
Outlier Robust Bayesian Multinomial Choice Modeling

Dries F. Benoita,d, Stefan Van Aelstb,c and Dirk Van den Poela

a Faculty of Economics and Business Administration, Ghent University, Tweekerkenstraat 2,

B-9000 Ghent, Belgium

b Department of Mathematics, Section of Statistics, KU Leuven, Celestijnenlaan 200B, B-3001

Leuven, Belgium

c Department of Applied Mathematics, Computer Science and Statistics, Ghent University,

Krijgslaan 281, S9, B-9000 Ghent, Belgium

d Corresponding author. Email: Dries.Benoit@UGent.be Phone: +32-9-2643527. Fax:

+32-9-2644279

Abstract

A Bayesian method for outlier robust estimation of multinomial choice models

is presented. The method can be used for both correlated as well as uncorrelated

choice alternatives and guarantees robustness towards outliers in the dependent and

independent variables. To account for outliers in the response direction, the fat tailed

multivariate Laplace distribution is used. Leverage points are handled via a shrinkage

procedure. A simulation study shows that estimation of the model parameters is less

influenced by outliers compared to non-robust alternatives. An analysis of margarine

scanner data shows how our method can be used for better pricing decisions.

Keywords: choice models, leverage points, outliers, multivariate Laplace distribution,

robustness

1 Introduction

Choice models are ubiquitous across a broad range of applications in business and industry.

Recent implementations of these models are found in disciplines ranging from revenue

management (Farias et al., 2013), over market response estimation (Ebbes et al., 2013), to

sales forecasting (Andrews et al., 2013). As one can imagine, important business decisions

are based on the estimates obtained from these models. In this paper, a method is proposed
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which ensures that these crucial estimates are less biased when small fractions of the data

do not adhere to the model assumptions.

Multinomial models relate a qualitative response variable, that consists of p > 2 un-

ordered categories to a set of predictor variables. The most well-known models within this

class are the multinomial logit model, based on the logistic distribution and the multino-

mial probit model, based on the multivariate normal distribution (see e.g. Agresti, 2002;

Train, 2003).

The multinomial logit and probit models both rely on strong model assumptions and

likelihood based estimators are very sensitive to deviations from these model assumptions.

In particular, maximum likelihood as well as standard Bayesian estimators for these models

can be heavily influenced by a small fraction of contaminated observations in a dataset.

This problematic behavior was recognised by Hausman et al. (1998) who proposed a

modified likelihood function that deals with misclassification in the dependent variable.

In this paper we consider multinomial models in the context of discrete choice modeling.

Multinomial models form a flexible approach to model discrete choice data. In these models

the relation between the qualitative choice outcome and the predictor variables is described

via an underlying latent continuous variable that is linearly related to the predictors. We

focus on Bayesian estimators for multinomial choice models. In this setting we introduce

an outlier robust multinomial model that guarantees robustness in both the dependent

(i.e. misclassification) as well as in the independent variables (i.e. leverage points).

Misclassification can easily happen when the data is collected in an interview setting

where the interviewer makes a mistake in recording the answers. Also in the big-data era,

many datasets are messy and noisy, often containing abnormal observations where it is

not always clear how they occurred. Other data sources, such as historical datasets can

contain measurement errors as well. The method proposed in this study is less vulnerable

to these contaminated data points than traditional multinomial models. The model allows

for large deviations in the latent responses by using the fat tailed multivariate Laplace

distribution (see e.g. Kotz et al., 2001) for the errors in the linear part of the model. As

in the univariate case, the center of this distribution can be interpreted as a multivariate

median. Hence, by using the multivariate Laplace distribution, we are using a Bayesian

method for multivariate median regression.
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However, the standard approach of using a heavy tailed error distribution to allow

for outlying responses is not sufficient to obtain a fully robust Bayesian estimator that

yields reliable results in the presence of outliers and/or leverage points. To account for the

possible presence of leverage points, i.e. points that are outlying in the predictor space,

following Peña et al. (2009), we allow that the uncertainty on the multinomial model is

much larger outside the high density region of the observations and apply a shrinking

procedure such that remote observations have much less influence on the posterior and

the corresponding Bayesian estimator. Simulations confirm that this shrinkage is of key

importance to obtain outlier robust Bayesian inference. To our knowledge this is the first

paper that proposes a fully robust Bayesian inference method for flexible multinomial

choice modeling.

As is common in Bayesian estimation, exact calculation of the posterior distribution

and corresponding Bayesian estimator is not feasible for our model. However, the latent

variable formulation that we use for the multinomial model makes this model very attrac-

tive for the efficient application of Markov Chain Monte Carlo (MCMC) methods using

data augmentation (Tanner and Wong, 1987). Moreover, the representation of the mul-

tivariate Laplace distribution as a scale mixture of normal distributions allows to greatly

simplify the MCMC procedure for the robust multinomial model.

The rest of this paper is organized as follows. In Section 2 we discuss the general

multinomial discrete choice model in detail. The outlier robust Bayesian estimator for

this model is introduced in Section 3 while Section 4 explains the computation of the

posterior distribution and corresponding Bayesian estimates in the robust multinomial

model. The performance of the estimator is investigated through simulations in Section

5. Section 6 contains a real data application and the conclusions and discussion of our

approach are summarized in Section 7.

2 The multinomial discrete choice model

We consider multinomial models as methods that relate a set of predictor variables to a

qualitative dependent variable consisting of p unordered alternatives where one alternative

is chosen by the decision maker. We take the viewpoint that the discrete dependent
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variable arises via partial observation of an underlying multivariate continuous variable.

This latent variable approach is very flexible. Moreover, in an econometrics context the

latent variable can often be given a random utility interpretation which relates latent

variable models to the formal econometric specification of demand models based on utility

maximization (Rossi et al., 2005).

Consider the general multinomial discrete choice model:

yi = f(ui); i = 1, . . . , n (1)

with f(ui) =

p∑
j=1

j × I (max(ui) = ui,j) ;

where ui = Xiβ + ei.

Here, ui = (ui,1, . . . , ui,p)
′ is a p-dimensional column vector where p is the number of choice

options. Further, I(·) is the indicator function which yields the value 1 if the statement

between brackets is true and returns 0 otherwise. In the above notation, ui,j can be

interpreted as the unobserved utility that is associated with the jth option for unit i. The

choice outcome yi is obtained through the function f which remaps the continuous utility

vector ui onto the discrete space {1, . . . , p}. The option that is chosen by unit i, also called

the decision maker, is the option with the largest associated unobserved utility ui,j . Thus

yi represents the choice among p mutually exclusive alternatives.

The matrices Xi consist of information about the attributes of each of the choice

alternatives, as well as covariates which represent the characteristics of the decision making

unit. The general structure of the design matrices Xi is Xi = [b′i ⊗ Ip, Ai], where bi is

an r-dimensional vector of characteristics of the decision making unit i and Ai is a p× s

dimensional matrix of choice attributes, and ⊗ denotes the Kronecker product. The k =

rp+s dimensional vector β contains the regression parameters. Finally, ei = (ei,1, . . . , ei,p)
′

is the p-dimensional error vector which follows a distribution F with variance-covariance

matrix Ω.

