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Abstract. In this paper we use a calculus of differential forms which is
defined using an axiomatic approach. We then define integration of dif-
ferential forms over chains in a new way and we present a short proof
of Stokes’ formula using distributional techniques. We also consider dif-
ferential forms in Clifford analysis, vector differentials and their powers.
This framework enables an easy proof for a Cauchy’s formula on a k-
surface. Finally, we discuss how to compute winding numbers in terms
of the monogenic Cauchy kernel and the vector differentials with a new
approach which does not involve cohomology of differential forms.
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1. Introduction

This paper is a continuation of our former papers [9, 10, 11, 12] in which the
calculus of differential forms has been combined with the Clifford algebra.
Using Clifford analysis techniques, and monogenic functions in particular,
we were able to establish a Cauchy-type formula for the Dirac operator on
surfaces (see [10]), a theory of monogenic differential forms allowing a coho-
mology theory (see [9, 12]) and a formula for the winding number of a k-cycle
and a (m− k − 1)-cycle in Rm (see [9]). This extends the work of Hodge [7]
in which the homology of a domain is measured in terms of integrals over
cycles of harmonic differential forms. To understand these ideas, one has to
recall that the theory of monogenic functions in Clifford analysis deals with
nullsolutions of the Dirac operator ∂x in Rm, which is a higher dimensional
generalization of the theory of holomorphic functions in the plane. Consider
a point p in the plane (or a number of points) and a closed Jordan curve (a
1-cycle) Γ ⊂ C \ {p}; then the winding number of Γ around p is given by the
Cauchy integral

1

2πi

∫
Γ

dz

z − p
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which is a special case of the residue formula

1

2πi

∫
Γ

f(z) dz

z − p
.

The analog Cauchy formula for monogenic functions has the form (see [1])

f(x) =

∫
∂C

E(u− x)σ(du) f(u)

where C is an open bounded set in Rm, x ∈ C, E(u−x) is the Cauchy kernel
and σ(du) is a suitable (m − 1)-form with values in a Clifford algebra that
represents the oriented surface measure. Using this Cauchy formula in special
cases, one can establish a formula for the winding number of an (m−1)-cycle
around one or several points.

However, in Rm one can also consider k-cycles Ck and (m−k−1)-cycles
Cm−k−1 in Rm \Ck for which there is a winding number that can be defined
in terms of the intersection number; it cannot be measured in terms of mono-
genic functions right away. This makes it necessary to combine a calculus of
differential forms with the theory of monogenic functions, as we do in this
work.
The paper consists of 5 sections, besides this introduction. In Section 2, we
define the calculus of differential forms from scratch using an axiomatic ap-
proach which is inspired by the use of differential forms in analysis. In Section
3 we define integration of differential forms over chains in a novel way which
also includes partial integration operators that are anti-commuting. In Sec-
tion 4 we present a short proof of Stokes’ formula using distributional tech-
niques. Section 5 is devoted to differential forms in Clifford analysis, starting
with a short introduction to Clifford algebras and monogenic functions. Then
we introduce the vector differential dx =

∑m
j=1 ej dxj , that generalizes the

complex differential dz = dx+ idy, and its powers dxk represent the oriented
k-dimensional surface measure. This enables an easy proof for a Cauchy’s
formula on a k-surface. The final Section 6 is devoted to the calculation of
the winding number in terms of the monogenic Cauchy kernel and the vector
differentials dx, du, etc. The formulas thus obtained are easier to present and
understand than the ones presented in [9], moreover the approach is new and
does not involve cohomology of differential forms.

2. Differential forms

Let Ω ⊆ Rn be an open set, and let C∞(Ω) be the ring of real (or complex)-
valued smooth functions on Ω. We begin by defining the algebra of differential
forms:

Definition 2.1. The algebra Λ(C∞(Ω)) of smooth differential forms on Ω is
defined as the smallest associative algebra over C∞(Ω) satisfying the following
axioms:

(A−1) C∞(Ω) ⊂ Λ(C∞(Ω));
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and there is a map d : Λ(C∞(Ω)) → Λ(C∞(Ω)) such that

(A0) d1 = 0;
(A1) for φ ∈ C∞(Ω), F ∈ Λ(C∞(Ω))

d(φF ) = dφF + φdF ;

(A2) for φ ∈ C∞(Ω), F ∈ Λ(C∞(Ω))

d(dφF ) = −dφdF.

