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Abstract

The research on wind-driven rain (WDR) transport process of the splash-saltation has

increased over the last twenty years as wind tunnel experimental studies provide new

insights into the mechanisms of simultaneous wind and rain (WDR) transport. The present

study was conducted to investigate the efficiency of the BEST® sediment traps in catching

the sand particles transported through the splash-saltation process under WDR conditions.

Experiments were conducted in a wind tunnel rainfall simulator facility with water sprayed

through sprinkler nozzles and free-flowing wind at different velocities to simulate the WDR

conditions. Not only for vertical sediment distribution, but a series of experimental tests for

horizontal distribution of sediments was also performed using BEST® collectors to obtain

the actual total sediment mass flow by the splash-saltation in the center of the wind tunnel

test section. Total mass transport (kg m-2) were estimated by analytically integrating the

exponential functional relationship using the measured sediment amounts at the set trap

heights for every run. Results revealed the integrated efficiency of the BEST® traps at 6, 9,

12 and 15 m s-1 wind velocities under 55.8, 50.5, 55.0 and 50.5 mm h-1 rain intensities were,

respectively, 83, 106, 105, and 102%. Results as well showed that the efficiencies of

BEST® did not change much as compared with those under rainless wind condition.

Introduction

The fundamentals of WDR erosion processes have been developed by the studies performed in

the wind tunnel rainfall simulator facility at the International Centre for Eremology (ICE),

Ghent University, Belgium [1–3]. Especially, some of these have well documented that splash-

saltation process could cause net transportation in the prevailing wind direction [4]. This also

brought new insight for the process mechanics in which particle detachment or dislodgement

(splash) and particle saltation, respectively, by raindrop impact and wind, constitute major

components of the transport system. This cooperative work of rain and wind for eroding soil

is significantly different from those under rain-free wind and wind-free rain [5,6].
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Although there are accumulated works performed under controlled laboratory conditions

for essentials of WDR erosion processes, field studies and observations are still very rare [7–9]

particularly for the splash-saltation transport process. The reason is that, despite the fact that a

certain number of active and passive aeolian sediment traps for wind-driven sediment trans-

port exist, there has been no trap specifically designed to catch and quantify splash-saltating

particles during rainfall events accompanied by strong winds previously.

As mentioned earlier, there are several studies where passive and active traps were devel-

oped and used for the measurement of sediments transported by different wind-driven erosion

processes [10–19]. Of these traps, the most common ones are BSNE (Big Spring Number

Eight) and WAC (Wilson and Cooke) passive traps [20,21]. Several researchers worked with

various traps by different aerodynamic designs and dimensions for actual wind erosion mea-

surements and successfully modeled sediment flux and tried to explain both vertical and hori-

zontal sediment transport characteristics [12,20–32]. Among those, to our knowledge, though,

only a modified version of the WAC catcher was tested for the splash-saltation transport

under WDR conditions in the ICE wind tunnel by [22]. However, in most of the wind tunnel

and field studies on splash—saltation processes used sediment collection containers without

consideration of their efficiency under WDR events [1,4,33–39].

The BEST1 (Basaran and Erpul Sediment Trap) [40] with cyclone-type aerodynamic coun-

ters and modular plastic bodies is newly designed trap to catch sediments transported through

both saltation and suspension. The trap has efficiencies of 80–100% at different particle sizes

and wind velocities. The cyclone system of the BEST provides a great advantage for trapping

dust particles with a consistent efficiency. The present study was conducted to determine an

integrated efficiency of BEST1 over a vertical height of 0.23 m in measuring splash-saltation

sediment transport observed under WDR conditions.

Materials and Method

Wind tunnel

Efficiency tests of BEST1 were performed in the wind tunnel at the International Centre for

Eremology (ICE) of Ghent University, Belgium. The wind tunnel has a length of 12 m and is

1.2 m wide and 3.2 m high. The wind profile within the tunnel is expressed by the Prandtl–von

Kármán equation and the boundary layer thickness of the ICE wind tunnel was set at 0.61 m

by a combination of spires and roughness elements [41].

For each wind velocity of 6, 9,12 and 15 m s-1, test WDR intensities (Iwdr) were 55.8, 50.5,

55.0 and 55.5 mm h-1, respectively. This was because of different rain displacements in the lim-

ited test area of the wind tunnel; and depending on the rain inclinations from the vertical

driven by different wind velocities. Because of this, it was not possible to work with a wide

range of intensities. By an independent run without a sand tray before the relevant splash-sal-

tation measurement, Iwdr was directly measured with small collectors on the horizontal plane

for a nozzle operating pressure of 100 kPa and the horizontal wind velocities of 6, 9, 12, and 15

m s−1 [42–44]. That is, the collectors were placed exactly at the same location in the tunnel

where the sand tray was set up. In this way, the Iwdr measurements were truly representative of

each run without any need for correction due to the rain inclination [45,46].

