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Samenvatting

Multi-Variante Uitvoeringsomgevingen (MVUOs) zijn een veelbelo-
vende techniek om software te beschermen tegen op geheugencorrup-
tie gebaseerde aanvallen. MVUOs voeren op een transparente manier
meerdere, gediversifieerde varianten (ook wel replicae genoemd) van
hetzelfde programma uit, en zorgen ervoor dat deze replicae dezelfde
invoer krijgen. Door de replicae in lockstep uit te voeren en te monitoren
op het niveau van systeemoproepen, en door diversificatietechnieken
te gebruiken die ervoor zorgen dat aanvallers geen meerdere replicae
tegelijk kunnen compromitteren, zorgen MVUOs ervoor dat aanvallen
gestopt worden voor ze schade kunnen toebrengen.

Verschillende problemen zorgen er echter voor dat MVUOs nog niet
algemeen gebruikt kunnen worden. In dit proefschrift stel ik verschil-
lende technieken voor die bestaande MVUOs kunnen verbeteren en zo
deze problemen kunnen verlichten. Ik pas deze technieken toe in mijn
eigen MVUO prototype, GHUMVEE.

Inconsistenties en Vals-Positieve Detecties

Replicae die binnen een MVUO uitgevoerd worden moeten con-
sistente invoer krijgen opdat ze zich identiek zouden gedragen. Repli-
cae die verschillende invoer krijgen kunnen namelijk andere sequenties
van systeemoproepen uitvoeren, en daardoor dus vals-positieve detec-
ties veroorzaken in GHUMVEE. Oudere MVUOs gaan ervan uit dat
alle programmainvoer ofwel aan de hand van systeemoproepen wordt
gelezen, of dat de invoer aan banden gelegd kan worden aan de sys-
teeminterface, bijvoorbeeld door het gebruik van gedeeld geheugen te
verbieden. Wij betwisten deze aanname.

Ten eerste zijn er verschillende programma’s die impliciete pro-
grammainvoer zoals numerieke pointerwaarden lezen. Deze nume-
rieke pointerwaarden verschillen hoogstwaarschijnlijk wanneer meer-
dere replicae naast elkaar worden uitgevoerd, omdat de replicae ge-
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diversifieerd zijn. We hebben verschillende situaties geidentificeerd
waarin programmeurs impliciete programmainvoer gebruiken. We
stellen voor om replicatiebemiddelaars voor impliciete invoer te gebruiken
om ervoor te zorgen dat alle replicae dezelfde impliciete invoer lezen.
Deze bemiddelaars leggen de impliciete invoer vast in één replica, de
meester, en sturen die invoer door naar de andere replicae, de slaven.

Ten tweede stellen x86 processors tijdsinformatie ter beschikking
van uitvoerende programma’s. Deze informatie kan uitgelezen wor-
den met niet-bevoorrechte machineinstructies. Deze instructies kunnen
buiten het gezichtsveld van de MVUO uitgevoerd worden. We stellen
daarom voor om gebruik te maken van de TimeStamp Disable capabili-
teit van de processor om zo alle uitvoeringen van de deze instructies te
onderscheppen en te emuleren in de monitor van de MVUO.

Ten derde maken moderne versies van Linux gebruik van virtu-
ele systeemoproepen. Virtuele systeemoproepen worden niet gemeld
aan de monitor van de MVUO. Deze virtuele oproepen moeten wel af-
komstig zijn uit het Virtual Dynamic Shared Object (VDSO). We stellen
daarom voor om deze VDSO te verbergen voor de replicae, waardoor
ze automatisch terugvallen op niet-virtuele systeemoproepen, die wel
gemeld worden aan de monitor.

Ten laatste geven we een uitgebreider overzicht van andere bronnen
van programmainvoer dan er in de literatuur beschikbaar is. We stellen
technieken voor die deze andere bronnen ofwel elimineren, ofwel de
MVUO toelaten om ze te tolereren.

Afleveren van Asynchrone Signalen

MVUOs die hun replicae in lockstep uitvoeren moeten voorzichtig
omspringen met asynchrone signalen. Asynchrone signalen die naar
de replicae gestuurd worden, moeten afgeleverd worden op hetzelfde
punt hun uitvoering. Gebeurt dit niet, dan kunnen er inconsistenties
optreden en. De complexiteit van de ptrace interface, het feit dat sig-
nalen voor allerhande uiteenlopende doeleinden gebruikt worden, en
de vele scenarios waarin signalen afgeleverd kunnen worden, zorgen
er echter voor dat het correct afhandelen van asynchrone signalen een
grote uitdaging is bij het implementeren van MVUOs. Het trieste ge-
volg is dat bijna geen enkele van de bestaande MVUOs het afleveren
van signalen volledig ondersteunen. Wij bieden een overzicht van de
interactie tussen processen die signalen ontvangen en hun debuggers,
en beschrijven alle scenarios waarin de MVUO nauwgezet moet optre-
den. GHUMVEE is, voor zover wij weten, de enige op veiligheid ge-
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richte MVUO die volledige ondersteuning biedt voor asynchrone sig-
nalen.

Multi-Variante Uitvoering van Parallelle Programma’s

Vele parallelle programma’s voeren van nature niet-deterministisch
uit en lijjken zich daarom bij elke uitvoering anders te gedragen
als ze van aan de systeeminterface geobserveerd worden. Dit niet-
determinisme wordt veroorzaakt door de werkverdeling. In parallelle
programma’s die vrij kunnen uitvoeren, ligt de volgorde waarin ge-
heugentoegangen naar gedeeld geheugen uitgevoerd worden niet vast.
Hierdoor kan de volgorde waarin de draden van het programma de ef-
fecten van die geheugentoegangen zien bij elke uitvoering verschillen.

Deterministic MultiThreading (DMT) en Record+Replay (R+R) sys-
temen zijn twee bestaande oplossingen die niet-deterministisch gedrag
ofwel kunnen elimineren ofwel kunnen repliceren in meerdere uitvoe-
ringen van eenzelfde programma. DMT systemen leggen een deter-
ministische volgorde op aan alle geheugentoegangen naar gedeeld ge-
heugen. Deze deterministische volgorde baseren ze op een planning
die voor elke programmainvoer vastgelegd wordt. Bij bepaalde DMT
systemen kan deze planning echter niet vastgelegd worden voor paral-
lelle programma’s waarin sommige draden oneindige lussen uitvoeren
of systeemoproepen gebruiken die voor onbepaalde duur blokkeren.
Bij andere DMT systemen is de vastgelegde planning nauw verbonden
aan bepaalde eigenschappen van het programma, die naar alle waar-
schijnlijkheid veranderen wanneer diversificatietechnieken toegepast
worden.

R+R systemen lijden niet aan voorgenoemde beperkingen maar ze
moeten wel aangepast worden om binnen een MVUO bruikbaar te zijn.
Concreet moeten R+R systemen ongevoelig gemaakt worden voor de
precieze geheugenlay-out van het programma waarin ze gebruikt wor-
den. Verder moeten de R+R systemen een neutraal effect hebben op het
van aan de systeeminterface observeerbare gedrag van het programma.
Tenslotte moeten bestaande R+R systemen ook uitgebreid worden om
ad hoc-synchronizatie te ondersteunen.

Wij stellen vier op R+R-gebaseerde synchronizatiebemiddelaars
voor die voldoen aan deze vereisten. Onze synchronizatiebemidde-
laars leggen de volgorde vast waarin één replica, de meester, zijn syn-
chronizatieoperaties uitvoert. Een equivalente volgorde wordt dan op-
gelegd aan de andere replicae, de slaven. We stellen verder praktisch
toepasbare strategieén voor om de synchronizatiebemiddelaars in te
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bouwen in programma’s en in programmabibliotheken die van ad hoc-
synchronizatie gebruik maken.

Onze bemiddelaars maken van GHUMVEE de eerste MVUO die,
met een geringe inspanning, arbitraire parallelle programma’s onder-
steunt. Onze wall-of-clocks synchronizatiebemiddelaar is efficiént en
schaalbaar. Bij het uitvoeren van de PARSEC evaluatiesuite voor pa-
rallelle programma’s, met vier worker draden en twee replicae, ver-
traagt deze wall-of-clocks bemiddelaar de uitvoering met een factor 1,32.
Dit resultaat is vergelijkbaar met de vertragingen die door de auteurs
van andere MVUOs gerapporteerd werden voor enkeldradige evalua-
tieprogramma’s.

Disjoint Code Layouts

Dezelfde software die wij wensen te beschermen met onze MVUO,
wordt regelmatig door hackers aangevallen met aanvallen door co-
dehergebruik (code reuse attacks). Bij zulke aanvallen wordt een pro-
gramma omgeleid van zijn bedoelde controleverloop naar een set van
bekende locaties. Het doel van aanvallen door codehergebruik is om
kwaadaardige acties uit te voeren binnen de context van het aangeval-
len programma.

Address Space Partitioning (ASP) is een bestaande diversificatietech-
niek die de meeste aanvallen door codehergebruik onmogelijk maakt.
ASP deelt de virtuele adresruimte van de replicae op in n partities,
waarbij n het aantal gelijktijdig uitgevoerde replicae is. Elke replica
wordt begrensd zodat deze enkel van zijn eigen partitie kan gebruik
maken.

ASP vereist echter een verschillend programmabestand voor elke
replica en verlaagt de hoeveelheid beschikbaar virtueel geheugen voor
elke replica met een factor n. Wij vinden daarom dat ASP niet prak-
tisch bruikbaar is en stellen Disjoint Code Layouts (DCL) voor als alter-
natief. DCL zorgt ervoor dat de uitvoerbare coderegio’s van alle re-
plicae volledig disjunct zijn. Concreet wil dit zeggen dat een gegeven
virtueel geheugenadres in ten hoogste één replica naar een geldige co-
deregio wijst. DCL grijpt hiertoe in in het laadproces voor alle uitvoer-
bare bestanden die in de virtuele adresruimten van de replicae geladen
worden. DCL gebruikt één Position-Independent Executable (PIE) pro-
grammabestand voor alle replicae en heeft een minimale impact op de
hoeveelheid beschikbaar virtueel geheugen.

DCL biedt dezelfde veiligheidsgaranties als ASP en is zeer efficiént.
Wij rapporteren vertragingen van slechts 6.37% voor de SPEC CPU
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2006 evaluatiesuite die bovenop een 64-bit Linux 3.13 besturingssys-
teem wordt uitgevoerd.

Gerelaxeerd Monitoren

Op veiligheid gerichte MVUOs, zoals GHUMVEE, voeren de repli-
cae en de monitor in afzonderlijke processen uit. Dit ontwerp komt
de veiligheid duidelijk ten goede omdat gecompromitteerde replicae
de monitor niet rechstreeks kunnen aanvallen. Het ontwerp is echter
niet bevorderlijk voor de prestaties van de replicae omdat het veel ver-
traging veroorzaakt op de momenten dat de replicae en de monitor
interageren.

Wij stellen daarom een nieuw concept voor, gerelaxeerd monitoren,
en passen het toe in een nieuw ontwerp met een gesplitste monitor. Dit
nieuw ontwerp, dat we ReMon noemen, gebruikt GHUMVEE als een
traditionele monitor die als een afzonderlijk proces uitgevoerd wordt
en die enkel de veiligheidsgevoelige systeemoproepen monitort. De
overgebleven systeemoproepen handelen we af in een nieuwe monitor,
IP-MON, die ingebouwd kan worden in de replicae.

We stellen ook verschillende beleidsplannen voor voor deze gere-
laxeerde monitoring en evalueren deze plannen. De beleidsplannen be-
palen de verantwoordelijkheden van elke component binnen ReMon.
We concluderen dat ReMon significant sneller is dan de bestaande op
veiligheid gerichte MVUOs, en dat ReMon tegelijk vergelijkbare veilig-
heidsgaranties biedt als deze bestaande MV UOs.
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Summary

Multi-Variant Execution Environments (MVEEs) are a promising tech-
nique to protect software against memory corruption attacks. They
transparently execute multiple, diversified variants (often referred to
as replicae) of the software receiving the same inputs. By enforcing and
monitoring the lock-step execution of the replicae’s system calls, and
by deploying diversity techniques that prevent an attacker from simul-
taneously compromising multiple replicae, MVEEs can block attacks
before they succeed.

However, several problems stand in the way of widespread de-
ployment of MVEEs in production environments. In this dissertation,
I present several techniques that enhance existing MVEEs to alleviate
these problems. I apply these techniques in my own proof-of-concept
MVEE, GHUMVEE.

Inconsistencies and False-Positive Detections

Program replicae that run inside an MVEE must be fed consistent
inputs in order to guarantee that they will behave the same. Replicae
that receive different inputs might invoke different sequences of sys-
tem calls and trigger false-positive detections in GHUMVEE as a conse-
quence. Older MVEEs build on the assumption that all program inputs
either originates from the system call interface, or can be stopped at the
system call interface by, e.g., disallowing the use of shared memory. We
argue that this assumption is false.

First, several programs rely on implicit program inputs, such as nu-
merical pointer values. These numerical pointer values likely differ
between replicae as a result of diversification. We identify several pro-
gramming idioms in which implicit inputs are used and propose to de-
ploy implicit input replication agents in order to force all replicae to use
the same implicit inputs. These agents record the implicit inputs in one
replica, the master, and forward them to the other replicae, the slaves.
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Second, x86 processors expose (mutable) timing information
through unprivileged machine instructions. These instructions can be
executed without being supervised by the MVEE’s monitor. We pro-
pose to leverage the processor’s TimeStamp Disable capability to inter-
cept all invocations of such instructions and to emulate them inside the
MVEE’s monitor.

Third, modern versions of Linux use virtual system calls, which are
not reported to the MVEE’s monitor. These virtual system calls must
originate from the Virtual Dynamic Shared Object (VDSO), which is
loaded into every running program’s address space by the kernel. We
propose to hide this VDSO from the replicae in the MVEE, thereby forc-
ing them to fall back to regular system calls.

Finally, we provide a more extensive overview of other sources of
program input than is available in the literature, and propose tech-
niques that either eliminate these sources or that allow the MVEE to
tolerate them.

Asynchronous Signal Delivery

Security-oriented MVEEs that run the replicae in lock-step must
handle asynchronous signals carefully. Asynchronous signals sent to
the replicae must be delivered when the replicae are at the same point
in their execution, so as to avoid violations of the lock-step mecha-
nism. The many intricacies of the ptrace API, the one-size-fits-all na-
ture of signals in general, and the myriad of scenarios in which signals
may be delivered make correct handling of asynchronous signals one
of the most challenging problems when implementing an MVEE. The
sad consequence is that almost no existing MVEEs fully support signal
handling. We provide an extensive overview of the interaction between
processes that receive signals and their debuggers, and describe the sce-
narios that an MVEE has to handle carefully. GHUMVEE is, to the best
of our knowledge, the only security-oriented MVEE to fully support
asynchronous signal delivery.

Multi-Variant Execution of Parallel Programs

Many parallel programs are non-deterministic by nature and will
appear to behave differently from run to run when observed from the
system call interface, even if they are not diversified. Scheduling is the
root cause of this non-determinism. If parallel programs are allowed to
run freely, the order in which they execute instructions that participate
in inter-thread communication, or the order in which the effects of these
instructions become visible to other threads will change from run to
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run.

Deterministic MultiThreading (DMT) and Record+Replay (R+R)
systems are existing solutions to eliminate or replicate non-
deterministic behavior. DMT systems impose a deterministic order on
inter-thread communication instructions by establishing a fixed sched-
ule for each given program input. Some DMT systems cannot establish
such a schedule for programs with threads that perform unbounded
computations or indefinitely blocking system calls. Other DMT sys-
tems establish a schedule that is tightly bound to program properties
that are likely to change as a result of diversification.

R+R systems do not suffer from the same issues but need to be
adapted before they can be used in the context of an MVEE. Specifi-
cally, R+R agents need to be address-agnostic, neutral with respect to
system call behavior and activities that require intervention from our
replication agents, and support ad hoc synchronization.

We present four R+R-based synchronization replication agents that
fit within these constraints. Our synchronization replication agents
capture the order in which synchronization operations are executed
in the master replica, and force an equivalent order in the slave repli-
cae. We also recommended practical strategies to embed our agents
into programs and libraries that use ad hoc synchronization.

Our replication agents make GHUMVEE the first MVEE to sup-
port arbitrary multi-threaded replicae with limited effort. Our wall-
of-clocks replication agents are efficient and scalable. When running
the PARSEC benchmark suite with four worker threads and two repli-
cae, the wall-of-clocks agents achieve slowdowns of just 1.32x, which is
comparable to the slowdowns reported by authors of older MVEEs for
single-threaded benchmarks.

Disjoint Code Layouts

The same software we wish to protect using our MVEE, is fre-
quently targeted by hackers with code reuse attacks. Such attacks di-
verge the intended control flow of the target to a (set of) known loca-
tion(s) so as to perform malicious actions chosen by the attacker in the
context of the target program.

Address Space Partitioning (ASP) is an existing diversification tech-
nique that prevents attackers from successfully launching most code
reuse attacks against replicae in an MVEE. ASP splits the replicae’s ad-
dress spaces into n partitions, with n the number of concurrently exe-
cuting replicae, and confines each replica to its own partition.
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ASP requires different program binaries for each replica and re-
duces the available amount of virtual memory in the replicae by a fac-
tor n. We therefore argue that ASP is impractical and propose Disjoint
Code Layouts (DCL) as an alternative. DCL ensures that the replicae’s
executable code regions are fully disjoint, i.e., that any given virtual
address cannot point to a valid executable memory page in more than
replica. DCL achieves this by transparently manipulating the loading
process for all executable files that are loaded into the replicae’s address
spaces. DCL uses a single Position-Independent Executable (PIE) pro-
gram binary for all replicae and has a minimal impact on the available
amount of virtual memory.

DCL achieves the same protection strength as partitioning, and is
also efficient. We report performance overheads as low as 6.37% for the
SPEC CPU 2006 benchmark suite running on top of a 64-bit Linux 3.13
0s.

Monitoring Relaxation

Security-oriented MVEEs, including GHUMVEE, run the replicae
and the monitoring component as separate processes. This approach
has obvious security benefits as compromised replicae cannot attack
the monitor directly. The replicae’s interaction with a monitor in a sep-
arate process does however significantly degrade their performance.

We therefore propose the concept of monitoring relaxation and ap-
ply it in a split-monitor design, called ReMon. In ReMon, we use
GHUMVEE as a traditional monitor that runs as a separate process and
that monitors security-sensitive system calls, and we use a new monitor
called IP-MON as a component that can be embedded into the replicae
and that can monitor innocuous system calls and replicate their results.

We propose and evaluate several monitoring relaxation policies
that define the responsibilities of each component within ReMon. We
conclude that ReMon vastly outperforms existing security-oriented
MVEEs, while offering comparable security guarantees.
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Chapter 1

Introduction

Software vulnerabilities have become a major threat to our society. In
the past few years, we have seen several high profile attacks that have
crippled critical infrastructure or that have caused data breaches. This
year alone, millions of people have seen their personal, medical and
financial information leak to the Internet. Although we have success-
fully eliminated certain classes of vulnerabilities, the outlook for the
next few years is relatively bleak and we should expect more incidents
in the foreseeable future. The root cause for this problem is that a lot
of programmers still use unsafe languages such as C and C++ to write
their software. While many of the alternatives for C and C++ offer type-
safety, high productivity and reasonable performance, none of them
have been able to make a big impact in low-level software. This is not
entirely surprising. C and C++ offer a combination of explicit memory
management, direct access to hardware, and high performance that has
not been paralleled by any other language.

1.1 Memory Vulnerabilities, Attacks and Defenses

The vulnerabilities that have plagued unsafe languages for decades are
well understood in the hacker community and often allow attackers to
take over control of a program. We distinguish between two classes
of vulnerabilities. Spatial memory vulnerabilities such as buffer over-
flows result from poor (or complete lack of) bounds checking when
reading from or writing into a fixed-size object [126]. Temporal mem-
ory vulnerabilities such as use-after-free and double-free conditions re-
sult from using (e.g., dereferencing) invalid pointers.
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Aleph One demonstrated how to exploit spatial memory vulnera-
bilities as early as 1996 [4]. His technique, known as “stack smash-
ing”, works by injecting malicious code into a running program and by
diverging the program’s control flow to the injected code. The secu-
rity community countered such attacks by forcing data-only memory
regions, such as the stack, to be non-executable. This anti-code injec-
tion technique is now known as W&X or Data Execution Prevention
(DEP) [103]].

In 1997, shortly after the initial version of W& X was introduced, So-
lar Designer proposed to circumvent it by reusing code from the ap-
plication itself to mount attacks. Solar Designer’s “return-into-libc”
(RILC) technique works by overwriting the topmost stack frame of
the target application, including the return address, thus hijacking
the application’s control flow when it executes its next return instruc-
tion [125]. RILC attacks overwrite the return address with the address
of a known function and write malicious parameters for this function
onto the stack.

The security community responded by deploying Address Space
Layout Randomization (ASLR) [102] and Stack Canaries [34]. ASLR
randomizes the base addresses of a program’s stack, heap and code
segments [102]. It therefore reduces the chance of a successful RILC at-
tack by forcing the attacker to guess the location of the function(s) he
wishes to invoke. However, ASLR has only been mildly successful. In
2004, Shacham pointed out that ASLR lacks entropy on 32-bit systems
and can therefore be bypassed in a matter of minutes [122]. Further-
more, compilers on the GNU/Linux platform historically generated
program binaries that had to be loaded at a fixed address and were
therefore not subject to ASLR. All of the industry-standard compilers
can now generate Position Independent Executables (PIE) that are sub-
ject to ASLR, but none generate them by default. Stack Canaries are
an ad hoc defense mechanism against stack smashing. They have how-
ever been bypassed as early as 2002 [109], and can be leaked through
information leakage attacks [19].

In 2001, Nergal presented an advanced version of the RILC at-
tack [95]. Nergal’s attack was able to invoke a chain of RILC calls,
whereas the original technique was limited to one call. Nergal also
proposed several methods to bypass ASLR.

Control-Flow Integrity (CFI) was introduced to combat code reuse
attacks in 2005 [1]. CFI instruments all indirect branch instructions as
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well as function return instructions in a program and checks whether
their targets adhere to the intended control flow graph of the pro-
gram. While a promising technique, CFI as well as its recent varia-
tions [90,137,(143,/144]] suffer from two fundamental issues. First, the
precise control flow graph for a program typically cannot be obtained
without access to the program sources. Second, there is a high perfor-
mance cost associated with enforcing strict control flow integrity [47].

In 2007, Shacham introduced Return-Oriented Programming
(ROP), a much more powerful code reuse attack [121]. ROP attacks
overwrite the target application’s stack with a contiguous list of ad-
dresses of small code fragments (often referred to as gadgets). These
gadgets must end with a return instruction so that each gadget auto-
matically invokes the next gadget in the list. The address of the first
gadget in the list must be written at the location of the return address
in the program’s topmost stack frame such that when the program ex-
ecutes its next return instruction, it automatically invokes the entire
list of gadgets. Shacham showed that in any reasonably sized code
base, enough gadgets could be found for the attacker to write Turing-
complete programs consisting only of gadgets, thus allowing the at-
tacker to perform arbitrary computations. ROP has inspired recent at-
tacks such as Jump-Oriented Programming (JOP) [20] and ROP without
returns [28]. It has also inspired the TC-RILC proposal, a generalized
and Turing-complete variant of Nergal’s advanced RILC attack [128]].

Recent research has shown that ROP attacks can bypass CFI-based
defenses by cleverly choosing the gadgets [26}38}47,116].

As an alternative to the above attack techniques, Schuster et al.
recently proposed a whole-function reuse attack called Counterfeit
Object-Oriented Programming (COOP) [115]. COOP can exploit spa-
tial as well as temporal memory vulnerabilities. COOP overwrites C++
objects, including their virtual function tables, and then invokes func-
tions in those tables using an invalid pointer to the overwritten object.

1.2 Multi-Variant Execution

Despite the successful deployment of defensive countermeasures such
as ASLR, W@X and Stack Canaries, hackers are still managing to set
up attacks on widely used software on a daily basis. Researchers and
industry professionals alike acknowledge this problem and are actively
looking into new ways to secure software without forcing a move to-
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Figure 1.1: Basic operation of a MVEE

wards safer languages. So far though, their efforts have only been
mildly successful.

Defensive countermeasures that enforce complete spatial [93] or
temporal [94] memory safety incur excessive performance overhead.
Approaches that incur less overhead have been bypassed or are limited
in scope or impractical to deploy.

Redundant Execution is a class of techniques that aim to allevi-
ate this problem. These techniques can serve many purposes. They
have been instrumental in the field of Software-based Fault Toler-
ance [11}21,22,(135] and have recently been used for live patch testing
and debugging [52,53]. When combined with software diversity, how-
ever, they can be a powerful mechanism to protect software against
memory-based exploits. This combination of redundant execution and
software diversity is commonly referred to as Multi-Variant Execution.
In a Multi-Variant Execution Environment (MVEE), several instances of
the same program run side by side. Since these instances are not iden-
tical, they are often referred to as either replicae or variants. A monitor,
the MVEE’s main component, ensures that all replicae are fed the same
input. It then continuously monitors the replicae” behavior. Security-
oriented MVEEs typically perform these tasks by running the replicae
in lock-step at system call granularity, as illustrated in Figure but
other options are possible.

MVEEs heavily rely on the principle of asymmetrical attacks. By
transforming the replicae in a specific way, either at compile time or at
run time, an MVEE can ensure that even if an attack can successfully
compromise one of the replicae, it will not have the desired effect on
the other replicae. When attacked, these other replicae will either crash
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or will not be affected by the attack at all. In both cases, the MVEE'’s
monitor will be able to observe differences in the replica’s future system
call behavior.

The security guarantees provided by an MVEE build on three prop-
erties: (i) isolation of the monitor from the replicae; (ii) monitored lock-
step system call execution; and (iii) diversification of the replicae. The
isolation of the monitor by means of hardware-enforced boundaries is
achieved by implementing it in kernel-space [35] or in a separate user-
space process [27,52,85||114,133]. All system calls invoked in the repli-
cae are monitored, executed in lock-step, and only allowed to execute
when all replicae invoke the same system calls with consistent inputs.
This allows the monitor to detect when a single replica is compromised
and to halt its execution. However, this also implies that all replicae
only progress at the speed of the slowest one. Furthermore, it implies
that the monitor cannot look ahead at future system calls when decid-
ing if a specific system call invocation should be allowed. This places
strict constraints on the system calls in the replicae. Foremost, they
need to occur in the same order in all replicae.

Several diversification techniques have been used in existing
MVEEs to generate the replicae. Instruction Set Tagging was proposed
as an anti-code injection technique by Cox et al. [35]. Salamat used Sys-
tem Call Number Randomization to prevent code injection [32]. Sala-
mat et al. also proposed Reverse Stack Growth as a spatial memory
safety technique [112]. Cox et al., as well as Cavallaro, independently
proposed to confine each replica to a fixed partition in the virtual mem-
ory space [27,35]. In Chapter 5| finally, I propose a practical and en-
hanced version of this partitioning technique.

MVEEs have several advantages over existing defensive tech-
niques. First and foremost, they do not embed costly security checks
in the programs they protect. Instead, they only apply transforma-
tions that ensure that the replicae will behave differently when being
attacked. These transformations typically come with little or no cost in
terms of run-time performance.

Second, several of the diversification techniques that have been
used in existing MVEEs are precise and transparent. These diversifi-
cation techniques can completely eliminate certain attack vectors and
can be applied even if the source code of the protected program is not
available. Techniques such as CFI by contrast typically lose precision
due to the absence of source code information [1,90,143}(144].
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Third, MVEEs are efficient. The authors of Orchestra, which was
the state-of-the-art MVEE for several years, established that an MVEE
could run two replicae of a single-threaded program while incurring
a slowdown of less than 20%. At the time, this slowdown was com-
parable to other state-of-the-art defensive techniques such as CFI. This
situation has not changed much since then. Though MVEEs can cer-
tainly boast good results in terms of performance impact, there is a
hidden cost. The system-wide CPU utilization, memory consumption
and power consumption all scale linearly with the number of replicae
that are simultaneously running. However, as the industry is evolving
towards machines with more and more CPU cores and as memory be-
comes bigger and cheaper, we believe that this hidden cost is acceptable
for applications that require strong security guarantees. Furthermore,
we assume that the true cost of Multi-Variant Execution is minimal
for server applications because, typically, the kernel-space portion of
the replicae is executed only once in an MVEE and server applications
spend a significant fraction of their time in kernel space. We also as-
sume that server applications typically run on over-provisioned server
blades. We leave the confirmation of these assumptions as future work.

Several problems stand in the way of the widespread deployment of
MVEEs, however. None of the many MVEEs that have been proposed
in the past decade could run replicae that execute non-deterministically
A.e., replicae that do not always execute the same sequence of system
calls, when given a certain input. Further, existing MVEEs offer limited
or no protection against modern code reuse attacks such as ROP [24]
121] or COOP [115]]. Finally, all of the existing MVEEs impose too much
run-time overhead to be useful in a production environment.

In this dissertation, I present the GHent University Multi-Variant
Execution Engine (GHUMVEE). GHUMVEE is a security-oriented
MVEE for the GNU/Linux platform. It supports the 32-bit and 64-bit
x86 architectures. GHUMVEE tackles all of above problems and could
be a major step towards widespread deployment of MVEEs.

1.3 Contributions and Structure of the Dissertation

In this dissertation I contribute the following:

In Chapter |2 I describe the high-level design principles and trade-
offs of existing MVEEs. I emphasize the design choices lifted for
GHUMVEE.
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In Chapter 3, I provide an overview of the causes of inconsisten-
cies and false positive detections one might encounter when running
single-threaded programs in an MVEE. I argue that these false positives
result from the use of diversification techniques in the program repli-
cae or from reading input that was not retrieved through the system
call interface. In this chapter, I suggest solutions to eliminate or tolerate
the false positive detections without compromising the security of the
MVEE. This chapter is loosely based on a conference article:

e Stijn Volckaert, Bjorn De Sutter, Tim De Baets, and Koen De Boss-
chere.
GHUMVEE. Efficient, effective, and flexible replication.
In 5th International Symposium on Foundations and Practice of Secu-
rity (FPS'12), pages 261-277. Springer, 2013 [133].

In Chapter 4} I extend the discussion on inconsistencies and false
positive detections to multi-threaded programs. I argue that incon-
sistencies in the execution of multi-threaded replicae result from the
natural non-determinism in such replicae and that no existing solu-
tion that eliminates non-determinism can be readily integrated into a
security-oriented MVEE or the replicae because the existing solutions
are limited in scope and/or do not tolerate diversification techniques. I
suggest to integrate synchronization replication agents into the replicae
and present and evaluate three possible replication strategies and four
possible implementations of said agents. Our synchronization agents
work even in diversified replicae because they are address-agnostic
and do not rely on execution properties that are likely to differ in the
different replicae. I further describe practical strategies to implement
the replication agents and to embed them into real-world low-level li-
braries. This chapter is based on a paper submitted to a journal:

e Stijn Volckaert, Per Larsen, Bjorn De Sutter, and Koen De Boss-
chere.
Multi-Variant Execution of Parallel Programs.
Manuscript under review.
Submitted to IEEE Transactions on Dependable and Secure Comput-
ing (TDSC) [134].