It is well known that for unrestricted Ω model (1) is not identified, i.e. any discrete

choice model must be normalized to take account of the fact that the level and scale of

utility are irrelevant (see e.g. Train, 1986). A common solution to the former problem is

to model the utility differences with respect to a base alternative. For example, if we take
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the last alternative as the base choice, then by using the p− 1 differences u?i,j = ui,j − ui,p

we can rewrite the model as follows:

yi = f(u?i ) (2)

with f(u?i ) =

p−1∑
j=1

j × I
(
max(u?i ) = u?i,j & u?i,j ≥ 0

)
+ p× I (max(u?i ) < 0)

where u?i = Diβ + εi

and Di =


x′i,1 − x′i,p

...

x′i,p−1 − x′i,p

 where Xi =


x′i,1

...

x′i,p


εi,j = ei,j − ei,p and εi ∼ G(0,Σ).

Note that variables that are constant in each choice option (i.e., characteristics of the

decision maker) should not be differenced, but can be coded similarly as in Equation 1.

That is, these variables are structured in Di as [b′i ⊗ Ip−1].

In Equation 2, the (p − 1)-dimensional error distribution G(0,Σ) has location zero

and scatter matrix Σ. The aggregated model for the data can be obtained by stacking

the vectors u?i , εi and matrices Di in a suitable way. Denote (u?)′ = ((u?1)′, . . . , (u?n)′),

ε′ = (ε′1, . . . , ε
′
n) and D′ = (D′1, . . . , D

′
n), then we obtain:

u? = Dβ + ε.

To address the arbitrariness of the utility scale, the standard approach to normalize

this scale is to normalize the variance of the error terms, i.e. fixing one or more parameters

in the scatter matrix Σ. When the within-unit errors can be assumed to be independent

and identically distributed, then normalization for scale is straightforward. The variance-

covariance matrix of the errors ei then becomes Ω = cIp, where Ip is the p-dimensional

identity matrix and c > 0. In this case normalization is obtained by fixing the constant

c. For example, assuming that the independent marginals of F all follow the extreme

value distribution and assigning c = π2/6, leads to the multinomial logit model (Maddala,

1983).

Assuming that the components of the errors ei are uncorrelated in model (1) corre-
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sponds to the Irrelevance of Independent Alternatives (IIA) assumption (see e.g., Train,

2003) which is often unrealistic and thus undesirable. A model that overcomes this short-

coming and is much more flexible is the multinomial probit model, which emerges when

assuming that the errors and consequently the error differences, εi, follow a multivariate

Gaussian distribution, i.e. εi ∼ Np−1(0,Σ).

A common approach to solve the scale problem when Σ is not a diagonal matrix is to fix

Σ11 = 1. A recent alternative is the trace restriction approach of Burgette and Nordheim

(2012). In this paper the latter approach is adopted because it treats all components of

Σ equally and can provide stronger identification yielding posterior distributions that are

more easily interpreted.

3 Outlier robust Bayesian estimator

In Bayesian statistics, already from the early emergence of the field a lot of research has

been conducted to investigate the influence of the prior on the posterior distribution. In

contrast to these extensive prior robustness investigations, there is less research about

likelihood robustness, i.e. robustness towards outlying data points, in the context of

Bayesian estimation. Some exceptions for the univariate linear regression model with a

continuous dependent variable are West (1984); Bayarri and Morales (2003); Peña et al.

(2009). A Bayesian median regression approach has been proposed by Kottas and Gelfand

(2001) in a univariate context and by Dunson et al. (2003) for multivariate regression. In

the broader context of quantile regression, Bayesian approaches have been proposed by

e.g. Yu and Moyeed (2001); Lancaster and Jun (2010); Taddy and Kottas (2010); Yang

and He (2012). For binary outcome variables, a Bayesian quantile regression approach has

been introduced by Benoit and Van den Poel (2012). To the best of our knowledge, no

outlier robust Bayesian approaches have been proposed for multinomial regression.

Bayarri and Morales (2003) distinguish Bayesian robust methods based on whether

or not outlying cases are explicitly identified in the sample. In the former case, different

models are fitted to the normal versus outlying cases or, alternatively, the influence of

the outlying cases on the likelihood is minimized. In the latter case, a general model is

developed, usually with heavy tails, that automatically handles outliers in a suitable way

6



without requiring their identification. The method proposed in this paper is a combination

of both approaches. The latent response is modeled by a moderately heavy tailed distri-

bution, i.e. the multivariate Laplace distribution, that has nice properties in a robustness

context. Moreover, extreme outlying observations such as leverage points are identified

and their influence on the likelihood function is reduced.

The multivariate Laplace distribution, denoted by MVL(µ,Σ), can be defined through

its density function which is given by:

f(x;µ,Σ) =
|Σ|−1/2

2pπ(p−1)/2Γ(p+1
2 )

e−
√

(x−µ)′Σ−1(x−µ) (3)

for x ∈ Rp and p ≥ 1. The parameter µ ∈ Rp is the center of the distribution and Σ

is the positive definite scatter matrix of size p. The multivariate Laplace distribution is

an elliptically symmetric, heavy tailed distribution as illustrated in Figure 1 which shows

the density surfaces and contours of two bivariate Laplace distributions. In both cases

the center of the distribution equals zero. In the top panel the scatter matrix is I2,

the bivariate identity matrix. In this case the distribution is sperically symmetric. In the

bottom panel, the scatter matrix is Σ =
[

1 3/4
3/4 1

]
. We can see the narrow peak around the

center in the surface plots on the left of Figure 1. When the dimension of the multivariate

Laplace equals one, then the distribution reduces to the well-known univariate Laplace

distribution that has been used for Bayesian median regression (see e.g. Yu and Moyeed,

2001; Benoit and Van den Poel, 2012).

If we assume that a sample x1, . . . , xn of independent and identically distributed ob-

servations follows the multivariate Laplace distribution in (3), then it has been shown

in Arslan (2010) that the corresponding maximum likelihood estimates (MLE) for µ

and Σ are the solution (µ̂, Σ̂) that minimizes the sum of the distances d(xi;m,C) =√
(xi −m)′C−1(xi −m) among all m ∈ Rp and positive definite symmetric matrices C of

size p with |C| = 1. That is,

(µ̂, Σ̂) = argmin
m,C,|C|=1

n∑
i=1

d(xi;m,C). (4)

The properties of this estimator have been investigated by Roelant and Van Aelst (2007).
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Figure 1: Density surfaces and density contours of the bivariate Laplace distribution
MVL(µ,Σ). The center µ = (0, 0)′ and the diagonal of the scatter matrix Σ equals (1, 1)′.
Top panel: Σ12 = 0. Bottom panel: Σ12 = 3/4.

