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GENERAL INTRODUCTION 

 

 

Scope of the PhD research 

 

Epidemiology and pathomechanism 

 

To date, hamstring injuries are still the single most common injury in male football.
15-16, 23, 25-26, 79, 84-85

 

These injuries represent about 12% of all football related injuries, of which up to 30% reoccur within 

the same season after return to play.
84-85

 Encountering for the fact that a team of 25 players can expect 

about 6 hamstring injuries per season,
23

 each with an average absence from sports of approximately 20 

days,
8, 15, 24, 84

 the total number of days missed due to hamstring injury adds up to 120 days per team 

per season. This comes down to 18 matches played without full availability of the entire team, which 

evidently comes with bothersome repercussions at the level of the individual player, but just as much 

at team- and club level.  The hamstring injury epidemic manifests itself both at the amateur
75

 and elite 

divisions
23-26, 84

, with incidence rates up to 16 and 22% per season, respectively. More so, although the 

hamstring injury incidence during match play seems to have remained status quo over the years, the 

injury incidence during training demonstrated a 4% increase since 2001.
24

 These unremittingly high 

(re)occurrence rates are presumably related to insufficient preventive management, incomplete 

rehabilitation, as well as (and probably most likely) to the increasing demands in sports performance. 

Much effort has already been invested in trying to fully understand the reason for the substantial 

prevalence of this injury within this athletic population. However, to date, researchers and clinicians 

are still lacking evidence concerning the exact cause of the particular vulnerability of the hamstring in 

football and how this should be addressed preferably. Therefore, being subject to a substantial amount 

of uncertainty, these muscle injuries are notorious rather than famous in the field of sports medicine. 

After all, due to their high occurrence, they are associated with high expenses in health care and cause 

the players to be out for prolonged periods of time which has a detrimental influence on performance, 

overall physical health and psychosocial wellbeing.
34, 36

 Particularly, hamstring injuries do not only 
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come with expenses in health care for diagnosis and treatment (doctor consults, medical imaging, 

rehabilitation). They also cause substantial financial losses in elite football  due to the fact that the elite 

player is payed a fixed salary annually, without encountering for possible absence caused by injury. 

Therefore, an athlete who is unavailable to participate due to injury, is effectively providing less return 

for his club’s financial investment. Let us take a look at possible financial implications of hamstring 

injuries in Belgium: 

Bearing in mind the annual salary the average football player receives in national competition 

(Jupiler Pro League) and the average number of matches missed per season, one hamstring injury 

would cost the club about  

€40 000 on an annual basis.
21, 24

  When looking at the financial repercussions at amateur level, only 

taking into account the amateur series of Oost-Vlaanderen for example, annual healthcare expenses are 

estimated to be as high as €160 000. This was estimated based on the average incidence numbers,
8, 15, 

23-24, 84
 our health care regulation and the most recent rates in the nomenclature of Belgian healthcare 

(www.riziv.fgov.be). Therefore, when encountering for the entire amateur and professional football 

population in Belgium, the total financial cost of hamstring injuries in football cannot be overlooked 

and the urgent need for better prevention is beyond dispute.   

 

http://www.riziv.fgov.be/
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The biomechanical circumstances under which the hamstring muscle gets injured most often in 

football, occur during high speed running. In running, the hamstrings are responsible for propulsion 

through explosive concentric contraction from mid stance to back swing, and for deceleration of the 

rapid leg movement towards hip flexion and knee extension throughout front swing, by forceful 

eccentric muscle efforts [Figure 1]. Previous research even demonstrated that the hamstrings have the 

highest share in producing horizontal force during running acceleration (compared to the other 

muscles of the lower limb), which emphasizes their importance throughout sprinting.
54

 Besides their 

crucial function in positive and negative torque generation for propulsion and control for (excessive) 

anterior translation and rotation around the knee and hip, they are responsible for providing the 

necessary force closure in these joints throughout the entire running cycle as well (due to their 

biarticular topography). In these terms, it can be stated that the hamstrings are essential in 

safeguarding lower limb arthrokinematics. For if they would not succeed in providing the necessary 

force closure (particular during eccentric control in front swing), the hip joints would be at constant 

risk of impingement, and the vital ligamentous structures within and surrounding the knee joint 

(anterior cruciate ligament, menisci, joint capsule) would risk being stressed excessively (and as a 

consequence, sustaining strain injuries and ruptures).  
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Next to providing the necessary stability in the hip- and knee joint, the negative work performed 

during front swing, allows the hamstring muscle-tendon continuum to absorb elastic energy. This 

energy can contribute to augmented force output during the subsequent stance phase, and as such, 

allows the hamstrings to go to less metabolic expenses and engage in more economic muscle 

performances. This plyometric muscle function throughout running entails a very efficient mechanism 

and permits the hamstrings to generate substantial torques towards knee flexion and hip extension 

(both positively and negatively) in accumulating active and passive force production. Nonetheless, it 

holds a risk for mechanical overload as well, certainly during explosive accelerations and sprinting 

where the metabolic and mechanical loads are maximal. Although the hamstrings are anatomically and 

morphologically ideally suited to engage in these repeated cycles of high speed plyometrics (cf. 

section ‘Anatomy’), biomechanical research has demonstrated that it is precisely the repeated and 

intense eccentric muscle-tendon loading during energy absorption in front swing, that ultimately 

causes the muscles to fail functionally and/or structurally.
18-20, 56, 71

 Being exposed to repeated bouts of 

eccentric loading so frequently and intensely, the hamstrings develop microscopic lesions (micro 

tears) that cause the muscle-tendon tract to become less compliant and less stretch tolerant.
10, 64, 71

 This 

decrease in muscle-tendon compliance is caused by an increase in connective tissue viscosity 

(embedded within the muscle fibers and tendon cells) and alterations in mechanical behavior of the 

muscle-tendon unit caused by these changes in connective tissue characteristics (a left-sided shift in 

the stress strain curve) [Figure 2]. This implies that the connective tissue will allow less 

deformation/elongation for the same amount of force/stress imposed on it and thus, will be prone to 

failure and structural damage prematurely. When not encountered and corrected for, these structural 

changes and microscopic lesions could ultimately lead to macroscopic strain injury, most frequently 

occurring during the terminal front swing or initial stance phase in explosive running, when 

mechanical loads imposed on the hamstring unit are maximized  [Figure 1].
18-20, 56
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Figure 1. Different phases of the gait cycle in sprinting, where the airborne phase represents up to 80% of the entire gait 

cycle, whereas stance time is reduced to 20%. (in walking, the gait cycle consists of a 40% swing and a 60% stance phase for 

each leg). The push-off (a) is followed by the double float phase (b), in which the hamstrings of the front leg are working 

eccentrically to counteract knee extension and hip flexion and to warrantee a coordinated ground contact at touch down (c), 

whereas the hamstrings of the hind leg are still working concentrically in continuation of positive horizontal force production 

during push-off. This double float phase (b) does not only imply heavy loading of the hamstrings, but also requires solid core 

muscle coordination because the kinetic chain cannot appeal on a stable ground base nor can it benefit from ground reaction 

forces to amplify force output. The touch down phase (c) is characterized by rapid transition from eccentric towards 

concentric muscle work in the front leg, as positive horizontal force production needs to remain maximal and a decelerating 

influence of an inadequate foot strike (oriented too anteriorly of the body centre of mass) needs to be prevented. The mid 

stance phase (d) during which load transfer for subsequent forceful propulsion occurs, is kept short to optimize plyometric 

performance. 

The arrows indicate where the hamstrings engage in concentric contractions, and where they are loaded eccentrically. 

 * Phases of highest risk of strain injury, due to maximization of eccentric work load and hamstring stretch 
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Figure 2. The stress strain curve, representing the visco-elastic properties of connective tissue in function of mechanical load 

(stress). 