In Chapter 5 I present “Disjoint Code Layouts” (DCL), a novel and
practical diversification technique that offers strong protection against
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certain memory exploits at a very low cost. DCL guarantees that at any
given virtual address, no more than one replica can map a valid exe-
cutable region. This technique is highly effective against attacks such as
ROP, that rely on exact knowledge about the attacked program’s mem-
ory layout [121]. DCL is easy to deploy and does not rely on intrusive
program transformations. This chapter is based on the work we de-
scribed in a journal article:

e Stijn Volckaert, Bart Coppens, and Bjorn De Sutter.
Cloning your Gadgets: Complete ROP Attack Immunity with
Multi-Variant Execution.
To appear in IEEE Transactions on Dependable and Secure Computing
(TDSC) [130].
DOI:10.1109/TDSC.2015.2411254

In Chapter [6] I introduce the concept of relaxed monitoring and
present ReMon, a novel design for a security-oriented MVEE. ReMon
combines GHUMVEE with IP-MON, a new component that can be em-
bedded into the replicae. I>-MON can execute system calls and repli-
cate their results, without reporting these system calls to GHUMVEE.
We present several possible policies that define the responsibilities of
IP-MON and that offer different levels of security and performance.
This chapter is based on joint research between the System Software
Lab at Ghent University, the Secure Systems Lab at the University of
California, Irvine (UCI), and Immunant Inc. I conducted a significant
portion of this research while visiting UCI as an intern (Junior Special-
ist). We described the results of the research in a paper submitted to a
conference:

e Stijn Volckaert, Bart Coppens, Andrei Homescu, Per Larsen, Bjorn
De Sutter, and Michael Franz.
Free Unlimited Calling: Relaxed Multi-Variant Execution.
Manuscript under review.
Submitted to 21st International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASP-
LOS’16) [131]].

In Chapter|/|finally, I conclude the dissertation, suggest lines of fu-
ture work and discuss open issues.



1.3 Contributions and Structure of the Dissertation 9

The research I present in this dissertation touches upon several or-
thogonal research domains. I have therefore chosen to discuss the rel-
evant related work in each chapter, rather than to dedicate a separate
chapter to it.

1.3.1 Other Contributions

In addition to the contributions I present in this dissertation, I have also
contributed to the following publications during the course of my PhD
research:

e Daan Raman, Bjorn De Sutter, Bart Coppens, Stijn Volckaert, Koen
De Bosschere, Peter Danhieux, and Erik Van Buggenhout.
DNS Tunneling for Network Penetration.
In Proceedings of the 15th Annual International Conference on Infor-
mation Security and Cryptology (ICISC'12), pages 65-77, Springer,
2013 [107].

e Bert Abrath, Bart Coppens, Stijn Volckaert, and Bjorn De Sutter.
Obfuscating Windows DLLs.
In Proceedings of the 1st IEEE/ACM International Workshop on Soft-
ware Protection (SPRO’15), pages 24-30, IEEE, 2015 [3].

e Stephen Crane, Stijn Volckaert, Felix Schuster, Christopher
Liebchen, Per Larsen, Lucas Davi, Ahmad-Reza Sadeghi,
Thorsten Holz, Bjorn De Sutter, and Michael Franz.

It's a TRAP: Table Randomization and Protection against
Function-Reuse Attacks.

To appear at 22nd ACM Conference on Computer and Communica-
tions Security (CCS’15) [36].

The latter paper describes readactor++, a probabilistic defense against
function reuse attacks such as COOP and RILC that are not mitigated
by current code randomization techniques. This paper is the result of
joint research between the Secure Systems Lab at the University of Cal-
ifornia, Irvine (UCI), the System Software Lab at Ghent University, the
Systems Security Lab at the Ruhr-Universitdt Bochum, and the System
Security Lab at the Technische Universitdt Darmstadt. I conducted a
significant portion of this research while visiting UCI as an intern (Ju-
nior Specialist).
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Chapter 2

Multi-Variant Execution

A Multi-Variant Execution Environment (MVEE) runs several instances
of the same program (often referred to as replicae or variants) side by
side. The MVEE’s main component, a monitor, feeds these replicae the
same inputs and monitors their behavior. The replicae are constructed
such that they behave identically under normal operating conditions
but diverge when under attack. In recent years, over half a dozen sys-
tems have been proposed that match the above description. While most
of them show many similarities, some authors have made radically dif-
ferent design choices.

2.1 High-Level Design

Broadly speaking, there are two major key factors that distinguish their
high-level designs: monitoring granularity and placement in the soft-
ware stack. In this section, we review these two key factors, point
out their implications, and justify the design choices we lifted for
GHUMVEE.

2.1.1 Monitoring Granularity

Monitoring the replicae’s behavior can be done at many granularities,
ranging from monitoring only explicit I/O-operations, to system calls,
function calls or even individual instructions. In practice, however, ex-
isting MVEEs either monitor at I/O-operation granularity or at system
call granularity. Among the MVEEs that monitor at system call gran-
ularity, there are some that monitor all system calls, while the others
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Figure 2.1: Possible placements of an MVEE in the Software Stack

monitor only “sensitive” calls. There is some debate over what the
ideal monitoring granularity is. Coarse-grained monitoring yields bet-
ter performance but might not guarantee the integrity of the system.

Most MVEEs monitor at system call granularity. The reasoning is
that on modern operating systems that use page-level memory protec-
tion, every application is confined to its own address space. An applica-
tion must therefore use system calls to interact with the system in any
meaningful way. The same holds for exploits. If the ultimate goal of
an attack is to compromise the target system, then the attack’s payload
must invoke system calls to interact with the system.

It makes little sense to monitor at finer granularity levels for the
sole purpose of comparing replicae’s behavior. The premise of Multi-
Variant Execution is that the replicae are constructed such that they re-
act differently to malicious input. While a given malicious input might
be sufficient to seize control of one specific replica, it will not have the
desired effect on other replicae. These other replicae will either crash
or behave differently. As several authors have argued in the literature,
both of these outcomes are visible at the system call level [35,114].

2.1.2 Placement in the Software Stack

The placement of the MVEE within the software stack has far-reaching
consequences for the MVEE'’s security and performance properties.
This placement is motivated by the conflicting goals of ensuring maxi-
mum security and maximum performance. To maximize performance
it is of vital importance to minimize the overhead on the interaction be-
tween the replicae and the monitor. Since most monitors intervene in
every system call invocation, such interactions can occur frequently.
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All existing monitors interact synchronously with the replicae.
When a replica instigates an interaction with the monitor, it must wait
until the monitor returns the control flow to the replica before it may
resume its execution. To achieve maximum performance, it therefore is
of vital importance to minimize this waiting time, which is dominated
by the latency on the monitor-replica interaction. If the monitor runs as
a separate process (Cross-Process or CP), then the interaction latency
is high because the kernel must perform a context switch to transfer
the control from the replica to the monitor. Context switches are noto-
riously slow as they require a page table and a Translation Lookaside
Buffer (TLB) flush [14]. CP monitors can therefore be detrimental for
the replicae’s performance.

CP monitors are the most interesting choice from the security per-
spective however. Address spaces form a hardware-enforced boundary
between processes. Placing the monitor outside the replicae’s address
spaces therefore protects it from misbehaving replicae. Table [2.1|illus-
trates that most authors recognize the importance of such a hardware
enforced boundary. Almost all of the existing monitors prioritize se-
curity over performance and run Cross-Process. These monitors cor-
respond with the label “CP/US” in Figure N-Variant Systems is
a notable exception [35]. The N-Variant monitor runs within the same
address space as the replicae (In-Process or IP), but it is protected from
them misbehaving by the kernel-user space boundary. This design is
represented by “IP/KS” in Figure This is, at least in principle,
the ideal approach. However, it does have the downside of enlarging
the Trusted Computing Base (TCB). This is undesirable from a security
standpoint [111]].

VARAN finally implements a third design that is represented by
“IP/US” in Figure [63]. VARAN is a reliability-oriented IP monitor,
embedded into the replicae. It therefore consists of several components,
each of which can communicate directly with the replica in which it is
embedded. VARAN primarily intends to increase the reliability of the
replicae when, e.g., testing new patches. It therefore uses a less secure
design than the aforementioned “CP/US” MVEEs. VARAN'’s authors
also recognize this fact.

GHUMVEE is a security-oriented MVEE and is therefore imple-
mented as a CP/US MVEE. In Chapter [§ we will also propose a hy-
brid design called ReMon. ReMon is based on GHUMVEE, but it
also includes an In-Process component, which makes ReMon a hybrid
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User-Space
In-Process VARAN [53]

DieHard [18]], Cavallaro [27],
(@ (LERBW Orchestra [114], Tachyon [85],
Mx [52], GHUMVEE [133]

' Kernel-Space
N-Variant
Systems [35]

Table 2.1: Classification of existing MVEEs based on their position in the soft-
ware stack.

CP+IP/US MVEE.

2.2 Basic operation of GHUMVEE

GHUMVEE launches its replicae by forking them off its main thread
and by executing a sys_execve system call in the context of the forked off
processes. Prior to this call, the newly created replica processes estab-
lish a link between GHUMVEE'’s monitor and themselves by request-
ing to be placed under a monitor’s supervision after which they raise a
SIGSTOP signal. The kernel suspends the replicae after they have raised
this signal and it reports their status to the monitor. The monitor can
then resume the replicae and begin to monitor their execution.

2.2.1 Monitoring System Calls

Like most MVEEs, GHUMVEE monitors the replicae’s behavior at the
system call interface by intervening at the call and return site of every
system call. In theory, different mechanisms are available to implement
system call interception. In practice however, the monitor’s place in
the software stack dictates which mechanism must be used. MVEEs
that run Cross-Process and in User-Space rely on the operating system’s
debugging infrastructure to place the replicae under their control and
to intercept their system calls.

Each UNIX-based operating system offers a debugging API that al-
lows monitors to intervene at the start and return of every system call.
Security-oriented monitors typically leverage this API to run the repli-
cae in lock-step at the system call level. The monitor suspends each
replica that enters or exits from a system call until all replicae have
reached the same call or return site. At this point, the replicae are said



2.2 Basic operation of GHUMVEE 15

to have reached a Rendez-Vous Point (RVP) (sometimes referred to as
a synchronization point).

The monitor asserts that the replicae are in equivalent states when-
ever they reach such a RVP by comparing the system call arguments.
Two sets of system call arguments are considered to be equivalent if
they are identical (in case of non-pointer arguments) or if the data they
refer to is identical (in case of pointer arguments). Salamat gives a for-
mal definition of equivalent states [113].

If the replicae are not in equivalent states at a RVP, the monitor
raises an alarm and takes the appropriate action. GHUMVEE will con-
sider all tasks that share an address space with one of the replicae that
caused the discrepancy as tainted, and it will therefore terminate these
tasks. Do note that this will not necessarily stop the entire program
since a program might consist of several tasks that do not share address
spaces.

Reliability-oriented monitors that are, e.g., used to test new soft-
ware patches may differ from security-oriented monitors, such as ours,
with respect to system call monitoring. VARAN for example does not
enforce lock-step execution [53]. Instead, it lets the master replica run
ahead of the slave replicae and it caches the arguments and results of
all of the master replica’s system calls so that they may be consulted by
the slave replicae at a later point.

2.2.2 Transparent Execution

Many system calls require special handling to ensure that the Multi-
Variant Execution is transparent to the end-user. With the exception of
run-time overhead, the end-user should not be able to notice that more
than one replica of the program is running. GHUMVEE therefore uses
a master/slave replication model. One of the replicae is the designated
master replica and the other replicae are slaves. GHUMVEE ensures
that only the master replica can execute system calls that have visible
effects on the rest of the operating system. Specifically, these are the
system calls that correspond with I/O operations. Whenever the repli-
cae reach a RVP at the start of an I/O-related system call, GHUMVEE
will verify that the replicae are in equivalent states, and then overwrite
the system call number in the slave replicae by that of a system call with
no visible effects. GHUMVEE currently uses sys_getpid for this purpose
since that is a trivial and fast system call. When GHUMVEE subse-
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Figure 2.2: Transparently executing I/O-related system calls

quently resumes all replicae, only the master replica will execute the
intended I/O operation.

At the next RVP, when all replicae have returned from their system
call, GHUMVEE will copy the results of the system call from the ad-
dress space of the master to the address space of the slave replicae. We
refer to this mechanism as master calls. System calls that do not re-
quire special handling, other than consistency checking, and that may
therefore be executed by all replicae are called normal calls.

Orchestra uses a different mechanism to ensure transparent execu-
tion. Orchestra’s monitor executes all I/O-related system calls on be-
half of the replicae and copies the system call results from the moni-
tor to the replicae. Salamat et al. refer to this mechanism as monitor
calls [114]. This mechanism has an interesting implication. Since the
replicae never perform I/O operations themselves, they do not need to
open or close any file descriptorﬂ This design allows replicae running
on top of Orchestra to continue executing even if one of the replicae is
shut down after being compromised. GHUMVEE, by contrast, is forced
to shut down all of its replicae if the master gets compromised, because
neither GHUMVEE’s monitor, nor any of the slave replicae open any
tile descriptors.

2.2.3 Injecting System Calls and Restarting Replicae

On top of the above tasks, GHUMVEE can also inject new system calls
and, as a result, rewind replicae to their initial state. Injecting sys-
tem calls can be useful to transparently add new functionality to the

'We discuss one exception to this rule in Section
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Figure 2.3: False positive detection in a multi-threaded program

replicae. To inject a system call in a replica, GHUMVEE waits until the
replica has reached a RVP. At this point, GHUMVEE will store a backup
of the register context of the replica and it will overwrite the system call
arguments.

Many system calls accept arguments that are stored in data buffers.
To inject such arguments, GHUMVEE searches for a writable memory
page in the replica that is large enough for the arguments. If the replica
is multi-threaded, GHUMVEE will search for the replica’s thread-local
stack, in order not to corrupt memory that might be used by other tasks
that share an address space with the replica.

GHUMVEE then reads and stores the original content of the mem-
ory page and writes the arguments into that page. GHUMVEE will
then resume the replica and wait until the injected system call returns.
At that point, GHUMVEE will restore the original contents of the over-
written memory page and restore the original register context, prior to
the system call injection.

Restarting replicae to their initial state is a trivial extension of this
system. To support restarting, GHUMVEE stores the original argu-
ments of the sys_execve call that was used to start the replica, as well
as the environment variables [46] at the time of the original sys_execve
invocation. Whenever a replica reaches a RVP, GHUMVEE can re-
store the original environment variables and inject a new sys_execve call
with those original arguments using the mechanism described above
to restart the replica.

GHUMVEE uses this restart mechanism to enforce “Disjoint Code
Layouts”, as we will explain in Chapter 5|
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2.2.4 Multi-Threaded Monitor

Replicae that consist of multiple tasks, whether they be processes or
threads, can trigger false positive detections in an MVEE. One of the
reasons for these false positives is that an MVEE cannot control the or-
der in which its replicae are scheduled. At best it can slightly manipu-
late the scheduler by artificially stalling the replicae. Consider for ex-
ample a program that has one thread that calls sys_getpid in a tight loop
and one thread that calls sys_gettid in a tight loop. If we run two repli-
cae of this program side by side, and if in one replica the first thread
gets scheduled first, while in the second replica the second thread gets
scheduled first, a naive monitor might detect a mismatch because the
tirst replica will execute sys_getpid first, while the second will execute
sys_gettid.

The obvious solution to this problem is to compare the behavior of
equivalent threads, rather than the behavior of the replica as a whole.
A second problem that can easily be addressed is that a single monitor
instance quickly becomes a bottleneck when monitoring replicae that
consist of multiple tasks. We therefore create additional instances of
the monitor, one for each set of equivalent tasks, and have each of these
instances monitor only that set of tasks. GHUMVEE’s mechanism for
creating additional instances of the monitor and for attaching these in-
stances to the appropriate tasks is almost identical to the one that was
described by Salamat [113].

The last and most fundamental problem with multi-task replicae is
that such replicae often do not execute deterministically because these
tasks might communicate internally over shared memory. Hosek sug-
gested to tolerate small variations in the replicae’s behavior to relieve
this problem [53]. During the course of my research however, I have en-
countered many programs whose non-deterministic execution results
in behavioral discrepancies that are practically indistinguishable from
actual attacks.

In Chapter ]I present a detailed overview of this problem and pro-
pose solutions to impose deterministic execution on replicae with min-
imal overhead.
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2.3 Monitoring and Replication Infrastructure

Monitoring utilities, like GHUMVEE, that run outside the context of
the process they monitor and in user-space are traditionally imple-
mented using the operating system’s debugging facilities. GNU/Linux
offers access to its debugging facilities through the process_vm_readv [73],
wait4 [79] and the multi-purpose ptrace API [74]. At the time of this writ-
ing, the ptrace APl implements 31 commands. In this section, I present
an overview of the most relevant commands and describe how and
why they are used by GHUMVEE.

2.3.1 Attaching to the Replicae

The ptrace API offers the ability for one process, often referred to as the
debugger, to place another process, often referred to as the debuggee,
under its supervision. Linux, and other operating systems that offer a
similar API, allows for one debugger per debuggee. However, a single
debugger may attach itself to many debuggees.

Both processes can instigate this link. The debuggee may use the
PTRACE_TRACEME command to place itself under its parent’s supervi-
sion. The debugger on the other hand may use the PTRACE_ATTACH or
PTRACE_SEIZE commands to establish the link. After the link has been
established, the debugger gains access to many privileged operations.

2.3.2 Transferring Replicae

The debugger can configure its link with the debuggee such that all
processes and threads that are created by the debuggee are also placed
under the debugger’s supervision. However, as I pointed out in Sec-
tion GHUMVEE uses a separate monitor thread for each set of
equivalent tasks. New monitor threads do not have the privilege to
monitor tasks that they have not attached to, even though the creator
of the monitor thread may have this privilege. The underlying rea-
son for this phenomenon is that the Linux kernel uses the debugger’s
task id to authenticate ptrace operations. Threads do not share task ids,
even though they might be in the same process. Therefore, whenever
a replica creates a new process or thread, the monitor thread under
whose supervision it was placed must detach itself from the new pro-
cess or thread first. The monitor thread can detach itself using the
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PTRACE_DETACH command. Then, the newly created monitor thread can
attach itself to the new process or thread.

Transferring debuggees from one debugger to another is a cum-
bersome process because the kernel allows the debuggee to run freely
and unsupervised when their debugger exits or detaches from the de-
buggee. The debugger therefore has to take the necessary precautions
to ensure that the debuggee cannot run uncontrolled.

Salamat proposed to let newly created tasks run until they hit their
tirst system call, and to replace the call number of this first system call
by that of sys_pause. When the monitor then detaches from the task,
the task would simply invoke the sys_pause call, which causes it to wait
until a signal is received. The newly created monitor thread could then
safely attach to the task.

GHUMVEE has a slightly different solution for this problem.
GHUMVEE overrides the entry point of each newly created task by
the address of a small, infinite loop. The original monitor can therefore
detach from the newly created tasks as soon as they are created and the
new monitor thread simply needs to restore the original entry point.

2.3.3 Stopping and Resuming Replicae

From a debugger’s point of view, a debuggee is either running or in one
of the ptrace-stopped states. Most of the ptrace commands require that the
debuggee is in a ptrace-stopped state and the debuggee will automati-
cally enter such a state when it has triggered an event that requires the
debugger’s attention.

After an event has been reported to the debugger, it can resume
the execution of the debuggee using one of several ptrace commands.
The most interesting among these commands are PTRACE.CONT and
PTRACE_SYSCALL. PTRACE_CONT resumes the debuggee until it is inter-
rupted by the delivery of a signal or until its process group is stopped.
PTRACE_SYSCALL is similar to PTRACE_CONT but it will also stop the de-
bugger when it enters or exits from a system call. This command is
particularly useful for a monitor because it allows the monitor to im-
plement RVPs.

A debugger must poll the kernel using one of the “wait” sys-
tem calls to receive notifications for its debuggees [79]]. Process state
changes such as transitions from the running to a ptrace-stopped state
can only be reported through one of the “wait” calls. The “wait” calls
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can be used in blocking or non-blocking mode. When used in blocking
mode, the call will not return until it has received an event. When used
in non-blocking mode, the call will return immediately, even if no event
has been reported.

GHUMVEE uses the sys_wait4 call to poll the kernel for ptrace-stopped
events because it is slightly faster than the other “wait” calls. The
“wait” calls are not ideally suited for use by a multi-threaded moni-
tor because it does not offer fine-grained selection of the tasks whose
state the monitor is interested in. Specifically, the “wait” calls allow
the monitor to either receive notifications for (i) all processes in a given
process group, (ii) for one specific process with a given process id, or
(iii) for all of the monitor’s child processes.

In an MVEE, option (i) can only be used in non-blocking mode be-
cause each replica is in its own process group. A monitor can therefore
not use option (i) in blocking mode because it only allows the moni-
tor to receive events from one of its replicae. Using option (i) in non-
blocking mode is not ideal either because it forces the monitor to ei-
ther unnecessarily consume CPU cycles, or to periodically relinquish
the CPU, which in turn increases the monitor’s latency in reacting to
events.

By the same reasoning, option (ii) can also only be used in non-
blocking mode. Each monitor is responsible for monitoring a set of
equivalent tasks, and it must therefore issue several “wait” calls to re-
ceive events for each of these tasks.

Option (iii) can be used in blocking mode, but not by the monitor’s
main thread. In Linux, all processes that are forked off another thread
are considered to be that thread’s children. The tasks that a thread is
attached to using ptrace are also considered to be that thread’s children.

As we described before, GHUMVEE starts its replicae by forking
them off the main monitor thread. All of the processes and threads
in all of the replicae are therefore considered to be the children of the
main monitor thread. If the main monitor thread were to use option
(iii) then it could receive notifications for tasks that it is not responsible
for and it would have to forward these notifications to the appropriate
monitor thread. This would add an unnecessary indirection, unneeded
complexity and additional latency. GHUMVEE therefore does not use
its main thread for monitoring at all.

In all other threads, GHUMVEE does use option (iii) in blocking
mode. This is the ideal design for an MVEE in terms of complexity and
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latency.

2.3.4 Monitor-Replica Data Transfers

The monitor often needs to read data from or write data to the address
spaces of the replicae in order to compare system call arguments and
in order to replicate the return values of master calls. Since the monitor
and the replicae run as separate processes, this data cannot be trans-
ferred directly. Instead, one of the Inter-Process Communication (IPC)
mechanisms or debugging APIs must be used.

A first API that is available for data transfers between a debug-
ger and its debuggee is ptrace. ptrace offers the PTRACE_PEEKDATA and
PTRACE_POKEDATA commands that can copy a data block from the de-
buggee to the debugger and vice versa. The size of the data blocks that
can be copied using these commands is fixed to one memory word, i.e.,
4 bytes on 32-bit systems and 8 bytes on 64-bit systems. This is a severe
limitation since many of the data blocks that are typically transferred
between the monitor and its replicae are much bigger than one memory
word.

Shared memory can be used as an alternative to ptrace. The mon-
itor can allocate a block of shared memory using the System V IPC
API [76] or the sys. mmap system call. This block can be mapped into a
replica’s address space transparently by means of injected system calls.
All monitor-replica data transfers can from then on be routed through
this shared block. To do so, the monitor must force the replica to copy
the data from its original location to the shared block, or vice versa,
depending on the direction of the transfer. One way to do this is to
inject calls to a specially crafted, position-independent memcpy routine.
Figure [2.4]illustrates this process. In this figure, the replica invokes a
system call at time t1. The monitor injects a call to the memcpy routine
at time t2 by overwriting the replica’s program counter. The memcpy
arguments can be injected by overwriting the values in the rdi, rsi, and
rdx on 64-bit x86 systems or by writing them on the replica’s stack and
overwriting the value in the esp register on 32-bit x86 systems. After
injecting the memcpy call, the monitor returns the control to the replica.
The replica copies the system call arguments into the shared block at
time t3 and invokes another system call to indicate the end of the mem-
cpy operation. The control then returns to the monitor at time t4. After
reading the system call arguments from the buffer and comparing them
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with the other replicae’s arguments, the monitor restores the original
register values at time t5 and resumes the original system call.
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Figure 2.4: Routing monitor-replica data transfers through a shared memory
block.

<€

For GHUMVEE, we originally opted not to use the shared memory
method. Instead, we designed and implemented a kernel patch that
extends the ptrace API. We added two new ptrace commands. PTRACE.-
EXT_COPYMEM can copy a fixed size data block between a debugger and
a debuggee or between two debuggees that are being controlled by the
same debugger. Similarly, PTRACE_EXT_-COPYSTRING can copy a NULL-
terminated C string.

Currently however, GHUMVEE uses the process.vm_readv API [73]
for data transfers. This API was introduced in Linux 3.2 and yields
similar performance to PTRACE_.EXT_COPYMEM. It does have two minor
disadvantages. First, it cannot be used to copy between two debuggees
directly. The debugger’s address space must be used as an intermedi-
ate. Second, it cannot be used to copy C strings because their size is
often not known by the debugger.

We compared these four data transfer methods by running syn-
thetic benchmark programs on a 32-bit x86 system that runs the Linux
3.16 kerne]ﬂ The benchmark programs first allocate a large buffer of
200Mb and then perform one million system calls in a tight loop. In this
tirst benchmark, whose results are illustrated in Figure we used a
system call that accepts a fixed sized data buffer as its argument. For
the second benchmark, whose results are illustrated in Figure we
used a system call that accepts a NULL-terminated C string as its argu-
ment. Prior to each system call invocation, both benchmark programs
write their system call argument into a randomly selected region within
the large buffer. The size of the system call argument can be passed to
the program as a command line parameter.

*The experiment yielded similar conclusions on a 64-bit system. GHUMVEE does
not support the shared memory method on 64-bit systems though.
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Figure 2.5: Comparison of the performance of different monitor-replica data
transfer methods for fixed sized data blocks.

When running this benchmark program in GHUMVEE, the monitor
copies the system call argument from the replicae’s address spaces to its
own address space to compare them. In each run, the monitor therefore
performs approximately two million data transfers.

We measured the performance of the data transfer methods for sev-
eral argument sizes by calculating the average run time of five itera-
tions of each benchmark with two replicae. We disabled Address Space
Layout Randomization (ASLR), hyper-threading and all forms of dy-
namic frequency and voltage scaling during the measurements to max-
imize the reproducibility of the results. Furthermore, we always seeded
the random-number generator we used to randomly select the region
with the same seed value.

As we can see in Figure the official process_vm_readv has ren-
dered GHUMVEE’s PTRACE_EXT_COPYMEM extension void. Figure
however, shows that the PTRACE_EXT_COPYSTRING extension is still the
fastest method for inter-process string copying but such operations are
rarely neccessary since only a handful of system calls accept C strings
as arguments. We can therefore no longer justify patching the kernel
with GHUMYVEE’s ptrace extensions.
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Figure 2.6: Comparison of the performance of different monitor-replica data
transfer methods for NULL-terminated C strings.

2.3.5 Performance Implications

Modern operating system kernels are constructed such that native pro-
grams can perform most system calls without having to pay the cost
of context switching. In such cases, the program only incurs modest
performance losses due to mode switching. This is however no longer
the case when a debugger is attached to the program. A debugger and
its debuggee run in separate processes and are therefore separated by a
hardware-enforced boundary. Consequently, the kernel must switch to
the context of the debugger whenever the debuggee triggers an event
that requires the debugger’s attention. Context switching is costly. Be-
sides being a computationally intensive task, it also involves page table
switching and TLB flushes [14].

Naively, one could avoid such flushes by preventing the debugger
from running on the same CPU core as the debuggee. The kernel can
then preserve the contents of the page table register on the debuggee’s
CPU core. The down side of this approach is that all information that
is relevant to the events the debuggee triggers must now propagate
through the CPU cache and/or the memory bus to the debugger’s CPU
core. We can therefore see a trade-off between cache and memory pres-
sure on the one hand and TLB pressure on the other hand.
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We have constructed two test cases to gain insight in this trade-off.
We tested our test cases on an Ubuntu 14.04 x64 machine with two Intel
Xeon E5-2600 CPUs with eight physical cores each. Dynamic frequency
and voltage scaling features, as well as hyper-threading were disabled
during our tests. We used the Linux 3.16 kernel for these tests.

For our first test case, we built a program that runs five million
sys_getpid system calls in a tight loop. sys_getpid is a typical ex-
ample of a system call that can be handled without having to switch
contexts. This program is therefore very fast. When running natively
on our testing machine, it runs in 0.3689 seconds on average when mea-
sured over 10 runs. We then ran one replica of this program under the
control of a simple MVEE.

In our first test, we did not force the MVEE’s monitor or the pro-
gram to run on specific CPU cores. The MVEE’s monitor does little
more than stopping the program at every system call entrance and exit,
reading the system call number at the system call entrance and the re-
turn value at the system call exit, and resuming the program immedi-
ately. Under these conditions, the program runs in 83.89 seconds on
average, or over 227x slower than the original program.

A second test yielded marginally better results. In this test, we used
the sched_setaffinity API to force the MVEE’s monitor and the
program to run on separate CPU cores. This approach minimizes the
amount of additional TLB misses we introduce in the program, but
does increase the pressure on the CPU cache and memory subsystem.
The program now ran in 82.32 seconds on average, or 223x slower than
the original program.

In our third test, we forced the MVEE’s monitor and the program
to run on the same CPU core. This approach minimizes the addi-
tional pressure on the memory subsystem but does incur the maximum
amount of additional TLB pressure. Nonetheless, this method yielded
significantly better results. The program now ran in 36.98 seconds in
total, or 100x slower than the original program.

For our second test case, we used the md5sum program to calcu-
late a file hash for a 1.2GB disk image. Natively, this program ran in
3.81 seconds on average and invoked 40715 system calls in total. We
then ran two replicae of this program under the control of our MVEE
and tested the same scenarios. In this case, our MVEE performed tasks
that were not necessary in the previous case. Specifically, our MVEE
verified the equivalence of all system calls and replicated the input the
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program receives from the sys_read calls to both replicae. For both
of these tasks, the MVEE transfers data between the address spaces of
the replicae and its own address space. These data transfers obviously
introduce additional cache and memory pressure.

In the first test, with neither of the replicae, nor the monitor itself
forced to run on specific cores, the program ran in 4.65 seconds on av-
erage, or 1.22x slower than the original program.

In the second test, with the replicae and the monitor all forced to
run on different cores, the program ran in 4.62 seconds on average, or
1.21x slower than the original program.

In the third test, we forced the monitor and the master replica to
run on one core and the slave replica to run on another. The program
now ran in 4.51 seconds on average, or 1.18x slower than the original
program.

These tests show that the overhead an MVEE incurs when intercept-
ing system calls is significant. ReMon, the hybrid IP+CP/US MVEE
we present in Chapter [6| has a much lower performance impact than
GHUMVEE because it can monitor and replicate innocuous system
calls in its In-Process component, thus avoiding the overhead of the
Cross-Process component.

2.4 Debugging Features in GHUMVEE

The Linux kernel does not allow for multiple debuggers to attach to
the same debuggee using the ptrace APIL. This design choice is under-
standable, but very unfortunate in our context since GHUMVEE uses
the ptrace API to monitor the replicae, and since being able to debug
replicae while they are being monitored can be tremendously useful.

To solve this problem, we have equipped GHUMVEE with much
of the same debugging features one would typically find in debugging
tools such as gdb and strace:

e GHUMVEE can be configured to log event traces for all of its
replicae. These event traces include information regarding the
signals that are sent to each replica as well as the system call
numbers, names, and arguments for all of the system calls each
replica performs. They also include timestamps for each event.
GHUMVEE can optionally also log complex system call argu-
ments such as I/O and message vectors.
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e GHUMVEE supports full backtracing. It exposes a fairly straight-
forward API that can be used to log the full call stack for each
variant. This call stack includes the callee addresses, as well as
the function names, source files and line numbers associated with
each callee. Optionally, it can also include a dump of the full
register context. At the heart of this API lies a fully-featured
C++ class that can be used to parse debugging information in
the DWARF2/3 format. Contrary to popular libraries such as lib-
backtrace, GHUMVEE’s class for debug information parsing can
parse information from exception handler frames as well as de-
bug frames.

e One can instruct GHUMVEE to generate backtraces by sending a
SIGQUIT signal to the main monitor thread.

e GHUMVEE can set soft- and hardware breakpoints on code
and data addresses in the replicae. When a breakpoint is hit,
GHUMVEE logs a backtrace for the replica and resumes its ex-
ecution.

e GHUMVEE can log the contents of the synchronization buffer
(cfr. Chapter @) as well as the IP-MON buffer (cfr. Chapter [6)
in a human-readable format.

