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Abstract. More and more organizations turn to the construction of process models to support strategical and 

operational tasks. At the same time, reports indicate quality issues for a considerable part of these models, 

caused by modeling errors. Therefore, the research described in this paper investigates the development of a 

practical method to determine and train an optimal process modeling strategy that aims to decrease the 

number of cognitive errors made during modeling. Such cognitive errors originate in inadequate cognitive 

processing caused by the inherent complexity of constructing process models. The method helps modelers to 

derive their personal cognitive profile and the related optimal cognitive strategy that minimizes these 

cognitive failures. The contribution of the research consists of the conceptual method and an automated 

modeling strategy selection and training instrument. These two artefacts are positively evaluated by a 

laboratory experiment covering multiple modeling sessions and involving a total of 149 master students at 

Ghent University. 

Keywords: modeling support, smart business process management, cognitive aspects of modeling, process of 

process modeling, process model quality. 

1 Introduction 

In today’s competitive markets with challenges in terms of globalization, mass-customization and 

risk control, it is considered important for organizations to manage and control their business 
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processes thoroughly. Therefore, many organizations nowadays spend a great deal of effort to build 

and maintain a collection of business process models (or “process models” for short). These models 

represent various aspects of the business processes, such as the control, communication and 

information flows, while abstracting from individual process instances. The process models are used 

to support a diversity of process management tasks ranging from the strategical to the operational 

level: communication, documentation, analysis, (re)design, simulation, execution, etc. [1,2].  

Unfortunately, regardless of their importance and potential, case studies report many issues with 

the quality of process models in organizations [3–5]. Hence, researchers have built a large body of 

knowledge about the quality of conceptual (process) models [6–21]. Nevertheless, research about 

operational guidance on how to create high quality process models appears to be limited to the 

development of general guidelines about the ideal properties of produced models [22–25] and to the 

spontaneous description of best practices that emerged among process modeling experts [26,27]. Thus, 

there is a lack of sound operational support to help a modeler in translating her/his mental image of the 

real-world business process into a high quality process model [21]. 

Considering on the one hand the importance of process modeling and on the other hand the 

reported quality issues and lack of operational support, the research objective addressed in this paper is 

to develop a practical method that helps modelers to implement an optimal process modeling strategy. 

Disregarding those quality issues that are related to a modeler’s imperfect knowledge, the research 

question is: How can the cognitive processing of the modeler be supported to create process models 

effectively and efficiently, given her/his current knowledge about the process and about modeling? 

We believe that this cognitive support is optimal if it is aware of and adapts to the characteristics 

and behavior of the user. We define such differentiated and adaptive support as “smart support”, 

similar to the definition of Smart Technologies, which are technologies that are aware of and adapt to 

(changes in) their situation [28]. Hence, this paper presents smart support in the context of business 

process modeling. More concrete, a smart conceptual method was developed that assists modelers in 

discovering and training their individual optimal process modeling strategy: the Structured Process 



Modeling Method (SPMM). Further, a prototype tool implementation was developed that enables a 

modeler to autonomously execute the method. This implementation is smart in the sense that it 

measures the cognitive profile of the modeler to decide which modeling guidelines it proposes and that 

it adapts the information offered to the user based on her/his previous interactions.  

Both the conceptual method and the supporting implementation were tested via an extensive lab 

experiment. The results indicate (i) that it is possible to deliberately adjust one’s modeling behavior 

with a limited, unsupervised intervention, (ii) that this adjustment by the method indeed has a 

substantial beneficial effect on process modeling, and (iii) that the users perceive the implementation 

as useful to improve their modeling efficacy. From the performed lab experiment, it appears that the 

method in its current form mainly helps reducing the effort and duration of process modeling 

(efficiency of modeling), without significantly impacting the end quality of the resulting process 

model (effectiveness of modeling).  

This paper is structured as follows. Section 2 elaborates on the related research and the theoretical 

background. Section 3 presents the developed method and its implementation. Section 4 describes the 

evaluation of the research with a large-scale experiment. Section 5 discusses the potential impact and 

the limitations of this work. Section 6 concludes with a summary of the paper and of future research. 

2 Preliminaries 

This section discusses related work (Section 2.1) and the theoretical background (Section 2.2). 

2.1 Related work  

Literature on (business) process model quality has mainly focused on the specification of quality 

frameworks, the identification of quality dimensions and the development of quality measures. A brief 

overview is presented hereafter. The LSS framework of Lindland, et al. compares the goals and means 

of conceptual models to define different quality dimensions and their mutual relationships [6]. Inspired 

by linguistic concepts, they identify syntactic, semantic and pragmatic quality as the main model 

quality dimensions. Nelson, et al. present a conceptual modeling quality framework that extends the 



LSS framework with 6 more dimensions [7]. These dimensions are derived from insights of the BWW 

framework [29], which additionally focuses on the dynamic aspects of conceptual modeling. Rockwell 

and Bajaj further extended this process-oriented view on modeling quality by investigating the 

cognitive aspects of the efficacy of the model creation and model understanding processes [8]. Further, 

in the more specific context of process modeling, Krogstie, et al. have further improved the dynamic 

aspect of the semantic and pragmatic quality components of the LSS framework [9] and Becker, et al. 

have specified process modeling quality dimensions at a more practical, operational level [10]. 

The different dimensions of these quality frameworks are studied in more detail. In the context of 

process models, the research has focused mainly on the quality dimensions of model correctness [11] 

(related to syntactic and semantic quality), model understandability [12–14] and adequacy [15] 

(related to pragmatic quality) and model maintainability [13,14] (related to modeling efficiency).  

Further, a large number of metrics are defined that describe these dimensions directly or that are 

used as indirect indicators for these dimensions. For example, researchers have related various metrics 

of process model complexity to the model correctness [16–18], understandability [12,13] and 

maintainability [13]. According to Laue and Mendling, another indicator for the model correctness is 

the structuredness of the model [11]. Likewise, the model understanding is also linked to the modeling 

language selection [19] and to the formulation of activity labels [20]. More examples can be found in 

the extensive and recent literature reviews about process model quality of Sánchez-González, et al. 

[14] and Moreno-Montes de Oca, et al. [21]. 

 Based on the literature about process model quality, operational support was developed for 

creating high quality process models. In Seven Process Modeling Guidelines (7PMG), Mendling, et al. 

describe seven guidelines of good modeling practice [22]. Examples are “Use one start and one end 

event”, “Avoid OR routing elements”, and “Decompose the model if it has more than 50 elements” 

[22], p. 130. The 7PMG have been complemented and specified with concrete thresholds in [14] and 

[23]. Similarly, in Guidelines of Modeling (GoM), Becker, et al. define a set of guidelines, which 

describe desired properties of a constructed process model, such as correctness, relevance and clarity 



[10]. In [24] and [25] La Rosa, et al. explain how models can be made more understandable by 

optimizing their internal structure and aesthetics respectively. Examples are modularization, block-

structuring, highlighting and pictorial annotation. These guidelines all offer relevant and valuable 

support for modelers, but they have been criticized to be incomplete [21], to be too abstract [21,22] 

and/or to lack empirical evaluation [30,31]. This illustrates the need for a more concrete process 

modeling support that is tailored to its users (i.e., the need for smart process modeling support). 

Inspiration for such smart process modeling support can be drawn from other research domains. 

The field of personalized teaching material, for example, addresses similar goals and has already 

produced interesting knowledge about smart support [32]. In the context of adaptive learning and 

differentiated instruction, the existing literature focuses heavily on computer assisted instruction 

systems (CAI). These systems - often called ‘adaptive hypermedia systems’ - adapt the pace, order and 

representation of information flows to various characteristics of the user [33,34]. They often have a 

layered architecture consisting of a Domain Model (containing the domain ontology and a learning 

goal hierarchy), User Model (containing the user knowledge base and user characteristics) and 

Adaptation Model (containing content selection rules) [35]. One particular example worth mentioning 

is the two-source adaptive learning system of Tseng, et al., which is showed to improve learning 

achievements of high school students [36]. Just as the implementation presented further in this paper, 

their system adapts to the user’s individual learning style and to their learning behavior. In general, it 

can be noticed how most of the presented solutions use similar cognitive concepts as the ones 

discussed in this paper to adapt the support to the users [37,38]. The main difference with the approach 

presented in this paper is that in the learning context the selection of content is not adapted to the user. 

Whereas in a learning context it is the goal that all learners acquire the same knowledge, in a modeling 

context they only need to learn what is necessary to apply their individual optimal modeling strategy. 

2.2 Theoretical background 

In order to address the identified research gap, we started a methodological research line in 2011 

to develop this practical process modeling support method. Fig. 1 shows the different steps and 

resulting publications of this methodological research flow. Based on an extensive collection of 



recorded modeling instances, the research started with the documentation of various process modeling 

patterns and of potential relations with the resulting model quality [39,40]. Research accelerated after 

the development of the PPMChart, a research instrument that visually represents the tool operations of 

a modeler while creating a single process model [41].  

 
Fig. 1. Steps and papers leading to the current research contribution 

Next, three particular cognitive process modeling techniques were identified [40]. Flow-oriented 

process modeling is a technique where the modeler builds the model in consecutive parts that (s)he 

creates, edits and completes before turning to the next one. Aspect-oriented process modeling is a 

technique where the modeler builds the model in multiple iterations, in each going through the whole 

model, but working on only one aspect (or a few related aspects) of the model, such as the creation of 

elements, the structure, the lay-out, etc. Combined process modeling is a technique where the modeler 

combines the previous ones: (s)he creates the model in a flow-oriented manner, occasionally pausing 

to improve a specific aspect of the partial model so far. 

