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Abstract. The smart beam is widely used as a means of studying the dynamics and active 
vibration suppression possibilities in aircraft wings. The advantages obtained through this 
approach are numerous, among them being aircraft stability and manoeuvrability, turbulence 
immunity, passenger safety and reduced fatigue damage. The paper presents the tuning of two 
controllers: Linear Quadratic Regulator and Fractional Order Proportional Derivative 
controller. The active vibration control methods were tested on a smart beam, vibrations being 
mitigated through piezoelectric patches. The obtained experimental results are compared in 
terms of settling time and control effort, experimentally proving that both types of controllers 
can be successfully used to reduce oscillations.  The analysis in this paper provides for a 
necessary premise regarding the tuning of a fractional order enhanced Linear Quadratic 
Regulator, by combining the advantages of both control strategies.  

1.  Introduction 
 
The cantilever wing is the only type of airplane wing used in civilian aircrafts. Due to its shape and the 
need to actively control vibration, the cantilever wing is characterized and modelled as a smart beam 
[1]. The active vibration control is most often realized through smart materials exhibiting the 
piezoelectric effect. The piezo patches, which act as sensors and actuators, are embedded or mounted 
on the surface of the beam [2], [3]. 
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Among the years, various control strategies have been tested with the purpose of significantly 
reducing the smart beam’s displacement. Such strategies include: fuzzy logic [4], adaptive [5], robust, 
Linear Quadratic Regulator, fractional – order PI, PD and PID type controllers [6], etc. In [7] the 
authors present the tuning of a fuzzy logic controller using the particle swarm optimization approach 
that deals with the control of smart composite beams vibration. The proposed controller is compared 
with fuzzy logic controllers with constant scaling factors and with the Linear Quadratic Regulator 
(LQR). The results obtained show that the PSO tuned fuzzy logic controller obtains better vibration 
suppression when compared to the LQR for both single and multimodal cases. Numerical optimization 
consisting of population based Particle Swarm Optimization and Genetic Algorithms is also used in 
[8] to develop fuzzy logic controllers. The study compares the behaviors of the classical fuzzy 
controller with the ones obtained from the optimization techniques. The controller optimized by PSO 
yielded better results than the others. 

The active control of flexible cantilever plates based on the piezoelectric effect is realized in [9] 
through artificial neural networks. The neuro-controller is trained such that optimal voltage is applied 
to the piezoelectric patches. The performance and the robustness of the trained controller is evaluated 
comparing the active response to the free vibration under various types of dynamic excitations. 

The idea of tuning a controller with neural networks is also present in [10] where the parameters of 
a proportional – derivative controller are determined with a back propagation neural network (BPNN). 
Data obtained from both simulations and practical experiments is used to prove the veracity of the 
proposed method. The controller proves to exert vibration on an experimental unit consisting on a 
vertical aluminum beam equipped with 3 piezoelectric patches. Modeling and controlling smart beams 
with the hysteresis property is described in [11]. A time varying model of the smart beam is 
determined based on the hysteresis property using recursive extended least square method. The 
vibration is controlled with an adaptive minimal variance self-tuning direct regulator (MSVTDR). The 
advantage of this type of controller consists in computing an optimal control signal. The adaptive 
regulator claims to reduce the strain of the smart beam with up to 83.67% at its first natural frequency. 

Piezoelectric bonded smart structures are controlled with the classical PID controller in [12]. The 
PID controller is designed to attenuate both free and forced vibrations of the smart beam. Compared 
with the optimal LQR controller, the PID controller gives the best results. Part of the study is 
dedicated to analyze the behavior of the three control effects: proportional, derivate and integral. 
Experimental tests suggest that the D control has little to no effect on the steady-state error, but 
counteracts the free vibration of the beam. However, the PI effects eliminate the steady state error, but 
have a negative impact on the free vibration. A feedback control algorithm is implemented in [13] 
using the real time National Instruments Real Time Controller cRIO 9022 controller. Improvements of 
49.29% and 52.84% were obtained for the first and second flexural modes. However, the strain rate 
feedback approach showed low system stability. The validity of the 𝐻! optimal controller is proven in 
[14] when uncertain disturbance and measurement noise are considered. A full-order state observer 
LQR and PID controllers are designed and tested in order to control the vibration of the beam [15]. 
The LQR controller outperformed the integer-order PID in the 3 configurations studied of the beam-
piezoelectric elements. 