This functionality has proven useful while, e.g., developing new
synchronization replication agents (cfr. Chapter[d). In the future, it can
also serve as a base to extend GHUMVEE with twin or delta debugging
functionality (cfr. Chapter 7).

2.5 Comparison with other MVEEs

We compare GHUMVEE with other MVEEs in Table This table
shows high-level properties and design choices, which we reviewed in
this chapter. It also summarizes which inconsistencies each MVEE can
deal with when executing single-threaded replicae. We discuss these
inconsistencies in-depth in Chapter 3l We also recap each MVEE's ca-
pabilities for supporting multi-threaded replicae. This will be the sub-
ject of Chapter
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N-Variant
Systems Cavallaro Orchestra Mx Tachyon VARAN GHUMVEE
general properties
open source yes no no no no no yes
intent security security security reliability reliability reliability security
system calls +
RVPs system calls | system calls system calls system calls system calls | system calls .
functions
monitor type IP/KS CP/US CP/US CP/US CP/US IP/US CP/US
architecture i386 i386 i386 x86-64 x86-64 x86-64 i386 + x86-64
Sy Gl 130 ? ~50 ? ? 86 198
supported
SPEC CPU 2006,
L
mleaR . PARSEC 2.1,
ph \; ! SPEC CPU PHORONIX 4.8,
ncg’mpréss 2000, SPEC | Apache, thttpd,
b e’t’ = | cpu 2005, lighttpd,
SPECCPU  [SPEC CPU 2006, Iftgd ;i;t Apache, memcached,
tested on Apache thttpd 2000, Apache, | coredutils, redis, gitpd, ! thttpd, redis,
. corehttp, "
Snort lighttpd lighttpd, beanstalkd,
compress,
rimegans memcached, mplayer,
‘r)nencgerl redis, firefox,
lighttod thté beanstalkd libreoffice,
GAMELLURLE) GNOME/KDE
coreutils
desktop apps
inconsistencies dealt with
o . delivered at
. optimized delivered
signals not supported | not supported . ? not supported . system call
delivery instantly
RVPs
system call
interruption due [not supported | not supported | not supported ? not supported | supported supported
to signals
RDTSC
. ’ no no no no no no yes
interception
vdso system calls
. no no no no no yes yes
intercepted
support for parallelism
fork/exec not supported | supported supported supported supported supported supported
. . limited limited limited L limited -
multithreading limited support limited support| full support
support support support support
synchronization
L no no no no no no yes
replication
support for diversity
implicit input -
- not supported | not supported | not supported | not supported |not supported | not supported | limited support

address space

reverse stack

call logging

. e e growth, multiple multiple multiple full ASLR,
diversification partitioning, | address space P
K . X e system call program program program disjoint code
techniques instruction set | partitioning = e e
. number revisions revisions revisions layouts
tagging o
randomization
transparency and ease of use
kernel patch .
X yes no no no yes no optional
required
full event
logging,
! limited system >
debugging 4 ? no ? ? ? backtracing,

breakpoints,
buffer logging

Table 2.2: Comparison of GHUMVEE with other MVEEs.
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Chapter 3

Inconsistencies and False Positive
Detections

The MVEE must feed all replicae the same input in order to guarantee
that they will behave identically under normal operating conditions.
For explicit input operations, such as reading an incoming packet from
a socket, the monitor can satisfy this requirement by applying the mas-
ter call mechanism we described in Section[2.2.2)to system calls such as
sys_read.

In some cases this is not sufficient, however. Several sources of in-
put can be accessed directly, without invoking any system calls. The
replicae often behave differently after reading input from such sources.
This can lead to false positive detections by the monitor. In this chap-
ter, we summarize the sources of input that can be accessed directly
and describe how we provide consistent input from such sources to all
replicae.

3.1 Shared Memory

All commodity operating system kernels offer a file mapping API and
an Inter-Process Communication (IPC) API that can be used to share
physical memory pages among several processes.

The file mapping API, which can be accessed through the sys. mmap
system call on Linux systems, allows for programmers to associate indi-
vidual physical memory pages with regions within a file on the file sys-
tem. The associated file is often referred to as the backing file. When a
page fault is triggered on a physical page that is backed by a file, which
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happens when this page is accessed for the first time, the operating
system will load the contents for the page from the associated region
in the backing file. The operating system will also write the contents of
the page back to the file should the page ever become dirty.

The programmer can specify which region of the backing file each
memory page corresponds to and whether or not the changes should
be written back to the file. However, even if the programmer requests
that changes be written back to the file, the operating system will only
do so if the programmer has opened the backing file with read /write
access. For some backing files, such as system libraries, the operating
system will deny any requests made by a non-priviliged user to open
the file with read /write access and will instead only allow read access.

Programmers often use file mapping as an efficient way to access
tiles. A mapped file can be accessed directly, without having to invoke
sys_read or sys.write calls. The file mapping API is also commonly used
to create shared memory pages. A program can create a temporary file
with read/write access and map this temporary file into its own ad-
dress space. Other programs can then map the same file into their ad-
dress spaces, thus sharing the associated physical memory pages with
the program that created the file.

Programmers can also use the IPC API, which can be accessed
through the sys_ipc or sys_shmget/sys_shmat system calls on Linux sys-
tems, to create and map shared physical memory pages not associated
with a backing file. These pages have a unique identifier. Programs
that know this unique identifier can map the associated physical pages
into their virtual address spaces.

Shared memory pages often constitute a problem within an MVEE.
Replicae can read from shared memory pages without invoking a sys-
tem call and, consequently, are not subject to the lock-step execution
mechanism we discussed in Section 2.2.T| when doing so. The MVEE’s
monitor can therefore not guarantee that the replicae will read the same
input from shared memory pages that are being written to by an exter-
nal process. Similarly, the replicae could also write to the pages directly,
which prevents the MVEE’s monitor from asserting that the replicae
write the same data to the pages.

A possible solution to this problem is to revoke the replicae’ ac-
cess rights to all shared memory pages. Each read from or write to the
shared pages would then result in a page fault. The operating system
would translate this page fault into a SIGSEGV signal, which is normally
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passed down to the program so it can invoke its signal handler. When
a debugger is attached, however, a notification is sent to the debugger
first and the actual signal is not passed to the program until the de-
bugger has approved it. In an MVEE, this mechanism could be used to
intercept all accesses to shared memory. For each SIGSEGV signal that
results from a read operation on a shared memory page, the monitor
could perform the read operation itself and replicate the results to all
replicae. For write operations, the monitor could perform the write it-
self. The monitor could then prevent the SIGSEGV signal from being
delivered, thus effectively emulating all accesses to the shared mem-
ory pages. Emulating accesses to shared memory is unfortunately pro-
hibitively slow [83] and completely negates the performance benefits of
using shared memory in the first place.

In GHUMVEE, we therefore opted to deny all requests to map
shared memory, unless the monitor can assert that the accesses to
the shared memory will not result in inconsistencies. Specifically,
GHUMVEE denies all requests to map shared memory through the Sys-
tem V IPC API since any pages mapped through this API can always
be written by external processes that know the page identifiers.

For file mappings on the other hand, GHUMVEE does allow read-
only shared mappings that are backed by files to which the user does
not have write access. Such mappings will have content that is com-
pletely static (i.e., the pages cannot be written to by either the repli-
cae or any external process that runs at the same privilege level). The
monitor can therefore still guarantee that the replicae will receive the
same input. Allowing read-only shared mappings is necessary to sup-
port dynamically linked programs since the program interpreter’ﬂpre—
ferred method of loading shared libraries is by mapping them using the
tile mapping APIL

GHUMVEE does not allow read /write shared mappings. The mon-
itor generally returns an EPERM error when a replica attempts to estab-
lish such a mapping, thus indicating that the mapping is not allowed.
In specific cases, however, read /write shared mappings are not used to
communicate with external processes, but instead simply as an efficient
way to access files. To handle these cases, we implemented a mapping-
type-override method. With this method, GHUMVEE changes the
mapping type from shared to private by overriding the arguments of

!The program interpreter is an OS component that is responsible for loading pro-
grams and setting up their initial virtual address space.
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the sys_-mmap call that is used to set up the mapping. Private mappings
are implemented using copy-on-write (COW) paging. The operating
system will therefore create a private copy of the privately mapped
page when the replica attempts to write to it for the first time. From
that point onwards, external processes can no longer influence the con-
tents of the privately mapped page, which eliminates the need for the
monitor to replicate the contents of the pages to all replicae. The mon-
itor does, however, still verify whether the replicae all write the same
contents to the privately mapped pages by comparing the page con-
tents when they are unmapped. If the contents of the pages do not
match, then the monitor will raise an alarm. If they do match, however,
the monitor will write the contents back to the backing file.

3.1.1 Evaluation and Comparison with other MVEEs

The aforementioned method of overriding the mapping type for file-
backed shared memory was neccessary to support programs in the
KDE desktop suiteﬁ These programs use file-backed shared memory
to read and write configuration files efficiently. Our method did not
cause noticeable slowdowns when running such programs.

Our decision to disallow read/write shared mappings and the use
of the System V IPC API does not constitute a big problem either
in commodity applications. While shared memory is the preferred
method for graphical applications to communicate with the display
server, we have not seen a single applications that did not have a fall-
back method in place when GHUMVEE'’s monitor rejected the request
to map shared memory pages. This fallback method typically yields
significantly worse performance, but is still acceptable in many situ-
ations. The MPlayelﬂ media player for example also relies on shared
memory for hardware-accelerated playback of movies. When running
MPlayer in GHUMVEE, it falls back to software-rendered playback. In
our tests, we could fluently play back a 1080p h264-encoded movie in
MPlayer with a frame drop rate of less than 1%, while running two
replicae side by side.

GHUMVEE'’s handling of shared memory is similar to Cavallaro’s
MVEE [27], but is more advanced than other security-oriented MVEEs
because those do not support the mapping-type-override method.

*https:/ /www.kde.org
*https:/ /www.mplayerhq.hu/
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3.2 Timing Information

Interactive and real-time applications frequently need to measure the
length of a time interval to guarantee that they will function correctly.
Media players for example need to know exactly when to start ren-
dering a frame. The timing information that these applications rely
on must be accurate and precise and must be accessible with minimal
overhead. Both processor vendors and kernel programmers therefore
offer an interface to access timing information with minimal overhead.

All x86 processors since the original Pentium therefore offer a ReaD
TimeStamp Counter (RDTSC) instruction which reads the value of a
special-purpose register that counts the number of clock cycles since
the processor was powered on [58]. This number can be divided by the
clock frequency to accurately measure the length of a time interval.

The 64-bit x86 version of the Linux kernel, as well as recent versions
of the 32-bit x86 kernel, implement the Virtual Dynamic Shared Object
(VDSO) [78]. The VDSO is a small dynamically linked library that is
mapped into every running program’s virtual address space. It consists
of two memory pages: an executable memory page that contains code,
and a read-only memory page that contains timing information. The
VDSO implements virtual system call functions. Each virtual system
call is an optimized version of one of the system calls that is exposed
by the kernel. Rather than the system call they correspond to, however,
the virtual system calls execute entirely in user space, thus avoiding the
often costly mode and/or context switches that come with the execu-
tion of a normal system call. Linux currently offers virtual system calls
for each API that exposes timing information.

Both the RDTSC instruction and the VDSO are therefore sources of
timing information that can be accessed without invoking an actual sys-
tem call. Once again, an MVEE’s monitor can therefore not guarantee
that replicae that access this timing information will receive consistent
input.

GHUMVEE implements workarounds for both problems.
GHUMVEE’s monitor sets the Time Stamp Disable (TSD) flag in
the CR4 register of the processor within the context of each running
replica [58]]. Setting this flag discards the replicae’ privilege to execute
the RDTSC instruction. Whenever the replica tries to execute an RDTSC
instruction, the processor will raise a general protection fault. The op-
erating system will translate this fault into a SIGSEGV signal and will
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notify the monitor accordingly. Whenever the monitor receives such a
notification, it will disassemble the instruction that caused the fault. If
the instruction is indeed an RDTSC, then GHUMVEE will execute the
instruction on the replicae’ behalf and replicate the results.

To eliminate the inconsistencies caused by the VDSO, GHUMVEE
will override the arguments of each sys_execve system call. This call is
used to execute a program. GHUMVEE changes the name of the pro-
gram that must be executed into the name of a small loader program
we have created. This small loader program, which we aptly called
the GHUMVEE Program Loader (GPL)ﬁ deletes the ELF auxiliary vec-
tor entry argument that specifies the location of the VDSO [72]. After-
wards, GPL will manually map the original program into the virtual
address space, set up the initial stack exactly as it would have been set
up had GHUMVEE not overridden the arguments of the sys_execve call,
and pass the control to the original program. A program never invokes
the VDSO directly but will instead use the wrappers provided by the C
standard library (libc). If the ELF auxiliary vector entry for the VDSO
is missing, however, then libc will fall back to using the original system
call that each virtual system call corresponds to. These original system
calls will be intercepted by GHUMVEE'’s monitor. An alternative solu-
tion could be to replace the VDSO with a custom library that leverages
GHUMVEE'’s implicit input replication infrastructure to replicate the
master replica’s system call results to all slave replicae.

3.2.1 Evaluation and Comparison with other MVEEs

To the best of our knowledge, GHUMVEE is the only existing MVEE
that handles the RDTSC instruction correctly. Along with Hosek and
Cadar, who independently proposed a solution of their own, we were
also the first to handle system calls in the VDSO correctly [53]. Our
solutions proposed solutions have a minimal performance impact on
the many applications we tested. The RDTSC instruction is typically
only used during the startup and shutdown of a program to, e.g., mea-
sure the run time of individual threads. Our proposed solution for
the VDSO does significantly impact the latency on executing invidual
timing-related system calls. In Chapter [, we propose a new monitor
design that reduces this impact to a bare minimum.

*GPL will be released under a BSD-style license by Q4 of 2015



3.3 File Operations 37

3.3 File Operations

Multi-Variant Execution should be transparent to the replicae and to
external observers. GHUMVEE therefore uses the master call mech-
anisms to ensure that I/O operations are only performed once. With
this mechanism, only the master replica performs the actual I/O oper-
ations, and the monitor will replicate the results to the slave replicae.
Intuitively it might make sense to also use master calls for system calls
that open, modify or close file descriptors. Regular files might, how-
ever, be mapped into the replicae’ address spaces using the file map-
ping APL If we would apply the master call mechanisms to such files,
then any subsequent file mapping request would fail in all slave repli-
cae. GHUMVEE therefore allows slave replicae to open, modify and
close file descriptors for regular files.

The master call mechanism must still be used to open, modify and
close other file descriptors such as sockets, however. Certain system
calls, such as sys_accept operate only on file descriptors associated with
sockets that are in listening state. Since only one socket can listen on
each port, GHUMVEE uses master calls for all socket operations.

Since some file descriptors are opened only in the master replica
and some are opened in all replicae, the same file descriptor might
have different values in the different replicae. As GHUMVEE must
ensure that the multi-variant execution is transparent to the replicae,
the monitor replicates the same file descriptor values to all replicae,
regardless of whether or not they have actually opened the file. When-
ever the replicae perform a normal system call that they must all exe-
cute, GHUMVEE will map the replicated file descriptor value back to
the original file descriptor value at the system call entrance site. When
the same call returns, GHUMVEE will map the original file descriptor
value back to the replicated file descriptor value.

3.3.1 Evaluation and Comparison with other MVEEs

Although little details on how other MVEEs handle file descriptors are
available, we assume that most of them use a similar solution to ours.
One notable exception is Orchestra. Orchestra’s monitor performs all
I/0O operations on behalf of the replicae. Replicae running in Orchestra
therefore do not open any file descriptors other than those that corre-
spond to regular files.
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3.4 Signal Handling

The many intricacies of the ptrace AP]I, the one-size-fits-all nature of sig-
nals in general and the myriad of scenarios in which signals may be de-
livered make correct handling of asynchronous signals one of the most
challenging problems when implementing an MVEE. The sad conse-
quence is that almost no existing MVEEs fully support signal handling.
Aswe showed in Table GHUMVEE is, to the best of our knowledge,
the only security-oriented MVEE to support, e.g., system call interrup-
tion.

3.4.1 Introduction

UNIX systems use signals as a general-purpose mechanism to send no-
tifications to processes [75]. Each such notification has a signal number
associated with it and the signal number generally defines the mean-
ing of the notification. When a program performs an invalid memory
access for example, the kernel sends a SIGSEGV signal to that program.

Programs have a wide extent of control over how the kernel should
treat the signals that are sent to the program. The kernel stores a
blocked signal mask for each program thread. Every signal number
corresponds to one of the bits in this mask. If the bit for a specific sig-
nal is set, and that signal is sent to the thread, then the kernel will store
the signal’s information in a pending signal queue and defer further
handling of the signal until the signal is unblocked.

The kernel consults the program’s signal handler table for instruc-
tions on how to handle unblocked signals. The signal handler table is
a fixed-size array of signal action rules, with each rule corresponding
to one signal number. Programs can choose whether or not to share the
same signal handler table among all their threads. A signal action rule
can specify that the corresponding signal should be ignored. The ker-
nel will then discard the signal whenever it attempts to deliver it to the
program. Another possibility is to register a signal handler function.
The kernel will invoke this function whenever it delivers the associated
signal.

We can distinguish between two kinds of signals. Control-flow sig-
nals such as SIGSEGV are sent as a direct consequence of a program’s
normal control flow. The program cannot continue executing until the
kernel has handled the control-flow signal. If a control-flow signal is
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not blocked and the program has registered a signal handler function
for the signal in the handler table, then the signal will be delivered syn-
chronously. Asynchronous signals on the other hand originate from
an external source and the program may continue executing while the
kernel is handling the delivery of an asynchronous signal.

When the kernel decides to invoke a signal handler function, it first
stores a backup of the receiving thread’s register context. The kernel
then transfers control to the signal handler function, possibly through
an intermediate dispatcher function. The signal handler function can
then deal with the event that caused the signal to be sent in any way
it sees fit. This includes invoking system calls and/or terminating the
program. A signal handler function returns by invoking a sys_sigreturn
system call. The kernel restores the original register context of the pro-
gram thread in this system call.

3.4.2 System Call Interruption

The kernel cannot invoke a signal handler function while the receiving
thread is executing a blocking system call. Instead, it will interrupt this
system call, force the system call to return an error code, and adjust
the instruction pointer such that the system call will automatically be
restarted when control returns to user space.

Some system calls will be interrupted due to the delivery of a signal,
even if the program has not registered a signal handler function for
that signal. The system call will be restarted immediately in that case.
The process of a restarting a system call is completely transparent to
the program itself. If the program is being debugged, however, the
debugger may observe the interruption of the system call.

If the program has registered a signal handler function, the kernel
will transfer control to said function using the mechanism described
above. When this signal handler function returns through an invoca-
tion of sys _sigreturn, the kernel will once again restore the original context
and transfer control back to the program. Since the kernel has adjusted
the instruction pointer prior to invoking the signal handler function,
the original system call will now restart.



40 Inconsistencies and False Positive Detections

3.4.3 Signal Delivery under ptrace

The process of delivering a signal to a program being debugged is more
complicated. A signal that is sent to a debugged program thread is ini-
tially stored in the pending signal queue for that thread. The thread will
enter the signal-delivery-stop state as soon as the signal is unblocked
and as soon as the program leaves any other ptrace-stop state [74].
These other ptrace-stop states include syscall-stop and group-stop.
The debugger observes the transition to signal-delivery-stop through
the return value of the sys_wait call.

The signal that caused the transition to the stop state stays pending
until the thread is resumed by the debugger. At that point, the debug-
ger must decide whether discard or inject the signal. If the debugger
decides to inject the signal, the kernel will attempt to deliver it using
the mechanism described in Section [3.4.1]

3.4.4 Synchronous Delivery of Asynchronous Signals

Signal handler functions may invoke system calls and/or modify the
program state. Security-oriented MVEEs that execute the replicae in
lock-step must therefore handle asynchronous signals with great care,
so as to avoid introducing inconsistencies in the replicae. To this end,
GHUMVEE defers the delivery of asynchronous signals until the repli-
cae reach the next system call RVP. We do this by initially discarding
any incoming asynchronous signal in the signal-delivery-stop state
and by re-sending the signal from the monitor when it can guarantee
that the replicae will be in equivalent states upon delivery of the signal.
GHUMVEE asserts this equivalence by waiting for the replicae to reach
a RVP before sending the signal. One minor problem has to be dealt
with, however. Since most system call RVPs correspond to ptrace-stop
states, i.e., replicae are generally in the syscall-stop state when they
reach a system call RVP, the monitor must resume the replicae after
sending the signal before they can transition into the signal-delivery-
stop state. After being resumed, the replicae may have executed an
arbitrary number of instructions before they enter the signal-delivery-
stop state, however. This can once again cause inconsistencies. To pre-
vent this from happening, GHUMVEE injects a tight infinite loop into
one of the executable code sections in each replica’s address space. This
infinite loop does not modify the program state, nor does it invoke any
system calls. Prior to sending a signal, GHUMVEE ensures that the
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Figure 3.1: Synchronous Signal Delivery in an MVEE

replicae are stopped at a system call exit. Then, GHUMVEE stores a
back-up of each replica’s register context and overrides the instruction
pointer to point to this small infinite loop. At this point, GHUMVEE
can safely send the signal.

Figure [3.1|illustrates the scenario where an asynchronous signal is
sent to the master replica. This is the most common scenario. Due to
GHUMVEE’s master call mechanism, the slave replicae typically are in-
visible to the rest of the system. Most signals are therefore only sent to
the master replica. One notable exception is the SIGCHLD signal, which
the kernel will automatically send to a parent process whenever one of
its child processes dies. Handling the SIGCHLD signal is a trivial exten-
sion of the above scenario. In the figure, at t0, we see that the kernel
stops the master replica because a signal is sent to it. The monitor re-
ceives the corresponding notification at ¢1 and resumes the master at
t2 while discarding the signal. The replicae then reach a RVP at ¢4,
after the master had already reached the syscall-stop state at ¢3. At
this point, the monitor cannot send the signal since both replicae are
stopped. Instead, it will resume them and wait until the system call
returns. GHUMVEE will store the back-up of the register context before
the system call and override the system call number with that of sys_get-
pid. When this sys_getpid call returns at ¢5-t6, GHUMVEE will override
the instruction pointer so that the replicae will jump to the infinite loop.
GHUMVEE then sends the original signal at t7 and resumes the repli-
cae. At t8, the replicae will have entered the signal-delivery-stop state
and GHUMVEE will have been notified. GHUMVEE then resumes the
replicae while injecting the signal at 9. The replicae then enter the sig-
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nal handling function associated with the signal.

3.4.5 System Call Interruption in GHUMVEE

Delivering a signal while all replicae are executing user-space code, as
illustrated in Figure is straightforward. Things quickly get more
complicated, however, when the replicae are executing a blocking sys-
tem call. As explained in Section blocking system calls are inter-
rupted by the delivery of a signal and will restart automatically, possi-
bly after the calling thread has invoked its signal handler for the signal
that had interrupted the system call. While this process is transparent
to the replica itself, it is not transparent to GHUMVEE.

Whenever the kernel interrupts a blocking system call executed by
one of the replicae, GHUMVEE will first see that system call returning
with an error code as the return value of that system call. The exact
error code indicates how the kernel would normally have handled the
further processing of the signal, had GHUMVEE not been attached to
the replica. GHUMVEE cannot see the signal that had interrupted the
replica until it is no longer in syscall-stop state. GHUMVEE therefore
cannot know whether the interrupting signal currently has an associ-
ated signal handler and whether or not the signal is currently blocked
or ignored. GHUMVEE therefore always restarts the interrupted sys-
tem call handler before attempting to deliver any signal.

The kernel informs GHUMVEE about the signal after it has
restarted the replica, but before the restarted replica is back at the sys-
tem call entrance site. GHUMVEE can therefore decide whether or not
to take further action at the entrance site of the restarted system call.
It must, however, still ensure that the delivery of the signal happens
synchronously. For this, all replicae must be synchronized at the same
RVP before the injection of the signal is attempted. This is anything
but a given because there are two common situations in which not all
replicae get interrupted by the delivery of the signal.

First, the signal may have been delivered during a master call.
Whenever the replicae invoke a system call that GHUMVEE dispatches
as a master call, only the master replica will invoke the original system
call, while the slave replicae will invoke a sys_getpid call.

If the master replica gets interrupted by a signal, then GHUMVEE
must only restart the system call for the master replica. Then, when
the master replica is back at the entrance site for this master call,
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GHUMVEE can decide whether or not the signal should be injected.
If the signal is to be injected, GHUMVEE will replace the system call
number in the master replica by that of sys_getpid and resume only that
replica. The signal can then be safely injected at the return site of this
sys_getpid call, since the slave replicae will also be stopped at the same
return site.

Second, the signal may also have been delivered during a normal
call, but only some of the replicae may have been interrupted. This is
a scenario that frequently occurs because certain blocking system calls
return immediately if a signal is pending. If a signal is sent to all repli-
cae at the same time but some replicae begin executing the system call
before the signal is sent and some begin executing the system call after
the signal is sent then the first set of replicae will be interrupted by the
signal, while in the other replicae, the system call will simply return.

GHUMVEE will restart the current system calls in all replicae in
this scenario. For the replicae that did not have their system calls inter-
rupted by the signal, however, GHUMVEE must manually adjust the
instruction pointer and restore the original register context before it can
restart the system call.

3.4.6 Evaluation and Comparison with other MVEEs

GHUMVEE’s mechanism for handling asynchronous signal delivery is
optimized for correctness, rather than performance. During our evalu-
ation, we have indeed concluded that almost every program that relies
on signal handling still functions correctly inside GHUMVEE. The only
exception we have found is the john-the-ripper program in the phoronix 4.8.3
benchmark suite. This program waits for signals to be delivered in a
busy loop, in which no system calls are used. Therefore, if GHUMVEE
intercepts a signal that is delivered to the replicae, it will indefinitely
defer the delivery of the signal because the replicae never reach an-
other system call RVP. One solution could be to start a timer when a
signal is intercepted and to force the delivery of the signal when the
timer expires.

Orchestra’s mechanism for signal handling is optimized for perfor-
mance, rather than correctness [114]. Orchestra uses a heuristic to de-
termine whether a signal can be safely delivered, even if its replicae
have not reached a system call RVP yet. Orchestra does however not
handle signals that interrupt system calls correctly.
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VARAN's signal handling mechanism is ideal with respect to per-
formance and correctness [53]. VARAN is an In-Process monitor and,
therefore, does not rely on the ptrace API. Furthermore, VARAN forces
its follower replicae to not invoke system calls at all. Instead, these
follower replicae just wait for the results of the leader replicae’s system
calls. In VARAN, the leader replica accepts and processes incoming sig-
nals without delay. While the follower replicae generally do not receive
signals at all, the leader replica will log the meta-data associated with
the signal into the event streaming buffer. This meta-data provides the
follower replicae with sufficient information to replay the invocation of
the signal handler truthfully.

3.5 Address-Sensitive Behavior

Most of the sources of inconsistencies in the behavior of single-threaded
replicae can be eliminated or mitigated by the monitor itself. The
one notable exception is address sensitivity, a problem we have fre-
quently encountered in real-world software. The observable behavior
of address-sensitive programs depends on their address space layout.
Any form of code, data, or address space layout diversification we use
in the replicae can therefore lead to false positive detections by the mon-
itor.

We have identified three problematic idioms that lead to address
sensitivity:

e Address-sensitive data structures. We have frequently encoun-
tered programs that use data structures whose run-time layout
depends on numerical pointer values. This practice is especially
common among programs that rely on glib, the base library of the
GNOME desktop suite. glib exposes interfaces that C programs
may use to create, manage and access hash tables and binary
trees. The default behavior of these glib data structures is to insert
new elements based on their location in memory. When an ob-
ject is to be inserted in a glib hash table, glib will calculate a hash
value based on the object’s location to determine which bucket
the object should be linked into. glib’s binary tree implementation
on the other hand will sort its nodes based on their numerical
pointer values.

Applying diversification techniques that modify the address



3.5 Address-Sensitive Behavior 45

space layout in multiple replicae of a program that contains
address-sensitive data structures will yield differences in the
replicae’” system call and synchronization behavior. In address-
sensitive hash tables for example, an insertion of the same logical
object in several replicae could trigger a hash table collision and
a subsequent memory allocation request (e.g., through a sys_mmap
call) in some replicae but not in others.

While it might seem sensible to tolerate small variations in the
system call behavior, we typically cannot allow variations in the
memory allocation behavior of the replicae, which we are bound
to see in programs with address-sensitive data structures. Varia-
tions in the memory allocation behavior cause a ripple effect in
multi-threaded replicae because tolerating a minor discrepancy
early on leads to bigger and bigger discrepancies in the synchro-
nization behavior and, consequently, in the system call of the
replicae, to a point where we can no longer distinguish between
benign discrepancies and compromised replicae.

Dynamic memory allocators are the instigator of this ripple effect.
GNU libc’s ptmalloc, for example, attempts to satisfy any memory
allocation request by reserving memory in one of its arenas. All
accesses to the allocator’s internal bookkeeping structures must
be thread-safe. It therefore relies on thread synchronization to en-
sure safety. As we will discuss at length in Chapter[d GHUMVEE
replicates the master replica’s synchronization operations in the
slave replicae. Thus, if the replicae behave differently with re-
spect to memory allocations, the replicated synchronization in-
formation might be misinterpreted by other replicae because it
does not match their actual behavior. From that point onwards,
such replicae will no longer replay synchronization operations in
the same order as the master and will therefore typically diverge
from the master with respect to the system call behavior.

e Allocation of aligned memory regions. An additional problem
we have identified in ptmalloc is its requirement that any memory
region it allocates through sys_ mmap is aligned to a large boundary
of, e.g., IMiB in Figure The operating system only guaran-
tees that newly allocated memory regions are aligned to a bound-
ary equal to the size of a physical memory page. As shown in
Figure ptmalloc therefore always allocates twice the memory
it needs and subsequently deallocates the region before and the
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region after the boundary. When running multiple replicae that
use this memory allocator, the sizes of the deallocated upper and
lower regions might differ. Worse yet, in some cases the newly al-
located memory might already be aligned to the desired bound-
ary and ptmalloc will therefore only deallocate the upper region.
This might trigger false positive detections in MVEEs that exe-
cute their replicae in lock-step since some replicae may deallocate
the lower and the upper region, while others only deallocate the
upper region.

Writing output that contains pointers. Some programs output
numerical pointer values. Unlike the previous problematic id-
ioms, writing out pointers often only leads to minor differences in
the system call behavior and we have not encountered any cases
where writing out pointers triggers a ripple effect. It is therefore
sensible to tolerate minor differences in the program output.

One problem to deal with, however, is that pointers are not al-
ways easily recognizable in a program’s output. Some programs
encode pointers, e.g., by storing them as an offset relative to a
global variable or object. Encoded pointers are often smaller than
the size of a memory word.

Similarly, many programs and libraries use partially uninitialized
structures as arguments for a system call. The uninitialized por-
tions of these structures may contain leftovers of previous alloca-
tions. These leftovers often include pointers. While it can often
be considered a bug to pass uninitialized structures to the ker-
nel, there are cases where the programmer is not to blame. An
optimizing compiler alighs members of a data structure such as
the one in Figure 3.3|to their natural boundary. In this figure, the
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struct padded_struct {

char chil; /1 byte

/ 3 padding bytes
int 1l; / 4 bytes on 64bits system
int 12; /4 bytes

¥;

Figure 3.3: Padding in data structures

three bytes after variable ch1 will therefore not be used. These
three bytes might therefore never be initialized and might over-
lap with remainders of previously allocated objects. This can once
again lead to minor variations in the output behavior.