Based on these observations a theory was developed that explains the described relations between 

a user’s modeling approach and the quality of the produced process model: the Structured Process 

Modeling Theory (SPMT) [40]. It is based on the Cognitive Load Theory, which states that cognitive 

overload causes us to make mistakes and to think slower [42]. In order to avoid cognitive overload 

people apply a technique that is called cognitive sequencing [43]. This means that information is 

processed relatively more sequentially instead of simultaneously. According to the SPMT, cognitive 

overload can be minimized during process modeling if the cognitive sequencing techniques are 

applied in a structured way that fits with a modeler’s cognitive preferences [40]. 

The SPMT describes three cognitive preferences of a modeler that determine how well a process 

modeling strategy fits. A person’s learning style cognitive preference describes how (s)he takes in new 
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information. The concept encompasses different dimensions, but we consider only the understanding 

dimension, which makes a distinction between relatively sequential and relatively global learners. 

Sequential learners process information in a linear way, step-by-step, in a steady progression and in 

connected chunks, whereas global learners jump directly to difficult material and progress in intuitive 

leaps [44]. The field dependency cognitive preference indicates how much one relies on details for 

understanding material. Field-dependent people prefer specific information and have a short attention 

span, whereas field-independent people are better at abstract reasoning and can work more focused 

[45]. The need for structure cognitive preference indicates how much people desire structure in new 

material and how they react to missing structure [46]. 

Being an explanatory theory, the SPMT defines potential causes for the observed phenomena, but 

it has no predictive power. In order to progress the theory towards a prescriptive theory, in [47] the 

relative importance of each relation is investigated and the necessary concepts are operationalized. 

More in detail, the theory of [47] proposes to first match a modeler’s learning style with one of the 

identified sequencing techniques: sequential learners should apply the flow-oriented style, global 

learners are matched with the aspect-oriented style and people in between are instructed to apply the 

combined style. Next, the field dependency score is used to provide additional guidelines: field-

dependent modelers should take frequent short breaks, work on smaller parts at once, model in the 

provided order and keep all parts of the model connected during modeling, whereas field-independent 

modelers should not be afraid to deviate from these guidelines. The need for structure influences the 

impact of the above instructions and is thus used to set the right expectations for the modeler. 

In summary, the description of observations in [39,40] forms a descriptive theory, from which we 

developed the explanatory theory SPMT [40], which then evolved to the prescriptive theory proposed 

in [47]. We refer to the work of Gregor to learn more about different types of theory and their 

cumulative development [48]. This paper describes the next research step: based on the knowledge 

expressed in the developed theories, a concrete method and the related smart implementation is 

proposed. Being design science research, which addresses the “how” dimension, this research differs 

from the previous work which is behavioral research about the “what” dimension. In other words, 



whereas the previous studies focus on answering questions in order to build the required knowledge, 

this study finally focuses on solving a problem by the development and the investigation of artefacts 

(based on and extending the previously developed knowledge). 

3 The Structured Process Modeling Method (SPMM) 

This section describes the development of the conceptual method and of the accompanying 

implementation of the prototype operationalizing the method. Based on the preparatory research 

described in the theoretical background section, it may seem obvious how to define the method to 

support process modelers in selecting and training their optimal modeling style. Indeed, the method is 

no more than the execution of the next three steps: (i) measure cognitive preferences, (ii) determine the 

matching process modeling strategy and (iii) train this process modeling strategy. Nevertheless, the 

translation of these steps into executable instructions is not trivial. For the first step, suitable metrics 

for the identified cognitive variables need to be found. The second step is the application of the 

prescriptive theory of [47]. Finally, the third step is the most challenging because an optimal training 

strategy needs to be developed. Whereas the second step is fully prepared by previous research, the 

first and third step needed further investigation which is described in Sections 3.1 and 3.2 respectively. 

3.1 Measure the cognitive profile 

Validated measurements were searched for the cognitive variables of the Structured Process 

Modeling Theory (the three cognitive preferences discussed in Section 2.2). This subsection reports on 

the design choices that were made while selecting and adapting these measurements. 

Concerning the sequential/global learning style, different measurements exist. The Spy Ring 

History and the Smugglers tests of Pask have been investigated thoroughly and these measures are 

deemed to be reliable and valid [49]. However, these tests are complex, demanding and lengthy (about 

31 hours each) [37,49]. Therefore, they are not considered further for this research. Then, two other 

measures were found that are used widely in practice: the Index of Learning Styles by Felder & 

Silverman [44] and the holist/serialist measure by Ford [50]. To the best of our knowledge, the validity 

of these measures is not known. Based on the higher number of citations, the measure of Felder and 



Silverman was selected for use in this work. This survey measures five dimensions of learning style of 

which we are only interested in the sequential/global learner dimension. Therefore, we omitted the 

irrelevant items resulting in an 11-item questionnaire, presented in Appendix A. Application of the 

measurement results in an odd integer score between -11 (global learner) and +11 (sequential learner).  

Traditionally, the field dependency is measured by the Rod-and-Frame Test in which a participant 

has to try to position a rod perfectly vertical while a tilted frame in the background may be hindering 

this task depending on the participant’s field dependency [45]. In order to facilitate the reproduction of 

the measurement on a larger scale, an alternative test on paper was developed: the embedded figures 

test in which the participant needs to find a simple line pattern within a more complex pattern of lines. 

Different variations of this test exist. The Group Embedded Figures Test is the original variant, of 

which validity and reliability have been showed to be strong [51]. Because this test is not widely 

available, we turned to another commonly used variant: the Hidden Figures Test (HFT) [52]. This 

variant is also considered valid and reliable [52]. It is presented in Appendix B. The test results in a 

real score between 0 (field-independent) and 1(field-dependent).  

The need for structure is generally measured with the Personal Need for Structure scale of 

Thomson, et al. [53]. This questionnaire has shown to be valid and reliable [46,53]. It is applied 

according to the instructions of [46], as presented in Appendix C. Note how the variable is based on 

two concepts: desire for structure and reaction to missing structure. Only the first concept has to be 

measured for the next step of the method, but both concepts are required to evaluate the method and its 

implementation. Hence, the full scale is currently used for the measurement, but only the results of the 

relevant sub-concept are included in the first step of the method. After scoring the answers of a test 

subject, an integer score between 1 (low desire/reaction) and 6 (high desire/reaction) is obtained. 

The measurement instruments for the three variables were integrated in a single, digital cognitive 

assessment implementation [54]. This required to make (further) slight adaptations to the measurement 

protocol. The learning style questionnaire was shortened to only include the relevant questions. Recall 

that the sequential versus global distinction used in the method forms only one dimension of learning 



style. Next, instead of presenting two sheets of paper each containing eight assignments for the Hidden 

Figures Test, the digital version presented the assignments one by one. However, the participants were 

allowed to browse through the assignment in both directions (within the normal time limit). Apart 

from the medium, the selection of learning style questions and the consecutiveness of HFT 

assignments, no changes were made to the validated measurements. In theory, these adaptations can 

have influenced their documented validity, but the effect of the changes is assumed to be minimal. 

3.2 Train the selected process modeling strategy 

After having measured the three relevant cognitive variables and having selected an optimal 

process modeling strategy according to the prescriptive theory of [47], the selected modeling strategy 

has to be trained. In order to develop a smart training instrument (i.e., adapting to the cognitive profile 

and to the behavior of the user), next design decisions were made. 

Differentiated. Because different cognitive preferences ask for different process modeling 

strategies, the smart instrument should adapt its contents to the user. 12 different general workflows 

are included in the training instrument. They correspond to the 12 possible combinations of directives. 

Digital. To increase the smart aspect of the instrument, it should not only be differentiated (in this 

case adapting to the user), but also adaptive (adapting to the behavior of the user). Therefore, a digital 

instrument is preferred (i.e., a ‘tutorial’). This way, adaptations can be pre-coded precisely and can 

automatically be performed during the training session. There are a number of additional advantages 

of developing a digital tutorial in the context of this research. In contrast to a lecture-based training, 

there is no confusion about the particular contents of the training, because every detail is documented 

in (the program code of) the tutorial itself. Further, it can be exactly reproduced in multiple situations, 

which is preferred for between-subject studies. Next, with a digital instrument it is feasible to perform 

a simultaneous, yet distributed training session. A supervised environment may be recommended for 

some audiences though, in order to avoid distractions. On the other hand, one major challenge lies 

exactly in the absence of a human administrator who may be able to adapt the training more easily to 

the audience and to unforeseen questions and circumstances. 



Short. The difficulty of changing someone’s behavior should not be underestimated. The perfect 

training instrument leaves room for repetition and rehearsal, multiple iterations of knowledge 

acquisition and knowledge processing, hands-on practice, etc. Therefore, one may expect a multi-day 

intensive training is required to learn the selected process modeling strategy with all its nuances and 

subtleties. Yet, because a digital approach was preferred, the goal was set to develop a short but 

effective intervention. The intended duration was set to the arbitrary value of one hour only. 

Repetitive. During the one-hour training, the user needs to process much information. Hence, it is 

recommended to provide the information in cumulative portions. This formula facilitates the 

continuous repetition and extension of knowledge from different viewpoints, which also suits the 

suggested iterative approach of alternating between knowledge acquisition and knowledge processing. 

At the end of the tutorial, a summary of the key information is presented as a final repetition. 

Interactive. To create and increase adaptation opportunities, the tutorial has to be really 

interactive, which can be achieved by introducing practical exercises and challenging questions. They 

are also ideal to support the knowledge processing phases. However, it was decided to not make use of 

(longer-lasting) practical exercises because of the time limit that was set. This was compensated by 

varying between various types of questions: open and closed, knowledge and insight related, objective 

and subjective, general and specific. 

