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Abstract---A mobile application is presented for real-time
testing and optimization of path-loss models and network plan-
ning, based on the execution of validation measurements in the
considered environment. The application is tested in three indoor
scenarios and for three path-loss models. Without optimization,
average absolute prediction errors of about 5 dB are obtained,
with a simple free-space model performing best. Executing a
limited set of ten additional measurements suffices to improve
predictions by up to more than 40%. The application is partic-
ularly useful for very quick path-loss model tests in a certain
environment or for easily obtaining more accurate network
deployments, as a single measurement only takes a few seconds
and optimization of the path-loss model is fully automated.

I. I NTRODUCTION

During recent years, more and more electronics have be-
come wirelessly connected to the internet. As these devicesare
most often used indoors, a reliable wireless connection hasto
be provided. Indoor environments easily allow the use of Wire-
less Local Area Networks (WLANs) for indoor mobile internet
access and as a reliable offloading mechanism for macrocell
connections. Reliability is indispensable for applications such
as video conferencing, which require a continuous transmission
of data with a low delay. The reliability of a WLAN link is
for a large part determined by the wireless channel between
the access point (AP) and the receiving mobile device, in
particular by the path loss between the transmit and receive
antennas. Therefore, it is of major importance to perform a
reliable wireless network planning in the environment where
user devices require a wireless internet connection.
In recent and in less recent years, different indoor path loss [1],
[2] and penetration loss [3] models have been proposed,
sometimes claiming a high accuracy for a specific environment
type (e.g., conference [4], industrial, office,...), sometimes
claiming a more general applicability. Time-consuming ray
tracing tools [5] have tried to fully characterize the channel
by accounting for reflections, diffractions, wall absorptions,...
that occur in indoor environments [6]. However, the physical
complexity of the indoor environment often still significantly
impairs the quality of the wireless network prediction. A
possible workaround to obtain a reliable network planning is to
perform a site survey on the spot [7]. Many site survey tools do
not incorporate any intelligence and just measure and plot the
WiFi signal strength without an automated planning, urging
the user to measure at all locations. Moreover, indicating
the measurement locations is not always user-friendly when
using e.g., a measurement laptop and specialized WLAN
sniffer software (e.g., AirMagnet [8], Ekahau [7], Acrylic
WiFi [9],...).

In this paper, a mobile application for real-time testing and
optimization of path loss models using Android smartphone
or tablet is presented. It allows combining the intelligence of
a network planner with the measurement and optimization pos-
sibilities of state-of-the-art site survey tools. After a calibration
of the Android tablet, the testing method is applied to three
different environments and three different path-loss models.
The user-friendliness of the touchscreen is exploited to allow
quickly performing an extensive set of measurements and
optimizing network planning in real-time, which is illustrated
in an application example. In Section II, a system overview
is given. Section III discusses the scenarios that will be
investigated, and describes the tested path-loss models and
environments. A full discussion of the results of the testing and
optimization scenarios is presented in Section IV, and finally,
the paper’s main findings are summarized in Section V.

II. SYSTEM OVERVIEW

The proposed system is based on a mobile Android
application connecting with a backend server that exhibits
network planning functionalities. The entire system is based
on the WiCa Heuristic Indoor Propagation Prediction (WHIPP)
tool [5]. After discussing this existing WHIPP system, we will
describe the mobile application system.

A. WHIPP tool

The WHIPP tool is a wireless indoor network planning tool-
box developed within the Wireless & Cable group [5]. It allows
predicting network coverage for WiFi, Zigbee, or Universal
Mobile Telecommunication Systems (UMTS) and Long Term
Evolution (LTE) femtocells. Another feature is an automatic
network design algorithm, which optimally places APs on a
floor plan, based on user-defined throughput requirementsin
the different rooms [5]. The WHIPP tool allows the user to
choose from different path loss models for the simulation, e.g.,
the IEEE 802.11 TGn model [10], a user-defined one-slope
log-distance model, a multiwall model [11], or the free-space
model.
The original tool is constructed as a webservice connectingto
a backend server. This server accepts input (e.g., floor plan,
simulation parameters,...) from the webservice, performsall
simulations on the backend and returns the output data to the
webservice for visualisation. Input is provided by, and output
is received by a classical desktop pc or laptop, communicating
with the web service via an ethernet connection or a WiFi con-
nection. The following section will describe the development
of the mobile version of the tool. Fig. 1 (top) shows the main
screen of the tool, where the user draws a ground plan.