All of the above idioms lead to discrepancies in the replicae’ system
call behavior and/or synchronization behavior. Small variations in the
system call behavior can in some cases be tolerated, especially if the
variations are limited to the arguments of a single system call. Varia-
tions in the synchronization behavior cannot be tolerated, however, as
we will argue in Chapter 4

3.5.1 Diversity Rendez-Vous Points

In order to maintain equivalent system call and synchronization be-
havior, even if address layout diversification techniques are used, we
introduce implicit input replication agents and diversity rendez-vous
points (DRVPs). We add these DRVPs to the points in the replicae’s
code where the addresses of objects in address-sensitive data structures
are used in pointer arithmetic or branch conditions.

At every DRVDP, we insert a call to an implicit input replication
agent. When called in the context of the master replica, the replica-
tion agent will store the address of the object in a circular buffer that is
visible to all replicae, as shown in Figure[3.4, When called in the context
of the slave replicae, the agent reads the stored address from the buffer
and returns it to the replica so that the recorded address may be used
in arithmetic operations and branch conditions.

We developed three components that aid in the implementation of
DRVPs and implicit input replication agents:

e The implicit input replication API: The implicit input replica-
tion API can be used to generate the replication agents and the



48

Inconsistencies and False Positive Detections

ooo

master replica implicit
implicit input
input replication

replication [~ buffer
a L agent

implicit
GHUMVEE kernel input  J&1

replication
agent
slave replicae

\.

Figure 3.4: Using implicit input replication agents to tolerate address-
sensitive behavior.

DRVPs. The API consists of a set of preprocessor macros that ex-
pand into C functions. These C functions implement the record-
ing and forwarding logic of the replication agent. In the master
replica, the generated function can retrieve the implicit input by
calling a programmer-specified function and can then record the
input into a circular buffer. In the slave replicae, the generated
function retrieves the input from the circular buffer.

An example of the replication API is shown in Figure In this
example, we generate a DRVP function for use in the popular
pango rendering library. This library stores several types of ob-
jects into address-sensitive data structures. In this example, we
generate a DRVP for the hash table that stores PangoOTRulesetDe-
scription objects. The intent of this DRVP is to replace the origi-
nal address-sensitive hash function, pango_ot_ruleset_description_hash.
The DRVP function therefore accepts the same arguments as this
hash function. In the master replica, the generated function will
call the original hash function and it will record the result into the
MVEE_PANGO_HASH_BUFFER.

In the slave replicae, the generated DRVP will read the recorded
hash from that same buffer. The replication API further allows
the programmer to specify whether or not the slaves should also
invoke the original function, e.g., if the original function has side
effects which may affect future system call and synchronization
behavior. It also supports debugging features that are not shown
in the figure.

e The lazy hooker: The generated DRVP functions can be embed-
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GENERATE_DRVP_FUNC(guint,
pango_ot_ruleset_description_hash,
{const PangoOTRulesetDescription® desc))

FORWARD_INPUT(
/% return type for the original function */
guint,
/¥ pointer to original function */
pango_ot_ruleset_description_hash,
J¥% arguments to original function */
{desc),
J* identifier for the circular buffer #=/
MVEE_PANGO_HASH_BUFFER,
/% should slaves call the original function? */
SLAVES_DONT_CALL_ORIGIMNAL_FUNCTION,
J/* should slaves check 1T their result matches
the master's result? */
SLAVES _DONT_CHECK_RESULT,
J#% execute the original function before locking
the buffer and loggging the result */
EXECUTE_BEFORE_LOCK) ;

return result;

Figure 3.5: Usage example for the implicit input replication APL
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static void init()

{
printf{"Registering LIBPANGO Hooks...%n");
REGISTER_DRVP(
/#% Install DRVP only in libpango.so.2 #/
"libpango.so0.2",
/% Pointer to the DEVP function */
pango_ot_ruleset_description_hash);
h

Figure 3.6: Registering a DRVP function with the lazy hooker.

ded in the replica by registering them with a shared library, which
we call “the lazy hooker”. This library monitors the dynamic
loading process of the replicae and can determine whether or not
a DRVP should be installed. Figure|3.6{shows how to register the
DRVP function we generated in Figure Using the REGISTER -
DRVP macro, we indicate that the lazy hooker may only insert the
specified DRVP function in the libpango.so.2 library, and that the
call to the DRVP function must be inserted in the function with
the same name as the DRVP function. Alternatively, by specify-
ing “*” as the library name, the programmer can request that the
DRVP be inserted in each library that exposes a function with the
same name as the DRVP function.

At the time of the registration, the lazy hooker may insert the
DRVP function immediately, if the specified library has already
been loaded, or it can defer the insertion until the program loads
the library.

The LinuxDetours library: We insert the DRVP functions using
LinuxDetours, a run-time code patching library we developed for
use in GHUMVEE. The library is named after Microsoft’s Detours
library and implements a subset of the official Detours API [56]. Lin-
uxDetours can redirect calls to functions and generate trampolines
that may be used to call the original function, without intercep-
tion. In our example, we redirect all calls to the pango_ot_ruleset_de-
scription_hash function to our DRVP function. Our DRVP function
then uses the generated trampoline to invoke the original func-
tion in the master replica.
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The method described above works especially well to support repli-
cae with address-sensitive data structures, such as some hash tables.
Address-sensitive hash tables require a dedicated hash function. This
dedicated hash function typically does nothing more than performing
a simple, in this case address-sensitive, hash calculation. The function
is also typically neutral with respect to the system call behavior of the
replicae and usually does not affect the replicae’s synchronization be-
havior. Using the aforementioned method, it is straightforward to cre-
ate dedicated DRVP functions that can replace the original hash func-
tions.

This method does not work well for memory allocators with special
alignment requirements. For example, ptmalloc does not have a func-
tion that is dedicated to requesting new memory regions from the ker-
nel (through sys_brk or sys_-mmap). All allocation requests are inlined in
larger functions. Furthermore, the address-sensitive functionality of pt-
malloc does have side effects (i.e., a sys-mmap call), so we cannot blindly
replicate the results of the address-sensitive functionality in the slave
replicae. Instead, we chose to introduce a DRVP directly into ptmal-
loc’s source code. Right after ptmalloc allocates a new block of memory
through sys.mmap, we added a sys_all_heaps_aligned system call. The latter
system call is non-existing but GHUMVEE intercepts it and interprets
it as a real system call nonetheless. The sys_all_heaps_aligned system call
returns 1 if the most recently allocated memory regions were all aligned
to ptmalloc’s desired boundary or 0 otherwise. If the call returns 0, the
DRVP function unmaps the most recently allocated heap in all replicae
and forces them to fall back to unaligned allocation.

3.5.2 Evaluation and Comparison with other MVEEs

We applied the implicit input replication API to run two popular,
though now outdated, desktop programs: the Firefox 3.6 browser and
the LibreOffice 4.5 office suite. We had to embed five replication agents
in total in order to run these programs reliably with Address Space Lay-
out Randomization enabled. To evaluate the developer effort required
to write these replication agents, we calculated their sizes in lines of C
code. The results are shown in Table[3.1]

To the best of our knowledge, GHUMVEE is the only MVEE to
date that has any provisions to eliminate inconsistencies resulting from
address-sensitive behavior.
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. implicit input lazy .

infrastructure replication API | hooker LinuxDetours total

lines of C code 260 355 180 795
agents/DRVPs glib gtk orbit pango libreoffice total
lines of C code 105 54 78 54 183 474

Table 3.1: Developer effort for the implicit input replication agents.

3.6 Conclusions

Older MVEEs build on the assumption that all program input either
originates from the system call interface, or can be stopped at the sys-
tem call interface by, e.g., disallowing the use of shared memory. In this
chapter, we described several cases in which this assumption is false.
We presented an overview of all inconsistencies one typically encoun-
ters when replicating single-threaded replicae and suggested solutions
for all inconsistencies that cannot be eliminated by replicating input at
the system call interface.



Chapter 4

Replication of Multi-Threaded
Programs

In the previous chapter, we presented implicit input replication agents
to deal with implicit inputs that introduce system call consistency vi-
olations, such as randomized virtual code and data addresses that
effect the system call behavior through address-dependent computa-
tions [133]. These agents log the implicit inputs in one replica, the
so-called master, and replicate those inputs in the other replicae, the
so-called slaves, thus restoring system call consistency. Together with
the system calls, the points at which these agents intervene form the
so-called rendez-vous points RVPs of the replicae.

In this chapter, we focus on a big weakness of existing secure
MVEEs with respect to system call consistency: secure replication
of non-deterministic multi-threaded applications. In real-life multi-
threaded programs, even the security-sensitive system calls that should
be monitored most strictly often differ between replicae as a result of
their non-deterministic scheduling. Because of the lock-step system
call execution and monitoring requirement, security-oriented MVEEs
cannot tolerate those divergences.

Two broad classes of techniques could potentially alleviate this
problem. First, a Deterministic Multi-Threading (DMT) system can
be embedded in the program to enforce a fixed thread schedule in all
replicae [10}/15}(17,37, 40,81, 82,89, 97,108, (145]. In the context of an
MVEE, however, all existing DMT systems fall short. To establish a
deterministic schedule, they all rely, in one way or another, on a to-
ken. Some systems only allow threads to pass this token when they in-
voke a synchronization operation. This approach is incompatible with
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threads that deliberately wait in an infinite loop for an event such as
the delivery of a signal to trigger because such threads may never in-
voke a synchronization operation. Other systems allow threads to pass
their token when they have executed a certain number of instructions.
Such systems cannot tolerate variations in the program execution and
are therefore incompatible with most code diversification techniques as
well as the implicit-input replication agents.

Alternatively, we can accept non-determinism and require only
that all replicae execute in the same non-deterministic order. On-
line Record /Replay (R+R) systems can provide this guarantee by log-
ging the execution in one replica and replaying it in the other repli-
cae [11,12,)69]. R+R systems are less sensitive to variations in the
program execution, which we typically see with diversified replicae.
But in order to use them in a security-oriented MVEE, they need to be
adapted to become address-agnostic and to support programs that use
ad hoc (i.e. non-standardized) synchronization primitives or lock-free
algorithms. Furthermore, for embedding an R+R system in a security-
oriented MVEE we need to ensure that any new functionality intro-
duced in the replicae must be neutral with respect to the RVPs, and
we need to secure the communication channel that is used to convey
the information about the recorded execution from the master replica
to the slave replicae.

This chapter makes four contributions. First, we present four R+R-
based synchronization replication agents that record synchronization
operations in a master replica and replay them in the slaves, thus en-
suring system call consistency. The agents are address-agnostic and
system-call-neutral, and hence compatible with existing secure MVEEs
and implicit-input replication agents. The most efficient agent commu-
nicates over a channel that is secured against malicious communication
by attackers.

Second, we present a practical strategy to extend our R+R-based
systems to support ad hoc and lock-free synchronization, which we
typically see in many low-level libraries.

Third, we report how we integrated our replication agents into
GNU's glibc and how we applied the aforementioned strategy to four
commonly used system libraries: GNU's libpthreads, libstdc++ and lib-
gomp. This integration enables support for data race free C and C++
programs that use the pthread and/or OpenMP programming models.

Finally, we extensively evaluate the run-time performance of our
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Figure 4.1: System overview

replication agents, the implementation effort that went into their inte-
gration into the aforementioned libraries, and the security of the pro-
posed features.

4.1 Replication of Multi-Threaded Programs

To monitor the replicae, GHUMVEE uses the ptrace and process.vm_*
Linux APIs, which we discussed in depth in Chapter 2l As the use of
these APIs involves context switching, they introduce significant laten-
cies in the interaction between the monitor and the replicae. This makes
them unacceptable for replicating synchronization events, which oc-
cur frequently in many programs and which are often handled entirely
in user space in the original programs to optimize performance. For
example, we observed gcalctool, a simple calculator from the GNOME
desktop environment performing 1.8M futex operations during its 400
ms initialization, almost all of which were uncontended and hence han-
dled in user space. Interposing all those operations with system calls
and ptrace made the initialization time grow to over 370 seconds, a
slowdown with a factor 925!

To avoid such an unacceptable overhead, our alternative solution
consists of a synchronization replication agent that replicates all syn-
chronization events entirely in user space.

4.1.1 Synchronization Replication Agent

We enforce an equivalent execution in all replicae by injecting a syn-
chronization replication agent into their address space, as shown in Fig-
ure At run time this agent forces the master replica to capture the
order of all inter-thread synchronization operations, hereafter referred
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to as sync ops. The agent logs the captured order in a circular, shared
buffer that is visible to all replicae. This buffer is mapped with read-
/write permission in the master replica and with read-only permission,
and at different addresses, in the slave replicae. In the slave replicae,
the agent uses the captured order to enforce an equivalent replay of
sync ops.

To capture the sync op execution order, we wrap them in a small
critical section at the source code level. Within the critical section we
tirst log information about the sync op in the first available slot of the
buffer and then perform the original op. Depending on the agent we
use, the information about the sync op consists of the thread ID, the
memory word that was affected by the op, and the op’s type.

The replication agent must be available to the entire program, in-
cluding any loaded shared libraries. So we chose to implement the
agent in glibc, at the lowest possible level in the user-mode portion of
the software stack where it is exposed to the program itself and to all
shared libraries.

The same agent is used in the master and slave replicae: Identical
instances of glibc are loaded into the master and slave replicae when
they are launched, though they might be loaded different addresses in
each replica. When an instance is later invoked at run time, it needs
to know whether it is invoked in a master or slave replicae, to either
capture or replay the sync op order. We therefore dynamically initial-
ize the agent in each replica. Soon after a replica is launched by the
MVEE monitor, its agent invokes a system call that is intercepted by the
monitor. Through this system call, the agent passes the location of its
status flags to the monitor. At that point, and at each later intervention
from the monitor in the replicae, the monitor can configure the agent
instance as a master or slave agent. Through the status flags, the mon-
itor can also disable the agent when the replicae are executing a single
thread, and enable the agent when the replicae (are about to) start ex-
ecuting multiple threads. From that initial configuration onwards, the
agent in each replica communicates only with the agents in the other
replicae. With the exception of being enabled/disabled, the agents do
not communicate with the monitor. This avoids the extensive context
switches that would result from using the ptrace or process.vm_* APIs for
replication.

While the high-level principles of our replication agents are reminis-
cent of online R+R techniques, we cannot trivially adopt them. Within
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Figure 4.2: Replay sequences with three replication strategies



58 Replication of Multi-Threaded Programs

an MVEE, it is critical that any new functionality injected into the orig-
inal code is neutral with respect to RVPs. Specifically, we have to ensure
that if the new functionality introduces a new RVP, this RVP is intro-
duced in all replicae at the exact same point in the program execution
and with equivalent arguments. Furthermore, because a secure MVEE
needs to enforce lock-step execution on the replicae, we need to repli-
cate information actively and with minimal delay to avoid that slave
replicae delay the master replica too much. We therefore implement
replication agents that make the recorded information visible immedi-
ately, rather than broadcasting it periodically.

These two design decisions have far-reaching consequences. First,
the RVP-neutrality constraint prevents us from using dynamic memory
allocators, because those use sync ops to coordinate multi-threaded ac-
cess to the memory, and introduce system call RVPs to allocate addi-
tional memory pages and to change protection flags.

Second, since we want any information to be visible immediately in
the slave replicae, the agent cannot perform any post-processing on the
recorded information. This prevents us from compressing the recorded
information to reduce our agents’ memory bandwidth requirements.

Third, our agent must support diversified replicae. It can therefore
not assume that the master and slave replicae are fully identical. For
example, the same mutex might be found at different addresses in the
different replicae. Consequently, the recording side of the replication
agent must record its information in a manner that is address-agnostic.

4.1.2 Replication Strategies

To replay the sync ops in the slave replicae, several approaches are
available that trade CPU cycles off against memory pressure. We have
implemented three replication strategies that meet the aforementioned
constraints.

Total-order replication agent

Our total-order (TO) replication agent replays all sync ops in the exact
same order in which they happened in the master replica. Figure [4.2(a)
shows two threads that execute under GHUMVEE’s control. In the
master replica, thread M1 first enters and leaves a critical section pro-
tected by lock A at times ¢; and ¢; resp. At those times, the wrappers of
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the corresponding sync ops log the activities of thread M1 in the repli-
cation buffer. Next, thread M2 in the master replica enters and leaves a
critical section protected by lock B at times ¢2 and ¢3 resp. These events
are also logged in order in the buffer. Right after ¢3, the buffer holds
the contents indicated in the figure. Time stamps to the left and right
of the buffer mark the time the buffer elements are produced and con-
sumed resp. The arrows on the left and right denote the position of the
producer and the consumer pointers resp. right after ¢3.

In the slave replica thread S2, corresponding to M2 in the master
replica, reaches the critical section protected by lock B first, at time 4.
At that time, the first element in the buffer indicates that synchroniza-
tion events in the master replica occurred in thread M1 first, so thread
S2 is stalled in the wrapper of the sync op in enter.sec. Only after the
first two elements in the buffer are consumed in thread S1 at times ¢
and tg, can thread S2 continue executing. Thus, even though the two
critical sections protected by locks A and B are unrelated, thread S2 is
forced to stall until thread S1 has replayed the operations performed by
thread M1.

This agent is trivial to implement, but not very efficient: The lack of
lookahead by consumers introduces unnecessary stalls as indicated by
the red bar in Figure f.2(a).

Partial-order replication agent

Our partial-order (PO) replication agent is more efficient. It only en-
forces a total order on dependent sync ops. This agent may replay
independent sync ops in any order, as long as it preserves sequential
consistency within the thread. The PO agent is more complex and in-
troduces more memory pressure because the agents in the slave threads
have to scan a window in the buffer to look ahead. However, it typi-
cally introduces much less stalling and generally outperforms the TO
agent. In Figure[£.2(b), we see the exact same order of events as in Fig-
ure a) until ¢4. This time, however, thread S2 may enter the critical
section without delay at ¢4 because the enter_sec operation does not de-
pend on either of the operations that preceded it in the recorded total
order.

Conceptually, there are significant similarities between this agent
and online R+R techniques such as LSA [11] and offline R+R tech-
niques such as RecPlay [110]. However, our agent captures events at
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a finer granularity of sync ops instead of pthread-based synchronization
operations. Furthermore, our agent is fully RVP-neutral. These are
relatively minor differences, however, as techniques like LSA can be
adapted to capture at a lower granularity and to use only statically al-
located memory. A more fundamental difference is that our agent also
supports diversified replicae. With queue projection, LSA discards the
per-thread order of synchronization operations and only maintains the
per-variable order. With diversified replicae, the same logical variable
might be stored at different addresses in different replicae. Our agent
therefore relies on the per-thread order to determine which logical vari-
able is affected by each synchronization operation.

Although the PO agent eliminates unnecessary stalling, it still suf-
fers from poor scalability. The master replica must safely coordinate
access to the circular buffer by determining the next free position in
which it can log an operation. If many threads simultaneously log syn-
chronization events, this inevitably leads to read-write sharing on the
variable that stores the next free position. A similar problem exists on
the slave replicae’s side because they must keep track of which data has
been consumed. With multiple slave replicae, this also leads to high
sharing and, consequently, high cache pressure and cache coherency
traffic.

Wall-of-clocks replication agent

The above observation led us to the design a third agent. This wall-of-
clocks (WoC) agent assigns each distinct memory location that is ever
involved in a sync op to a logical clock. These clocks capture “happens-
before” relationships between related sync ops [67]. Similar to, e.g.,
plausible clocks, but without using clock vectors, our clocks only cap-
ture the necessary relationships [127].

In Figure |4.2(c), lock A stored at address &A is assigned to clock cA.
Lock B is similarly assigned to clock cB.

On the master side, the agent logs the identifier of the logical clock
associated with each sync op, as well as that clock’s time. After log-
ging each sync op, the agent increments the logical clock time of the
associated clock.

In this agent, the logging is no longer done in a single circular buffer.
Instead there is one circular buffer per master thread, such that each
buffer has only one producer. In Figure 4.2(c), master thread M1 only
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communicates with slave thread S1 through buffer 1, whereas thread
M2 only communicates with thread S2 through buffer 2. This design
avoids the contention for access to the shared buffers.

Neither the master nor the slave replicae need to propagate their
current buffer positions to other threads. Furthermore, the master’s
logical clocks do not need to be visible to the slaves. The information
contained within the circular buffers suffices for the slave replicae to re-
play the same clock increments on their own local copies of each clock.

In Figure[.2|c), thread M1 first enters a critical section protected by
lock A at time ¢y. The agent observes that the current time on logical
clock cAis 0. It records the clock and its time in buffer 1 and increments
the clock’s time to 1. At time ¢, the agent logs the exit from the critical
section in buffer 1. This time around, the logical clock time is 1.

A similar situation then unfolds in thread M2 at time t5. This time
though, the critical section is protected by lock B, of which the associ-
ated memory location is assigned to clock ¢B, whose initial time also is
0. This information is logged in circular buffer 2, along with informa-
tion regarding the exit of the critical section in thread M2 at time #3. At
that point, clock ¢B is incremented to 2.

In thread M1, a third critical section is entered at time ¢4, which is
again protected by lock B. This event involving logical clock cB is logged
in buffer 1 with clock time 2.

On the slave replica’s side, the threads are scheduled differently in
our example. There, thread S2 reaches a sync op first, at time ¢5. The
agent observes in buffer 2 that it must wait until clock cB reaches time
0. Since this is the initial time on the slave’s copy of that clock, the
operation can be executed right away and thread S2 will increment the
time on its copy of ¢B to 1. If we suppose that thread S2 is then pre-
empted and thread S1 gets scheduled, S1 will enter and leave the critical
section protected by lock A at times ¢s and ¢7, consuming the first two
entries in buffer 1, thereby incrementing the slave copy of clock cA to 2.

The third operation in thread S1 at time tg is the most interesting.
In the first replication buffer, the slave agent observes that the sync op
to enter a critical section has to wait until its associated logical clock cB
has reached time 2. However, in the slave, that clock’s time was last
incremented at time ¢5, i.e., to the value of 1. Thread S1 must therefore
wait until some other slave thread has incremented the time on ¢B. This
will happen at time tg in thread S2. Shortly thereafter, the agent code
executing in thread S1 will observe that cB has reached the necessary
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value, and at t19 S1 will enter its second critical section.

With this WoC, the replication agent only inserts accesses to shared
data, and hence coherence traffic, for two reasons. First, it introduces
accesses to replication buffers shared between corresponding threads
in the master and slave replicae. This is a fundamentally unavoidable
form of overhead required to replicate the synchronization behavior
from the master to the slave replicae.

Secondly, the agent inserts accesses to shared clocks whenever mul-
tiple threads in the original program were already contending for locks
at shared memory locations. While these extra shared accesses in the
replication agents still introduce some overhead, we do expect the over-
head to scale with the pre-existing resource contention in the origi-
nal application. In other words, if the original application uses con-
tended global locks that decrease the available parallelism, the replica-
tion agent will hurt it further. However, if the original application in-
volves a lot of synchronization, but that synchronization is performed
using uncontended local locks, the WoC replication agent will not in-
troduce contended traffic within the master or slave replicae either.

As we will see in Section the WoC agent consistently outper-
forms the other agents on almost every benchmark. Most importantly,
as is the case with plausible clocks in general, the replication will al-
ways be correct [127].

One important remark remains to be made, however. While the
WoC agent is certainly the more elegant and more efficient of the three
proposed designs, it is not fully optimal. Due to the RVP-neutrality
constraint, we cannot dynamically assign each memory location to its
own private clock. Instead, we have to pre-allocate a fixed number of
clocks statically and we have to assign lock memory locations to one
of those clocks based on a hash of their memory address. Because we
want to use a cheap hash function, hash collusions are quite likely. Any
such collusion results in an m-to-1 mapping between multiple locks
and each clock. In other words, the WoC agent is bound to assign some
non-conflicting memory locations to the same logical clock. When this
happens, this introduces unnecessary serialization and hence poten-
tially also unnecessary stalls in the slave replicae.

Our WoC agent is similar to Respec [69], although it does not share
any part of its implementation. It differs from other clock-based tech-
niques, however, in that it does not use thread clocks. Instead, our
agent relies solely on the logical clock it assigns to each memory lo-
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Figure 4.3: Hidden buffer array access to the replication buffer.

cation. In the ideal case, our agent therefore only needs to read and
update the value of one clock to replay a synchronization operation.
Techniques that rely on Lamport clocks (e.g. ROLT [70]) by contrast
need to read and update the values of two clocks: the local thread clock
and the synchronization variable’s associated clock. Techniques that
rely on vector clocks (e.g. RecPlay [110]) need to read the value of at
least n + 1 clocks (with n the number of threads in the program): the
local thread clock, the synchronization variable’s clock, and the thread
clocks of all other threads. The reason why our agent does not need
local thread clocks is that it records into a per-thread buffer, rather than
a globally shared buffer. Therefore, a thread clock would never have
to be synchronized with other thread clocks, which eliminates the need
for such a clock altogether. Furthermore, the fact that our agent assigns
each memory location to a statically allocated clock implies that the
agent can be applied transparently and that it respects RVP-neutrality.

4.1.3 Secured wall-of-clocks agent

The agents implementing the three replication strategies as discussed in
the last sections are not very secure: They forward information through
a circular buffer that is shared among all replicae. This buffer easy to
locate since all three of these agents store a pointer to it in a thread-
local variable. Despite of the code reuse countermeasures we have in
place [130], attackers could exploit the fact that an easily locatable com-
munication channel between the replicae exists to set up an attack that
can compromise multiple replicae.

As the WoC agent outperforms the other two agents on average, we
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build on that agent to present an alternative, secured design that relies
on the hidden buffer array (HBA) shown in Figure This page-sized
array stores pointers to hidden buffers. Upon startup, a replica can
request that this HBA be allocated by GHUMVEE and subsequently
map it into its own address space using the System V IPC API [77].
GHUMVEE intercepts and manipulates this mapping call such that the
pointer to the HBA is not returned to the program. At the same time
though, GHUMVEE overrides the base address of the replica’s gs seg-
ment so that it points to the HBA.

The reason to override this address is that the x86.64 architecture
supports addressing of 48-bit (or bigger) pointers and has therefore dis-
abled most of the original x86 segmentation functionality. The gs and fs
segment registers may still be used as additional base registers, how-
ever, and by consequence all gs or fs-relative memory accesses are still
valid. It is extremely uncommon to still find such accesses in x86_64 soft-
ware, however. Furthermore, x86 processors do not allow user-space
instructions to read the segment registers. The gs and fs segments can
therefore be used to store pointers that are hidden from the user-space
software.

At a fixed offset within the HBA we store a pointer to the agent’s
circular buffer. The end result is that the replica must read the pointer
to the circular buffer indirectly, through a gs-relative memory access.
In assembler, we manually crafted a version of our WoC agent that
accesses this pointer in such a way. By storing the pointer to the
buffer and any pointers derived from it in a fixed caller-saved general-
purpose register, we guarantee that the pointer never leaks to mem-
ory and that no function outside the replication agent can observe the
pointer value. We further guarantee that (i) the pointer to the buffer is
never moved to a different register, (ii) the register is never pushed onto
the stack, (iii) the register is cleared before the function returns and (iv)
the replication agent does not call any functions while the pointer value
is visible.

Since neither gcc, nor LLVM offers syntactic sugar to allow for such
properties, we have chosen to implement both of the replication agent’s
functions that access the shared buffer in assembly code. The current
implementation, which we evaluate in Section totals approximately
150 LoC.
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4.1.4 Embedding the replication agent

The key challenge in embedding the replication agent into a program
is to identify all sync ops. Because we want to wrap these sync ops in
the source code itself, we also identify the sync ops at the source code
level.

Existing R+R systems, as well as DMT systems that impose weak
determinism, only order invocations of pthread-based synchronization
functions. That is insufficient for a secure MVEE because glibc and sev-
eral other low-level libraries implement their own sync ops. A failure
to order the sync ops in glibc tends not to affect the user-observable I/O
determinism of the program, but it does impact the general system call
behavior and hence violates the system call consistency needed in a
secure MVEE.

An alternative strategy would be to order all sync ops by wrapping
all loads and stores in the program. This would yield system call consis-
tency even in the presence of data races. Ordering individual loads and
stores leads to prohibitively high overhead however, as was demon-
strated in the context of strong determinism [40]. Moreover, given the
range of diversity we need to support in the replicae to mitigate a suf-
ficiently wide range of attacks, there is no guaranteed one-to-one map-
ping between the loads and stores in the different replicae.

The strategy we propose is most similar to weak determinism sys-
tems, but we capture sync ops at a lower level as shown in Figure In
existing strong determinism systems, all 11 memory operations need to
be ordered. (Lines 3, 9, and 10 each involve two memory operations.)
With existing systems of weak determinism, only the two (standard
synchronization) operations on the mutex on lines 2 and 5 are ordered.
In our solution, we wrap both the standard operations on the mutexes
as well as the three ad hoc synchronization events on lines 7, 11 and 13.
The latter one translates into a LOCK SUB instruction on the x86 archi-
tecture, and atomically sets the zero flag (ZF).

To identify the source lines to be wrapped, we first identify the sync
ops in the binary code, and then translate those to source line numbers
by means of debug information.

The relevant sync ops in the binary code come in three categories.
First, any instructions that the programmer explicitly marks as atomic
are sync ops. On the x86 architecture, this includes all instructions with
an explicit LOCK prefix, as well as XCHG instructions with an implicit
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Figure 4.4: Comparison between three classes of determinism.

LOCK prefix [58]. LOCK CMPXCHG is an example. Second, any store op-
eration (e.g., for a C assignment to a dereferenced pointer or volatile
variable) that directly succeeds an explicit memory barrier is a sync op.
Such stores are typically used in synchronization schemes like read-
copy-update (RCU). Third, any instruction that references a memory-
address (such as some memory-allocated variable) that is referenced by
another sync op also becomes a sync op. We refer to these operations
as unprotected loads and stores, a terminology sometimes used to denote
benign data races.

The guarantees we provide by running a replication agent that en-
forces an equivalent order of sync ops in all replicae are at least as
strong as the guarantees that weak determinism provides. To see why,
recall that weak determinism enforces a deterministic order of entries
into critical sections. Thus, in a correct program, weak determinism
will grant mutually exclusive access to related blocks of shared memory
in a deterministic order. Though this was historically not the case [42],
all modern user-mode programs that run on SMP-systems now imple-
ment mutual exclusion using an atomic test-and-set operation [68,88].
On x86 systems, several instructions provide test-and-set semantics,
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but they are atomic only if a LOCK prefix is used. Consequently, the first
category contains all instructions that may implement the entrance into
a critical section as a sync op. Operations that implement the exit from
a critical section can either be implemented using atomic test-and-set or
exchange operations (second category) or with atomic store operations
(first or third category).

On the GNU/Linux platform, all high-level synchronization primi-
tives in the pthreads, OpenMP and C++ standard libraries are based on the
mutual exclusion principle. In the pthreads library, e.g., functions such as
pthread_mutex_lock and pthread_cond_wait implement mutual exclusion using
LOCK CMPXCHG instructions. In the implementation of other high-level
synchronization primitives, a variety of atomic test-and-set operations
are used. All of them are prepended with LOCK prefixes, however, and
all of them are therefore classified as sync ops.

The identification and wrapping of sync ops is currently a partially
manual process. First, we disassemble the binary/library to identify
explicit memory barrier instructions or instructions with explicit or im-
plicit LOCK prefixes. If no such instructions are present, no further steps
are needed. We use debugging symbols to map all of the identified
instructions to their originating source line. For memory barriers, we
wrap the store that directly succeeds the barrier in calls to our replica-
tion APL. We identify loads of the same variable and wrap them too. To
some extent, we thus fix benign and deliberate data races, such as when
developers use such a barrier to set a flag without synchronization.

For source lines that compile into instructions with LOCK prefixes,
check whether or not compiler intrinsics are used to express the atomic
operations. If not, we insert calls to our replication API before and af-
ter the operation. Otherwise, we include an automatically generated
header in the source file. This header overrides all known intrinsics
that implement atomic operations and inserts the appropriate repli-
cation API calls automatically. It is generated by a simple script that
downloads the list of all atomic compiler intrinsics from the GNU GCC
website, parses the list and generates the necessary definitions. In ad-
dition, we identify other loads and stores of the variables involved in
the atomic operations and insert API calls manually.

