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Abstract—This paper presents a radio-frequency (RF) based
location tracking system that improves its performance by
eliminating the shadowing caused by the human body of the
user being tracked. The presence of such a user will influence
the RF signal paths between a body-worn node and the receiving
nodes. This influence will vary with the user’s location and
orientation and, as a result, will deteriorate the performance
regarding location tracking. By using multiple mobile nodes,
placed on different parts of a human body, we exploit the fact
that the combination of multiple measured signal strengths will
show less variation caused by the user’s body. Another method
is to compensate explicitly for the influence of the body by using
the user’s orientation towards the fixed infrastructure nodes.
Both approaches can be independently combined and reduce
the influence caused by body shadowing, hereby improving the
tracking accuracy. The overall system performance is extensively
verified on a building-wide testbed for sensor experiments. The
results show a significant improvement in tracking accuracy. The
total improvement in mean accuracy is 38.1% when using three
mobile nodes instead of one and simultaneously compensating
for the user’s orientation.

Index Terms—Tracking, Localization, Human Body Shadow-
ing, Wireless Sensor Network, Indoor Environment

I. INTRODUCTION

Indoor localization and tracking systems have gained huge
interest because of the many context-aware applications that
have emerged lately. These applications are situated in do-
mains such as the healthcare, the industry, and the cultural
sector. Many localization systems already try to cope with
performance deterioration caused by multipath fading and
diffraction [1]. However, an important factor is the influence
caused by the human body itself. The presence of a user’s
body can block the line-of-sight (LoS) between a body-worn
node (or fag) and a receiving node, and cause additional
propagation losses. These additional propagation losses are
currently not accounted for and will generally decrease the
accuracy of signal strength based localization systems. This
effect has already been noted in literature but is often still
neglected [2]. Many localization applications verify the perfor-
mance of their developed system by stepwise moving a node
placed on a tripod, hereby explicitly removing the human from
the equation. However, practical human tracking applications,
always imply the presence of a user’s body. In this work, two
novel approaches to mitigate the human body shadowing are
investigated and combined in one location tracking system.
First, placing multiple tags on different zones of the human
body, which leads to received signal strength indicator (RSSI)
values that show less variation caused by shadowing. This

improves the tracking accuracy. A second strategy is to take
into account the user’s orientation towards the fixed infras-
tructure and the body-worn tag’s relative position. A human
body loss model can then be used to explicitly compensate for
the user’s influence. In this method, the orientation of a user
is determined without making use of the classical compass or
gyroscope approaches, but with a novel orientation estimator
built on top of our tracking algorithm.

II. RELATED WORK

Current localization and tracking systems can be distin-
guished from each other in multiple ways [3]. Most local-
ization methods use GPS [4], WiFi [5] or Ultra-wideband
(UWB) [6] as information carrying signal. Another distinc-
tion can be made based on the used ranging technique,
the most well known are: Angle of Arrival (AoA) [7],
Angle of Departure (AoD) [8], Time (Difference) of Ar-
rival (TDoA) [9] and Received Signal Strength Indication
(RSSI) [5], [10], [11]. These ranging techniques are mostly
used in combination with triangulation, trilateration and RSSI
fingerprinting, respectively. Due to the complexity of many
indoor environments multipath arises, which decreases the
positioning accuracy. Current state-of-the-art tries to cope
with this by making use of advanced processing techniques,
e.g., Kalman filters [6], [12], particle filters [13]-[15] and
machine learning techniques [16], but all aforementioned
approaches neglect the influence of the human body itself.
In [17], a body shadowing mitigation method is used on top of
an RSSI-based Monte Carlo localization technique, achieving
meter scale accuracies for a wrist-worn personnel tracking
tag. The shadowing caused by a user’s body is mitigated by
using LoS and non-line-of-sight (NLoS) channel models. A
disadvantage of this approach is that it depends on a manual
differentiation of the LoS conditions and separate measure-
ments that need to be conducted for each LoS condition.
In [18], video cameras are used to detect the human orientation
and an empirical compensation model is used to compensate
for body electronic interference. In [19], multiple sensors
are placed on a user and measured power level values are
used for estimating the position and orientation of a user
in a single room. A theoretical procedure to evaluate the
maximum attainable performance with RSSI is presented. The
analysis used in [19] is based on ray-tracing to compute a
fine grid of RSSI values and a maximum-likelihood approach
for localization. In [20], a fingerprinting system based on