Note that for p = 1 the estimator µ̂ becomes the univariate L1 estimator, i.e. the median.

Thus, in the multivariate setting µ̂ can be seen as a multivariate extension of the median,

obtained by considering the median as the L1 location estimator. Contrary to other pop-

ular affine equivariant multivariate medians, such as the spatial median (see e.g. Brown,

1983), Tukey’s halfspace median (Tukey, 1975), or the Oja median (Oja, 1983), the mul-

tivariate Laplace MLE comes naturally with an accompanying scatter (shape) estimator.

Moreover, since it relies on the MVL, the estimator can be interpreted as a multinomial
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median regression technique that has some desirable properties, as we will see later.

Note that modeling the utility differences with a fat tailed distribution is very similar in

nature to some of the approaches in the misclassification literature. For example, Hausman

et al. (1998) proposed to modify the likelihood function of binary classification models by

incorporating two parameters, related to the degree of misclassification of both zeros and

ones. The resulting model then becomes:

Pr(yi = 1|xi) = α0 + (1− α0 − α1)F (x′iβ) (5)

Without going into detail, it is immediately clear that the misclassification parameters α0

and α1 influence the scale of the link function and consequently the tails of the distribution.

Other authors have extended and applied this approach to different situations (see e.g.

Ramalho, 2002; Molinari, 2008; Č́ıžek, 2012).

Modeling the conditional response by using a fat tailed distribution such as the mul-

tivariate Laplace distribution can only diminish the influence of observations that are

outlying in the dependent variable. However, this is not sufficient to obtain a fully outlier

robust Bayesian method because the effect of leverage points, is not yet controlled by this

approach. To evaluate the robustness of Bayesian inference procedures, Peña et al. (2009)

introduced the concept of α-robustness as follows. Consider Z, a sample generated by

some parametric statistical model f(Z|θ) and let Zα denote a contaminated sample that

is obtained by replacing a fraction α of points in Z by arbitrary outliers. Then, Bayesian

inference for the parameters θ is called α-robust with respect to the Kullback-Leibler

divergence if sup KL(p(θ|Zα), p(θ|Z)) < ∞ where the supremum is over all possible con-

taminated samples Zα. Here, p(θ|Z) and p(θ|Zα) are the joint posterior distributions for

the parameters θ given the samples Z and Zα respectively.

In Peña et al. (2009) it is shown that Bayesian inference in linear models using a

likelihood obtained by assuming i.i.d. errors cannot be α-robust, even when heavy tailed

distributions are used. Therefore, additional measures need to be taken to minimize the

influence of all types of outliers. To accomplish this, we adopt the procedure of Peña et al.

(2009) and extend it to multivariate linear models. Hence, we assume that model (2) holds

within the high density region of the observations. Outside this region the uncertainty
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on model (2) may be much larger, which is reflected by an increasing scale in the error

distribution. Consider the variables zi = (b′i, a
′
i,1, . . . , a

′
i,s)
′ which contain both bi, the

vector of characteristics of the decision making unit i, and ai,1, . . . , ai,s the vectors of

choice specific characteristics (differenced w.r.t. the base alternative) for decision making

unit i. Then, for points z outside the high density region the error distribution G(0,Σ) is

replaced by G(0,Σ/ω2(z)) with ω(z) approaching 0 for ‖z‖ → ∞.

A suitable way to determine the high density region is by using a Mahalanobis type

distance to the center of the data. The idea behind this procedure is that the uncertainty

increases with the distance from the center of the data and thus, remote observations

should have less influence on the posterior. To reliably characterize the high density re-

gion, the Mahalanobis type distance needs to be based on estimates of the center and

scatter of the data distribution that are robust in the sense that they remain reliable

even when outlying observations are present in the data. As in Peña et al. (2009) we use

computationally cheap estimates for this purpose. That is, for the location we use the

coordinatewise median m of z. Hence, the elements of m are the univariate medians of

the components of z, i.e. mi = med(zi). Consider the diagonal matrix D whose diago-

nal elements are the median of absolute deviations with respect to the median (MAD),

MAD(zi) of the components of z. Moreover, let R be the quadrant correlation matrix (see

e.g. Huber, 1981) whose elements are the pairwise quadrant correlations corquad(zi, zj)

between the components of z. Note that the quadrant correlation between two univariate

variables zi and zj is the standard Pearson correlation between the pair sign(zi−mi) and

sign(zj −mj). Then, the robust estimate of scatter is given by the matrix C = DRD.

We now use the Mahalanobis distance of the observations zi w.r.t. the center m and

scatter C of the data, i.e.

di = d(zi;m,C) =
√

(zi −m)′C−1(zi −m). (6)

The observations that lie in the high density region satisfy di ≤ a, where a is a well-chosen

constant. The constant a determines the robustness of the procedure. To guarantee that

the Bayesian inference can withstand a fraction α of leverage points, a can be taken equal

to the (1−α)-quantile of the distribution of the observation distances di. As is common in
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robust statistics, choosing the fraction α is a trade-off between robustness and efficiency

of the procedure. If α is selected too small, then leverage points can heavily influence the

Bayesian estimator, leading to a loss of robustness. On the other hand, a large fraction

α leads to more robustness (more shrinkage toward the center), but implies a loss of

information if regular observations fall outside the narrowly defined high density region.

In the simulations and example of this paper, we let a correspond to the 95%-quantile of

the observation distances di, i.e. α = 5%.

Finally, to reflect the uncertainty about model (2) outside the high density region, the

weights ω(zi) ≡ ωi are assigned to the observations as follows

ωi =


1 if di ≤ a

(1 + d2
i − a2)−1/2 otherwise,

(7)

with di given by (6). The weights ωi can thus be interpreted as shrinkage factors that pull

outlying observations zi towards the center of the data distribution.

By using the multivariate Laplace distribution in (3) for the errors in model (2) and

calculating the weights (7) on the differenced observations, the likelihood of the model,

conditional on the latent responses u?i becomes

L(β,Σ |u?i , Di, ωi) ∝
n∏
i=1

ωp−1
i |Σ|−1/2e−

√
(u?i−Diβ)′ω2

i Σ−1(u?i−Diβ)

∝ |Σ|−n/2
n∏
i=1

e

√
(ũ?i−D̃iβ)′Σ−1(ũ?i−D̃iβ) (8)

∝ L(β,Σ | ũ?i , D̃i)

with ũ?i = ωi u
?
i and D̃i = ωiDi. This equivalence simplifies the method because the robust

Bayesian inference procedure reduces to the usual Bayesian inference for the multivariate

linear model (using the multivariate Laplace error distribution) based on the transformed

observations. The computation of these Bayesian estimates is discussed in detail in the

next section.

It can be argued that the proposed robust Bayesian model is not a genuine Bayesian

modeling approach because the weights ωi are not determined within the Bayesian frame-
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work, but are derived from the data beforehand. Recall that the weights are introduced

to provide robustness against leverage points and therefore need to be based on robust

estimates of the center and scatter of the explanatory variables. Contrary to heteroscedas-

ticity weights, it is not straightforward to include the estimation of these weights in the

Bayesian framework through the use of a suitable likelihood.