B. Mobile application

Given the limited processing power on mobile devices and
the nature of the original architecture, it is a straightforward
choice to use a similar architecture for the mobile application:
the Android device communicates with the backend server
via the same web service, over a WiFi, 3G, or 4G connec-
tion. In order to maximize the number of devices that are
compatible with the application, the lowest possible Android
version was chosen (Android 2.2 Froyo). With respect to the
graphical aspects of the mobile application, usage is mainly
expected on tablets, to allow visualisation of a floor plan
and functionalities on the screen. All functionalities of the
original tool were reprogrammed for Android, with the mobile
application allowing importing existing floor plans (thathave
been created on a desktop computer) or drawing a plan, by
clicking and/or dragging the touched location on the screen.
Horizontal/vertical scrolling and zooming functionalities are
also implemented, leading to a completely mimicked version
with respect to the functionalities and usage of the original
tool. Fig. 1 (bottom) shows the same screen as in the computer
version, redesigned for Android. Using this mobile application,
it is now possible to perform measurements in the building.
This is done by tapping the location at which the user is located.
The location’s coordinates and the recorded Received Signal
Strength Information (RSSI) value are stored on the device and
can be exchanged with the backend server for testing and/or
optimization purposes.

Fig. 1. WHIPP tool’s main screen for computer (a) and Android app(b)

Fig. 2. Flow graph of test scenario.

III. SCENARIOS

As explained earlier, using an Android device allows
adding additional functionalities to the original WHIPP tool:
(1) the mobile nature of the device with its integrated antenna
allows an easy and quick execution of RSSI measurements
and (2) the touchscreen allows a very user-friendly way of
indicating the location of the measurements. In this paper,
two scenarios will be investigated. First, a set of three path-
loss models will be tested against a large set of additional
measurements in three different indoor environments. Second,
it will be investigated to what extent these measurements allow
improvement of the accuracy of the models (and the wireless
network planning). Fig. 2 shows a flow graph of these test
scenarios. First a ground plan is obtained by importing existing
files or by drawing it with the mobile app. After setting param-
eters (receiver type, fading margin,...) and selecting a path loss
model, the network deployment is calculated for the given AP
location(s). Then, the user performs measurements at different
locations. These measurements not only allow comparison of
the accuracy of the different available PL models (scenario1),
but also allow optimization of these models for an improved
accuracy and network planning (scenario 2).

A. Path loss models

Three different path loss models are considered in the tests:

Free-space: The free-space loss (FSL) [dB] is the path loss
between two antennas in idealized conditions, meaning that
the antennas are in each others far-field, the environment is
unobstructed free space, the antenna polarizations are perfectly
matched, ... The free-space loss is sometimes used as an
estimate for path losses and is calculated as follows:

FSL = 20 · log10(d) + 20 · log10(f) + 32.45, (1)

with d [km] the distance between transmit and receiving
antenna, and f [MHz] the operating frequency. At 2.4 GHz,
eq. (1) can be rewritten as

FSL = PL0 + 10 · n · log10(d), (2)

with PL0 = 40.05 dB and n = 2.

IEEE 802.11 TGn model [10]: The IEEE 802.11 TGn
model (TGN) is a two-slope path loss model, which is suitable
for path-loss predictions in office environments. The median
TGN loss TGNL [dB] is calculated as:

TGNL = PL0 + 10 · n1 · log10(d) (d < dbr)

TGNL = PL0 + 10 · n2 · log10(d)− 32 (d > dbr) ,
(3)

with dbr = 10 m, PL0 = 40.05 dB,n1 = 2, andn2 = 5.2. For
d < dbr, the TGn model equals the free-space model.