Description of BEST®

The BEST1 sediment catcher has a plastic body manufactured by a plastic injection system. It

is comprised of three modular units, which are a lid including an inlet and outlet, a cylindrical

cyclone body and a collector, which were designed so that they could easily be assembled and
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disassembled (Fig 1). Air flow characteristics and efficiencies of the trap under different rain-

free wind velocities were, described in detail by [40].

Efficiency tests

The tests of the BEST1 under WDR were conducted in a wind tunnel rainfall simulator with

water sprayed at 100 kPa through sprinkler nozzles (Teejet TG SS 14 W nozzle from Spraying

Systems Co.1, Weeton IL, USA) under 55.8, 50.5, 55.0 and 50.5 mm h-1 rain intensities driven

by 6, 9, 12, and 15 m s-1 wind velocities. Wind speeds were measured by a valve-type probe

located at x = 1.2 m, y = 0.6 m and z = 0.75 m, where x is the distance from the tunnel entrance,

y is the distance from the tunnel wall, and z is the height above the tunnel floor. The wind

velocity profiles above the sand tray were characterized by the following logarithmic equation:

uðzÞ ¼
u�
k

� �
ln

z
z0

� �

for zj>z0 ð1Þ

where u(z) is the wind velocity at height z, zo is the aerodynamic roughness height, u� is the

wind shear velocity, and K is von Karman’s constant. The boundary layer was set at 0.61m

above the sand tray. Subsequently, the reference shear velocities were derived from the loga-

rithmic wind profiles, assuming a fixed roughness height of 0.0001 m for a bare and smoothed

sand surface. Calculated reference shear velocities are 0.34, 0.50, 0.66 and 0.81 m s-1 for the ref-

erence wind velocities of 6, 9, 12 and 15 m s-1, respectively.

A sand tray (0.34×0.24x0.01 m) was placed at x = 6.5 m, y = 0.43 m and z = 0.30 m (Fig 2).

The sand used in this study was collected from the Belgian coast and its particle-size

Fig 1. Technical drawing of the BEST® with dimensions.

doi:10.1371/journal.pone.0166924.g001
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distribution histogram is given in Fig 3. Geometric mean particle diameter was 250 μm. Cal-

cium carbonate and organic matter contents were 3.3% and 0%, respectively [36]. The traps

were placed horizontally on the x-axis and fixed to a mast at the heights of 0.006, 0.08, 0.155,

0.23 and 0.30 m above the tunnel floor measured from the center of the trap’s inlet and at

x = 6.74 m, i.e., immediately windward from the sand tray as shown in Fig 2. Each experiment

was replicated three times and almost 1250 g sediment was placed in the sand tray per run.

Fig 2. Experimental setup for the efficiency test of the BEST® under the process of the splash-saltation of WDR.

doi:10.1371/journal.pone.0166924.g002

Fig 3. Histogram of particle-size distribution for the sand used in the WDR.

doi:10.1371/journal.pone.0166924.g003
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After each run, a total of splash-saltated sediment loss (Ql,kg) from the sand tray was deter-

mined by weighting the remaining sediment in the tray on an electronic balance with a 0.01 g

precision. The collected sediments in the traps were washed into aluminum boxes for drying

in an oven at 105˚C for 24 h to determine the trapped amount at every height. Twelve runs

were thus performed with four different wind velocities and three replications.

Since horizontal sediment flow pattern in the wind tunnel was not perfectly homoge-

neous, two different corrections were performed to provide a control volume approach

[47]. Firstly, the amount splashed to both sides (right and left) of the sand tray and not

entered into sediment flow was deducted from the total loss to determine the actual amount

of sand passing through the tunnel test section. For that purpose, splash cups were placed

on the right and left sides of the sand tray (Fig 4). After each run, losses from the sand

tray to the splash cups were weighted and the first correction factor (Cf1) was determined

(Eq 2).