4 Computation

Consider the multinomial model (2) where the error distribution G(0,Σ) is the multivari-

ate Laplace distribution in (3). Moreover, the weight function (7) shrinks the most distant

observations towards the center of the data cloud. Note that since the weights are a func-

tion of the covariates, we do not condition on them explicitly. Conditioning on the data,

y = (y1, . . . , yn)′ and D = (D′1, . . . , D
′
n)′, we denote the full posterior by ζ(u?, β,Σ | y,D).

To estimate this posterior distribution, we propose a Markov Chain Monte Carlo (MCMC)

sampler that cycles through the following conditional distributions:

u? | β,Σ, y,D

β | Σ, u?, D

Σ | β, u?, D (9)

This sampler produces a chain with ζ(u?, β,Σ | y,D) as its stationary distribution (Tierney,

1994). We can simply marginalize out u? if the posterior of β and Σ is desired. Note that

there is no need to condition on the response y in steps two to four of the sampling scheme

because y does not contribute any extra information once u? is known from the first step.

Indeed, y is completely determined from u? as can be seen from (2).

In the first step, the weights ωi, as defined in (7), have to be calculated to construct the

shrunken sample D̃i = ωiDi. Also, to initialize the MCMC procedure we set the starting

values for the parameters β and Σ equal to their prior modes. All values of the latent

variable u? are initially set equal to zero.

Secondly, values of the latent variable u? need to be drawn from its distribution con-

ditional on the other parameters and the data. However, the conditional distributions
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u?i |β,Σ, yi, D̃i are truncated multivariate Laplace distributions where the truncation on

u?i follows from the representation in (2) and can be expressed as


If yi = j < p then u?i must satisfy max(u?i ) = u?i,j > 0

If yi = p then u?i must satisfy max(u?i ) < 0.

(10)

Hence, depending on the value of yi the corresponding u?i must fall within an appropriate

cone of Rp−1. This truncation makes direct draws from the conditional distribution very

difficult to accomplish efficiently.

Drawing from these conditional distributions can be heavily simplified by exploiting

that the multivariate Laplace distribution can be represented as a scale mixture of normal

distributions (see e.g. Kotz et al., 2001, Theorem 6.3.1, p. 246). This property can

be formulated as follows. Consider two independent variables Z and V , where Z is a

multivariate standard normal variable, i.e. Z ∼ Np(0, Ip) and V follows an inverse gamma

distribution IG(α1, α2) with α1 = (p + 1)/2 and α2 = 1/2. Then, the p-dimensional

random variable

Y = µ+ V −1/2Σ1/2Z (11)

follows a multivariate Laplace distribution MVL(µ,Σ) with density function given in (2).

If we could observe the variable V , then this property implies that the problem of drawing

from Y simplifies to drawing from a multivariate normal distribution, i.e. Y |V = v ∼

Np−1(µ,Σ/v). However, since V is unobservable, we have to estimate it from the data.

It turns out that the conditional distribution of V given Y = y is an inverse Gaussian

distribution InvGaus(γ, λ) whose density function is given by:

f(v| γ, λ) =

(
λ

2πv3

)1/2

exp

(
−λ(v − γ)2

2γ2v

)
, (12)

with λ = 1 and γ = [(y − µ)′Σ−1(y − µ)]−1/2 (see e.g. Arslan, 2010).

The representation in (11) implies that, conditional on V drawing samples from a

truncated multivariate Laplace distribution reduces to drawing samples from a truncated

multivariate normal distribution truncNp−1(µ,Σ/v). The latter is an often studied prob-

lem which can be performed more easily (see e.g. Geweke, 1991; McCulloch and Rossi,
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1994).

In detail, samples of the conditional distributions in the first step of the sampler are

obtained as follows. Conditional on yi, D̃i, and the last draws of β and Σ, do for every

unit i:

(i) Using the current draw u?i , draw the mixing parameter vi from the inverse Gaussian

distribution:

vi ∼ InvGaus(γ = [(u?i − D̃iβ)′Σ−1(u?i − D̃iβ)]−1/2, λ = 1) (13)

(ii) Draw a sample from the truncated multivariate normal distribution given the trun-

cation in (10) by simulating each element of ui conditional on the other elements of

ui (see e.g. Geweke, 1991; McCulloch and Rossi, 1994):

u?i |V = vi ∼ truncNp−1(D̃iβ,Σ/vi)

The resulting draw is a realization from a truncated (p− 1)-dimensional Laplace distribu-

tion with center µi = D̃iβ and scatter Σ, as required.

In the last two steps of the MCMC sampling procedure (9) we require the conditional

posterior distributions for the parameters of a multivariate Laplace distributed sample

u?i ∼ MVL(D̃iβ,Σ). A standard approach to obtain these distributions would be to apply

a Metropolis-Hastings algorithm (Chib and Greenberg, 1995). However, we propose to

use a computationally more efficient approach which is again obtained by exploiting the

normal scale mixture representation of the multivariate Laplace distribution in (11).

Note that we have already generated values vi of the inverse Gaussian random variable

V in the first step of (9). From (11) it follows that the conditional distribution u?i |V = vi

is the multivariate normal distribution Np−1(D̃iβ,Σ/vi). Hence, conditional on v, the

problem of determining the conditional posterior distributions for the regression and scat-

ter parameters of the multivariate regression model with multivariate Laplace errors is

simplified to the standard problem of obtaining the conditional posterior distributions for

the regression and scatter parameters of the SUR model (Zellner, 1962) with multivariate

normal errors.
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Until now we have defined the sampler in the unidentified parameter space (as proposed

by McCulloch and Rossi, 1994). However, as discussed in Section 2, Burgette and Nord-

heim (2012) showed the advantages of parameter identification by trace-restricting the co-

variance matrix. Their approach is adopted in the proposed robust multinomial approach.

Denote the unconstrained covariance matrix Σ̃. Define Σ = Σ̃/τ2 where τ2 = tr(Σ̃)/q

and q = (p − 1), taking as prior for Σ̃ an inverse Wishart distribution with parameters

ν̄ and ∆̄ and tr(∆̄) = q. Furthermore, we choose a conjugate prior for β, i.e. we take

an independent multivariate normal prior β ∼ Nk(β̄, Λ̄
−1). This procedure leads to an

identified variance-covariance matrix Σ which satisfies tr(Σ) = q.

When useful prior information about the parameters is available, informative priors can

be selected. However, in most cases strong prior information is absent. In that case diffuse

conjugate prior distributions on β and Σ can be used such that the posterior distributions

of the identified parameters are primarily determined by the information in the sample.

Such diffuse priors are obtained by taking the scale (determinant) of Λ̄ to be small and by

choosing a small value for v̄ in the inverse Wishart prior. With such settings for |Λ̄| and v̄

the choice for the remaining parameters in the prior distributions is not critical anymore.