Fig. 3. Test environments: Turnhout (left), Bruges (middle),Ghent (right).

Multiwall model: The multiwall model (MWM) is a model
consisting of a distance-dependent part and a wall-dependent
part that adds a wall-specific loss for each wall that is crossed
by the direct ray between transmitter and receiver. The median
path loss MWL [dB] according to the MWM is calculated as:

MWL = PL0 + 10 · n · log10(d) +
∑

i

LWi
, (4)

with PL0 [dB] the path loss at a reference distance of 1 m
(under the absence of walls), n [-] the path-loss exponent,LWi

[dB] the loss of wallWi that is crossed, with a summation over
all walls Wi crossed by the transmitter-receiver line. Here,
PL0 and n will be chosen so as to match FSL (PL0 = 40 dB,
n = 2). The wall loss values are chosen as described in [5],
metal walls (e.g., elevators) are modeled with a loss of 100 dB.

B. Environments

Three different indoor environments will be tested. A
picture of the environments is shown in Fig. 3. A ground
plan with the measurement locations is shown in Fig. 4. The
location of the APs is indicated with a red dot with a black
edge.
Turnhout: a residential house with wooden walls and doors.
The considered AP was a DLink dir-615 (hardware version
H2, firmware version 8.02) with two antennas and a transmit
power of 13 dBm, installed at a height of 1 m. The total
considered surface equals 89.25m2, consisting of 112 possible
measurement locations (1.255 possible measurements perm2).
Bruges: an old townhouse with brick walls and wooden or
glass doors. The considered AP was a DLink dir-600 (firmware
version DD-WRT v24-sp2) with one antenna and a transmit
power of 8 dBm, installed at a height of 1 m. The total
considered surface equals 77.75m2, consisting of 96 possible
measurement locations (1.235 possible measurements perm2).
Compared to the ’Turnhout’ environment, the Bruges environ-
ment is more cluttered (cupboards with books, piano,...).
Ghent: office building with layered drywalls around a core of
concrete walls. The same AP type as in Bruges was used. The
total considered surface equals 243.5m2, consisting of 272
possible measurement locations (1.117 possible measurements
perm2). The environment contains less objects than the other
two environments.

C. Experiment equipment

The tablet is a Sony Xperia Tablet Z (Model SGP311E4/8)
with 802.11n capabilities. Just like many other measurement
devices, this tablet measures RSSI instead of the actual Radio
Frequency (RF) power. Therefore, a calibration measurement
of the Android Tablet was performed.

Fig. 4. Ground plan of Turnhout (a), Bruges (b), and Ghent (c)with indication
of measurement locations and AP.
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Fig. 5. Relation between measured RSSI and measured RF power with linear
fit and one-sigma deviation boundaries.

1) Tablet RSSI calibration: For the calibration tests, 7
locations in an office building were selected. An access point
was installed and the RSSI was measured with the tablet
computer (5 instantaneous measurements per location). At the
same time, the actually received power was recorded with a
spectrum analyser. The difference between the recorded RSSI
value and the recorded RF power equals 11.4 dB with a
standard deviation of 2.67 dB. Fig. 5 shows a plot of the
measured RSSI and RF powers and the linear fit with a
difference of 11.4 dB. The plot shows that most measurements
lie within a one-sigma deviation from the fit. However, it
should be noted that RSSI measurements with an internal
antenna of a mobile device will always be less accurate than
actual RF measurements, e.g., due to the proximity of the body.

IV. RESULTS

In this section, results for the two described scenarios (path-
loss modeltesting andoptimization) will be presented.