Feedback. Considerable effort was spent to provide adaptive feedback on the question responses. 

For the multiple-choice questions, targeted feedback was formulated for every possible answer. For 

right answers, a confirmation and explanation message was provided. Wrong answers were selected to 

deal with potential confusions and thus the feedback for these answers tries to solve the confusion. As 

such, 49 different feedback statements were prepared. 

Reflection. Providing feedback helps each user to reflect on the material and her/his individual 

progress. In order to further increase differentiated reflection opportunities, after each part (i.e., 

learning style, field-dependency, desire for structure), the user was asked explicitly to reflect on what 

was learned so far and to formulate a couple of key points and goals for her/his future modeling 



assignments. An overview of these answers was presented again to the user in the concluding section 

where the contents of the tutorial were summarized in two consecutive screens. 

Adaptive. Because of the absence of a human operator and for practical reasons, it is challenging 

to build a digital tutorial of this complexity that adapts to the behavior of the user. Yet, a further 

opportunity for adaptiveness was identified in regulating the amount of information that is offered to 

the user. Some users need more explanation than others, because they do not discover certain nuances 

in the material themselves. Therefore, these nuances are initially not explained. Instead, a number of 

the questions are directed to see if the user understands nuances that were not discussed before. They 

are formulated in such a way that they try to trick the user to answer questions incorrectly, but without 

confusing her/him, after which the feedback can resolve the misconception. This is also mentioned 

explicitly to the user in a pop-up message that appears after three incorrect answers are given in the 

tutorial. The message reassures not to worry about wrong answers, because the questions are there to 

clarify nuances that were not even explained before, which in this way is only presented to whoever 

didn’t discover this her/himself. Furthermore, by letting the users re-answer the multiple-choice 

questions until they find the right answer, they can (un)consciously regulate the amount and pace of 

feedback. However, as soon as the correct answer is given, the feedback for all the (other) wrong 

answers is presented to the user who can then decide if (s)he want to read it or not. 

Tolerant for inventions. Humans are difficult to train. Because of a mixture of conservatism, fit 

with existing knowledge, overconfidence, etc. we tend to invent our own version of the truth [55]. This 

technique of (sometimes too) critical evaluation has helped us in the past to develop a cautious attitude 

towards change. Therefore, cognitive psychology recommends to be tolerant for inventions [56,57]. 

Hence, it was decided to first provide general information for each cognitive variable, including 

material about the part of the spectrum of the variable the user does not belong to. This general 

information is limited to a minimum and receives less attention in the tutorial in terms of explanation 

and rehearsal than the relevant, more specific topics. This way, if a user wants to interpret information 

differently, (s)he has the background knowledge to do so in a proper context, which should minimize 

the chance for problematic adaptations. 



The resulting training instrument is a digital tutorial that consists of 30 consecutive information 

screens: a general introduction, 14 screens with information about learning style and the related 

modeling styles (including exercises and quizzes), 12 screens about field dependency, need for 

structure and the related guidelines (including exercises and quizzes), and 3 concluding screens with 

summaries. Fig. 2 shows example screens of the tutorial [54]. More screenshots can be found in the 

online documentation at http://www.janclaes.info/papers/SPMM. 

  

  
Fig. 2. Example screens from the training instrument (top left: information screen, top right: comprehension 
question, bottom left: comprehension exercise, bottom right: multiple-choice question showing all feedback) 

4 Experimental evaluation of the method and its implementation 

In order to evaluate both the method and the supporting implementation, a lab experiment was 

performed1. This section describes the tasks (Section 4.1), the participants (Section 4.2), the practical 

set-up (Section 4.3), the measurements (Section 4.4) and the results (Section 4.5) of the experiment. 

                                                
1 At ‘http://www.janclaes.info/experiments > 2015GENT’ more detailed information about the experiment can be found, as 

well as zip files containing the constructed models. 



4.1 Tasks 

The experiment was performed in three parts. In each part of the experiment, the participants had 

to perform a different set of tasks (see Fig. 3). Except for the Hidden Figures Test and the span tests 

(see further), there was no task completion limit. After each part of the experiment, a window opened 

where the user was encouraged to provide feedback on the performed tasks.  

 
Fig. 3. Overview of the experiment tasks 

The first part of the experiment consists of six cognitive tests and a questionnaire about prior 

knowledge and demographics. The cognitive tests are Hidden Figures Test (field dependency); 

Operation, Counting and Reading Span tests (working memory capacity as a control variable); 

Learning Styles scale (learning style); and Personal Need for Structure Scale (desire for structure). 

In the second part of the experiment, tasks were used to set a benchmark for every participant in 

order to be able to compare the modeling results before and after the treatment. The modelers first had 

to go through the modeling editor tutorial explaining all the features of the simple, BPMN-inspired 

editor of the experimental environment (see further). Each feature is explained with a description of its 

use and a short instructional video. In order to assure that the user understood the feature sufficiently, 

the user had to mimic the example correctly before the tutorial continued. Then, they had to perform 
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the first modeling task about a visa control process as a practice run, followed by the benchmark 

modeling task, where the modeler got a case description of a defaulter handling case.  

Throughout the experimental flow of tasks, the participants had to create three different process 

models (i.e., two in the second part and one in the third part). For each of these modeling assignments 

they were instructed to create a high quality process model based on a textual description of a case, 

which they received on paper. It was not specified what was meant with a ‘high quality’ model. There 

was no time limit, but the vast majority of the participants completed each modeling assignment 

within one hour. Each time, a short post-modeling survey was presented afterwards about task 

completion, problem occurrences and perceived cognitive load during modeling. 

The third part of the experiment consists of a treatment (except for the control group) and the 

experimental modeling task about a mortgage request process. The treatment task was to go through 

the training tutorial described in Section 3.2, which automatically selected the appropriate version 

based on the participant’s cognitive preferences that were measured in the first part of the experiment. 

For educational reasons, the participants in the control group also retrieved the treatment, but only 

after all experiment data was collected (see Section 4.3). 

4.2 Participants 

Master students were selected as ideal study subjects. In contrast to younger students, they are 

believed to have more mature cognitive reasoning skills and in contrast to practitioners they are a 

relatively homogeneous group with similar prior knowledge. The former is important for the external 

validity of the study, whereas the latter relates to the internal validity of comparison between subjects. 

As prior knowledge is not a variable of the SPMT, experienced process modeling practitioners are not 

required as study subjects. Two additional benefits of our choice of participants are that their point of 

cognitive overload may be easier to reach and that they did not suffer from the Expertise Reversal 

Effect (which was confirmed by their feedback, see further). This is an initial decrease in effectiveness 

and efficiency when experts are retrained to use another method or tool than they are used to [58]. A 

more elaborate discussion of the choice to work with master students can be found in [59], p. 141. 



In total, 146 master students of the Business Engineering program at Ghent University (Belgium) 

participated in the experiment. It took place in the context of a master course on Business Process 

Management. The sessions were planned strategically after the students learned the general principles 

of process modeling and the syntax of the BPMN language, but before they learned any process 

modeling method. About two-thirds of the participants are male (62%). The participant’s ages range 

from 21 to 25. About 97% of the participants indicated to have no problems reading and understanding 

English, although for 99% the mother tongue is Dutch. The answers on dedicated questions confirmed 

the lack of expertise about process modeling in BPMN and approximated a normal distribution for the 

questions about the amount of prior knowledge of the modeling domain of the three cases. For 21 

students, various kinds of technical or practical problems occurred (e.g., absence, tool and data errors) 

and they were excluded from the analysis. Excluding these cases, the treatment group consisted of 98 

students, whereas the control group contained 27 students. The group allocation was random. 

4.3 Practical experiment set-up 

The experiment was supported by the Cheetah Experimental Platform (CEP), which is an open 

source framework for process modeling research [60]. It was selected because of its features of task 

flow configuration, detailed modeling operation recording and modeling replay functionality. The 

implementations proposed in this paper (i.e., the cognitive profile measurements and the tutorial, 

described in Section 3) could easily be integrated in the tool as new kinds of tasks in the experiment 

flow. Also the middle step of the method (i.e., the selection of a modeling strategy suitable to the 

cognitive profile) was integrated in the software by automatically selecting the right tutorial variant. 

The first part of the experiment, namely the cognitive testing, had to be done at home. The tasks of 

the first part were introduced in a lecture before the first part took place. In this introduction, the 

students were instructed to make sure that they would not be distracted (e.g., turn off communication 

devices and programs, put a ‘do not disturb’ note on the door). It was assumed that they were 

intrinsically motivated not to cheat, because of their interest in their own cognitive profile scores. 

Nevertheless, limited cheat detection was implemented: extremely bad scores were flagged, the time to 

finish each task was measured and the time the tool was not in focus during the tasks was recorded. 



The participants were warned about cheat detection mechanisms, without giving any details though. 

No other issues were detected than the rare disruptions that were reported in the feedback window. 

Because of the estimated severity, the results of two participants were thus excluded from the analysis. 

The participants had one week to perform the tasks of the first part. They could make each task 

separately and in any order as long as the answers were submitted in time. Per task, the tool compiled 

a single zip file with the recorded data. Before closing, it provided clear instructions on how to submit 

the file correctly to the university’s digital learning environment. The whole set-up of the first part was 

pre-tested in a pseudo-experiment in Eindhoven with 119 students. No technical problems occurred, 

except for one student claiming to have had submission problems, which could not be verified. Nine 

students voluntarily participated in post mortem interviews. They confirmed that the instructions were 

clear and that they recognized themselves in the results of the cognitive tests (see further). 