neural networks is used for indoor localization with Bluetooth
devices. They use a compass module to provide information
about the user’s orientation, which improves the selection of
the most adequate neural network to use. The achieved results
are highly accurate, but a lot of training data is needed, since
for every user orientation a neural network has to be trained.
In [21], [22] the losses caused by a human body are used as
an advantage. They ask the user to rotate in place, simulating
the behavior of a directional antenna. This directional analysis
technique is used to localize an outdoor access point (AP)
in [21] and in [22] this is used to know your own location.
In our work, the user’s direction is obtained with a novel
orientation estimator, based on previous and current location
predictions so the shadowing caused by the human body can
be automatically mitigated. There is no need for manual dif-
ferentiation [17], video cameras [18], or orientation tracking
sensors like accelerometers, gyroscopes, and compasses [20].
The compensation model is based on three-dimensional elec-
tromagnetic simulations with a human phantom (no need
for extensive measurements [17], [20]) and all possible ori-
entations are taken into account. In this way, we obtain a
continuous three-dimensional model to compensate for body
shadowing. The performance evaluation is done at 2.4 GHz
using ZigBee nodes [23], on a building-wide testbed, not
limited to a single room or theoretical framework [19].

III. MOTIVATION

In this section, the influence of human body shadowing on
the exchanged signals between a body-worn mobile device
and a fixed AP, is investigated and characterized. This is
relevant for all signal strength based localization and tracking
algorithms which purpose is to track humans. In this work,
we will verify the proposed body shadowing compensation
methods with an RSSI fingerprinting based tracking algo-
rithm [24]. Other signal strength based localization methods
can also benefit from this approach, e.g.: the aforementioned
RSSI based algorithms that use Kalman filter [12] or particle
filters [13], [15]. Human body shadowing can also influence
the performance of ToA based localization methods. The
presence of a human body can e.g., block the line of sight
path or cause the creation of additional paths with multipath,
biases in the estimated delays and performance degradation as
a result. The proposed methods in this work are aimed at signal
strength based system, thus other methods will have to be
developed but this is beyond the scope of the paper. In general,
eliminating the influence of human shadowing results in better
and more robust (ranging) measurements which, consequently,
will lead to higher localization accuracies.

As mentioned before, human body shadowing occurs when
the RF signal path between a body-worn tag and a receiving
node is completely or partly blocked by a person. The ex-
changed RF signals are altered due to dielectric losses in the
human body. This manifests itself as a drop in signal strength.
Additional propagation losses of around 10 to 30 dB are
reported in literature [21]. To verify this effect, an experiment

is conducted: a user is asked to turn 360° around its axis, while
wearing a mobile tag on his chest and back (see Figure 4a
and 4b). The user turns 45° every 15 seconds, taking 2 minutes
for a full rotation. The RSSI values from the packets sent by
the mobile tags are measured by forty fixed APs (the blue dots
in Figure 3, for more details on this testbed, see Section V). In
Figure 1, the measured RSSI values as function of the user’s
orientation are shown for a nearby (12 m) and far away (66 m)
AP. The location of the user and APs are indicated with a
yellow circle in Figure 3. An averaging window of 15 seconds
is used.
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Figure 1: Human body shadowing while rotating a human
body in an indoor environment.

From Figure 1, it is clear that the orientation of a user
has an influence on the measured RSSI values (on top of the
variance caused by multipath). A high RSSI value measured
by the chest tag corresponds always to a low RSSI value
measured by the back tag (and the other way around). This
is because the human body is located between both body-
worn tags and can e.g. block or attenuate the strongest path
between the APs and mobile tags. The maximum observed
differences between the chest and back tag, measured by the
forty fixed APs, range from 1.8 dB to 25.2 dB with an average
value of 14.8 dB. The highest differences are observed in
LoS situations, whereas the lowest differences are observed in
situations where the RF signal suffers from severe multipath.
As a result, the average RSSI value of both tags shows less
variation. To be more specific, the standard deviation, averaged
over all forty APs, is 4.9 dB, 4.3 dB, and 2.5 dB for the chest,
back, and combination of both tags, respectively. This means
that the orientation of a user will have less influence when
multiple mobile tags are combined.