Our MCMC sampling procedure can now be summarized as follows.

First calculate the weights (7) and construct the shrunken sample (D̃i = ωiDi). Then,

initialize the parameters:

β = β̄ Σ̃ = (n− p− 2)∆̄ u?i = 0,

and iterate the following steps:

1. For i = 1, . . . , n generate values from the conditional distributions u?i | · by

(i) Drawing values vi from the inverse Gaussian distributions in (13).

(ii) Drawing u?i from the truncated multivariate normal distribution

truncNp−1(D̃iβ,Σ/vi) using the truncation in (10).

2. Draw τ2 from the scaled inverse chi-square distribution tr(∆̄Σ−1)/χ2
(ν̄q).

3. Transform ũ?i = τu?i .
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4. Draw β̃ from its conditional posterior distribution β̃ | · ∼ N(β̂, τ2Λ̂−1) with

Λ̂ =

(
Λ̄ +

n∑
i=1

D̃′i
(
νiΣ
−1
)
D̃i

)
,

β̂ = Λ̂−1

(
Λ̄β̄ +

n∑
i=1

D̃′i
(
νiΣ
−1
)
ũ?i

)
,

τ2 =

∑n
i=1(ũ?i − D̃′iβ̂)′

(
νiΣ
−1
)

(ũ?i − D̃′iβ̂) + β̂′Λ̄β̂ + tr(∆̄Σ−1)

χ2
(n+ν̄)q

.

5. Draw Σ̃ from the inverse Wishart distribution Σ̃ | · ∼ InvW(v̄ + n, ∆̂) with

∆̂ = ∆̄ +
n∑
i=1

νi (ũ?i − D̃′iβ̃)(ũ?i − D̃′iβ̃)′.

6. Set the following variables:

(i) τ2 = tr(Σ̃)/q

(ii) Σ = Σ̃/τ2

(iii) u? = ũ?i /τ

(iv) β = β̃/τ

An advantage of our MCMC procedure is that it avoids the difficult evaluation of choice

probabilities when estimating the model parameters. If desired such choice probabilities

can be obtained afterwards by integrating the multivariate Laplace distribution over (p−1)-

dimensional cones. In detail,

Pr(yi = j |Di, β,Σ) =

∫
Ri,j

G(u? |Di, β,Σ) du?,

where G is the multivariate Laplace distribution MVL(Diβ,Σ). The region Ri,j is the set

of vectors u? that correspond to the truncation in (10). That is,

If j < p, then Ri,j = {u? : max(u?) = u?j & u?j > 0}

If j = p, then Ri,j = {u? : max(u?) < 0}

These integrals can not be evaluated analytically. However, their solution can be approxi-
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mated, for example, by means of simulation. The idea is to simulate many random draws

from the multivariate Laplace with mean and covariance matrix equal to the estimated

mean and covariance matrix and then calculating the proportion of draws that fall in the

specific regions we want to integrate over. For more information about approximating

integrals with simulation methods see Geweke (2001).

5 Simulations

In this section we discuss the results of simulations that were performed to assess the

performance of the proposed outlier robust Bayesian inference for the multinomial model.

The robust Bayesian estimates for the identified parameters are obtained as the mean of

their posterior distribution. In the first simulation design we examine the performance of

the estimator when the data are actually generated from the assumed model. This allows

us to evaluate the effectiveness of the inference, i.e. its performance under ideal circum-

stances. Also, this setting is used to investigate the performance of the proposed MCMC

sampler. In the second set of simulations we then generate the data from alternative

models to evaluate the robustness of the estimator.

5.1 Effectiveness

We first investigate the performance of the proposed estimator when the data follow the

ideal model. Therefore, we generated n = 500 observations according to model (2) with

p = 3 and k = 4. For the design matrices we use Di = [I2 Ai] with Ai a 2×2 matrix whose

elements are generated independently from a uniform distribution on the interval (0, 2).

The error distribution G(0,Σ) is the multivariate Laplace distribution. The parameters

are set equal to the following values (note that tr(Σ) = (p− 1) which corresponds to the

identification restriction in the MCMC sampler):

β = (−0.5, 0.75, 0.75, 0.25)′ and Σ =

 1 0.3

0.3 1

 .
To calculate our robust Bayesian estimator, the MCMC algorithm is run with 5000

iterations starting from diffuse priors. That is, for β we used independent normal dis-

17



tributions centered at zero with a variance of 100. For Σ we used a Wishart prior with

v̄ = p + 3 degrees of freedom and ∆̄ = Ip−1(p − 1 + 3). This prior is vague, but still

informative enough to be able to set up a stable MCMC sampler. The results for the

estimation of the regression coefficients β are presented in Figure 2 and in Figure 3 for

the scatter parameter Σ.

The plots on the left side of Figures 2 and 3 show the posterior distributions for the

coefficients β and the elements of the scatter matrix Σ respectively. The vertical dashed

lines in these plots indicate the true parameter values. The shaded area under the posterior

curves denotes the posterior 95% credible interval. For both the regression coefficients

and the covariance matrix, our estimation procedure shows a good performance. All

credible intervals contain the true parameter value. Moreover, the mass of all posterior

distributions for the regression coefficients is located away from zero, which confirms the

relevance of all covariates in the multinomial model.

The right hand side of Figures 2 and 3 show the trace plots of these model parameters.

Note that the MCMC chains were not thinned nor was any burn-in excluded from the

plots. The trace plots show good mixing properties of the MCMC algorithm. The initial

values of β and Σ wear off very fast and the chain then navigates nicely through the

parameter space.

However, the trace plots also indicate that the sampler might exhibit some autocorre-

lation. A more formal investigation is provided by the autocorrelation function (ACF) in

the left panel of Figure 4. We only show the ACF plot for the first regression coefficient

β1, but this plot is representative for all other model parameters. The plot indicates that

the sampler indeed exhibits quite strong autocorrelation. Even after 35 draws the effect

of the first draw is still present. This behavior is typical for latent variable models (Rossi

et al., 2005). Fortunately, autocorrelation is not a crucial issue since the MCMC chains

still converge to the true posterior distribution as long as a sufficient number of posterior

draws are sampled. It does imply that the computation time increases because a large

enough number of iterations should be run in the chains in order to fully travel the space

of the posterior distribution. The ACF plot for such a long chain is given in the right

panel of Figure 4. This plot shows that the problem of autocorrelation disappears for

longer thinned MCMC chains.
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Figure 2: Posterior distributions and trace plots of β.
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Figure 3: Posterior distributions and trace plots of the three unique elements of Σ.

From this simulated example we can conclude that the proposed robust Bayesian pro-

cedure is able to retrieve the parameters that governed the data generating process as

desired.

