
Multi-Fidelity Matryoshka Neural Networks for
Constrained IoT Devices

Sam Leroux, Steven Bohez, Elias De Coninck, Tim Verbelen, Bert Vankeirsbilck, Pieter Simoens, Bart Dhoedt
Ghent University - iMinds

Gaston Crommenlaan 8/201
B-9050 Ghent, Belgium

{sam.leroux, steven.bohez, elias.deconinck, tim.verbelen, bert.vankeirsbilck,
pieter.simoens, bart.dhoedt }@intec.ugent.be

Abstract—Using deep neural networks on resource constrained
devices is a trending topic in neural network research. Various
techniques for compressing neural networks have been proposed
that allow evaluating a large neural network on a device with
limited memory and processing power. These approaches usually
generate a single compressed student network based on a larger
teacher network. In some cases a more dynamic trade-off may
be desired. In this paper we trained a sequence of increasingly
large networks where each network is constrained to contain the
unmodified features of all smaller networks. The weight matrix
of the largest network has submatrices that correspond to the
weight matrices of each of the smaller networks. This technique
allows us to keep the parameters of several networks in memory
while having the same memory footprint as the single largest
network. A trade-off between accuracy and speed can be made
at runtime. The proposed approach is validated on two image
classification tasks running on a real-world Internet-of-Things
(IoT) device.

I. INTRODUCTION

Speeding up the recall phase of a deep neural network
(DNN) is a crucial part of deploying a large neural network
in practical applications. This is especially important when
neural networks are used on constrained devices such
as smartphones or Internet of Things (IoT) devices. The
processing power and memory available to these local devices
is extremely cramped compared to the resources available
in high performance cloud servers. It may however still be
useful to evaluate a trained neural network on a constrained
device locally since this avoids sending data to the cloud
which involves costs, latency as well as potential privacy
issues.

In this paper we present a technique to train a sequence of
similar neural networks with an increasing number of features
per layer. A certain network in the sequence has all the
features of the smaller networks and some additional features.
As a consequence, the weight matrix of the last network in
the sequence has submatrices which correspond to the weight
matrices of all other networks. This technique allows us to
keep the weights of dozens of different networks in memory
while having the same memory footprint as the single largest
network in the sequence.

It may be desirable in practical applications to support

a trade-off between the accuracy and the speed of a deep
neural network, especially when the network is used on a
memory, energy or processing power constrained device. We
can train a sequence of networks where the parameters of
the largest network exactly fit in the memory available. We
can use a subset of these weights to reconstruct a smaller but
less accurate network when a higher throughput is needed
or when the network needs to be deployed on a device with
fewer resources. This runtime trade-off between accuracy
and processing power is highly relevant for robotics. A less
accurate network could be used depending on the expected
duration of a robot’s mission or on the remaining battery
power available.

This technique of reusing all the weights of the smaller
networks in the largest network is especially useful for
hardware implementations of neural networks. Neuromorphic
hardware [1] is custom hardware designed for evaluating
a neural network. These hardware implementations are
much faster and energy efficient compared to neural
networks implemented in software. They are also relatively
expensive, hard to program and the weights are usually
fixed. The same holds for neural networks implemented on
Field Programmable Gate Arrays (FPGAs). Although these
hardware platforms are able to exploit the inherent parallelism
of a neural network, the execution time still depends on
the number of parameters in the network [2]. It is usually
not possible to configure these chips to store the weights of
multiple networks (fast versions and more accurate versions)
since the amount of neurons that can be stored on these
devices is usually limited. The technique proposed in this
paper allows to configure the devices with one set of weights,
the weights of the largest (most accurate) network. The
weights of the smaller networks are explicitly contained in
the weights of the largest network. It is possible to evaluate
multiple networks of different sizes with only one set of
weights. This allows the device to quickly change the active
network without service interruptions.

This paper is organized as follows: In section II we
review the existing state-of-the-art in neural network model
compression and optimization. In section III we introduce

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/74614059?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


the core idea and the training algorithm. The experimental
validation is presented in section IV, both for fully-connected
and for convolutional neural networks. We conclude with a
description of future work in section V.

II. MODEL COMPRESSION: RELATED WORK

Various approaches to minimise the memory and
computational footprint of neural networks have been
proposed before.

One of the first approaches was Optimal Brain Damage
(OBD) [3] proposed by Le Cun et al. This technique uses
second order derivative information to prune unimportant
weights from the network. The results prove that neural
networks store a large amount of redundant information and
that these redundant connections can be safely removed with
a minimal impact on accuracy. While Optimal Brain Damage
dates back to the 1990s, compressing neural networks only
recently became a hot topic in research because of the
possibility of using deep neural networks in mobile devices
[4].