Let P = Alg{x1, . . . , xm} be the algebra of polynomials in x1, . . . , xm

with real (or complex) coefficients. Then the generators x1, . . . , xm, inter-
preted as coordinate functions, give rise to the differential dx1, . . . , dxm. We
can then give the following:

Definition 2.2. The subalgebra Λ(P) of Λ(C∞(Ω)) is generated by P and
satisfies, for any F ∈ Λ(P), the axioms

(A′
1) for F ∈ Λ(P)

d(xjF ) = dxj F + xjdF ;

(A′
2) for F ∈ Λ(P)

d(dxj F ) = −dxj dF.

Proposition 2.3. The following properties hold:

(i) d(xk dxj) = dxk dxj ;
(ii) d(dxj xk) = −dxjdxk;
(iii) dxj dxk = −dxj dxk.

Proof. Property (i) follows from

d(xk dxj) = dxk dxj + xkd
2xj = dxk dxj ,

since, by (A0) and (A2)

d2φ = d(dφ 1) = −dφd1 = 0

for φ ∈ C∞(Ω).
As a special case of (A′

2), we also have

d(dxj xk) = −dxjdxk,

so (ii) follows. As a consequence of (i) and (ii) we obtain dxjdxk = −dxjdxk.
�

Remark 2.4. The previous result implies that dx1, . . . , dxm generate a Grass-
mann algebra of dimension 2m.

From the definition of Λ(P) it follows that every F ∈ Λ(P) has the form

F =
∑
A⊂M

FA(x)dxA, FA(x) ∈ P,

where M = {1, . . . ,m}, dxA = dxα1 . . . dxαk
for A = {α1, . . . , αk} and with

α1 < . . . < αk. It follows that

dF =
∑
A⊂M

dFA(x)dxA,



4 I. Sabadini and F. Sommen

so it suffices to calculate dφ for φ ∈ P. By using iteratively the axiom (A′
1)

one can prove by induction on the degree of φ ∈ P that

dφ =

m∑
j=1

dxj ∂xjφ.

Now note that P is dense in C∞(Ω) and Λ(P) is dense in Λ(C∞(Ω)). So, it
follows that every F ∈ Λ(C∞(Ω)) is of the form

F =
∑
A⊂M

FA(x) dxA, FA ∈ C∞(Ω),

and, in general,

dF =
m∑
j=1

dxj

∑
A⊂M

∂xj FA(x) dxA =
m∑
j=1

dxj ∂xjF.

However, the definition of Λ(C∞(Ω)) and of d are independent of any coor-
dinate system. Hence, if (y1, . . . , ym) is another C∞-coordinate system on Ω,
then we have that

d =
m∑
j=1

dxj ∂xj =
m∑
j=1

dyj ∂yj ,

so that we also have the chain rule

dxj =
m∑
ℓ=1

∂xj

∂yℓ
dyℓ

and for A = {α1, . . . , αk} ⊆ M with α1 < . . . < αk we have

dxA =
∑

ℓ1...ℓk

∂xα1

∂yℓ1
. . .

∂xαk

∂yℓk
dyℓ1 . . . dyℓk

=
∑

|B|=k

 ∑
π∈Sym(k)

sgnπ
∂xα1

∂yβπ(1)

. . .
∂xαk

∂yβπ(k)

 dyB

=
∑

|B|=k

JAB dyB , B = {β1, . . . , βk}, β1 < . . . < βk,

where

JAB =
∑

π∈Sym(k)

sgnπ
∂xα1

∂yβπ(1)

. . .
∂xαk

∂yβπ(k)

are the generalized Jacobians. So, in the coordinates (y1, . . . , ym) we have

F =
∑
A⊆M

FA(x) dxA =
∑
B⊆M

 ∑
|A|=|B|

FA(x(y))JAB

 dyB .

Hence, the chain rule and Jacobians are an automatic consequence of the
axioms.
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3. Integration of differential forms

We extend the notion of differential form to the case where the components
FA(x) are generalized functions or distributions in Ω. Let

F = FM (x1, . . . , xm) dx1 . . . dxm

be a distributional form of maximum degree with supp(FM ) = K ⊂ Ω com-
pact. Then, the integral∫

Ω

F =

∫ ∞

−∞
. . .