IV. OVERVIEW OF THE SYSTEM

In this section, a complete overview of the location tracking
system is given. First, the tracking algorithm that serves as a
basis for this work is explained. Then, the impact of the human
body on the received signal strength is shown. Next, the two
solutions to mitigate this body shadowing effect are presented.
In the first solution, it is investigated how this effect can be
reduced by using multiple body-worn tags. In the second solu-
tion, it is described how the tracking accuracy can be further
improved, by incorporating the user’s orientation and using
a compensation model. Finally, the different compensation



models are discussed. A flow graph of the complete location
tracking system can be found in Figure 2.
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Figure 2: Flow graph of the complete location tracking system.

The body-worn tags broadcast packets that are received
by the APs (fixed infrastructure). The measured RSSI values
and positions of the tags on the user’s body are passed to
the compensation model. This model uses the angles from
the orientation estimator and the locations of the APs from
the floor plan (Figure 3), to determine the influence caused
by the user’s body (Section IV-C2). The compensated RSSI
values are firstly passed to the combination of multiple tags
block (Section IV-B) and finally, to the tracking algorithm
(Section IV-A). This algorithm uses a fingerprint database and
a floor plan (for environmental data and the locations of the
APs), as additional inputs. The predicted current and previous
locations are fed back to the orientation estimator to estimate
the next orientation (Section IV-C1).

A. Tracking algorithm

A Viterbi-like tracking algorithm that uses off-the-shelf
devices and the well-known RSSI fingerprinting technique
serves as starting point for this work [24]. In the standard
RSSI fingerprinting technique (without the Viterbi principle)
the current location is estimated by comparing the RSSI
measurements with reference values for a certain position from
a fingerprinting database, which results in the following cost
function:

cost*mple = SN IRSSIMeas — RSSINS| (1)

cost*™™Ple s the cost function of the RSSI fingerprinting
technique, which is referred to as simple. N is the number
of APs that measure the RSSI values from the packets broad-
casted by the body-worn tag(s). RSSI"** is the measured
RSSI values from AP n. RSSI!®/ is the reference RSSI
value from AP n for a certain position and the position
corresponding with the lowest cost is taken as most likely

current location. The more advanced Viterbi-like tracking
algorithm uses the environment of the user that is being tracked
and a motion model as constraints to determine the most likely
sequence of positions (path) instead of only the most likely
current position (Viterbi principle). These two constraints
ensure that no walls are crossed and that no unrealistically
large distances are traveled within a given time frame. The
following cost function is used to determine the most likely
path (after applying both constraints):

costggvanced = S0 STV |RSSIees — RSSIS | @

t,n,

costyqv*mee? is the associated cost of the ith path stored
in memory after 7' time steps. RSSI;",7*® is the RSSI mea-

surement at time step ¢ from AP n. RSS IZ: fm’ is the reference
RSSI value from AP n for the position along path ¢ at time step
t (note that the reference RSSI values for a certain position
are static, the subscript t is only used to indicate the position
along path ¢). The last position of the path with the lowest
associated cost is taken as most likely current location. The
calculations of paths and costs are not restarted every time a
new measurement is received but the paths and costs from a
previous iteration serve as input for the current iteration along
with the new measurements. The reference RSSI values are
stored in a fingerprint database and are derived from a path
loss (PL) value calculated with a theoretical model from a
network planner (WHIPP tool [25]):

d
PLyc; = PLo + 10v1logy, (%) + > Lw. + > Lp, [@B] (3)
—_— i )