 

Evidently, high speed running is not the only actvity in football that holds a relative risk of hamstring 

injury. Epidemiological research demonstrated that hamstring strain injury occurs during other loading 

patterns like shooting, dribbling, heading, passing, twisting and jumping as well, albeit to a 

considerably lesser extent (60% of hamstring injuries are running related, whereas the other 40% 

happens due to over stretch or excessive loading during the other movement components previously 

mentioned).
 85

 Mostly due to the cyclic nature of sprinting biomechanics (same muscle effort / laoding 

is repeated an almost uncountable amount of times during a football match), compared to the limitedly 

repeated character of the other football specific movements, hamstring injuries occur predominantly 

during high speed running efforts. Because the plyometric-, and particurly the eccentric loading, is 

much less voluminous and intense during the other activities also holding a potential biomechical risk 

of strain injury, these will not tend give rise to (1) fatigue, (2) accumulation of micro-lesions and (3) 

changes in tissue properties equally manisfestly.  Interestingly and with respect to this issue, respective 

epidemiological studies reported that both the dominant and the non-dominant leg are frequently 

subject of a hamstring injury,
26, 85

 with some evidence for slightly more involvement of the dominant 
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leg.
70

 This could indicate that shooting holds an essential biomechanical risk of strain injury as well, 

given the fact that the football player will particularly load the hamstrings on his dominant side during 

shooting, whereas the hamstrings are loaded quite symmetrically in both legs throughout explosive 

running. To our opinion, and given the epidemiological data (60% of hamstring injuries are running 

related),
85

 this discrete unilateral preference does not indicate that shooting might hold the primary 

injury mechanism just as much. On the contrary, it only confirms that football players are so 

susceptible to hamstring injuries due to eccentric overload: although mechanical and metabolic 

loading during eccentric contraction in shooting is not to be compared with the total amount of load 

imposed on the hamstrings during sprinting (cf. supra), repeated shooting implies voluminous and 

intense eccentric hamstring loading just as well. Therefore, although shooting activities only rarely 

hold the direct injury mechanism, they do make the hamstring more susceptible to injury during 

sprinting (in having their share in the total amount of eccentric overload). 

Acknowleding that sprinting unevitably comes with the highest risk of hamstring injury and posesses 

the predominant injury mechanism in football, all hamstring injuries mentioned throughout this work 

will considered to be running related ones.  

Besides their biomechanical preference which causes these muscle injuries to predominantly occur at 

terminal swing or initial stance of running, hamstring injuries in football have a topographic 

preference as well. In these terms, opposed to what has been established in gymnasts and dancers 

(where a “slow stretch” injury mechanism causes the Semimembranosus (SM) to get injured the 

most), explosive-running-related injuries practically always involve the long head of the Biceps 

Femoris (BFLH) and to a much lesser extent the Semitendinosus (ST).
5-7, 85

 The exact cause of this 

predominant injury location in explosive running is still under debate. Biomechanical research, 

modelling hamstring mechanics during sprinting,
18, 37-38, 56

 has demonstrated that the BFLH undergoes 

the highest amount of stretch throughout front swing (relative to its resting length). However, the ST 

has demonstrated having to withstand the highest lengthening velocity and it has been shown that each 

of the biarticular hamstring muscles significantly contribute to positive and negative work throughout 

the entire running cycle.
18, 37-38, 56

 Therefore, this relative difference in muscle stretch throughout front 



25 

 

swing, cannot provide a robust explanation for the particular injury vulnerability of the BFLH, 

compared to the ST. Among other things, it is particularly this BFLH biased topographic preference of 

the lesion and the uncertainty around it, that indicates that we still not managed to identify the 

necessary hamstring injury risk predictors, which hampers successful (secondary) prevention. 

Attempting to improve our understanding regarding this issue, a first crucial step is acknowledging the 

structural particularities of each one of the hamstring muscles, because this will essentially influence 

their function.  Therefore, a thorough survey of hamstring anatomy is imperative.  

 

 

Anatomy 

 

Situated between the sciatic tuberosity and the proximity of the lower leg, the hamstring muscle unit 

(the “ischiocrural” muscles) covers the hind of the upper leg and controls for motion and stability in 

both the knee and hip joints. The hamstrings are composed of 4 separate muscle bellies, of which the 

smallest, the short head of the Biceps Femoris muscle (BFSH), only covers the knee joint and its 

function is limited accordingly. The other three, the BFLH, the ST and the SM are biarticular, managing 

both hip and knee kinematics [Figure 3]. The laterally oriented BFSH and BFLH originate at the 

posterior aspect of the femoral bone and the sciatic tuberosity, respectively, and have a common 

insertion at the distal and lateral aspect of the knee joint, upon and around the head of the fibular bone. 

At their distal insertion they branch into multi-directory tendinous and fascial ramifications towards 

the collateral lateral ligament, joint capsule, lateral tibia and iliotibial tract. The ST and SM originate 

at the sciatic tuberosity as well and insert distally from the medial aspect of the knee joint. The ST has 

a medio-anterior insertion at the superficial Pes Anserinus on the proximity of the medial surface of 

the tibial bone, whereas the SM inserts at the postero-medial aspect of the joint capsule, deep from the 

ST trajectory. At their proximal insertion, the BFLH and ST share a common tendon, whereas the SM 

has a separate tendinous origin [Figure 3].  
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Figure 3. Illustration of the biarticular muscle trajectory of the laterally oriented BFLH and the medially oriented ST and SM, 

crossing both the hip and knee joints. In the right hand side flexed knee image, the mono-articular BFSH can be identified 

underneath the BFLH. 

 

At both the proximal and distal muscle insertions, the biarticular muscle bellies consist of a large 

myotendinous junction (MTJ) and a free tendon. Taken together, this tendinous component 

encompasses a very large percentage of the entire muscle length [Table 1].
83

 To what extent the length 

of the biarticular muscle is interwoven with tendon tissue, differs per muscle. When taking into 

account the proximal and distal tendon representatives, relative to the entire muscle length, the BFLH 

consists for 120% of tendon tissue (i.e. the accumulative percentage). This is 87% for the ST and 

133% for the SM [Table 1]. 
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Table 1     Tendon and Myotendinous Junction (MTJ) lengths of the hamstring muscles as a  

                  proportion of muscle length. 

Approximate Percentage (%) of Muscle Length 

  BFSH BFLH ST SM 

Proximal Tendon Free tendon (%) NA 15 3 25 

MTJ (%) NA 45 27 48 

Distal Tendon Free tendon (%) 2 20 25 15 

 

MTJ (%) 36 40 32 45 

Data adapted from Woodley and Mercer displaying approximate percentages.  

NA=not applicable (as lacks a proximal tendon of insertion)
82

; %, Percentage; MTJ, Myotendinous Junction 

 

As presented in table 1, the SM has the largest tendon component of all three biarticular muscles. The 

BFLH has a very similar muscle/tendon ratio whereas the ST consists of considerably less tendon 

tissue. This difference in muscle architecture between the BFLH and ST is remarkable, as it is generally 

known that function follows form and vice versa. This indicates that, although sharing a proximal 

insertion and being interwoven throughout their proximal myotendinous junction, the BFLH and ST are 

designed to serve different purposes. The relatively short proximal free tendon of the ST (compared to 

the BFLH and SM) and its substantial tendon-free muscle fiber portion most probably make this lean 

muscle more compliant and more suited for force production throughout the entire range of motion 

with a smaller tendency to tighten or become stiffer due to repeated loading. On the contrary, 

containing more tendon tissue, the BFLH (and SM) can probably rely on a larger additional passive 

force output and should be capable of storing larger amounts of elastic energy during eccentric 

contraction. Nonetheless, these relatively viscous tissue characteristics (compared to the ST) might 

also cause the BFLH and SM to stiffen more rapidly, certainly taking into account the massive amounts 

of eccentric work they have to engage in. 