A. Scenario 1: path loss model testing

Here, it will be tested which of the three proposed path-
loss models shows the best prediction performance. Fig. 6
shows the predicted power as a function of the tablet-measured
power for the three considered environments and the three
considered path loss models. The solid line indicates a perfect
prediction of the received power. Table I shows the average
prediction errorsδ, the average absolute prediction errors
|δ|, and the standard deviationσ

|δ|
on the average absolute



Fig. 6. Predicted power vs. measured RF power for (a) Turnhout, (b) Bruges, and (c) Ghent

prediction errors, over all measurement locations (see Fig. 4).
Fig. 6 shows that for all environments, the three models
predict the same received power in unobstructed line-of-sight
(LoS) situations (higher received powers in the figure), since
they all use the free-space approximation for unobstructed
LoS (see Section III-A). Unlike for the Bruges and Ghent
environments, the received powers in LoS (highest powers)
in the Turnhout environment are somewhat underestimated.
For the Turnhout environment, the TGn and free-space models
pretty accurately predict the received powers (average errors
below 3 dB, average absolute errors around 5 dB, see Table I),
while the multiwall model mostly underestimates the received
power (or overestimates the path loss). This phenomenon often
occurs in environments with many walls (or with smaller
rooms), such as in office buildings (Ghent). This is indeed
observed in the Ghent environments, where due to the high
losses by the metal elevator (modeled as 100 dB loss per
wall), powers as low as -300 dBm are predicted (Y-range
cut off in Fig. 6 (c) for reasons of clarity). This leads to
the average prediction errors of 55 dB shown in Table I.
Overall, the free-space loss model appears to be the best
prediction model with average absolute errors of about 5 dB.
However, the quite horizontal left tail of the free-space markers
in Fig. 6 (c) also shows that, as expected, path losses are
underestimated and measured powers are overestimated by the
free-space model at higher distances from the AP (i.e., for
lower RF powers). This is compensated for by the second
slopen2 in eq. (3) of the TGn model: the TGn markers are
indeed closer to the perfect prediction for lower RF powers and
hence, also lower absolute errors are observed for Turnhout
and Bruges. However, in the office building in Ghent, this
phenomenon is overcompensated: the TGn markers now lie
below the perfect prediction line for lower powers, i.e., the
path loss is overestimated or the predicted received powers
are underestimated. This is mainly due to the fact that the
Ghent environment consists of light walls (layered drywalls)
with small penetration losses, where path losses are lower
than in typical office environments. Finally, Table I shows
that on average, all models underestimate the received power
(δ > 0), except for the Bruges environment, where all models
overestimate the received power (δ < 0). This indicates
that performing additional environment-specific measurements
would allow improvement of the models by only performing a
simple linear shift. The application of such optimization will

be investigated in the next section. Although an advantage of
our system is that no additional hardware is required to use it, it
could be argued that the lack of an external antenna will cause
the measurement accuracies to probably be lower than those of
classical systems that use an external antenna connected toa
laptop via Universal Serial Bus (USB). Technically, however,
it would be possible to improve our system by connecting a
better (external) measurement antenna to the Android device.

TABLE I. A VERAGE PREDICTION ERRORSδ, AVERAGE ABSOLUTE

PREDICTION ERRORS|δ|, AND STANDARD DEVIATION σ
|δ|

ON |δ|, OVER

ALL MEASUREMENT LOCATIONS (IN DB).

TGn Free space Multiwall
δ |δ| σ

|δ|
δ |δ| σ

|δ|
δ |δ| σ

|δ|

[dB]
Turnhout 2.8 5.0 3.4 1.8 5.3 3.3 5.4 5.9 3.9

Bruges -4.3 4.9 3.2 -5.3 5.9 4.2 -1.2 4.9 3.4
Ghent 8.7 9.1 5.3 1.4 4.9 3.4 55.7 55.9 95.1