The second and third part of the experiment took place in a computer room of Ghent University. 

There was one week between these two parts. During this week, it was no problem if the students 

would talk to each other about the experiment, because the distinction between treatment and control 

group was only made in part three. For each part, there were two consecutive but further identical 

sessions to which the students were randomly appointed. Because the whole experimental task flow 

(including the treatment) was fully automated in the experimental tool, the control group participants 

could be mixed with the treatment group. As such there was no difference between the experiment 

circumstances of both groups. In order to minimize distractions, disturbances and influences, both 

parts and both sessions of each part were closely monitored as if it was an exam session. Finally, in the 

first lecture after the experiment, the students received collective feedback on the purpose of the 

experiment and they could download detailed feedback about their individual results from the 

university’s digital learning environment. 

Participation to the experiment was voluntary. By participating the student agreed that data about 

their cognitive profile and modeling behavior would be collected, together with their answers to the 

questions of the surveys. The students were motivated to participate by receiving a bonus point for the 



BPM course. Further, they were also stimulated to perform the best possible, because all participants 

had a different chance to win an iPhone, depending on how well they followed the instructions. Each 

student started with five chances, but could lose a chance when a quality issue was detected. The five 

quality issues that were monitored are: missing or late submissions, cheat detection, poor answers on 

the open questions, little effort to adapt modeling strategy as instructed, other problems. The choice to 

spend the budget to a single grand prize instead of multiple smaller prizes was made after questioning 

a dozen students not enrolled in the course about what would motivate them more. Further, the 

participants were told they could stop at any point in time. Students that were not able to participate 

could earn the bonus point with a replacement task. Furthermore, the students of the control group got 

the treatment at the end of the experiment. This way, they also learned about their optimal process 

modeling strategy, but only after their experimental data was collected. 

4.4 Measurements 

For several variables a measure needed to be selected from different alternatives, to be adapted to 

our needs or to be invented, because a standardized and validated measure does not exist. Except for 

the described measures for the three cognitive variables used in the method (see Section 3.1), other 

variables were calculated to evaluate the method and its implementation. Their measurement is 

described in an appendix, because it is not the goal of this paper to propose new metrics (see Appendix 

D). Construct validity is not warranted because the validity and reliability of the measurements and 

derived metrics are not known. Also, no effort was made to further study or improve their validity. 

Nevertheless, it is assumed that imperfect measures rather have a negative impact on the size and 

significance of the tested relations. Therefore, the results described hereafter may be too negative.  

4.5 Results 

This subsection discusses the analysis techniques and results for the evaluation of the treatment 

adoption (Section 4.5.1), the treatment effect (Section 4.5.2) and the user perceptions (Section 4.5.3). 



4.5.1 Treatment adoption 

First, the treatment adoption was investigated. Did the participants in the treatment group change 

their behavior as instructed by their individualized tutorial? In order to determine this, the results of 

the benchmark case were compared to the results of the experimental case with the cognitive profile of 

the modeler in mind and these effects were then compared between treatment and control group (i.e., 

combination of within-subject and between-subjects comparison). The results are shown in Fig. 4.  

 
Fig. 4. Results for treatment adoption 

The following observations can be made. 

§ In the control group it can be observed how some participants remained in their category (see 

numbers near horizontal lines), whereas others changed their sequencing approach. Perhaps these 

participants may have preferred another approach depending on the case. 

§ In the control group, regardless the various changes of category, it can also be observed how the 

distribution over categories is relatively constant. 

§ In the treatment group however, there was a bigger difference: the number of fitting techniques 

increased from 18% to 41%, whereas the misfitting techniques decreased from 49% to 24%.  

§ Not every participant improved after the treatment. Some participants remained in their category 

(see numbers near horizontal lines) or even moved to a worse one (see numbers near red lines). 

§ Because we do not know for sure how well the participants in the ‘Unknown’ category 

performed, it is interesting to see how the results change when they are left out of the analysis. In 

the control group the number of fitting approaches then decreases from 5/16 (31%) to 3/16 (19%), 
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whereas the misfitting approaches increase from 11/16 (69%) to 13/16 (81%). In contrast, in the 

treatment group the fitting approaches increase from 14/44 (32%) to 29/44 (65%), whereas the 

misfitting approaches decrease from 30/44 (68%) to 15/44 (34%). 

Because of the relatively low size of participants in each group and category, it is difficult to use 

these numbers for generalization, but it can still be concluded that they indicate a positive treatment 

adoption. The method appears to be successful in directing the participants towards the optimal 

sequencing technique. 

4.5.2 Treatment effect 

In the previous subsection it was established that the treatment increases the fit of the applied 

sequencing technique, at least for a considerable part of the participants. According to the SPMT this 

should have a positive effect on cognitive (over)load and thus also on process modeling effectiveness 

(i.e., number of errors) and efficiency (i.e., time and effort). The degree of sequencing is expected to 

have both a positive and a negative effect on the cognitive load [40] and thus it depends on which of 

both effects is bigger to determine the net effect. Next, the structuredness of sequencing and the fit of 

the overall modeling strategy are expected to have only beneficial effects on cognitive load (more 

structuredness and more fit leading to less cognitive load) [40]. Therefore, in this subsection the focus 

is on the relation between the applied overall process modeling strategy and the cognitive load and 

resulting modeling efficacy. The presented numbers below are from the experimental case, but similar 

results were obtained for the benchmark case. 

The results of the statistical study on the relations with cognitive load were inconclusive. No 

significant relation was found between the degree, structuredness and fit of modeling and the overall 

cognitive load. Moreover, the more fine-grained dual-task metric for cognitive load could not be used, 

because of a too small variation of the values. Because the one metric for cognitive load is too general 

(but validated) and the other metric is not validated (but more precise), these problems were 

anticipated and next to cognitive load four additional variables were used that measure modeling 

effectiveness and efficiency (recall that cognitive overload causes an increase in mistakes and a 



decrease in speed, see Section 2.2). Therefore, the syntactic and semantic quality of the produced 

process model were calculated, as well as the overall modeling time and effort (see Appendix D for an 

overview of the calculated metrics). The statistical analyses with these four dependent variables 

revealed interesting results. They are discussed below. 

A. Bivariate correlations 

First, in order to investigate the relations between each pair of variables separately, simple 

bivariate correlations were calculated. The independent variables are degree, structuredness and fit and 

the dependent variables are syntactic errors, syntactic error types, semantic errors, semantic error 

types, time and effort. The results are presented in Table 1.  

Table 1. Bivariate correlations: two-tailed spearman’s rho 

N=122 syntactic 
errors 

syntactic 
error types 

semantic 
errors 

semantic 
error types 

modeling 
time 

modeling 
effort 

degree -0,073 
(p=0,424) 

-0,074 
(p=0,419) 

** -0,239 
(p=0,008) 

* -0,225 
(p=0,013) 

** 0,295 
(p=0,001) 

** 0,710 
(p=0,000) 

structuredness -0,174 
(p=0,055) 

-0,164 
(p=0,071) 

0,175 
(p=0,053) 

0,018 
(p=0,842) 

** -0,363 
(p=0,000) 

** -0,448 
(p=0,000) 

fit -0,124 
(p=0,174) 

-0,111 
(p=0,222) 

-0,083 
(p=0,366) 

-0,109 
(p=0,232) 

-0,024 
(p=0,794) 

* -0,226 
(p=0,012) 

The following observations can be made. 

§ The data indicates that the net effect of the degree of sequencing on modeling quality is a 

negative, which is beneficial for the modeler (more sequencing means less errors). Further, an 

increasing degree of sequencing relates to an increasing modeling time, which also makes sense 

(the more pauses, the more time). More surprising is the positive effect on effort. We find it hard 

to explain this observation, although it does not contradict with the SPMT. Perhaps the direction 

of causality is reversed: modelers that used more operations for modeling (=’effort’), take more 

time and have a higher number of pauses (=‘degree’) under the definitions of our metrics? 

§ For structuredness there were only significant relations with time and effort. The more structured, 

the less time and effort. The effect on modeling quality is mixed: a negative effect on syntactic 

errors and a positive on semantic errors. These results are not significant though. 

§ A similar observation can be made for fit, albeit that only the relation with effort is significant. 

Note how the signs are in the expected direction: the more fit, the less errors, time and effort. 



§ The lower in Table 1, the less significant the results. This is because the lower metrics are less 

accurate and the lower independent variables are included in the higher ones. 

Summarized, all the significant findings support the claim, but a concern can be raised about the 

relation between degree and effort which accords to the SPMT theory, but to us seems contra-intuitive.  

B. Stepwise linear regression 

Next, the aggregated effect of the three independent variables was investigated with a stepwise 

linear regression. Such a regression can reveal if a combination of the three modeling strategy factors 

could be used to model the variation in the dependent variables. The technique warrants significant 

results (p-values less than 0,05). The results are presented in Table 2. At the bottom, the R2 value and 

the p-value of the complete model are given. The R2 value indicates how much of the variation in the 

dependent variable can be explained with the variation in the independent variables, according to the 

presented model. The table can be read as follows (consider the last column): 56,60% of the variation 

in modeling effort can be explained by the variation in the degree and structuredness of the applied 

technique with the formula effort = 143,155 + (190,559xDegree) + (-8,553xStructuredness).  