While this process might seem cumbersome, it is important to note
that unless a program or higher-level library implements its own ad
hoc synchronization or lock-free algorithms, no memory barriers or in-
structions with LOCK prefixes will be found. So most programs are
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supported transparently. For our tests, only four libraries needed mod-
ifications. We report extensively on the size of these modifications in

Section

In many cases, and in particular in portable code, the manual ef-
fort to invest in these modifications is very limited. In portable code,
compiler intrinsics are used to implement atomic operations, as well
as all other accesses to the variables involved in those atomic opera-
tions. This is necessary to ensure portability to architectures that do
not guarantee the atomicity of aligned loads and stores. To wrap all the
necessary compiler intrinsics, it suffices to include our automatically
generated header in all source files.

Furthermore, even for programs and libraries that do need more
modifications, the patching process can be streamlined to a great ex-
tent. C++11 compliant compilers provide a template for atomic op-
erations [13]. With this template, a programmer can mark variables
that need to be updated atomically by modifying their type, i.e., by
wrapping the type in the std::atomic template. During the compilation,
the compiler translates all accesses to such variables such that the ap-
propriate atomic intrinsic is used for every access. Our automatically
generated header can then insert the appropriate calls to our replication
API automatically by overriding these intrinsics. In summary, if we use
a C++11 compliant compiler, the patching effort can be limited to mod-
ifying the type of all variables that need to be accessed and updated
atomically. In our future work, we plan to extend our current embry-
onic implementation in LLVM to automate this process completely.

The replication-enabled libraries can replace their original counter-
parts, in which case they will function correctly and with minimal over-
head outside the MVEE context. Alternatively, they can be installed
side-by-side with the original ones, in which case the MVEE will in-
tervene transparently in the library loading to load the replication- en-
abled ones. Our solution hence places a minimal burden on system
administrators and users.

4.1.5 Interaction with the Kernel

Synchronization algorithms often rely on the kernel’s futex API to in-
teract with other threads and processes. The multi-purpose synchro-
nization API is exposed through a system call, and is used throughout
GNU's pthreads library for two reasons. First, some functions use the
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FUTEX_WAIT operation to block the calling thread until the value stored
at a specified address changes. In the pthread_mutex_lock function, this
operation is used to block the calling thread if the mutex is currently
contended. Other functions such as pthread_cond_wait use the FUTEX_WAIT
operation to block until an event occurs. Other functions use the FU-
TEX_WAKE or FUTEX_.CMP_REQUEUE operation to signal threads that are
waiting for the value at the specified address to change. In the pthread.-
mutex_unlock function, wake operations are used to wake up threads that
are blocked in a related pthread_mutex_lock call. Functions such as pthread._-
cond_signal or pthread_cond_broadcast use wake operations to signal and
wake up threads that are blocked inside a related pthread_cond_wait call.

A potential issue arises when a thread performs a wake operation
for which only one other thread should be woken up. If more than
one thread is waiting in each replica and the replication agent does not
intervene, the kernel might wake up non-corresponding threads in the
replicae. In a slave replica, the woken thread will then stall indefinitely
(i.e., deadlock) at the first atomic op it encounters.

While this issue can be handled in the replication agents embedded
in all replicae, we chose to tackle the issue from within GHUMVEE’s
monitor instead. The monitor allows all replicae to invoke futex calls
but it allows only the master replicae to actually complete the call.
The monitor manipulates the system call number and arguments for
the slave replicae’s futex calls to have them perform a harmless non-
blocking system call instead (such as sys_getpid). The non-blocking call
returns immediately from the kernel, at which point the monitor stalls
the slave until the master’s futex call has also returned. At that point,
the monitor replicates the result of the system call to all slaves and re-
sumes them. This guarantees that the corresponding threads get woken
up in all replicae. By implementing the logic in the monitor instead of
in the agent, we keep the agent small and fast for its other replication
tasks. The additional overhead of going through the monitor is rela-
tively small, given that it already intercepts all system calls invocations
and returns anyway.
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4.2 Evaluation

4.2.1 Embedding the replication agent

To evaluate the run-time overhead of GHUMVEE, we used the PAR-
SEC 2.1 benchmark suite. We did not include the facesim and canneal
benchmarks because they contain many data races. For canneal, this is
hardly surprising as it is based on data race recovery. We applied minor
patche{] to four benchmarks to eliminate data races or to embed our
agent. ferret raced on the cnt_enqueue and input_end variables. Addition-
ally, the imagick library on which ferret depends contained unprotected
accesses to the free_segments variable. freqmine raced on the thread_begin._-
status variable. raytrace used ad hoc synchronization in its AtomicCounter
class. vips had an unprotected read and write in the gclosure.c file.

We further applied fixes for bugs which had been reported in
the literature or on the PARSEC web site. We configured fluidanimate
and streamcluster benchmarks to use the original pthread-based barriers
rather than the semantically equivalent but less efficient parsec-based
barriers.

On our testing system, the benchmark suite relies on four libraries
in which we embedded our replication agent: glioc 2.19, libpthread 2.19,
libstdc++ 4.8.2 and libgomp 4.8.2, the default library versions of Ubuntu
14.04. Since libpthread and glibc are built from the same source tree, we
treat them as one entity when reporting the required patching effort.

For libgomp and libstc++, we leverage the use of compiler intrisics as
discussed in Section Both libraries support specialized targets
and more generic targets: libstdc++ supports the so-called 486 and generic
CPU targets, while libgomp supports the so-called Linux and POSIX targets.
We adapted the makefiles, directory structures, and linker scripts to en-
sure that the code targeting the generic CPU and POSIX are used instead
of the code in support of the more specific i486 and Linux targets, thus
ensuring that code relying on compiler intrisics is used instead of code
involving inline assembly. Furthermore, we made sure that the auto-
matically generated header was included in all relevant source files.

For each of the libraries, all of this preparation required editing/ex-

ecuting less than 14 lines of script and source code. The automatically
generated header consists of 131 LoC. In addition, in libgomp, 2 lines of

LAt http://ghumvee.elis.ugent.be our patches, raw data and scripts are
available. GHUMVEE will be open sourced in Q4 2015.
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code needed to be edited to replace two unprotected load /store oper-
ations by atomic ones. So all in all, a very limited effort was required
to prepare these libraries: 2*14+2=30 lines of code needed to be edited
manually to prepare the two libraries that total about 110k LoC. More-
over, this manual editing was limited to 4 source files out of a total of
673 files.

A considerably larger patching effort was needed to embed our
agent in glibc/libpthread, because they use ad hoc synchronization
throughout and have many explicit memory barriers and unprotected
loads and stores.

Whereas more modern glibc/libpthread ports like the ARM port use
compiler intrinsics to implement their atomic operations, the AMD64
and 1386 ports do not, presumably because intrinsic support in compil-
ers was not up to par yet when those ports were developed. Instead, the
AMD64 and i386 ports rely on inline assembler. With today’s compiler
support for intrinsics, the inline assembler can be replaced by intrinsics
without performance penalty. In addition, our effort for embedding the
replication agent in glibc would have been much reduced in case the in-
line assembler had already been replaced by the intrinsics. As this is
not yet the case, we needed to do the replacement ourselves. For this
purpose, we replaced the x86 version of the lowlevellock.h header by the
ARM version of that same file. We also deleted the assembly-based x86-
specific versions of many pthread functions from the source tree, such
that the generic versions of those same functions are used instead.

This did not suffice, however. Contrary to libgomp and libstc++, glibc’s
generic code does not use compiler intrinsics directly. Instead, glibc im-
plements its own series of sync ops, of which some map directly to com-
piler intrinsics and others do not. So we opted to wrap glibc’s sync ops
manually, rather than with the automatically generated header. Our
manually constructed wrappers span 211 lines of code. We added an
additional 175 lines of code to allow Id-linux, which is also built from
glibc’s source tree, to still use the original unwrapped macros as needed
by GHUMVEE. We therefore needed 386 lines of code in total to wrap
all synchronization operations in glibc-liopthread. In addition, we added
approx. 261 lines of code to eliminate data races.

Finally, we added 14 lines in one of glibc’s linker scripts to expose
our replication agent to other libraries, and added our replication agent
itself. The WoC agent, for example, counts no more than 194 lines of C
code, while the secure WoC agent counts 167 lines of assembly code
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and 100 lines of C code.

Excluding the copying and deleting of existing code, as well as
our own replication agent, the source code patching effort to prepare
glibc/libpthread was limited to 211+175+261+14 = 661 LoC in 60 source
code and build files. Compared to the library’s total size of several
100K LoC spread over several thousand source code files, this effort is
still fairly limited. And all of it can of course be reused for replicating
all applications.

Moreover, since version 2.20, a gradual effort is ongoing in the glibc
developer community to replace inline assembler sync ops by their
more portable, more generic, more maintainable counterparts in the
form of compiler intrinsics. Together with the automated support we
are developing as mentioned near the end of Section this will re-
duce the required patching effort significantly in the near future.

4.2.2 Run-time overhead and scalability

We evaluated our technique on a system with two Intel Xeon E5-2650L
processors with 8 physical cores and 20MB cache each. The system has
128GB of main memory and runs the AMD64 version of the Ubuntu
14.04 OS. For the sake of reproducibility, we disabled hyper-threading
and all power saving and dynamic frequency and voltage scaling fea-
tures. The system runs a Linux 3.13.9 kernel that was compiled with
a 1000Hz tick rate to minimize the monitor’s latency in reacting to
system calls. We applied a small optional kernel patch (less than 10
LOC) that adds a variant of the sys_sched.yield system call that bypasses
GHUMVEE. Other than that, no kernel patches were used. With this
small kernel patch, our agents can efficiently yield the CPU whenever
they are waiting for preceding sync ops to finish replaying in the slave
replicae. This patch improves the performance of our TO and WoC
agents in the dedup benchmark but has no significant effects elsewhere.

All benchmarks were compiled at optimization level -O2 using GCC
4.8.2. The native performance of the benchmarks was measured using
the original, unpatched libraries that shipped with the OS. GHUMVEE
performance was measured using their GHUMVEE-enabled versions.

We measured the execution time overhead of our agents by running
each PARSEC benchmark with 1 to 8 worker threads natively as well as
in GHUMVEE with 2, 3, and 4 replicae. Using the native PARSEC in-
putsets, i.e., the largest standardized set, we ran each measurement five
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Figure 4.5: GHUMVEE execution time overhead, relative to native execution
of PARSEC 2.1 applications for different numbers of worker threads. Each
stack for each benchmark shows the overhead for 2, 3, and 4 replicae. The
four stacks per benchmark correspond to the three (non-secured) agents + the
secure version of the WoC agent.

times, of which we omitted the first to account for I/ O-cache warmup.
For 1, 2, 4, and 8 worker threads, Figure presents the benchmarks’
execution time as replicated by GHUMVEE, relative to the native ver-
sions. For each agent and for each benchmark, Figure 4.6/ shows how
the native and the replicated execution (for two replicae) scales with
the number of worker threads.

These figures display several trends. Most importantly, with both
WoC agents, many benchmarks (blackscholes, freqmine, raytrace, swaptions,
and even streamcluster) can be replicated with little overhead up to 8
worker threads, and in some cases even with 3 or 4 replicae. Other
benchmarks (bodytrack, ferret, vips, x264) can be replicated with little over-
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Figure 4.6: Scaling of the native (i.e., pthreads) and replicated benchmarks
(for two replicae, one master and one slave) with the four different replication
agents. On the X-axis, the number of worker threads is given. On the Y-axis,
the performance relative to one worker thread is presented. Fluidanimate only
runs when the number of worker threads is a power of two.
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head up to 4 worker threads. The average overhead of the replica-
tion remains below 2x for 2 replicae with the WoC agents, even with
8 worker threads. With more replicae, the overhead clearly increases.
This is of course the result of resource contention of the many threads
over the limited number of cores. For most of the mentioned bench-
marks, it then does not matter too much which agent is used.

For other benchmarks, however, there is a big difference in over-
head between the different agents, and there are several benchmarks
for which significantly larger overheads and bad scaling are observed.

First, regardless of which agent we use, dedup consistently suffers
high performance penalties. The main contributor to this overhead is
the high system call density in dedup. When running with 8 worker
threads, dedup executes over 123k system calls/second. This density is
far greater than in any other program we have tested so far. In the PAR-
SEC suite itself, the highest density we have measured besides dedup
was for the vips benchmark (20.9k system calls/second for 8 worker
threads). In older benchmark suites such as SPEC CPU2006, the high-
est density we have measured was around 1k system calls/second for
403.gcc. The high overhead in benchmarks with such high system call
densities is unfortunately a fundamental problem of the ptrace API on
which GHUMVEE and most other security-oriented MVEEs rely to
monitor the behavior of the replicae.

Second, the swaptions and fluidanimate benchmarks, which use fine-
grained synchronization, expose a major bottleneck in our PO and TO
agents. Both of these benchmarks use a fork/join threading model and
frequent, fine-grained synchronization. In both of these benchmarks,
all worker threads perform the same tasks and progress at roughly the
same pace. While swaptions does not use any explicit synchronization in
the application code itself, it does rely heavily on dynamic memory al-
location. The dynamic memory allocator in GNU’s libc uses ad hoc syn-
chronization and lock-free algorithms to ensure thread safety. Through
lioc, swaptions executes more than 398M sync ops when running with 5
worker threads. With 8 worker threads, swaptions performs over 403M
sync ops. This corresponds to 4.2M sync ops per second in the native
benchmark with 5 worker threads, and up to 7.5M sync ops per second
in the native benchmark with 8 worker threads.

In fluidanimate, the situation is even worse. Contrary to swaptions,
fluidanimate does invoke our replication agent directly. With 4 worker
threads, fluidanimate performs over 1.18B sync ops, which corresponds
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to over 9.8M sync ops per second in the native benchmark. These sync
ops originate mainly from the pthread_mutex_lock and pthread_mutex_unlock
functions, which are used to acquire or release one of the 2.31M indi-
vidual mutexes used in the program. With 8 worker threads, fluidanimate
performs over 2.35B sync ops, which corresponds to over 32.9M sync
ops per second in the native benchmark. Because the lock and unlock
operations are spread over so many different mutexes, there is very lit-
tle contention in the native benchmark.

In GHUMVEE, however, the TO and PO agents create a lot of con-
tention. Both agents capture the total order of the sync ops in a single
circular buffer. To capture this order, the agents acquire a lock before
executing the original atomic op and do not release this lock until the
operation has been logged in the buffer. These agents therefore effec-
tively serialize the execution of sync ops in the master replica.

A second problem with these two agents is that all replicae must
keep track of their current position in the buffer. This position must be
read before the processing of each atomic op, and updated after each
atomic up. Every time an update happens on a different core that does
not share a cache with the core on which the previous update was ex-
ecuted, the cache line that contains the current position in the circular
buffer will be invalidated, and hence cause stalls in the cores’ pipelines.

The combination of these two bottlenecks results in poor scaling for
swaptions and fluidanimate. In other benchmarks, the effects of the serial-
ization and the additional cache coherence traffic incurred by our TO
and PO agents are less visible. The main reason is that the other bench-
marks perform much less sync ops than swaptions and fluidanimate. In the
other benchmarks, the highest sync op rates occurred for dedup and vips,
with 936K and 644K sync ops per second in the native benchmark resp.

Most importantly, our WoC agents almost completely eliminate the
bottlenecks observed in the swaptions and fluidanimate benchmarks. Only
in the vips benchmark, these agents cannot avoid a significant serializa-
tion overhead when the number of worker threads increases, because
it assigns many unrelated mutexes to the same logical clocks. Thus, for
this specific benchmark, the PO agent outperforms the WoC agents.

A final trend is that benchmarks that use condition variables do not
scale well beyond 6 worker threads. The bodytrack, dedup, ferret, vips and
x264 benchmarks all rely on condition variables to signal and to wake
up threads. With enough available CPU time, all of the benchmark’s
threads can run simultaneously and a thread can be signaled without
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resorting to sys_futex calls. The five mentioned benchmarks all have het-
erogeneous threading models and have more than n threads running
simultaneously (with n the number of worker threads). For that rea-
son, our machine’s 16 cores simply cannot run all threads in 2 or more
replicae simultaneously.

All in all, the WoC agents perform reasonably well. With 4 worker
threads and two replicae, the average slowdown of our MVEE is only
1.33x with the regular WoC agent and 1.32x with the secured WoC
agent. With the TO and PO agents, the average slowdown is 1.73x and
1.64x resp. The high system call overhead in the dedup benchmark is
the main contributor to the slowdown. In this configuration, the slow-
down in dedup ranges from 2.98x with the WoC agent to 4.19x with the
TO agent.

With 8 worker threads and two replicae, the average slowdown is
much higher. The slowdown for our TO, PO, WoC and secured WoC
agents is 3.69x, 3.42x, 1.99x, and 1.98x resp. For our TO and PO agents,
the main cause is the introduced serialization and constant cache inval-
idations that come with the single circular buffer approach. Our WoC
agents eliminate this bottleneck for the most part, but in this configu-
ration, the lack of resources on our test machine becomes a problem.
The variations in results for the WoC agents are caused by minor dif-
ferences in their implementation. The regular WoC agent accesses the
synchronization replication buffer directly, whereas the secured WoC
agent accesses the buffer indirectly, as we explained in Section [4.1.3|
This indirection slightly increases the cache pressure. As opposed to
the regular WoC agent’s C implementation however, the secured WoC
agent’s hand-written assembler implementation does not spill any reg-
isters to the stack. This optimization slightly reduces the cache pres-
sure. The combination of these two minor implementation differences
slightly favors the secured WoC agent in terms of performance.

4.2.3 Security Evaluation

All of our replication agents rely on a buffer that is shared between
all replicae. This buffer is mapped as a read-write memory segment
in the master replica and as a read-only segment in the slave replicae.
Intuitively, it might seem like a security risk to create such a communi-
cation channel between the replicae because it can be used to forward
information from the master to the slave replicae without triggering a
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monitored RVP. In practice, however, the security risk is minimal.

In principle, it is possible to launch attacks that cause the master
replica to write arbitrary data into the buffer, but the master replica can-
not instruct the slave replicae to use the arbitrary data in any meaning-
ful way other than to replay synchronization operations, because the
data written into the synchronization buffer is only read by the replica-
tion agent. We have manually audited our replication agents and ver-
ified that they never pass any information they retrieve from the syn-
chronization buffer on to any other part of the program. GHUMVEE
further ensures that explicit input, i.e., input retrieved from system
calls, is never written into the synchronization buffer.

We do, however, anticipate future MVEE designs in which the
MVEE does not arbitrate all system calls that may retrieve input. For
example, the recently proposed reliability-oriented VARAN handles
system call monitoring and input replication entirely in user space and
inside the context and address space of the replicae [53]. In such a sys-
tem, the synchronization buffer could in theory be used as an uncon-
trolled communication channel, which might aid a compromised mas-
ter replica in mounting an attack on the slave replicae. Specifically, the
compromised master replica could manipulate the return values of its
system calls, thereby instructing the slave replicae to read further input
from the synchronization buffer.

To protect the synchronization replication buffer in this scenario,
GHUMVEE forces the buffer to be mapped at different, randomized ad-
dresses in each replica. A compromised master replica therefore would
not know the exact location of the buffer in the slave replicae and it
would have to derive the location through information leakage or by
guessing. Alternatively, the master replica could try to construct a code
reuse attack that invokes the replication agent’s code to read from the
synchronization buffer.

GHUMVEE prevents the latter attack with its DCL. The master
replica can therefore not mount a code reuse attack: He cannot assume
that slave replicae have the same memory layout as the master replica,
and if he feeds an address to the replicae that points to an executable
gadget in the master’s address space, the slave will raise an exception
when it tries to execute code at the same address.

Guessing the location of the buffer is hard. GHUMVEE currently
use synchronization buffers of 2560/ 7B, which corresponds to 65536
memory pages. The AMD64 ABI allows user-space applications to use
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48 bits for memory addressing but excludes the first memory page, i.e.,
the page that starts at address 0z0. Therefore, a user-space applica-
tion may map up to 23¢ — 2 memory pages. The chance to blindly
guess the location of a 256/iB buffer in one slave replica is therefore
65536/(236 —2) or 9,53 -1077.

Forcing the slave replicae to leak the location of their synchro-
nization buffer is not trivial either. While the TO, PO and regular
WoC agents do internally store a pointer to the synchronization buffer,
GHUMVEE prevents leakage of the pointer from the slaves to the mas-
ter through the buffer by mapping the buffer as read-only in the slaves.
As GHUMVEE intercepts all system calls, it is trivial to prevent a
replica from reverting that memory protection.

Leaking the pointer through other channels is still possible, how-
ever. We have therefore constructed our secured WoC agent, which
significantly reduces the odds of a successful leakage attack. This se-
cured agent does not store a pointer to the synchronization buffer, but
instead accesses the synchronization buffer only through an indirection
via the gs segment, as explained in Section[4.1.3]

A remaining option to consider is the use of a covert channel be-
tween the replicae, and to use the MVEE as the medium through which
the covert channel communicates. For example, the replicae can delib-
erately delay each other by exploiting the MVEE’s lock-step execution
mechanism. This mechanism dictates that certain operations may only
be completed when all replicae attempt to invoke them. The length of
the delay can represent information such as individual bits of a pointer
value. While it is easy to write programs that intentionally set up and
exploit such channels, it is not possible to deploy this technique if the
MVEE'’s protection policy is properly implemented. In GHUMVEE,
DCL prohibits the launch of a code reuse attack (to setup and exploit
the covert channels) in the first place.

In conclusion, we believe that our synchronization replication
buffers and agents are sufficiently hardened against attacks, even in
scenarios where the master replica can forward explicit input to the
slave replicae via those buffers.
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4.3 Related Work

4.3.1 MVEEs

Throughout the last decade, several MVEEs have been presented. Cox
et al. first proposed N-Variant Systems, a kernel-space MVEE [35].
Shortly afterwards, Cavallaro presented a proof-of-concept user-space
MVEE [27]. Salamat et al. then proposed Orchestra, a more ad-
vanced user-space MVEE [114]. More recently, Hosek and Cadar pre-
sented Mx [52] and VARAN [53], while Maurer and Brumley intro-
duced Tachyon [85]. The latter three systems are not security-oriented
MVEE:s like the former ones, as they aim at safe testing of experimen-
tal software updates, rather than at protecting programs against ex-
ploits. The only multi-threaded applications on which VARAN was
tested were server applications in which none of the system call behav-
ior depends on the thread synchronization order: Those server bench-
mark threads perform almost completely independent computations.
By contrast, the system call behavior in the PARSEC benchmarks, even
our data race free versions, depends very much on the synchroniza-
tion order. Without replicating and ordering synchronization events,
none of the PARSEC benchmarks can be handled correctly. VARAN's
approach of ordering system calls and signals but not synchronization
events, is simply not a generic, reliable solution. While some of the ex-
isting MVEEs have been evaluated on multi-process applications (such
as older version of Apache), GHUMVEE is the first to provide active
support for non-deterministic, multi-threaded applications.

4.3.2 Deterministic Multithreading

Deterministic MultiThreading (DMT) systems impose a deterministic
schedule on the execution order of instructions that participate in inter-
thread communication, or a deterministic schedule on the order in
which the effects of those instructions become visible to other threads.
Some DMT systems guarantee determinism only in the absence of data
races (weak determinism), while others work even for programs with
data races (strong determinism).

Some DMT implementations, especially the older ones, rely on
custom hardware [12,/40,/41} 54] or a custom operating system [6}16].
Of interest to us, however, are the user-space software-based ap-
proaches [10,15,17,37,40,81,82,89,97,108145].
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Software-based DMT systems come in many flavors but essentially,
they all establish a deterministic schedule by passing a token. We refer
to the literature for an excellent overview of the possible ways to im-
plement the deterministic schedule, as well as their implications [119].
In the remainder of this discussion, we focus on the fundamental rea-
son why DMT systems are incompatible with MVEEs that run diversi-
tied replicae: the timing of and prerequisites for the deterministic token
passing.

Most DMT systems require that all threads synchronize at a global
barrier before they can pass their token. Some of the systems that em-
ploy such a global barrier, insert calls to the barrier function only when
a thread executes a synchronization operation [10,/17,81,108]. This ap-
proach is incompatible with parallel programs in which threads delib-
erately wait in an infinite loop for an asynchronous event such as the
delivery of a signal to trigger. Such threads never reach the global bar-
rier. Other DMT systems tackle this issue by inserting barriers at deter-
ministic points in the thread’s execution. These deterministic points are
based on the number of executed store instructions [97]], the number of
issued instructions [[145] or the number of executed instructions [15,40].
All of these numbers are extremely sensitive to small program varia-
tions, which makes such systems an ill fit for use in diversified replicae.

Conversion [89] does not use a global barrier but, like other DMT
systems, it relies on a deterministic token that can only be passed when
threads invoke synchronization operations, which again is incompat-
ible with parallel programs in which some threads never invoke syn-
chronization operations. RFDet [82] uses an optimized version of the
Kendo algorithm [97] to establish a deterministic synchronization or-
der. Like Kendo however, the order is still based on the amount of exe-
cuted instructions in each thread, which makes RFDet equally sensitive
to program variations.

4.3.3 Record/Replay

Record /Replay (R+R) systems capture the order of synchronization op-
erations in one execution of a program and then enforce the same order
in a different execution. This can happen offline, by capturing the order
in a file to be replayed during a later execution of the same program, or
online, by broadcasting the order directly to another running instance
of the program. In the absence of data races, R+R systems show many



82 Replication of Multi-Threaded Programs

similarities with DMT techniques that impose weak determinism.

RecPlay is a prime example of an offline R+R system [110]. Dur-
ing recording, RecPlay logs Lamport timestamps for all pthread-based
synchronization operations [67]. During subsequent replay sessions,
synchronization operations are forced to wait until all operations with
a earlier timestamp have completed. Because it only enforces the or-
der of synchronization operations, RecPlay’s replication mechanism in-
curs less overhead than preexisting techniques that replicate the thread
scheduling order or the order in which interrupts are processed [5].
Moreover, RecPlay assigns the same timestamp to non-conflicting syn-
chronization operations, such that they can also be replayed in parallel.

Loose Synchronization Algorithm (LSA) was one of the first tech-
niques that adopted R+R for use in fault-tolerant systems [[11]]. LSA des-
ignates one of the nodes as the master node. The master node records
the order of all pthread-based mutex acquisitions and periodically repli-
cates this order to the slave nodes. These slave nodes then enforce the
same acquisition order on a per-mutex basis.

More recently, Lee et al. proposed Respec online replay on multi-
processor systems [69]. Oriented towards fault-tolerant execution of
identical replicae, Respec purposely records an unprecise order of syn-
chronization operations in the master process and speculatively replays
that order in the slave processes. At the end of a replay interval, Re-
spec checks whether the slaves are still synchronized with the master
process by comparing their state, incl. their register contents. If not, it
rolls them back. While recording, Respec maps synchronization vari-
ables onto a statically allocated clock, similarly to our WoC agents.
It is doubtful, however, whether Respec’s approach could work in a
security-oriented MVEE like ours, in which diversity in the replicae
makes it hard (if not impossible) to detect whether the replicae have
diverged at the end of a replay interval.

Other online R+R techniques rely on custom hardware support [12],
and hence are not useful for a secure MVEE for off-the-shelf systems.

4.4 Conclusions

This chapter presented how GHUMVEE was extended to become the
tirst security-oriented MVEE that can replicate parallel programs cor-
rectly. We proposed three replication strategies and implemented four
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replication agents to implement them, one of which does so over a se-
cured communication channel. Our replication agents are conceptually
similar to existing tools, but unlike existing tools, they fit within the
constraints that a security-oriented MVEE imposes for lock-step moni-
toring of diversified replicae.

Additionally, we proposed a new strategy to embed a replication
agent into parallel programs, incl. programs that use ad hoc synchro-
nization primitives, and we evaluated the effort to do so. In the future,
we plan to automate this strategy to a large degree.

We extensively evaluated the effect of our MVEE and our replica-
tion agents on the PARSEC 2.1 benchmarks on the GNU/Linux plat-
form. With our secure wall-of-clocks agent, the best of the four agents,
we achieve an average slowdown of just 1.32x when running the bench-
marks with 4 worker threads and 2 replicae.
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Chapter 5

Disjoint Code Layouts

In 2007 Shacham presented the first Return Oriented Programming
(ROP) attacks for the x86 architecture [121]. He demonstrated that
ROP attacks, unlike return-to-libc attacks, can be crafted to perform
arbitrary computations provided that the attacked application is suffi-
ciently large. ROP attacks were later generalized to more architectures
such as SPARC [24], ARM [65], and many others. Despite the progress
and activity on the attacker front, defense against ROP attacks is still
very much an open problem. As will be discussed in the related work
section, all of the existing solutions come with important drawbacks
and limitations.

As an alternative protection against user-space ROP attacks, we
present Disjoint Code Layouts (DCL). This technique relies on the exe-
cution and replication of multiple run-time variants of the same appli-
cation under the control of a monitor, with the guarantee that no code
segments in the variants” address spaces overlap. Lacking overlapping
code segments, no code gadgets co-exist in the different variants to be
executed during ROP attacks. Hence no ROP attacks can alter the be-
havior of all variants in the same way. By monitoring the I/O of the
variants, and halting their execution when any divergent I/O opera-
tion is requested, the monitor effectively blocks any ROP attack before
it can cause harm. Our design and implementation of DCL offers many
advantages over existing solutions:

e DCL offers immunity against ROP attacks, rather than just raising
the bar for attackers.

e The execution slowdown incurred by our monitor and protection
is minimal, up to orders of magnitude smaller than in some exist-
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ing approaches.

A single version of the application binary suffices to protect
against ROP attacks. Optionally, our monitor supports the exe-
cution and replication of multiple diversified binaries of an appli-
cation to also protect against other types of memory exploits.

With user-space tools only, we achieve complete immunity
against user-space application ROP attacks. No adaptation of the
underlying Linux OS is needed.

Similarly, our solution only requires run-time intervention. It is
therefore compatible with existing compilers and existing solu-
tions such as stack protectors.

Requiring no or only trivial adaptations of the software by the
developer to make his application support our monitor’s repli-
cation, the presented techniques are applicable to a wide range
of applications, including multi-process multi-threaded applica-
tions that rely on custom synchronization libraries and that fea-
ture address-dependent behavior.

Unlike some existing techniques, DCL causes only marginal
memory footprint overhead within the protected application’s
address space. Thus, DCL can protect programs that flirt with
address space boundaries on, e.g., 32-bit systems. System-wide,
DCL does cause considerable memory overhead due to its dupli-
cation of process-local data regions such as the heap and writable
pages. Still, DCL outperforms memory checking tools in this re-
gard.

Combined, these features of our multi-variant execution engine de-

sign make this form of strong protection much more convenient to de-
ploy than existing state of the art.

5.1 Completely Disjoint Code Layouts

Our technique of Disjoint Code Layouts (DCL) is implemented mostly
inside GHUMVEE’s monitor. Its support for DCL is based on the fol-
lowing Linux features:
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e In general, any memory page that might at some point contain
executable code is mapped through a sys.mmap2 call. When the
program interpreter (e.g., ld-linux) or the standard C library (e.g.,
glibc) load an executable or shared library, the initial sys.mmap2
will request that the entire image be mapped with PROT_EXEC
rights. Subsequent sys_ mmap2 and sys_mprotect calls then adjust the
alignment and protection flags for non-executable parts of the im-
age. Section discusses the few exceptions.

e Even with ASLR enabled, Linux allows for mapping pages at a
fixed address by specifying the desired address in the addr argu-
ment of the sys_-mmap2 call.

e When a replica enters a system call, this constitutes a RVP for
GHUMVEE, at which GHUMVEE can modify the system call ar-
guments before the system call is passed on to the OS. Conse-
quently, GHUMVEE can modify the addr arguments of all sys.-
mmap?2 calls to control the replica’s address space.