Next to topography and muscle/tendon relations, fascicle length, pennation angle and physiological 

cross sectional area (PCSA) are key determinants in elongation - and force production capacity of 

muscle tissue, and thus the amount of load the muscles are able to bear. Therefore, respective features 

have important implications in terms of muscle function and injury vulnerability as well.
80, 82

 As a 
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whole, the hamstring muscle complex has been described as being morphologically quite lean and 

consisting of fairly long muscle fibers with a rather small PCSA, indicating that this muscle unit is 

meant to be active throughout relatively long excursions. Next to their supposed functionality over 

extensive ranges of motion, this type of configuration is also associated with the capacity to withstand 

considerable amounts of stretch (which explains their predominant function in energy absorption 

through negative work in high speed running). However, in considering the morphometric 

characteristics of the different muscle bellies separately, it has been established that the four hamstring 

muscle bellies differ considerably in terms of pennation angle, fibre length and PCSA [Table 2].
82 

The 

muscle fibres and fascicles of the BFLH and SM are relatively short in length, have a fairly large PCSA 

and considerable pennation angles (both uni- and bipennate muscle trajectories). This in contrast to the 

BFSH and ST, which are more lean and consist of longer fascicles with a smaller volume and no 

bipennate junctions, implicating that these muscles have to deal with smaller amounts of intramuscular 

shear forces during contraction and elongation than their more voluptuous neighbours (BFLH and SM). 

These discrete intermuscular variations in muscle morphology, suggest that the BFLH and SM are 

primarily suited for explosive force production in the midrange of motion, and are, because of their 

muscle fibre properties and substantial tendinous component, more prone to overuse and strain 

injuries. On the other hand, the BFSH and ST ought to be more stretch tolerant and best suited for 

moderate force production throughout a more extended range of motion.  

 

Table 2     Morphometric data of the hamstring muscle 
63

 

 
Mean Fascicle 

Number 

Mean Fascicular 

Length (cm) 

Mean Fascicular 

Volume (ml) 

Mean 

Fascicular 

PCSA (cm
2
) 

Mean Total 

Compartmental 

PCSA (cm
2
) 

BFSH  12  12.4 3.6 0.29 2.98 

BFLH  22 7.0 3.4 0.49 10.06 

ST  27 9.0 2.7 0.27 8.08 

SM  28 5.0 2.9 0.58 15.75 
BFSH, Biceps Femoris Short Head; BFLH, Biceps Femoris Long Head, ST, Semitendinosus; SM, Semimembranosus; cm, 

centimeter; ml, millimeter; cm², square centimeter 
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Aside from anatomy and morphology, their dual innervation also increases the risk of hamstring strain 

injury. The entire hamstring unit is neurologically guided by the sciatic nerve, which is composed by 

the radices leaving the spinal cord between the 4
th
 lumbar and the 2

nd
 sacral vertebrae to proceed their 

peripheral trajectory. However, depending on the level at which it branches into the tibial and common 

fibular nerve divisions, the biarticular muscles are innervated by the sciatic and the tibial nerve 

whereas the BFSH is guided by the fibular (and sciatic) nerve. Certainly taking into account the large 

range of anatomical variations, the variety in neural guidance within the hamstring complex might 

cause asynchronous motor unit excitation and asynchronous muscle contraction, inducing excessive 

muscle load and shear stresses in certain muscle–tendon regions.  

In these terms, the anatomo-morphological profile of the hamstring muscles (biarticular trajectory, 

dual innervation, considerable muscle/tendon ratio) and in particular the inter-muscular differences, 

certainly provide a partial explanation for the high injury vulnerability of this muscle group. It also 

somewhat elucidates the particular injury vulnerability of the BFLH muscle, which is probably 

challenged most during explosive running and kicking activities as it  

1. Consists of fairly long proximal and distal free tendon- and MTJ components and voluptuous 

muscle fibers, which make it less stretch tolerant 

2. Is designed to produce higher amounts of muscle force (morphometry), which increases the 

imposed loads and intramuscular shear stresses  

3. Shares a proximal tendon with the ST and a distal tendon with the BFSH, which, certainly 

acknowledging the different innervation of the BFSH, increases the risk of excessive 

intramuscular shear stress (more so in case of asynchronous contraction and deficiencies in 

synergistic coordination) 

4. Has more multi-directional connective tissue connections with adjacent structures than its 

neighbours: sacrotuberous ligament, ST muscle fibers, fibular head, collateral lateral ligament, 

knee joint capsule, lateral tibia, iliotibial tract (via BFSH); which increases shear stress and 

tissue loading 
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5. Consists of a distal myotendinous junction in which both the homonymous fibres as well as 

the fibers of the BFSH insert under a 45° pennation angle, which potentially causes excessive, 

misdirected muscle-tendon stress in case of asynchronous muscle contraction with regard to 

both muscle bellies (which is plausible given the difference in neural guidance) 

6. Undergoes the highest amount of stretch throughout the front swing phase of running
19

  

7. Has a type II (fast twitch) fibre dominance which makes it prone to acidification and fatigue 

quite early (as is the case for the entire hamstring unit)
32 

 

 

Although the muscle architecture most probably holds a constitutional susceptibility to strain and this 

cannot be remediated, it also puts emphasis on the inherent differences in muscle function and loading 

characteristics. Being designed to serve varying purposes and to meet different (mechanical) demands, 

the quality of intra-muscular coordination and interplay between the biarticular hamstring muscle 

bellies is most probably essential with regard to individual load bearing capacity and tissue 

homeostasis of the separate muscle bellies. Bearing in mind that the BFLH and ST share a proximal 

tendon and (as such) have to withstand similar mechanical loads imposed on the proximal 

myotendinous junction, the nature and quality of intramuscular cooperation within this particular 

functional muscle entity is most probably imperative in the running related hamstring injury risk. 

Quite interestingly, exactly these two muscles are prone to the explosive running type of hamstring 

injuries (the BFLH being remarkably more involved).
6
 

Rehabilitation and prevention 

 

To accurately prevent a(ny) sports injury, it is essential to deal with its cause, which mostly comprises 

of the injury mechanism and the intrinsic risk factors that made that particular athlete susceptible to 

injury under the given playing circumstances. However, certainly in rehabilitation (secondary injury 

prevention), the therapeutic policy is still primarily based on symptomatic management, with 

dominant focus on restoring local tissue homeostasis and isolated muscle function. This merely comes 

down to normalizing the patients clinical presentation, which is characterized by pain on palpation, 
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muscle elongation and resisted contraction (differential diagnosis of muscle – tendon injuries). Apart 

from this symptomatic treatment (which is a vital first step in secondary rehabilitation), the search for 

the exact cause of the injury is tended to be neglected.  

 

 

 

When wanting to encounter these potential causative factors in (secondary) prevention, their possible 

involvement in hamstring injury susceptibility needs to be brought to the evidence and that is where 

the shoe pinches. Due to the lack of prospective research, the only factors of which the association 

with an increased hamstring injury risk have been brought to evidence are age, injury history and 

muscle strength.
19

 When looking at this evidence, it seems that in terms of this muscle strength, only 

Quadriceps peak torque has been identified as a valid risk estimate of hamstring injury susceptibility. 

Likewise, the role of hamstring flexibility or stretch tolerance in injury risk reduction is still under 

discussion (although always considered to be essential in hamstring injury prevention, certainly 

acknowledging the injury mechanism and the vital capacity of producing strength in lengthened state 
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conditions as is the case in high speed running).
19, 76

 Involvement of other potential risk associates has 

been explored throughout the years, but due to limitations in study design and conflicting results in 

between studies, the current evidence for the intrinsic hamstring injury risk profile has remained 

limited. In an attempt to increase insights in the high hamstring injury risk in football, multiple studies 

with varying methodological designs have already been conducted. Approximately, those studies can 

be categorized into four groups: (1) observational and describing research, (2) retrospective research, 

(3) prospective research and (4) interventional research. Although observational and retrospective 

studies might contribute to better understanding as regards the pathomechanics and underlying 

intrinsic risk factors, actual scientific evidence for the role of certain features in hamstring injury 

occurrence can only be gathered by pooling the results of prospective and interventional research. 