Table 2. Stepwise linear regression with three independent variables: unstandardized beta coefficients 

 syntactic 
errors 

syntactic 
error types 

semantic 
errors 

semantic 
error types 

modeling 
time 

modeling 
effort 

constant 2,875 
(p=0,000) 

1,511 
(p=0,000) 

7,369 
(p=0,000) 

3,321 
(p=0,000) 

42,636 
(p=0,000) 

143,155 
(p=0,000) 

degree - - -2,908 
(p=0,010) 

-1,119 
(p=0,034) 

10,067 
(p=0,014) 

190,559 
(p=0,000) 

structuredness -0,508 
(p=0,002) 

-0,2 
(p=0,016) 

- - -2,023 
(p=0,003) 

-8,553 
(p=0,005) 

fit - - -2,182 
(p=0,038) 

- - - 

R2 7,90% 
(p=0,002) 

4,70% 
(p=0,016) 

7,60% 
(p=0,009) 

3,70% 
(p=0,034) 

15,20% 
(p=0,000) 

56,60% 
(p=0,000) 

The following observations can be made.  

§ All the signs are as expected. The higher the degree, structuredness and fit, the less errors are 

made. The higher the degree of sequencing, the more time and effort it takes. The higher the 

structuredness of sequencing, the less time and effort it takes. Note how the effect between degree 

and effort is again positive (in combination with the other variables in the regression model). 



§ A varying subset of only these three independent variables (i.e., degree, structuredness and fit) 

account for 7,5% to 8% of the variation in errors, about 15% of the variation in time and more 

than 55% of the variation in effort.  

These are considered good results. The outcomes support the SPMT and they also showcase the 

usefulness of the method by demonstrating the effect of applying an optimal process modeling strategy 

on the modeling effectiveness and efficiency. 

C. Extended set of independent variables 

Further, with the aim to improve the explanatory power of the regression models, the set of 

independent variables was extended with the cognitive preference variables (i.e., learning style, field 

dependency and need for structure) to examine if they could also have a direct effect on modeling 

efficacy. Moreover, also the dependent variables themselves were considered as independent for the 

other dependent variables in order to reveal interaction effects. The results are presented in Table 3.  

Table 3. Stepwise linear regression with multiple independent variables: unstandardized beta coefficients 

 syntactic 
errors 

syntactic 
error types 

semantic 
errors 

semantic 
error types 

modeling 
time 

modeling 
effort 

constant 2,033 
(p=0,000) 

1,126 
(p=0,000) 

9,072 
(p=0,000) 

3,597 
(p=0,000) 

22,872 
(p=0,000) 

163,511 
(p=0,000) 

degree - - - - -10,43 
(p=0,040) 

177,224 
(p=0,000) 

structuredness -0,518 
(p=0,001) 

-0,205 
(p=0,012) 

- - - -9,027 
(p=0,003) 

field 
dependency 

2,274 
(p=0,004) 

1,04 
(p=0,011) 

- 0,978 
(p=0,026) 

- -32,809 
(p=0,030) 

time - - -0,099 
(p=0,000) 

-0,028 
(p=0,013) 

- - 

effort - - - - 0,117 
(p=0,000) 

- 

R2 14,10% 
(p=0,000) 

9,70% 
(p=0,002) 

12,80% 
(p=0,000) 

10,40% 
(p=0,001) 

32,70% 
(p=0,000) 

58,40% 
(p=0,000) 

The following observations can be made. 

§ All the models got more accurate (i.e., increased R2 values). 

§ About 13% of the variation in semantic errors can be related to only the variation in time. This is 

interesting. Apparently, the more time was utilized, the less semantic errors were made. 

§ Also, the variation in time can for about 33% be explained by the variation in degree of 

sequencing and effort.  



Combining these latter two observations, it may be the case that more effort leads to more time, 

which in turn leads to less errors. The idea arises that some modelers may have used the extra time and 

effort to correct semantic mistakes. There may be a tradeoff between time/effort and (the semantic 

aspect of) quality. This is a sensible hypothesis because it can be explained as follows. When the 

modeler is overloaded, mistakes are made. Later, when the cognitive load drops to manageable 

proportions, the overload disappears and the modeler can use the freed capacity to correct the 

mistakes. Therefore, this hypothesis is interesting and will be tested in future research. 

4.5.3 Perceived usefulness and ease of use 

Besides the evaluation of treatment adoption (did modelers change their behavior after the limited 

intervention) and the treatment effect (did applying a more fitting process modeling technique 

decrease the number of modeling mistakes, time and effort), we are also interested in the user 

perceptions to get a preliminary idea about the actual use of the method and implementation. Two 

sources were used to assess the perceived usefulness and ease of use: the feedback that was collected 

in the tool and answers to interview questions. The applied interviewing protocol is presented in 

Appendix H. This way, an extensive set of 495 feedback comments were collected. The conclusions 

are presented below. They are illustrated with concrete quotes in Appendix I. 

A. Perceptions about the automation of the cognitive tests 

First, the feedback on the cognitive tests was examined. Most participants seem to have enjoyed to 

perform the cognitive tests. There were no negative motivational comments other than that the tests 

were hard and required a lot of concentration. The vast majority of technical comments indicated that 

there were no interruptions or technical problems. Most of the rare disruptions seem to have been 

minimal and were quickly resolved. However, for some students it was not clear how much the 

disturbance has influenced the results and they were left out from further analysis. The content of the 

implementation was perceived as clear, especially after the demo exercise. All in all, it is concluded 

that the automation of the cognitive tests and the unsupervised setting was perceived as fairly good. 



B. Perceptions about the training instrument 

There were no surprising comments about the technical aspects of the training instrument. When a 

video was streamed over the internet or when the tool was sending much information to our database, 

the tool was rather slow. The students were warned in advance for this and there were no problematic 

reactions about this issue. In contrast, a high number of positive and surprised reactions were received. 

A number of participants recognized aspects explained by the tutorial, whereas others discovered new 

insights about their own personality. Although some participants were surprised about what they 

learned, nobody objected to the provided knowledge and guidelines in their feedback. Only one 

comment was received about some unclear explanation. No other issues were mentioned or detected. 

C. Perceptions about the results of the method 

The majority of the participants were optimistic about the overall method. They indicated to have 

the impression it has helped them to improve their modeling. At the negative side, a number of 

participants complained about the complexity of the assignment, especially towards the end. This is 

normal because cognitive load increases during modeling. In fact, they were probably experiencing 

cognitive overload. This would mean that the method did not help to implement a strategy that avoids 

overload completely (which was also never assumed). There were two comments about already 

applying the proposed modeling technique. Indeed, some people automatically apply the best suitable 

strategy and will not experience any improvement with the developed method. 

5 Discussion 

The research discussed in this paper can potentially have a direct impact on process modeling 

practice. Although further investigation is required of different aspects of the developed method, the 

results are promising and we see no reason why the method cannot be already applied in real-world 

application situations. As such, it can help novice modelers to become aware of their strengths and 

weaknesses as a modeler and to learn a modeling strategy that is good for them. Unless there is reason 

to believe that the results presented here apply only to modeling novices, the method can also be 

applied by experienced practitioners. This way, the practical value of the method is that it can improve 



both the training and the application of process modeling. This is relevant as there is clearly a need for 

more smart business process management and modeling tools (see Section 2.1). 

There is also a potential impact on research. The automation of the psychological measurements 

that we propose in this paper may simplify various studies. The contribution is both technical and 

conceptual. The program code (i.e. technical contribution) is accompanied by directions about 

motivation, cheat detection, disturbance avoidance and lack of supervision (i.e., conceptual 

contribution). Further, the research demonstrates how a sophisticated training instrument can 

successfully replace certain more extensive and thus more labor-intensive treatments, which is also 

beneficial for the reproducibility, the objectiveness of the description and the spread of the research. 

Nevertheless, there are a number of limitations to the research in its current form. Because of the 

extensive size of the project, it was not feasible and out of scope to perfect every detail of the research. 

First, validated measurements are lacking for the concepts of sequencing degree, sequencing 

structuredness, overall modeling strategy fit, cognitive overload, instantaneous cognitive load, 

cognitive syntactic errors and cognitive semantic errors. An attempt was made to use the best available 

measurements and adapt them as little as possible in order to be confident in the results. However, the 

construct validity of these metrics can currently not be guaranteed. Nevertheless, the results obtained 

with these metrics were critically evaluated and still provide promising indications that should not be 

dedicated to pure coincidence. 

Second, for the reasons mentioned in Section 4.2 and 4.3 the research was performed as a lab 

experiment with an artificial set-up. In other words, the ecological validity is not known. In a training 

context, the participants may receive more guidance of a supporting lecturer and will experience a 

lower mental burn due to the other experimental tasks when utilizing the method or training 

instrument for training a modeling strategy. In a modeling environment, the user is a more experienced 

practitioner and additional effects such as tool habituation, modeling conventions, managerial or 

operational influences can distort the results. A more realistic environment and conditions should be 

implemented in order to study the effects in their proper context. 



6 Conclusion 

As mentioned in the introduction, more and more process models are constructed in organizations. 

At the same time, the quality of process models is low in many cases. Therefore, a smart method was 

developed to assist modelers to discover and train a process modeling strategy that helps them to 

construct a high-quality process model. The focus is not on lacking or imperfect prior knowledge 

about the process or about modeling, which can be avoided with targeted training in order to complete 

the missing knowledge. On the contrary, the focus is on issues with the cognitive processing of 

available knowledge. By suggesting and supporting the implementation of an optimal approach, the 

method helps the modeler in her/his cognitive task of translating the mental image about the process in 

a syntactic and semantic correct formal process representation (i.e., the process model). 

The developed method consists of three steps: (i) measure the cognitive profile of the modeler, (ii) 

determine the best fitting process modeling strategy, and (iii) train this strategy. The three steps are 

supported in a digital implementation that can be run autonomously by the user. To achieve this, an 

automated version of existing cognitive measurements was developed, as well as a digital, 

differentiated and adaptive training instrument.  

