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Abstract  19 

 20 

In vitro, efficient communication between mammalian embryos and between embryos and 21 

their environment, e.g. maternal somatic cells, implies that there is a sender, a message and a 22 

receiver which is able to decode the message.  Embryos are secreting a variety of autocrine and 23 

paracrine factors, and among those, extracellular vesicles have recently been implicated as 24 

putative messengers in embryo-embryo communication and in communication of the embryo 25 

with the maternal tract. Extracellular vesicles (EVs) are membrane-bound vesicles, found in 26 

biofluids and in culture media conditioned by the presence of embryos or cells, that carry and 27 

transfer regulatory molecules, such as microRNAs (miRNAs), messenger RNAs (mRNA), lipids 28 

and proteins.  29 

Here, we conducted a systematic search of the literature to review and present the currently 30 

available evidence on the possible roles of EVs in embryo communication and embryo 31 

development. It is important to note that many of the biologically plausible functions of EVs in 32 

embryo communication have not yet been substantiated by conclusive experimental evidence. 33 

However, indirect evidence, such as the use of media conditioned by embryos or by somatic 34 

cells with improved embryo development as a result, may indicate that EVs can be an 35 

important asset for the development of tailor-made media allowing better embryo 36 

development in vitro, even for single embryo culture.  37 

 38 

Additional keywords : Extracellular vesicles, embryo communication, embryo-maternal 39 

communication, embryo culture  40 
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Introduction 41 

 42 

Efficient communication between cells and tissues is paramount in many physiological 43 

processes, including embryo development. Typically inside the body, mammalian cells 44 

communicate with each other either through direct interaction (juxtacrine signalling) or by 45 

secreting molecules such as growth factors, hormones and cytokines. These messengers can turn 46 

on the cell or embryo itself (autocrine signalling1), or have an effect on both neighboring 47 

(paracrine signalling) and distant cells (endocrine signalling). Cell-cell communication is however 48 

changing completely when cells are being cultured outside the body, in vitro.  49 

Mammalian preimplantation embryos develop in vivo inside the female genital tract, i.e. 50 

the oviduct and the uterus, and communicate with these dynamic and elastic surroundings on 51 

which the embryo depends for its development and survival (Fazeli 2011). In the absence of a 52 

genital tract, when embryos are being cultured in vitro, the embryo resides in a semi-defined 53 

culture medium in which no endocrine or paracrine factors are present, since all communication 54 

with the maternal genital tract is cut off. This communication can be restored by embryo co-55 

culture with somatic cells such as cumulus cells (Goto et al. 1988; Goovaerts et al. 2009), oviduct 56 

cells (Eyestone et al. 1989; Gandolfi and Moor 1987; Van Soom et al. 1996, 1997; Liu et al. 2001; 57 

Lee et al. 2001; Xu et al. 2001; Lee et al. 2004), and medium conditioned by somatic cells 58 

(Mermillod et al. 1993; Van Langendonckt et al. 1996; Li et al. 2004a; Li et al. 2004b). This 59 

approach was very popular in the late 20th century to mimic the microenvironment conditions 60 

associated with the maternal tract. Nevertheless, even without communication with cells from 61 

                                                           
1 The term autocrine is here also used to refer to signaling between similar cells, like embryos 
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the genital tract, preimplantation embryos are able to promote their own development in vitro 62 

by the production of autocrine factors (Paria and Dey 1990), and in this way they are able to 63 

communicate to each other. Mostly this accumulation of autocrine factors is typically achieved 64 

by culturing bovine embryos in large groups, some 10-25 embryos in a 50 µl droplet of medium 65 

covered by oil to avoid evaporation (Sagirkaya et al. 2007; Goovaerts et al. 2009; Wydooghe et 66 

al. 2013) (Fig. 1a).  67 

The presence of these autocrine factors in the medium when embryos are cultured in 68 

group lies at the basis of the embryos’ superior development in group compared to solitary 69 

culture (Paria and Dey 1990; O'Neill 2008). Group culture has been adopted by many research 70 

groups as a routine procedure for animal embryo culture, leading to superior embryo 71 

development (Vajta et al. 2000; Hoelker et al. 2010). By playing with embryo density, expressed 72 

as the number of embryos per volume of medium, it has been shown that embryos develop best 73 

in groups cultured at an embryo-volume ratio ranging from 1:1 (Ferry et al. 1994) to 1:5 (Fukui et 74 

al. 2000) (Table 1). When embryo-volume ratio is being kept at 1:10 or 1:20, and embryos are 75 

cultured individually in a droplet of medium (Fig. 1b), development to the blastocyst stage is 76 

much lower to even non-existing in a suboptimal medium such as medium containing fetal calf 77 

serum (FCS) (Table 1). Both group culture of embryos, and co-culture of embryos with somatic 78 

cells can reduce the negative effects of serum during embryo culture (Donnay et al. 1997; 79 

O’Doherty et al. 1997; Goovaerts et al. 2009; Goovaerts et al. 2012).  Therefore it appears that 80 

some factors released by the adjacent embryos or by the co-cultured somatic cells are either 81 

affecting the development of the neighboring embryos in a positive way or are removing a 82 

detrimental factor associated with the serum. Interestingly, in serum-free medium, the positive 83 
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effects of group culture remain present but to a lesser extent, and these so-far unidentified 84 

embryotropins have been demonstrated to promote development, with higher blastocyst cell 85 

numbers and less apoptosis (Wydooghe et al. 2014b). This inter-embryo communication has only 86 

been identified after in vitro culture of embryos became commonplace. What the exact nature 87 

of this communication is, is at present not entirely clear, and a vast range of possible autocrine 88 

factors have already been implicated to be important in how embryos ‘talk’ to each other (for 89 

review see: Wydooghe et al. 2015). Embryos also ‘talk’ to the somatic cells used in various co-90 

culture models (for review see : Lee and Yeung 2006; Ulbrich et al. 2010).   91 

While many studies have been trying to identify the nature of these autocrine factors, 92 

or to relate these factors with markers of embryo quality, the main approach so far was to analyze 93 

conditioned medium for the presence of proteins, growth factors, or metabolites (Mermillod et 94 

al. 1993; Beardsley et al. 2010; Kropp and Khatib 2015; Foresta et al. 2016). This may be useful, 95 

but in this way an important means of cell-cell communication is being overlooked. Shedding of 96 

extracellular vesicles (EVs) is now a well-recognized, important method of cell-cell 97 

communication in a number of different cell types: EVs have been purified from every prokaryotic 98 

