
Secure and Efficient Application Monitoring and Replication

Stijn Volckaert∗† Bart Coppens† Alexios Voulimeneas∗ Andrei Homescu‡

Per Larsen∗‡ Bjorn De Sutter† Michael Franz∗

∗UC Irvine †Ghent University ‡Immunant, Inc.

Abstract
Memory corruption vulnerabilities remain a grave

threat to systems software written in C/C++. Current best
practices dictate compiling programs with exploit mitiga-
tions such as stack canaries, address space layout random-
ization, and control-flow integrity. However, adversaries
quickly find ways to circumvent such mitigations, some-
times even before these mitigations are widely deployed.

In this paper, we focus on an “orthogonal” defense
that amplifies the effectiveness of traditional exploit mit-
igations. The key idea is to create multiple diversified
replicas of a vulnerable program and then execute these
replicas in lockstep on identical inputs while simultane-
ously monitoring their behavior. A malicious input that
causes the diversified replicas to diverge in their behavior
will be detected by the monitor; this allows discovery of
previously unknown attacks such as zero-day exploits.

So far, such multi-variant execution environments
(MVEEs) have been held back by substantial runtime
overheads. This paper presents a new design, ReMon, that
is non-intrusive, secure, and highly efficient. Whereas pre-
vious schemes either monitor every system call or none
at all, our system enforces cross-checking only for secu-
rity critical system calls while supporting more relaxed
monitoring policies for system calls that are not secu-
rity critical. We achieve this by splitting the monitoring
and replication logic into an in-process component and a
cross-process component. Our evaluation shows that Re-
Mon offers same level of security as conservative MVEEs
and run realistic server benchmarks at near-native speeds.

1 Motivation
Low-level memory errors can lead to reliability and

security problems in systems software implemented in
C/C++. In principle, we can eliminate such errors by en-
forcing spatial and temporal memory safety properties at
run time [28, 29]. However, the resulting performance
overheads prohibit widespread deployment of such solu-
tions in practice [39].

The ubiquity of multi-core CPUs makes multi-variant
execution environments (MVEEs) increasingly attractive
to improve the reliability and security of code likely to
contain memory corruption vulnerabilities [7, 8, 12, 16,
17, 26, 35, 40, 20]. The idea is to monitor the execu-
tion of multiple diversified program replicas for diver-
gence in their observable behavior when an exploit trig-
gers implementation-specific, unintended behavior [21].

Security-oriented MVEEs execute replicas in lockstep
and typically perform monitoring at a system call granular-
ity, suspending replicas before system calls and checking
their arguments for equivalence. In case of divergence,
execution is terminated to limit the effects of an attack.
Such MVEEs use operating system processes for isolation
between the replicas and the host system and between the
replicas and the monitoring component as shown in Fig-
ure 1(a). Unfortunately, cross-process monitoring (CP)
designs incur substantial performance overheads due to
frequent context switching and the resulting translation-
lookaside buffer (TLB) and cache flushes.

Hosek et al. [17] developed an alternative reliability-
oriented MVEE, VARAN, using in-process (IP) rather
than CP monitoring (see Figure 1(b)). VARAN outper-
forms CP monitors by removing the need for context
switching and trades lockstep execution for a loosely syn-
chronized execution model. VARAN, however, does not
protect the host system from compromised replicas and is
therefore less suitable for security-oriented use cases.

This paper proposes a new, hybrid MVEE design—
ReMon—that uses an existing, isolated CP monitor
(GHUMVEE [42]) to enforce lockstep execution for all
sensitive system calls. To increase efficiency, we aug-
ment GHUMVEE with a compact, security-hardened IP
monitor (IP-MON) that enables efficient replication of
non-sensitive calls without context switching. As a re-
sult, our design (see Figure 1(c)) unites the strengths of
the previous approaches. It provides security guarantees
that are comparable to those of existing security-oriented
MVEEs while approaching the efficiency of VARAN.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/74560131?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Kernel

(a) Inefficient but secure CP MVEE

CP Monitor

Buffer
Master

Replicas

(b) Efficient but insecure IP MVEE

Slaves

(c) ReMon: Efficient and secure MVEE

CP Monitor
Buffer

Replicas

Kernel

Kernel

Figure 1: Three MVEE designs running two replicas.

Our design is motivated by the fact that a security pol-
icy of monitoring all system calls is overly conserva-
tive [14, 32]. Many system calls cannot affect any state
outside of the process making the system call. Only a
small set of sensitive system calls are potentially useful to
an attacker. Thanks to the IP-MON component, ReMon
supports configurable relaxation policies that allow non-
sensitive calls to execute without being cross-checked
against other replicas. Section 5 evaluates the perfor-
mance impact of a range of relaxation policies inspired by
the classification of system calls used in OpenBSD [25].

In summary, our paper contributes:

• A Novel MVEE Design ReMon unifies the
strengths of previous approaches: the security prop-
erties of traditional cross-process MVEEs [8, 12,
35, 40], and the efficient replication mechanism of
in-process reliability-oriented MVEEs [17].

• Relaxed Monitoring Techniques We leverage our
split-monitor design to support relaxed monitoring
policies. The IP-MON component lets replicas make
certain system calls without cross-process monitor-
ing to increase efficiency.

• Extensive Evaluation & High Performance We
implemented a full-fledged prototype of our ReMon
design and perform a careful and detailed evalua-
tion under different relaxed monitoring policies. Our
evaluation shows that ReMon compares favorably to
previous work and allows server applications to run
in lockstep at near-native speeds.

2 Background
Several MVEE designs have been explored in the

past decade. Broadly speaking, two key factors distin-
guish them. First, an MVEE can run entirely in kernel

space [12], or run in user space. Second, some MVEEs ex-
ecute within the context of the replicas’ processes [12, 17],
whereas other run in a separate process [10, 35, 40]. These
designs make different trade-offs. In-kernel designs are
problematic from a security standpoint because MVEE
monitors typically have a large attack surface and are
prone to memory corruption themselves. The large attack
surface arises from the need for the monitor to interpose
on every system call executed by a replica, whereas the
possibility of memory corruption is due to the plethora
of specialized functions that compare and copy complex
data structures, such as I/O and message vectors. Suc-
cessful attacks on MVEE monitors cannot be ruled out,
and, in the case of in-kernel monitors, they could easily
compromise the entire system.

User-space designs, on the other hand, contain the dam-
age that an attacker can inflict in case the monitor is
compromised. Some designs place the MVEE monitor
inside the replicas’ processes (in-process monitoring / IP),
whereas the majority of designs isolate the monitoring
process (cross-process monitoring / CP). An IP implemen-
tation as shown in Figure 1(b) allows monitor-replica in-
teraction without context switching, but lacks a hardware-
enforced protection boundary to isolate the replicas from
the monitor. Misbehaving replicas might therefore inter-
fere with the monitor, unless they are augmented with
Control-Flow Integrity (CFI) [1] or Software-based Fault
Isolation (SFI) [43]. CFI and SFI would, however, reduce
or negate the performance benefits of IP monitoring.

In contrast, a CP MVEE (Figure 1(a)) does not re-
quire program transformations that slow down the repli-
cas throughout the entire execution. Interaction between a
CP MVEE and its replicas does require context switching,
however, which is a costly operation due to the need to
switch page tables and flush the TLB. When implement-
ing a security-oriented MVEE, the choice between an IP
or CP monitoring design is ultimately a trade-off between
efficient interaction between the monitor and the replicas
(IP design) or faster execution of the replicas (CP design).

2.1 Transparent I/O Replication
The MVEE’s monitor ensures that the replicated exe-

cution is transparent to the end user. Apart from timing,
an outside observer should not notice any differences
between native execution of a single replica and Multi-
Variant Execution of multiple replicas. The MVEE there-
fore guarantees that externally observable I/O operations
execute only once, while at the same time ensuring that
all replicas receive consistent I/O results.

ReMon handles this transparent I/O replication using a
master/slave model, similarly to several existing MVEEs.
One replica is designated as the master; all other replicas
become slaves. Whenever replicas invoke an I/O-related
system call, ReMon allows only the master to complete
the call. When the call in the master has returned, the

2

system call results are copied to the slaves’ memory and
all replicas are resumed.