The artefacts (i.e., the conceptual method and its supporting implementation) were jointly 

evaluated with a large-scale laboratory experiment. The experiment was pretested with 119 master 

students in Eindhoven and ran in the context of a Business Process Management course with 149 

master student participants in Ghent. Before, during and after the experiment, various variables were 

measured quantitatively and/or qualitatively. The results are merely positive. They indicate that (i) the 

training instrument succeeded well in changing the participant’s modeling behavior as intended with a 

rather limited intervention, (ii) the application of the method helps improving the efficiency of 

modeling, (iii) the method did not directly improve the effectiveness of modeling, but a trade-off 

between efficiency and effectiveness is hypothesized, (iv) the participants perceived the method and 

its tool support as useful. 



In future research, we will investigate if and how the method can be made even more smart. For 

example, it can be interesting to monitor the modeler while modeling and to occasionally interrupt 

with feedback and adjustment messages. A number of the measures that are currently used only to 

evaluate the method will than probably become part of the method. Or, the research can be connected 

to existing work on ontological process modeling support (see for example the overview of [61] or our 

work on smart ontology-supported conceptual modeling [62]). 

Future research will also target the limitations discussed in Section 5. We will further investigate 

how a distinction between knowledge and cognition related quality issues can be made. As possible 

approach, during an individual feedback session the modeler and researcher can run through the 

modeling replay and together they can determine the cause for each error. Also, because it cannot be 

easily measured when cognitive overload occurs, the measures for cognitive load need to be further 

explored and perfected. Having an instantaneous measure of cognitive load will allow for a more fine-

grained analysis. These metrics can also support the investigation of the formulated hypothesis that 

there is a trade-off between modeling efficiency and modeling effectiveness. 

Next, it is currently not clear if and to what extent the results of this research apply in various 

other settings. Therefore, a selection of different cases will be examined further. We will investigate 

how the method performs for modelers that operate in a context of other languages (including the full 

BPMN modeling language), that use other modeling tools, and for other users (e.g., modeling 

practitioners), other modeling cases, etc. Then, the scope of the research will be further expanded by 

including process model understanding by model readers or by people handling various other similar 

problem solving assignments (such as conceptual modeling, programming or text writing). 
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Appendix A. Learning style – Questionnaire 

The following questionnaire is used to make a distinction between sequential and global learners. 

It is adapted from http://www.engr.ncsu.edu/learningstyles/ilsweb.html: 33 questions were left out, 

because they are not related to the sequential/global learner distinction and this significantly decreases 

the mental effort for the respondent to fill out the questionnaire. It is assumed that this has a negligible 

effect on the validity of the measurement scale. The resulting score is an odd value between -11 

(global learner) and +11 (sequential learner) and is calculated as the number of times the respondent 

answered (a) minus the number of answers (b). 

1. I tend to 
(a) understand details of a subject but may be fuzzy about its overall structure. 
(b) understand the overall structure but may be fuzzy about details. 

2. Once I understand 
(a) all the parts, I understand the whole thing. 
(b) the whole thing, I see how the parts fit. 

3. When I solve math problems 
(a) I usually work my way to the solutions one step at a time. 
(b) I often just see the solutions but then have to struggle to figure out the steps to get to them. 

4. When I'm analyzing a story or a novel 
(a) I think of the incidents and try to put them together to figure out the themes. 
(b) I just know what the themes are when I finish reading and then I have to go back and find the 

incidents that demonstrate them. 
5. When I start a homework problem, I am more likely to 

(a) start working on the solution immediately. 
(b) try to fully understand the problem first. 

6. It is more important to me that an instructor 
(a) lay out the material in clear sequential steps. 
(b) give me an overall picture and relate the material to other subjects. 

7. I learn 
(a) at a fairly regular pace. If I study hard, I'll "get it." 
(b) in fits and starts. I'll be totally confused and then suddenly it all "clicks." 

8. When considering a body of information, I am more likely to 
(a) focus on details and miss the big picture. 
(b) try to understand the big picture before getting into the details. 

9. When writing a paper, I am more likely to 
(a) work on (think about or write) the beginning of the paper and progress forward. 
(b) work on (think about or write) different parts of the paper and then order them. 

10. Some teachers start their lectures with an outline of what they will cover. Such outlines are 
(a) somewhat helpful to me. 
(b) very helpful to me. 

11. When solving problems in a group, I would be more likely to 
(a) think of the steps in the solution process. 
(b) think of possible consequences or applications of the solution in a wide range of areas. 

  



Appendix B. Field dependency – Hidden Figures Test 

The Hidden Figures Test measures how well one can find a simple line figure in a more complex 

patterns of lines. The user has to select which one of the five presented figures can be found in the 

pattern (without resizing or rotating it). An example is shown in Fig. B1. As prescribed by [52], the 

user gets 12 minutes to solve as many of the 16 provided assignments as possible. The field 

dependency score is the average of two runs with different assignments and is calculated as the total 

number of wrong and empty answers, expressed as a percentage. 

 Fig. B1. Example of a Hidden Figures Test assignment. 

  



Appendix C. Need for structure – Questionnaire  

The following questionnaire is used to measure the need for structure. It follows the directives of 

Neuberg, et. al [46]. For each statement the respondent needs to indicate if (s)he (i) strongly agrees, 

(ii) moderately agrees, (iii) slightly agrees, (iv) slightly disagrees, (v) moderately disagrees, (vi) 

strongly disagrees (i.e., 6-point Likert scale). The answers on the statements with a minus sign at the 

end, need to be reversed. Further, it is also indicated to which factor (nfs-1 or nfs-2) the statement 

belongs. Nfs-1 is the desire for structure, whereas nfs-2 is the reaction to missing structure. Whereas 

both factors are used to assess the fit of an applied process modeling factor (i.e., for the evaluation of 

the method), only the desire for structure component is required to perform the steps of the method. 

In accordance to [46], item 5 is not used. Yet, it is still included in the questionnaire, because the 

effect of dropping the question is not documented. The score is the average value of the answer on 

each statement, which is an integer number ranging from 1 (strongly agree) to 6 (strongly disagree). 

1. It upsets me to go into a situation without knowing what I can expect from it. (-, nfs-2) 

2. I'm not bothered by things that interrupt my daily routine. (+, nfs-2) 

3. I enjoy being spontaneous. (+, nfs-1) 

4. I find that a well-ordered life with regular hours makes my life boring. (+, nfs-1) 

5. I find that a consistent routine enables me to enjoy life more. (-, /) 

6. I enjoy having a clear and structured mode of life. (-, nfs-1) 

7. I like to have a place for everything and everything in its place. (-, nfs-2) 

8. I don't like situations that are uncertain. (-, nfs-2) 

9. I hate to change my plans at the last minute. (-, nfs-2) 

10. I hate to be with people who are unpredictable. (-, nfs-1) 

11. I enjoy the excitement of being in unpredictable situations. (+, nfs-2) 

12. I become uncomfortable when the rules in a situation are not clear. (-, nfs-2) 

  



Appendix D. Measurements for the variables of the SPMT 

Fig. D.1. presents an overview of the measurements that were utilized to evaluate the contributions 

of this paper (see Section 4.4 in the paper). Except for the 3 variables that are already calculated for 

the execution of the method (see Appendices A, B and C), 13 more variables were measured to 

support the evaluation of the method. Their measures are described below. 

 
Fig. D.1. Overview of the measurements and their relation 

Applied cognitive sequencing technique. For each produced process model a panel of two 

master and one PhD student independently and in a different order determined which process 

modeling sequencing technique was applied. Five categories were discovered in previous observations 

[40,41]: Besides ‘flow-oriented’, ‘aspect-oriented’ and ‘combined process modeling’ (see Section 2.2), 

a category of clearly ‘chaotic’ modeling was identified and the remainder of the modeling instances 

was marked ‘unclassified’. The rater’s raw agreement was 57,18%. Because inexperienced modelers 

rarely apply a sequencing technique very consistently, this agreement value can be considered 

acceptable. Moreover, for 78% of the modeling instances at least two of the three raters agreed. 

Cognitive sequencing technique fit. Then, it was determined if the applied process modeling 

sequencing technique formed a clear fit, a clear misfit or an unknown fit with the learning style of the 

modeler. The unknown fit happens for the cases of the category ‘unclassified’, which consist of those 

that were rated ‘unclassified’ and those where less than two raters agreed on their classification. The 
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clear misfit was the result of being classified as ‘chaotic’ or of not according to the rules described in 

the prescriptive derivate of the SPMT (see Section 2.2).  

Degree and structuredness of sequencing, fit of the overall process modeling strategy. In 

order to quantify this degree, structuredness and fit, based on the cognitive literature presented in [47], 

a set of sequencing and modeling dimensions was first defined.  

§ Progress quantifies the modeling pace and is defined as the number of operations per 3 minutes.  

§ Distance quantifies the locality of modeling and is defined as the lowest number of elements 

between the elements upon which two consecutive operations act (following the paths as defined 

by nodes connected with arcs, regardless the direction of the arcs, including paths through deleted 

elements if (and only if) necessary, set to the total number of elements if no path between the 

elements ever existed). 

§ Overlap quantifies the parallelism of modeling at the time t of a certain recorded operation. It is 

measured at the time of each operation in the model creation. On that timestamp, the overlap is 

calculated by looking to all operations of each model element, element per element. For each 

element, the minimum is taken of the amount of operations before and after the timestamp under 

consideration. The overlap at a certain time is thus the sum of these minima per model element.  