In this study, two active vibration control methods are proposed with the purpose of significantly 
reducing the settling time of a dedicated smart beam when rejecting disturbances. The first choice 
regarding the control algorithm refers to a LQR controller, mainly chosen because of its wide 
application in smart beam vibration suppression methods, the simple parameter design method, as well 
as overall efficiency.  The second control algorithm is a rather less used approach in vibration 
suppression: the fractional order PD controller, mainly chosen because of its improved performance 
over classical PID controllers [16]. Apart from that, fractional order systems and controllers are 
becoming more and more popular in the research community [17], [18]. In terms of vibration 
suppression in a cantilever beam, fractional order PD controllers have been designed previously for 
similar cantilever beam and the experimental results demonstrated the advantages of using a fractional 
order PD controller instead of the classical integer order PD controller [19]. 



 
 
 
 
 
 

To tune the controllers, the dynamics of the smart beam is considered as a simple second order 
system. In this way, because of the simplification of the model, the problem of robustness is also 
addressed, since in real life applications, the ability of the control system to cope with modeling 
uncertainties proves extremely useful, especially in the case of an aircraft subjected to turbulences of 
different frequencies. The two proposed methods were implemented and validated on an experimental 
vibration unit consisting of an aluminum cantilever beam equipped with piezoelectric patches. The 
comparison is realized by analyzing the settling times and control effort obtained while the beam is 
subjected to impulse disturbances. 

The structure of the article presents an overview of the proposed tuning methods, the description of 
the experimental stand, experimental system identification, numerical and experimental results and 
last, but not least, the conclusions. 

2.  Overview of the proposed active vibration control methods 

2.1.  Linear Quadratic Regulator (LQR) 
 

The LQR is an optimal controller that ensures the stability of the closed-loop system, has a simple 
tuning procedure and a certain degree of robustness. This type of optimal controller minimizes a cost 
function of the following form: 

 

JLQR = xT(t)*Q*x(t)+uT(t)*R*u(t)⎡⎣ ⎤⎦
0

∞

∫ dt
      

(1) 

 
where R is a scalar and Q is a positive semi-definite matrix (symmetric matrix) having the dimension 
𝑛×𝑛, with n the number of states of the state space system that describes the dynamics of the smart 
beam. The state space system is given as: 

 
𝑥 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡  
𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢(𝑡)   (2) 

 
where x is the state vector; y is the output vector; u is the control signal and A is the state matrix, B the 
control matrix, C the output matrix and D is the feedthrough matrix. 

The integral from equation (1) is written as a sum of the accumulated deviation of the states with 
respect to the equilibrium point and the accumulated control effort. By properly choosing the 
parameters Q and R, the importance of the control performance and input energy are weighted 
reaching a convenient compromise. 

The manipulated input u(t) generated by the LQR controller is  
 

u(t) = −K.x(t)   (3) 
 
where K is the feedback gain matrix computed as 

 
K = XBR T1 ⋅⋅−  

  (4) 

 
X is a symmetric matrix determined from the Ricatti equation as a nonnegative definite solution: 

 
0XBXBRQCCXAXA T1TT =−++ −    (5) 

 
The resulting closed loop system has the form: 
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2.2.  Fractional – order Proportional Derivative  Controller 

The fractional-order PD controller is best defined by its transfer function: 
 

( )µskksH dpPDFO +=− 1)(    (7) 
 

where s is the Laplace operator, 𝑘! and 𝑘! are the proportional and derivative gains, while 𝜇 is the 
fractional order differentiator. When 𝜇 is equal to 1, equation (7) describes an integer order 
proportional – derivative controller. 

The trigonometric form of the fractional order PD (FO-PD) controller can be written by moving 
from the Laplace domain to the frequency domain, where jω replaces s. 
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The three parameters of the controller are computed based on frequency domain constraints: phase 

margin mϕ , gain crossover frequency ωcg and robustness to gain variations. The first two constraints 
can be written through the phase equation of the open loop system: 

 
( ) mcgloopopen )j(H ϕ+π−=ω∠ −  (9) 

  
The gain crossover frequency is mathematically expressed as: 

 
( ) 1)j(H cgloopopen =ω−  (10) 

 
The robustness constraint is imposed such that it ensures a constant overshoot at gain variations. 