Secondly, the amount of sediment passing through the center of the tunnel was measured

and the second correction factor (Cf2) was introduced for each wind velocity by using nine

BEST1 traps which were horizontally placed along the width of tunnel floor from its window

to its side wall with 0.10 m intervals (Fig 4). The Cf2 enabled us to obtain actual total sediment

distribution in the center of the wind tunnel test section (0.3 m), where the trap inlets were

positioned. A total of twelve runs were thus additionally carried out with four different wind

velocities (similar as those for the efficiency tests as described above) and with three replica-

tions to determine Cf2 values. After each test, the trapped sediment was weighed to determine

sand transport (kg m-2) in the center of the wind tunnel. The Cf2 values were then calculated

by Eq (3) as an average of three replicates at each wind velocity level. The Cf1 and Cf2 values

together with their descriptive statistics such as mean, standard deviation and coefficient of

variation for corresponding wind velocities are given in Table 1.

Cf1 ¼
Qt � ðAþ BÞ

Qt
ð2Þ

Cf2 ¼

X6

i¼4

ðQtrapÞi

X9

i¼1

ðQtrapÞi

ð3Þ

where Qt (g) is the total loss from sand tray, A and B (g) are the amount of the collected sand

by splash cups, Qtrap (g) is the weight of sediment trapped by the BEST1 traps placed from the

tunnel window to its side wall (1.2 m).

Sediment transport (Qr, kg m−2) (Eq 4) was estimated by analytically integrating the expo-

nential functional relationship (Eq 5) between the measured sediment weight and trap heights

of 0.006, 0.08, 0.155 and 0.23 m for each run:

Qr ¼

ðh

0

qz:exp dz ð4Þ

where, h (m) is the maximum particle transportation height. Although the traps were posi-

tioned horizontally at the heights of 0.006, 0.08, 0.155, 0.23 and 0.30 m above the tunnel

floor, the transport did not occur at the height of 0.30 m for all tests, leading to h = 0.23 m.
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qz. exp (kg m−2) is the amount of sediment per trap inlet area at the set height of the z (m):

qz:exp ¼ qoe
� az ð5Þ

where, q0 (kg m-2) is the amount of the sediment modeled at z = 0.006 m and α is the slope fac-

tor of the exponential regression equation (m-1). For using Eq (5) in the analytical integration,

the amount measured at the lowermost trap was assumed to be equal to q0. This amount of

theoretical zero height at the surface of sand tray (q0) determined the intercept of q-axis, i.e.

the uppermost boundary of the vertical mass distribution curves (Fig 5).

Fig 4. Experimental setup for determining actual amount of sediment flow passing through the center

of wind tunnel (0.3 m).

doi:10.1371/journal.pone.0166924.g004
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With a L = 0.3 m wide section of the wind tunnel center (Fig 4), the total amount of the

trapped sediment (Q, kg) was computed by:

Q ¼ Qr � L ð6Þ

Trap efficiency computations were performed over the total sediment weight (Ql, kg) lost

from the sediment tray after they were corrected by the related Cf values from Table 1 for each

run:

Qc ¼ Ql � Cf1 � Cf2 ð7Þ

where, Qc (kg) is the corrected sediment weight transported from the sediment tray by the

splash—saltation process. Dimensionless trap efficiencies of the BEST1 traps were calculated

by a ratio of Q over Qc:

Z ¼
Q
Qc

ð8Þ

Along with the trapezoidal model, the Riemann Sum Middle Point calculation method was

used for integrating the exponential functional relationship [48].

Clearly, this integration involved in data collection from the traps at different heights above

the surface, with each experienced different splash-saltation transport depending upon the

mean wind velocity profile within the tunnel. With this research set-up, it is significant to note

that an integrated efficiency calculated from vertically integrated splash-saltation sediment

transport across a vertical plane perpendicular to the flow up to the height of 0.23 m was

obtained experimentally.

Results and Discussions

The relationship between sediment transport and height (vertical mass distribution curves

q0 = qz1 (kg m-2), where z1 = 0.006 m) under WDR conditions is graphed in Fig 5. Sediment

transport exhibited an exponential decrease with height at each wind velocity, with the major-

ity of the sediment moving within the first centimeters from the sand surface with these veloci-

ties. Similarly, in wind erosion studies, researchers reported that under rainless conditions

almost 50% of the mass flow was observed near the soil surface [49–53]. Basaran et al. [40]

investigated the efficiency of the BEST sediment trap under rainless condition, working with

the same sand and similar wind velocities as those of this research. When the findings of both

studies were compared, to some extent, different vertical trajectories of sand particles were

found for the wind velocities of 12 and 15 m s-1. For example, the maximum vertical trajectory

of sand particles was 0.2–0.25 m and sediment transport mostly occurred in the first 0.05 m in

Table 1. Cf1 and Cf2 values for different wind velocities.