One elegant technique proposed by Chen et al. reduced
the memory overhead of neural networks by grouping the
connections into buckets. All connections in the same bucket
share the same weight value. The resulting HashedNets [5]
allow for a large reduction in memory consumption while
keeping a similar generalization performance. The idea behind
HashedNets is similar to using reduced precision floating
point numbers as connection weights. Various works show
that 32 bit floating point numbers are not needed, 16 bit [6]
[7] or even 8 bit [8] floating points are accurate enough for
most deep learning applications.

A similar impressive result was obtained by Han et al
[9]. They applied a three-step method to achieve a reduction
in the storage and computational requirements by an order of
magnitude. The first step in the training algorithm is learning
which connections are important and which are redundant.
The second step is to prune the less important connections.
The network is retrained in the final step to finetune the
weights in the remaining connections. The technique is
validated on AlexNet and VGGNet on the ImageNet dataset.
The number of connections can be reduced up to 13x without
loss of accuracy.

It is also possible to train a single student network to
mimic a larger teacher network [10] or even an ensemble
of networks [11]. This technique, known as Knowledge
distillation was extended by Romero et al. Their FitNets [12]
use the knowledge distillation technique to train a thin but
deep student network using not only the outputs but also the
intermediate representations of the teacher network. They are
able to train student networks that can outperform the teacher
network in terms of accuracy while having ten times fewer
parameters.

Fig. 1. The weight matrices of each layer have submatrices that correspond
to the weight matrices of the smaller networks. All the smaller networks
are contained within the largest network just like a Russian nesting doll (a
Matryoshka doll).

These techniques allow for an impressive reduction in
the needed processing power and memory but they are static
solutions, they generate a single compressed version of a
large network. A more dynamic trade-off between accuracy
and speed is desirable in robotics and IoT use cases.

III. MATRYOSHKA NEURAL NETWORKS

The core idea is to first train a small fast network with
a certain number of hidden layers. Then, a slightly larger
network with the same number of layers but with more
neurons in each layer. Only the new connections are changed
during backpropagation while the weights from the smaller
network are frozen. The weights in a fully connected layer
are organised in an m ∗ n matrix where m is the number of
inputs (neurons in the preceding layer) and n is the number
of neurons in the current layer. When a single additional
neuron is added to a certain layer li, the weight matrix of
li is extended by one column and the weight matrix of li+1

is extended by one row. Figure 1 illustrates the concept.
The darkest gray blocks represent the weight matrices of
the smallest network. Additional neurons were added to
each hidden layer to obtain the larger weight matrices
but the original weights were kept fixed as a submatrix.
All the smaller networks are contained within the largest
network just like a Russian nesting doll. The dimensionality
of the input and the output of the network is fixed. As a
consequence, the weight matrices of the first hidden layer and
the output layer can only grow in width, respectively in height.

The same technique can be applied to convolutional neural
networks. The parameters are stored in four dimensional
tensors n ∗ c ∗ w ∗ h where n is the number of filters in
the layer, c is the number of input channels (= the number
of filters in the previous layer) and w, h are the width,
respectively the height of each filter. A layer can be initialised
with a certain number of filters and additional filters can be
added by adjusting the size of the tensor and by training
the additional parameters while keeping the already trained
parameters fixed.



We train these networks by modifying the training procedure
as follows. At each step in the backpropagation algorithm
the error E is calculated. The gradient ∇E of the error
function with respect to the weights wi is calculated and the
parameters of the network are updated to minimise the error.
Instead of a global learning rate λ, an individual learning rate
λi is used. This individual learning rate is set to zero for each
parameter which is also a parameter of a smaller network.
Thus only a small portion of the parameters are allowed to
change.

∇E =

(
∂E

∂w0
,
∂E

∂w1
, ...,

∂E

∂wn

)
(1)

∆wi = −λi
∂E

∂wi
(2)

where

λi =

{
0, if wi is a weight of a previous smaller network
λ, otherwise, eg. 0.001

(3)
We have implemented this in existing tools by defining a
masking matrix for each weight matrix. The masking matrix
contains a zero for each parameter that is not allowed to
change and a one for each tunable parameter. Before mod-
ifying the weights, the masking matrix is multiplied element-
wise with the gradient matrix. The mask is only needed during
training, no additional computations are needed at inference
time.