This mechanism also ensures that all replicas receive
consistent input. Consistency and transparency are not
identical concerns. Many system calls, e.g., those that
query the state of a process, do not have effects that are
observable to the end user, but they might still return
different results if the monitor does not intervene.

Many programs communicate with other processes
over shared physical memory pages. This is generally
not safe in an MVEE, however, because (i) it prevents
the MVEE from providing consistent input to all replicas,
since shared memory can be accessed without system
calls, and (ii) shared memory allows for unmonitored
bi-directional communication channels between repli-
cas. Such communication channels are a challenge to
all security-oriented MVEEs. The ability for the replicas
to communicate freely increases the likelihood that at-
tackers can mount an asymmetrical attack, in which they
provide different inputs to different replicas.

Security-oriented MVEEs, including ours, therefore
typically impose restrictions on the use of shared memory.
ReMon rejects any request to set up shared memory pages
that can form a bi-directional channel. Typically, this
restriction does not break programs, because nearly all of
them fall back to alternative communication mechanisms
when their requests to map shared memory get rejected.
We refer to earlier work for a discussion on solutions
to support programs that do not have such a fall-back
mechanism [10].

2.2 Consistent Signal Delivery
Whereas synchronous signals (such as SIGSEGV) as

a direct result of the executing instruction streams can
safely be delivered to all replicas, asynchronously de-
livered signals can cause the replicas to diverge if their
corresponding signal handlers are not invoked at the same
point in their execution. Most MVEEs therefore defer
the delivery of asynchronous signals until all replicas are
suspended in equivalent states. ReMon implements the
same strategy. It uses the ptrace API to discard signals
when they are initially delivered and to re-initiate delivery
once all replicas have reached a synchronization point.

2.3 Multi-Threaded Replicas
Non-determinism is a common problem in multi-

threaded replicas. Non-deterministic replicas might ex-
ecute different system call sequences, even if they are
given the same inputs and if related system calls are pre-
vented from interleaving. To resolve this, ReMon embeds
a small Record/Replay agent in each replica to force them
to execute user-space synchronization operations in the
same order, thereby enforcing equivalent behavior in all
replicas. We refer to the literature for an extended discus-
sion on non-determinism in multi-threaded programs as
well as available solutions [4, 6, 13, 22, 30, 33, 34].

Kernel

CP Monitor
Replica

sys_read(…)1

IP-MON

2 +
&RB

43 2’

IK Broker -
Interceptor

4’

IK Broker -
Verifier

Figure 2: ReMon’s major components and interactions.

3 ReMon Design and Implementation
ReMon supervises the execution of an arbitrary num-

ber of diversified program replicas that run in parallel.
ReMon’s main goals are (i) to monitor all of the security-
sensitive system calls—hereafter referred to as “moni-
tored calls”—issued by these replicas, (ii) to force mon-
itored calls to execute in lockstep, (iii) to disable moni-
toring and lockstepping for non-security-sensitive system
calls—hereafter referred to as “unmonitored calls”, thus
allowing the replicas to execute these calls as efficiently as
possible while still providing them with consistent system
call results, and (iv) to support configurable monitoring
relaxation policies that define which subset of all system
calls are considered non-security-sensitive, and should
therefore not be monitored. ReMon1 uses three main
components to attain these goals:

1. GHUMVEE A security-oriented CP monitor im-
plemented as discussed in Section 2. Although
GHUMVEE can be used standalone, it only handles
monitored calls when used as part of ReMon.

2. IP-MON An in-process monitor loaded into each
replica as a shared library. IP-MON provides the ap-
plication with the necessary functionality to replicate
the results of unmonitored calls.

3. IK-B A small in-kernel broker that forwards un-
monitored calls to IP-MON and monitored calls to
GHUMVEE. IK-B also enforces security restrictions
on IP-MON, and provides auxiliary functionality
that cannot be implemented in user space. The bro-
ker is aware of the system calls that IP-MON handles
and of the relaxation policy that is in effect.

These three components interact whenever a replica exe-
cutes a system call, as shown in Figure 2.

Our kernel-space system call broker, IK-B, intercepts
the system call 1 and either forwards it to IP-MON 2 , or

1https://github.com/stijn-volckaert/ReMon

3

to GHUMVEE 2’ . The call is forwarded to IP-MON only
if the replica has loaded an IP-MON that can replicate
the results of the call, and if the active relaxation policy
allows the invoked call to be executed as an unmonitored
call. If these two criteria are not met, IK-B uses the stan-
dard ptrace facilities to forward the call to GHUMVEE
instead, which handles it exactly as a regular CP-MVEE.

In the former case, IK-B forwards the call by overwrit-
ing the program counter so that the system call returns to a
known “system call entry point” in IP-MON’s executable
code. While doing so, IK-B gives IP-MON a one-time
authorization to complete the execution of the call without
having the call reported to GHUMVEE. The broker grants
this authorization by passing a random 64-bit token 2 as
an implicit argument to the forwarded call. IP-MON then
performs a series of security checks and eventually com-
pletes the execution of the forwarded call by restarting it
3 . IP-MON can choose to restart the call with or without

the authorization token still intact. If the token is intact
upon reentering the kernel, IK-B allows the execution of
the system call to complete, and returns the call’s results
to IP-MON 4 . If the token is not intact, or if IP-MON
executes a different system call, or if the first system call
executed after a token has been granted does not originate
from within IP-MON itself, IK-B revokes the token and
force the call to be forwarded to GHUMVEE 4’ .

IP-MON generally executes unmonitored system calls
only in the master replica, and replicates the results of the
system call to the slave replicas through the replication
buffer (RB) discussed in Section 3.2. The slaves wait for
the master to complete its system call and copy the repli-
cated results from the RB when they become available.

Although IP-MON allows the master replica to run
ahead of the slaves, it still checks if the replicas have
diverged. To do so, the master’s IP-MON deep copies all
of its system call arguments into the RB, and the slaves’
IP-MONs compare their own arguments with the recorded
ones when they invoke IP-MON. This measure minimizes
opportunities for asymmetrical attacks (cf. Section 4).

3.1 Securing the Design
The IK-B Verifier only allows replicas to complete the

execution of unmonitored system calls if those calls orig-
inate from within an IP-MON instance having a valid
one-time authorization token. As only the IK-B Inter-
ceptor can generate valid tokens, this mechanism forces
every unmonitored system call to go through IK-B. At
the same time, it also ensures that IP-MON can only ex-
ecute unmonitored system calls if it is invoked by IK-
B and it is invoked through its intended entry point.
This mechanism is, in essence, a form of Control-Flow
Integrity [1]. It also allows us to hide the location of the
RB, thereby preventing the RB from being accessed from
outside IP-MON. Protecting the RB is of critical impor-
tance to the security of our MVEE, as we will discuss in

Section 4. To fully hide the location of the RB, while still
allowing benign accesses, we ensure that the pointer to
the RB is only stored in kernel memory.

IK-B loads the RB pointer and the token into des-
ignated processor registers whenever it forwards a call
to IP-MON, and IP-MON is designed and implemented
such that it does not leak these sensitive values into user
space-accessible memory. First, we compile IP-MON us-
ing gcc and use the -ffixed-reg option to remove the
RB pointer and authorization token’s designated registers
from gcc’s register allocator. This ensures that the sensi-
tive values never leak to the stack, nor to any other register.
Second, we carefully crafted specialized accessor func-
tions to access the RB. These functions may temporarily
load the RB pointer into other registers, e.g., to calculate
a pointer to a specific element in the RB, but they restore
these registers to their former values upon returning. We
also force IP-MON to destroy the RB pointer and autho-
rization token registers themselves upon returning to the
system call site. Finally, we use inlining to avoid indirect
control flow instructions from IP-MON’s system call en-
try point. This ensures that IP-MON’s control flow cannot
be diverted to a malicious function that could leak the RB
pointer or authorization token.

