement based on the tomo-
graphic image;

. a nominal twist parameter (go) of a single compo-
nent yarn twisted with 400 tpm (before its twisting
into rope):

go ¼ 2�roðtt400Þ � 0:25 ð6Þ

A shrink coefficient of a single component yarn cre-
ated by twisting the component yarn using a twist of
174.39 twist/m can be calculated from:

S174 ¼ 2=½1 þ ð1þ g2Þ0,5� � 1 ð7Þ

A shrink coefficient of a single component yarn cre-
ated by twisting the component yarn using a twist of
400 twist/m:

S400 ¼ 2=½1 þ ð1þ g2oÞ
0,5
� � 1 ð8Þ

The linear density of the yarn after its twist into a
rope can be calculated with the following formula:

Tt ¼ TtoS400=S174 ¼ 24, 9659 tex

ðaccording to laboratory measurements,

Tt ¼ 25 texÞ

ð9Þ

When component yarns are twisted and stretched
into a rope at the same time, component yarn narrow-
ing occurs. The narrowing coefficient of a yarn is cal-
culated from a formula developed for cotton yarn by
Frydrych in 1995:32

u ¼ 1:13�
0:0265

g
� 0:12ð100ahÞ

0:25
¼ 0:9 ð10Þ

ah The initial narrowing coefficient of a yarn is deter-
mined under the initial assumption that ah¼ aw, where
aw is the relative elongation of a single staple fiber form-
ing the component yarn. The initial elongation of a
yarn was determined using a laboratory method.
A sample yarn was collected from a band taken from
the last stretcher of the fiber preparation stage. Once
the approximate value of the narrowing coefficient is
known, yarn elongation over the deceleration distance
can be calculated according to the formula32,33

ah ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ aw
Stpm

� �2

�u2g2

s
� 1 ¼ 0:05 ð11Þ

The fiber in the component yarn alters the shape of
the helix drawn by the yarn not only during rope twist-
ing but also during stretching. The alteration parameter
of the fiber axis shape is calculated according to
formula:32

ka ¼
1þ ah

u
¼ 1:15 ð12Þ

Mean migration radius is based on micro-CT images
according to the formula15

rm ¼ x2 þ y2
� �0:5

¼ 9:5e� 5m ð13Þ

The fiber migration parameter characterizes migra-
tion amplitude, and constitutes the quotient of absolute
change in migration radius and the radius of a yarn:

ya ¼ �rm=r ¼ 0:07 ð14Þ

�rm – increase in migration range (based on micro-CT
images); �rm¼ 1.1*10e� 6m, r¼ 1.5*10e� 5m.

If no migration occurs, then �rm¼ 0, and the migra-
tion parameter y¼ 0.

If full migration occurs, the absolute increase in
migration radius is equal to the radius of a yarn, i.e.
�rm¼ r, and the migration parameter equals one.

In the analyzed basic rope model, the mean migra-
tion parameter indicates that the mean absolute change
in migration range amounts to 7.3% of the yarn radius.
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The length of a single migration cycle was measured
from an analysis of micro-CT images and equaled
Zl¼ 0.0045m.

The length of a fiber corresponding to one migration
cycle is calculated according to a formula developed in
1969 by Hearle and colleagues13 for equivalent migra-
tion, i.e. migration with a constant turn, varying radius
and the tilt angle of staple fibers corresponding to high-
est-intensity migration:14

Q ¼
1

2
1þ cos�ð ÞZl= cos� ¼ 0:0045 ð15Þ

where:
�¼ 9o

Next, the parameter of stress reduction in compo-
nent yarns should be calculated by taking into consid-
eration the discontinuity of the fiber material,
according to Hearle:14

� ¼ 1�
2

3Lf

aQ

2� 1� cos2 �ð Þ

� �1
2

¼ 0:95 ð16Þ

where:

Lf¼ 0.02m
a¼ 6*10e� 7m
�¼ 0.2529

In order to calculate the tensile stress in a single
component yarn of a rope (without taking into consid-
eration lateral stress from the neighboring component
yarns of a rope, i.e. before the rope is twisted into the
basic model), an equation developed by Frydrych is
used:32