§ Pauses quantifies the regularity of modeling and is defined as the number of occurrences where 

the duration between two consecutive modeling operations is bigger than the mean plus the 

standard deviation of durations between all consecutive operations. 

§ Difference quantifies the order accordance to the provided case description and is defined as the 

number of alterations to the modeling operations order to make the order of modeling depth-first 

for XOR-splits and breadth first for AND-splits (which is the order of the case description, only 

for elements that are in the final model). 

§ Consistency is defined as the number of raters that agreed on the applied cognitive sequencing 

technique as described above. 

§ Alterations (of existing elements in the model) is defined as the number of deletion and move 

operations on any element plus the number of reconnect edge operations. 



The degree of cognitive sequencing is thus quantified with the Pauses metric. According to the 

assumption that relatively more structured approaches are easier to recognize, the structuredness of the 

sequencing is approximated by the Consistency metric. The fit of the overall process modeling 

strategy is derived from the properties related in literature to the cognitive variables (summarized in 

[47]). The exact formula is presented separately in Appendix E, but the rational can be found below. 

§ Sequential learners (in contrast to global learners) should have a steady modeling pace (low 

standard deviation of Progress), model in connected chunks (low average and maximum 

Distance) and model in consecutive blocks (low average and maximum Overlap). 

§ Field-dependent persons (in contrast to field-independent persons) have a short attention span  

(high amount of Pauses), should model in connected chunks (low average and maximum 

Distance), and model in the provided order (low Difference). 

§ Persons with high desire for structure (in contrast to low desire for structure) should apply simple 

structure-driven processing (high Consistency), be confident in their decisions (low amount of 

Alterations and low average and maximum Overlap). 

Modeling efficacy. In the first place, the modeling efficacy is related to cognitive overload as is 

proposed by the SPMT. Cognitive overload occurs when the capacity of the working memory does not 

suffice for handling the necessary information to execute a task. Unfortunately, there are no direct 

measures for cognitive overload defined in literature. Therefore, cognitive load measures were used as 

an indicator for cognitive overload. The higher the load, the higher the chance for overload.  

Cognitive load during modeling. The emerged standard metric for cognitive load seems to be the 

self-rating scale of Paas, et al. [63]. This is a validated scale, used successfully in various research 

designs. Therefore, this metric was adopted to measure the overall cognitive load. In order to measure 

cognitive load at a more instantaneous level, a dual-task measure for cognitive load was created [64]. 

Such a metric measures the performance on secondary tasks that occasionally interrupt the primary 

task. The primary task in this experiment is to create a process model. The most used variant plays a 

sound to which the user has to react promptly and utilizes the response time as an indication for 



instantaneous cognitive load. In order to suit better with the experiment set-up where various 

participants perform the assignments simultaneously in one room, the recall correctness of a 

previously shown two-digit number was used as secondary task in the three modeling assignments of 

the experiment. This number recall task is not an optimal secondary task as it does interfere with the 

primary task, but it was assumed that the interference was minimal.  

Process model quality. For the quality measures an attempt was made to define metrics that 

distinguish between cognition and knowledge related errors. For this distinction the rational was 

applied that whenever errors are made consistently throughout the assignment, they are knowledge 

related and did not count as a cognitive mistake, whereas the others did. Further, both for syntactic and 

semantic quality, two measures were included: the number of mistakes made and the number of 

different types of mistakes made. For example, when a modeler used a join gateway with a sign that 

did not match the sign of the corresponding split gateway twice, this counts for two mistakes, but only 

for one type of mistakes. The syntactic quality measure was included because it is considered easier to 

measure objectively, whereas the semantic quality measure was included because it was deemed more 

relevant (relatively less semantic quality support features exist in today’s modeling tools). 

Syntactic quality. The syntactic quality was measured by first coding the models, according to the 

coding scheme in Appendix F. The coding was repeated by three external raters independently and in a 

different order, which was used to complement and improve our initial coding. The coding system was 

set up such that it is easy to distinguish between consistent and inconsistent errors, to count the overall 

number of mistakes and to count the number of different mistake types (see Appendix F).  

Semantic quality. A similar coding system was used for the semantic quality (see Appendix G). 

In order to determine semantic errors, the textual description that the participants had received as input 

for their modeling assignment was divided in text blocks, each describing one semantic chunk (i.e., a 

single activity, choice, event, etc.) Next, the text blocks were compared to the model to identify 

missing, wrong or obsolete model parts, which were coded as semantic errors by two external raters.  



Modeling time and effort. The modeling time was defined as the duration from which the 

modelers started reading the case description towards the last operation recorded in the modeling tool. 

The modeling effort was measured as the number of modeling operations in the tool (i.e., creation, 

movement, and deletion operations on model elements). 

  



Appendix E. Measurement of process modeling strategy fit 

The quantitative measurement of the process modeling strategy fit is explained below. Different 

indicators are combined in a single metric, weighted according to their importance for the user. 

𝑓𝑖𝑡 = 	 𝑙𝑠𝑓𝑖𝑡|)*|	×	𝑓𝑑𝑓𝑖𝑡|-.|	×	𝑛𝑓𝑠𝑓𝑖𝑡|0-*|
|12|3|45|3|642|

 [1] 

First, the weights are discussed. Instead of a weighted average, a weighted product was used to 

minimize the influence of outlier values. It was noted how asymmetric advice is attached to the 

cognitive variables (e.g., sequential learners are advised to model with a steady pace, whereas global 

learners are not advised to model with an irregular pace). Therefore, the more a modeler scores to the 

one side, the more the corresponding advice has to be taken under consideration. Thus the value of the 

cognitive variables is used as an importance indicator: the weights in the formula. 

Next, each indicator in the formula is presented below. They correspond to the instructions 

discussed in Section 2.2 in the paper. The function s() represents the standard deviation, the function 

a() represents the average and the function m() represents the maximum of the values of the factor for 

each modeling operation. The functions os(), oa() and om() represent the opposites of these functions 

(i.e., 1-s(),1-a() and 1-m()). 

𝑙𝑠𝑓𝑖𝑡 = 	 𝑜𝑠 𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠 	×	𝑜𝑎 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 	×	𝑜𝑚 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 	×	𝑜𝑎 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 	×	𝑜𝑚|𝑂𝑣𝑒𝑟𝑙𝑎𝑝|C 	 [2] 

𝑓𝑑𝑓𝑖𝑡 = 	 𝑃𝑎𝑢𝑠𝑒𝑠 	×	𝑎 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 	×	𝑚 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 	×	|𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒|E  [3] 

𝑛𝑓𝑠𝑓𝑖𝑡 = 	 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 	×	𝑜 𝐴𝑙𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 	×	𝑜𝑎 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 	×	𝑜𝑚|𝑂𝑣𝑒𝑟𝑙𝑎𝑝|E  [4] 

As indicated by the vertical lines (|factor|), all variables are normalized. This means they are 

converted to a real value between 0 and 1. 

 

In order to improve the accuracy of formula [1], two additional indicator factors were added. 

𝑙𝑠𝑏𝑒𝑠𝑡𝑓𝑖𝑡 = 	1 − 	LM*(MO*P)*Q)*)
ST

 [5] 



The factor bestls in formula [5] is the learning style score that fits best with the real applied 

sequencing technique. The factor lsbestfit is included in [1] with a weight of 1. 

𝑛𝑓𝑠2𝑓𝑖𝑡 = VPWXYPXWO.0O**Z[
\

		 [6] 

The factor Structuredness is the number of raters that coded the sequencing technique as FO, AO 

or C minus the number of raters that used code UD. The nfs2fit factor is included in [1] with a weight 

equal to |nfs2|. 

  



Appendix F. Syntactic errors coding scheme 

Below is the coding scheme used by the raters to measure the number of syntactic errors in a 

model. The complete assignment description used by the raters that performed the coding can be 

downloaded from http://www.janclaes.info/papers/SPMM. 

Syntactical error Code  
Contains no end event (but does contain a start event) 0 (0 end events) 
Contains no start event  0s (O start events) 
Contains a start event in the middle (ingoing edge on start event) B (between) 
Contains an end event in the middle (outgoing edge on end event) B (between) 
There are multiple end events E (multiple ends) 
One, but not all of the paths are not closed (missing end event?) P (path not closed) 
Contains no split gateways at all S (no splits) 
Forgot some, but not all split gateways F (forget some) 
Contains no join gateways at all J (no joins) 
Contains and, but no xor join gateways at all Jxor (no xor joins) 
Contains xor, but no end gateways at all Jand (no and joins) 
Forgot some, but not all join gateways G (forget some) 
Forgot xor join gateway Gxor (forget some) 
Forgot and join gateway Gand (forget some) 
Forgot xor gateway at end event Ge (forget some) 
One gateway combines a join and split feature C (combination) 
Wrong type of join combined with a certain split W (wrong type) 
Gateway with only one ingoing and one outgoing edge 1 (1 edge in/out) 
Wrong nesting of gateways N (wrong nesting) 
AND and XOR are joined together in one join gateway T (joined together) 
Forgot join gateways in case of iterations (edges that go back in the model) I (wrong iterations) 
Some edges are missing (space between two items, but no edge) M (missing edges) 
Used a start event instead of a gateway GWs (gateway start event) 
Used start event as a data object symbol DB (database) 
Used start event where some input is expected (as a message event) IN (input) 
Modeled Petri-net style using start events as places PN (Petri-Net) 
Used empty activities - (empty) 
Other > (describe) 

 

  



Appendix G. Semantic errors coding scheme 

Below is the coding scheme used by the raters to measure the number of semantic errors in a 

model. The complete assignment description used by the raters that performed the coding can be 

downloaded from http://www.janclaes.info/papers/SPMM. 