(Kim et al. 2015) and eukaryotic (Regente et al. 2009; Oliveira et al. 2010a; Mantel and Marti 99 

2014; Cocucci and Meldolesi 2015) cell type that has been studied to date, including stem cells 100 

(Ratajczak et al. 2006; Camussi et al. 2011; Lai et al. 2011; Timmers et al. 2011; Chavez-Munoz et 101 

al. 2010), primary cells of immune and nervous systems (Chavez-Munoz et al. 2010; Faure et al. 102 

2006; Guescini et al. 2010; Kesimer et al. 2009; Potolicchio et al. 2005) and various cancer cell 103 

lines (Ai- Nedawi et al. 2008; Skog et al. 2008; Ai-Nedawi et al. 2009). Extracellular vesicles are 104 

vesicles that are being shed by healthy cells, and are often referred to as microvesicles, 105 
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exosomes, or microparticles (Raposo and Stoorvogel 2013). They contain as a cargo, amongst 106 

other molecules, proteins, lipids, RNAs and miRNAs, that may serve as messengers between cells. 107 

However, due to lack of knowledge on the molecular mechanisms for EV formation and lack of 108 

methods to interfere with the packaging of cargo or with vesicle release and addressing to 109 

receiving cells, it is still difficult to assess the physiological relevance of EVs in vivo (Raposo and 110 

Stoorvogel 2013; Yañez-Mó et al. 2016). In vitro model systems such as embryo group culture, 111 

and embryo-oviduct co-culture, may become important tools to study these fascinating 112 

structures. Here we review the current literature as to release of EVs by preimplantation embryos 113 

and we will provide evidence that they may be much more important in embryo-to-embryo or 114 

embryo-maternal communication as previously thought. We will also focus on technical aspects 115 

of EVs isolation, in order to instigate more research into this fascinating topic. A better 116 

understanding of the role of EVs in embryo culture and development may lead to improved 117 

knowledge on how embryos communicate with their environment and to the development of 118 

new in vitro culture systems for both animal and human embryos.  119 

 120 

Classification and biogenesis of extracellular vesicles 121 

As reviewed by Machtinger et al. (2015), EVs have been pointed out to be essential players in 122 

gamete maturation, fertilization and embryo implantation. The term ‘extracellular vesicle’ is 123 

generally applied to describe different vesicle types, including exosomes, microvesicles, 124 

apoptotic bodies and in pathological situations, necrotic debris.  125 

 126 

a) Exosomes  127 
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Exosomes are rounded phospholipid bilayer vesicles, and are in general smaller than 128 

microvesicles, with a size ranging from 40-150 nm (Table 2). Exosomes are formed in the 129 

late endosomal compartment by inward budding of the membrane of late multivesicular 130 

bodies (MVBs) (Fig. 2). Formation of intraluminal vesicles in multivesicular bodies has 131 

been shown to involve the endosomal sorting complex required for transport (ESCRT); 132 

apart from this, studies indicate that these vesicles can develop independently of this 133 

complex (Trajkovic et al. 2008). ESCRT has been shown to be involved in inward budding 134 

of intraluminal vesicles of MVBs and cleavage of the necks of these vesicles. When the 135 

vesicles are present in MVBs they can be released as exosomes by fusion of MVBs with 136 

the plasma membrane or alternatively be degraded via lysosomal fusion ( Hurley et al. 137 

2010). Emission of exosomes from the endosomal compartment of MVBs through fusion 138 

with the plasma membrane is also dependent on intracellular calcium (Théry et al. 1999; 139 

Savina et al. 2005). Many cytoplasmic proteins are present in exosomes including 140 

cytostructural proteins such as actin, annexins, tubulin and actin-binding proteins as well 141 

as signaling proteins such as signal transduction kinases, cytokines, and heterotrimeric G-142 

proteins (for the whole known protein contents of exosomes, see Exocarta: 143 

http://www.exocarta.org). β integrins and ICAM-1 are also found on the exosomal surface 144 

as are the tetraspanins CD9, CD63, CD81, and CD82, which are considered to be exosomal 145 

markers (Heijnen et al. 1999; Théry et al. 2009; Vlassov et al. 2012).  146 

Once released from producing cells, EVs will reach their target cells in the vicinity or in a 147 

distant tissue through transit by biological fluid (blood flow or local fluid). They may be 148 

uptaken by target cells through different pathways. EVs can bind randomly to cell 149 
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membranes and fuse to deliver their contents in the cytoplasm of recipient cell in a non-150 

specific manner. Alternatively, EVs can bind to a cell surface receptor through their 151 

surface proteins (integrins, tetraspanins). This pathway requires a specific receptor at the 152 

surface of the recipient cell. This binding can end up with activation of the receptor, 153 

inducing a signaling cascade in the cell, and/or internalization of the EVs contents by 154 

membrane fusion or by phagocytosis of the whole EV. Although these processes are not 155 

yet fully elucidated, they are probably all existing together or in different contexts. 156 

 157 

b) Microvesicles 158 

Microvesicles are supposed to be formed by outward budding of the plasma membrane 159 