distance loss

cumulated wall loss  interaction loss

PL,cy [dB] is the total path loss calculated with the theo-
retical model, PLq [dB] is the path loss at a reference distance
dy [m], v [-] is the path loss exponent and d [m] is the distance
along the path between transmitter and receiver. The first two
terms represent the path loss due to the traveled distance
(distance loss), the third term (cumulated wall loss) is the
sum of all wall losses Lyy, when a signal propagates through
a wall W;, and the fourth term (interaction loss) takes into
account the cumulated losses Lp,; caused by all propagation
direction changes B; of the propagation path from transmitter
to receiver. The only prerequisite to generate this fingerprint
database for a certain building is to draw its floor plan with the
right materials in the WHIPP tool (no additional measurements
are needed). Most common materials are already available
in the tool: brick, drywall, wood, glass and metal, both in
thin and thick format. The material parameters come from
literature. The tool itself was verified in three other types of
buildings: a retirement home, a congress center, and an arts
center. Without any additional measurements or tuning, the
predictions were also excellent. The fingerprint database has
a density of 50 cm in all performance evaluations. In [24] it
was proven that a higher density would not further improve
the results and that a density of 50 cm is suited to work
in real time. Using a theoretical model avoids an expensive
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Figure 3: Testbed floor plan with test trajectory (red) and locations of APs (blue) and rotating user (yellow).

and time consuming measurement campaign but allows for an
immediate deployment at the expense of a slightly reduced
accuracy.

B. Solution 1: combining multiple tags

As indicated in Section III, the measurements of multiple
mobile tags worn on different parts of the human body can
be combined to reduce the influence of body shadowing. This
results in a closer match between the preprocessed measure-
ments and the reference RSSI values from the fingerprinting
database, which suggests a possible improvement in tracking
accuracy. Determining the optimal number and optimal posi-
tions for the mobile tags depends on the required accuracy
and wearing comfort in particular. Our goal is to improve the
performance while maintaining practical tag positions. Three
positions are considered: the central area of the chest and back
(to have diversity in the forward and backward direction) and
the right wrist (can be worn like or integrated in a watch, see
Figure 4).
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Figure 4: Body-worn tags.

These body-worn tags broadcast packets and the measured
RSSI values are combined in following cost function (based
on Equation 2):

t,n,p t,n,i

costigine = S YN, S |RSSI - RSSIEL| ()

RSSIYS is the RSSI measurement at time step ¢ from AP
n of a packet broadcasted by body-worn tag p. P is the amount
of mobile tags that are in use and p is a number referring to
the body-worn tag’s position, i.e., 1 = chest, 2 = back, and
3 = wrist.

C. Solution 2: compensating for user’s orientation

The second solution compensates explicitly for the influence
caused by a user with a certain position and tag orientation
towards the infrastructure APs. It consists of two parts: an
orientation estimator and a compensation model.

1) Orientation estimator: Due to the nature of most build-
ing structures, people tend to walk in the same direction
for at least a few seconds. This behavior can be exploited
to estimate a user’s orientation. More specifically, the angle
between previous and current location predictions can be used
as an estimation for the next orientation. Such orientation
estimator can be built on top of an existing tracking system
which provides the current and previous positions as input.
The next orientation is predicted as:

180 Pt - Ptam
est _ —OV t Y Y o
Ofth — arctan <Pt,a: ~ P [°] )
1 K
Ptam:?;ﬂ—k (6)

Ogs! [°] is the estimated next orientation, Pf™ is the
arithmetic mean of K previous predicted positions P; at
time step ¢t and the x and y subscript indicate the x and
y coordinates, respectively. An arctangent function with two
arguments (atan2) is used to obtain the appropriate quadrant
of the computed angle. The performance of this orientation
estimator will depend on the accuracy of the tracking system
itself and on the movement of a user (i.e., frequency of turns
taken and standing still moments). The goal is to investigate
whether human body shadowing can be mitigated with this
approach, instead of using the more precise measurements
of an accelerometer, compass, or gyroscope (at the cost of
additional required hardware). For now, it is assumed that the
user is walking forward. The robustness and responsiveness
of the estimator are two contradictory demands. Including
more previous location predictions (parameter K') will improve
the performance of the estimator when few turns are present
but this will rapidly decrease when a trajectory with more
abrupt changes, is followed. The reason for the improvement
is that the predicted locations are never completely accurate
(e.g., variations around an actually followed straight line) and
taking into account multiple positions can reduce the effect