As shared libraries are loaded into memory from user space, i.e., by
the program interpreter component to which the kernel transfers con-
trol when returning from the sys_execve system call used to launch a new
process, GHUMVEE can fully control the location of all loaded shared
libraries: It suffices to replace the arguments of any sys_ mmap2 call in-
voked with PROT_EXEC protection flags and originating from within the
interpreter. Some simple bookkeeping in the monitor then suffices to
enforce that the code mapped in the different replicae does not over-
lap, i.e., that whenever one variant maps code onto some address in its
address space, the other ones do not map code there.

Some code regions require special handling, however. Under
normal circumstances the kernel maps those regions. But because
GHUMVEE cannot intervene in decision processes in kernel space,
it needs to prevent the kernel from mapping them and instead have
them mapped from user space instead, i.e., by the program interpreter.
GHUMVEE can then again intercept the mapping system calls, and en-
force non-overlapping mappings of code regions.

5.1.1 Initial Process Image Mapping

The standard way to launch new applications is to fork off a running
process and to invoke a sys_execve system call. For example, to read a
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directory’s contents with the Is tool, the shell forks and invokes sys_ex-
ecve("/bin/ls”, {"Is”, ...}, ...); The kernel then clears the virtual address space
of the forked process and maps the following components into its now
empty address space as depicted in Figure

An initial stack is set up first. With ASLR enabled, the stack base
is subject to randomization. As we mentioned before, only bits 12
through 27 are randomized on 32-bit x86. The stack is non-executable
by default but can be made executable for legacy applications.

Then, the main executable’s image is mapped into memory. GCC
generates position dependent executables by default. These may (and
often do) contain absolute addresses. However, position dependent ex-
ecutables must be loaded at a fixed address, even if ASLR is enabled.
One can also generate Position Independent Executables (PIE), which
have been supported on GNU/Linux since 2003. PIE images are loaded
at a randomized address and may not contain absolute addresses. In-
stead, addresses must be computed dynamically, using PC-relative off-
sets. Because of the extra register pressure that comes with dynamic
address computations and because of the limited amount of general-
purpose registers on the x86 architecture, GCC still doesn’t generate
PIE images by default.

Moreover, most Linux distributors will only ship PIE executables
for programs which they deem to be security-sensitive. For example,
the recently released Ubuntu 14.04 for the AMD64 architecture ships
with 1019 programs in its /usr/bin folder, of which only 107 are com-
piled as PIE executables. Other contemporary distributions ship with
a similar number of PIE executables. One may wonder why distribu-
tors are putting their users at risk when PIE was proven to have only a
marginal impact on performance [92].

If the executable is dynamically linked, the kernel then maps an
architecture-specific virtual dynamic shared object (VDSO) into mem-
ory. The VDSO may contain specialized code to transfer control from
user space to kernel space or specialized versions of commonly used
system calls. The VDSO is very small and never spans more than one
page of memory (even on AMD64). Its base address is randomized if
ASLR is enabled.

If the executable is dynamically linked, the kernel will now map
the program interpreter (usually called Id-linux.so.2). The program in-
terpreter will be the first component to be invoked when the kernel
transfers control over the program to user space. The interpreter is re-
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legend:

region mapped by the kernel (from kernel space)
region mapped by the application (from user space)

| region mapped by the interpreter (from user space) |

0x00000000 .
/bin/ls eip /bin/Is
heap
I
eip Interpreter Interpreter
Stack Stack
VDSO OXBFFFFFFF VDSO
(a) upon return from sys_execve (b) upon start of actual program

Figure 5.1: Address space layout for standard invocation of the Is tool.

sponsible for loading any shared libraries the program may depend on,
for performing the necessary load time relocations, and for binding im-
ages.

Figure 5.1[a) depicts the process address space layout after return
from the sys_execve call. For the sake of completeness, Figure 5.1(b) de-
picts the layout after the program interpreter has mapped the shared
libraries, and after the application itself has allocated its initial heap.

GHUMVEE cannot override the base address of the above compo-
nents that are mapped directly by the kernel, as there are no RVPs in
kernel space. To enable disjoint code layouts for the program image,
the program interpreter, and the VDSO, we have to take special mea-
sures. Ideally, we want all of these components to be mapped from
within user space, where all mapping requests are RVPs, because of
which they can be subjected to DCL.

5.1.2 Disjoint Program Images

Mapping the program image from within user space is trivial. It suf-
fices to load a program indirectly, rather than directly, with a slightly
altered system call sys_execve(/lib/ld-linux.s0.2”,{’ld-linux.s0.2”, */bin/ls”, argv[1],
.}, NULL);

If a program is loaded indirectly, the kernel maps only the program
interpreter, the VDSO and the initial stack into memory. The remainder
of the loading process is handled by the interpreter, from within user
space. Through indirect invocation, GHUMVEE can override the sys_-
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mmap?2 request in the interpreter that maps the program image.

At this point, it is important to point out that GHUMVEE does
not itself launch applications through this altered system call. Instead,
GHUMVEE lets the original, just forked-off processes invoke the stan-
dard system call, after which GHUMVEE intercepts that system call
and overrides its arguments before passing it to the kernel. This way,
GHUMVEE can control the layout of the replicae processes it spawns
itself, as well as the layout of all the processes subsequently spawned
within the replicae. This is an essential feature to provide complete pro-
tection in the case of multi-process applications, such as applications
that are launched through shell scripts.

5.1.3 Program Interpreter

Even with the above indirect program invocation, we cannot prevent
that the kernel itself maps the program interpreter. Hence the indirect
invocation does not suffice to ensure that no code regions overlap in the
replicae. As mentioned in Section the interpreter is only mapped
when the kernel loads a dynamically linked program.

To prevent that from happening, even when launching dynamically
linked programs, we developed a statically linked loader program,
hereafter referred to as the MVEE Loader. Whenever an application is
launched under the control of GHUMVEE, it is launched by launching
the MVEE Loader, and having that loader load the actual application.
Launching the MVEE Loader is again done by intercepting the origi-
nal sys_execve calls in GHUMVEE, and by rewriting their arguments as
indicated on the left of the snapshot at time T0: Startup at the top of
Figure In this figure, standard fonts are used for the system calls
as invoked by the replicae; bold fonts are used for the rewritten sys-
tem calls that the GHUMVEE monitor actually passes to the kernel. On
the right, snapshots of the address space layouts of the two replicae are
shown.

In each replica launched by GHUMVEE, the copy of the MVEE
Loader is started under GHUMVEE’s control. At the loader’s entry-
point, GHUMVEE first checks whether the VDSOs are disjoint. If they
are not, GHUMVEE restarts new replicae until a layout as depicted
in Figure at time T1: Replica Restart is obtained. GHUMVEE
restarts replicae by waiting until they reach their first system call, which
GHUMVEE then changes into a sys_execve call. One minor problem
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with this approach is that the original sys_execve call cannot simply be
restarted. As soon as this call returns, the process image will have
been replaced. Consequently, the arguments of the sys_execve call will
have been erased from the replica’s memory. These arguments include
the command-line arguments and environment pointers. GHUMVEE
therefore has to find a writable memory page where it can write a copy
of the original arguments before the sys_execve can be repeated. Luck-
ily, the interpreter, which was already in the memory when the first
sys_execve call returned, is guaranteed to contain a writable page.

Until recently, the Linux kernel mapped the VDSO anywhere be-
tween 1 and 1023 pages below the stack on the 1386 platform. It was
therefore not uncommon that GHUMVEE had to restart one or more
replicae. However, a single restart takes less than 4 ms on our system,
so the overall performance overhead is negligible.

After ensuring that the VDSOs are disjoint, the MVEE Loader man-
ually maps the program interpreter through the sys. mmap2 calls shown
in Figure [5.2| at time T2: Interpreter Mapping. This way, GHUMVEE
can override the base addresses of the replicae’s interpreters to map
them onto regions that contain no code in the other replicae.

Next, the MVEE Loader sets up an initial stack with the exact same
layout as when the interpreter would have been loaded by the kernel.
Setting up this stack requires several modifications to the stack that
the kernel had set up for the MVEE Loader itself. More specifically,
we change the first command-line argument from “MVEE_Loader” to
“/lib/1d-linux.so0.2” and set up the ELF auxiliary vectors that the inter-
preter would normally get from the kernel [72]. The result is depicted
on the right in Figure[5.2]at time T2.

The MVEE Loader then transfers control to GHUMVEE through a
pseudo-system call, as depicted on the left of Figure at time T3:
Interpreter Invocation. GHUMVEE intercepts this call, and modifies
the call number and arguments so that the kernel unmaps the Loader.
Upon return from the call to GHUMVEE, it transfers control to the pro-
gram interpreter. When the replicae resume, they will have the memory
layout depicted in Figure 5.2|at time T3.

The interpreter will then continue to load and map the original pro-
gram and the shared libraries, all of which will be subject to DCL, as
shown on the left of Figure |5.2| at time T4: Normal Indirect Loading
Process. Afterwards, the interpreter passes control to the program to
end up with the address space layout shown in Figure|5.2|at time T4.
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Figure 5.2: Address space snapshots during GHUMVEE’s DCL program
launching.
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Assuming that the original program stack is protected by WX, this
is rather complicated, but from the user’s perspective this completely
transparent launching process allows us to control, in user space, the
exact base address of every region that might contain executable code
during the execution of the actual program launched by the user.

The end result are two replicae with completely disjoint code re-
gions, of which any divergence in I/O behavior caused by a ROP attack
successfully attacking one replica, will be detected and aborted by the
monitor.

5.1.4 Disjoint Code Layout vs. Address Space Partitioning

As mentioned in Section Cox et al. and Cavallaro independently
proposed to combat memory exploits with essentially identical tech-
niques they called Address Space Partitioning (ASP) [35] and Non-
Overlapping Address Spaces [27] respectively. We will refer to both
as ASP.

ASP ensures that addresses of program code (and data) are unique
to each replica, i.e., that no virtual address is ever valid for more than
one replica. ASP does so by effectively dividing the amount of available
virtual memory by N, with N the number of replicae running inside
the system. We relaxed this requirement. In DCL, only code addresses
must be unique among the replicae, but data address can occur in mul-
tiple replicae. So for real-life programs, DCL reduces the amount of
available virtual memory by a much small fraction than N.

Another significant difference between both the proposed ASP tech-
niques and DCL is that both implementations of ASP require modifi-
cations to either the kernel or to the program loader. Cox” N-Variant
Systems was fully implemented in kernel space. This way, N-Variant
Systems can easily determine where each memory block should be
mapped. Cavallaro’s ASP implementation requires a patched program
loader (ld-linux.so.2) to remap the initial stack and to override future
mapping requests. By contrast, GHUMVEE and DCL do not rely on
any changes to the standard loader, standard libraries or kernel in-
stalled on a system. As such, DCL can much more easily be deployed
selectively, i.e., for part of the software stack running on a machine,
similar to how PIE is used for selected programs on current Linux dis-
tributions as discussed in Section[5.1.1]

Finally, whereas DCL relies on Position Independent Executables
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(PIE) [92] to achieve non-overlapping code regions in the replicae, both
presented forms of ASP rely on standard, non-PIE ELF binaries, despite
the fact that PIE support was added to the GCC/binutils tool chain in
2003, well before ASP was proposed. Those non-PIE binaries cannot be
relocated at load time. Enabling ASP is therefore only possible by com-
piling multiple versions of the same ELF executable, each at a different
fixed address. ASP tackles this problem by deploying multiple linker
scripts for generating the necessary versions of the executable. Unlike
regular ELF executables, PIE executables can be relocated at load time.
So our DCL solution requires only one, PIE enabled, version of each ex-
ecutable. This feature can again help towards a wide-spread adoption
of DCL.

5.1.5 Compatibility Considerations

Programs that use self-modifying or dynamically compiled, de-
crypted, or downloaded code may require special treatment when run
with DCL. Particularly, GHUMVEE needs to ensure that these pro-
grams cannot violate the DCL guarantees. We therefore clarify how
GHUMVEE interacts with the program replicae in a number of scenar-
ios.

Changing the protection flags of memory pages that were not ini-
tially mapped as executable is not allowed. GHUMVEE keeps track of
the initial protection flags for each memory page. If the initial protec-
tion flags do not include the PROT_EXEC flag, then the memory page
was not subject to DCL at the time it was mapped and GHUMVEE will
therefore refuse any requests to make the page executable by return-
ing the EPERM error from the sys_mprotect call that is used to request the
change. This will inevitably prevent some JIT engines from working
out of the box. However, adapting the JIT engine to restore compatibil-
ity is trivial. It suffices to request that any JIT region be executable at
the time it is initially mapped.

Changing the protection flags of memory pages that were initially
mapped as executable is allowed without restrictions. GHUMVEE will
not deny any sys_mprotect requests to change the protection flags of such
pages.

Programs that use the infamous “double-mmap method” to gener-
ate code that is immediately executable will not work in GHUMVEE.
With the double-mmap method, JIT regions are mapped twice, once
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with read-write access and once with read-execute access [43,(91]. The
code is generated by writing into the read-write region and can then
be executed from the read-execute region. On Linux, a physical page
can only be mapped at two distinct locations with two distinct sets of
protection flags through the use of one of the APIs for shared mem-
ory. As we discussed in Chapter 2, GHUMVEE does not allow the use
of shared memory. Applications that use the double-mmap method
would therefore not work. That being said, in this particular case we
do not consider our lack of support for bi-directional shared memory
as a limitation. Any attacker with sufficient knowledge of such a pro-
gram’s address space layout would be able to write executable code
directly, which renders protection mechanisms such as W@X useless.
This method is therefore nothing short of a recipe for disaster. In prac-
tice, we only witnessed this method being used once, in the vtablefactory
of LibreOffice.

5.1.6 Protection Effectiveness

We cannot provide a formal proof of the effectiveness of DCL. Infor-
mally, we can argue that by intercepting all system calls, GHUMVEE
can ensure that not a single region in the virtual memory address space
will have its protections set to PROT_EXEC in more than one replica. Fur-
thermore, GHUMVEE's replication ensures that all replicae receive ex-
actly the same input. This is the case for input provided through system
calls and through signals.

Combined, these two features ensure that when an attacker passes
an absolute address to the application by means of a memory corrup-
tion exploit, the code at that address will be executable in no more
than one replica. The operating system’s memory protection will make
the replicae crash as soon as they try to execute code in their non-
executable or missing page at the same virtual address.

Finally, we should point out this protection only works against ex-
ternal attacks, i.e., attacks triggered by external inputs that feed ad-
dresses to the program. Artificial ROP attacks set up from within a
program itself, as is done in the run-time intrusion prevention evalua-
tor (RIPE) [140], will not be prevented, because in such attacks return
addresses are computed within the programs themselves. For those re-
turn addresses, different values are hence computed within the differ-
ent replicae, rather than being replicated and intercepted by the repli-
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cation engine.

5.2 Experimental Evaluation

We evaluated our technique on two machines. The first machine has
two Intel Xeon E5-2650L CPUs with 8 physical cores and 20MB L3 cache
each. It has 128GB of main memory and runs a 64-bit Ubuntu 14.04 LTS
OS with a Linux 3.13.9 kernel. The second machine has an Intel Core i7
870 CPU with 4 physical cores and 8MB L3 cache. It has 32GB of main
memory and runs a 32-bit Ubuntu 14.10 OS with a Linux 3.16.7 ker-
nel. On both machines, we disabled hyper-threading and all dynamic
frequency and voltage scaling features. Furthermore, we’ve compiled
both kernels with a 1000Hz tick rate to minimize the monitor’s latency
in reacting to system calls.

5.2.1 Correctness

To evaluate correctness, we have tested GHUMVEE on several interac-
tive desktop programs that build on large graphical user interface envi-
ronments, including GNOME tools such as gcalctool, KDE tools such as
kcalc and LibreOffice. For, e.g, LibreOffice we tested operations such as
opening and saving files, editing various types of documents, running
the spell checker, etc. We repeated tests in which GHUMVEE spawned
between one and four replicae from the same executable, and tests were
conducted with and without ASLR enabled. All tests succeeded.

5.2.2 Usability of Interactive & Real-Time Applications

We also checked the usability of interactive and real-time applications.
Except for small start-up overheads, no significant usability impact was
observed. For example, with two replicae and without hardware sup-
porﬂ MPlayer was still able to play 720p HD H.264 movies in real time

!For using hardware support, MPlayer tries to obtain shared memory pages with
read and write permissions from the kernel. As explained in Chapter 2} GHUMVEE
can currently not support the potential bi-directional communication through shared
memory with such permissions. As explained in our previous work [133], GHUMVEE
therefore intercepts the system call and returns an error value to indicate that the allo-
cation requested to the kernel failed [133]]. MPlayer then falls back on its software-only
version.
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without dropping a single frame, and 1080p Full HD H.264 movies at
a frame drop rate of approximately 1%. Because none of the dropped
frames were keyframes, playback was still fluent, however.

5.2.3 Execution Time Overhead

To evaluate the execution time overhead of GHUMVEE and DCL on
compute-intensive applications, we ran each of the SPEC CPU2006
benchmarks 5 times on their reference inputsE] From each set of 5
measurements, we eliminated the first one to account for I/0O-cache
warmup. On the 64-bit machine we’ve compiled all benchmarks using
GCC 4.8.2. On the 32-bit machine we used GCC 4.9.1. All benchmarks
were compiled at optimization level -O2 and with the -fno-aggressive-
loop-optimizations flag. We did not use the -pie flag for the native
benchmarks. Although running with more than 2 replicae does not im-
prove DCL’s protection, we have also included the benchmark results
for 3 and 4 replicae for the sake of completeness.

As shown in Figures [5.3 and the run time overhead of DCL
is rather low overallE] On our 32-bit machine, the average over-
head across all SPEC benchmarks was 8.94%. On our 64-bit machine,
which has much larger CPU caches, the average overhead was only
6.37%. That being said, a few benchmarks do stand out in terms of
overhead. On i386, we see that 470.lbm performs remarkably worse
than on AMD64. We also see several benchmarks that perform much
worse than average on both platforms, including 429.mcf, 471.omnetpp,
483.xalancbmk and 450.soplex. For each of these benchmarks though, our
observed performance losses correlate very well with the figures in
Jaleel’s cache sensitivity analysis for SPEC [62].

A second factor that definitely plays its role is PIE itself. While
our figures only show the native performance for the original, non-PIE,
benchmarks, we did measure the native performance for the PIE ver-
sion of each benchmark as well. For the most part we did not see signif-
icant differences between PIE and non-PIE, except for the 400.perlbench

*Not a single SPEC benchmark needed to be patched for running on top of
GHUMVEE. One benchmark, 416.gamess, can trigger a false positive intrusion de-
tection in GHUMVEE because it unintentionally prints a small chunk of uninitialized
memory to a file. With ASLR, the uninitialized data differs from one replica to another.
In GHUMVEE, we whitelisted the responsible system call to prevent the false positive.

*The 434.zeusmp benchmark maps a very large code section and therefore does not
run with more than 2 replicae on our 32-bit machine.
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Figure 5.3: Relative performance of 32-bit protected SPEC 2006 benchmarks.

and 429.mcf benchmarks on the AMD64 platform. These benchmarks
slow down by 10.98% and 11.93% resp. by simply using PIE.

A final contributor worth mentioning is the system call density. As
we discuss at length in Chapter [6] system call processing inside an
MVEE can be a major bottleneck. Because of the efficient design of
our monitor and because none of the SPEC benchmarks have a high
system call density compared to, e.g., the PARSEC benchmarks, this
bottleneck is only visible here for benchmarks such as 400.perlbench (362
syscalls/sec) and 403.gcc (1003 syscalls/sec), albeit barely.

5.2.4 Memory Overhead

We examined the memory footprint of our technique on the 32-bit ma-
chine. While running benchmarks with 2 replicae, GHUMVEE con-
sumed 9.5MB of physical memory on average. Combined with the du-
plication of private, writable pages of the first replica, this resulted in
a total system-wide memory footprint increase of almost exactly 100%.
By comparison, AddressSanitizer increases the memory footprint by
237% on average. Within the replicae themselves, DCL did not intro-
duce direct overhead: Each replica is a separate process that has its
full virtual address space available. Each replica maps exactly as much
data and code as the native, unprotected programs. Moreover, regions
in the address space that may not contain code due to DCL may still be
used for data mappings. DCL does, however, introduce some fragmen-
tation, which may marginally reduce the replicae’s ability to allocate
large blocks.
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Figure 5.4: Relative performance of 64-bit protected SPEC 2006 benchmarks.

5.2.5 Effectiveness of the Protection

To validate the effectiveness of DCL itself, we constructed four ROP
attacks against high-profile targets. The attacks are available at http:
//www.elis.ugent.be/~svolckae.

Our first attack is based on the Braille tool by Bittau et al. [19]. It
exploits a stack buffer overflow vulnerability (CVE-2013-2028) in the
nginx web server. The attack first uses stack reading to leak the stack
canary and the return address at the bottom of the vulnerable func-
tion’s stack frame. From this address, it calculates the base address
of the nginx binary and uses prior knowledge of the nginx binary to
set up a ROP chain. The ROP program itself grants the attacker a re-
mote shell. We tested this attack by compiling nginx with GCC 4.8
with both PIE and stack canaries enabled. The attack succeeds when
nginx is run natively with ASLR enabled and also when nginx is run in-
side GHUMVEE with only 1 replica. If we run the attack on 2 replicae,
however, it fails to leak the stack canary. While attempting to leak the
stack canary, at least one replica crashes for every attempt. Whenever a
replica crashes, GHUMVEE assumes that the program is under attack
and shuts down all other replica in the same logical process. Despite
the repeatedly crashing worker processes, the master process manages
to restart workers quickly enough to keep the server available through-
out the attack.

While GHUMVEE manages to stop this attack, the attack would
probably not have worked even without DCL enabled. After all, with
more than one replica, the stack-reading step of the attack can only suc-
ceed if every replica uses the same value for its stack canary and the
same base address for the nginx binary. To prove that DCL does in-
deed stop ROP attacks, we have therefore constructed three other at-
tacks against programs that do not use stack canaries and for which
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we read the memory layout directly from the /proc interface, rather than
through stack-reading.

Our second attack exploits a stack buffer overflow vulnerability
(CVE-2010-4221) in the proftpd ftp server. The attack scans the proftpd
binary and the libc library for gadgets required in the ROP chain, and
reads the load addresses of proftpd and libc from /proc/pid/maps to deter-
mine the absolute addresses of the gadgets. The gadgets are combined
in a ROP chain that loads and transfers control to an arbitrary payload.
In our proof-of-concept this payload ends with an execve system call
used to copy a file. The buffer containing the ROP chain is sent to the
application over an unauthenticated FTP connection. The attack suc-
ceeds when proftpd is run natively with ASLR enabled and also when
run inside GHUMVEE with only 1 replica. When run with 2 replicae,
GHUMVEE detects that one replica crashes while the other attempts to
perform a sys_execve call. GHUMVEE therefore assumes that an attack
is in progress and it shuts down all replicae in the same logical process.
During the attack, proftpd’s master process managed to restart worker
processes quickly enough to keep the server available throughout the
attack.

Our third attack exploits a stack-based buffer overflow vulnerabil-
ity (CVE-2012-4409) in merypt, an encryption program that was intended
as a replacement for crypt. The attack loads addresses of the merypt bi-
nary and the libc library from the /proc interface to construct a ROP chain,
which is sent to the merypt application over a pipe. The attack suc-
ceeds when mcrypt is run natively with ASLR enabled and also when
run inside GHUMVEE with only 1 replica. When run with 2 replicae,
GHUMVEE detects a crash in one replica and an attempt to perform a
system call in the other. It therefore shuts down the program to prevent
any damage to the system.

Our fourth attack exploits a stack-based buffer overflow vulnera-
bility (CVE-2014-0749) in the TORQUE resource manager server. The
attack reads the load address of the pbs_server process, constructs a ROP
chain toload and execute an arbitrary payload from found gadgets, and
sends it to the server over an unauthenticated network connection. The
attack succeeds when TORQUE is run natively with ASLR enabled and
also when run inside GHUMVEE with only 1 replica. When run with
2 replicae, GHUMVEE detects a crash in one replica and an attempt to
perform a system call in the other. It therefore shuts down the program
to prevent any damage to the system.
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5.3 Related Work

We refer the reader to the excellent overview presented by Szekeres et
al. for an extensive discussion of existing attacks that exploit memory
corruption bugs in software written in low-level languages like C or
C++ [126]]. Szekeres et al. also discuss why all currently existing de-
fenses fail.

In this section, we discuss the existing techniques more briefly, i.e.,
in so far as needed to compare our own contributions to the state of the
art.

5.3.1 Memory Attacks and Defenses

Every modern operating system supports at least Address Space Lay-
out Randomization [102] and W@ X [103]. Additionally, nearly every
modern compiler enables stack overflow protection [34] by default.
Over the years, all of these basic mitigations have been bypassed or
hacked.

Shortly after it was introduced, ASLR was shown to be vulnerable
to both information leakage attacks [44] and brute-force attacks [122].
On 32-bit x86 platforms, it is especially weak because the 12 least sig-
nificant bits of addresses cannot be randomized due to page alignment
and because the 4 most significant bits often do not get randomized to
minimize address space fragmentation [80]. Additionally, Bittau et al.
recently demonstrated that even on 64-bit platforms, ASLR brute-force
attacks are feasible [19].

WX has not been attacked directly. It can however be bypassed
easily. Solar Designer demonstrated return-to-libc attacks as early
as 1997 [125], long before WX and its predecessor, non-executable
stacks [103], were even deployed. Return-to-libc attacks leverage code
already present in the target application to seize control of the appli-
cation without code injection. Return-to-libc attacks were further im-
proved by Nergal to defeat WX as well as ASLR [95].

In 2007, Shacham presented the first Return Oriented Programming
(ROP) attacks [121]. In these attacks, an attacker gains control of the call
stack to hijack program control flow. He forces the execution of care-
fully chosen machine instruction sequences, so-called gadgets, from the
program’s own code or linked library code, each of which typically
ends in a return instruction. It was demonstrated that ROP attacks, un-
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like return-to-libc attacks, can be crafted to perform arbitrary compu-
tations, provided that the attacked application is sufficiently large [51].
Return-to-libc attacks, by contrast, are limited to executing entire func-
tions at once. On architectures with variable length instructions, ROP
attacks can additionally leverage code that was not intentionally placed
into the application by the compiler, e.g., by transferring control into
the middle of instruction encodings as generated by the compiler [121].

ROP attacks were later generalized to other architectures such as
SPARC [24], ARM [65], and many others. Despite the progress and
activity on the attacker front, defense against ROP attacks is still very
much an open problem, even though several solutions have been pro-
posed.

5.3.2 Custom Code Analysis and Code Generation

Dynamic instrumentation tools such as DROP [29] and ROPde-
fender [39] instrument the protected program at run time to detect ROP
attacks. Both tools intercept return instructions and verify the stack be-
fore allowing the program to continue. DROP’s stack verification con-
sists of calculating the length of the function the program is about to
return to and calculating the amount of possible ROP gadgets on the
stack. ROPdefender maintains a shadow stack to detect whether or not
return addresses are being overwritten. These tools do not require re-
compilation of the protected program but they slow down the program
with factors of 5.3 (DROP) and 2.1 (ROPdefender) on average.

TaintCheck does not specifically target ROP attacks, but its dynamic
taint analysis can protect against them and against a wide array of
other exploits [96]. TaintCheck does however suffer from large run-
time overhead up to 2500%.

Other tools based on dynamic binary translation rewrite a program
completely. Hiser et al. [50] proposed Instruction Location Randomiza-
tion (ILR), a technique implemented in the Strata VM [117,[118]. ILR
individually randomizes the location of every instruction within the
program and can perform re-randomization at run time. ILR achieves
average performance overhead of just 13-16% on the SPEC 2006 bench-
marks. It does, however, require an offline static analysis before run-
ning a protected program.

Just recently, we’'ve seen two promising tools that target ROP at-
tacks directly. kBouncer and ROPecker both leverage the Last Branch
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Recording (LBR) facilities found in recent Intel CPU’s [31,/59/101] to de-
tect suspicious control-flow patterns. LBR keeps track of the most re-
cently executed branch instructions and their targets. This mechanism
allows the tools to identify chains of indirect branches to short gadgets,
which are often indicative of an ongoing ROP attack. While these tools
hold up quite well in terms of performance overhead and detection of
publicly available exploits, there are some fundamental issues with this
technique. First, LBR keeps track of a very limited set of branches. In
its earliest implementation, only the 4 last branches were recorded. In
recent Intel CPUs, up to 16 branches get recorded. Second, when as-
sessing the integrity of the LBR history, it is hard to tell whether or
not a branch target might be a ROP gadget and whether or not enough
gadgets have been chained together to raise suspicion. As such, these
tools would need to be tweaked on a per-application basis to maximize
protection while minimizing false positive detections. Goktas et al. pro-
vided more insight into the extent of this problem. They also presented
two exploits that bypass both tools [48].

Other compilers attempt to immunize programs against ROP at-
tacks by generating gadget-free code. Li et al. adapted their x86 LLVM
compiler to compile “return-free” code [71]]. Their compiler never emits
any of the x86 return instructions, not even as a part of a multi-byte op-
code or instruction operand. They built a custom FreeBSD kernel that
was no more than 17.32% slower than the stock kernel. Shortly there-
after though, Checkoway et al. presented a Turing-complete set of ROP
gadgets that does not rely on return instructions [28,51].

Onarlioglu et al. presented a similar but more promising technique:
G-Free [98]. Through extensive use of alignment sleds, G-Free removes
unaligned free branch instructions from a program. Additionally, it
protects the remaining aligned free branches to prevent them from be-
ing misused. The resulting binaries contain almost no gadgets. G-Free
essentially de-generalizes the threat of ROP-attacks to that of less pow-
erful return-to-libc attacks. Onarlioglu et al. report only 3.1% slow-
down and a 25.9% increase in binary size on average. It is however
doubtful if such performance numbers would hold if G-Free was more
extensively evaluated. Only a handful of (rather small) programs were
tested with a fully immunized software stack (i.e., with every library
compiled using G-Free).

By comparison, Jackson et al. [61] reported higher overhead for their
diversifying GCC and LLVM compilers. Similar to G-Free, their com-
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piler adds alignment sleds in front of candidate gadgets in order to
remove unintended gadgets from the binary. Unlike G-Free however,
their compiler aims to introduce diversity rather than immunity. By
adding the alignment sleds only with an arbitrary probability, their
compiler can generate many versions of the same program. These ver-
sions will have different gadgets, in different locations. The advantage
of this approach is that any of the ROP-attacks compiled against one
version of a program will only affect a small fraction of the entire user
base. If alignment sleds are added with a probability of 1, in which case
one would expect the resulting binary to be similar to those generated
by G-Free, the overhead on SPECint 2006 benchmarks ranged from 0 to
45%. The authors provide a comprehensive analysis of said overhead
and of the effects of NOP-alignment sleds on L1 instruction cache and
translation-lookaside buffer (TLB) misses.

Other compiler approaches do not target attacks directly. Instead
they focus on enforcing the intended behavior of the program. Stack
protectors such as StackGuard insert canaries on the stack to detect
overwritten return addresses [34]. LibSafe and many standard C-
libraries offer protection against format string vulnerabilities through
hardened versions of string functions [8]. Control-flow integrity (CFI)
techniques add checks around indirect jumps to detect unintended
branch targets [1,(144]. As shown by Goktas et al. [47], Davi et al. [38]
and several others, even the strictest and most fine-grained CFI policies
in use do not mitigate ROP attacks completely.