Semantic error Code Explanation 
Obsolete activity OA Activity in model that should clearly not be there because it was not 

described as a separate step. 
Obsolete gateway OGW Gateway in model that should clearly not be there because it was not 

explicitly described in the case description. 
Obsolete edge OE Edge in model that should clearly not be there because the activities it 

connects should not follow each other (directly). 
Obsolete end event OEE End event in model that should clearly not be there because the case 

was not described to end at that place. 
Missing activity MA An activity is missing where the case description clearly describes 

something as a separate task. 
Missing gateway MGW A gateway is missing where the case description clearly describes an 

optional or parallel split. 
Missing edge ME An edge is missing where the case description clearly describes that two 

activities should follow each other directly. 
Missing activity because of  
misplaced iterative edge 

MAE Some activities are not executed in an iteration because the iterative 
edge points to the wrong starting point of the iteration. 

Missing end event MEE An end event is missing where the case description clearly describes 
that the process can end there. 

Missing information MI Information is missing because a small part of the model is de-scribed 
by a single activity instead of a more extensive construction. 

Wrong condition WC The wrong condition is used to indicate which path is executed at what 
condition after an XOR split. 

Incorrect order IO A wrongly placed edge causes the flow to be executed in a incorrect 
order. 

 

  



Appendix H. Interview protocol 

Below is an overview of the interview protocol used as a final part in the pre-test of the 

experiment. Gradually more information was revealed to the interviewee and questions were asked 

about the theory and the individual findings of the observational sessions of the pre-test. 

1 Modeling styles 
 
SHOW PPMCHART STYLES 
- which style do you think you applied 
- for each style (1) how well does it fit to you 
  (2) how difficult do you find it to apply 
 
SHOW PPMCHART OF MODELER 
- again, which style do you think you applied 
- at a scale from 0% to 100% how consistent did you apply the scale? 
 
SHOW STYLE ON PPMCHART OF MODELER 
- do you recognize your style? 
- is this a style you apply usually (when writing text or program code)? 
- do you feel this style fits to you?  
- why (not)? 
- is this because you learnt the style or does it feel natural to you? 
 
2 Cognitive load 
 
SHOW PROCESS MODEL 
- did you find the exercise hard? 
- what was hard? 
- can you point out in the model or chart where you encountered difficulties? 
- why did it become difficult at that point? 
- is this usually why you find things difficult? 
- did it go better afterwards? 
- when? 
- do you think you did well? 
 
SHOW MISTAKES 
- why did you make each mistake? 
 
3 Cognitive profile 
 
SHOW COGNITIVE CHARTS 
- given your cognitive profile and your adopted approach we expected this/another result, do you agree? 
- why does this theory (not) apply to you? 
- do you think of situations when this theory might not apply? 
- which situations are that? 
 
4 General 
 
- do you have any other questions or remarks about the experiment or interview? 
 
Thank you for your cooperation! 
  



Appendix I. User perceptions 
 

This appendix presents a number of quotes to illustrate the findings presented in Section 4.5.3. 

Motivational aspects of the cognitive tests. Participants indicated that “it was a challenging, fun 

experiment”, it was “sometimes hard, sometimes easy”, “it was quite enjoyable”, they “really liked this 

experiment, because it was fun and challenging”, they found “the test quite hard, but enjoyed filling it 

out”, this was a “very nice test as preparation for solicitation [=job applications]” and they found it 

“very difficult and I’m seriously starting to doubt my own intelligence”. 

Technical aspects of the cognitive tests. The vast majority of technical comments mentioned “no 

interruptions, no technical problems”, but some participants indicated “some disruptions during the 

test” for example “coming from two warnings of my anti-virus program” or “because my brother came 

in to ask a question, ignoring the ‘Do not disturb’ sign I added at my door”. Most disruptions seem to 

have been minimal and quickly resolved. “During the second series, the VPN server disconnected. 

When the problem was solved, I went further with the test without any problems, and I did not need to 

restart. I could go on where I had left.” For some students it was not clear how much the disturbance 

has influenced the results and they were left out from further analysis. For example, “I was disturbed 

by a carnival procession which passed with music. [Google translation from Dutch]”. 

Content-related aspects of the cognitive tests. The tool was perceived as “clear and worked as it 

should”. The instructions were mostly described as “instructions were clear”, “very clear”, “crystal 

clear”, “good explained”; although some participants responded that “instructions weren’t 

immediately understood but demo made everything clear“ or “the purpose of the exercises only 

became clear after the example, so it’s a good thing that we could first practice the exercise”, which 

indicates that it may took some effort for certain students to understand them. One, more concerning 

comment was that for one participant a “test on paper would be much more convenient”.  

Slowness of the tutorial. A number of comments were directed to this issue, but the participants 

seemed to show understanding for this matter. “The system was very slow; this was not encouraging at 



all. The instructions however were clear and detailed.” - “The tutorial was a bit laggy, but you notified 

us at the beginning so I was prepared. Otherwise it was well put together.” 

Positive feedback about the tutorial. A high number of positive and surprised reactions were 

received. “I found the information about my cognitive profile very interesting!” “Especially the 

explanation about my learning personality I found very interesting. I’m happy I know it now.” A 

number of participants recognized some aspects explained by the tutorial, whereas others discovered 

new insights about their own personality. “I found it interesting to learn more about myself from 

modeling point of view. Some of those characteristics I had noticed about myself already” - “The 

feedback on field dependence and flow-oriented modeling was very interesting and confirmed a kind 

of intrinsic suspicion of me. [translated]" - “I recognize myself mostly in the points raised. They are 

certainly points that I will remember in order to work in a better and more efficient manner. 

[translated]” - “The result that I had expected is that I have a strong desire for structure and I 

actually sit between sequential and global learning. But the second, field-independent, dimension, I 

did not expect. [translated]” - “Very insightful experiment. One remark: I thought I was rather a 

structured person whilst the experiment says the opposite.” 

Negative feedback about the tutorial. Only one comment was received about some unclear 

explanation. “I found the suggestions for flow-oriented modeling and field independency a bit 

contradicting. The former instructed to work completely step by step, while as a field-independent 

person you should not worry about leaving things for later. [translated]” Although these instructions 

do not contradict, the student seems to have been troubled about how these guidelines could be 

combined. 

Positive feedback about the method. Most participants were optimistic about the method. “I did 

apply both methods, this is clearly the right way of modeling for me [translated]” - “I found the 

modeling went easier by taking the tips into account, that were given in the context of my profile. 

[translated]”. A number of comments were very specific. “The new aspect-oriented method really is a 

good way of modeling for me. Because of it I have a better overview on the entire process and I find it 



easier to put the whole thing in one model. By not always laying out in between, I can focus better on 

the modeling itself. [translated]” - “I liked the whole experiment. I think I learnt something out of it. 

As such I will try to apply the tip about field-independent working. [translated]” - “Doing the 

modelling just by using the aspect-oriented method (and more importantly first only focusing on the 

activities and not yet on the nodes and decisions) greatly decreased the time and effort I had to use 

while modelling.” - “I have to say that I was shocked by the influence the recommended method had 

on my efficiency. I was much more sure than last time. In the end, I had to make some small 

adaptations here and there, but they became always immediately clear to me. [translated]”. 

Negative feedback about the method. A number of participant complained that “It was very 

difficult to focus on the modelling while keeping the numbers in mind. In the beginning this worked, 

but at the end I did forget a lot of numbers.” - “Whenever I was really concentrated I forgot my 

numbers ... but I didn’t have any technical problems really”. However, this is normal as cognitive load 

increases towards the end. There were also two comments that mentioned that “This is what I already 

did before, so I didn’t really do anything different [translated]” - “I didn’t really feel as if the tutorial 

helped me changing my way of modelling, structuring... as it described the way I usually work.” 

Indeed, some people automatically apply the best suitable strategy and will not experience any 

improvement with the developed method. 

Perceptions about the experiment assumptions. In the experiment, three modeling tasks had to 

be performed. Much effort was spent to prepare three cases of comparable complexity. For example, 

our solution to the cases have a comparable number of nodes (17, 26 and 22 for the practice, 

benchmark and experiment case respectively), arcs (33, 21 and 28 respectively) and nesting depth of 

routing constructs (each time 3). It was decided to provide each participant with the cases in the same 

order. This way, they could not prepare for a future modeling assignment by hearing from other 

participants about the other cases. This also facilitates between-subject comparisons. But one may 

worry about the validity of within-subject comparisons if the consecutive assignments have a different 

complexity. The data did not reveal such structural differences. “The cases in all experiments were 

well chosen and interesting.” If anything, the last case was harder, potentially introducing a bias that 



would worsen the results. “I felt as if this task was harder and took longer than the previous two 

modelling tasks.” (This reaction is from a participant in the treatment group who was classified with 

an unknown fit both before and after treatment). 

As mentioned earlier, a rather simple BPMN editor is included in the experimental environment. 

This simple editor was selected to avoid the expertise-reversal effect [58], which describes an initial 

decrease in performance when an expert needs to be retrained to use another method/tool than (s)he is 

used to. On the one hand the participants “found the modeling tool very user-friendly (even more so 

than previously used tools like ARIS express)” with a “helpful tutorial”. Because of a lack of 

comments about the editor (and an abundance of feedback on every other aspect of the experiment and 

tool), it is thus assumed that the participants did indeed not suffer from the expertise-reversal effect. 

On the other hand, three students missed a feature such as to “automatically help a bit to put all things 

in a straight line” or “to name my start-events (I created sub processes)”. 

 