F ¼
2

Tt
k�� Qð"f Þðr=gÞ

2

ln
ð1þ y2g2 þ g2Þ0:5 þ ðy2g2 þ k2 þ g2Þ0:5

y2g2 þ 1ð Þ
0:5
þ y2g2 þ k2ð Þ

0:5
� ¼ 1N=tex

ð17Þ

where:

Q "f
� �

+ 0.2N/tex
f + 198,636,235/m2, i.e. an average of 140 fibers in

the cross-section of a single yarn)

In order to calculate the deceleration distance of
component fibers during rope stretching, the frictional
force affecting the fiber when the fiber is taken out of
the static set of staple fibers present in a component
yarn should be calculated per unit of fiber length,
taking into account the lateral pressure coming from

other component yarns in the rope. This is done by
using a formula developed by Grabowska:21

R ¼
�	fu�10

5F 1þ e
r

� �
dT

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ D� dð Þ

2�2T2

q sin 2
 ¼ 56:3N=m ð18Þ

m¼ 0.25;29

	¼ 1540 kg/m3;29

udf¼ 1.2*10e� 6m;
er¼� 0.3%
d¼ 0.0003m
T¼ 400 tpm
D¼ 0.0007m

¼ 41.34o

The deceleration length of the trapezoidal distribu-
tion of fibers was calculated with the formula:20

lh ¼
lmax

2
�
3

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l3max

2
� 3

A

B

3

r
¼ 0:0056m ð19Þ

where:

Fs

lmax¼ 0.037m
lmin¼ 0.003m

and

B ¼
R 1� Fsð Þ cos�wk

l2max � l2min

¼ 4906N=m3
ð20Þ

A ¼ 1� 0:75CVfk

� �
ffkTtfk ¼ 0:034N ð21Þ

where:

CVfk¼ 3%
ffk¼ 0.2N
Ttfk¼ 0.17 tex

lh is a relatively high deceleration distance, present at
both ends of a single fiber. Its characteristic feature is
that stretching stress along this distance varies. This
stress is always lower than the breaking stress of a
single staple fiber. Consequently, staple fibers along
this distance may slide between one another. In turn,
the difference between the length of a single staple fiber
and twice the length of the deceleration distance con-
stitutes a section of the staple fiber where tensile stress
affecting the fiber is constant. The limit value of this
tensile stress corresponds to the value of the breaking
stress of a single staple fiber. This section of the fiber is
also where breaking occurs.
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The percentage of staple fibers which slide over each
other in a single component yarn during the stretching
process was estimated with the following formula
(assuming that all the staple fibers had the same
length)21,22

nSl ¼
lh
Lf

100% ¼ 28% ð22Þ

where:
lh¼ 0.0056m
Assuming that all the staple fibers have the same

length, in the analyzed model of unidirectional tensile
static test, the sliding of fibers takes place (28% of the
fibers) and the rest of the fibers (72%) are engaged by
another fiber and subsequently broken during the ten-
sile test.

Tensions aroused in the elongation of the single
component yarn at the breaking moment can be calcu-
lated with the following formula:21

S ¼
R 1� Fsð Þlh cos�wk

Ttfk l2max � l2min

� �2
� l4max � 4lhl

3
max þ 8 l2hl

2
max � l3hlmax

� �
þ
48

15
l4h

	 

¼ 0:1225N=tex

ð23Þ

A partial derivative of the elongation of the compo-
nent yarn with respect to a rope elongation can be
calculated with the following formula:21

�e

�el
¼

cos
k0
cos
k

sin 
k
cos
k

1þ elð Þ
�
k
�el
þ 1

� �
¼ 0:7875 ð24Þ

where:

el¼ 7.29%,

k0¼ 41.34�,

k¼ 25�

�
k / �el¼�0.11.
The breaking force of the rope can be calculated

with the following formula:21

P ¼ 5S
Tt

Ttl

�e

�el
sec 
k0 ¼ 0:124N=tex ð25Þ

where:
Ttl¼ 129.4 tex.
The static tensile strength of the unidirectional long-

itudinal rope model obtained in the experiment is
0.17N/tex.