ReMon further prevents discovery of the RB through
the /proc/maps interface: It forcibly forwards all system
calls accessing the maps file to GHUMVEE and by filter-
ing the data read from the file. This requires marking the
maps file as a special file, as described in Section 3.6.

To prevent IP-MON itself from being tampered with,
we also force all system calls that could adversely affect
IP-MON to be forwarded to GHUMVEE. These calls (e.g.
sys mprotect and sys mremap) are then subject to the
default lockstep synchronization mechanism.

3.2 The IP-MON Replication Buffer
IP-MON must be embedded into all replicas, so it

consists of multiple independent copies, one per replica.
These copies must cooperate, which requires an efficient
communication channel. Although a socket or FIFO could
be used, we opted for a shared replication buffer (RB)
stored in a memory segment shared between all replicas.

To increase the scalability of our design, we opted not
to use a true circular buffer. Instead, we use a linear RB.
When our RB overflows, we signal GHUMVEE using
a system call. GHUMVEE then waits for all replicas
to synchronize, resets the buffer to its initial state, and
resumes the replicas. Involving GHUMVEE as an arbiter
avoids costly read-write sharing on RB variables that keep
track of where data starts and ends in the RB. Instead, each
replica thread only reads and writes its own RB position.

3.3 Adding System Call Support
ReMon currently supports well over 200 system calls.

To provide a fast path, IP-MON supports a subset of 67

4

/∗ read(int fd, void ∗ buf, size t count) ∗/
MAYBE CHECKED(read) {

// check if our current policy allows us to dispatch read
// calls on this file as unmonitored calls
return !can read(ARG1);
}

CALCSIZE(read) {
// reserve space for 3 register arguments
COUNTREG(ARG);
COUNTREG(ARG);
COUNTREG(ARG);
// one buffer whose maximum size is in argument 3 of syscall
COUNTBUFFER(RET, ARG3);
}

PRECALL(read) {
// compare the args each replica passed to the call.
// if they match, we allow only the master to complete the call,
// while the slaves wait for the master’s results.
CHECKREG(ARG1);
CHECKPOINTER(ARG2);
CHECKREG(ARG3);
return MASTERCALL |MAYBE BLOCKING(ARG1);
}

POSTCALL(read) {
// replicate the results
REPLICATEBUFFER(ARG2, ret);
}

Listing 1: Replicating the read system call in IP-MON.

system calls. However, adding support to IP-MON for a
new system call is generally straightforward. IP-MON
offers a set of C macros to easily describe how to handle
the replication of the system call and its results.

As an example, listing 1 shows IP-MON’s code for the
read system call. The code is split across four handler
functions that each implement one step in the handling of
a system call using the C macros provided by IP-MON.

First, the MAYBE CHECKED function is called to
determine if the call should be monitored by GHUMVEE.
If the MAYBE CHECKED handler returns true, IP-
MON forces the original system call to be forwarded
to GHUMVEE (4’) by destroying the authorization token
and restarting the call. We use this handler type to support
conditional relaxation policies, as shown in Table 1.

IP-MON uses a fixed-size RB to replicate system call
arguments, results, and other system call metadata. Prior
to restarting the forwarded call, we therefore need to cal-
culate the maximum size this information may occupy in
the RB. If the size of the data as calculated by the CALC-
SIZE handler exceeds the size of the RB, IP-MON forces
the original system call to be forwarded to GHUMVEE.
If the data size does not exceed the size of the RB, but it
is bigger than the available portion of the RB, the master
waits for the slaves to consume the data already in the RB,
after which it resets the RB.

Next, if IP-MON has decided not to forward the orig-

inal system call to GHUMVEE, it calls the PRECALL
handler. In the context of the master replica, this function
logs the forwarded call’s arguments, call number, and a
small amount of metadata into the RB. This metadata con-
sists of a set of boolean flags that indicate whether or not
the master has forwarded the call to GHUMVEE, whether
or not the call is expected to block when it is resumed, etc.
If the function is called in a slave replica’s context, IP-
MON performs sanity checking by comparing the slave’s
arguments with the master’s arguments. If they do not
match, IP-MON triggers an intentional crash, thereby sig-
nalling GHUMVEE through the ptrace mechanism, and
causing a shutdown of the MVEE.

The return value of the PRECALL handler determines
whether the original call should be resumed or aborted. By
returning the MASTERCALL constant from the PRECALL
handler, for example, IP-MON instructs the master replica
to resume the original call, and the slave replicas to abort
the original call. Alternatively, the original call may be
resumed or aborted in all replicas.

Finally, IP-MON calls the POSTCALL handler. Here,
the master replica copies its system call return values
into the RB. The slave replicas instead wait for the return
values to appear in the RB. Depending on the aforemen-
tioned system call metadata, the handler may wait using a
spin-wait loop if the system call was not expected to block,
or otherwise a specialized condition variable, whose im-
plementation we describe in Section 3.7.

3.4 System Call Monitoring Policies
There are many ways to draw the line between system

calls to be monitored by the CP-MVEE and system calls
to be handled by IP-MON. We propose two concrete
monitoring relaxation policies.

The first option is spatial exemption, where certain
system calls are either unconditionally handled by IP-
MON and not monitored by GHUMVEE, or handled
by IP-MON only if their system call arguments meet
certain criteria. Table 1 proposes several predefined levels
of spatial exemption, which the program developer or
administrator can choose from. Selecting a level enables
unmonitored system calls for all calls in that level, as
well as all preceding levels. This provides a performance-
security trade-off, with lower levels in the table having
lower overhead but being potentially less secure.

We picked these system calls so we could maintain a
high level of security while still preserving the correct-
ness of the replicas’ execution and significantly improv-
ing our system’s performance. System calls that relate
to allocation and management of process resources and
threads, as well as signal handling, are always monitored
by GHUMVEE. This includes syscalls that (i) allocate,
manage and close file descriptors (FDs), (ii) map, manage
and unmap memory regions, (iii) create, control and kill
threads and processes and (iv) all signal handling sys-

5

file%type op%type
BASE_LEVEL
Read%only*calls*that*do*not*
operate*on*file*descriptors*
and*do*not*affect*the*file*
system.

NONSOCKET_RO_LEVEL
Read%only*calls*on*regular*
files,*pipes,*and*non%
socket*file*descriptors;*
read%only*calls*from*file*
system;*write*calls*on*
process%local*variables.*

NONSOCKET_RW_LEVEL
Write*calls*on*regular*files,*
pipes,*and*other*non%
socket*file*descriptors.*
SOCKET_RO_LEVEL
Read*calls*on*sockets.*

SOCKET_RW_LEVEL
Write*calls*on*sockets.*

Level%and%description Unconditionally%allowed%calls
Conditionally%allowed%
calls%depending%on

gettimeofday,*clock_gettime,*
time,*getpid,*gettid,*getpgrp,*
getppid,*getgid,*getegid,*
getuid,*geteuid,*getcwd,*
getpriority,*getrusage,*times,*
capget,*getitimer,*sysinfo,*
uname,*sched_yield,*nanosleep*

access,*faccessat,*lseek,*stat,*
lstat,*fstat,*fstatat,*getdents,*
readlink,*readlinkat,*getxattr,*
lgetxattr,*fgetxattr,*alarm,*
setitimer,*timerfd_gettime,*
madvise,*fadvise64

read,*
readv,*
pread64,*
preadv,*
select,*poll

futex,*
ioctl,*fcntl

sync,*syncfd,*fsync,*fdatasync,*
timerfd_settime

write,*
writev,*
pwrite64,*
pwritev

read,*readv,*pread64,*preadv,*
select,*poll,*epoll_wait,*
recfrom,*recvmsg,*recvmmsg,*
getsockname,*getpeername,*
getsockopt
write,*writev,*pwrite64,*
pwritev,*sendto,*sendmsg,*
sendmmsg,*sendfile,*epoll_ctl,*
setsockopt,*shutdown

Table 1: Monitor levels for spatial system call exemption.

tem calls. We distributed all remaining system calls over
the aforementioned levels to allow the programmer/ad-
ministrator to choose the appropriate balance between
performance and security.