6 (m s-1) 9 (m s-1) 12 (m s-1) 15 (m s-1)

Cf1 Mean 0.93 0.93 0.94 0.94

SD 0.09 0.12 0.08 0.09

CV 9.87 13.16 8.71 9.45

Cf2 Mean 0.88 0.88 0.92 0.86

SD 0.12 0.13 0.6 0.5

CV 13.19 15.02 6.11 5.72

CV; Coefficient of variation, SD; Standard deviation

doi:10.1371/journal.pone.0166924.t001
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this study of WDR while they were 0.4–0.5 m and 0.3 m, respectively, under rainless condition

[40]. Erpul et al. and Cornelis et al. [4,23] indicated that sand particles were lifted off by the

wind-driven raindrop impact, transported some distance within droplets by wind streams dur-

ing the splash-saltation transport process described as a combined operation of raindrop and

wind. The researchers stated that the maximum vertical trajectory and the sediment transport

Fig 5. Relationships between sediment transport (kg m-2) and height (m).

doi:10.1371/journal.pone.0166924.g005
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height in the process could be lower than those of only wind-driven process of saltation

because of increased gravity forces of sand particles encapsulated in the droplets compared to

individual dry sand particles. Also re-distribution of droplets driven by wind could decrease

the maximum vertical trajectory and the sediment transport height.

Efficiencies of the BEST1 sediment traps in catching sands transported through splash-sal-

tation at the wind velocities of 6, 9, 12, 15 m s-1 are provided in Table 2.

The efficiency values were 83, 106, 105, and 102%, respectively, for the wind velocities of 6,

9, 12, and 15 m s-1. Small variations in the efficiencies with wind velocities might be due to

uncontrolled random variations. For instance, different free stream wind flows were formed

during the four wind velocity measurements in the tunnel. The differences in free wind flow

streams in each replications might have resulted in a small increase or decrease in efficiency

values. Greater standard deviation and variation coefficients were found at 6 and 12 m s-1

wind velocities (5.93–11.00 and 7.14–10.51 m s-1, respectively) indicated that the measure-

ments made at these wind velocities were affected, in some degree, by uncontrolled measure-

ment conditions within the wind tunnel. Variation of wind turbulence, little changed by the

intensity of simulated rainfall and measurement errors could lead to a greater standard devia-

tion and a variation coefficient.

The experimental set-up could also affect the trap efficiencies. Especially, a closer spacing of

the traps to each other on the mast, could lead to some degree of stagnation pressure and a

decreased trapping efficiency. The static pressure problem at trap inlet also was dealt with in

the trap used by [54].

As stated previously, there is no particular efficiency study designed to capture particles of

the splash-saltation process in WDR with passive traps although many wind tunnel studies

have been done to measure wind-driven saltation without rain. However, in those tests, specif-

ically in terms of trap number used to catch the particles either at a certain height (one-height

trap measurements) or across a vertical plane (multi-height trap measurements) perpendicular

to the flow, there is no a single standard procedure for determining efficiency. Assuming

highly controlled conditions and homogeneous sediment flow at different heights in a test tun-

nel, some researchers carried out one-trap experiments for efficiency. The efficiency tests for

saltation with the commonly used BSNE and WAC traps were used under completely different

physical conditions of both air flow and particle characteristics. For example, Fryrear [20] con-

ducted a one-trap experiment with BSNE using three different grains (sand, sieved soil and

washed sand) and three different wind velocities of 10.4, 13.0 and 15.7 m s-1, and reported that

the efficiency varied between 88 and 94% showing a tendency to decrease as wind velocity

increased. Sterk [55] tested the efficiency of the WAC traps with a range of wind velocities

from 9.9 to 11.5 m s-1 in a wind tunnel and found an efficiency of 49%, without changing with

wind velocity increase, which could be, to a large extent, attributed to the narrow velocity

range used in the experiment. The efficiencies of the BSNE and MWAC (with dimensions of

the bottle, inlet and outlet tubes modified) traps were studied and compared at low wind

Table 2. Efficiencies of the BEST® traps (%) for the splash—saltation process of WDR.

Wind velocity (m s-1)

6 9 12 15

Mean 83 106 105 102

SD 5.93 0.47 11.00 0.24

CV 7.14 0.44 10.51 0.23

SD; Standard deviation, CV; Coefficient of variation

doi:10.1371/journal.pone.0166924.t002
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velocities (1, 2, 3, 4 and 5 m s-1) using silt sized loess [56]. For comparative testing, regardless

of the traps’ inlet dimensions, traps were positioned at the height of 23.5 cm from tunnel floor.