of prediction inaccuracies (averaging out the error). Because
a user will not keep walking along this straight line, the
improvement will stop and the orientation error will start
to deteriorate when even more previous positions are taken
into account. A simulation was performed to evaluate our
estimator: two trajectories were outlined on a floor plan. The
first trajectory has a length of 100 m and contains twenty-three
90° turns and two 180° turns, which results in an average of
one turn every 4 m (blue trajectory in Figure 5). The second
one is a more straight trajectory, it has a length of 56 m and
contains eight 90° turns, which results in an average of one
turn every 7 m (red trajectory in Figure 5). The walking speed
was set to 1 m/s.
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Figure 5: Blue and red trajectory for testing the orientation
estimator (simulation).

The RSSI values corresponding to the positions along the
trajectory were picked from the fingerprint database from
Section IV-A and are used as input for the tracking algorithm.
Gaussian white noise with standard deviations of 1 dB, 3 dB,
and 6 dB was added to these RSSI values to simulate more
realistic conditions. Finally, the positions predicted by the
tracking algorithm are used to estimate the orientation with
equations 5 and 6. The user’s orientation ranges from 0° to
360°, meaning that an orientation error of 180° is the worst
possible result. The orientation error is defined as:

‘Oest _ Oezact‘

Iosst _ Oearactl < 1800
€or = { 360° — |Oesf, _ Oe:x:a(:f,l <

IOesf, _ Oe:mcf,l > 180°

1 (7

€,r 1s the orientation error, 0! is the estimated orientation
and O¢%%t is the exact orientation, which can be easily derived
from the trajectories of Figure 5 (these trajectories are known
in advance). Figure 6 shows a plot of the median orientation
errors as a function of the number of previous locations taken
into account (parameter K from equation 6). The simulations
were repeated five times for averaging purposes.

As expected, the orientation error will first decrease when
more previous positions are taken into account (averaging
out inaccuracies) and will then increase again (due to turns
taken). For the blue trajectory (with many turns), the optimal
value for K is 3 with orientation errors of 12°, 22°, and 32°,
depending on the amount of added noise. For the red trajectory,
this optimal value for K is 5 with orientation errors of 10°,
15°, and 22°, depending on amount of added noise. Because
the followed trajectory is unknown beforehand, the default K
value is set to 4, which can deal with more abrupt trajectory
changes and is still sufficiently accurate to compensate for the
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Figure 6: Performance of orientation estimator for the two
trajectories and three noise levels.

user’s orientation (see Section VI-B). The biggest advantage
of this approach is the ease of use and that there is no
need for additional hardware to obtain the user’s orientation.
Disadvantages are the inability to detect a user rotating in place
and the rather harsh orientation estimations. In Section VI-B
it is shown that this approach suffices to reduce the impact of
human body shadowing.

Once the orientation of a user is known, the azimuth angle
« and the elevation angle 3 between the body-worn tag(s) and
the fixed infrastructure APs can be calculated (see Figure 7).
It is assumed that the tag’s position on the body and a floor
plan with the locations of the fixed APs are known beforehand
and that the user is walking forward.
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Figure 7: Angles between body-worn tag and AP.

2) Compensation models: Next, a compensation model
is needed to estimate the influence due to the presence of
the user. The mobile tags are calibrated based on the same
measurements from Section III: the average value between
the measurements and the RSSI fingerprinting database is
taken as offset. This offset is inherent to the mobile tags and
their transmit power, and is calculated once. This means that
the measured RSSI values will be an overestimation when
tag and receiving node face each other directly and be an
underestimation when the human body is completely blocking
the signal (see Figure 1). Two compensation models were
used: a basic over/underestimation model and a simulation
based three-dimensional model:

e The first model labels the measurements as over- or
underestimated values based on the azimuth angle «
between tag and receiving node:
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This over/underestimation compensation model is plotted
in Figure 9a. The default value of the compensation
parameter from Equation 8 is set to 6 dB, which was
found to be a good compromise between compensating
for worst case body shadowing and when almost no shad-
owing is present. (The maximum observed differences
between the chest and back tag, measured by the forty
fixed APs, varied from 1.8 dB to 25.2 dB, see Section II1.)
o The second model is based on simulations carried out
in Semcad X, a three-dimensional full wave simula-
tion environment based on the finite-difference time-
domain (FDTD) method. The simulations are exe-
cuted at 2.45 GHz using the Virtual Family Male
(VFM) [26]. The VFM is a heterogeneous phantom
with a BMI = 22.3 kg/m?. An accurate model of the
integrated onboard antenna of our mobile tag was built
in the simulation platform [27] (see Figure 8a). This
Planar Inverted-F antenna (PIFA) was made out of metal
and mounted on a 1 mm thick, dielectric substrate with
a relative permittivity of 4 and measures 65 mm by
31 mm [23]. The antenna is optimized to resonate at
2.45 GHz (a plot of the reflection coefficient S11 [dB]
can be found in Figure 8b).
The mobile tag was placed on various parts of the VFM:
chest, back, and right wrist. The simulated directivity
pattern reflects the influence of the human body (see
Figure 8c). The values of the directivity pattern are shifted
in such a way that the average value is zero and the
range is normalized to the same compensation value of
Equation 8. In this way a three-dimensional compensation
model, that reflects the influence caused by the human
body, is obtained. The second model is expressed as
Csemead,p(@, B) (o and § are the azimuth and elevation
angle between tag and receiving node, and p indicates the
tag position).

(a) Substrate with PIFA o
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Figure 8: Simulations in Semcad X.
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Figure 9: Graphical representation of the two compensation
models.

Including the compensation for a user’s orientation, results
in following cost function for the tracking algorithm (based
on Equation 4):

oSt = Y SN S [(RSSI = Cplan B)) — RSSI,

(€))

C;p(a, B) is the jth compensation model, for mobile tag p
and uses the angles a and [ as input arguments (the subscript j
is either over/underestimation or semcad). The other symbols
are already defined in Sections IV-A and IV-B. Note that the
over/underestimation compensation model makes no use of
the elevation angle S and uses the same model for all mobile
tags p. In Figure 9, a graphical representation of the two
compensation models is shown. To obtain a two-dimensional
plot, an elevation angle /3 of 20° was chosen for the semcad
compensation model.

It is clear from Figure 9 that the semcad compensation
models do depend on the tag position but there are many
similarities, which can be expected because the source of
influence is the same user. Only the compensation model for
a wrist-worn tag clearly deviates from the others, due to the
used human posture where there is some open space between
arm and body.

V. EXPERIMENT CONFIGURATION

The experiments are conducted on a wireless testbed, lo-
cated on the third floor of an office building in Ghent, covering
over 1500 m> (17 m by 90 m, see Figure 3). It consists
of several computer labs, offices, and meeting rooms. The
core is made of concrete walls, the movable inner structure
is made of layered drywall and the doors are made of wood.
The wireless network consists of 48 fixed sensor nodes that



were installed at a height of 2.5 m (blue dots in Figure 3).
TelosB motes from Crossbow are used as the body-worn
tags [23]. These are equipped with an embedded PIFA antenna
and Chipcon CC2420 radio operating at 2.4 GHz (IEEE
802.15.4/ZigBee compliant [28]). There are 31 transmission
power levels between -25 and 0 dBm (set to O dBm in all
experiments). The mobile tags broadcast 10 packets per second
which are received by the infrastructure nodes. Every second
a location update is generated (the average RSSI values of
the packets received within this second are used as input
for the tracking algorithm). The test trajectory (indicated in
red in Figure 3) has a total length of 140 m, passes through
three meeting rooms, a computer lab, and the hallway (note
that there are no APs installed in the second meeting room).
The ground truth, i.e., the correct locations for comparison,
are provided by fragmenting the test trajectory based on the
number of location updates from an experiment (the user
walked as continuously as possible with an average speed of
1.2 m/s).