Unfortunately, respective studies come with methodological challenges (time management, financial 

burden, prone to bias, statistical power, etc.) that frequently incline the researcher to opt for more 

feasible designs. Nonetheless, a limited amount of prospective (3) and interventional (4) studies has 

assessed the causal effect of clinical or functional features on hamstring injury occurrence (3) and the 

effect of particular rehabilitation regimens on time to return to play (RTP) and risk of recurrence (4). 

Factors that demonstrated  to have a significant influence on future hamstring injury occurrence are: 

previous hamstring injury,
9,
 

19
 bilateral eccentric strength imbalances,

9,  19, 21
  deficits in conventional 

and functional (mixed) isokinetic antagonist strength ratios,
69

  deficits in muscle flexibility
80

 and 

weaker performance on the Single Leg Hamstring Bridge (SLHB) test.
29

 Intervention studies, looking 

at the protective effect of including certain exercises in (secondary) prevention protocols, assessed the 

relevance of implementing the Nordic Hamstring exercise,
2
 early stage lengthened state strength 

training,
8, 73

 additional core-stability and agility training,
66

 and correcting for pre-seasonal strength 

imbalances,
21

 amongst others. Unfortunately, most of the results deducted from respective prospective 

research have been contradicted by similar studies
19

 and the interventional studies do not sufficiently 

allow risk appraisal because they only encounter time to RTP and hamstring injury recurrence in their 

prediction models, without checking the underlying effect of the intervention. The actual factor, 

responsible for the development of or protection against injury, is generally not identified (apart from 

the studies adjusting isokinetic strength deficits and verifying associated effects).
21

 Therefore, at 
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present, we can only be certain of the detrimental involvement of eccentric hamstring deficits (relative 

to other side or quadriceps strength) and hamstring injury history.
19 

 

In terms of retrospective research results (2), it has been demonstrated that hamstring injuries might 

lead to morphological changes,
44, 67 

neuromuscular inhibition,
31

 strength
44, 47, 72

 and flexibility
47

 deficits, 

as well as alterations in running biomechanics.
11, 44, 63

 Whether these dysfunctions really increase the 

risk of future injury or reinjury, and can thus be defined as both consequence and potential cause of 

hamstring injury, cannot be stated based on the available evidence.  

Lastly, in terms of pathomechanism, existing observational studies concluded that the terminal swing 

and initial stance phases of high speed running most probably hold the primary injury mechanism 

because mechanical loads on the hamstring muscle-tendon continuum reach their maximum within 

that timeframe.
18, 20, 63  

Because of the mechanical properties of connective tissue, we can indeed 

assume that repeated strain, induced by intense negative work in the distal range of motion, causes the 

hamstring muscle-tendon unit to fail when mechanical stress is the highest (inciting event). To confirm 

this pathogenic model prospectively, one would have to submit a football player to a monstrous high 

speed running protocol to exertion, after a period of voluminous and high intensity training exposure 

and check whether the voluntary participant would actually injure his hamstrings due to excessive 

strain in terminal front swing. Evidently, this would be quite unethical and methodologically 

impossible to verify. Related biomechanical research also suggested that proximal muscle activity 

(muscles within pelvis and trunk unit) has the capacity to increase and decrease hamstring muscle 

loading throughout running,
19

 which appeared to be the case as well for kinematic running features 

like the amount of forward trunk lean.
39

 Likewise, although making perfect sense in theory, these 

features cannot be defined as actual risk factors for hamstring strain injury, without confirming 

evidence through injury risk prediction in prospective research approaches.  

This means that when assessing and addressing the relative risk to hamstring injury in a football 

player, the practitioner is largely given the brush-off as concerns valid clinical risk estimates for 

hamstring injury risk appraisal and sufficient causal (secondary) prevention. Rehabilitation regimens 



34 

 

commonly consist of manual therapy, stretching and strengthening exercises, with a varying level of 

intensity and pace of progression, in function of the location and the extent/severity of the lesion. 

Essentially, these treatment strategies come down to symptom relief as the dysfunctions identified in 

the clinical examination (pain on palpation, stretch intolerance and bilateral strength deficits) are being 

addressed without further ado. Due to lack of supporting evidence, the detrimental intrinsic risk profile 

cannot be remediated appropriately. It is therefore not incomprehensible, that hamstring injuries tend 

to (re)occur this extensively.
8, 67

 The essential search for comorbidities, associated 

complaints/dysfunctions and underlying risk factors within the patients locomotor system is left out. 

Rehabilitation and secondary prevention are still mainly symptom-contingent, and primarily (or 

solely) based on the structural characteristics of the lesion and the patient’s clinical presentation. The 

fact that (secondary) hamstring injury prevention generally comprises of flexibility and strength 

training (and this has been demonstrated not to be very successful), points out that the hamstring 

injury risk is definitely not primarily based on these local muscle characteristics, but that much more 

needs to be explored. Research urgently needs to invest in prospective studies, in which both primary1 

and secondary2 hamstring injury risk is investigated. This preferably by using first1 and repeated2 

hamstring injury occurrence as primary dependent outcome measures, in association with 

comprehensive screening or intervention protocols.    

Although former research was not able to validly amplify the intrinsic risk profile with some sports- 

and injury-mechanism-related risk estimates to implement in rehabilitation and prevention, it certainly 

made a deserving attempt to do so. By exploring possible involvement of running biomechanics
19, 39, 44 

and neuromuscular inhibition
31

 after injury and their potential influence on reinury susceptibility, and 

the beneficial influence of incorporating core stability and agility exercises in rehabilitation 

regimens,
29, 66

 fellow researchers already put emphasis on the need for investigation of intra- and 

intermuscular neuromuscular coordination in hamstring injury risk prediction (and reduction). 

However, to date,  no studies have been conducted trying to verify the influence of neuromuscular 

coordination on hamstring injury susceptibility using prospective methodological designs. Therefore, 

the studies embedded within this doctoral dissertation, wanted to take the first steps in the right 
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direction.  In this doctoral dissertation, we decided to explore the possible role of coordination in the 

intrinsic hamstring injury risk profile because:   

- monitoring for local features of muscle function and load bearing capacity (adequate 

hamstring strength and flexibility) clearly does not suffice to  weapon the football player 

against injury. 

- intramuscular variations in anatomy and morphology suggest discrete differences in functional 

purposes in between the different hamstring bellis, which stresses out the necessity of solid 

intramuscular coordination.  

- the football game consists of a variety of highly complex and explosive movement patterns 

that come with substantial biomechanical and metabolic demands on every link in the athlete’s 

kinetic chain, certainly as regards the hamstrings.
69

 These complex biomechanical conditions 

demand an optimal technical and  physical performance capacity, which can only be achieved 

when all links within the kinetic chain engage in adequate intermuscular coordination.  
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Summary 

 

To summarize the state of the art with regard to hamstring injuries in male football, it can be stated 

that male football players continue to present themselves relatively susceptible to (re)injury due to 

- the large volumes of repeated explosive running efforts during football exposure 

- the architectural characteristics of the hamstrings (and the inter-muscular differences) 

- lacking evidence concerning the underlying intrinsic risk factors, disabling  the development 

of effective prevention strategies and making the individual athlete prone to injury during 

explosive running  

One needs to bear in mind that all sports that involve sprinting and explosive changes in running pace 

and running direction, hold a relative risk of hamstring injury due to (1) the mechanical loads involved 

and (2) the anatomy and morphometry of the hamstrings. Therefore, it is essential that maximal effort 

is being invested in unraveling the complex intrinsic risk profile in an attempt to rescue the hamstrings 

out of this precarious situation. 