∫ ∞

−∞
FM (x)dx1 . . . dxm

is well defined (note that this is a formal way of writing: we are using the
density of D(Ω) in E ′(Ω) and thus the integrals are meant in the sense of
functionals, see e.g. [5]). Denote by Λk(C∞(Ω)) the subspace of k-forms,
namely of elements F =

∑
|A|=k FA(x) dxA, where FA ∈ C∞(Ω) and de-

note by Λk(C∞(Ω)) its closure in the distributions, namely the subspace of
the k-forms F =

∑
|A|=k FA(x) dxA, with FA ∈ D′(Ω). Let Σ be an infinitely

differentiable k-surface in Rm defined as the image of a C∞-map:

x(·) : (u1, . . . , uk) → x(u1, . . . , uk),

where u = (u1, . . . , uk) ∈ Ω′ ⊂ Rk, i.e. Σ = x(Ω′). Next, let F ∈ Λk(C∞(Rm))
with supp(F ) ∩ Σ compact. Then we can define∫

Σ

F :=

∫
Ω′

∑
A

FA(x(u1, . . . , uk))JA(u) du1 . . . duk

where

JA(u) =
∑
π

sgnπ
∂xα1

∂uπ(1)
. . .

∂xαk

∂uπ(k)

is the Jacobian that appears automatically from the chain rule. This also
implies that the above definition will not depend on the coordinate system
in use. Indeed, if we use another coordinate system (y1, . . . , yk) that locally
has the same orientation as (u1, . . . , uk), then for any φ ∈ C∞(Ω′)∫

Ω′
φ(u) du1 . . . duk =

∫
Ω′′

φ(u(y))

∣∣∣∣∂ku1 . . . uk

∂y1 . . . ∂yk

∣∣∣∣ dy1 . . . dyk
=

∫
Ω′′

φ(u(y))
∂ku1 . . . uk

∂y1 . . . ∂yk
dy1 . . . dyk,

but we also have that

JA(u(y)) = JA(u) ·
∂ku1 . . . uk

∂y1 . . . ∂yk
.

In other words, the calculus with differential forms automatically keeps track
of Jacobians.
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In the sequel we also need partial integration of differential forms. For a form
F (y) dy1 . . . dyℓ with compact support, this is defined as the operator∫

yj

F (y) dy1 . . . dyℓ := (−1)j−1

(∫ +∞

−∞
F (y) dyj

)
dy1 . . . dyj−1dyj+1dyℓ

that transforms differential forms into differential forms. From this definition,
it is clear that, as operators:∫

yj

∫
yℓ

· = −
∫
yℓ

∫
yj

·

and also

dyj

∫
yℓ

· = −
∫
yℓ

· dyj ,

while the integral of k-forms may now be defined as∫
Σ

F =

∫
Ω′

∑
A

FA(x(u))JA(u) du1 . . . duk

=

∫
uk

. . .

(∫
u1

∑
A

FA(x(u))JA(u) du1

)
. . . duk.

In other words, variables of integration have to be moved to the left side of a
differential form. It is important to note that the above definition of integral
automatically keeps track of the orientation on Σ: it is determined by the
order of the coordinates u1, . . . , uk.

4. Stokes’ formula

Let F ∈ Λk−1(C∞(Ω)) with suppF ∩Σ compact and Σ is as above. Then we
have that (where x̂ means that x is suppressed):∫

Σ

dF =

∫
Rk

k∑
j=1

duj ∂uj

∑
A

FA(x(u))
∂k−1xα1 . . . xαk−1

∂u1 . . . ∂̂uj . . . ∂uk

du1 . . . d̂uj . . . dum

=

∫
Rk

k∑
j=1

∂ujgj(u)du1 . . . duk = 0,

since suppF ∩ Σ is compact, with

gj(u) =
∑
A

FA(x(u))
∂k−1xα1 . . . xαk−1

∂u1 . . . ∂̂uj . . . ∂uk

.