5.2 Robustness

In these experiments, an extensive comparison of the proposed outlier robust Bayesian

multinomial method (RMN) with the standard multinomial probit method (MNP) is con-

ducted. For this comparison, we simulated data from 7 different data generating pro-
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Figure 4: Autocorrelation for β1 in MCMC sampler. Left panel: 5000 draws without
thinning. Right panel: 50,000 draws keeping every 10th draw.

cesses. For each data generating mechanism, datasets with three different sample sizes

(n = {100, 200, 400}) are simulated and both the RMN and MNP method are applied to

the datasets. This procedure is then replicated 1000 times. Finally, for every sample size

the bias and root mean squared error are calculated for both methods.

The first data generating process follows model (2) with p = 3 and k = 3. The design

matrices Di are vectors of length 3 whose elements are generated independently from a

uniform distribution on the interval (0, 2). The error distribution G(0,Σ) is now taken to

be the multivariate normal distribution. Moreover, the parameters are set equal to the

following values

β = (0.5, 1,−1)′ and Σ =

 1 0.3

0.3 1

 .
These parameter settings result in a balanced choice vector, i.e. the unconditional response

probabilities for every option are close to 1/3. Also, tr(Σ) = (p− 1) which corresponds to

the identification restriction in the MCMC sampler. The resulting datasets thus meet all

assumptions of the multinomial probit model. We refer to datasets generated according to

this model as CLEAN data because there are no deviations from the multinomial probit

model that might upset the MNP estimator. Based on this clean data generating model we

then consider 6 modifications that contaminate the datasets with different amounts and

types of outliers. This allows us to investigate the robustness properties of the Bayesian

estimators.

The first two data generating processes, called RESP1 and RESP2, contaminate 5%
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and 10% of the clean data, respectively, by misclassifying the responses. That is, instead

of choosing the category with the highest latent utility, the option with the lowest latent

utility is chosen:

f(u?i ) =

p−1∑
j=1

j × I(min(u?i ) = u?i,j & u?i,j < 0) + p× I(min(u?i ) > 0)

This approach induces contamination only in the response direction and has also been

used in the context of binary choice models (see e.g. Č́ıžek, 2012).

The next two data generating processes, called LEV1 and LEV2, contaminate 5% and

10% of the data respectively by simulating the regressor Di from a different distribution,

i.e. Dij ∼ N(−0.5, 16) for j = 1, 2, 3. The corresponding responses are still generated

according to the multinomial probit model. Hence, these observations are outliers in the

covariate space, i.e. leverage points, but they still completely adhere to the assumptions

of the multinomial probit model. Such observations are considered to be good leverage

points because they do not bias the results but instead facilitate estimation of the model

parameters.

Finally, the last two data generating processes, called OUTL1 and OUTL2, contam-

inate 5% and 10% of the data by generating leverage points as in the previous case.

Moreover, for these leverage points the response is contaminated as well by choosing the

option with the lowest latent utility as before. Hence, observations that are outlying in

both the response and predictor space are obtained, i.e. outlying observations in the pre-

dictor space combined with misclassification. Due to the high variance of the contaminated

predictors, these outliers, also called bad leverage points, can have a high leverage effect

on non-robust model fits. This means that non-robust estimators of the linear model are

attracted by the outliers and thus such estimates are heavily biased by these outliers (see

e.g. Mebhane and Sekhon, 2004).

To calculate the Bayes estimators (i.e. the expected value of the posterior distribution

of the model parameters) for both the MNP and RMN models, the MCMC algorithm is

run with 10,000 iterations starting from the modes of the same proper diffuse priors as

in the previous simulation. For both methods, the first 2,000 iterations were discarded

as burn-in draws and a thinning factor of 10 was used to decrease autocorrelation in the
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MCMC chains.

The results of these Monte Carlo experiments are summarized in Figures 5 and 6.

These figures contain dot charts that represent both the bias and root mean squared error

(RMSE) for each of the simulation settings, averaged over all regression parameters.
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Figure 5: Bias (left panel) and root mean squared error (right panel) of both the pro-
posed Robust Multinomial model (RMN) and standard Multinomial probit model (MNP)
for the different sample sizes (n={100,200,400}) and data generating processes: no out-
liers (CLEAN), 5% misclassification (RESP1), 10% misclassification (RESP2), 5% good
leverage points (LEV1) and 10% good leverage points (LEV2).

Figure 5 shows that both RMN and MNP perform best on the CLEAN dataset and the

datasets with good leverage points. On these datasets that adhere all MNP assumptions,

the MNP model has lower bias and RMSE than the proposed robust approach, as expected.

The difference is larger in the presence of good leverage points due to the shrinkage of

these points in the RMN model which slightly reduces its performance.

Outliers in the response direction (RESP1 and RESP2) affect the performance of both

models. The differences between MNP and RMN are rather small for modest amounts of

outliers of this type. For higher levels of outliers in the response direction, the advantages

of the robust approach become more pronounced. Also note that both models perform

better when more data become available, as expected.

Figure 6 shows the bias and RMSE for both methods on datasets with bad leverage

points in comparison to their performance on CLEAN data. Note that the scale of the
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Figure 6: Bias (left panel) and root mean squared error (right panel) of both the proposed
Robust Multinomial model (RMN) and standard Multinomial probit model (MNP) for
the different sample sizes (n={100,200,400}) and data generating processes: no outliers
(CLEAN), 5% bad leverage points (OUTL1) and 10% bad leverage points (OUTL2).

plots in Figure 6 is much larger than the scale in Figure 5. The results clearly show

that our RMN approach outperforms the standard MNP method for both levels of outlier

contamination. The differences between MNP and RMN in Figure 5 become futile when

compared with the differences shown in Figure 6. Remember that in RMN we fixed the

constant a in (7) such that the 5% most outlying cases are shrunk toward the center of the

data cloud. This explains the good behavior of this approach up to 5% of contamination.

For the designs with 10% of contaminated observations, our choice of α only shrinks

the largest 5% of outliers toward the center of the data. The remaining outliers can not

be downweighted by the shrinkage procedure. Hence, with 10% of bad leverage points the

effect on the RMN procedure is much larger (but still not as large as the effect on the MNP

model) because the leverage effect of all outliers can not be downweighted anymore. This

illustrates the need to make a good, i.e. large enough, choice of α, such that all leverage

points can be shrunk toward the center of the data. We suggest to perform a sensitivity

analysis with regard to the fraction of extreme observations that should be shrunk toward

the center of the data cloud. That is, re-estimate the model by varying the fraction α over

a sensible range (e.g. 5%-20%).

To illustrate the effect of shrinking a fraction α of most extreme observations, we

repeated the simulations with bad leverage points (OUTL1 and OUTL2), where we now

also included the common approach of merely using a heavy tailed error distribution to
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Figure 7: Bias (left panel) and root mean squared error (right panel) of both the proposed
Robust Multinomial model (RMN), the standard Multinomial probit model (MNP) and
the multinomial Laplace model (MLa) for the different sample sizes (n={100,200,400})
and data generating processes: no outliers (CLEAN), 5% bad leverage points (OUTL1)
and 10% bad leverage points (OUTL2).

handle outliers. That is, we fix the weights ωi equal to one in the MCMC procedure so

that no shrinkage is applied and we denote this multinomial Laplace model by MNLa. We

know that this approach is not fully robust and now investigate the practical consequences

for inference using datasets with bad leverage points. Figure 7 shows the bias and RMSE

of the three models.