 

Aim of the PhD research 

 

Research content 

 

The aim of this research project was to verify  

(1) what makes the BFLH more vulnerable to strain injury than its medial opponents, other than 

muscle anatomy and amount of stretch during the front swing phase of running, and  

(2) whether the quality of neuromuscular coordination within and beyond the hamstring muscle 

unit is associated with hamstring injury 

(3) which biomechanical characteristics during explosive running might be detrimental and 

potentially harmful, predisposing a certain football player to a hamstring injury.  
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Attempting to solve respective questions and to provide the stakeholder with useful guidelines for 

assessment, rehabilitation and prevention, this work primarily aimed to identify significant 

(modifiable) intrinsic risk factors for hamstring injuries in male football players. As mentioned earlier, 

current research and clinical practice have been focusing on local hamstring muscle features and 

function. Nonetheless, addressing the entire ‘kinetic chain’ is increasingly becoming standard in 

general (sports) injury prevention.
1, 3, 53, 55, 61, 77

 In line with this contemporary evolution and 

acknowledging the structural (and presumably according functional) particularities of the BFLH-ST 

unit, this dissertation goes more deeply into the relevance of investigating features of neuromuscular 

coordination within the hamstring muscle unit and in adjacent kinetic chain regions, for the purpose of 

hamstring injury risk prediction.  

More specifically, the following items were thoroughly depicted on association with elevated 

hamstring injury risk: 

(1) Exercise related hamstring muscle metabolism and intramuscular coordination 

(2) Posterior chain muscle functioning and quality of the intermuscular coordination 

(3) Core – and thigh muscle activation patterns as well as lower limb and trunk kinematics 

during high speed running 

 

These topics are tackled in Chapters I to III. In the first chapter, the role of metabolic muscle 

functioning (intramuscular coordination) in hamstring injury vulnerability is investigated by 

assessing the metabolic hamstring response to exercise. In looking at the individual activations 

features of the different hamstring muscle bellies and the characteristics of inter-muscular coordination 

within the entire muscle unit, we wish to investigate the functional differences between the hamstring 

muscle bellies (in particular as concerns the BFLH and ST) and the associated location-specific injury 

vulnerability. To do so, muscle functional magnetic resonance imaging was used. By assembling the 

T2 map of the acquired T2 weighted Magnetic Resonance (MR)  image and  repeating this before and 

after exercise, we could establish which muscle fibers were activated most and whether variability in 

this muscle recruitment pattern could be associated with elevated hamstring injury vulnerability. 
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Although this technique has already been used to examine hamstring muscle function in previous 

research, this has never been done in direct association with the hamstring injury risk. Nonetheless, 

respective studies did attempt to make a contribution to better injury prevention, as those mfMRI 

protocols were conducted to select exercises to predominantly address the most frequently injured 

BFLH , assuming that selectively addressing this muscle would make it less vulnerable for strain injury 

(relative to its neighbours).
49, 51-52

 These studies never verified to what extent the exercises they elected 

had any effect on BF recruitment or strength using an interventional approach, nor did they search for 

an association with hamstring injury occurrence. Therefore, the studies embedded within Chapter I, 

were the first ones to investigate the clinical relevance of investigating intramuscular activation 

features (coordination) in relation to hamstring injury susceptibility in football players.   

Chapter II explores the intermuscular coordination features and discusses the utility of the Prone Hip 

Extension exercise to assess neuro-muscular coordination deficiencies in the posterior chain 

continuum (lower back muscles – gluteal muscles – hamstrings) and respective association with 

hamstring injuries. Inspired by similar research in the domain of chronic low back pain and sacro-iliac 

joint dysfunctions,
4, 33, 49, 69, 78

 the second chapter describes the investigation of the muscle recruitment 

pattern during a simple prone hip extension task, and verifies if certain muscle recruitment features are 

possibly detrimental in terms of hamstring injury predisposition. In adopting his PHE test, existing 

research has primarily been focusing on:  

- the absolute timing of muscle activity in each of the investigated muscle groups, 

- the relative timing of those muscles with respect to the activity onset of one another (the 

activation sequence) and  

- the amount of muscle activity displayed by each muscle group.  

This has mostly been done to assess the quality of motor control in the lumbo-pelvic-hip complex with 

respect to low back (or sacro-iliac joint) complaints.
3, 13, 17, 40-42, 45, 57, 59, 61-62, 74 

Those studies checked 

whether the above mentioned outcome measures differed in function of the presence of low back 

complaints, and mostly concluded low back dysfunctions to be associated with a delay in activity 
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onset of the Gluteus Maximus, rather than with  particular alterations in the relative activation 

sequence or the amount of muscle activity presented by each of the intended muscles.
3, 13, 17, 40, 45, 62

 

Only one study examined these features in relation to the presence of a hamstring injury history.
26

 

These authors only assessed the amount of muscle activity and not the timing of muscle activation 

within the posterior chain. Their retrospective analysis revealed that subjects with a hamstring injury 

history demonstrated higher amounts of normalized muscle activity in the medial hamstrings and the 

Gluteus Maximus compared to those without a history of hamstring injury, most probably due to 

neuromuscular compensation strategies caused by the injury. Only one other study examined the 

timing of muscle activity during the PHE test with respect to lower limb injuries. Similar to what has 

been established in motor control research in the context of low back pain, those study results revealed 

a delay in Gluteus Maximus activity in subjects with a history of lateral ankle sprain compared to their 

healthy controls.
14 

In the second chapter we wanted to verify the importance of muscle activation 

features during this PHE in determining the hamstring injury risk in football players, primarily 

focusing on the timing of muscle activity. This because previous research and theoretical frameworks 

have pointed out the importance of adequate lumbo-pelvic control in protecting the hamstrings against 

overload as well, mostly identifying the activity onset of the gluteus maximus as the essential outcome 

measure.
41, 61, 57

 

Finally, Chapter III adopts an even broader perspective and explores the causal association between 

sprinting biomechanics and hamstring injury risk. This was done by assessing whether lower- limb 

and core kinematics as well as muscle activation patterns during the critical phases of the running 

cycle, are able to predict hamstring injury occurrence. Previous observational research already adopted 

similar methodological approaches to gather insights in mechanical loading of the hamstrings 

throughout the gait cycle in high speed running and the possible effects of muscle activity and 

kinematics in the lumbo-pelvic region on these hamstring mechanics.
18-20, 43

 However, this has never 

been done in prospective study approaches actually allowing identification of a possible causal 

relationship between muscle activation or kinematic features during sprinting and the likelihood of 
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hamstring injury occurrence during post hoc monitoring for injury registry. Chapter III attempted to 

fill this gap.  

 

For each of the studies embedded within these three chapters, a homogeneous sample of amateur 

football players was recruited (1
st
 and 2

nd
 provincial series – Oost-Vlaanderen, Belgium). Screening 

and assessment of the above mentioned risk estimates was conducted during the 2013 off-season 

period, after which the participants were monitored for hamstring injury occurrence until the 2014-

2015 winter break. Hereafter, all data were sorted and submitted to statistical analysis for injury risk 

prediction. The results of the separate studies are comprehensively documented in Chapters I, II and 

III. 

 

Research approach 

 

To enhance the reader’s understanding of the methodological approaches adopted within this work, the 

following concluding paragraph will succinctly run through the different techniques and their 

individual particularities, used to map the neuromuscular coordination features within and beyond the 

hamstrings. 