(Fig. 2). They are mostly rounded vesicles with a size of around 100-1000 nm (Table 2). 160 

They exhibit similar composition in proteins and lipids to plasma membranes (Wolf 1967; 161 

Turiák et al.  2011; Dragovic et al. 2011. György et al. 2011a). Microvesicles are released 162 

in response to cellular activation or stress: initiated by rises in intracellular calcium, which 163 

eventually lead to the activation of scramblase and calpain resulting in microvesicle 164 

formation (Cocucci et al. 2009; Yuana et al. 2013).  165 

 166 

c)  Apoptotic bodies  167 

Apoptotic bodies also belong to EVs (Yáñez-Mó et al. 2015) and are released as the cell is 168 

undergoing apoptosis. Apoptotic bodies are consisting of cytoplasm with tightly packed 169 

organelles with or without a nuclear fragment. These bodies are subsequently 170 

phagocytosed by macrophages, parenchymal cells, or neoplastic cells and degraded 171 
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within phagolysosomes (Elmore 2007). They are heterogeneous in size ranging from 172 

1000-5000 nm (Table 2). Intracellular calcium is increased during apoptosis serving as an 173 

initiating event for apoptotic body formation (Cocucci et al. 2009; Baj-Krzyworzeka et al. 174 

2006). 175 

 176 

In the present review we will focus on exosomes and microvesicles because of their emerging 177 

role in inter-embryonic and embryo-maternal communication. For reasons of clarity, we will refer 178 

to exosomes and microvesicles as EVs in the further text, and will not discriminate between the 179 

different classes, even if this was done in the original papers.  180 

 181 

Isolation and characterization of extracellular vesicles (EVs) 182 

Different isolation techniques have been described to collect EVs from cells or fluids.  183 

Extracellular vesicles can be isolated using three major methods; with variations possible, namely 184 

(a) ultracentrifugation; (b) adsorption to micro beads, or (c) size exclusion chromatography.  185 

After isolation, they can be identified based on morphological properties by several imaging 186 

methods which include Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS) 187 

analysis (that allows quantification of EVs by size, differentiating exosomes and microvesicles) 188 

and immunostaining of exosomal markers like CD9, CD63 or HSP70. It is still a problem to find 189 

good markers to differentiate exosomes from microvesicles and different isolation methods can 190 

change the content of the EVs and abundance (Sunkara et al. 2016). 191 
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So far no specific marker can be used to distinguish the subtypes of EVs since protein components 192 

of the endosomal sorting complexes required for transport (ESCRT complex), such as Alix and 193 

TSG101, and membrane proteins such as CD9, CD81 and CD63 are enriched with either exosomes 194 

or microvesicles, depending on size and lower relative abundance (Raposo and Stoorvogel 2013). 195 

Moreover EV populations are not yet completely defined by researchers, as the EV subtypes 196 

released by cells varies from cell to cells.  197 

 198 

a) Ultracentrifugation 199 

Differential ultracentrifugation can be used for the isolation of EVs (Théry 2006; Witwer 200 

et al. 2013). The fluid of interest is subjected to repeated centrifugations, each time 201 

removing the pellet and increasing the centrifugal force. Separation of EVs is based on 202 

their size and density, with larger and denser particles, which are not wanted, pelleting at 203 

lower centrifugal forces. During the initial steps conditioned medium is subjected to 204 

centrifugation at 300× g for 10 min; after which the supernatant is centrifuged at 2000× 205 

g for 10 min, followed by 10,000× g for 30 min of centrifugation. These first three steps 206 

of centrifugation are meant to remove intact cells, cell debris and dead cells or apoptotic 207 

bodies. In some strategies, these centrifugation step(s) have been replaced by 0.1 μm (Ji 208 

et al. 2008) or 0.22 μm (Théry et al. 2001) filtration. After the 10,000× g spin, the 209 

supernatant is then subjected to final ultracentrifugation at 100,000×g for 70 min. The 210 

final outcome of this rather time-consuming centrifugation method is an exosome pellet 211 

which can be stored for further analysis. The re-suspended pellets can be used for 212 

https://en.wikipedia.org/wiki/Centrifugation
https://en.wikipedia.org/wiki/Centrifugal_force_(fictitious)
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checking the presence of microvesicles or exosomes through electron microscopy (Fig. 3a 213 

and b), immunofluorescence, or RNA extraction.  214 

It is important to note that the isolation protocol of EVs varies between different cell 215 

types, as well as  for the targeted population of the EVs is to be extracted. Exosomes (40-216 

100 nm) are usually isolated by centrifugation at 100,000-200,000×g (Théry et al. 2006; 217 

Witwer et al. 2011), whereas microvesicles (10-1000 nm) are isolated by centrifugation 218 

at 10,000-20,000×g (Witwer et al. 2011; Baran et al. 2010). Apoptotic bodies (50-5000 219 

nm) are obtained with a centrifugation of 2000×g (Jeppesen et al. 2014). It has also been 220 

shown that repeated ultracentrifugation steps can reduce the quality of exosome 221 

preparations leading to lower exosome yield (Lobb et al. 2015). Using ultrafiltration 222 

devices results in increased vesicle isolation when compared to traditional 223 

ultracentrifugation protocols (Lobb et al. 2015).  224 

 225 

A similar and quicker method is density gradient centrifugation (Tauro et al. 2012; Van 226 

Deun et al. 2014). For density centrifugation, for instance a sucrose gradient can be used 227 

to isolate EVs. The primary function of density gradient centrifugation is to separate 228 

particles, either on the basis of their buoyant density or their rate of sedimentation. 229 

 230 

(b) Immuno affinity isolation: 231 

Another promising method used for EVs isolation involves microbeads, normally 232 

magnetic, that are coated with an antibody that recognizes certain markers present on 233 
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the EV surface. This technique can be used for EVs from cell culture media, or body fluids. 234 