IV. EXPERIMENTS

We evaluated our approach on two of the most successful
neural network architectures for image classification: fully
connected and convolutional neural networks. All networks
were implemented in Theano [13] [14]. Training was done on
an Nvidia GTX980 GPU. We transferred the trained network
to an Intel Edison mobile device for inference. The Intel
Edison1 was specially designed with IoT applications in mind.
The Edison includes a 500 MHz Atom processor together
with WiFi and Bluetooth connectivity in a package only
slightly larger than a standard SD-card. Its size and typical
power consumption of less than 1W make it even suitable for
wearable applications. All timings reported are measured on
the Edison. We processed one test sample at a time without
using any batch processing optimizations since this resembles
most the practical applications where information has to be
processed as soon as it becomes available.

A. Fully connected networks

In the first experiment we used a fully connected neural
network to classify images of handwritten digits. The MNIST
[15] dataset contains a training set of 60,000 samples and a
test set of 10,000 samples. Each sample is a 28 by 28 pixel
grayscale image of a single handwritten digit.

1http://www.intel.com/content/www/us/en/do-it-yourself/edison.html

Fig. 2. The MNIST network has two fully connected layers.

0 50 100 150 200 250 300

0.9

0.92

0.94

0.96

0.98

Neurons / layer

A
cc
u
ra
cy

0 50 100 150 200 250 300

1

2

3

4

5

Neurons / layer

R
u
n
ti
m
e
(m

s/
sa
m
p
le
)

Fig. 3. The accuracy and runtime (ms/sample) of the fully connected MNIST
network with an increasing number of neurons in each layer, evaluated on the
Intel Edison.

We trained the architecture shown in Figure 2 on the MNIST
images. The network has two fully connected layers, each with
n neurons. The number of neurons was increased from 10 to
300 with increments of 10. This means that the final network
contains the exact weights of 30 networks. All layers use the
Rectified Linear activation function (ReLu) [16]. Dropout [17]
with a probability of 0.25 was used during training.

http://www.intel.com/content/www/us/en/do-it-yourself/edison.html


Fig. 4. The CIFAR10 network has three convolutional layers and one fully connected layer.

The smallest network, with two times ten neurons, is able
to obtain an accuracy of 89%. The largest network with 40
times as many parameters achieves an accuracy of 98.16%.
Constraining the network to contain all the parameters of
the smaller networks as submatrices incurs a penalty on the
final accuracy since this network has less flexibility to adjust
its parameters. We retrained the largest network without any
constraints on its parameters to find out how large this penalty
actually is. We obtained an accuracy of 98.30%. A small cost
to pay for having 30 networks contained in the same set of
weights.

B. Convolutional networks

Convolutional neural networks [18] are more advanced
feed-forward neural networks. These networks are able to
exploit the 2D structure of images, unlike the fully-connected
networks used in the previous section. Deep convolutional
neural networks are currently the state-of-the-art tool for
image classification [19].

Each convolutional layer applies trained filters to the
input. These filters each respond to certain structures in
the input data. The filters in the lower layers correspond to
common smaller features such as borders and color transitions
while the filters in the deeper layers respond to more complex
composed structures such as a human face.

We trained the network shown in Figure 4 on the CIFAR10
[20] dataset. The CIFAR10 dataset is similar in size to the
MNIST dataset but contains small color images of objects
each corresponding to one out of ten classes such as cat,
dog, deer, truck or ship. The network has three convolutional
layers. The first two layers have 5x5 filters while the last
convolutional layer has 3x3 filters. The network starts with
four filters in each convolutional layer. We keep adding
filters four at a time until each layer has 64 filters. The
resulting network thus contains the weights of 16 networks.
We also increase the size of the fully connected layer for each
convolutional filter added. When the convolutional layers

contain n filters each, the fully connected layer has 32n
neurons. The Rectified Linear activation function is used both
in the convolutional layers and in the fully connected layer.

Training these networks proved to be harder than training the
fully connected version. Simply using random initialization
yielded suboptimal results. Instead, we trained one large
network without using any masking strategy. We then
initialized the masked networks with the pretrained filters and
fine-tuned them using backpropagation. Dropout [17] was
essential to reliably train these networks

0 10 20 30 40 50 60 70

0.65

0.7

0.75

0.8

Convolutional �lters / layer

A
cc
u
ra
cy

0 10 20 30 40 50 60 70
0

20

40

60

Convolutional �lters / layer

R
u
n
ti
m
e
(m

s/
sa
m
p
le
)

Fig. 5. The accuracy and runtime (ms/sample) of the convolutional CIFAR10
network with an increasing number of filters, evaluated on the Intel Edison.