Each of the chapters included in this dissertation, discusses the investigation of neuromuscular 

coordination features: starting within the hamstring unit and progressively encountering for the 

synergist and antagonist muscles in functional and injury-mechanism-related setting as well. To serve 

these purposes, different methodological approaches were used, depending on the main research 

question that was posed in the build-up of every study. In the first chapter, muscle functional Magnetic 

Resonance Imaging (mfMRI) was attributed because this technique provides the best spatial resolution 

and allows to differentiate activity differences within the hamstring muscle unit. Although this 

imaging technique does not allow to assess innervation behavior of the muscle or timing of muscle 

activity (unlike surface electromyography recording (sEMG)), it was best suited to verify the 

metabolic activity demonstrated by each hamstring muscle and therefore also the extent of 
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(dis)similarity between respective muscles. Muscle functional MRI provides the opportunity to 

accurately quantify the amount of metabolic activity exerted by the intended muscle (unit) in 

comparing the muscle tissue signal intensity in a T2 weighted image before and after exercise. By 

contrast with T1 weighted images, that are used to assess anatomy with the best accuracy, T2 weighted 

images are more sensitive for (pathological or functional) changes in the content of tissue water (as is 

the case for the presence of edema or osmotic fluid shifts related to muscle metabolism). Comparing 

the T2 relaxation time, demonstrated by each hamstring muscle separately, before and after exercise, 

enabled us to verify which hamstring muscle had been activated the most and whether this activation 

pattern had any effect on hamstring injury predisposition within our sample of football players. When 

using the term muscular ‘activation pattern’ throughout the papers embedded within the first chapter, 

we refer to the extent of motor unit recruitment and associated metabolic activity demonstrated within 

respective muscle (bellies). As such, the terms ‘activation pattern’, ‘muscle recruitment’ and 

‘metabolic activity’ are to be interpreted identically.  In the second chapter, the activation sequence 

within the posterior sling (including the hamstrings, gluteus maximus and lumbar erector spinae) was 

our topic of interest. Next to amount of muscle activity (the amount of motor units recruited to 

participate in contraction), the capacity to generate muscle activity (and strength) rapidly or precisely 

in function of time (depending on the biomechanical conditions of the movement task), is essential for 

effective and safe functioning. Because the hamstrings, hip and back muscles are part of a synergistic 

extension unit and have to work together in a well-balanced manner both as regards amount and 

timing of muscle activity, we wanted to verify whether this intermuscular coordination pattern could 

be involved in hamstring injury vulnerability as well. The main outcome variables within the electrical 

signal acquired by means of sEMG are (1) amplitude and (2) firing frequency: (1) indicating the 

amount of motor units participating in electrical discharge (depolarization) and (2) indicating the 

frequency with which the motor neurons provide the underlying muscle fibers with these electrical 

impulses. As such, the rise of the amplitude of the sEMG signal or more specifically, the time the 

intended motor units needed to present an activity amplitude that significantly rose above baseline, 

was the variable of interest in Chapter II. Chapter III wanted to investigate the importance of 

intermuscular and kinematic coordination during sprinting (because this activity holds the primary 
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injury mechanism). This was assessed by submitting the participants to a comprehensive multi-

muscle sEMG analysis (to assess the innervation behavior of the hamstrings and core muscles) and a 

three-dimensional motion analysis (to assess the segment and joint excursions in core and lower 

limb) during sprint acceleration. Although quality and quantity of movement and muscle activity are 

supposed to be interrelated, movement outcome can be mediated by an infinite spectrum of 

neuromuscular coordination strategies,
80

 which makes it difficult and incorrect to draw conclusions 

regarding running coordination and hamstring injury susceptibility by solely assessing the sEMG 

signals or kinematic curves throughout the gait cycle in sprinting. Therefore, both methodological 

approaches were attributed in the third and final chapter.  
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Abstract 

 

Background  The hamstring injury mechanism was assessed by investigating the exercise-related 

metabolic activity characteristics of the hamstring muscles using muscle functional 

MRI (mfMRI). 

Methods  27 healthy male football players and 27 football players with a history of hamstring 

injuries (recovered and playing fully) underwent standardized mfMR Imaging. The 

mfMRI protocol consisted of a resting scan, a strenuous bilateral eccentric hamstring 

exercise and a postexercise scan. The exercise-related T2 increase or the signal 

intensity shift between both scans was used to detect differences in metabolic 
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activation characteristics between (1) the different hamstring muscle bellies and (2) 

the injury group and the control group. 

Results  A more symmetrical muscle recruitment pattern corresponding to a less economic 

hamstring muscle activation was demonstrated in the formerly injured group ( 

p<0.05). The injured group also demonstrated a significantly lower strength endurance 

capacity during the eccentric hamstring exercise. 

Conclusions These findings suggest that the vulnerability of the hamstring muscles to football-

related injury is related to the complexity and close coherence in the synergistic 

muscle recruitment of the biceps femoris and the semitendinosus. Discrete differences 

in neuromuscular coordination and activity distribution, with the biceps femoris partly 

having to compensate for the lack of endurance capacity of the semitendinosus, 

probably increase the hamstring injury risk. 

Key words  Eccentric; Football; Hamstring; Injury; MRI 

 

Introduction 

 

Hamstring injuries are the most common muscle injuries in male football players and are associated 

with significant time loss.
1
 Given the significant reinjury rates and the high costs involved, adequate 

prevention and rehabilitation strategies, as well as valid return to play criteria, are of major 

importance.
2–7

 The predominant hamstring injury mechanism in football occurs during high-speed 

running or acceleration efforts.
8- 9

 The muscle–tendon junction of the long head of the biceps femoris 

(BF) is most commonly injured.
10-11

 Despite the growing insights into the injury mechanism and risk 

factors of hamstring strain injuries, a full understanding of the underlying epidemiology is lacking, 

which is confirmed by the high injury incidence and recurrence rates.
12–14

 Biomechanical and 

kinematic studies have demonstrated that the BF is subject to the highest levels of muscle–tendon unit 

stretch throughout the crucial terminal (front) swing phase in (high speed) running.
9, 15–17

 This could 



58 

 

possibly explain why this muscle belly is injured the most. In addition to stretch, other differences in 

functional muscle features between the biarticular hamstring bellies might be involved as well. Both 

the semitendinosus (ST) and the BF engage in maximal eccentric activation throughout the swing 

phase of running (middle swing to initial stance phase). These synergists work alternatingly in 

complex neuromuscular coordination patterns,
15, 18-19

 where the BF is predominantly activated prior to 

and immediately after touch down and the ST is the leading player during mid- and late front swing.
18, 

20 
 This stresses the importance of sufficient neuromuscular and intramuscular coordination between 

those two muscle bellies. Altered muscle activation patterns have been associated with prior hamstring 

injuries and an increased risk of reinjury.
4, 20- 21

 Intramuscular synergistic recruitment patterns and the 

quality and quantity of co-operation between the BF, ST and semimembranosus (SM) have not been 

investigated. Electromyography (EMG) assessment has been used as a gold standard in the evaluation 

of muscle recruitment and activation patterns. Owing to its poor spatial resolution and the presence of 

crosstalk in the observed muscle signals, this method is not ideally suited for the evaluation of muscle 

recruitment patterns within the hamstring muscle complex. Functional MRI (fMRI) can map the 

intramuscular and intermuscular recruitment patterns with a very high spatial accuracy
22–25

; however, 

unlike EMG, it cannot provide any real-time information about the amount and timing of the 

underlying muscle activity. Nonetheless, fMRI has the ability to detect and evaluate the magnitude of 

metabolic activity in muscle tissue. Since this technique is non-invasive and has high sensitivity and 

specificity, it has been used to detect exercise-related muscle activation patterns in various muscle 

groups (cervical flexor muscles, back extensor muscles, quadriceps, hamstrings and adductor 

muscles)
26–29

 and pathology-related compensatory muscle recruitment patterns (patellofemoral pain 

syndrome, chronic low back pain).
30-31

 Studies using fMRI have also evaluated muscle activity in 

hamstring muscle bellies during various exercises to identify the most effective exercise for injury 

prevention.
18, 32

 However, this technique has not been used to assess the intramuscular activity 

proportions (and underlying neuromuscular coordination patterns) in an athletic population at risk. 