The most recent contribution to this domain is Code-Pointer In-
tegrity (CPI) [66]. With CPI, Kuznetsov et al. isolate all sensitive point-
ers, which are defined recursively as code pointers and pointers to sen-
sitive pointers. All sensitive pointers are stored in a safe memory that
can only be accessed by instructions protected with run-time checks.
Thus, guaranteed protection is provided against all attacks that try to
exploit memory corruption bugs to hijack control flow by overwriting
code pointers. Because relatively few accesses to the sensitive pointers
occur, the execution time overhead is limited to around 10% on aver-
age. An alternative, more relaxed form of the protection, in which only
code pointers themselves are considered sensitive, provides practical
protection against all studied existing attacks, at an average cost of less
than 2%. As this technique is very recent, no independent validation
is available yet. So far, two major potential issues have been raised.
First, on some programs, the execution time overhead of CPI turns out
to be over 75%. Secondly, in order to identify a conservative overes-
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timation of the set of sensitive pointers, a static data flow analysis is
needed, e.g., to handle conversions from pointers to int or long variables
and back. That analysis, like all data flow analyses, suffers from alias-
ing [106]. While Kuznetsov et al. provide an intraprocedural analysis
that apparently handles local conversions to int and back pretty well,
conversions to void * lead to large overestimations of the set of sensitive
pointers, and hence to larger slowdowns. Also, it is at this point un-
clear whether their intraprocedural analysis (with some interprocedu-
ral extensions) suffices to guarantee protection in all cases, incl. legacy
or obfuscated code that might not adhere to some of the more recent
pointer conversion restrictions in C. Finally, on AMD64 platforms, the
protection is not guaranteed (without changes to the OS) because of
those platforms’ lack of segmentation to isolate the safe memory from
the standard memory.

Perhaps the most interesting compiler tool is AddressSanitizer
(ASan) [120]. ASan is a memory error checker that, unlike many other
memory checkers, instruments the protected program at compile time.
ASan instruments all loads and stores and detects a wide array of mem-
ory errors. Among these are heap, stack and global buffer overflows.
Functionality-wise, ASan is extremely suited to detect and prevent the
memory corruption exploits at the basis of ROP and return-to-libc at-
tacks. However, ASan comes with high overhead compared to some
of the techniques that target these attacks specifically. The current im-
plementation incurs 73% execution time overhead on the SPEC 2006
benchmarks, as well as 237% memory footprint overhead.

Not to depend on the availability of source code, Pappas et al. pro-
posed to diversify software post compile time [100]. Using in-place
code randomization, they demonstrated effective protection against ex-
isting ROP exploits and ROP code generators on third-party applica-
tions. However, as their technique only provides probabilistic protec-
tion rather than complete immunity, it is unclear whether it is future-
proof. Moreover, it is unclear whether their static rewriting of binary
code is conservative when applied to code that features atypical indi-
rect control flow, such as heavily obfuscated code. In that regard, it
is not promising that other recent post compile time binary rewriters,
such as SecondWrite [99] and REINS [138]], are also explicitly limited to
non-obfuscated code.
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5.3.3 Replication and Diversification Defenses

Monitoring-based tools leverage kernel or system APIs (application
programming interfaces) to monitor program behavior. One important
class of monitoring tools are the N-Variant Systems [35] and the con-
ceptually similar Multi-Variant Execution Environments [27,114}133].
N-Variant systems run multiple versions (also referred to as variants
or replicae) of the same program in parallel. A monitoring component
feeds all replicae the same input and then monitors the replicae’s be-
havior. Since all replicae are required to be I/O-equivalent, any differ-
ences in behavior trigger an alarm. N-Variant systems have been used
to defend against several types of attacks.

The strength of N-Variant systems lies in the fact that each replica
can be diversified, as long as the I/O-behavior remains unchanged. By
deploying different diversification techniques to each replica, a wide
range of attacks can be made asymmetrical, in the sense that they may
be able to compromise one replica, but not the other. To cause harm to
the system under attack, the successfully compromised replica has to
invoke malicious I/O operations that are not part of the intended be-
havior of the original program, and that will hence not be invoked by
the other replica. By synchronizing all I/O operations in all replica, by
checking the equivalence of all I/O operations before they are passed
to the kernel, and by halting the program when the I/O operations di-
verge, the monitor can then interrupt any attack before it causes harm.

Salamat et al. demonstrated an N-Variant system that runs repli-
cae with stacks growing in opposite directions [112]. These replicae
are generated with a modified version of GCC, with the replicae with
stacks growing upwards being only marginally slower. This technique
stops even the most advanced stack smashing attacks that do success-
fully bypass other stack protectors [4].

Salamat et al. also proposed to renumber system calls [113]. At com-
pile time, replicae are generated that each use randomly permutated
system call numbers. The monitoring agent dynamically remaps each
system call to its original number using the ptrace API, this prevent-
ing hackers from injecting code that uses inline system calls. Their use
of the ptrace API is similar to how our prototype intervenes in system
calls. We refer to Chapter 2| for an extensive discussion on the ptrace
APL

Cox et al. [35] and Cavallaro [27] proposed different forms of Ad-
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dress Space Partitioning (ASP). By partitioning the address space and
giving one partition to each replica, they ensure that all addresses at
which program code or data are stored in a replica, are unique to that
replica. So any attack involving an absolute code or data address, such
as a libc function entry point or return address, will result in asymmet-
ric and hence detectable replica behavior.

Cox et al. also proposed instruction set tagging as a defense
mechanism against code injection [35]. In an offline step, a binary
rewriter [129] prepends a replica-specific tag before each instruction.
At run time, a dynamic binary translator checks whether or not each
instruction is tagged with the appropriate tag [117]. If not, an alarm
is raised and execution halts. While this technique was effective at
the time of publication, it has been rendered void by the adaptation
of WeX.

5.4 Conclusions

In this chapter, we presented Disjoint Code Layouts (DCL). When
combined with WX and our Multi-Variant Execution environment
GHUMVEE, DCL provides full immunity against most memory ex-
ploits, including Return Oriented Programming. Unlike other solu-
tions, our technique incurs only a limited execution time overhead of
6.37% on our 64-bit machine and 8.94% on our 32-bit machine. More-
over, DCL does not require a modified compiler or operating system
support. Furthermore, programs usually require no or only trivial
modifications to enable GHUMVEE-compatibility.

Combined, these features of GHUMVEE make multi-variant execu-
tion much more convenient to deploy than the pre-existing state of the
art.
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Chapter 6

Monitoring Relaxation

Security-oriented MVEEs are traditionally implemented using cross-
process (CP) monitors as shown in Figure a). Most interactions be-
tween the trusted monitor and the untrusted replicae are due to system
call invocations. In CP designs, these interactions are costly because
they require context switches accompanied by TLB and cache flushes.

One way to reduce the context switching overhead is to move
the monitor inside each of the variants. Hosek and Cadar evalu-
ated an in-process (IP) monitor design in which a master variant runs
ahead of and replicates program inputs to a set of slaves. This de-
sign is depicted in Figure b). While this is a very efficient design
for reliability-focused MVEEs, the master/slave model with a master
running ahead provides far less security than the lock-step execution
model of security-focused MVEEs.

In this chapter, we propose a hybrid MVEE design—ReMon—
shown in Figure [6.I(c). ReMon relies on GHUMVEE, our own CP
monitor to enforce lock-step execution for all sensitive system calls and
isolate the trusted monitoring logic from the untrusted variants. To
increase efficiency, we augment traditional CP monitor designs with
a small trusted in-process monitoring (IP-MON) that enables efficient
replication of data among variants without context switching.

The traditional security policy of monitoring all system calls is
overly conservative. Many system calls simply query the system and
cannot affect other running processes or the persistent state of the sys-
tem to cause harm. Only a handful of sensitive system calls are likely
to be offensively useful. Thanks to the IP-MON component, ReMon
supports configurable relaxation policies that allow harmless calls to ex-
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Figure 6.1: Three MVEE designs running two replicae. The cross-process
monitor design (a) is secure but inefficient since interactions between the mon-
itor and the variants require costly context switches. The master/slave de-
sign (b) uses an in-process monitor to replicate data to slaves but allows com-
promise as variants are not executed in lock-step. ReMon (c) combines the
security guarantees of cross-process monitoring with the performance of in-
process replication.

ecute without being synchronized by our CP-MON component. Sec-
tion[6.2)evaluates the performance impact of a range of relaxation poli-
cies inspired by a recent classification of system calls in the OpenBSD
community [105].

6.1 ReMon Design and Implementation

The hybrid MVEE ReMon has three major components:

1. GHUMVEE—our security-oriented Cross-Process MVEE.

2. IP-MON—an In-Process MVEE implemented as a shared library
that resides inside each replica. For a subset of all system calls, IP-
MON provides the application with alternative “unmonitored”
calls that bypass GHUMVEE. The application interacts with IP-



6.1 ReMon Design and Implementation 111

MON through modified versions of the system libraries, e.g.,
glibc, that call IP-MON instead of the kernel directly.

3. A small kernel component which facilitates communication be-
tween the other components, in addition to enforcing security
restrictions on IP-MON and performing all auxiliary operations
that we could not implement in user-space.

This section discusses the design and implementation of the com-
ponents of ReMon, as well as their interactions.

6.1.1 Dispatching System Calls

The kernel authorizes IP-MON to dispatch system calls as “unmoni-
tored” calls, and does not report such calls to GHUMVEE provided that
they originate from an authentic I>-MON. To authenticate IP-MON,
the kernel checks that the r12 register contains an expected magic
value (we later discuss how this magic value is securely generated and
stored), and that the system call is in a whitelist of allowed calls. Any
system call invocation that does not meet these requirements is passed
to GHUMVEE.

IP-MON only invokes unmonitored system calls in the master
replica, and replicates the results of the system call to the slave replicae
through the replication buffer (RB) discussed in Section [.1.3] Instead
of invoking the call directly, the slave replicae wait for the results from
the master replica to become available in the RB. In some cases, e.g.,
when the RB is overflowing, IP-MON explicitly dispatches system calls
as monitored calls on both the master and the slave replicae.

Adding support for a new system call in IP-MON is generally
straightforward. I>-MON offers a set of C macros that the programmer
can use to easily describe how IP-MON should handle the logging of
the system call arguments and return values, and how IP-MON should
dispatch the system call.

IP-MON currently intercepts 67 system calls. Figure|6.2| shows the
IP-MON code for the read system call, split across four handler func-
tions. Each handler function implements a different step in the inter-
ception of a system call, using the C macros provided by I>-MON. The
four steps are:
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J* read(int fd, void * buf, size_t count) */

MAYBE_CHECKED{read) {
// check whether our current policy allows us to dispatch read
S/ ecalls on this file as wnmonitored calls
return lcan_read{ARGL);

}

CALCSIZE(read) {
S/ reserve space Tor 3 register arguments
COUNTREG{ARG) ;
COUNTREG(ARG) ;
COUNTREGCARG) ;
/ one buffer whose maximum size is in argument 3 of syscall
COUNTBUFFER({RET, ARG3);
¥

PRECALL(read) {
/ compare the system call arguments dispatch this as a call
S/ That only the master actually invokes
CHECKREG(ARGL) :
CHECKPOINTER (ARG2) :
CHECKREG(ARG3) ;
return MASTERCALL | MAYBE_BLOCKING(ARGL);

}

POSTCALL(read) {
S/ replicate the results
REPLICATEBUFFER(ARGZ, ret):

Figure 6.2: Intercepting the read system call in IP-MON.

MAYBE_CHECKED This function is called first to determine
whether the call should be monitored by GHUMVEE. We use the
MAYBE_CHECKED handlers to apply the policies in Section

CALCSIZE Since we log the system call metadata, arguments and
return values all in the same buffer, we need to calculate the maximum
size this information may occupy prior to dispatching the call. The
CALCSIZE handler is called to determine this size. In case it is bigger
than the size of the RB, IP-MON marks the call as a monitored call and
it does not log call arguments and return values. In case it is bigger
than the available portion of the buffer, the master replica will wait for
the slave replicae to catch up and then flush the buffer.

PRECALL If IP-MON decides to dispatch the call as an unmonitored
call, then it calls the PRECALL handler next. When called in the context



6.1 ReMon Design and Implementation 113

of the master replica, this handler function logs the system call argu-
ments into the buffer. The master replica records information for every
system call it executes through IP-MON, regardless of whether or not
IP-MON reported the call to GHUMVEE. This information includes the
system call number, the system call arguments and the system call re-
turn values, in addition to a set of boolean flags that indicate whether
or not the call was dispatched as a monitored call, whether the call re-
turns immediately, etc. I>-MON logs all of the system call information
except the return values before it dispatches the call. If the function is
called in the slave replica’s context, then I>-MON instead compares the
slave’s arguments with the master’s arguments.

The return value of the PRECALL handler indicates how the call
should be dispatched.

POSTCALL After a system call completes, I>-MON calls the POST-
CALL handler. In the master replica, this handler copies the system call
return values to the RB.

Whenever slave replicae execute a system call, they wait for the as-
sociated information to appear in the buffer. When the system call in-
formation appears, the replicae’s further actions depend on the afore-
mentioned boolean flags. If the call was marked as a monitored call,
then the slave replicae also invoke the call as a monitored call, thus also
reporting it to GHUMVEE.

If the call was marked as an unmonitored call, the slave replicae
compare their system call number and arguments with those logged by
the master replica. If the number or arguments do not match, then the
slave replicae trigger an intentional crash, thereby signaling a discrep-
ancy to GHUMVEE. If the number and arguments do match, the slave
replicae wait for the results to become available. They either do this in
a spin-wait loop (if the master expected the call to return immediately),
or by waiting for a specialized condition variable, whose implementa-
tion we will describe in Section[6.1.6]

6.1.2 System Call Monitoring Policies

There are many ways to draw the line between which system calls
should be monitored and which system calls may be handled by IP-
MON. Here, we propose two concrete monitoring exemption policies
that draw such a line.
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Conditionally allowed
Level and description Unconditionally allowed calls | calls depending on
file type | op type
BASE_LEVEL gettimeofday, clock_gettime,
Read-only calls that do not|time, getpid, gettid, getpgrp,
operate on file descriptors | getppid, getgid, getegid,
and do not affect the file getuid, geteuid, getcwd,
system. getpriority, getrusage, times,
capget, getitimer, sysinfo,
uname, sched_yield, nanosleep
NONSOCKET_RO_LEVEL access, faccessat, Iseek, stat,
R'ead—c?nly calls on regular Istat, fstat, fstatat, getdents, read,
files, p'?es' and .non— readlink, readlinkat, getxattr, readv, futex,
socket file descriptors; Igetxattr, fgetxattr, alarm preadéd, ioctl, fentl
read-only calls from file getxattr, 18 e preadyv, !
A setitimer, timerfd_gettime,
system; write calls on madvise, fadvise64 select, poll
process-local variables.
NONSOCKET_RW_LEVEL write,
Write calls on regular files, | sync, syncfd, fsync, fdatasync, |writev,
pipes, and other non- timerfd_settime pwrite64,
socket file descriptors. pwritev
SOCKET_RO_LEVEL read, readv, pread64, preadv,
Read calls on sockets. select, poll, epoll_wait,
recfrom, recvmsg, recvmmsg,
getsockname, getpeername,
getsockopt
SOCKET_RW_LEVEL write, writev, pwrite64,
Write calls on sockets. pwritev, sendto, sendmsg,
sendmmsg, sendfile, epoll_ctl,
setsockopt, shutdown

Table 6.1: Monitor levels for spatial system call relaxation.

The first option is spatial exemption, whereby certain system calls
are either unconditionally handled by IP-MON and not monitored by
the CP MVEE, and other system calls are handled by IP-MON if their
system call arguments meet certain requirements. We propose several
predefined levels of spatial exemption in Table which the program
developer or administrator can choose from. Selecting a level enables
unmonitored system calls for all calls in that level, as well as all preced-
ing levels. This provides a linear trade-off between performance and
security, with later levels having lower overhead but being potentially
less secure.

We picked these system calls so we could provide significant secu-
rity and preserve correctness, while also improving performance sig-
nificantly. System calls that relate to allocation and management of
process resources and threads, as well as signal handling, are always
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monitored by the CP monitor. This includes syscalls that (i) allocate,
manage and close FDs, (ii) map, manage and unmap memory regions,
(iii) create, control and kill threads and processes and (iv) all signal han-
dling system calls. We distributed all remaining system calls over the
levels, to allow the programmer/administrator to choose the appropri-
ate balance between performance and security.

The second option is temporal relaxation, whereby IP-MON proba-
bilistically exempts system calls from the monitoring policy for a short
duration if they are repeatedly approved by the monitor. The rea-
soning here is that many programs, especially those with high system
call frequencies, often repeatedly invoke the same sequence of system
calls. If a series of these sequences of system calls gets approved by
the GHUMVEE, then one possible temporal relaxation policy is to ran-
domly exempt half of the following identical sequences within some
time window or range. Note that deterministic temporal relaxation
policies (e.g. “Exempt system calls X, Y, Z from monitoring after N
approvals within a M millisecond time window”) are inadvisable. As-
suming that the temporal relaxation policy is known to adversaries,
they will exploit that knowledge to drive the MVEE into a state where
potentially dangerous system calls becomes except from monitoring.

6.1.3 The IP-MON Replication Buffer

IP-MON must be embedded into all the replicae. It hence consists of
multiple independent copies, one per replica. These copies must co-
operate and therefore require an efficient communication channel. Al-
though a socket or FIFO could be used, we opted for a RB stored in a
memory segment shared between all replicae.

Unlike other high-performance MVEEs [53], we do not use a cir-
cular buffer. When our RB overflows, we signal GHUMVEE using a
system call. GHUMVEE intercepts it, waits for all replicae to synchro-
nize, resets the buffer to its initial state, and resumes the replicae. In-
volving GHUMVEE as an arbiter avoids costly read-write sharing on
the position variables, which would hinder multi-threading scalability.
Instead, each replica thread only reads and writes its own position.

We rely on memory secrecy to protect the RB from tampering. In a
secure implementation, no pointer to the RB should ever be visible to
the replicae, except when IP-MON itself is executing. IP-MON should
temporarily be allowed to store a pointer to the RB in a processor reg-
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Figure 6.3: Accessing the IP-MON RB through the hidden buffer.

ister, but this pointer should never leak when IP-MON returns the con-
trol flow to the program. To achieve this level of security, we use a
less commonly used feature of the x86 architecture: segmentation. The
kernel allocates a memory region and use its address as the base of the
gs segment, which IP-MON can then use to access the hidden memory
region without knowing its location. The segment base may only be
modified from privileged mode, i.e., not user—spacdﬂ so replicae can-
not modify it directly. This mechanism therefore allows IP-MON to ac-
cess a buffer without knowing where it is located in the virtual address
space, hiding the buffer from both the library and attackers. Other se-
curity work similarly uses segmentation [7,66,90].

However, we sometimes want a temporary pointer reference to the
RB. If we have a pointer to the RB, we can use this pointer as the source
or destination of optimized memcpy and memcmp routines. Without
the pointer, we are forced to use unoptimized versions memcpy and
memcmp that copy/compare a memory word at a time, since the op-
timized SSE/SSE2/SSSE3 versions use instructions that do not accept
gs-relative source or destination operands.

'Recent versions of the Intel architecture provide the RDOGSBASE and WRGSBASE
instructions that allow user-space to access the segment base, but we can easily disable
these instructions with a kernel patch.
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Figurel6.3|illustrates how we handle this with an extra layer of indi-
rection. We maintain a single memory page called the hidden buffer array
to store pointers to buffers that we want to hide from the program. We
set the gs segment base to the hidden buffer array. When the RB is ini-
tialized, we store its address at a known location in this hidden buffer
array.

Upon entry to the IP-MON, it moves the RB pointer from its orig-
inal location to a temporary location in the hidden buffer array. This
serves as a security feature: All functions down its callee chain use the
temporary location, and will hence malfunction when invoked out of
context. Upon exit from IP-MON, we move the pointer back to its orig-
inal location.

We manually crafted a set of specialized memcmp and memcpy func-
tions that can accept either their source or destination operands as loca-
tions in the I>-MON RB. These specialized functions load the pointer to
the RB from the temporary location within the hidden buffer array into
a fixed register, and we make sure that the value of the pointer never
leaks from these functions.

Our implementation has three clear benefits. First, most of IP-
MON’s code can refer to any location within the RB using only an off-
set, rather than a pointer. This minimizes the risk of ever leaking an
actual pointer. Second, the manually crafted memcmp and memcpy rou-
tines are small and easy to audit. We have manually verified that our
manually crafted routines never leak a valid pointer into the RB to the
memory or to any register other than the designated one. Third, our
routines cannot be used outside I>-MON since the location from which
they load the RB’s base pointer only contains said pointer if [I>-MON
was invoked through its intended entry point.

6.1.4 IP-MON Initialization

IP-MON must be registered with the kernel before it acquires any priv-
ileges. We added a new system call that performs this registration.
When this call is invoked, the kernel first attempts to report the call
to GHUMVEE, which receives the notification and can decide whether
or not it wants to allow IP-MON to register.

As a security measure, IP-MON is required to register a whitelist
of system calls. When IP-MON later invokes an unmonitored system
call, the kernel checks if the call is on the whitelist. If the check suc-
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ceeds, the kernel allows the call to proceed. Otherwise, IP-MON passes
the call to GHUMVEE as a monitored call (alternatively, it could ter-
minate execution and report a security problem). The whitelist is fixed
during initialization, and cannot be changed at a later time. However,
GHUMVEE can inspect the whitelist and modify this set if needed.

If GHUMVEE approves the registration call, the kernel stores the
whitelist in a process-local structure. To support later verification that
calls indeed originate from IP-MON, the kernel also stores the base
address and size of the I>-MON'’s executable region (every IP-MON-
related call is checked against this region). Finally, the kernel generates
a random 32-bit magic key, which is then returned as the return value
of the registration call.

GHUMVEE intercepts the return of the registration system call and
saves a copy of the magic key, setting the original to zero to prevent
the replicae from reading the key directly. When control finally returns
to IP-MON, it completes its initialization by mapping the RB through
the System V shared memory API (sys_shmat). Since no communica-
tion channel exists between the replicae at this point and the same RB
needs to be mapped in all replicae identically, GHUMVEE allocates the
RB itself and overrides the arguments of the sys_shmat call to force
all replicae to map the same buffer. When the RB is mapped into the
replicae’s address spaces, GHUMVEE writes the magic key to a known
location in the RB, which is only accessible to I>-MON and not to any
replica directly.

6.1.5 The IP-MON File Map

GHUMVEE arbitrates all system calls that create/ modify/destroy FDs,
incl. sockets. This allows it to maintain file meta-data such as the type of
each FD (regular/pipe/socket/poll-fd/special). It also keeps track of
whether or not a specific FD is in non-blocking mode. System calls that
operate on non-blocking FDs return immediately, regardless of whether
or not the corresponding operation succeeds.

Replicae can map a read-only copy of this meta-data into their ad-
dress spaces using the same mechanism we use for the I>-MON RB
itself. We refer to this meta-data as the I>-MON File Map. The map
can only be accessed through the hidden buffer array in the gs seg-
ment. We maintain exactly one byte of meta-data for each FD, resulting
in a page-sized file map. IP-MON also uses the file map to determine
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whether some calls are monitored or not (as per the monitoring poli-
cies).

6.1.6 Blocking System Calls

The IP-MON file map permits us to predict whether or not a call we
dispatch through IP-MON can block or not. I>-MON handles blocking
calls efficiently. If it knows up front that a call will block, the master
replica instructs the slave replicae to wait on an optimized and highly
scalable IP-MON condition variable until the results become available,
as opposed to a slower spin-read loop. It uses the futex (7) APIto
implement wait and wake operations and allows us to implement the
following optimizations.

For each system call invocation, we allocate a separate structure
within the RB. Within this structure, we reserve room for the condi-
tion variable. Slave replicae must only wait on the condition variable
associated with the system call results they are interested in, greatly
increasing the scalability of IP-MON.

We keep track of whether or not there are replicae waiting for the
results of a specific system call invocation. This allows us to optimize
the case in which no such replicae exist. In this case, the master replica
does not need to invoke a FUTEX_WAKE operation to resume the slave
replicae.

We do not reuse condition variables. Since each system call invoca-
tion has an individual condition variable, we do not have to reset them
to their initial state after the replicae have been signaled.

6.1.7 Consistent Signal Delivery

Signal handlers may introduce inconsistencies in the execution of a
replica. MVEEs therefore typically defer the delivery of signals until
they can assert that all replicae are in equivalent states, such as when
they are all waiting to enter a system call.

Many intricacies of the pt race API make the implementation of
consistent asynchronous signal delivery exceedingly difficult to get
right, and this only becomes more complicated when introducing IP-
MON. Since GHUMVEE does not see any system calls that are dis-
patched as unmonitored calls, it might indefinitely defer the delivery
of any incoming signals, thus violating the intended behavior of the
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replicae.

GHUMVEE uses introspection to solve this problem. When a sig-
nal is delivered to the master replica, GHUMVEE first sets a signals
pending flag in that replica’s hidden buffer array. Next, GHUMVEE
checks whether that replica was executing a system call through IP-
MON. GHUMVEE does this by checking whether the user-space in-
struction pointer points to a system call instruction inside the I>-MON
executable region. If the master replica was executing a blocking sys-
tem call, GHUMVEE aborts that call. The kernel automatically aborts
blocking system calls, but normally restarts them after the signal han-
dler has been invoked.

However, GHUMVEE prevents the kernel from restarting the call.
Instead, it resumes the master replica at the return site of the call. The
master replica then inspects the signals pending flag and then restarts the
call as a monitored call, allowing it to be intercepted by GHUMVEE.

6.1.8 Support for epoll (7)

The epoll APl is a Linux-specific interfaceE] that applications can use
to get notifications for FD events, e.g., when a socket has received
new data or when a connection request has arrived. Modern Linux
server applications use epoll to handle network requests efficiently
with multiple threads.

To minimize the performance overhead, I>-MON needs to intercept
the epoll family of system calls. Supporting epoll is not straight-
forward, however. When registering a FD with epol1l functions, the
application can associate an epoll_event structure with that FD. This
structure may contain a pointer value that the kernel will return when
an event on the FD gets triggered. The epoll_event structures are
a problem for our approach. Diversified replicae are likely to use dif-
ferent pointer values for the same logical FD. Blindly replicating the
results of a sys_epoll_wait event would then return the master’s,
rather than the calling replica’s pointer values.

IP-MON solves this problem by intercepting all epo11 system calls,
and keeping a shadow mapping between FDs and pointers inside
epoll_event. When a new FD is registered with epoll, we copy
the associated pointer value from the epoll_event structure to the

Linux 2.5.44 introduced epol1 as a high-performance alternative to select and
poll.
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mapping. When replicating the results of an epoll call, we use this
mapping to store FDs, rather than pointer values in the master replica,
and we map these FDs back onto the associated pointer values in the
slave replicae. The shadow mapping is currently implemented as a
fixed size array with one pointer per FD, and this implementation has
proven sufficient for our experiments.

6.2 Performance Evaluation

We first evaluate the performance of IP-MON's spatial exemption pol-
icy in a set of industry standard benchmark suites. We then compare
IP-MON with existing MVEEs by replicating some of the experiments
previously described in the literature [52,53,85,114,130]. We conducted
all of our experiments on a machine with two eight-core Intel Xeon E5-
2650L CPUs (20MB L3 cache each), 128GB of RAM and a Gigabit Ether-
net connection, running the x86_64 version of Ubuntu 14.04.2 LTS. We
used the Linux 3.13.11 kernel, to which we applied the IP-MON patches
we described earlier. We used the official 2.19 versions of GNU’s glibc
and libpthreads in all of our experiments, and patched them to redi-
rect all unmonitored calls to IP-MON. To maximize the reproducibility
of our results, we disabled hyper-threading and all forms of dynamic
frequency and voltage scaling in our experiments.

We enabled Address Space Layout Randomization in all of our tests

and configured GHUMVEE to map IP-MON and its associated buffers
at non-overlapping addresses in all replicae.

6.2.1 Synthetic Benchmark Suites

We evaluated IP-MON on the SPEC CPU2006, PARSEC 2.1, SPLASH-
2x and Phoronix benchmark suites|

We used the largest available input sets for all benchmarks, and ran
the multi-threaded benchmarks with four worker threads and used two
replicae for all benchmarks. We could not include PARSEC’s canneal
and x2 64 benchmarks, nor SPLASH-2x’s cholesky benchmark in our
measurements. canneal is based on data-race recovery and there-
fore inherently incompatible with our MVEE. x264 spawns a pool of

3Cedomir Segulja kindly provided his data race patches for PARSEC and
SPLASH [119].
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Figure 6.4: Performance overhead for three synthetic benchmark suites (2
replicae)
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Figure 6.5: Comparison of IP-MON'’s spatial exemption policies in a set of
Phoronix benchmarks (2 replicae)

over 1024 threads, that each map the IP-MON file map and replication
buffers, as well as the hidden buffer array. We currently use the System
V IPC API to allocate and map all of the aforementioned buffers. Our
testing system did not allow us to allocate all of these buffers for this
many threads though, because Linux enforces a system-wide limit on
the number of allocated System V shared memory segments. We be-
lieve that using mmap-based shared memory would alleviate this prob-
lem. The cholesky benchmark finally did not work properly when
compiled with the system-provided version of gcc.

We ran the Phoronix benchmarks with all five levels of our spatial
exemption policy since it was the only suite we tested that contained
network benchmarks.

The results for these benchmarks are shown in Figure 6.4 and Fig-
ure With IP-MON, we see performance gains across all benchmark
suites. For SPECint 2006, the relative performance overhead decreases
from 8% to 4%. In the PARSEC 2.1 suite, the overhead drops from 31%
to 14%. In SPLASH-2x, we see a drop from 22% to 11%. In Phoronix,
the overhead drops from 100% to 34%. Particularly interesting are the
dedup and network-loopback benchmarks, in which the overheads
drop from 218% to 56% and from 2159% to 240% respectively. These
benchmarks invoke system calls at rates of over 60k invocations per
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second. Furthermore, the Phoronix results clearly show that different
policies allow for different security-performance trade-offs.

6.2.2 Server Benchmarks

Server applications are some of the most likely pieces of software to
be protected by MVEEs in the future because (i) they are frequently
targeted by attackers and (ii) they often run on many-core machines
with idle CPU cores that may be used to run parallel replicae.

Not surprisingly, many of the existing MVEEs have been evalu-
ated on server applications. So in this section, we specifically evaluate
our MVEE on applications that were already used to evaluate existing
MVEEs. These applications include the Apache web server (used to
evaluate Orchestra [114]), thttpd (ab) and lighttpd (ab) (used
to evaluate Tachyon [85]), 1ighttpd (http_-load) (used to evalu-
ate Mx [52]), as well as beanstalkd, lighttpd (wrk),memcached,
nginx (wrk) and redis (used to evaluate VARAN [53]). We used
the exact same client and server configurations as described by the cre-
ators of those MVEEs.

We tested IP-MON by running a benchmark client on a separate
machine that was connected to our server via a local gigabit link. We
evaluated three scenarios. In the first scenario, we used the gigabit link
as-is and therefore simulated an (unlikely) worst-case scenario since
the latency on the gigabit link was very low (less than 0.5ms). In the
second scenario, we added a small amount of latency (bringing the total
average latency to 2ms) to the gigabit link to simulate a realistic worst-
case scenario — average network latencies in the US are 24-63ms [33].
In the third scenario, which we only evaluated to allow for comparison
with existing MVEEs, we simulated a total average latency of 5ms. We
used Linux’ built-in netem driver to simulate the latency [84].

Figure|6.6{shows the worst-case and realistic scenarios side by side.
For each benchmark, we measured the overhead IP-MON introduces
when running between two and seven replicae side by side with the
spatial exemption policy at the SOCKET_RW_LEVEL. We also show the
overhead for running two replicae with I>-MON disabled. The latter
case represents the best-case scenario without I>-MON.