The second option is temporal exemption, where IP-
MON probabilistically exempts system calls from the
monitoring policy if similar calls were repeatedly ap-
proved by the monitor. We observe that many programs,
especially those with high system call frequencies, often
repeatedly invoke the same sequence of system calls. If a
series of system calls is approved by GHUMVEE, then
one possible temporal relaxation policy is to stochastically
exempt some fraction of the following identical system
calls within some time window or range. Note that tem-
poral relaxation policies must be highly unpredictable;
deterministic policies (e.g., “Exempt system calls X, Y,
Z from monitoring after N approvals within an M mil-
lisecond time window”) are insecure. In other words, care
must be taken to ensure that temporal relaxation does not
allow adversaries to coerce the MVEE into a state where
potentially dangerous system calls are not monitored.

3.5 IP-MON Initialization
IK-B does not forward any system calls to IP-MON

until IP-MON explicitly registers itself through a new sys-
tem call we added to the kernel. When this call is invoked,
the kernel first attempts to report the call to GHUMVEE,
which receives the notification and can decide if it wants
to allow IP-MON to register.

The registration system call expects three arguments.

The first argument is the set of “unmonitored” calls sup-
ported by IP-MON. If the IP-MON registration succeeds,
IK-B forwards any system call in this set to IP-MON from
that point onwards, as we explained earlier. GHUMVEE
can modify this set of system calls, or potentially pre-
vent the registration altogether. The second and third
arguments are a pointer to the RB and a pointer to the
entry point function that should be invoked when IK-B
forwards a call to IP-MON.

The RB pointer must be valid and must point to a
writable region. IP-MON must therefore set up an RB
that it shares with all other replicas. We use the System
V IPC facilities to create, initialize, and map the RB [23].
GHUMVEE arbitrates the RB initialization process to
ensure that all replicas attach to the same RB.

3.6 The IP-MON File Map
GHUMVEE arbitrates all system calls that create/mod-

ify/destroy FDs, incl. sockets. It thus maintains metadata
such as the type of each FD (regular/pipe/socket/poll-
fd/special). It also tracks which FDs are in non-blocking
mode. System calls that operate on non-blocking FDs
always return immediately, regardless of whether or not
the corresponding operation succeeds.

Replicas can map a read-only copy of this metadata
into their address spaces using the same mechanism we
use for the RB. We refer to this metadata as the IP-MON
file map. We maintain exactly one byte of metadata per
FD, resulting in a page-sized file map. For some system
calls, IP-MON uses the file map to determine if the call is
to be monitored or not as per the monitoring policy.

3.7 Blocking System Calls
Its file map permits IP-MON to predict whether an

unmonitored call can block or not. IP-MON handles
blocking calls efficiently. If the master replica knows
that a call will block, it instructs the slaves to wait on an
optimized and highly scalable IP-MON condition variable
until the results become available (as opposed to a slower
spin-read loop). IP-MON uses the futex (7) API to
implement wait and wake operations. This allowed us to
implement several optimizations.

For each system call invocation, IP-MON allocates a
separate structure within the RB. Each individual struc-
ture contains a condition variable. Slave replicas must
only wait on the condition variable associated with the
system call results they are interested in. Using separate
condition variables for each system call invocation pre-
vents an unnecessary bottleneck that would arise when
using just a single variable, because the slave replicas
might progress at different paces. Furthermore, IP-MON
tracks whether or not there are replicas waiting for the
results of a specific system call invocation. If none are
waiting when the master has finished writing its system
call results into the buffer, no FUTEX WAKE operation is
needed to resume the slaves. IP-MON does not have to

6

reuse condition variables because a new condition vari-
able is allocated for each system call invocation. Thus,
IP-MON does not have to reset condition variables to their
initial state after it has used one to signal slave replicas.

3.8 Consistent Signal Delivery
Signals may introduce divergence among a set of ex-

ecuting replicas. MVEEs therefore typically defer the
delivery of signals until they can assert that all replicas
are in equivalent states, such as when they are all waiting
to enter a system call, as discussed in Section 2.2.

The intricacies of the ptrace API make the correct im-
plementation of consistent asynchronous signal delivery
challenging, and it becomes even more complicated when
introducing IP-MON. Because GHUMVEE does not see
any system calls that are dispatched as unmonitored calls,
it might indefinitely defer the delivery of incoming sig-
nals, thus violating the intended behavior of the replicas.
GHUMVEE solves this problem via introspection. When
a signal is delivered to the master replica, GHUMVEE
first sets a signals pending flag, which is stored at the
beginning of the RB. Next, GHUMVEE checks whether
that replica was executing a system call through IP-MON.
GHUMVEE does this by checking if the user-space in-
struction pointer points to a system call instruction inside
the IP-MON executable region. If the master replica was
executing a blocking system call, GHUMVEE aborts that
call. The kernel automatically aborts blocking system
calls, but normally restarts them after the signal handler
has been invoked. However, GHUMVEE prevents the
kernel from restarting the call. Instead, it resumes the
master replica at the return site of the call. The master
replica then inspects the signals pending flag and restarts
the call as a monitored call, allowing it to be intercepted
by GHUMVEE.

3.9 Support for epoll (7)
Linux 2.5.44 introduced the Linux-specific epoll API

as a high-performance alternative to select and poll.
Applications can use this interface to get notifications for
FD events, e.g., when a socket has received new data or
when a connection request has arrived. Modern Linux
server applications use epoll to handle network requests
efficiently on multiple threads.

To minimize the performance overhead, IP-MON needs
to support the epoll family of system calls. This is
not straightforward, however. When registering a FD
with epoll functions, the application can associate an
epoll event structure with that FD. This structure may
contain a pointer value that the kernel will return when
an event on the FD gets triggered. The epoll event

structures are challenging to support in MVEEs. Diversi-
fied replicas are likely to use different pointer values for
the same logical FD. Blindly replicating the results of a
sys epoll wait event would then return the master’s,
rather than the calling replica’s pointer values.

IP-MON solves this problem by maintaining a shadow
mapping between FDs and pointers inside epoll event.
When a new FD is registered with epoll, IP-MON copies
the associated pointer value from the epoll event struc-
ture to the mapping. When replicating the results of an
epoll call, IP-MON uses this mapping to store FDs,
rather than pointer values in the master replica, and it
maps these FDs back onto the associated pointer values
in the slave replicas.

4 Security Analysis
Unlike previous MVEEs, ReMon eschews fixed moni-

toring policies and instead allows security/performance
trade-offs to be made on a per-application basis.

With respect to integrity, we already pointed out that
a CP MVEE monitor (and its environment) are protected
by (i) running it in an isolated process space protected
by a hardware-enforced boundary to prevent user-space
tampering with the monitor from within the replicas; (ii)
by enforcing lockstep, consistent, monitored execution of
all system calls in all replicas to prevent malicious impact
of a single compromised replica on the monitor; and (iii)
diversity among the replicas to increase the likelihood
that attacks cause observable divergence, i.e., that they
fail to compromise the replicas in consistent ways.

With those three properties in place, it becomes exceed-
ingly hard for an attacker to subvert the monitor and to
execute arbitrary system calls. Nevertheless, MVEEs do
not protect against attacks that exploit incorrect program
logic or leak information though side-channel attacks.
This is similar to many other code-reuse mitigations such
as software diversity, SFI, and CFI.

In ReMon, monitored system calls are still handled by
a CP monitor, so malicious monitored calls are as hard to
abuse as they are in existing CP MVEEs. For unmonitored
calls, IP-MON relaxes the first two of the above three
properties. The master replicas can run ahead of the slaves
and the system call consistency checks in the slaves’ IP-
MON, so an attacker could try to hijack the master’s
control with a malicious input to execute at least one, and
possibly multiple, unmonitored calls without verification
by a slave’s IP-MON. An attacker could also attempt to
locate the RB and feed malicious data to the slaves, in
order to stall them or to tamper with their consistency
checks. This way, the attacker could increase the window
of opportunity to execute unmonitored calls in the master.