Let C be a compact set in Rm with nonempty interior and C∞ boundary.
Let φ ∈ C∞(Rm) be a defining function for C, i.e. φ < 0 in int(C), φ > 0
in Rm \ C and φ = 0, ∇φ ̸= 0 on ∂C. Then, if Y denotes the Heaviside
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function, we have that Y (−φ) = χC where χC is the characteristic function
of C. Moreover, for F ∈ Λk−1(C∞(Ω)) with C ⊂ Ω we would have that∫

Σ

d(χC(x)F ) = 0,

where

d(χCF ) = dY (−φ)F + χCdF, dY (−φ) = −δ(φ) dφ,

where δ is the Dirac distribution on the real line. This leads to

Theorem 4.1 (Stokes’ formula). With the above notations, the following for-
mula holds: ∫

Σ

δ(φ) dφF =

∫
Σ

Y (−φ) dF.

The formula can be also written in the more familiar form∫
∂C∩Σ

F =

∫
C∩Σ

dF.

Here one has to choose local coordinates (v1, . . . , vk−1) on ∂C ∩Σ such
that the orientation of the system of coordinates (φ, v1, . . . , vk−1) is the same
as the orientation of (u1, . . . , uk).
Indeed, we have that∫

Σ

δ(φ) dφF =

∫
vk−1

. . .

∫
v1

∫
φ

δ(φ) dφF =

∫
vk−1

. . .

∫
v1

F|φ=0 =

∫
∂C∩Σ

F.

5. Clifford differential forms

The complex Clifford algebra Cm is the complex associative algebra with
generators e1, . . . , em together with the defining relations ejek+ekej = −2δjk.
Every element a ∈ Cm can be written in the form

a =
∑
A⊂M

aAeA, aA ∈ C,

where, as before,M = {1, . . . ,m} and for any multi-indexA = {α1, . . . , αk} ⊆
M , with α1 < . . . < αk we put eA = eα1 · · · eαk

.
Every a ∈ Cm admits a multivector decomposition

a =
m∑

k=0

[a]k, where [a]k =
∑
|A|=k

aAeA,

so [·]k : Cm → Ck
m denotes the canonical projection of Cm onto the space

Ck
m of k-vectors. Note that C0

m = C, the set of scalars while C1
m is the space

of 1-vectors v =
∑m

j=1 vjej . So the map

(v1, . . . , vm) → v =
m∑
j=1

vjej
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leads to the identification of Cm with C1
m. For any v, w ∈ C1

m we have

v w = v · w + v ∧ w,

v · w = −⟨v, w⟩ = −
m∑
j=1

vjwj ,

v ∧ w =
∑
j<ℓ

ejℓ(vjwℓ − vℓwj) ∈ C2
m.

More in general, for v1, . . . , vk ∈ C1
m we define the wedge (or Grassmann)

product in terms of the Clifford product by

v1 ∧ . . . ∧ vk =
1

k!

∑
π∈Sym(k)

sgnπ vπ(1) · · · vπ(k) ∈ Ck
m.

We also call v1 ∧ . . . ∧ vk a k-blade. The k-blades span Ck
m, but not every

element in Ck
m is a k-blade.

For v ∈ C1
m and a ∈ Ck

m we set

va = [va]k−1 + [va]k+1 = v · a+ v ∧ a

where

v · a =
1

2
(va+ (−1)k−1av),

v ∧ a =
1

2
(va+ (−1)kav).

More in general, for a ∈ Ck
m, b ∈ Cℓ

m, k ≥ ℓ we have

ab = [ab]k−ℓ + [ab]k−ℓ+2 + · · ·+ [ab]k+ℓ

and we define the wedge product as

[ab]k+ℓ = a ∧ b.

So we have the Grassmann product in terms of the Clifford product. The vari-
able (x1, . . . , xm) ∈ Rm is identified with the vector variable x =

∑m
j=1 xjej

and Cm-valued functions in Rm are denoted by f(x) =
∑

A fA(x)eA, fA are
C-valued functions.

Definition 5.1. A function f : Ω ⊆ Rm → Cm real differentiable will be
called left monogenic in Ω if it satisfies ∂xf(x) = 0 for x ∈ Ω, where ∂x =∑m

j=1 ej∂xj is the Dirac operator (or vector derivative).

We have the following formulas

x ∂x = x · ∂x + x ∧ ∂x = −Ex − Γx

where Ex = −x · ∂x =
∑m

j=1 xj∂xj is the Euler operator and Γx = −x∧ ∂x =

−
∑m

j<k ejkLjk, Ljk = xj∂xk
− xk∂xj

, are the angular momentum operators.
Moreover we have the overdot notation introduced by Hestenes

∂x(x f) = −mf + ∂̇x(xḟ)
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where

∂̇x(xḟ) = −x∂xf − 2Exf.