Initially the EVs samples are mixed with the antibody coated microbeads, and a magnetic 235 

force is applied to a column of microplate. This retains the EV covered microbeads, while 236 

the rest of the sample is discarded (www.systembio.com\exosomes). Further on, the 237 

microbeads with attached EVs are eluted using appropriate buffers and used for analysis. 238 

Compared to other techniques this method has the advantage to select a specific EV 239 

population based on specific marker expression regardless of size of the EV (Vlassov et al. 240 

2012).  241 

 242 

(c) Size Exclusion Chromatography 243 

This method is mostly used for a low speed centrifugation step that allows the removal 244 

of larger objects from the samples such as cellular debris, cell organelles etc. This is 245 

followed by a filtration step (0.8 and 0.2 µM pore size filter) to concentrate the EVs. The 246 

filtered EV samples are then subjected to size exclusion chromatography (normally gel 247 

filtration column) where small volume fractions  are ultracentrifuged to pellet down the 248 

EVs (Müller 2012; Taylor et al. 2002; Böing et al. 2012 ). The major principle of this 249 

technique is that particles based on their size move towards the filtration column at 250 

different rates. Hence larger particles will elute more rapidly, whereas small ones will 251 

move slowly, due to their ability to penetrate the stationary phase (gel) of the column. 252 

However this method has a few limitations, like forcing EVs passage through filter used 253 

to per concentrate the samples may lead to EV deformation and eventual rupture into 254 

smaller particles (Witwer et al. 2013).   255 

http://www.systembio.com/exosomes
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Autocrine communication among embryos in vitro : role of embryo-derived extracellular 256 

vesicles 257 

 258 

Like somatic cells, preimplantation embryos are able to produce and secrete autocrine factors by 259 

several mechanisms including active secretion, passive outflow, binding to a carrier molecule, or 260 

transport within extracellular vesicles (Wydooghe et al. 2015). However, unlike somatic cells, a 261 

glycoprotein layer is surrounding mammalian embryos, which is called the zona pellucida. This 262 

zona pellucida is composed of four glycoproteins (bZP1, bZP2, bZP3, and bZP4) and is typically 263 

visualized under the scanning electron microscope as a complex fibrous network with many pores 264 

(Vanroose et al. 2000; Van Soom et al. 2010). In bovine embryos, the pores are >50 nm in 265 

diameter, with 20–50% >200 nm (Vanroose et al. 2000). When the passage of fluorescent 266 

microspheres through and their location in the zona pellucida was assessed, the smallest beads 267 

(40-50 nm) were detected halfway through the thickness of the zona, whereas beads with a size 268 

of 200 nm were found only within the outer-fourth part of the zona pellucida (Vanroose et al. 269 

2000). Using fluorescently labelled markers, Legge (1995) showed that the zona pellucida of 270 

murine oocytes is permeable to markers up to 170 kDa. Microvesicles of 40–150 nm diameter 271 

should be able to pass through these pores, since most lipids and lipid-containing molecules pass 272 

through the zona pellucida relatively easy (Turner and Horobin 1997). This hypothesis has 273 

elegantly been proven by Saadeldin et al. (2014): they derived EVs from medium conditioned by 274 

parthenogenetically activated pig embryos by differential centrifugation. Next the EV pellets 275 

were subjected to fluorescent labeling using PKH67 dye, a green fluorescent dye that labels the 276 

lipid membranes. Cloned embryos were exposed to these labelled EVs and it was shown that the 277 
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EVs can pass through the zona pellucida and are internalized by blastomeres. Moreover, analysis 278 

of culture media from porcine embryos cultured individually determined the presence of 30–120 279 

nm vesicles differing in size according to the embryo’s age (less than 40 nm in cultures from two-280 

cell embryos and less than 120 nm in cultures from blastocysts). An important aspect from the 281 

experimental set-up was that the culture medium used for porcine embryos was serum-free 282 

chemically defined PZM-5 medium (Saadeldin et al. 2014). When using serum-containing 283 

medium or medium with BSA, EVs derived from serum or BSA could interfere with the results. 284 

Gardiner et al. (2013) demonstrated that also human IVF embryos release EVs into the culture 285 

medium. Increasing EV size was strongly associated with decreasing embryo quality (202 nm 286 

good, 218 nm average, 222 nm poor and 227 nm arrested development).  287 

Now how do these EVs impact embryo development? In the study of Saadeldin, cloned 288 

embryos cultured with porcine parthenogenetic embryos showed a significant increase in their 289 

developmental competency (i.e. increased number of blastomeres and better blastocyst 290 

formation) compared with cloned embryos cultured alone. Paradoxically, the addition of 291 

medium conditioned by parthenogenetic embryos on different time points, either along with 292 

the developmental course or preceded by 2 days, was not able to affect embryo development. 293 

Authors suggested that a continuous supply of EVs is necessary in contrast to an acute transfer, 294 

confirming the highly dynamic microenvironment created by embryonic secretions (Saadeldin 295 

et al. 2014). The EVs derived from parthenogenetic embryos and conditioned medium 296 

contained mRNA of pluripotency transcription factors (OCT4, SOX2, KLF4,CMYC and NANOG). 297 

These transcription factors were also found in EVs derived from embryonic stem (ES) cells 298 

(Ratajczak et al. 2006). Recently it has also been reported that bovine and human pre-299 
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implantation embryos secrete miRNAs into culture medium (Rosenbluth et al. 2014; Kropp et 300 

al. 2014). These miRNAs are secreted within EVs into the extracellular environment where 301 

these can be taken up by cells and act in autocrine or paracrine manner to impact gene 302 

expression. Human embryos cultured for IVF were found to secrete specific miRNAs which are 303 

varying depending on the fertilization method, their chromosomal state and whether or not 304 

they successfully implanted (Rosenbluth et al. 2014). In conditioned medium of aneuploid 305 

human embryos, miRNA-191 was more abundant, while miRNA-191, 372 and 645 were mostly 306 

highly concentrated in medium from embryos of failed IVF cycles. In horses, an in vitro study 307 