As long as the attacker executes unmonitored calls only
according to a given relaxation policy, those capabilities
by definition pose no significant security threat: unmon-
itored calls are exactly those calls that are defined by
the chosen policy to pose either no security threat at all,
or that pose an acceptable security risk. However, an
attacker can also try to bypass IP-MON’s policy verifica-
tion checks on conditionally allowed system calls to let
IP-MON pass calls unmonitored that should have been

7

monitored by GHUMVEE according to the policy. We
therefore consider several aspects of these attack scenar-
ios in the following paragraphs.

Unmonitored execution of system calls ReMon ensures
that IP-MON can only execute unmonitored system calls
if it is invoked by IK-B itself and through its intended
system call entry point. When invoked properly, IP-MON
performs policy verification checks on conditionally al-
lowed system calls, as well as the security checks a CP
monitor normally performs. An attacker that manages
to compromise a program replica could jump over these
checks in an attempt to execute unmonitored system calls
directly. Such an attack would, however, be ineffective
thanks to the authorization mechanism we described in
Section 3.1.

Manipulating the RB We designed IP-MON so that it
never stores a pointer to the RB, nor any pointer derived
thereof, in user-space accessible memory. Instead, IK-B
passes an RB pointer to IP-MON, and IP-MON keeps
the RB pointer in a fixed register. To access the RB,
the attacker must therefore find its location by random
guessing or by mounting side-channel attacks. ReMon’s
current implementation uses RBs that are 16MiB and
located on different addresses in each replica. This gives
the RB pointer 24 bits of entropy per replica which makes
guessing attacks unlikely to succeed.

Furthermore, because neither IP-MON, nor the appli-
cation need to know the exact location of the RB and
because every invocation of IP-MON is routed through
IK-B, we could extend IK-B to periodically move the
RB to a different virtual address by modifying the repli-
cas’ page table entries. This would further decrease the
chances of a successful guessing attack.

Diversified Replicas Our current implementation of Re-
Mon deploys the combined diversification of ASLR and
Disjoint Code Layouts (DCL) [40]. ReMon, however, sup-
port all other kinds of automated software diversity tech-
niques as well. We refer to the literature for an overview
of such techniques [21]. The security evaluations in the
literature, including demonstrations of resilience against
concrete attacks, therefore still apply to ReMon.

5 Performance Evaluation
In this section, we first evaluate the performance of

IP-MON’s spatial relaxation policy on a set of widely-
used benchmark suites, and then compare IP-MON with
existing MVEEs by replicating some of the experiments
previously described in the literature [16, 17, 26, 35, 40].
We conducted all of our experiments on a machine with
two eight-core Intel Xeon E5-2660 processors each hav-
ing 20MB of cache, 64GB of RAM and a Gigabit Eth-
ernet connection, running the x86 64 version of Ubuntu
14.04.3 LTS. This machine runs the Linux 3.13.11 ker-
nel, to which we applied the IK-B patches described in

Section 3. These IK-B patches add 97 LoC to the kernel.
We used the official 2.19 versions of GNU’s glibc and
libpthreads in our experiments, but did apply a small
patch to glibc to reinitialize IP-MON’s thread-local stor-
age variables after each fork. We disabled hyper-threading
as well as frequency and voltage scaling to maximize re-
producibility of our measurements.

Address Space Layout Randomization (ASLR) was
enabled in our tests and we configured ReMon to map
IP-MON and its associated buffers at non-overlapping
addresses in all replicas [40].

5.1 Synthetic Benchmark Suites
We evaluated ReMon on the PARSEC 2.1, SPLASH-

2x, and Phoronix benchmark suite. (C. Segulja
kindly provided his data race patches for PARSEC and
SPLASH [36].) These benchmarks cover a wide range in
system call densities and patterns (e.g., bursty vs. spread
over time, and mixes of sensitive and non-sensitive calls)
as well as various scales and schemes of multi-threading,
the most important factors contributing to the overhead
of traditional CP-MVEEs that we want to overcome with
IP-MON.

We evaluated all five levels of our spatial exemption
policy on some of the Phoronix benchmarks, and show
the performance of the NONSOCKET RW LEVEL policy on
the other suites. We used the largest available input sets
for all benchmarks, and ran the multi-threaded bench-
marks with four worker threads and used two replicas
for all benchmarks. We excluded PARSEC’s canneal
benchmark from our measurements because it purposely
causes data races that result in divergent behavior when
running multiple replicas. This makes the benchmark
incompatible with MVEEs. We also excluded SPLASH’s
cholesky benchmark due to incompatibilities with the
version of the gcc compiler we used.

The results for these benchmarks are shown in Fig-
ures 3 and 4. The baseline overhead was measured by
running ReMon with IP-MON and IK-B disabled. In this
configuration, GHUMVEE runs as a standalone MVEE.

GHUMVEE generally performs well in these bench-
marks. Our machine can run the replicas on disjoint CPU
cores, which means that only the additional pressure on
the memory subsystem and the MVEE itself cause perfor-
mance degradation compared to the benchmarks’ native
performance. Yet, we still see the effect of enabling IP-
MON. For PARSEC 2.1, the relative performance over-
head decreases from 21.9% to 11.2%. For SPLASH-
2x, the overhead decreases from 29.2% to 10.4%. In
Phoronix, the overhead drops from 146.4% to 41.2%.
Particularly interesting are the dedup, water spatial

and network loopback benchmarks, which feature very
high system call densities of over 60k system call invoca-
tions per second. In these benchmarks, the overheads drop
from 252.9% to 69.4%, from 320% to 20.7%, and from

8

1.
09 1.
15

3.
53

1.
11

1.
04 1.
28

1.
06

1.
03 1.
16

1.
07

1.
10

1.
11 1.
22 1.
48

1.
03

1.
55

1.
01

0.
94 1.
06

1.
09

1.
63

1.
05 1.
17

1.
22

1.
04

4.
20

1.
29

1.
04

1.
03

1.
69

1.
03 1.
11 1.
33

1.
05

1.
00

0.
97 1.
07

1.
03 1.
16

1.
11 1.

52

1.
02 1.
13

1.
00

0.
95 1.
05

1.
05 1.
38

1.
05

1.
02 1.
07

1.
02 1.
21

1.
10

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

BL
AC

KS
CH

O
LE
S

BO
DY

TR
AC

K

DE
DU

P

FA
CE
SI
M

FE
RR
ET

FL
UI
DA

NI
M
AT

E

FR
EQ

M
IN
E

RA
YT
RA

CE

ST
RE
AM

CL
US

TE
R

SW
AP

TI
O
NS

VI
PS

X2
64

GE
O
M
EA

N

BA
RN

ES FF
T

FM
M

LU
_C
B

LU
_N

CB

O
CE
AN

_C
P

O
CE
AN

_N
CP

RA
DI
O
SI
TY

RA
DI
X

RA
YT
RA

CE

VO
LR
EN

D

W
AT

ER
_N

SQ
UA

RE
D

W
AT

ER
_S
PA

TI
AL

GE
O
M
EA

N

NO
RM

AL
IZ
ED

	E
XE
CU

TI
O
N	
TI
M
E no	IP-MON IP-MON/NONSOCKET_RW_LEVEL

PARSEC	2.1 SPLASH-2x			

Figure 3: Performance overhead for two benchmark suites (2 replicas).

1.
11 1.
17

1.
09

1.
05

2.
48

1.
47

2.
46

1.
11 1.
17

1.
10

1.
04

1.
90

1.
48

2.
31

1.
04 1.
08

1.
06

1.
01

1.
90

1.
44

2.
24

1.
04

1.
02

1.
01

1.
00 1.
13 1.
22

1.
93

1.
04

1.
02

1.
01

1.
00 1.
13 1.
17

1.
75

1.
05

1.
02

1.
01

1.
00 1.
13 1.
17 1.