On the Bode phase plot, a constant overshoot means a constant phase near the gain crossover 
frequency. A constant phase graphically translates into a straight line. One important property of a 
straight line is the fact that its derivative is equal to 0. This means that if the derivative of the phase 
margin is imposed as being 0 at the gain crossover frequency, the closed loop robustness is assured. 
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The open-loop system, with G(s) – the transfer function of the smart beam and C(s) – that of the 

FO-PD controller, is computed as: 
 

( ) )s(C)s(GsH loopopen ⋅=−  (12) 
 
Replacing the equation of the open-loop transfer function in the gain crossover, phase margin and 

robustness constraints from equations (9),(10) and (11), the modulus, phase and phase derivative of 
the controller C(s) are obtained in the complex representation: 
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Further using (8) in the phase equation from (13) leads to:  
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while the robustness constraint may be rewritten as: 
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By solving (14) and (15), as a system of equations, the derivative gain and the fractional order, 𝑘! 

and μ, are obtained. The graphical method can be a tangible approach to determining the parameters. 
Rewriting the magnitude condition from equation (13) such that the proportional gain is isolated in 

the left side, the following equation is obtained, from which 𝑘! is easily determined: 

kp =
1

G(jωcg )
1

1+ 2kdωcg
µ cos πµ

2
+ kd

2ωcg
2µ

 
(16) 

3.  Experimental setup and system identification 

3.1.  Description of the experimental equipment and the smart beam 
 

The experimental vibration unit can be seen in Figure 1 and consists of a smart beam equipped with 
4 piezoelectric (PZT) actuators, a real-time controller, input and output modules and a PZT controller. 
The beam is fixed at one end allowing only back and forth movements. There are four piezoelectric 
patches mounted close to the fixed end of the beam, two on each side. The aluminium beam is 250 
mm long, 20 mm wide and 1 mm thick. Figure 2 shows a detailed view of the smart beam and the 
position of the patches. Two piezoelectric DuraAct P-878 Power Patch transducers are fixed on each 
side of the beam. 

The control algorithm is implemented in real-time with the help of the CompactRIOTM 9014 
controller. The NI 9230 is the input module that measures the displacement of the beam, while the NI 
9263 output module is used for applying the voltage to the patches used to mitigate vibration. The 
communication and the control algorithms are implemented in LabVIEW TM.  

The piezoelectric patches are used only as actuators and not as sensors because the movement of 
the beam is measured with the 120 ohm Omega Prewired KFG-5-120-C1-11L1M2R strain gauge 
sensors. The E-509.X3 module from Physik Instrumente is used to amplify the signal from the sensors, 
while E-503.00 is used to amplify the control signal to the PZT patches. The chassis amplifies the 



 
 
 
 
 
 

signal by 10, meaning that if the LabVIEW code gives a control signal of between [-2;2] volts, the 
patches are excited with a signal between [-20; 20] volts. 
  

 
Figure 1. Experimental setup 

 

 
Figure 2. Detailed view of the fixed end of the smart beam.  

3.2.  System Identification 
 

The transfer function of the system is determined based on the experimental response of the beam 
to a sinusoidal input. In order to determine an accurate transfer function the system was excited with 
sine waves of different amplitudes and frequencies. 

It was experimentally observed that the resonant frequency of the smart beam is close to 14.52 Hz. 
A second order model of the smart beam has been determined as: 

 

𝐺 𝑠 =  
72.99

𝑠! + 1.115 𝑠 + 8401
   (17) 

 
The validation of the identified model G(s) to a sine input of frequency 14.52 Hz and amplitude 10 

V is shown in Figures 3, 4 and 5 below. 



 
 
 
 
 
 

 
Figure 3. Experimental data and second order simulated response of the second order transfer 

function 

  
Figure 4. Zoomed transient response fit of the 

identified second order transfer function 
Figure 5. Zoomed steady state response fit of 
the identified second order transfer function 

 
As can be seen in the figures above, the model fits the experimental data accurately, with a 97.07% 

fit to estimation data, a FPE (Final Prediction Error) of 9.85031.10-5 and a MSE (Mean Squared Error) 
equal to 9.829.10-5. The resonant frequency of the model G(s) is 14.59 Hz, resulting in a small 
modelling error compared to the experimentally observed resonant frequency of 14.52 Hz.  