Identification of phenomena occurring during staple
fiber twisting in the basic model of a rope

The tilt angle of staple fibers towards the longitudinal
axis of the rope model is 32.01o on the surface, i.e.
3.5*10e� 5m away from the center of the rope
model, whereas the actual tilt angle of staple fibers on
the external surface of a component yarn is 9.33o. This
figure is based on the tilt angle of a single component
yarn towards the longitudinal axis of the rope model:

41:34o � 32:01o ¼ 9:33o

This means that the twist of a single component yarn
measured based on the tilt angle of staple fibers on the
outer surface of the rope model is given by:

Tz ¼ tg�o=2�r ¼ 174:31 tpm ð26Þ

where:
�o¼ 9.33�,
r¼ 1.5*10e� 5m
Subsequently, a micro-CT image of the rope model

(Figure 6) was used to measure the tilt angle of staple
fibers towards the longitudinal axis of the rope at two-
thirds of the radius of the basic rope model (from the
center of the rope), i.e. 0.00022m away from the center
of the rope model and, simultaneously, at
ro¼ 3.7*10e� 6m away from the center of a single
component yarn, i.e. at one-quarter of the radius of a
single component yarn away from the center of the
yarn. The tilt angle of staple fibers towards the long-
itudinal axis of the rope model amounted to 38.39o.

Figure 6. A longitudinal section of the rope made in the 2/3 of

the radius.
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In other words, the tilt angle of staple fibers in a
component yarn is given by the expression:

41.34o� 38.38o¼ 2.96�

This indicates that staple fiber migration at a
distance of one-quarter of the radius of a single com-
ponent yarn away from its center is intense. This is
given by:

T1=4 ¼ tg�1=4=2�r1=4 ¼ 220 tpm

where:
�1/4¼ 2.96�,
r1/4¼ 3.7*10e� 6m
At a distance of one-third of the rope radius

(Figure 7), i.e. 1.1*10e� 5m, staple fibers are tilted at
a 36.196� angle. This constitutes the tilt angle of staple
fibers in a component yarn inside the rope towards the
longitudinal axis of the rope. Figure 8 presents a long-
itudinal section of the rope made along its diameter. In
turn, the tilt angle of staple fibers in a component yarn
towards the axis of a yarn tilted at a 41.34� angle
towards the longitudinal axis of the rope amounts to
5.14� on the surface inside the rope, according to the
expression:

41.34� � 36.196� ¼ 5.14�

Thus, staple fibers display a lower twist inside the
rope than on the outer surface of the rope. The twist
inside the rope equals 95.54 tpm, according to the fol-
lowing expression:

Tw ¼ tg�o=2�r ¼ 95:54 tpm

where:
�o¼ 5.14�,
r¼ 1.5*10e� 5m

A 45% reduction of fiber twist occurs on the surface
of a component yarn inside the rope. This indicates that
the rope axis follows a sine curve in space. The model of
the five-component rope is hollow at the center. The
radius of the hollow core equals 4.2*10e� 6m.
Figure 9 shows changes in the tilt angle of staple
fibers depending on distance from the center of the
rope.

Analysis of packing density distribution of staple
fibers in the cross-section of the basic rope model

The cross-section of the rope model composed of five
component yarns (Figure 10) forms a circle with a dia-
meter more than twice as big as the diameter of a single
component yarn. The cross-section of a single compo-
nent yarn resembles an equilateral triangle with its
longest side equal to one-fifth of the circumference of
the rope model. The cross-section of a single compo-
nent yarn was found to contain on average 140 staple
fibers. Furthermore, staple fiber packing density in the
cross-section of the rope yarn taken as the basic rope
model was found to be uneven. The highest staple fiber
packing density in the cross-section of the basic rope
model was found in the vicinity of the hollow core of
the rope model. When the multi-component yarn taken
as the basic rope model was being twisted, staple fibers
migrated towards the center of the model. Figure 11
shows staple fiber packing density as a function of the
distance from the center of the model. The cross-section
of the rope was divided into three circles, each with a
surface area of 10e� 8 m2 (the inner circle, correspond-
ing to the hollow core of the rope, was disregarded).