VI. PERFORMANCE EVALUATION

This section investigates the impact of using multiple mo-
bile tags and body shadowing compensation on the tracking
accuracy. The presented results are obtained from experiments
performed on the testbed described in Section V. The mean,
standard deviation, 50th and 95th percentile value of the
tracking accuracy are used as evaluation metrics. This accuracy
is defined as the Euclidean distance between the predicted and
actual location:

[m] (10)

accuracy = \/(-Tpred - xact)Q + (ypred - yact)2

The predicted and actual position are located at coordinates
(m;m"edv ypred) and (xach yact)7 respectively.

A. Impact of multiple mobile tags

To evaluate the performance when using multiple tags, the
test trajectory was repeated 5 times by a human wearing three
tags. The tags were placed on the central area of the chest,
back, and right wrist (see Figure 4). The two localization al-
gorithms from Section I'V-A are used for testing. The standard
RSSI fingerprinting technique is referred to as simple and the
Viterbi-based tracking algorithm is referred to as advanced.
The measured RSSI values from the mobile tags are combined
with the cost function from Section IV-B. Figure 10 shows
the mean tracking accuracy along with the standard deviations
as error bars. These accuracies are always averaged over the
mobile tags, i.e., the results with one tag are the average of the
three tags separately, the results with two tags are the average
of the three possible combinations of two tags (chest + back,
chest + wrist, and back + wrist) and for the results with three
tags there is only one combination (chest + back + wrist).

Figure 10 shows that the mean tracking accuracy and the
standard deviation improve as more mobile tags are used,
for both localization algorithms. The relative improvement in
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Figure 10: Mean accuracy and standard deviation as a function
of the number of used mobile tags for a simple and advanced
localization algorithm.

mean accuracy is 19.2% (from 3.76 m to 3.04 m) when using
two instead of one mobile tag, 14.8% (from 3.04 m to 2.59 m)
when using three instead of two mobile tags, and 31.2% (from
3.76 m to 2.59 m) when using three instead of one mobile tag
(calculated for advanced from Figure 10). The improvements
in standard deviation (plotted as error bars in Figure 10) are
similar: 18.3% (from 2.28 m to 1.86 m), 12.4% (from 1.86 m
to 1.63 m), and 28.4% (from 2.28 m to 1.63 m), respectively.
The 50th and 95th percentile value of the localization accuracy
and the improvement of the advanced compared to the simple
algorithm are summarized in Table I.

Table I: 50th and 95th percentile value of the accuracy for the
simple and advanced localization algorithm.

Algorithm — Simple Advanced Improvement
#tags | 50th [m] 95th [m] 50th [m] 95th [m] 50th [%] 95th [%]
1 4.17 10.68 3.48 8.50 16.6 20.5
2 3.28 7.89 2.77 6.71 15.5 15.0
3 2.63 6.41 2.30 5.66 12.6 11.7

The 50th and 95th percentile value improve in a similar
way as the mean accuracy, when more mobile tags are used.
Furthermore, the advanced algorithm always outperforms the
simple one, as was already shown in [24]. More specific, the
50th percentile value improves by 16.6%, 15.5%, and 12.6%
when using one, two, and three mobile tags, respectively. The
95th percentile improvements are similar.

B. Impact of body shadowing compensation

The orientation estimator and three-dimensional compensa-
tion model (semcad) are verified with the same measurement
data from Section VI-A. The Viterbi-based tracking algorithm
(advanced) is used to provide the previous positions that are
needed to estimate the user’s orientation (see Section IV-C1).
Three scenarios are considered: no compensation, compensa-
tion with the estimated orientation, and compensation with
the exact orientation. The first scenario is the same as the best
result from Section VI-A (advanced in Figure 10). The second
and third scenario compensate for the influence of a user’s
body with the three-dimensional semcad compensation model
from Section IV-C2. The only difference between them is that



the second scenario uses the orientation estimator to determine
the user’s orientation, whereas the third scenario gets the
exact orientation as an additional input. This is possible
because the followed trajectory is known beforehand and it
is assumed a user walks forward, hence the exact orientation
can be determined. The third scenario can be considered as a
reference scenario.
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Figure 11: Impact of body shadowing compensation on the
tracking accuracy.