B. Scenario 2a: path loss model optimization

Here, each of the path loss models will be optimized for
each of the environment, based on the total set of measure-
ments executed in each of the environments (see Section III-B).
Each set of measurements yields a value of the average
prediction error for the considered model in the considered
environment (values ofδ in Table I). This value will then
be used to linearly shift the path loss models (adjustment of
parameterPL0 in eqs. (2,3,4)), so that the average prediction
error becomes zero. Since this shift accounts for all measured
points, it is assumed to deliver the best possible linear shift.
Table II shows the same metrics as Table I, but now after
adjustment of the path loss model. For the TGn model,
especially the Bruges and Ghent environments benefit from the
optimization, since the original predictions deviated more from
the measurements than the Turnhout environment and thus
had more room for improvement. Similarly, for the free-space
model, the small original average errorsδ in the Turnhout and
Ghent environment leave less room for improvement compared
to the Bruges environment (absolute error reduction of 30% vs.
6% or 2%). The multiwall model’s improvement is mainly in
the Turnhout environment (37%). In the Ghent environment,
however, no performance improvement is possible with a
simple linear shift. In this case, adjustment of the wall losses
would be required to obtain better models. Analogously, for



Fig. 7. Average absolute prediction error as a function of the number of random measurements, for (a) Turnhout, (b) Bruges, and (c) Ghent

the other models, an additional adjustment of the slope of
the free-space loss (making it a classical one-slope model)
or the slopes of the TGn two-slope model would allow a
further improvement of the performance. In general, it can
be observed from Table II that not only the average absolute
error decreases after the optimization (up to 46%), but alsothe
standard deviations on the error (up to 36%).

C. Scenario 2b: path loss model optimization with a limited
number of additional measurements

As mentioned earlier, the presented linear shifts from
the previous section are the most accurate ones, since they
account for all measurements. Executing measurements at all
locations is time-consuming and might be not necessary. In
this subsection, it will be investigated how fast the average
error of a subset of measurements converges to the average
error of the total set of measurements. A quick convergence
would indicate that with already a few measurements, the
path loss models and the network planning can be improved
in at most a few minutes. To investigate this, random RSSI
measurements were taken from the total measurement set for
each environment, with the subset size varying between 1 and
30. For each subset size, 10,000 random subsets were created.
From the average prediction error at the subset locations, the
linear shift was again derived and then applied to the path loss
model. For environments in which there is room for improve-
ment when predicting according to a certain path loss model,
performing additional measurements will likely improve the
prediction performance. Therefore, we will first investigate
three environment-model combinations where

∣

∣δ
∣

∣ > 5 dB in
Table I (remark the difference between

∣

∣δ
∣

∣ and |δ|). Then, we
will investigate the probability of a deteriorating prediction
performance when the original prediction was good already.
Since the optimization calculation time itself is negligible, only
the time to conduct measurements is relevant. However, this
time is very limited as each measurement only involves tapping
the current location of the tablet.

Degree of performance improvement - Fig. 7 shows the re-
sulting average error over all measurement locations. All three
path loss models were applied, each to a different environment.
Fig. 7 indicates the 5%, 50%, and 95% percentiles over the
10,000 subsets, as well as the original average absolute errors
without applying any linear shift (original situation). Itshows
that with very limited additional measurements, there is a

chance of more than 95% to improve the path loss model: two
measurements for Ghent TGn, three for Turnhout multiwall,
and four for Bruges free-space. On average, five additional
measurements already lead to predictions where the error is
approaching the minimal error with a linear-shift optimization,
which is equal to|δ| in Table. II.

Degree of possible performance deterioration - When the
original prediction is already good (e.g., free-space model
in Ghent, where the maximal improvement is only 2%, see
Table II), there is a reasonable probability that tuning the
model based on a limited set of measurements will actually
worsen the prediction. Therefore, Fig. 8 shows the resulting
average error over all measurement locations as a function
of the subset size of the additional measurements. It shows
that the prediction could indeed deteriorate (see 95%-percentile
line). When only 5 measurements are added, there is a chance
of 5% that the resulting average absolute error is more than
6.4 dB, compared to an original error of 4.94 dB. On average,
this error will be 5.1 dB. With a chance of 5% for a maximal
error increase of less than 1.5 dB, it is fair to state that
the possible worst-case impact is limited when using only
5 measurements. For 10 measurements, this maximal error
further reduces to 0.7 dB. It can be concluded that performing
10 additional measurements will in almost all cases result in
an improvement of the prediction performance.