Figure 7. A longitudinal section of the rope made in the 1/3 of

the radius.

Figure 8. A longitudinal section of the rope made along a

diameter.
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The limit of each circle is given by the following radii of
the rope model:

. R0¼ 4.5*10e� 6m – radius of the hollow core of the
rope;

. R1¼ 2.4*10e� 5m – radius describing the ring near-
est to the center of the rope model;

. R2¼ 3*10e� 5 0. m – radius describing the second
ring in the rope model;

. R3¼ 3.5*10e� 5m – outer radius of the rope model.

Analysis of Figure 10 found that the cross-sections
of individual component yarns twisted into the basic

rope model showed uneven packing density of staple
fibers, i.e. the highest packing density occurred at the
apex of the equilateral triangle formed by the cross-
section of a single component yarn. In other words,
60% of staple fibers are located in the inner ring, desig-
nated by 2.4*10e� 5m radius. This group of staple
fibers transfers the greatest longitudinal stress that
stretches the basic rope model. Packing density of
staple fibers decreases towards the outer surface of
the model, with only 14% of all staple fibers located
in the outer ring. This group of fibers transfers the
compressive stress which occurs in the cross-section of
the model.

Research on single yarns17–19,34 indicates that the
highest staple fiber packing density in single yarns
occurs in the inner ring, which means that staple
fibers in single yarns migrate towards the center of
the rope when they are twisted into a rope. This phe-
nomenon may be referred to as secondary migration.

Figure 9. The dependence between the tilt angle of the staple fibers and their distance from the center of the rope.

Figure 10. A cross-section of the rope model.

Figure 11. Distribution of the packing density of staple fibers in

the rope model cross-section.
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Analysis of staple fiber migration during the twisting
of a single yarn followed by the twisting of a rope

Research based on micro-CT images suggests that com-
ponent yarns forming the rope model do not migrate. In
otherwords, theymaintain their position along the entire
length of the rope, i.e. they are tilted at a 41.34� angle
towards the longitudinal axis of the rope model, with a
radius described by the axis of each yarn equal to
1.2*10e� 5m. This is consistent with Hearle and
Merchant,15 who stated that if component yarns are sub-
jected to equal stretching during twisting they do not
migrate. On the other hand, if any yarn enters the twist-
ing zone with what is referred to as an excess, i.e. without
being subjected to stretching, it will migrate. The more
yarns that enter the twisting zone without being sub-
jected to stretching, the more intense is the yarn migra-
tion within the rope. The subsequent stages of research
involved analysis of stimulated component yarn migra-
tion caused by some component yarns entering the twist-
ing zone with an excess, i.e. without initial stretching.

However, analysis of micro-CT images suggests that
staple fibers in component yarns migrate owing to the
process of twisting component yarns into the rope. This
can be seen in Figure 10, which shows a clear distur-
bance to the circular shape of the cross-section of a
single component yarn and varied fiber packing density
of fibers depending on distance from the center of the
rope model. Note that this is secondary migration,
occurring when component yarns are twisted into the
rope model. Primary migration of staple fibers took
place when the fibers were twisted into a single compo-
nent yarn. Further research involved analysis of pri-
mary staple fiber migration when fibers were twisted
into a single component yarn.

Hearle12 listed the following parameters that charac-
terize staple fiber migration, the values of which were
calculated from micro-CT images of the rope model:

. Mean radial position of a staple fiber relative to the
radius of a single yarn, i.e. migration range:

Y ¼
X

ri=rð Þ =ni ¼ 0:630 ð27Þ

where:

ri ¼ (xi
2+ yi

2)0.5 ¼ 9.50e–5m

r ¼ 1.5*10e�5m.

Thus, the mean radius of staple fiber migration
amounts to 63.55% of the radius of a yarn.