Remark 5.2. The elements dx1, . . . , dxm generate a Grassmann algebra and
also e1, . . . , em form a Grassmann algebra with respect to the wedge product.
Yet, we do not identify dxj with ej as some authors do. The elements ej are
imaginary units and so symbolic constants, while the elements dxj are the
differentials of the real coordinates x1, . . . , xm. The wedge notation will be
used only for Clifford numbers, not for the differential forms dx1, . . . , dxm.
However, we may use it for vector differentials (see below and the last section).

The vector variable x =
∑m

j=1 xjej can be seen as a R1
m-valued func-

tion. Its differential, called vector differential is given by dx =
∑m

j=1 ejdxj .
Combining the Clifford product and the differential form product, we have
that

(dx)2 =
m∑
j,ℓ

dxjejdxℓeℓ = 2
m∑
j<ℓ

dxjdxℓejeℓ = dx ∧ dx = [dx2]2,

and, more in general,

(dx)k = k!
∑
|A|=k

dxAeA = dx ∧ . . . ∧ dx = [dxk]k.

In particular
dxm

m!
= dx1 . . . dxme1 . . . em = V (dx)eM ,

dxm−1

(m− 1)!
=

m∑
j=1

dxM\{j}eM\{j} = −
m∑
j=1

ej(−1)j−1dxM\{j}eM = −σ(dx)eM

where V (dx) denotes the Euclidean volume form and

σ(dx) =
m∑
j=1

(−1)j−1ej dx1 . . . d̂xj . . . dxm

is called σ-form.
Let f, g : Ω → Cm, then

d(f σ g) =

m∑
j=1

∂xj (f ej g) dx1 . . . dxm

= (ḟ ∂̇xg + f∂̇xġ)V (dx).

Hence, for a compact subset C ⊂ Ω with nonempty interior and with smooth
boundary, we have (see [1, 10]):

Theorem 5.3 (Cauchy-Borel-Pompeiu). Let Ω ⊆ Rm be an open set and
f, g : Ω → Cm. Let C ⊂ Ω with nonempty interior and with smooth boundary.
Then ∫

∂C

d(f σ g) =

∫
C

(ḟ ∂̇xg + f∂̇xġ)V (dx).



10 I. Sabadini and F. Sommen

We are now going to generalize this result to smooth k-surfaces C ∩
Σ where, as before, Σ is the infinitely differentiable image of a map u =
(u1, . . . , um) → x(u) ∈ Σ.
First of all, we have that for x ∈ Σ:

dx =
k∑

j=1

duj ∂uj (x) = ∂ujx duj ,

dx2 =
∑
j<ℓ

(∂ujx ∂uℓ
x− ∂uℓ

x ∂ujx)duj duℓ

= 2
∑
j<ℓ

∂x

∂uj
∧ ∂x

∂uℓ
dujduℓ

dxℓ

ℓ!
=
∑
|A|=ℓ

∂x

∂uj1

∧ . . . ∧ ∂x

∂ujℓ

duj1 . . . dujℓ

and eventually

dxk

k!
=

∂x

∂u1
∧ . . . ∧ ∂x

∂uk
du1 . . . duk (5.1)

is the oriented k-vector valued surface element on Σ. All these surface forms
are coordinate independent.
We now prove the following crucial result, see also [10]:

Lemma 5.4. We have the formal identity

d
dxk−1

(k − 1)!
= −∂x · dx

k

k!
.

Proof. We have the following chain of equalities

−∂x · dx
k

k!
= −1

2

(
∂x

dxk

k!
+ (−1)k−1 dx

k

k!
∂x

)
= −1

2

(
{∂x, dx}

dxk−1

k!
− dx{∂x, dx}

dxk−2

k!
+ · · ·

· · ·+ (−1)k−1 dx
k−1

k!
{∂x, dx} )

= −1

2
{∂x, dx}

dxk−1

(k − 1)!

and clearly {∂x, dx} = −2d. �

Theorem 5.5 (Stokes). Let Σ be a smooth k-surface, let C be a compact set
with non empty interior whose boundary ∂C is a smooth (n− 1)-surface, (so
C ∩Σ is a compact set). Let f, g be Cm-valued smooth functions on Σ. Then∫