(Bemis et al. 2012) suggested that EVs can be secreted by Day 8 embryos, which can modulate 308 

the functions of the oviduct epithelium through transfer of early pregnancy factor (HSP 10) and 309 

miRNAs. Kropp et al. (2014) examined miRNA secretion in day 5-8 in vitro cultured bovine 310 

embryos, and observed a clear differentiation of miRNAs expression between the embryos that 311 

successfully developed to the blastocyst stage and degenerate embryos. In total four miRNAs -312 

25,302c, 192a2 and 181 were found to be more prevalent in culture medium of degenerating 313 

embryos. It is apparently also possible to detect sex determining mRNAs, such as  Xist and Sry, 314 

in the conditioned medium of in vitro–produced embryos cultured individually, which could be 315 

used for sexing (Saadeldin et al. 2015).   316 

 317 

Paracrine communication between embryos and somatic cells in vitro: role of maternally-318 

derived extracellular vesicles 319 

 320 
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In mammals, maternal-embryo communication is considered the basis for the success of 321 

any reproductive event (Rizos et al. 2002). The oviduct, or Fallopian tube, which is connecting the 322 

ovary to the uterus, plays a vital role in these interactions. In fact, it holds the first maternal cross-323 

talk with gametes and early embryos and provides an optimal environment for fertilization and 324 

early embryo development. The oviductal epithelium is composed of ciliary and secretory cells 325 

responsible for the secretion of proteins and other factors that together with constituents 326 

derived from plasma, contribute to the formation of the oviduct fluid (OF) (Buhi et al. 2000; Leese 327 

et al. 2008). Later, the embryo will migrate to the uterus, and this dialogue will continue with the 328 

endometrium to ensure proper implantation. The role of the oviduct has been underestimated 329 

based on the ability to produce competent embryos in vitro which after transfer to the uterus 330 

establish a pregnancy and live calves, lambs, kids, and babies are born. However, it has been 331 

evidenced that embryos cultured in the oviducts of different species are of superior quality to 332 

those produced in vitro, in terms of morphology, gene expression, cryotolerance and pregnancy 333 

rate after transfer (Lazzari et al. 2010; Rizos et al. 2010; Besenfelder et al. 2012), indicating that 334 

the oviduct is not merely an organ of transit.  335 

Despite the fact that in vitro culture conditions are capable of supporting a “relatively 336 

high” percentage of blastocysts (30 to 40%), they provide a suboptimal environment reflected on 337 

the quality of the produced embryos with short and long term consequences (Rizos et al. 2008). 338 

Thus, the goal of in vitro embryo production is to simulate as closely as possible the conditions in 339 

vivo to obtain high quality embryos capable of continued development and implantation, and 340 

resulting in viable births (Menezo et al. 1998). Moreover, studying the oviductal environment is 341 

crucial to improve our understanding of the regulatory mechanisms controlling early 342 
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reproductive events (Avilés et al. 2015). While in vitro models provide a simple and defined 343 

context to study maternal interactions with gametes and embryos, their advantages are not 344 

limited to their simplicity. As Van Soom et al. (2010) pointed out, when choosing an in vitro 345 

model, the aim of the experiment is an important consideration. In studies of gamete and embryo 346 

interaction with the reproductive tract, the use of BOEC, OF and their EVs may be considered as 347 

the most appropriate in vitro models to mimic the physiological conditions pertaining in vivo. 348 

The in vitro culture of BOEC has been considered a suitable model to produce embryos 349 

of better quality and also to study oviductal-embryo interaction (Ulbrich et al. 2010). These cells 350 

can be cultured as monolayers or cell suspension (Fig. 4). The drawback of monolayers is that 351 

they dedifferentiate losing important morphological characteristics (Rottmayer et al. 2006) 352 

including reduction of cell height, loss of cilia, and loss of secretory granules and bulbous 353 

protrusions (Thibodeaux et al. 1992), whereas short-term (24 h) epithelial cell suspension culture 354 

maintained morphological characteristics as well as gene markers present in the cells in vivo such 355 

as OVGP1, oestrogen and progesteron receptors (Rottmayer et al. 2006). 356 

In the present review we will merely focus on the in vitro model consisting of coculture 357 

of primary BOEC with in vitro produced bovine embryos. Using this in vitro system, Schmaltz-358 

Panneau and colleagues demonstrated that BOEC adapted their transcriptomic profile in 359 

response to the presence of embryos (Schmaltz-Panneau et al. 2014). Most of the genes 360 

regulated in BOEC by the presence of embryos are known to be interferon regulated, but other 361 

pathways may also be involved and triggered by other embryonic signals. Moreover, when the 362 

levels of expression of genes suspected to be involved in embryo development support were 363 

evaluated (GPX4, OVGP, C3) in different regions of the oviduct (ampulla and Isthmus), a regional 364 
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difference was found (Cordova, personal communication). 365 

Also the other way around, from BOEC to embryo, communication could be detected: 366 

Cordova et al. (2014) showed that the use of BOEC in embryo culture in vitro at the early stages 367 

of embryo development, up to day 4, improves embryo development and embryo quality in 368 

terms of specific gene transcripts. This period of culture coincides with the in vivo conditions 369 

where the embryo is still in the oviduct. Furthermore, BOEC co-culture with embryos for the first 370 