. The distribution function of the radial position of a
yarn:

Df ¼
X

Yi � Yð Þ
2=ni

h i1=2
¼ 0:12 ð28Þ

and the coefficient of variation of radial yarn position:

CV ¼ D=Y ¼ 4:7% ð29Þ

. Migration intensity measured as the relationship
between the radial position of a yarn to the migra-
tion length of that yarn:

Im ¼
X

dYi=dzð Þ2=ni

h i
1=2 ¼ 218:97=m ¼ 2:19=cm

ð30Þ

Thus, mean migration period equals 0.0045 m.
The analyzed migration corresponds to the twist of

staple fibers determined at one-quarter of the radius of
a single yarn and indicates that staple fibers located at
this distance from the yarn center are characterized by
the most intense migration, which determines the dur-
ability of the rope.

Conclusions

1. Simultaneous introduction of five components into
yarns into the twisting zone causes placement of all
of them along the circumference of the rope. The
core of the rope remains empty; all the components
bear the same tension and are subject to destruction
at the same moment when the tension applied
exceeds the limit (breaking force).

2. The calculated breaking distance of staple fibers
proves that the breaking force overrides the sliding
of fibers and the proportion is 72% to 28%,
respectively.

3. A cross-sectional deformation of each single compo-
nent yarn takes place when they are twisted to form
a rope. The cross-section of the single thread com-
ponents is roughly the shape of an isosceles triangle
with an angle directed towards the interior sharp
line.

4. A secondary migration of staple fibers was detected.
It was attributable to the twisting of the component
yarns and formation of the rope. When yarns made
of staple fibers are twisted, these component yarns
tend to migrate towards the interior of the rope. Up
to 60% of staple fibers forming the rope are placed
in the internal ring – between the empty core of the
rope and three radii. This group of staple fibers bears
the tensions working on the rope.

5. The packing density of the staple fibers in the cross-
section of the model of the rope decreases from the
center of the rope towards the exterior of the rope.
The density of packing of staple fibers in the cross-
section of the rope decreases in the direction from
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the center to the external surface of the rope. The
outer ring of the rope model contains up to 14% of
all staple fibers. This group of fibers bears the com-
pressive stresses in cross-section.

6. The greatest migration of staple fibers takes place in
a quarter of the radius of the single component
thread. The calculated intensity of migration is
2.19/cm and even the shortest fibers in this layer
migrate to other layers.

7. A new methodology of verification of structure of
ropes, micro-CT, was employed to measure the para-
meters of the internal structure of the multi-compo-
nent yarns. Although the application of this new
method was challenging, owing to settlements of
the system, it did make it possible to obtain very
precise measurements and imaging, allowing tracing
fibers.
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klasycznych przȩdz baweinianych) W.P.I.,1995, doi:

10.1243/03093247V301045.

33. Cherif Ch, Seidel A, Younes A, et al. Evaluation of a

tensile test for the determination of the material beha-

vious of filament yarns under high strain rates. Autex

Res J 2010; 10(4): 88–94.
34. Toda M and Grabowska K Computed Microtomography

in the analysis of fiber migration in yarn. Autex Res J

2013; 13(1): 28–32.

Appendix

Notation

A, B numerical parameters
a radius of single staple fiber (measure-

ment based on the microscopic

assessment)
ah an elongation over the deceleration

distance
aw the relative elongation of a single

staple fiber forming the component

yarn
CV coefficient of variation of radial yarn

position
CVfk coefficient of variation of the breaking

force of a single staple fiber

D external diameter of the helix drawn

by a component yarn in the rope
Df distribution function of the radial

position of a yarn
d diameter of a component yarn under

initial load
e1 a longitudinal deformation of the rope
er relative deformation of yarn diameter
F a tensile stress in a single component

yarn of a rope (without taking into

consideration lateral stress from the

neighboring component yarns of a

rope)
Fs proportion of staple fibers with a

length lower than the minimal length

of fibers in a band
f(x,y) a function describing the distribution

of the radiation absorption
ffk breaking stress of a single staple fiber
g thickness of the studied material
go a nominal twist parameter of a single