This study aimed to assess how the different hamstring muscle bellies work together in synergistic 

coordination patterns and whether changes in neuromuscular coordination patterns are associated with 

hamstring injuries.  
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Methods 

 

Participants  

 

Throughout the spring of 2013 (March – May), male football players were addressed via contact with 

the club trainer, coach, physiotherapist or sports physician. Initially, 75 male football players from 

seven clubs in Oost-Vlaanderen, Belgium (recreational football competition) agreed to participate. 

Potential participants were excluded from this study if they reported: 

- having a history of severe knee or hip injury; 

- having a history of lower back complaints/lower back complaints at present; 

- having electronic implants or foreign (ferromagnetic) bodies close to the thigh region, or were 

suffering from claustrophobia, which made them unsuitable for MRI evaluation; 

- having less than 5 years of competitive football experience. 

Only players aged between 18 and 35 years were included in the study to rule out age-related 

pathologies. All participants were completely free from injury and ready to play at the moment of 

testing. Ultimately, fifty-four players participated in this study: 27 football players without a history of 

hamstring injuries and 27 football players with a recent (within the last 2 seasons) history of at least 

one hamstring injury (one reported injury episode). A hamstring injury was defined as a football-

related injury in the hamstring muscle region, preventing the player from participating in training or 

competition for at least 1 week. The majority of injuries within the injury group were diagnosed 

clinically, with or without accompanying medical imaging. The recruitment and inclusion of injured 

participants was based on self-report, as we were not able to contact all physicians and 

physiotherapists involved in  the original diagnosis and rehabilitation. At the time of testing, none of 

the players experienced any pain or discomfort in the hamstring region during football participation or 

during the muscle fMRI (mfMRI) protocol in this study. 
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Testing procedure 

 

Participants were instructed not to engage in intensive training or football competition 48 h prior to 

testing to ensure a valid measure of the exercise-related ‘T2 increase’ or ‘signal intensity shift’. The 

testing protocol consisted of two scanning sequences with a strenuous hamstring exercise between 

both scans. The difference in the transverse relaxation time of the separate hamstring muscle bellies 

before and after exercise (T2 increase or signal intensity shift) indicated the magnitude of underlying 

metabolic muscle activity.
22

 After completing the MRI safety checklist and signing the informed 

consent, the participants were familiarized with the scanning sequence and the hamstring exercise. The 

entire testing procedure was performed by the same researcher (JS), which minimized the risk of 

intertester bias. This study was approved by the Ethics Committee of the Ghent University Hospital 

(number of approval: EC/2013/118). 

 

Muscle fMRI 

 

A 3 T scanner (Siemens Trio Tim, Erlangen, Germany) was used for the mfMRI protocol. The 

participants were positioned supine on the scanning table, which was supplied with a spine coil, with 

both legs extended and their feet close to the magnet. A flexible body matrix was placed on the 

anterior thigh area and carefully aligned with the centre of the field of view. Plastic tubes filled with 

sodium chloride solution were used for accurate localization and determination of the centre of the 

field of view (the intended slice position) (figure 1). The centre of the body matrix was aligned with 

the thigh level on which the plastic tubes were fixed. Coloured tape was used to indicate this centre of 

image acquisition, relative to the scanning table, so that the participant’s position before and after 

exercise was exactly the same, and the second sagittal localizing sequence after exercise was not 

needed. Each participant underwent the following scanning sequences: one localizing sequence, one 

Spin Echo T1 sequence, one CPMG (Carr Purcell Meiboom Gill) sequence before exercise and the 

same CPMG sequence after exercise. The CPMG scanning sequence is the main functional scanning 

sequence that allowed the calculation of a T2 map after scanning. This T2 map gives an indication of 
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the metabolic status of the muscle tissue, depending on the signal intensity or the magnitude of the T2 

relaxation parameter (T2 time constant of muscle water). The localizing sequence was performed only 

once to minimize the time span between the end of the exercise session and the second CMPG image  

acquisition. As the T2 shift half-life is only 7 minutes (min.),
22 33

 running a second localizer after 

exercise may have resulted in an underestimation of the exercise-induced metabolic changes within the 

hamstring muscles. Due to the lower fairly low contrast in T2 weighted MR images, a Spin Echo T1 

(SET1) sequence was added to the functional scanning protocol for more accurate region of interest 

(ROI) identification and selection in the post hoc analysis. The contrast of a T1 scan is substantially 

higher than the contrast within a T2 image, so the T1 image made it possible to discriminate the 

different hamstring muscle bellies from one another in the T2 map more accurately (Table 1).  

 

 

d  

 

 

 

 

Figure 1.  Position of the middle slice  

(centre of the field of view) for the T1  

and both CPMG (Carr Purcell Meiboom Gill)  

scanning sequences. 
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Table 1   Spin Echo T1 and CPMG T2 Slice Positioning and Image Acquisition Parameters 

Scan Position and Acquisition 

Parameters 

Spin Echo T1 CPMG 

Number of slices 6 5 

Slice Thickness (mm) 4 5 

Field of View (mm) 340 380 

Middle Slice Location Upper border distal third upper leg 

(ASIS – lateral epicondyle femur) 

Upper border distal third upper leg 

(ASIS – lateral epicondyle femur) 

Repetition Time (ms) 550 1500 

Echo Time (ms) 9 10.5 - 168 

Number of Echoes 1 16 

Voxel Size (mm) 0.9 x 0.9 x 0.4 1.5 x 1.5 x 5.0 

CPMG, Carr Purcell Meiboom Gill; Mm, millimeters; ms, milliseconds; ASIS, anterior superior iliac spine 

 

The middle slice (or the centre between both middle slices for the SET1 sequence) was located on the 

upper border of the distal third of the thigh, which was marked using the fluid filled tubes (figure 1). 

This field of view centre was chosen because this specific upper thigh region consists of the highest 

muscle tissue/connective and tendon tissue ratio. Imaging parameters were identical for both the 

CPMG sequence before and after exercise.  

 

Hamstring exercise  

 

Participants performed a prone leg curl exercise between both functional CPMG sequences. They were 

positioned prone on a 60° inclined exercise table to induce hip flexion and were instructed to flex and 

extend both knees alternately from 90° of knee flexion to full extension with a weight of 5 kg attached 

to each foot. Participants were instructed to flex and extend both knees at a constant 90 rpm 

(repetitions per minute) pace, monitored by a metronome. This exercise was chosen to mimic the 

hamstring mechanics in running (hip flexion and knee extension that had to be controlled and 

decelerated against gravity) while also providing a fairly high muscle loading to induce a sufficient 

metabolic activation response (there is a linear relationship between exercise intensity and magnitude 

of T2 increase). Participants completed the exercise to exhaustion (corresponding to a score of 20 on 
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the Borg Ratings Scale of Perceived Exertion) because this guaranteed a sufficient metabolic muscle 

response and because fatigue has already repeatedly been identified as an important actor within the 

hamstring injury risk.
2 4 34 35

 Hip and knee joint deviations in the frontal (abduction—adduction) and 

transverse (internal—external rotation) planes were prohibited because this would influence the 

muscle activation patterns (figure 2). When the participants indicated having reached exhaustion and 

the exercise could no longer be performed with quality, they were submitted to the second CPMG 

sequence within 1 min. The time to exhaustion was recorded.  

 

Data analysis  

 

Acquired images were converted into T2 maps (i.e. filtering out the T1 effect) for calculation of the 

mean transverse relaxation times in the different ROIs using the T2Processor software (copyright P. 