We can see that the performance of the MNLa model always falls in between the

performance of the RMN and MNP model. Clearly, modeling the data with a fat tailed

distribution improves the standard MNP model in the presence of bad leverage points,

but not to the same extent as in combination with the proposed shrinkage procedure. As

expected, this effect is again largest when the chosen fraction of α is large enough to shrink

all leverage points. This illustrates the importance of the combination of both the Laplace

with the shrinkage procedure to obtain truly outlier robust Bayesian inference.

6 Example

A scanner panel data set of purchases of margarine is used to illustrate the proposed

robust multinomial choice model. The complete dataset is comprised of 9196 purchases of

ten brands of margarine by 517 households in Springfield, MO. The dataset was extracted

from a larger database of household data gathered by A.C. Nielsen company. This dataset

25



was first analyzed in Allenby and Rossi (1991) and later in Burgette and Nordheim (2012).

The dataset was made available through the R-package bayesm (Rossi, 2011).

At first it might seem odd to use a robust approach on scanner data as the probability

of erroneous data in scanner data is relatively small (but not impossible). However, note

that typically scanner data is augmented with loyalty card information such as socio-

demographics and these data are much more likely to contain errors. In addition, the

proposed model is not only relevant when erroneous data is present, but also when the

outlying observations are correct. Typically, researchers do not want their parameter

estimates to be influenced by a small number of observations that behave completely

different from the bulk of the data. In this dataset, this could be an extremely loyal

customer whose price sensitivity is virtually zero. The proposed method will minimize the

influence of these outlying (but possibly correct) observations.

To illustrate our approach using this real data example, the panel structure of the

data is transformed in a cross-sectional structure by retaining only the first purchase of

the household. In this way, we avoid the additional complexity of estimating panel data,

but note that our robust RMN model could be extended to analyze this type of data.

Moreover, we focus on five brands of margarine: Blue Bonnet, Fleischmann’s, House

Brand, Generic and Shed Spread.

This results in a dataset with 242 households and an equal number of observed choices.

Shed Spread is chosen as the base alternative in our analysis. Two covariates are included

in the model. The first variable is Price, measured in US dollar. This is a variable that

varies over the choice options. The second variable, log of Household Income also measured

in US dollar, is case specific but constant over the choice options. Finally, brand specific

intercepts for the four alternative brands are included in the analysis as well, so that we

have k = 9 regression parameters in the model.

We use the same diffuse prior settings as in the simulation designs in the previous

section. The MCMC sampler was ran for 10,000 iterations with a thinning factor of 2.

The first 1,000 draws were discarted as burn-in draws. The results of this analysis are

presented in Table 1 which shows the robust Bayes estimates (i.e. the expected value of

the posterior distributions) and the corresponding 95% credible intervals for the regression

parameters in the model.
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As in all multinomial choice models, only the coefficients of the variables that vary

across the choice options are directly interpretable. In this example, this is only the case for

the Price variable. As expected, this variable has a negative sign, meaning that an increase

in the price of one alternative decreases the probability of choosing that alternative. The

interpretation of the coefficients of the variables, such as Household Income, that do not

vary across choice options is less straightforward as the interpretation is relative to the base

alternative. A positive sign of a regression coefficient (e.g. Income Fleischmann’s= 0.039)

does not imply that an increase in the regression variable leads to an increase in the

probability of choosing the corresponding alternative. Interpretation is, for example, that

compared to Shed Spread (the reference category) a higher household income leads to an

increased probability of buying Fleischmann’s (since 0.039 > 0). Similarly, the marginal

effects of the Household Income variable could be investigated, but because most of its

parameter estimates are close to zero this is not very relevant in this example. Note that

the finding that household income does not have an big impact on the choice probabilities

confirms the findings of Allenby and Rossi (1991). They argue that this results from the

fact that the income variable was measured very imprecise.

Variable Posterior Mean 95% Credible Interval

Intercept Blue Bonnet -2.114 -3.145 -1.122
Intercept Fleischmann’s -1.044 -2.611 0.275
Intercept House Brand -3.510 -4.865 -2.223
Intercept Generic -4.619 -6.133 -3.211
Price -7.218 -9.658 -4.965
Income Blue Bonnet 0.007 -0.024 0.038
Income Fleischmann’s 0.040 -0.003 0.085
Income House Brand 0.016 -0.023 0.053
Income Generic 0.021 -0.013 0.055

Table 1: Parameter estimates for the RMN model on the margarine pricing dataset

To get some more insight in the effects of fluctuations in the price variable, we can

calculate the corresponding average change in the probabilities of choosing each of the

alternatives. In Table 2 we investigate the average effect on the probabilities of each of

the alternatives if the price of one brand is increased by 10 cent. From this table we can

see that, for example, increasing the price of Blue Bonnet leads to a decrease of 11.7% in

its buying probability and at the same time increases the probability of buying each of

the other brands. Note that these changes in probabilities sum to zero, as needed.
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We calculated the same marginal changes in probability for every brand due to a 10

cent increase in price of one brand, but now using the non-robust multinomial probit

model. The result of this analysis can be found in Table 3. For some of the brands, the

predicted change in demand is not so different from the robust analysis. However, for

other brands the difference is considerable. We consider two types of differences between

both predictions.

10 cent price increase for

Blue Fleisch- House Shed
Bonnet mann’s Brand Generic Spread

∆ Pr(Blue Bonnet) -0.117 0.013 0.022 0.022 0.046
∆ Pr(Fleischmann’s) 0.014 -0.047 0.009 0.008 0.017
∆ Pr(House Brand) 0.023 0.008 -0.078 0.014 0.029
∆ Pr(Generic) 0.023 0.008 0.014 -0.076 0.030
∆ Pr(Shed Spread) 0.057 0.018 0.033 0.032 -0.122

Table 2: Estimated marginal changes in probability by the robust RMN method when one
brand’s price is increased by 10 cent (for average values of the other variables)

The first type of difference is when the absolute value of the change in demand is

different between the two approaches. For example, for Blue Bonnet, the robust method

predicts a change in demand of 11.7%, while the non-robust method predicts a considerably

smaller effect size, i.e. a 9.6% decrease. This indicates that a small amount of customers

are very price insensitive and as a result the non-robust method underestimates the effect

of the price change on the main group of customers.