41

0.0

0.5

1.0

1.5

2.0

2.5

3.0

CO
M
PR
ES
S

GZ
IP
-1
.1
.0

EN
CO

DE
FL
AC

-1
.5
.0

EN
CO

DE
O
GG

-1
.4
.1

M
EN

CO
DE

R
1.
4.
1

PH
PB
EN

CH
1.
1.
0

UN
PA

CK
LI
NU

X-
1.
0.
0

GE
O
M
EA

N

no	IP-MON IP-MON/BASE_LEVEL
IP-MON/NONSOCKET_RO_LEVEL IP-MON/NONSOCKET_RW_LEVEL
IP-MON/SOCKET_RO_LEVEL IP-MON/SOCKET_RW_LEVEL

25
.4
6

9.
77

25
.3
6

7.
76

24
.8
9

7.
74

17
.0
3

7.
589.
18

6.
65

3.
00 3.
71

0

5

10

15

20

25

30

NE
TW

O
RK

LO
O
PB
AC

K
1.
0.
1

NG
IN
X

1.
1.
0

NO
RM

AL
IZ
ED

	E
XE
CU

TI
O
N	
TI
M
E

Figure 4: Comparison of IP-MON’s spatial relaxation policies in a set of Phoronix benchmarks (2 replicas).

2446% to 200% respectively. Furthermore, the Phoronix
results clearly show that different policies allow for dif-
ferent security-performance trade-offs.

5.2 Server Benchmarks
Server applications are great candidates for execu-

tion and monitoring by MVEEs because they (i) are
frequently targeted by attackers and (ii) often run on
many-core machines with idle CPU cores that can
run replicas in parallel. In this section, we specifi-
cally evaluate our MVEE on applications used to eval-
uate other MVEEs. These applications include the
Apache web server (used to evaluate Orchestra [35]),
thttpd (ab) and lighttpd (ab) (used to evaluate
Tachyon [26]), lighttpd (http load) (used to evalu-
ate Mx [16]), as well as beanstalkd, lighttpd (wrk),
memcached, nginx (wrk) and redis (used to evaluate
VARAN [17]). We used the same client and server con-
figurations described by the creators of those MVEEs.

We tested IP-MON by running a benchmark client on
a separate machine that was connected to our server via
a local gigabit link. We evaluated three scenarios. In the
first scenario, we used the gigabit link as-is and therefore
simulated an unlikely, worst-case scenario since the la-
tency on the gigabit link was very low (less than 0.125ms).
In the second scenario, we added a small amount of la-
tency (bringing the total average latency to 2ms) to the
gigabit link to simulate a realistic worst-case scenario
(average network latencies in the US are 24–63ms [11]).

In the third scenario, which we only evaluated to allow for
comparison with existing MVEEs, we simulated a total
average latency of 5ms. We used Linux’ built-in netem

driver to simulate the latency [24].
Figure 5 shows the worst-case and realistic scenarios

side by side. For each benchmark, we measured the over-
head IP-MON introduces when running between two and
seven parallel replicas with the spatial exemption policy
at the SOCKET RW LEVEL. We also show the overhead for
running two replicas with IP-MON disabled. The latter
case represents the best-case scenario without IP-MON.

5.3 Comparison with other MVEEs
Table 2 compares ReMon’s performance with the re-

sults reported for other MVEEs in literature [16, 17, 26,
35, 40] and online [41]. As each MVEE was evalu-
ated in a different experimental setup, the table also lists
two features that have a significant impact on the perfor-
mance overhead. These are the network latencies, because
higher latencies hide server-side overhead, as well as the
CPU cache sizes, as some of the memory-intensive SPEC
benchmarks benefit significantly from larger caches, in
particular with multiple concurrent replicas.

From a performance overhead perspective, the worst-
case setup in which Mx and Tachyon were evaluated had
the benchmark client running on the same (localhost)
machine as the benchmark server. For VARAN two sep-
arate machines resided in the same rack and were hence
connected by a very-low-latency gigabit Ethernet.

9

0

1

2

3

4

5

6

7

8

B
E
A
N
S
T
A
L
K
D

r1
5
7
d
8
8
b

L
IG
H
T
T
P
D

1
.4
.3
6
	(
w
rk
)

M
E
M
C
A
C
H
E
D

1
.4
.1
7

N
G
IN
X

1
.5
.1
2
	(
w
rk
)

R
E
D
IS

3
.0
.3

A
P
A
C
H
E

1
.3
.2
9
	(
A
B
)

T
H
T
T
P
D

2
.2
6
	(
A
B
)

L
IG
H
T
T
P
D

1
.4
.3
6
	(
A
B
)

L
IG
H
T
T
P
D

1
.4
.3
6
	(
h
tt
p
_
lo
a
d
)

B
E
A
N
S
T
A
L
K
D

r1
5
7
d
8
8
b

L
IG
H
T
T
P
D

1
.4
.3
6
	(
w
rk
)

M
E
M
C
A
C
H
E
D

1
.4
.1
7

N
G
IN
X

1
.5
.1
2
	(
w
rk
)

R
E
D
IS

3
.0
.3

A
P
A
C
H
E

1
.3
.2
9
	(
A
B
)

T
H
T
T
P
D

2
.2
6
	(
A
B
)

L
IG
H
T
T
P
D

1
.4
.3
6
	(
A
B
)

L
IG
H
T
T
P
D

1
.4
.3
6
	(
h
tt
p
_
lo
a
d
)

N
O
R
M
A
L
IZ
E
D
	R
U
N
T
IM

E
	O
V
E
R
H
E
A
D

Unlikely	scenario	on	local	gigabit	network	 (~0.1ms	latency)															 Realistic	scenario	on	 low-latency	network	 (2	ms	latency)

2	replicas	 (no	IP-MON) 2	replicas 3	replicas 4	replicas 5	replicas 6	replicas 7	replicas

13.29 12.48

Figure 5: Server benchmarks in two network scenarios for 2–7 replicas with IP-MON and 2 replicas without IP-MON.

Orientation
MVEE VARAN Orchestra GHUMVEE

network	
local-
host

local	
few	
hops

coast-
to-
coast

local-
host

USA-UK	
(150	
ms)

same	
rack	

gigabit

local	
gigabit n/a

local	
gigabit

	local	
gigabit
(5	ms)

CPU	cache	size 8	MB 20	MB

apache	(ab) 2.4% 50% 34% 2.4%
lighttpd	(ab) 790% 272% 30% 0.0% 55% 0.0%
thttpd	(ab) 1320% 17% 0% 0.0% 73% 2.7%
lighttpd	(httpld) 249% 4% 1.0% 45% 3.5%
redis 1572% 5% 6% 45% 0.1%
beanstalkd 52% 45% 0.6%
memcached 14% 8.4% 0.3%
nginx	(wrk) 28% 194% 0.8%
lighttpd	(wrk) 12% 169% 0.7%
SPEC	CPU2006 7.2%
SPECint	2006 14.2% 12.1%
SPECfp	2006 3.8%

3.1%
17.6% 3.9%

Reliability Security

2.5%

Tachyon Mx ReMon

18.3%

8	MB 20	MB
reported	overheads

17.9%

Table 2: Comparison with other MVEEs (2 replicas).

The worst-case setups in which ReMon and Orchestra
were evaluated consist of two separate machines con-
nected by a low-latency gigabit link. In these unlikely,
worst-case scenarios for servers, the differences in setups
hence favor ReMon and Orchestra over VARAN, and
VARAN over Tachyon and Mx.

In the best-case setups in which Mx and Tachyon were
evaluated, one of the machines was located at the US west
coast, while the other was located in England (Mx) or the
US east coast (Tachyon). In ReMon’s best-case setup, we
used a gigabit link with a simulated 5 ms latency. So in
the more realistic setups and for the server benchmarks,
the differences favor Mx and Tachyon over ReMon.

This comparison demonstrates that ReMon outper-
forms existing non-hardware assisted security-oriented
MVEEs while approaching the efficiency of reliability-
oriented MVEEs.

6 Related Work
Directly intercepting system calls—known as system

call interposition—to check if they are in line with a
system call policy (often obtained through profiling and
software analysis) predates MVEEs as a security sand-
boxing technique. The initial literature on the subject
identified [15] the high overhead of ptrace on Linux

(compared to similar techniques on other OSes), and
kernel-based implementations were presented to over-
come this overhead [31]. To reduce the impact on the
kernel, ReMon performs most monitoring in-process, and
requires only a small kernel patch to ensure its security.