∂C∩Σ

f
dxk−1

(k − 1)!
g = −

∫
C∩Σ

(
ḟ ∂̇x · dx

k

k!
g + f∂̇x · dx

k

k!
ġ

)
.
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Now we have to characterize the restriction to Σ of ∂x · dx
k

k! . We already
know, see (5.1), that

dxk

k!
= T(x)V (du1, . . . , duk),

where T(x) is the unit k-blade tangent to Σ at the point x and V (du1, . . . , duk)
is the Euclidean volume form. Let p ∈ Σ and consider an orthonormal basis
ε1, . . . , εk of k-planes tangent to Σ at the point p. Assume that the orthonor-
mal basis has the same orientation as the coordinate frame u1, . . . , uk. Then

T = ε1 . . . εk = ω
∂x

∂u1
∧ . . . ∧ ∂x

∂uk

where ω is a positive weight, namely a function with strictly positive real
values. Let ν1, . . . , νm−k be the remaining (m − k) unit vectors such that
(ε1, . . . , εk; ν1, . . . , νm−k) is an orthonormal basis of Rm. Then

∂x = ∂x∥ + ∂x⊥

∂x∥ =
k∑

j=1

εj⟨εj , ∂x⟩

∂x⊥ =
m−k∑
j=1

νj⟨νj , ∂x⟩

so that after restriction to Σ we have

∂x · dx
k

k!
= ∂x∥

dxk

k!
= (−1)k−1 dx

k

k!
∂x∥.

We then have (compare with [10]):

Theorem 5.6 (Cauchy). Let Σ be a smooth k-surface, let C be a compact set
with non empty interior whose boundary ∂C is a smooth (n− 1)-surface. Let
f, g be Cm-valued smooth functions on Σ. Then

∫
∂C∩Σ

f
dxk−1

(k − 1)!
g = −

∫
C∩Σ

(f∂x∥)
dxk

k!
g + (−1)k

∫
C∩Σ

f
dxk

k!
(∂x∥g).

6. Winding numbers from monogenic functions

Let us recall that the Cauchy kernel for monogenic functions is

E(x) = − 1

Am

x

|x|m
, Am =

2πn/2

Γ(n/2)

The function E(x) is both left and right monogenic in Rm \ {0} and takes
values in the space of 1-vectors R1

m. We also have the validity of the following
equalities

∂xE(x) = E(x)∂x = δ(x) = δ(x1) . . . δ(xm)
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which hold in the distributional sense, see also [3]. Hence, we also have that,
in view of Lemma 5.4:

d

(
E(x)

dxm−1

(m− 1)!

)
= −Ė(x)∂̇x · dx

m

m!

= −(E(x)∂x)
dxm

m!

= −δ(x)
dxm

m!
,

whereby as before dxm

m! = dx1 . . . dxmeM . We are now going to consider two
sets of coordinates x1, . . . , xm, and u1, . . . , um and the corresponding differ-
entials. Then, by translation, we have that

∂xE(x− u) = E(x− u)∂x = δ(x− u)

= δ(x1 − u1) . . . δ(xm − um)

= −∂uE(x− u) = −E(x− u)∂u.

Now, by replacing also the vector differential

dx → dy = d(x− u) = dx− du, where y = x− u,

we still have that

dyE(y)
dym−1

(m− 1)!
= −δ(y)

dym

m!
,

where dy =
∑m

j=1 dyj∂yj =
∑m

j=1(dxj − duj)∂yj and also

∂yjE(y) = ∂xjE(x− u) = −∂ujE(x− u).

Hence dy = dx + du and the above identity may be rewritten as

(dx + du)E(x− u)
(dx− du)m−1

(m− 1)!
= −δ(x− u)

(dx− du)m

m!
(6.1)

where

(dx− du)m

m!
= (dx1 − du1) . . . (dxm − dum)eM =

m∑
k=0

Vk(dx, du)eM

and (see also [11])

Vk(dx, du) = (−1)k
∑
|A|=k

sgnAduA dxM\A,

duA = duα1 . . . duαk
, A = {α1 . . . αk}, α1 < . . . < αk

dxM\A = dxβ1 . . . dxβm−k
, M \A = {β1 . . . βm−k}, β1 < . . . < βm−k

and sgnA denotes the signature of the permutation (α1, . . . , αk, β1, . . . , βm−k)
with respect to (1, . . . ,m). This can also be obtained as follows:

dx · du = [dx du]0 = −
m∑
j=1

dxj duj

dx ∧ du = [dx du]2 =
1

2
(dx du+ du dx) = du ∧ dx.
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So, in general, we have that

(dx− du)k

k!
=

[(dx− du)k]k
k!