10 cent increase in price of

Blue Fleisch- House Shed
Bonnet mann’s Brand Generic Spread

∆ Pr(Blue Bonnet) -0.096 0.012 0.018 0.019 0.038
∆ Pr(Fleischmann’s) 0.013 -0.048 0.008 0.008 0.019
∆ Pr(House Brand) 0.018 0.008 -0.067 0.011 0.026
∆ Pr(Generic) 0.019 0.007 0.011 -0.066 0.025
∆ Pr(Shed Spread) 0.046 0.020 0.030 0.029 -0.108

Table 3: Estimated marginal changes in probability by the standard MNP method when
one brand’s price is increased by 10 cent (for average values of the other variables)

The second type of difference is when the predicted spread over the other brands is

different for both methods. This is the case for Shed Spread, for example. The methods

disagree on how the lapsed customers will spread over the remaining brands. While both

methods indicate that most customers will switch to Blue Bonnet and to a lesser extent to
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the House Brand and Generic brand, the robust results suggest that relatively more cus-

tomers will switch to Blue Bonnet. Also, the robust method suggests that Fleischmann’s

would benefit relatively less from a price increase of Shed Spread than the non-robust ap-

proach indicates. Note that Fleischmann’s is, on average, the most expensive brand, Blue

Bonnet and Shead Spread are mid-range and the House Brand and Generic brand are,

on average, the cheapest margarines. Both methods indicate that the cheapest and most

expensive brands both have the lowest price sensitivity. However, the robust approach sug-

gests a considerable higher price sensitivity for those brands. Again, this indicates that

the behavior of some customers obscures the main effects in the data when the non-robust

method is used.

We also investigated the predictive performance of the robust multinomial choice model

and compared it with that of the standard multinomial probit model. To do so, we ran-

domly split the margarine dataset in a training set and test set, containing 70% and 30%

of the data respectively. The training data was used to estimate the model parameters

for both models and these were then used to score the test set. The predictions were

evaluated using three different measures. First, the percentage correctly classified (PCC)

was calculated, with the predicted class set equal to the class with the highest predicted

probability. PCC is a value between 0 and 1 with values closer to 1 signifying better pre-

dictive performance. Second, the prediction error (ERROR),
∑n

i=1

∑p
j=1

√
(cvij − cpij)2,

was calculated. Here, cv is the 1 × p vector containing a 0 when the option was not

chosen and 1 if the option was chosen, while cp is the vector of choice probabilities. The

closer the prediction error is to 0, the better the predictive performance of the model.

Third, we calculated the area under the receiver operating curve for multiclass classi-

fication (mAUC) (Hand and Till, 2001). The resulting statistic is a value between 0.5

and 1 with higher values indicating better predictive performance. Finally, we repeated

this procedure 5 times on different random subsets, resulting in a 5 times random cross

validation.

PCC ERROR mAUC

RMN 35.62 24.42 62.69
MNP 34.79 25.02 61.32

Table 4: Average percentage correctly classified, prediction error and multiclass AUC over
5 times random cross validation on the margarine dataset.
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Table 4 shows the results of this analysis. All measures of predictive performance

indicate that the proposed robust model has a slightly better predictive performance com-

pared to the multinomial probit model. However, it is clear that the observed differences

are rather limited on this dataset. It can be expected that the difference between RMN

and MNP will be maximal when many outliers reside in the training data and none in

the test data. Note that the prediction error was always better for the RMN model, while

the other measures were less consistent. From this analysis, we can conclude that the

predictive performance of the robust multinomial choice model is at least on par with that

of the mulitnomial choice model, with a slight advantage for the RMN.

7 Discussion and conclusion

We introduced an outlier robust alternative to the popular multinomial logit and multino-

mial probit models. Similarly to the latter, our methodology allows for correlation between

the regression equations and thus also alleviates concerns raised by IIA. Instead of using

the logistic or multivariate normal distribution, our model uses the fat tailed multivariate

Laplace distribution to model the latent utility differences. Moreover, a shrinkage proce-

dure is applied on the multivariate observations to guarantee robustness toward outliers

in both the dependent and independent variables.

Robust Bayesian estimation of the model parameters is conducted by MCMC. By

exploiting the scale mixture of normals representation of the multivariate Laplace distri-

bution, a Gibbs sampling algorithm can be set up instead of the more complex Metropolis-

Hastings algorithm. This leads to a computationally efficient procedure to find the joint

posterior distribution.

Monte Carlo experiments showed that our method captures well the effects present

in the data, even when the data generating model deviates from the assumed model.

The robust method focuses on the effects present in the majority of the data and is less

influenced by deviating observations. It can handle outliers in the response as well as

leverage points. We illustrated how our method can be used for pricing decisions using

margarine scanner data.

Finally, it is important to realize that the proposed method also has a number of
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limitations. First, while the multivariate Laplace distribution effectively reduces the effect

of heavy tails in model (2), it is not yet known whether there is a distribution for the errors

in model (1) that leads to a multivariate Laplace distribution for the error differences in (2).

Such a result would strengthen further the proposed robust multinomial model. Second,

the choice of the base alternative is not independent of the robustness properties of the

model. That is, the outliers that appear in the base alternative are more likely to be shrunk

towards the center of the data cloud. The reason is that in the differenced space these

observations will become outliers in p−1 dimensions, while this is not the case for outliers

in non-reference categories. Note that with outliers, the multinomial logit or probit model

will also, and even more severely, be influenced by the choice of base alternative.

To provide robustness against leverage points, the weight function increases the uncer-

tainty on model (2) for observations outside the high density region. For such observations,

the relation becomes

u?i = Diβ + (1/ωi)εi.

This can equivalently be written as

ũ?i = Di(ωiβ) + εi,

which suggests that the robustness adjustment induces a non-linearity in the model. The

effect of the covariates is reduced when they assume more extreme values. Consequently,

our robust approach may mask non-linear effects in the choice model. It seems that

modeling non-linearity or heterogeneity more generally in this type of robust Bayesian

modeling will be very difficult, if not impossible. Note that in the context of statistical

modeling the concept of what is an outlier depends highly on the model that is being

considered. A sufficiently flexible model will always be able to accommodate the outliers

as well, although this may not be appropriate because outliers are not assumed to be

generated from a regular distribution.

The outlier shrinkage procedure uses a weight function based on robust Mahalanobis

type distances as in (7). Hence, it is assumed that the high density region approximately

has an elliptical shape. If the explanatory variables have more complex distributions

such as a bimodal distribution for instance, then the high density region may not be
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characterized well by a Mahalanobis type distance which implies a lesser performance of

the RMN model. Moreover, finding a good value for α, the amount of shrinkage we want,

is not straightforward. The optimal value depends on the shape of the multidimensional

data cloud and might be difficult to assess. When the outliers form a relatively small

cluster, the optimal value for α is the relative size of the cluster. However, when there

is no clear boundary between the outliers and the bulk of the data, then relatively larger

values for α might be more suitable. In case of bi-modal predictors, finding an optimal

value for α becomes even more difficult.

Further research in this area is needed to alleviate the issues raised above. Moreover,

the general ideas behind this Bayesian approach could also be extended to other models to

diminish the effect of outlying observations. For example count data or panel data models

could undoubtedly benefit from this methodology.
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