The narrow network with only three times four convolu-
tional filters and 128 neurons in the fully connected layer
obtains an accuracy of 62.23%. The final network with 230
times as many parameters achieves an accuracy of 81.64%. An
unconstrained network with the same architecture and similar
training procedure obtains an accuracy of 83.3%. We again
witness a small penalty in accuracy for the flexibility of having
16 networks all sharing a subset of the parameters.

V. CONCLUSION AND FUTURE WORK

In this paper we presented a technique to incrementally
train a series of neural networks, each increasing in size.
To reduce the memory footprint of storing all the different
networks, we forced each network to contain the exact
weights of all the smaller networks as submatrices. A
trade-off between accuracy and speed can be made at runtime
by selecting the most appropriate network.

We plan to extend the work in this paper by combining it
with the techniques presented in the related work section
such as the compression technique proposed by Han et al [9].
We will also scale up the networks used to real world large
images (ImageNet) and possibly to other application domains
besides image classification. Another possible extension is to
reduce the penalty in accuracy caused by constraining the
weights through careful finetuning of the training procedure.

One practical application where we plan to use the
Matryoshka networks is in real-time processing of video
feeds. A smaller network can be used to process a certain
frame if the previous frames all contained the same object.
If the confidence of the network is small when processing a
frame we can replace the network by a larger version. We
expect this technique to achieve high accuracy while having
a good amortized efficiency.

ACKNOWLEDGMENT

Part of this work was supported by the iMinds IoT Research
Program. Steven Bohez is funded by a Ph.D. grant of the
Agency for Innovation by Science and Technology in Flanders
(IWT). We gratefully acknowledge the support of NVIDIA
Corporation with the donation of a Tesla K40 GPU, a Jetson
TK1 and TX1 used for this and similar research.

REFERENCES

[1] D. Monroe, “Neuromorphic computing gets ready for the (really) big
time,” Communications of the ACM, vol. 57, no. 6, pp. 13–15, 2014.

[2] C. Farabet, Y. LeCun, K. Kavukcuoglu, E. Culurciello, B. Martini, P. Ak-
selrod, and S. Talay, “Large-scale fpga-based convolutional networks,”
Machine Learning on Very Large Data Sets, vol. 1, 2011.

[3] Y. LeCun, J. S. Denker, S. A. Solla, R. E. Howard, and L. D. Jackel,
“Optimal brain damage.” in NIPs, vol. 89, 1989.

[4] N. D. Lane and P. Georgiev, “Can deep learning revolutionize mobile
sensing?” in Proceedings of the 16th International Workshop on Mobile
Computing Systems and Applications. ACM, 2015, pp. 117–122.

[5] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen,
“Compressing neural networks with the hashing trick,” arXiv preprint
arXiv:1504.04788, 2015.

[6] M. Courbariaux, Y. Bengio, and J. David, “Low precision storage for
deep learning. arxiv preprint,” arXiv preprint arXiv:1412.7024, 2014.

[7] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan,
“Deep learning with limited numerical precision,” arXiv preprint
arXiv:1502.02551, 2015.

[8] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed of neural
networks on cpus,” in Proc. Deep Learning and Unsupervised Feature
Learning NIPS Workshop, vol. 1, 2011.

[9] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” in Advances in Neural Information
Processing Systems, 2015, pp. 1135–1143.

[10] J. Ba and R. Caruana, “Do deep nets really need to be deep?” in
Advances in Neural Information Processing Systems, 2014, pp. 2654–
2662.

[11] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[12] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Ben-
gio, “Fitnets: Hints for thin deep nets,” arXiv preprint arXiv:1412.6550,
2014.

[13] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Des-
jardins, J. Turian, D. Warde-Farley, and Y. Bengio, “Theano: a CPU
and GPU math expression compiler,” in Proceedings of the Python for
Scientific Computing Conference (SciPy), Jun. 2010, oral Presentation.

[14] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Goodfellow,
A. Bergeron, N. Bouchard, and Y. Bengio, “Theano: new features
and speed improvements,” Deep Learning and Unsupervised Feature
Learning NIPS 2012 Workshop, 2012.

[15] Y. LeCun, C. Cortes, and C. J. Burges, “The mnist database of
handwritten digits,” 1998.

[16] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in International Conference on Artificial Intelligence and
Statistics, 2011, pp. 315–323.

[17] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

[18] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” arXiv preprint arXiv:1512.03385, 2015.

[20] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” 2009.