From Figure 11 it is clear that including the user’s orien-
tation to compensate for human body shadowing will always
improve the tracking accuracy (on top of the improvement
due to using multiple mobile tags). Usage of our orientation
estimator and compensation model result in additional im-
provements of 12.7% (from 3.76 m to 3.29 m), 12.6% (from
3.04 m to 2.66 m), and 10.0% (from 2.59 m to 2.33 m) in mean
accuracy for the situations with one, two, and three mobile
tags, respectively. The improvements in standard deviation
(error bars in Figure 11) are: 7.9% (from 2.28 m to 2.10 m),
3.0% (from 1.86 m to 1.80 m), and 5.5% (from 1.63 m
to 1.54 m), respectively. The total improvement in mean
accuracy when using three mobile tags and compensating for
body shadowing, compared to only one mobile tag and no
compensation, is 38.1% (from 3.76 m to 2.33 m). The 50th
and 95th percentile value of the localization accuracy and the
improvement of the compensation method compared to no
compensation are summarized in Table II.

Table II: 50th and 95th percentile value of the accuracy with
and without compensation.

No compensation Compensation Improvement
#tags | 50th [m] 95th [m] 50th [m] 95th [m] 50th [%] 95th [%]
1 3.48 8.50 2,99 7.56 14.1 11.0
2 2.77 6.71 2.28 6.52 17.7 2.8
3 2.30 5.66 1.91 523 17.0 7.6

The median accuracy (50th percentile value) is now below
2 m when using all three tags and the body shadowing
compensation. The improvements in median accuracy are
somewhat higher compared to the ones in mean accuracy.

The median orientation error for this trajectory (averaged
over the 5 runs) was 39°, 35°, and 28°, for one, two, and three
tags, respectively (which is comparable to the simulations from
Section IV-C1). Furthermore, using the exact orientation has

no added value compared to using the developed orientation
estimator. Normally, this exact orientation is provided by a
compass or gyroscope, but here this is accounted for by giving
the exact orientation as an additional input. Therefore, using
a compass or gyroscope has no significant added value for
body shadowing compensation. In other localization schemes
they can be used as an additional feature to estimate the
position itself, for example in dead reckoning their usage will
be beneficial [29].

C. Comparison of compensation models

The compensation with exact orientation from Section VI-B
is used to evaluate the compensation models. In this way it
is assured that the orientation estimator (and indirectly the
tracking algorithm itself) has no impact on the comparison.
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Figure 12: Comparison of different compensation models on
the tracking accuracy.

Figure 12 shows the comparison between the
over/underestimation and semcad compensation models
from Section IV-C2. The three-dimensional model (semcad)
still has the most accurate results for all tag combinations,
but the benefit is limited. Only for three tags it performs
clearly better: an improvement of 10.8% in mean accuracy
(and 5.9% in standard deviation).

Although, simulations to determine the directivity pattern
only have to be performed once (per position and mobile
tag), they are rather time consuming. It will depend on the
application if it is worth performing these to obtain more
detailed models.

VII. CONCLUSIONS

In this paper, novel techniques to reduce the effects of
body shadowing on a tracking algorithm’s performance, are
presented. Two methods were found to be effective. The first
one combines multiple mobile tags, placed on different parts
of the human body. The second one compensates explicitly for
the body shadowing caused by the user that is being tracked.
Both methods can be independently combined, resulting in the
most accurate performance. The first method exploits the fact
that measurements performed by these multiple body-worn
tags will show less variation (caused by the user’s body) when
combined. The second method uses a compensation model
based on three-dimensional electromagnetic simulations with



a human phantom and relies on the orientation of a user’s
tag towards the infrastructure nodes. The user’s orientation
is provided by an estimator developed on top of a tracking
algorithm. This alleviates the need for specialized hardware
like a compass or gyroscope and achieves similar performance.
Using three instead of one body-worn tag results in a mean
accuracy of 2.59 m (an improvement of 31.2%). Compensating
for the user’s orientation, further improves this result to a
mean accuracy of 2.33 m (a total and additional improvement
of 38.1% and 10.0%, respectively). Future work will include
methods to obtain location-dependent compensation models by
making use of environmental and empirical data. Furthermore,
it will be explored whether compensating for the human body
shadowing can improve other localization techniques.
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