124 Monitoring Relaxation

W replicae (no IP-MON) B2 replicae B3replicae B4 replicae DS replicae D6 replicae D7 replic

NORMALIZED RUNTIME OVERHEAD
ok N WG Oo N

dLLHOI
Azl
QIHOVOWIN
€0°€
sia3y
(av)9z'z
QdLIHL
dLLHOI
£0°€
sia3y
(av)67°€T
IHOVAY
(av)9z'z
QdLIHL
(8v)9er'T
adLLHon

988PLSTA
@NVISNY3E
(4m) 9EH'T
a
bum) ZTs'T
XNION
(av)6z°€T
IHOVAY
(8v)9ev'T
adLiHon
988PLSTA
@NVISNY3E
(4m) 98 H'T
a
Azl
QIHOVOWIN
bm) ZTs'T
XNION

(peo"dny) 9e'p'T
adLLIHoN
(Peo"dny) 9°p'T
adLLIHON

Unlikely scenario on local gigabit network (<0.5ms latency) Realistic scenario on low-latency network (2 ms latency)

Figure 6.6: Server benchmarks in two network scenarios for 2 up to 7 replicae
with IP-MON and 2 replicae without IP-MON.

6.2.3 Comparison with other MVEEs

Table [6.2| compares ReMon’s performance with the results reported for
other MVEE:s in literature [52,53)[85,(114,/130] and online [[132]. As each
MVEE is evaluated in different experimental setups, the table also lists
some of their features that have a significant impact on the performance
overhead. This includes the network latency, because higher latencies
hide overhead on the server side, as well as CPU cache sizes, as some of
the SPEC benchmarks are memory-intensive and hence their execution,
in particular of multiple concurrent replicae, benefits significantly from
larger caches.

From a performance overhead perspective, the worst-case setup in
which Mx and Tachyon were evaluated had the benchmark client run-
ning on the same (localhost) machine as the benchmark server. For
VARAN two separate machines reside in the same rack and are hence
connected by a very-low-latency gigabit Ethernet.

The worst-case setups in which ReMon and Orchestra were evalu-
ated consist of two separate machines connected by a low-latency giga-
bit link. In these rather unrealistic scenarios, and with respect to server
benchmarks, the differences in setups hence favor ReMon and Orches-
tra over VARAN, and VARAN over Tachyon and Mx.

In the best-case setups in which Mx and Tachyon were evaluated,
one of the machines was located at the US west coast, while the other
was located in England (Mx) or the US east coast (Tachyon). In Re-
Mon’s best-case setup, we used a gigabit link with a simulated 5 ms
latency. So in the more realistic setups and for the server benchmarks,
the differences favor Mx and Tachyon over ReMon.

This comparison demonstrates that ReMon outperforms existing
security-oriented MVEEs in terms of overhead, and that it at least ri-
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Orientation Reliability Security
MVEE Tachyon Mx VARAN | Orchestra | GHUMVEE ReMon
T T T
! local ! coast| ! i local
local- | 0% 193 ocal- Tusa-uk| M€ local local 1O
network host | few | to- host :(150 ms) rack eabit n/a igabit gigabit
{ hops :coast ! gigabit g g : (5 ms)
i i ! i
CPU cache size 8 MB 8 MB 20 MB 20 MB
reported overheads
apache (ab) j : ! 2.4%| 50% 21%! 2.5%
lighttpd (ab) 790%|272% 1 30% ! 0.0% 2%1  4.7%
thttpd (ab) 1320%: 17%1 0% : 0.0% 37%1  2.7%
lighttpd (httpld) : | 209%)  a%| 1.0% 205%) 3.0%
redis i 1 1572%1 5% 6% 66%; 0.0%
beanstalkd P i 52% 15% ) 0.6%
memcached H ! i 14% 0.0%] 0.0%
nginx (wrk) ! ' 1 28% 147%) 13%
lighttpd (wrk) ! | i 12% 147% 1 1.9%
SPEC CPU2006 17.9% 7.2% 3.4%
SPECint 2006 17.6% 14.2% 12.1% 4.2%
SPECfp 2006 18.3% 3.8% 2.9%

Table 6.2: Comparison with other MVEEs (2 replicae)

vals with the reliability-oriented MVEEs.

6.3 Security Analysis

Unlike previous MVEEs, ReMon eschews fixed monitoring policies and
instead allows security/performance trade-offs to be made on a per-
application basis.

With respect to integrity, we already pointed out that a CP MVEE
monitor (and its environment) are protected by (i) running it in an iso-
lated process space protected by a hardware-enforced boundary to pre-
vent user-space tampering with the monitor from within the replicae;
(i) by enforcing lock-step, consistent, monitored execution of all system
calls in all replicae to prevent malicious impact of a single compromised
replica on the monitor; (iii) diversity among the replicae to increase the
likelihood that attacks cause observable divergence.

With those three properties in place, it is exceedingly hard for an
attacker to subvert the monitor and to execute arbitrary system calls.
Nevertheless, MVEEs do not protect against attacks that exploit in-
correct program logic or leak information though side-channel attacks.
This is similar to many other code reuse mitigation techniques such as
diversity, SFI and CFL

In ReMon, monitored system calls are still handled by a CP mon-
itor so malicious monitored calls are as hard to perform as in existing
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CP MVEEs. For unmonitored system calls, however, I>-MON provides
more leeway by relaxing two of the three properties. As the master
replicae can run ahead of the slaves and the system call consistency
checks in the slaves” IP-MON, the attacker can try to hijack the mas-
ter’s control with a malicious input to execute at least one, and possible
multiple, unmonitored calls without verification by a slave’s IP-MON.
Because the master’s IP-MON is in the master’s address-space, the at-
tacker can try to use the hijacked control to hijack the data replication
to the slaves. He might exploit this to introduce consistent system call
behavior into the slaves (rather than letting the slave(s) crash on the
input that successfully hijacked the master) or to ensure that the slaves
do not reach their IP-MON for some time, thus letting the master run
ahead of the slaves for a longer time, and thus increasing the window
of opportunity to execute unmonitored system calls in the master. So in
theory, as long as the hijacked master does not execute monitored calls,
the attacker can keep executing unmonitored calls.

As long as the attacker only executes unmonitored calls according
to a given relaxation policy, those theoretic capabilities pose no signif-
icant security treat. However, an attacker might also try to bypass IP-
MON’s policy verification checks on conditionally allowed system calls
to let IP-MON pass calls unmonitored that should have been monitored
by GHUMVEE according to the policy. We must therefore consider sev-
eral aspects of these hypothetical attacks.

Unmonitored execution of system calls Our ReMon kernel modifi-
cations ensure that only a registered I>-MON can execute system calls.
This prevents any system calls by reusing code (gadgets) outside the
IP-MON.

To also prevent an attacker from leveraging IP-MON’s elevated
privileges to execute unmonitored system calls while bypassing IP-
MON’s verification checks, we have two security measures in place.
First, the kernel guarantees that the initial registration of I>-MON (by
the MVEE) and any attempts to manipulate or unmap its executable
region are reported to GHUMVEE. This security measure ensures that
unmonitored system calls originate from an authentic IP-MON to pre-
vent mimicry attacks. Secondly, the kernel only allows system calls
to bypass GHUMVEE if the correct I>-MON key is passed in the r12
register. This essentially enforces a specialized CFI policy on system
calls. First, we only store the key inside I>-MON’s RB. Second, we have
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structured our code such IP-MON only loads the key at its entry point.
IP-MON stores the key in a fixed register and it clears this register on
any path that leads from the entry point to a return instruction. This
way, we ensure that unmonitored calls are always verified by I>-MON
and that they can only originate from within IP-MON itself.

The only remaining way to abuse IP-MON’s elevated privileges
would therefore be a code reuse attack whereby the attacker manually
loads the IP-MON key and then directs the control flow to a system
call instruction in IP-MON’s code. Our handling of this key guarantees
that I>-MON never leaks it itself. The attacker would therefore have
to locate the key inside the RB. This is difficult, however, as we discuss
later.

Manipulating the RB through IP-MON. To prevent an attacker from
reusing the master’s IP-MON code that fills the RB, we protected this
code using a CFI policy similar to the one that protects the IP-MON key:
The code that manipulates the buffers can only execute correctly if IP-
MON was invoked through its entry point. Once again, the remaining
option is to manipulate the IP-MON RB directly.

Locating and accessing the RB directly. As we showed in Sec-
tion we hide this buffer’s location by accessing it only through
the gs-relative hidden buffer array indirection. To gain access to the
RB, an attacker must therefore either (i) blindly guess the location of
the hidden buffer or of the RB or (ii) use gadgets available in the pro-
cess to read from or write to gs-relative memory locations.

The entropy of the address of the 4K page that contains the 1-page
hidden buffer array is 36 bits, as 235 — 2 is the number of user-page
pages in the AMD64 ABI'’s 48-bit canonical address space from which
ReMon can choose. This provides much more effective entropy than the
implementation of Code Pointer Integrity [66] that relied on hiding a
very large (2?) safe area in memory [45]. Furthermore, ReMon ensures
that the buffers are located at different addresses in all replicae. The
attacker hence needs to find the buffer in all replicae to avoid crashing
any one of them.

ReMon’s current implementation uses RBs that are 16MiB big and
located on different addresses in each replica. This gives 24 bits of en-
tropy per replica.

A remaining alternative for the attacker is to reuse existing code
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with in the program to obtain direct access to the hidden buffer array.
As already mentioned, the RDGSBASE and WRGSBASE instructions can
easily be disabled for monitored processes with a kernel patch. Aligned
instructions with gs-relative addressing are virtually impossible to find
as the gs segment is no longer used in AMD64 GNU/Linux user-space
software. Finding unaligned gadgets with gs-relative addressing by
means of a ROP chain that scans the memory in the master is possible
in theory, but the time window in which they can be exploited is dra-
matically reduced by applying a diversification like DCL, because that
diversification ensures that the slaves will crash as soon as they get to
the injected ROP chain in which the addresses are valid code addresses
in the master, but not in the slaves.

Diversified Replicae ReMon can deploy the combined diversification
of ASLR, DCL, and stacks growing in opposite directions, i.e, the diver-
sifications previously evaluated in the literature on MVEEs [114]/130].
The security evaluations in that literature, including demonstrations of
resilience against real-life attacks, therefore still apply to our ReMon
MVEE.

Security Analysis Summary The presence of I>-MON in the repli-
cae’s address spaces does open possibilities for attackers to mount
asymmetrical attacks or execute arbitrary sequences of unmonitored
system calls. The bar for exploitation of I>-MON’s infrastructure to
mount asymmetrical attacks is extremely high, however. Furthermore,
unmonitored system calls remain subject to the kernel’s active security

policy.

6.4 Related Work

Directly intercepting system calls—known as system call interposi-
tion—to check whether they are in line with a foreseen system call pol-
icy (often obtained through profiling and software analysis) predates
MVEEs as a security sandbox technique. The initial literature on the
subject identified [49] the high overhead of ptrace on Linux (com-
pared to similar techniques on other OSes), and kernel-based imple-
mentations were presented to overcome this overhead [104]. To reduce
the impact on the kernel, ReMon performs most monitoring IP, and re-
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quires only a small kernel patch to ensure its security.

Dune provides IP but across-privilege-ring monitoring capabilities
based on modern x86 hardware virtualization support such as VI-x and
Extended Page Tables (EPT) [14]. This approach could be an interesting
alternative to CP-MON'’s pt race-based activation.

The DieHard MVEE for probabilistic memory safety uses CP pipe-
based replication [18]. Rather than intervening in I/O system calls,
DieHard only intercepts stdin/stdout I/O operations.

Cox et al. presented and evaluated an IP kernel-space MVEE im-
plementation that deployed address-space partitioning as a diversifica-
tion technique [35], which can be seen as a limited form of DCL. They
measured Apache latency increases of 18% on unsaturated servers, and
throughput decreases of 48% on saturated servers, which correspond to
much higher overheads than the ones we report for ReMon.

Later CP user-space MVEEs, including the one by Cavallero et
al. [23], Orchestra by Salamat et al. [114], and GHUMVEE by Volckaert
et al. [130,/133] rely on, and suffer from, the properties of the ptrace
and waitpid APIs. They mainly differ from ReMon in the way the
replication is performed.

In Orchestra, the monitor executes system calls on behalf of the
replicae. To copy large amounts of data between replicae and the mon-
itor efficiently, Orchestra allocates a shared memory buffer between the
monitor and the replicae in which both processes can read and write
large blocks of data using simple IP memcpy operations. GHUMVEE
initially relied on two custom ptrace extensions to allow the moni-
tor to copy large data blocks directly between replicae. With the in-
troduction of the process_vm_readv API in Linux 3.2, these exten-
sions became mostly useless and were abandoned. To allow intercep-
tion of system calls handled in the VDSO, which are not passed to the
OS and consequently not intercepted with pt race, GHUMVEE hides
the VDSO such that the replicae fall back on regular system calls that
are intercepted.

In addition to its CP system call handling and CP monitoring,
GHUMVEE allocates shared buffers between the master and slave
replicae to support IP user-space replication of synchronization events,
incl. pure user-space events such as uncontended futexes, without
costly intervention of the CP monitor [133]. GHUMVEE'’s approach
is similar to the replication in Respec [69]], the online record-replay sys-
tem, but includes adaptations to support security-oriented monitoring
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of diversified replicae that need to execute in lock-step and in which
locks reside at different addresses in the different replicae. Likewise,
GHUMVEE uses shared buffers, in combination with interposers, for
IP replication of address-dependent behavior [133].

VARAN takes this approach one step further, and also performs IP
user-space monitoring [53] through shared ring buffers as shown in
Figure b) to avoid the overhead of ptrace. In VARAN, the direct
master-slave communication is implemented by rewriting the system
call instructions (incl. VDSO ones) in the binaries into trampolines to
system call replication agents. The agents in the master replica execute
the I/O system calls and log them in the shared buffer. The agents in
the slave replicae running behind the master then copy the results in-
stead of executing the calls. Monitors embedded in replica processes
check the system call consistency, and can even allow small discrepan-
cies between the system calls behavior of the replicae. VARAN does not
replicate user-space synchronization events, however, and hence can-
not handle many typical client-side applications, most of which rely on
user-space futexes these days.

With its support for small system call behavior discrepancies, as
well as with some of its design and implementation options to mini-
mize overhead, VARAN positions itself as a reliability-oriented MVEE
that can support applications such as transparent failover, multi-
revision execution (possibly to detect attacks, but not to prevent them),
live sanitization, and record-replay [53]]. With its in-process replication
avoiding pt race, VARAN significantly outperforms Tachyon [85] and
Mx [52], two other reliability-oriented MVEEs.

As already noted by its authors, however, VARAN is less fit to pro-
tect against memory exploits. First, VARAN lets the master run ahead
of the slaves, even with regards to sensitive system calls, as it does not
differentiate between sensitive and insensitive ones in that regard. This
leaves a much larger window of opportunity to attackers than ReMon,
including for the execution of sensitive calls. Although this window
can be shortened by decreasing VARAN'’s shared ring buffer’s sizes to
one, it is unclear what the impact on performance will be and whether
that buffer adaptation closes the window completely or merely short-
ens it to one sensitive system call, which would clearly still be too
much. Secondly, unlike the many discussed protection techniques im-
plemented for our ReMon’s IP-MON, VARAN’s IP monitors are only
protected from code reusye attacks by ASLR, which has proven sus-
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ceptible to attacks due to low entropy and granularity [9,/55}122}/123].
This is all the more problematic as VARAN's IP monitors also monitor
the sensitive system calls. Finally, VARAN only rewrites explicit sys-
tem call instructions in binary code into trampolines to its replication
agents. Unlike in ReMon, where all executed system calls from outside
the IP-MON are intercepted via the kernel and CP-MON, unaligned
system call gadgets in the original binary hence remain unprotected in
VARAN, and hence available to ROP attacks.

SFI [57,86,(136,141]] and CFI [1,2,25] are two defenses that have re-
ceived a lot of attention in literature and that MVEEs can use to protect
against memory exploits. Compared to MVEEs such as ReMon, they
have the drawback of depending on relatively intrusive code transfor-
mations, most of which can only be applied when source code is avail-
able, and most of which, in particular the ones with stronger security
guarantees, come with a significant performance penalty.

ReMon does not need intrusive transformations in the application’s
source code. It suffices to have position-independent executables to
support DCL, and as we discussed in Section DCL applied to an
IP-MON that embeds an ad hoc CFI solution can provide quite strong
security guarantees, without having to pay a heavy price in execution
time increases.

6.5 Conclusions

MVEEs uses the multi-threading capabilities of modern processors to
sandbox and monitor software prone to memory corruption and ex-
ploitation thereof. Designers of MVEEs face the mutually conflicting
goals of security and program performance. Specifically, frequent inter-
actions between cross-process MVEE monitors and the replicae require
a high number of costly context switches. We address this challenge
through a split-monitor design in which an in-process monitor repli-
cates inputs among the replicae and a cross-process monitor enforces
lock-step execution of potentially harmful system calls; innocuous sys-
tem calls, on the other hand, proceed without external monitoring to
increase efficiency.

We present a careful and detailed security analysis and conclude
that our introduction of an I>-MON component and relaxed monitor-
ing of innocuous system calls is possible while offering a level of se-
curity comparable to that of CP MVEEs. Finally, our extensive per-
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formance evaluation shows that the overheads of ReMon ranges from
0-4.7% on a number of realistic server workloads and compares very
favorably to previous MVEE designs including recent in-process de-
signs.



Chapter 7

Conclusions and Future Work

In Chapter [3| of this dissertation, I proposed new techniques to extend
the principles of MVEEs to programs that rely on implicit inputs. Next,
in Chapter 4} I discussed the issue of non-deterministic multi-threaded
replicae and presented strategies and replication agents that enable
our MVEE to support such replicae. In Chapter I proposed a new,
non-probabilistic diversification technique that offers strong protection
against memory exploits. Finally, in Chapter|f]I introduced the concept
of monitoring relaxation and presented a novel split-monitor design
that greatly enhances the performance of our MVEE.

In this chapter, I summarize the conclusions of this dissertation and
recommend lines of future work.

7.1 Replication of Implicit Inputs

Program replicae that run inside an MVEE must be fed consistent input
in order to guarantee that they will behave the same. Older MVEEs
build on the assumption that all program input either originates from
the system call interface, or can be stopped at the system call interface
by, e.g., disallowing the use of shared memory. As we discussed in
Chapter 3 however, this assumption is false.

x86 processors expose (mutable) timing information through un-
privileged machine instructions. These instructions can be executed
without being supervised by the MVEE’s monitor. Similarly, modern
versions of Linux use virtual system calls, which are not reported to
the MVEE’s monitor. These virtual system calls must originate from
the Virtual Dynamic Shared Object (VDSO), which is loaded into ev-
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ery running program’s address space by the kernel. We proposed to
hide this VDSO from the replicae in the MVEE, thereby forcing them
to fall back to regular system calls. Additionally, Linux as well as other
commodity operating systems allow programs to map shared memory,
which allows them to communicate directly and without being super-
vised by the monitor. Finally, we identified several common program-
ming practices in which implicit program inputs might alter the behav-
ior of the program. Such implicit inputs are likely to differ for each
replica as a result of diversification.

In Chapter [3 we proposed workarounds and solutions for all of
the above problems. Unprivileged machine instructions that provide
mutable input can be disabled using the processor’s control registers.
Invoking a disabled instruction triggers a protection fault, which the
MVEE monitor can intercept to emulate the original instruction and
provide the replicae with the expected results.

The use of shared memory can be restricted to prevent the repli-
cae from reading inconsistent input. These restrictions do not prevent
programs from executing correctly in practice.

To tackle the reliance on implicit inputs, we proposed to use implicit
input replication agents and presented an API and infrastructure that
greatly facilitates the implementation of such agents.

7.2 Replication of Parallel Programs

Many parallel programs are non-deterministic by nature and will ap-
pear to behave differently from run to run when observed from the
system call interface, even if they are not diversified. Scheduling is the
root cause of this non-determinism. If parallel programs are allowed
to run freely, the order in which they execute instructions that partici-
pate in inter-thread communication, or the order in which the effects of
these instructions become visible to other threads will change from run
to run.

In Chapter [4] we pointed out that Deterministic MultiThreading
(DMT) and Record+Replay (R+R) systems seem like a natural fix for
this problem. DMT systems impose a deterministic order on inter-
thread communication instructions by establishing a fixed schedule
for each given program input. As we discussed however, some DMT
systems cannot establish such a schedule for programs with threads



7.3 Disjoint Code Layouts 135

that perform unbounded computations or indefinitely blocking system
calls. Other DMT systems establish a schedule that is tightly bound to
program properties that are likely to change as a result of diversifica-
tion.

R+R systems do not suffer from the same issues but need to be
adapted before they can be used in the context of an MVEE. Specifically,
R+R agents need to be address-agnostic, RVP neutral and support ad
hoc synchronization.

In Chapter 4, we presented three replication strategies and four
replication agents that fit within these constraints. One of our repli-
cation agents communicates over a secured channel. Additionally, we
recommended practical strategies to embed our replication agents into
programs and libraries that use ad hoc synchronization.

Our replication agents make GHUMVEE the first MVEE to sup-
port arbitrary multi-threaded replicae with limited effort. The wall-
of-clocks replication agents are efficient and scalable. When running
the PARSEC benchmark suite with four worker threads and two repli-
cae, the wall-of-clocks agents achieve slowdowns of just 1.32x, which is
comparable to the slowdowns reported by authors of older MVEEs for
single-threaded benchmarks.

7.3 Disjoint Code Layouts

The same software we wish to protect using our MVEE, is frequently
targetted by hackers with code reuse attacks. Such attacks diverge the
intended control flow of the target to a (set of) known location(s) so as
to perform malicious actions chosen by the attacker in the context of
the target program.

Cox [35] and Cavallaro [27] independently proposed combat code
reuse attacks by splitting the replicae’s address spaces into n partitions,
with n the number of concurrently executing replicae, and confines
each replica to its own partition.

In Chapter[5, we argued that this approach is impractical, however,
and proposed Disjoint Code Layouts (DCL) as a practical alternative.
DCL achieves the same protection strength as partitioning, and is also
efficient. We report performance overheads as low as 6.37% for the
SPEC CPU 2006 benchmark suite running on top of a 64-bit Linux 3.13
Os.
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7.4 Monitoring Relaxation

As we pointed out in Chapter 2, most security-oriented MVEEs, in-
cluding GHUMVEE, run the replicae and the monitoring component as
separate processes. This approach has obvious security benefits as com-
promised replicae cannot attack the monitor directly. The cross-process
monitor does significantly degrade the performance of the replicae,
however. The in-process monitor used in VARAN yields better perfor-
mance but does not provide the same security benefits as the security-
oriented MVEEs [53].

In Chapter [ff} we propose a hybrid design for a security-
oriented MVEE. Our proof-of-concept implementation, ReMon, com-
bines GHUMVEE with an in-process monitor, IP-MON. ReMon relaxes
GHUMVEE’s monitoring policy by offloading the handling of innocu-
ous system calls to IP-MON. We proposed and evaluated several re-
laxed policies and showed that even our most relaxed policy yields
similar security guarantees to GHUMVEE, whilst achieving much bet-
ter performance.

7.5 Future Work

7.5.1 Compiler-based Transformation of Problematic Code

Throughout this dissertation, we have identified several issues
that may prevent unpatched replicae from running correctly inside
GHUMUVEE. In Chapter 3| we discussed address sensitive behavior and
presented our implicit input replication API to tackle the problem. In
Chapter 4 we discussed programs that rely on ad hoc synchronization
or lock-free algorithms, and presented a strategy to patch such pro-
grams so that they run correctly in the MVEE.

Tools that could automate the identification and patching of these
problematic features would be tremendously useful. Such tools could
be built on top of a compiler framework like LLV

Address-sensitive behavior can be identified by instrumenting all
casts between pointer types and integer data types at the IR level.
Whenever a pointer is cast to an integer, a call to the implicit-input-
replication agent could be inserted such that the integer representation

thttp:/ /llvm.org/
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reflects the master replica’s address space layout. Along with the call,
the compiler could insert the necessary meta-data such that the result
of the reverse cast, i.e., from the integer type back to a pointer type,
would reflect the slave replica’s memory layout.

This tool could then be optimized to decrease its performance and
security impact. Through static techniques such as the compiler’s data
flow analysis, and dynamic techniques such as taint analysis [96], the
instrumentation could be limited to pointers whose integer representa-
tion is used in truly address sensitive code. Furthermore, it would be
desirable to cast the pointers to a normalized form, rather than to the
value determined by the master replica.

Similarly, a tool could be developed to automate the identification
and instrumentation of sync ops. As we explained in Chapter [, sync
ops are operations that need to be executed in the same order in all
replicae to ensure that they will behave consistently.

A colleague has developed an embryonic LLVM-based tool that
identifies sync ops based on the strategy we laid out in Section [4.1.4
This tool translates ad hoc synchronization operations into standard-
ized C++11 atomic operations by modifying the data types for variables
on which the operations are performed. These standardized operations
can be easily instrumented using our automatically generated header
file.

There are many ways in which the current tool can be improved,
however. First, it needs to be extended such that it can propagate the
modified type information to other translation units. Second, it needs
to be extended such that it can identify sync ops in inline assembly
code. Finally, it needs to be extended to identify and instrument unpro-
tected load and store instructions. These unprotected load and store
instructions for the most common form of benign data races [63].

7.5.2 Reducing Context Switching Overhead

In Chapter [f] we discussed the performance impact of Cross-Process
MVEEs and pointed out that such MVEEs suffer from high context
switching overhead. We proposed an alternative split-monitor MVEE
design that relaxes the MVEE’s monitoring policy in order to reduce
the number of context switches.

An other alternative would be to reduce the overhead on context
switches themselves by leveraging the processor’s instruction set ex-
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tensions. Two of these extensions, VT-x and SGX, allow for the monitor
to be placed in the same virtual address space as its replicae.

With VT-x, the monitor can run at the hypervisor privilege level
and the replicae can interact with the monitor through VMCALL instruc-
tions. The monitor’s code and data integrity can be safeguarded using
extended page tables (EPT) [58]. This approach has been suggested by
Belay et al., but has not been implemented in an MVEE yet [14].

With SGX, the monitor can be placed in an enclave and the replicae
can interact with the monitor through EENTER instructions. The moni-
tor’s code and data integrity would be safeguarded by design since it
would be placed in an enclave [60].

7.5.3 Record/Replay

The synchronization replication agents we presented in Chapter [
improve upon the existing Record/Replay (R+R) systems because
they record and replay invocations of low-level atomic operations
(sync ops), rather than just the invocations of high-level pthread-
synchronization operations.

An interesting line of future work would therefore be to ei-
ther extend GHUMVEE with offline R+R capabilities, or to embed
GHUMVEE'’s synchronization replication agents into an existing R+R
system. This would, in both cases, result in an R+R system that replays
the execution of parallel programs more truthfully than existing R+R
systems currently do.

7.5.4 Twin Debugging

As we explained in Section GHUMVEE contains much of the same
functionality one would expect to see in a debugger like GNU’s gdb.
This functionality makes GHUMVEE an ideal base to implement a
fully-featured twin debugger. A twin debugger can debug two ver-
sions of the same program at the same time. This can facilitate, e.g.,
finding the root cause of a failed regression, by comparing the internal
state of the two versions throughout their execution. This functionality
could also be used to extend a delta debugger [142]. Delta debuggers
automate bug testing by finding the code changes that introduced the
bug and by simplifying the program input that must be provided to
introduce the bug. Twin debugging functionality could speed up this
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process since many program versions could now run side by side.

7.5.5 Checkpoint/Restore and Transparent Failover

When GHUMVEE detects a divergence, it shuts down the entire pro-
cess, and its equivalent processes in other replicae, in which the diver-
gence was triggered. An interesting line of future work could be to only
shut down the diverging replica. We currently cannot do this for two
reasons.

First, if the diverging replica is the master, then a new master must
be elected. As we explained in Section[3.3) GHUMVEE currently cannot
do this as the master replica is the only replica that opens file descrip-
tors for non-regular files such as sockets. We could solve this problem
by transferring the master’s open file descriptors to the newly elected
master replica over a UNIX domain socket [139]]. This method is also
used in VARAN [53].

Second, reducing the number of concurrently executing replicae
may reduce the reliability and security guarantees of the MVEE. Ide-
ally, the MVEE should spawn a new replica whenever it shuts down a
diverging replica. This new replica should, however, be brought into a
state that is equivalent to that of the other replicae. The obvious way
to do this is to create periodic checkpoints of the replicae and to restore
one of the checkpoints in the newly spawned replica. This solution has
long been infeasible because it requires intrusive kernel changes. With
the advent of Linux’s built-in Checkpoint/Restore functionality how-
evelﬂ this is no longer the case.

7.5.6 TOCTTOU Race Conditions

GHUMVEE validates system call RVPs by copying each replica’s reg-
ister contexts and system call arguments to the monitor’s own ad-
dress space, and subsequently comparing them. If the replicae pass
GHUMVEE'’s validation, they will be resumed by the monitor, and they
will be allowed to complete the system call. There is a small time win-
dow between the validation and the completion of the system call in
which malicious threads in the replicae may overwrite the validated
system call arguments with malicious arguments that would not have
passed the validation. McPhee defined this type of vulnerability as a

*http:/ /criu.org
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Time of check to time of use (TOCTTOU) race condition [87]. This is a
common problem for all user-space monitoring tools since no API cur-
rently exists to prevent system call arguments from being overwritten.
However, Kim and Zeldovich recently proposed a ptrace-based sand-
box that protects system calls from being overwritten by copying them
to a read-only memory region prior to validating them [64]. A similar
solutions could be embedded into GHUMVEE.

7.6 Open Issues

7.6.1 Information Leakage through Covert Channels

As we explained in Section[4.2.3] one possible way to attack GHUMVEE
is by means of a covert channel. GHUMVEE can be used as the medium
through which this covert channel communicates. For example, the
replicae can deliberately delay each other by exploiting the MVEE's
lock-step execution mechanism. This mechanism dictates that certain
operations may only be completed when all replicae attempt to invoke
them. The length of the delay can represent information such as indi-
vidual bits of a pointer value.

Another possibility is to use the synchronization agents we dis-
cussed in Chapter [4 as the medium for the covert channel. A multi-
threaded master replica could use these agents to leak information to
the slave replicae by, e.g., spawning two threads that attempt to enter a
critical section protected by the same lock. The master can encode one
bit of information by forcing a specific order in which these threads
enter the critical section. The synchronization replication agent would
replicate this same order in the slave replicae, thus allowing the slaves
to receive the encoded information.

Both of these attacks, as well as other possible information leak-
age attacks could be used to leak information about, e.g., the send-
ing replica’s memory layout. Such information could then be used to
adapt an attack payload that had previously compromised the send-
ing replica to the receiving replicae’s memory layouts. The adapted
payload could be sent to the receiving replicae using, e.g., the synchro-
nization replication buffer we discussed in Chapter 4| or the I>-MON
replication buffer we discussed in Chapter 6|

Bart Coppens (Ghent University) has written proof-of-concept pro-
grams that effectively use our MVEE and both of the mentioned covert
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channels to pass information from one replica to another. At this
point in time, it is unclear whether or not information leakage can be
achieved using code-reuse attacks in real-life programs, as DCL pro-
hibits the initial launch of most code-reuse attacks before they can
target the mentioned channels. A non-control-data attack that uses a
covert channel is a theoretical possibility, however [30].

7.6.2 Internal Information Leakage

Another option to attack GHUMVEE is to compromise the replicae
with an attack payload that does not depend on predetermined virtual
addresses. Snow et al.’s JIT-ROP is an example of such an attack [124].
JIT-ROP was demonstrated using an attack payload in the form of a
javascript code file. This code exploits an information leakage vulnera-
bility in Internet Explorer (IE): in a first phase, the code iteratively maps
the entire address space of the IE process to find the locations of useful
gadgets. In a second phase, these gadgets are used in a conventional
ROP attack.

In the context of GHUMVEE running with DCL, the first phase
would collect different addresses in the different replicae. If the col-
lected addresses are used as arguments in system calls, the MVEE will
detect this as a divergence. If not, the initial stage of the attack will
go by unnoticed, and the attacker might be able to construct malicious
payloads in all replicae, with consistent and hence undetected behav-
ior. For this attack to work, the first phase and the construction of the
payload for the second phase must invoke identical RVPs in all replicae.
It is currently unclear whether this is possible.
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