=
(dx− du) ∧ . . . ∧ (dx− du)

k!

=
k∑

ℓ=0

(−1)ℓ
(
k

ℓ

)
[duℓ dxk−ℓ]k

k!

=

k∑
ℓ=0

(−1)ℓ
duℓ

ℓ!
∧ dxk−ℓ

(k − ℓ)!

is a k-vector. In particular:

Vk(dx, du)eM = (−1)k
duk

k!
∧ dxm−k

(m− k)!

while also

(dx− du)m−1

(m− 1)!
= −σ(dx− du)eM = −

m−1∑
k=0

σk(dx, du)

with

σk(dx, du) = (−1)k+1 du
k

k!
∧ dxm−k−1

(m− k − 1)!
.

Thus we arrive at the fundamental identity contained in the following result:

Theorem 6.1. For every k = 0, . . . ,m the following identity holds:

dx

[
E(x− u)

duk

k!
∧ dxm−k−1

(m− k − 1)!

]
= du

[
E(x− u)

duk−1

(k − 1)!
∧ dxm−k

(m− k)!

]
− δ(x− u)

duk

k!
∧ dxm−k

(m− k)!
.

Proof. The result follows by identifying differential forms with same degree
in du1, . . . , dum within the formula (6.1). �

Let Ck be a k-chain in Rm that can be realized as a compact subset
Ck with nonempty interior of an oriented infinitely differentiable surface of
dimension k (with respect to the relative topology).

Definition 6.2. The indicatrix I(Ck)(x) of the k-chain Ck in Rm is the (m−
k − 1)-form

I(Ck)(x) =

∫
u∈Ck

E(x− u)
duk

k!
∧ dxm−k−1

(m− k − 1)!
.

The indicatrix is an (m− k − 1)-form with left monogenic component.
The above theorem clearly leads to the following result (compare with the
result in [9]):
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Theorem 6.3. Let ∂Ck be the boundary of Ck with proper orientation, then

(−1)kdI(Ck)(x) = I(∂Ck)(x)−
∫
u∈Ck

δ(x− u)
duk

k!
∧ dxm−k

(m− k)!
.

Proof. The result follows from Theorem 6.1 by integrating with respect to∫
u∈Ck

·

The factor (−1)k in front arises because of the anti-commutativity:∫
vj

· dxj = −dxj

∫
vj

·

between integral operators and differentials. �

Remark 6.4. The second term is a distributional (m− k)-form given by

−
[
∆(Ck)(x)

dxm−k

(m− k)!

]
m

= (−1)k(m−k)+1

[
dxm−k

(m− k)!
∆(Ck)(x)

]
m

where ∆(Ck)(x) denotes the distribution supported by Ck defined as

∆(Ck)(x) =

∫
u∈Ck

δ(x− u)
duk

k!
.

Corollary 6.5. Let ∂Ck = 0, i.e. let Ck be a k-cycle. Then

(−1)kdI(Ck)(x) = −(−1)k(m−k) dxm−k

(m− k)!
∧∆(Ck)(x),

which vanishes in Rm \ Ck.

Now consider a k-cycle Ck and let Cm−k be an infinitely differentiable
(m− k)-chain with infinitely differentiable boundary ∂Cm−k ⊂ Rm \Ck. We
choose Cm−k such that it intersect generically Ck in finitely many points.
Then, in view of Stokes’ formula and using the previous corollary, we have∫

∂Cm−k

I(Ck)(x) =

∫
Cm−k

dI(Ck)(x)

= −(−1)k(m−k−1)

∫
Cm−k

dxm−k

(m− k)!
∧∆(Ck)(x).

Theorem 6.6. Under the above assumptions∫
Cm−k

I(Ck)(x) = −(−1)kInt(Ck, Cm−k)eM ,

where Int(Ck, Cm−k) is the intersection number of Ck with respect to Cm−k

inside Rm.
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We will show the result just in one case. The general result follows from
homological arguments. First we note that all the above results extend to
the case where Ck is an unbounded chain or cycle, as long as all the needed
integrals converge. Let us consider the case where Ck = Wk, Wk being the
oriented k-space with coordinates u1, . . . , uk. In this case we have

I(Wk) =

∫
um∈R

. . .