The efficiencies of BSNE and WAC traps ranged between 35 and 45 and 75 and 90%, respec-

tively. These results obtained were under relatively lower wind velocities with the BSNE and

WAC traps and were significantly different from those under higher wind velocities [30,54].

Once again, an another study [57] compared the efficiencies of BSNE and WAC traps, under

the wider ranges of wind velocity and grain size (sand), (6.6, 8.4, 10.5, 12.5 and 14.4 m s-1 and

132, 194 and 287 μm, respectively) and found that the efficiencies of BSNE and WAC traps

ranged between 80 and 100%, concluding that both were the most efficient traps for capturing

sand sized particles. This literature review shows that in wind tunnel experiments a set-up

with one-height trap measurements, presumably with a trap positioned under the boundary

layer thickness and within the free stream using BSNE and WAC sediment traps that both

traps had changing efficiencies depending on the particle size and wind velocity. However, for

their efficiency experiments, [40,58] used a set up with multi-height trap measurements with

traps placed along the boundary layer thickness below the free-flowing stream using both

BEST and WAC traps, respectively. In these tests, the researchers additionally did a vertical

calibration to measure horizontal sediment fluxes at different set heights. Youssef et al. [58],

keeping wind velocity constant at 13.4 m s-1, performed an efficiency study with WAC traps

using five different grain sizes (<50, <75, 50–75, 200–400 and 400–500 μm) in the ICE wind

tunnel. For the range of relatively much smaller grains, the efficiencies were considerably as

low as 0, 0 and 14.5% for <50,<75 and 50–75 μm, respectively, and varied between 24.8 and

37.8% for the grain sizes >200 μm. These results were quite comparable with those of [55] for

larger grains. Eventually, the researchers stated that the WAC traps might be successfully used

for saltation grains greater than 200 μm but not efficiently usable for suspended grains lesser

than 75 μm. In the cases of multi-height trap measurements, the efficiency was calculated as an

average value of function over interval, it was closely linked to the boundary layer thickness or

the wind velocity profile in the wind tunnel.

In this study, the BEST1 traps overall had a very high mean efficiency (99%) calculated by

the exponential middle point. The centrifuge impact created within the BEST1 traps by the

cyclone system possibly decreases the static pressures at trap inlets. Effects of the aerodynamic

shape of the BEST1 traps reduces static pressures, variation with wind velocities at both trap

inlets and outlets. Wind velocity acceleration within the trap and operation of cyclone system

were all explained in detail by [44]. Cortés and Gil [59] stated that the aerodynamic design of

the cyclone system created a centrifugal effect within the trap and decreased static pressure at

the entrance. It was explained by previous researchers that static pressures at trap inlets had

the greatest impacts on efficiencies of the WAC and BSNE traps commonly used in wind ero-

sion measurements [30,57]. In BEST1 traps, a cyclone design allows a pressure difference

between the inlet and outlet, which sufficiently draws the flow into trap and prevents static

pressures and ultimately allows more sediment that gets into it to be caught by the trap.

Another advantage of the BEST trap was the larger inlet diameter which was 240 mm2. A larger

trap inlet could also facilitate readily trapping of big particles and droplets. Cornelis et al.

[23,60] increased the inlet diameter of the WAC catcher from 0.8 to 2 cm to prevent plugging

of the trap inlet and consequently, the efficiency of MWAC was calculated as 40%.

For the first time, different from the previous wind erosion studies, the BEST1 traps were

placed horizontally on a mast in this study. High efficiency values indicated that the BEST1

sediment traps could successfully be used horizontally in wind erosion measurements, as well.

Horizontal installations would then allow the researchers to take measurements at relatively

small intervals from the soil surface. This could improve the collection of data for the modeling

efforts and reduce estimation errors.
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Conclusions

Comprehension of splash-saltation mechanics under WDR conditions could only be possible

through proper determination of the maximum horizontal and vertical transportation dis-

tances, average horizontal and vertical transportation distances and the forces affecting these

parameters. The results revealed that the BEST traps could reliably be used as an alternative to

classical sediment collection devices and could conveniently be used as a new tool in detailed

measurements of the splash-saltation process.

Relatively high efficiency values of the BEST traps at horizontal position in addition to

those at the vertical position potentially increased their usability to trap sediments transported

through processes of both rain-free wind erosion and WDR splash-saltation.
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