4 days accelerated the kinetics of blastocyst development, with a significant increase in the 371 

number of blastocysts at days 6 and 7 compared to control and coculture during 8 days. BOEC 372 

from the isthmus were more capable of supporting early embryo development than BOEC from 373 

the ampulla, demonstrating a regional specialization of the oviduct in supporting embryo 374 

development (Cordova, personal communication). In addition, embryo transcriptomic analysis 375 

revealed that the level of expression of several genes related to embryo quality were altered as 376 

a result of the presence of BOEC, reflecting reduced embryo apoptosis and increased capacity to 377 

adapt against oxidative stress after coculture.  378 

Taken together, these in vitro studies have shown the existence of a real dialogue 379 

between the early embryo and the oviduct, as a result of which, the embryo regulates its own 380 

environment in the maternal tract but also during in vitro culture. Soluble factors are probably 381 

involved in this cross-talk, binding to receptors on both embryo and maternal sides. However, 382 

recent studies indicate that there is room for other players in this embryo-maternal dialogue. 383 

Extracellular vesicles have been proposed as intercellular vehicles in the embryo-maternal 384 

dialogue in the uterus (Ng et al. 2013; Burns et al. 2014, 2016; Ruiz-Gonzalez et al., 2015) and 385 

might also mediate the maternal-gametes/embryo interactions in the oviduct. To date, little is 386 
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known on how EVs could be taken up by gametes and early embryos and whether they modulate 387 

the maternal interactions to promote successful pregnancy. Recently, we demonstrated that an 388 

extended culture BOEC monolayer can be used successfully for embryo co-culture and 389 

conditioned media (CM) production, improving embryo development and embryo quality, most 390 

likely due to the presence of EVs secreted by the cells (Lopera-Vasquez et al. 2016a).   This 391 

hypothesis was confirmed by the presence of 3x105 EVs/ml of a relatively homogeneous 392 

population of 150-200 nm in diameter obtained by ultracentrifugation from BOEC CM and 393 

assessed by transmission electron microscopy and nanoparticle tracking analysis (Nanosight) (Fig. 394 

5).  Also, it was verified by Western blot and bead-assisted flow cytometry analysis that these EVs 395 

expressed the classical markers of exosomes like tetraspanins CD9 and CD63, TSG101 and ERM 396 

proteins (Fig. 5). Furthermore, embryos cultured with EVs, irrespective of concentration 397 

(3x105=100%; 1.5x105=50%; 7.5x104=25% EVs/ml) or processing (fresh or frozen/thawed) had 398 

similar blastocyst yield on Day 7, 8 or 9 (range on Day 8: 37.8-43.4%) when compared with 399 

controls. Likewise, the survival rate after vitrification/warming was higher at all points in time 400 

compared to controls (range at 72h; 48.7-56.5% vs 22.3% respectively). Blastocysts cultured with 401 

EVs displayed a higher number of total cells and expressed several genes related with embryo 402 

quality. On the other hand, EVs derived from FCS exerted a deleterious effect on embryo quality.  403 

Based on this evidence it can be concluded that EVs from BOEC may have an important function 404 

in the communication between the oviduct and the embryo during early stages of development. 405 

(Lopera-Vasquez et al. 2016a). 406 

An important component of the oviductal environment is the OF. The composition of OF 407 

is very complex, containing simple and complex carbohydrates, ions, lipids, phospholipids and 408 
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proteins (Avilés et al. 2010). Some of these components are metabolic substrates (lactate, 409 

pyruvate, amino acids and glucose) and their concentrations are different from those in the 410 

uterine fluid and serum (Leese 1988; Hugentobler et al. 2007; Leese et al. 2008). It has been 411 

shown that specific oviductal secretions have an effect on oocyte and sperm function (Killian 412 

2011; Mondejar et al. 2013), since oviductins, osteopontin, glycodelins and lactoferrin may play 413 

a role in gamete interaction (Ghersevich et al. 2015). When porcine oocytes were treated with 414 

OF before fertilization, a significant increase in cleavage rate and blastocyst yield was evident, 415 

suggesting protection of the embryo by OF against apoptosis and against adverse effects on 416 

mitochondrial DNA transcription or replication (Lloyd et al. 2009). When bovine oocytes were 417 

exposed to OF before fertilization, no effect was visible on embryo development and morphology 418 

of the resulting blastocysts; but differences appeared in specific transcripts of the embryos 419 

produced from oocytes treated with OF (Cebrian-Serrano et al. 2013).  420 

It is worth to mention that, until recently, the OF was only used before fertilization. In a 421 

recent study we investigated the developmental competence of bovine zygotes and the quality 422 

of blastocysts produced after culture in SOF without FCS, but supplemented with different 423 

concentrations of OF. It was clear that >5% OF supplementation was detrimental for embryo 424 

development, while low concentrations of OF (1.25%) had a positive effect on development and 425 

quality of the produced blastocysts in terms of cryotolerance, cell number and expression of 426 

qualitatively related genes (Lopera-Vasquez et al. 2015).  Thus, enhancing the post fertilization 427 

environment in vitro with substances present in the oviduct may diminish the limitations of in 428 

vitro embryos and make them comparable to their in vivo counterparts. This enhanced 429 

development may also be brought about by extracellular vesicles present in the OF. Almiñana 430 
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and colleagues isolated exosomes from bovine OF and co-cultured them with in vitro produced 431 

embryos to demonstrate the existence of oviductal-embryo communication via exosomes 432 

(Almiñana et al. 2015; 2016 published communication IETS). Extracellular vesicles were isolated 433 

by serial ultracentrifugation and measured by dynamic light scattering analysis and transmission 434 

electron microscopy, detecting exosomes (63-97 nm) and microvesicles (>100nm), both in OF 435 