∫
u1∈R

E(x− u)dui . . . duk

(
e1 . . . ek ∧ dxm−k−1

(m− k − 1)!

)
= − 1

Am

x⊥
|x⊥|m−k

(
e1 . . . ek ∧

dxm−k−1
⊥

(m− k − 1)!

)
where x⊥ =

∑m
j=k+1 xjej , dx⊥ =

∑m
j=k+1 dxjej , and therefore by Lemma

5.4

dI(Wk)(x) =
1

Am−k

ẋ⊥
|x⊥|m−k

e1 . . . ek

(
∂̇x⊥

dxk+1 . . . dxmek+1 . . . em

)
= −(−1)kδ(x⊥)dxk+1 . . . dxmeM .

So if Cm−k = B(1)∩Wm−k, Wm−k being the (m−k)-space with coordinates
xk+1, . . . , xm, we obtain that ∂Cm−k = Sm−k−1, the unit sphere in Wm−k

and ∫
Sm−k−1

I(Wk) =

∫
|x⊥|<1

−(−1)kδ(x⊥)dxk+1 . . . dxmeM

= −(−1)keM

= −(−1)kInt(Wk,Wm−k)eM .

In general, we have the following:

Definition 6.7. The intersection number Int(Ck, Cm−k) is defined as∑
p∈Ck∩Cm−k

Int(TpCk, TpCm−k),

where TpCk, TpCm−k denote the oriented tangent spaces to Ck and Cm−k at
the point p, respectively, and where

Int(TpCk, TpCm−k) = sgn detG,

where G ∈ GL(m,R) is the matrix of a linear transformation mapping Wk →
TpCk and Wm−k → TpCm−k.

Definition 6.8. The intersection number Int(TpCk, TpCm−k) is also called the
winding number of ∂Cm−k around Ck.

Remark 6.9. At a given point p, the number Int(TpCk, TpCm−k) gives the sig-
nature of the orientation. The sum

∑
p∈Ck∩Cm−k

Int(TpCk, TpCm−k) is equal

to the total intersection number between Ck and Cm−k; it is also equal to
the number of times that ∂Cm−k rotates around Ck.
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Proof of the theorem. As I(Ck) is closed in Rm \ Ck, we have that
whenever C ′

m−k is an (m−k)-chain for which ∂C ′
m−k is homologous to ∂Cm−k

in Rm \ Ck, then ∫
∂C′

m−k

I(Ck)(x) =

∫
∂Cm−k

I(Ck)(x).

Moreover, C ′
m−k may be chosen to be a sum of unit discs. Due to the symme-

try, one may also change Ck to a homologous cycle C ′
k inside Rm\∂C ′

m−k and
choose C ′

k to be a sum of spheres (or even oriented k-spaces). This reduces
to the general case to a k-space Wk and a disc B(1) ∩ Wm−k for which we
have the result. �

Remark 6.10. For the indicatrix of Ck we have the expressions

I(Ck)(x) =

∫
u∈Ck

E(x− u)
duk

k!
∧ dxm−k−1

(m− k − 1)!

from which we get∫
x∈∂Cm−k

I(Ck)(x) =

[∫
x∈∂Cm−k

∫
u∈Ck

E(x− u)
duk

k!

dxm−k−1

(m− k − 1)!

]
m

= (−1)(k+1)(m−k−1)

[∫
x∈∂Cm−k

dxm−k−1

(m− k − 1)!

∫
u∈Ck

E(x− u)
duk

k!

]
m

= ±

[∫
∂Cm−k

dxm−k−1

(m− k − 1)!
M(Ck)(x)

]
m

whereby M(Ck) is a left monogenic function in Rm \ Ck given by

M(Ck)(x) =

∫
u∈Ck

E(x− u)
duk

k!
= [M(Ck)]k+1 + [M(Ck)]k−1

and in fact∫
x∈∂Cm−k

I(Ck)(x) = (−1)(k+1)(m−k−1)

∫
x∈Cm−k

dxm−k−1

(m− k − 1)!
∧ [M(Ck)]k+1.
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