Dune provides in-process but across-privilege-ring
monitoring capabilities based on modern x86 hardware
virtualization support such as VT-x and Extended Page
Tables (EPT) [5]. Dune is, however, currently not thread-
safe. This limits its practical applicability.

Cox et al. presented and evaluated an IP kernel-space
MVEE implementation that deployed address-space par-
titioning as a diversification technique [12], which can
be seen as a limited form of DCL [40]. They measured
Apache latency increases of 18% on unsaturated servers,
and throughput decreases of 48% on saturated servers,
which exceed the corresponding overheads for ReMon.

Later CP user-space MVEEs, including the one by
Bruschi et al. [8], Orchestra by Salamat et al. [35], and
GHUMVEE [42] rely on, and suffer from, the properties
of the ptrace and waitpid APIs. These MVEEs mainly
differ from ReMon in the way they perform I/O repli-
cation. The Orchestra monitor executes I/O operations
on behalf of the replicas, whereas most other MVEEs al-
low a designated master replica to execute I/O operations.
Orchestra copies the results of I/O system calls to the
replicas through a shared memory buffer, while Bruschi
et al.’s MVEE uses ptrace to copy results. GHUMVEE
initially relied on a custom ptrace implementation to
copy data, but now uses the process vm readv API that
was introduced in Linux 3.2.

VARAN takes this approach one step further, and also
performs IP user-space monitoring [17] through shared
ring buffers as shown in Figure 1(b) to avoid the over-
head of ptrace. In VARAN, the direct master-slave
communication is implemented by rewriting the system
call instructions (incl. VDSO ones) in the binaries into
trampolines to system call replication agents. The agents
in the master replica execute the I/O system calls and

10

log them in the shared buffer. The agents in the slave
replicas running behind the master then copy the results
instead of executing the calls. Monitors embedded in
replica processes check the system call consistency, and
can even allow small discrepancies between the system
calls behavior of the replicas. VARAN does not replicate
user-space synchronization events, however, and hence
cannot handle many typical client-side applications, most
of which rely on user-space futexes.

With its support for small system call behavior discrep-
ancies, as well as with some of its design and implemen-
tation options to minimize overhead, VARAN positions
itself as a reliability-oriented MVEE that can support
applications such as transparent failover, multi-revision
execution (possibly to detect attacks, but not to prevent
them), live sanitization, and record-replay [17]. With its
in-process replication avoiding ptrace, VARAN signifi-
cantly outperforms Tachyon [26] and Mx [16], two other
reliability-oriented MVEEs.

As already noted by its authors, however, VARAN is
less fit to protect against memory exploits. First, VARAN
lets the master run ahead of the slaves, even for sensitive
system calls, as it does not differentiate between sensitive
and insensitive calls. This leaves a much larger window
of opportunity to attackers than ReMon, including for the
execution of sensitive calls. Although this window can
be shortened by decreasing the size of VARAN’s shared
ring buffer, it is unclear what the impact on performance
would be and whether that buffer adaptation closes the
window completely or merely shortens it to one sensitive
system call, which would clearly still be too much. Sec-
ond, unlike the many protection techniques implemented
for ReMon’s IP-MON, VARAN’s IP monitors are only
protected from code-reuse attacks by ASLR, which has
proven susceptible to attacks due to low entropy and gran-
ularity [3, 18, 37, 38]. This is all the more problematic
as VARAN’s IP monitors also monitor sensitive system
calls. Finally, VARAN only rewrites explicit system call
instructions in binary code into trampolines to its replica-
tion agents. ReMon, by contrast, intercepts all executed
system calls, including any potential unaligned system
call gadgets, which would not be identified by VARAN.

MvArmor leverages Dune’s aforementioned hardware-
assisted monitoring capabilties to offer secure in-process
monitoring [20]. MvArmor’s performance results are
comparable to ReMon’s, but due to limitations in Dune,
it currently does not support multi-threaded replicas.

SFI [19, 27, 43, 44] and CFI [2, 1, 9] are two defenses
that have received a lot of attention in literature which
MVEEs can use to protect against memory exploits. Com-
pared to MVEEs such as ReMon, they have the drawback
of depending on relatively intrusive code transformations,
most of which can only be applied when source code
is available, and most of which, in particular those with

stronger security guarantees, come with a significant per-
formance penalty.

7 Conclusions
Designers of MVEEs face the mutually conflicting

goals of security and runtime performance. Specifically,
frequent interactions between cross-process MVEE moni-
tors and program replicas require a high number of costly
context switches. We demonstrate a best-of-both-worlds
design, ReMon, in which an in-process monitor replicates
inputs among the replicas and a cross-process monitor
enforces lockstep execution of potentially harmful system
calls; innocuous system calls, on the other hand, proceed
without external monitoring to increase efficiency.

We present a careful and detailed security analysis and
conclude that our introduction of an IP-MON component
and relaxed monitoring of innocuous system calls still
offers a level of security comparable to that of cross-
process MVEEs. Our extensive performance evaluation
shows that the overheads of ReMon ranges from 0-3.5%
on realistic server workloads and compares very favorably
to recent in-process MVEE designs.

Acknowledgments
The authors thank Brian Belleville, Haibo Chen, our

reviewers, the Agency for Innovation by Science and
Technology in Flanders (IWT), and the Fund for Scientific
Research - Flanders.

This material is based upon work partially supported
by the Defense Advanced Research Projects Agency
(DARPA) under contracts FA8750-15-C-0124, FA8750-
15-C-0085, and FA8750-10-C-0237, by the National Sci-
ence Foundation under award number CNS-1513837 as
well as gifts from Mozilla, Oracle, and Qualcomm.

Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors
and do not necessarily reflect the views of the Defense
Advanced Research Projects Agency (DARPA), its Con-
tracting Agents, or any other agency of the U.S. Govern-
ment.

References
[1] ABADI, M., BUDIU, M., ERLINGSSON, ÚLFAR., AND LIGATTI,

J. Control-flow integrity. In Proceedings of the 12th ACM con-
ference on Computer and communications security (2005), ACM,
pp. 340–353.

[2] ABADI, M., BUDIU, M., ERLINGSSON, ÚLFAR., AND LIGATTI,
J. Control-flow integrity principles, implementations, and appli-
cations. ACM Transactions on Information and System Security
(TISSEC) 13 (2009), 4:1–4:40.

[3] BARRESI, A., RAZAVI, K., PAYER, M., AND GROSS, T. R.
CAIN: Silently breaking ASLR in the cloud. In USENIX Workshop
on Offensive Technologies (WOOT) (2015), WOOT’15.

[4] BASILE, C., KALBARCZYK, Z., AND IYER, R. A preemptive
deterministic scheduling algorithm for multithreaded replicas. In
Proceedings of the 2002 IEEE International Conference on De-
pendable Systems and Networks (DSN’02) (2002), pp. 149–158.

11

[5] BELAY, A., BITTAU, A., MASHTIZADEH, A., TEREI, D.,
MAZIÈRES, D., AND KOZYRAKIS, C. Dune: Safe user-level
access to privileged CPU features. In USENIX Symposium on
Operating Systems Design and Implementation (2012), OSDI ’12,
pp. 335–348.

[6] BERGAN, T., ANDERSON, O., DEVIETTI, J., CEZE, L., AND
GROSSMAN, D. CoreDet: a compiler and runtime system for
deterministic multithreaded execution. ACM SIGARCH Computer
Architecture News 38, 1 (2010), 53–64.

[7] BERGER, E. D., AND ZORN, B. G. DieHard: probabilistic
memory safety for unsafe languages. In ACM SIGPLAN Notices
(2006), vol. 41, ACM, pp. 158–168.

[8] BRUSCHI, D., CAVALLARO, L., AND LANZI, A. Diversified
process replicae for defeating memory error exploits. In IEEE
International Performance Computing and Communications Con-
ference (2007).