(Fig. 3a) and culture media from BOEC primary culture (Fig. 3b). To demonstrate the existence of 436 

the oviductal-embryo communication via exosomes, oviductal exosomes were labelled with 437 

green fluorescent dye (PKH67), filtered (0.22µm) to remove microvesicles and co-incubated with 438 

in vitro produced blastocysts for 20 h, under 5% CO2 and 5% O2 conditions. Confocal microscopy 439 

observations confirmed that exosomes were internalized by blastocyst cells, demonstrating the 440 

existence of an oviductal-embryo communication via exosomes (Fig. 6).  441 

Lopera-Vasquez et al. (2016b) evaluated the developmental competence and the mRNA 442 

abundance of specific genes on bovine blastocysts produced in vitro with EVs obtained by 443 

ultracentrifugation from ampullary and isthmic OF. EVs from both oviduct regions had a similar 444 

size of a mean around 200 nm as quantified with NTA and transmission electron microscopy. 445 

Blastocyst rate was not affected by the supplementation of EVs compared to controls (SOF+BSA 446 

and SOF+FCS). However, bovine isthmic OF EVs supplementation had a positive effect on gene 447 

expression patterns of developmental related genes (AQP3, LDLR, DNMT3A and  SNRPN) 448 

compared with serum supplementation suggesting an association between the oviductal 449 

environment and the developing embryo (Lopera-vasquez et al. 2016b). 450 

In an attempt to decipher the role of oviductal derived EVs, the contents of EVs was 451 

analyzed at the proteomic level (Almiñana et al. 2015). Knowing that in vitro culture could alter 452 
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the gene expression profile of OEC (Rottmayer et al. 2006; Schmaltz-Panneau et al. 2015), EVs 453 

were analysed from both in vivo oviductal fluid and in vitro BOEC conditioned medium (Almiñana 454 

et al., 2015). For this purpose, the same primary BOEC culture system was used as explained 455 

previously. EVs secreted by OEC in vivo in the oviductal fluid and by OEC in vitro in the conditioned 456 

media after primary culture were collected by serial ultracentrifugation. Preliminary results by 457 

dynamic light scattering analysis revealed different size distribution profiles compatible with 458 

exosomes and microvesicle populations from in vivo preparations and mostly microvesicle 459 

populations from in vitro preparations. Protein profile analysis by SDS-PAGE showed quantitative 460 

and qualitative differences between both EV samples. In addition, exosomes of in vivo and in vitro 461 

origin exhibited distinct proteomic profiles. Indeed, western blot analysis demonstrated that (i) 462 

both types of exosomal protein samples were positive for HSP70, a known exosomal protein; and 463 

(ii) in vivo exosomes contained OVGP and heat shock protein A8 (HSPA8), oviductal proteins with 464 

known roles in fertilization and early development. However, OVGP was not detected in in vitro 465 

exosomes. This is not surprising since the OVGP gene is known to be downregulated during BOEC 466 

culture under these conditions.  High throughput analysis of the proteomic content of the in vivo 467 

vesicles by LC1D-nanoESI-LTQ-Orbitrap revealed 480 proteins in the oviductal EVs. Gene ontology 468 

(GO) analysis revealed that a high number of these proteins were involved in metabolism (24.9%), 469 

cellular process (19.3%) and 0.8% reproductive processes. Further analysis revealed that more 470 

than 56% of EVs proteins involved in cellular processes were associated with cell-to-cell 471 

communication (Almiñana et al. 2016).   472 

In addition to the identification of proteins that may be involved in embryo-embryo 473 

communication or embryo-maternal interaction, the analysis of the content of these EVs at 474 
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mRNA and miRNA levels will bring new insights into the dialogue of the embryos with its 475 

environment. Moreover, a better understanding of the molecular mechanisms by which these 476 

EVs are recognized and internalized by embryos may contribute to their therapeutic applications 477 

in ARTs. Mechanisms involving membrane fusion or endocytosis (Del Conde et al. 2005; Parolini 478 

et al. 2009) have been proposed, but it is still unclear whether these vesicles could use more than 479 

one route or whether the vesicular uptake is cell type specific (Feng et al. 2010). It becomes more 480 

and more apparent that EVs represent ideal natural nanoshuttles for carrying specific in vivo 481 

molecules that are not present in classical in vitro culture media. EVs supplementation could 482 

bring a “cocktail” of in vivo oviductal proteins, miRNA and lipids to overcome the absence of 483 

maternal environment or to complement a deficient coculture system involving partially 484 

dedifferentiated BOEC (Fig. 7). Increasing our understanding of the content and function of EVs 485 

will highlight the great potential for the use of these vesicles as non-invasive biomarkers in 486 

embryo culture or as therapeutic assets in infertility and early pregnancy loss.  487 

 488 

Conclusion  489 

 490 

In conclusion, beyond classical ways of cell communication involving ligands binding to 491 

membrane receptor to trigger intracellular cascades of phosphorylations, EVs, and especially 492 

exosomes, predominate as new players of a complex networking activity of cells and tissues. 493 

Indeed, EVs are able to deliver a complex cargo, including proteins, RNA and lipids, to target cells 494 

and bypass the classical receptor step to induce deep changes in various cell functions. Number 495 

of recent works highlighted the presence and possible functions of such EVs in the reproductive 496 
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organs and fluids, including oviduct and uterus, as well as in embryonic secretions. Deciphering 497 

this newly described communication paradigm will open the way to a better understanding of 498 

the regulation of early embryo development and implantation by maternal tissues and by 499 

embryos themselves. It will also provide new tools for evaluating the success of these different 500 

steps and to improve assisted reproduction biotechnologies. 501 
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Table 1.  Studies comparing individual and group culture of bovine embryos with SOF as a basic medium, with or without serum 

supplementation (FCS- fetal calf serum- BSA- bovine serum albumin) *Depending on maturation conditions ; ** D10 ; ND= Not Done 