4.  Controller tuning and experimental results 

4.1.  LQR controller tuning 
For the LQR controller tuning, the state-space representation of the beam is needed: 
 

𝐴 = 0 1
−8401 −1.115      𝐵 =  0

72.99  
 

𝐶 =  1 0                   𝐷 = 0  
       (18) 

where the states of the state space system in (18) are the beam displacement and its velocity. 
The weighting matrices R and Q are chosen as follows: 
 

𝑄 = 1 0
0 0.002      𝑅 =  3   (19) 

 



 
 
 
 
 
 

The discrete feedback gain matrix, K, is determined as: 
 

𝐾 = −0.1913 0.0152    (20) 
 
where a sampling period of 0.003 seconds has been used. The choice for the Q and R parameters is 
based on a strict requirement for the control signal to be kept in a range [-2, 2], corresponding to a [-
20, +20] V applied on the PZT patches. By trial and error, the best settling time, with the control 
signal limitation constraint, has been obtained for Q and R as indicated in (19). The LQR controller in 
(20) was implemented on the experimental unit and the closed loop results can be seen in Figure 6. An 
impulse disturbance acting on the beam’s free end of 0.5V has been considered. The control signal 
required to reduce the vibrations is given in Figure 7.  

 
Figure 6. Closed-loop system response using the LQR controller 

 

 
Figure 7. The control signal generated by the LQR controller 
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Figure 8. Free vibration of the smart beam considering an impulse disturbance 

 
As can be seen in the figures above, the Linear Quadratic Regulator can be successfully used to 

suppress unwanted vibrations, the settling time achieved in this case being of 5.44 seconds. Compared 
to the settling time of 13.87 seconds for the passive free vibration, as indicated in Figure 8, the LQR 
controller provides for a 60.8% improvement. An important advantage of the LQR controller is that 
the feedback gain matrix, K, is relatively easy to compute even in the case of a higher order model. 

4.2.  Fractional – Order Proportional Derivative Controller tuning 
 

The fractional-order PD controller is tuned by imposing frequency domain constraints:  a phase 
margin of 60o for a lower overshoot of the closed loop system, a gain crossover frequency of 105 rad/s 
for a small settling time and the robustness to gain variations, as indicated in (13). 

The obtained fractional-order PD controller, with the parameters computed according to (14), (15) 
and (16) above is given by : 

  
HFO−PD(s) =15.36 1+ 0.028 s 0.9164( )    (21) 

 
The frequency response of the open loop system with the FO-PD controller in (21) demonstrates 

that the performance criteria are met and it is given in Figure 9. To implement the FO-PD controller in 
(21), its discrete time approximation has been determined using the new method described in [20], 
with a sampling period of 0.003 seconds.  

The closed loop response of the smart beam, under the same impulse disturbance as in the case of 
the LQR controller, is given in Figure 10, while the control signal is given in Figure 11. In this case, 
the FO-PD tuning method has not directly considered the control signal limitation constraint. As 
indicated in Figure 11, the FO-PD controller has a much more aggressive dynamics in comparison to 
the LQR controller, as seen in Figure 7. Also, the derivative action of the FO-PD controller is highly 
sensitive to noise. Nevertheless, this aggressive dynamics leads to better performance in terms of 
settling time. In the case of the FO-PD controller, the disturbance is rejected entirely in 3.24 seconds, 
which represents a 76.6% improvement compared to the free vibration and a 40.4% improvement in 
comparison to the LQR controller. 
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Figure 9. Bode diagram of the open loop system with FO-PD controller 

 
 

 
Figure 10. The closed-loop system response using a FO-PD controller 

 

 
Figure 11. The control signal generated by the FO-PD controller 
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5.  Conclusions 
 
From the settling time point of view, the fractional-order PD controller brings a significant 

improvement compared to the LQR controller, as has been pointed out in this paper. However, the 
nearly 50% improvement in the settling time comes with a disadvantages regarding the increase in the 
control effort. These preliminary results of the FO-PD controller in suppressing vibrations on a smart 
beam through piezoelectric patches are a novel application study and further research and 
improvement will be sought. A major focus will be given to the design of a fractional order PID 
controller that considers directly in the tuning procedure the limitations on the control signal, to avoid 
the saturation. Also, since the LQR controller provides for an acceptable vibration attenuation, this too 
can be further enhance by combining its benefits with that of fractional calculus, in tuning a fractional 
order LQR controller. The analysis in this paper constitutes an important premise in that regard.  
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