[9] BUDIU, M., ERLINGSSON, U., AND ABADI, M. Architectural
support for software-based protection. In Workshop on Architec-
tural and System Support for Improving Software Dependability
(2006), ASID ’06.

[10] CAVALLARO, L. Comprehensive Memory Error Protection via
Diversity and Taint-Tracking. PhD thesis, PhD dissertation, Uni-
versita Degli Studi Di Milano, 2007.

[11] COMMISSION, F. C. Measuring broadband Amer-
ica - 2014. https://www.fcc.gov/reports/

measuring-broadband-america-2014, 2014.

[12] COX, B., EVANS, D., FILIPI, A., ROWANHILL, J., HU, W.,
DAVIDSON, J., KNIGHT, J., NGUYEN-TUONG, A., AND HISER,
J. N-variant systems: a secretless framework for security through
diversity. In USENIX Security Symposium (2006), USENIX Asso-
ciation, p. 9.

[13] DEVIETTI, J., LUCIA, B., CEZE, L., AND OSKIN, M. DMP:
deterministic shared memory multiprocessing. In ACM SIGARCH
Computer Architecture News (2009), vol. 37, ACM, pp. 85–96.

[14] GARFINKEL, T., PFAFF, B., ROSENBLUM, M., ET AL. Ostia:
A delegating architecture for secure system call interposition. In
NDSS ’04 (2004).

[15] GOLDBERG, I., WAGNER, D., THOMAS, R., BREWER, E. A.,
ET AL. A secure environment for untrusted helper applications:
Confining the wily hacker. In Proceedings of the 6th conference
on USENIX Security Symposium, Focusing on Applications of
Cryptography (1996), vol. 6.

[16] HOSEK, P., AND CADAR, C. Safe software updates via multi-
version execution. In Proceedings of the 2013 International Con-
ference on Software Engineering (2013), IEEE Press, pp. 612–621.

[17] HOSEK, P., AND CADAR, C. VARAN the Unbelievable: An
efficient n-version execution framework. In Conference on Ar-
chitectural Support for Programming Languages and Operating
Systems (ASPLOS) (2015), ACM, pp. 339–353.

[18] HUND, R., WILLEMS, C., AND HOLZ, T. Practical timing side
channel attacks against kernel space ASLR. In IEEE Symposium
on Security and Privacy (2013), S&P’13, pp. 191–205.

[19] HUNT, G. C., AND LARUS, J. R. Singularity: rethinking the
software stack. ACM SIGOPS Operating Systems Review 41, 2
(2007), 37–49.

[20] KONING, K., BOS, H., AND GIUFFRIDA, C. Secure and efficient
multi-variant execution using hardware-assisted process virtualiza-
tion. In Proceedings of the 46th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (2016).

[21] LARSEN, P., HOMESCU, A., BRUNTHALER, S., AND FRANZ,
M. SoK: Automated software diversity. In Proceedings of the
35th IEEE Symposium on Security and Privacy (2014), S&P ’14.

[22] LEE, D., WESTER, B., VEERARAGHAVAN, K.,
NARAYANASAMY, S., CHEN, P. M., AND FLINN, J. Re-
spec: efficient online multiprocessor replayvia speculation and
external determinism. ACM SIGARCH Computer Architecture
News 38, 1 (2010), 77–90.

[23] MAN-PAGES PROJECT, T. L. shmop(2) - linux manual page. http:
//man7.org/linux/man-pages/man2/shmat.2.html.

[24] MAN-PAGES PROJECT, T. L. tc-netem(8) - linux man-
ual page. http://man7.org/linux/man-pages/man8/

tc-netem.8.html.

[25] MANUAL PAGES, O. pledge - restrict system operations.
http://www.openbsd.org/cgi-bin/man.cgi/

OpenBSD-current/man2/pledge.2.

[26] MAURER, M., AND BRUMLEY, D. Tachyon: Tandem execution
for efficient live patch testing. In USENIX Security Symposium
(2012), pp. 617–630.

[27] MCCAMANT, S., AND MORRISETT, G. Evaluating SFI for a
CISC architecture. In Usenix Security (2006), p. 15.

[28] NAGARAKATTE, S., ZHAO, J., MARTIN, M. M., AND
ZDANCEWIC, S. SoftBound: Highly compatible and complete
spatial memory safety for C. In ACM SIGPLAN Conference
on Programming Language Design and Implementation (2009),
PLDI ’09.

[29] NAGARAKATTE, S., ZHAO, J., MARTIN, M. M., AND
ZDANCEWIC, S. CETS: Compiler enforced temporal safety for
C. In International Symposium on Memory Management (2010),
ISMM ’10.

[30] OLSZEWSKI, M., ANSEL, J., AND AMARASINGHE, S. Kendo:
efficient deterministic multithreading in software. ACM Sigplan
Notices 44, 3 (2009), 97–108.

[31] PROVOS, N. Improving host security with system call policies. In
USENIX Security Symposium (2002).

[32] PROVOS, N. Improving host security with system call policies. In
Proceedings of the 12th Conference on USENIX Security Sympo-
sium - Volume 12 (Berkeley, CA, USA, 2003), SSYM’03, USENIX
Association, pp. 18–18.

[33] RONSSE, M., AND DE BOSSCHERE, K. RecPlay: a fully in-
tegrated practical record/replay system. ACM Transactions on
Computer Systems (TOCS) 17, 2 (1999), 133–152.

[34] RUSSINOVICH, M., AND COGSWELL, B. Replay for concurrent
non-deterministic shared-memory applications. In Proceedings of
the ACM SIGPLAN conference on Programming language design
and implementation (PLDI’96) (1996), ACM.

[35] SALAMAT, B., JACKSON, T., GAL, A., AND FRANZ, M. Orches-
tra: intrusion detection using parallel execution and monitoring of
program variants in user-space. In Proceedings of the 4th ACM
European conference on Computer systems (2009), EuroSys’09,
ACM, pp. 33–46.

[36] SEGULJA, C., AND ABDELRAHMAN, T. S. What is the cost of
weak determinism? In Proceedings of the 23rd international con-
ference on Parallel architectures and compilation (2014), ACM,
pp. 99–112.

[37] SHACHAM, H., PAGE, M., PFAFF, B., GOH, E.-J., MODADUGU,
N., AND BONEH, D. On the effectiveness of address-space ran-
domization. In ACM Conference on Computer and Communica-
tions Security (2004), CCS ’04.

[38] SIEBERT, J., OKHRAVI, H., AND SÖDERSTRÖM, E. Information
leaks without memory disclosures: Remote side channel attacks
on diversified code. In ACM Conference on Computer and Com-
munications Security (2014), CCS ’14.

12

[39] SZEKERES, L., PAYER, M., WEI, T., AND SONG, D. SoK: Eter-
nal war in memory. In Proceedings of the 35th IEEE Symposium
on Security and Privacy (2013), S&P ’13.

[40] VOLCKAERT, S., COPPENS, B., AND DE SUTTER, B. Cloning
your gadgets: Complete ROP attack immunity with multi-variant
execution. IEEE Transactions on Dependable and Secure Com-
puting PP, 99 (2015).

[41] VOLCKAERT, S., AND DE SUTTER, B. GHUMVEE website.
http://ghumvee.elis.ugent.be.

[42] VOLCKAERT, S., DE SUTTER, B., DE BAETS, T., AND
DE BOSSCHERE, K. GHUMVEE: efficient, effective, and flexible

replication. In 5th International Symposium on Foundations and
practice of security (FPS 2012) (2013), Springer, pp. 261–277.

[43] WAHBE, R., LUCCO, S., ANDERSON, T. E., AND GRAHAM,
S. L. Efficient software-based fault isolation. In ACM SIGOPS
Operating Systems Review (1994), vol. 27, ACM, pp. 203–216.

[44] YEE, B., SEHR, D., DARDYK, G., CHEN, J. B., MUTH, R.,
ORMANDY, T., OKASAKA, S., NARULA, N., AND FULLAGAR,
N. Native Client: A sandbox for portable, untrusted x86 native
code. In IEEE Symposium on Security and Privacy (2009), IEEE,
pp. 79–93.

13