Reference IVM and IVF 

conditions 

 Individual culture Group  culture 

Protein supplement Embryo 

density 

Blastocyst % D8 Embryo 

density 

Blastocyst % D8 

Carolan et al. 1996 Group 10 % FCS (D2) 1:1 0 1:1 32 

 Individual 10 % FCS (D2) 1:20 20-35* 1:1 38 

Donnay et al. 1997 Group  10 % FCS (D2) 1:20 0 1:1 23** 

Hagemann et al. 1998 Individual 3.2 % BSA 1:10 23 ND ND 

  Idem + 1 µl FCS (D5) 1:10 39   

  Idem + Glutamax 1:10 24   

  Idem + glucose 1:10 24   

Fukui et al. 2000 Small group 0.8 % BSA 1:25 17  1:5 22 

Goovaerts et al. 2009 

Goovaerts et al. 2012 

Group 

Group 

5 % FCS 

5% FCS 

5% FCS + cumulus 

5% FCS + ITS 

5% FCS + ITS + BSA 

ITS + BSA 

1:20 

1:20 

1:20 

1:20 

1:20 

1:20 

2 

0.4 

40.1 

2.7 

18.8 

19.4 

1:2 

ND 

25 

ND 



Table 2. Broad classification of extracellular vesicles. 

Vesicle Types Diameter(nm) Density(g/ml) Morphology 
(TEM) 

Cellular 
Origin 

Origin Composition 

Exosomes 40–150 1-4 1.13–1.19 1,3 Rounded 1–3,5 Most cell 
types 

Endolysosomal 
pathway, 
intraluminal 
budding of 
multivesicular 
bodies and fusion of 
multivesicular body 
with cell membrane, 
Plasma membrane, 
Endosomes 6–9 

mRNA, miRNA, non 
coding RNAs, most 
proteins and lipids 
not unique for 
exosomes 1,2,5,11–15,26 

Microvesicles 100–1000 2,14–17 Unknown Rounded Most cell 
types 

Cell surface, 
outward budding of 
cell membrane , 
Plasma membrane 

Cytoplasmic 
proteins and 
membrane proteins, 
including receptors27 

Apoptotic bodies 1000–5000 13,14,22,23 1.16–1.28 14 Heterogeneous 23 All cell 
types 

Plasma membrane 
endoplasmic 
reticulum 24 

Histones, DNA , 
nuclear fractions, 
cell organelles 14,22–25 

1 Escola et al. 1998. 2 Heijnen et al. 1999. 3 Raposo et al. 1996. 4 Trams et al. 1981. 5 André et al. 2004. 6 Booth et al. 2006. 7 Fang et al. 2007. 8 

Harding et al. 1983. 9 Lenassi et al. 2010. 10 Pan et al. 1985.11 Beyer and Pisetsky, 2010. 12 Taylor and Gerçel-Taylor, 2005. 13 Théry et al. 2009. 14 

Turiák et al.  2011. 15 Dragovic et al.  2011. 16György et al. 2011a. 17Wolf, 1967. 18 Allan and Raval, 1983. 19 Crawford, 1971. 20George et al. 1976, 

1982. 21Marzesco et al. 2005. 22 Hristov et al. 2004.  23Kerr et al. 1972. 24Bilyy et al. 2012. 25 Holmgren et al. 1999. 26Kim et al. 2013. 27 Crescitelli et 

al. 2013. 



 

 

 

 

 

 

 

 

Fig. 1 Droplet of 50 µl medium containing 25 embryos (a) or a single embryo (b). It is obvious 

that embryonic secretions are diluted in case of single embryo culture. 
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Fig. 2.  Schematic illustration of extracellular vesicles: Microvesicles that are considered to be 

budded off from the surface of secreting cell with surface receptors attached to it, which are 

attached to other cell finally obtained inside the recipient cell. Exosomes were considered to be 

secreted by multi vesicular endosomes in which each exosomes are filled with different types of 

cargo, which were engulfed by the recipient cells.  Apoptotic bodies are released from the cells 

undergoing apoptosis. 

 

 

 

 

 

  



 

Fig. 3a Oviductal exosomes from in vivo origin observed by TEM after ultracentrifugation. 

 



 

 

Fig. 3b Oviductal exosomes derived from Bovine Oviduct Epithelial cells (BOEC) cultured in vitro 

as observed by TEM after ultracentrifugation. 

 

 

 



 

Fig. 4 In vitro embryo culture systems using oviduct (A) components in cattle. (a) Bovine oviduct 

epithelial cell (BOEC) monolayer ( ); (b) BOEC suspension; (c) BOEC conditioned media ( ); (d) 

Extracellular Vesicles purified from BOEC conditioned media ( ); (e) Oviduct Fluid (OF) 

supplementation; (f) Extracellular Vesicles purified from OF ( ).  

Embryotrophic factors released from BOEC  

 Proteins, ions, energy substances from OF 

 

 



 

 

Fig. 5 Characterization of vesicles isolated from BOEC-CM. 

A. Nanoparticle tracking analysis (NTA) of a representative EV sample. B- Transmission electron 

microscope image of negative-stained BOEC-EVs. C- Western-blot analysis of BOEC-EV lysates 

with EV markers. D- Bead-assisted flow cytometry analysis of EV isolated from BOEC-ECM. EV-

coupled beads were stained for CD9, CD63, TSG101 and ERM EV markers. Negative control is 

depicted as an empty plot. (Lopera-vasquez et al., Extracellular Vesicles from BOEC in In Vitro 

Embryo Development and Quality. PLoS One. 2016 Feb 4;11(2):e0148083. doi: 

10.1371/journal.pone.0148083.) 

 

  



 

 

Fig. 6  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Oviductal exosomes labelled with green fluorescent dye (PKH67) and internalized by 

embryos at blastocyst stage after 20h of co-culture. Nuclei are stained by Hoechst 33342. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Exosomes labelled with green fluorescent dye (PKH67) and internalized by partially 

dedifferentiated BOEC after 24 h of coculture. Nuclei are stained by Hoechst 33342. 

 