D. Network planning application

In this section, the optimization method for the path loss
model will be applied to a network planning problem for
the Ghent environment with the TGn model. An 802.11b/g
network with 16-dBm APs is to be designed for a physical-
layer coverage of 54 Mbps over the entire building floor. Fig. 9
(a) shows the received power according to the network design
using the original non-optimized TGn model (APs are located
in the centres of the circles). Five APs are required to provide
the required throughput. For this application, we assume an
additional (random) measurement set of 10 samples with its
median deviation (overestimation of the path loss) of 8.7 dB.
After decreasingPL0 in eq. (3) with 8.7 dB, the resulting
designed network of Fig. 9 (b) consists of 3 APs instead of
5, indicating the value of the application. As the cost of the
AP itself is only around one third of the total installation
cost [12], an accurate network planning could -in this case-
save a significant amount of money for the company or person
installing the network. Moreover, using less APs also reduces



TABLE II. A VERAGE ABSOLUTE PREDICTION ERRORS|δ| AND STANDARD DEVIATION σ
|δ|

ON |δ|, OVER ALL MEASUREMENT LOCATIONS AFTER

OPTIMIZATION OF THE PATH LOSS MODEL(IN DB). REDUCTIONS COMPARED TO ORIGINAL SITUATION ARE INDICATED BETWEEN BRACKETS.

TGn Free space Multiwall
|δ| σ

|δ|
|δ| σ

|δ|
|δ| σ

|δ|

[dB]
Turnhout 4.6 (-8%) 2.6 (-23%) 5.0 (-6%) 3.3 (-0.3%) 3.7 (-37%) 2.6 (-34%)

Bruges 3.4 (-31%) 2.1 (-34%) 4.2 (-30%) 2.6 (-36%) 4.7 (-5%) 3.5 (+4%)
Ghent 5.0 (-46%) 3.4 (-36%) 4.8 (-2%) 3.3 (-4%) 68.6 (+22%) 65.9 (-31%)
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Fig. 9. Network design for Ghent environment (90 m x 17 m) according
to (a) original TGn model and (b) TGn model tuned with 10 measurements.
Legend indicates predicted received power in dBm. APs are located in the
centre of the circles.

interference. If, on the other hand, the original network appears
to be underdimensioned, the application will redimension the
network to fill coverage holes, avoiding an extensive and
expensive site survey later. All network planning calculations
are executed within a negligible time duration.

V. CONCLUSIONS

In this paper, a mobile Android application is presented for
testing path-loss models and for optimization of the wireless
network planning by tuning the used models based on a set
of measurements with the app. The application is extremely
easy to use thanks to the built-in antenna of mobile devices
and the possibility to indicate the measurement locations on
a tablet. Three different indoor environments (two houses and
one office building) were considered, as well as three different
path-loss models. It was shown that overall, the free-space
model delivered slightly better results than the IEEE TGn
model and the multiwall model (average absolute errors around

5 dB), although no really harsh environments were considered.
Deriving a linear shift from a set of additional measurements
with the mobile app, and applying it to the path-loss models,
allowed for reductions of the prediction error of up to 46% for
the considered environments and models. Further, it is shown
that only a few additional mobile measurements often already
suffice for a drastic improvement of the path loss model
in the considered environment. Executing only 10 random
measurements in the environment, a task which can be done in
at most a few minutes, is already sufficient to obtain a path-loss
model that is close to the optimal model that can be obtained
through a linear shift. Even in the worst considered scenario,
where the original model is performing very well already, there
is a chance of less than 5% that the error increases by 0.7 dB
when performing 10 additional measurements.
In the future, the performance of more advanced path-loss
models (e.g., accounting for the physical properties of the
environment [5]) and more advanced optimization techniques
will be investigated (e.g., changing the slope of the models,
wall penetration losses in advanced models). Further, the
application will be able to differentiate between the RSSI
from different APs, yielding more optimization data in the
same time. Finally, thanks to the user-friendly indicationof
measurement locations on a map, the application is also well-
suited for quickly building an RSSI fingerprint database for
localization purposes.
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