component yarn twisted with 400

twists/m (before its twisting into rope)
gt a nominal twist parameter
I intensity (power per unit area) of the

radiation transmitted through the

object
I0 initial intensity of the radiation
Im migration intensity measured as the

relationship between the radial posi-

tion of a yarn to the migration length

of that yarn
k the coefficient of proportion

ka the alteration parameter of the fiber

axis shape
Lf mean length of staple fiber forming

the yarn
lh deceleration length of the trapezoidal

distribution of fibers
lmax maximal length of fibers in a band
lmin minimal length of staple fibers in a

band
nSl the percentage of staple fibers which

slide over each other in a single com-

ponent yarn during the stretching

process
ni number of the fibers
P breaking force of the rope
Q the length of a fiber corresponding to

one migration cycle
Q ("f) breaking stress of a single component

fiber
R the deceleration distance of compo-

nent fibers during rope stretching
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Rr radius of the rope (measurement based
on tomographic image)

r a mean radius of a single yarn in the
rope

ri migration radius
r1/4 one-quarter of the radius of a compo-

nent yarn
rm a mean migration radius
ro a radius of a single yarn before its

twisting into rope (measurement
based on tomographic image,
ro¼ 0.0001m)

S tension aroused in the elongation of
the single component yarn at the
breaking moment

S174 a shrink coefficient of a single compo-
nent yarn created by twisting the com-
ponent yarn using a twist of
174.39 tpm

S400 a shrink coefficient of a single compo-
nent yarn created by twisting the com-
ponent yarn using a twist of 400 tpm

Stpm a shrink coefficient of a single compo-
nent yarn created by twisting the com-
ponent yarn using a specific amount of
tpm

T initial twist given to cotton fibers
(according to laboratory
measurements)

Tr rope twist
Tt the linear density of the yarn after its

twist into a rope
Ttfk linear density of a single staple fiber
T1/4 fiber migration at a distance of one-

quarter of the radius of a single com-
ponent yarn away from its center

Tt0 a linear density of the single compo-
nent yarn before it was twisted into a
rope

Ttl linear density of the modelled rope
Tw the twist inside the rope equals
Tz the twist of a single component yarn

measured based on the tilt angle of
staple fibers on the outer surface of
the rope model

t twist of a single component yarn
before its twisting in the rope
(according to laboratory measure-
ments (t¼ 400 tpm)

td distance from the beginning of the
system of coordinates

tt 400 a twist in a component yarn before it
has been twisted in a rope

tt resultant twist
u narrowing coefficient of a yarn

udf diameter of a single fiber
x, y fiber coordinates

x cosð�Þ

þ y sinð�Þ
a straight line with respect to angle y

ya quotient of absolute change in migra-

tion radius and the radius of a yarn
Z the atomic number of the material
Zl the length of a single migration cycle


 tilt angle of the helix between a com-

ponent yarn and the vertical axis of

the rope

k tilt angle of helix line created by the

axis of the component yarn with the

axis of the rope reflecting the breaking

deformation of the rope

k0 tilt angle of helix line created by the

axis of the component yarn with the

axis of the rope exposed to initial

tension
� tilt angle of staple fibers correspond-

ing to highest-intensity migration
�1/4 tilt angle of staple fibers at a distance

of one-quarter of the radius of a single

component yarn away from its center
�o angle of staple fibers in the outer layer

of the rope model
�rm increase in migration range

� Dirac delta function, or d function,

which is a generalized function, or dis-

tribution, of the real number line that

is zero everywhere except at zero
�
k
�el

a partial derivative of the change of

the tilt angle of the component yarn

to the axis of the rope
�e
�el

a partial derivative of the elongation

of the component yarn with respect

to a rope
	 fiber specific density
� angle with respect to the axis Y
� the length of the wave, � – a linear

attenuation coefficient specific to

each material and the length of the

wave of radiation X
m friction coefficient between staple

fibers
’ packing density of component fibers

within the cross-section of a single

yarn
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