Vandemaele, Engineer, GIFMI UZ Gent). Afterwards, the T2 value was calculated via the formula: 

Sn=S0×exp (−TE/T2), where Sn represents the signal intensity, expressed in milliseconds, at a given 

TE within the scanner’s original signal intensity S0. 

 

Figure 2. Prone leg curling exercise in between both CPMG  

scanning sequences of the testing procedure. 

For the functional CPMG sequence, five slices were taken at the upper border of the distal third of the 

thigh in both legs before and after exercise (with an interslice distance (“slice gap”; SG) of 2 mm). In 
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each of the 10 acquired images (10 slices), 6 ROIs were selected for (T2) relaxation time analysis, 

representing the BF, ST and SM in both the right and the left leg. Muscle bellies were systematically 

selected as ROI, with strict inclusion of muscle fibre tissue and exclusion of fatty tissue, neurovascular 

structures and connective tissue (figures 3 and 4). The slices were taken at the proximal limit of the 

distal third of the upper leg, which included the entire BF as well as a sufficient diameter of the ST 

and SM muscle bellies (figure 1). After selecting the ROIs and adjusting the threshold in the T2 map 

to ensure that only muscle tissue was included, the T2 relaxation time was calculated for each ROI in 

every slice, using the T2Processor software. The final T2 relaxation time of each muscle before and 

after exercise was the mean T2 value, retained out of the five slices, respectively CPMG images. 

Intratester reliability was assessed using the contralateral leg transverse relaxation times of each one of 

the hamstring muscle bellies before and after exercise in the control group. The relative T2 shift 

(normalized to the baseline T2 value), rather than the absolute T2 shift, was used for statistical 

analysis as this out ruled potential bias caused by between-participant differences in baseline 

metabolic muscle features/activity (𝑇2 𝑠ℎ𝑖𝑓𝑡 =
T2 postexercise value −T2 pre−exercise value

T2 pre−exercise value
). 

 

 

Statistical analysis 

 

To compare the formerly injured leg of the injury group with a healthy leg of the control group 

without having to deal with the factor ‘leg dominance’ as a confounder, we recorded the ratio 

dominant/non-dominant leg involvement in the injury group and applied this ratio in the control group 

so that the same subdivision could be made randomly. In this way, an equal dominance/ non-

dominance ratio was achieved in both groups. In the injury group, 17 (63%) players sustained their 

latest hamstring strain injury in their dominant leg. In the control group, the same number of dominant 

legs (and non-dominant legs) was included for analysis. We evaluated the normality of the data 

distribution for the different variables using the Shapiro-Wilk test. To check for confounders, we 

evaluated the similarity of anthropometric features as well as data on exposure and playing position in 
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both groups, using multivariate analysis of variance (MANOVA) and χ2 hypothesis testing. Mixed 

model analysis was performed to check for significant differences in baseline transverse relaxation 

time and the activity-related T2 increase between (1) the different hamstring muscle bellies and (2) 

both groups, taking into account the between-participant variability (random variable ‘playerID’). 

MANOVA and independent Student t tests were used to evaluate possible between-group differences 

for the separate hamstring muscle bellies. We also used an independent samples Student t test to check 

for differences in the hamstring muscle load bearing capacity by comparing the duration of the prone 

knee bending exercise between the injury group and the control group (‘time to exertion’). Finally, 

associations between the mfMRI measures were evaluated with the Pearson and Spearman correlation 

coefficients. Data analysis was done with the SPSS V.21 Statistical Software package (IBM Corp., 

New York, USA), and the level of significance was set at α=0.05. 

 

 

 

Results 

 

Anthropometrics and injury characteristics  

 

There were no differences in anthropometrics between both groups (table 2). The injury group 

sustained their last hamstring injury between 21 months and 1 month before testing (mean (SD) 6 (4) 

months). The duration of the rehabilitation period following their latest hamstring injury varied from 7 

to 84 days, with a mean time loss of 28±22 days, indicating that players with both grade 1 and grade 2 

muscle strain injuries were included. All players were treated conservatively by a sports 

physiotherapist.  
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Table 2   Participant Information 

 N 
Weight 

(kgs) 
Height (m) 

BMI 

(kg/m²) 

Age 

(years) 

Time since last 

hamstring injury 

(months) 

Rehab time associated 

with last hamstring 

injury (days) 

Control 27 71 ± 7 1.80 ± 0.05 21.87 ± 1.72 23 ± 5 / / 

Injury 27 74 ± 7 1.79 ± 0.06 22.99 ± 2.02 24 ± 4 6 ± 4 28 ± 22 (range 7 – 84) 

kgs, kilograms; m, meters 

 

Exercise-related T2 increase  

 

The intraclass correlation coefficient (ICC) for the baseline measurements were 0.925, 0.724 and 

0.737 for the BF, the ST and the SM, respectively. The ICC for the postexercise measurements were 

0.892, 0.801 and 0.856 for the BF, the ST and the SM, respectively.  

The overall exercise-related metabolic response was significantly higher in the injury group. There 

was a significant difference in the amount of metabolic activity in the entire hamstring muscle of 4.8% 

(p<0.027), with a mean T2 increase of 18.20 ±10.03% in the control group and a mean T2 increase of 

22.87±9.29% in the injury group (table 3).  

Aside from the between-group difference in the mean T2 increase of the entire hamstring muscle, the 

individual hamstring muscle bellies of the formerly injured players presented a higher metabolic 

response after exercise (figure 5).  

There were significant differences in the magnitude of metabolic activity between the three hamstring 

muscle bellies within the injury and control groups, with the ST presenting significantly higher levels 

of metabolic activity compared to its medial and lateral counterparts (p<0.0001). This within-group 

activity divergence between the separate muscle bellies appeared to be similar in both groups (Figure 

5).  

The synergistic role of the different muscle bellies and their individual contribution to the exercise-

related T2 increase were assessed by the ratio of the individual activity of the BF, the ST and the SM, 

respectively, to the summated T2 increase of the entire hamstring portion (share individual 

muscle=(amount of individual T2 increase)/(summated T2 increase of the entire hamstring muscle)). 

In this way, a different percentage was attributed to the T2 increase in each muscle belly, relative to 
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the total hamstring activity (equalized with 1 or 100%). There were differences in the individual 

activity shares between the homonymous hamstring muscle bellies in both groups. The ST 

demonstrated a 14.4% higher metabolic activation than the BF (p<0.001) and a 19.7% higher 

activation than the SM (p<0.001). The BF, in its turn, demonstrated 5.2% more metabolic changes 

than the SM (p=0.015). This supports the finding that the ST has an important share in the metabolic 

provision (figure 6). We also found that the discrepancy between these relative percentages were 

significantly smaller in the injury group, with the BF and the SM presenting slightly more metabolic 

changes, and the ST presenting slightly less metabolic changes within the total T2 increase after 

exercise.  

The magnitude of intramuscular activity imbalance was evaluated by looking at the total difference in 

metabolic muscle activity between the separate hamstring muscle bellies (the magnitude of 

intramuscular activity variability), which was significantly lower in the injury group (mean 

difference=3.47%; p=0.039). In this group, the percentage of intramuscular activity variability was 

10.23±3.2%. The control group displayed more intramuscular differences in metabolic activity 

between the BF, the ST and the SM, with a mean magnitude of intramuscular activity variability of 

14±7.5%. Furthermore, this magnitude of intramuscular activity variability was strongly negatively 

correlated with the average exercise-related T2 increase (Pearson correlation coefficient=-0.651; 

p<0.001; figure 7). 

 

 

            

 

 

Since the magnitude of the exercise-related metabolic muscle response or T2 increase is highly 

dependent on the baseline T2 value (resting state metabolic status), possible differences in baseline T2 

Figure 4. Region of interest selection in the T2-

weighted image (T2 map) after exercise. (1) R BF, 

(2) R ST, (3) R SM, (4) L BF, (5) L ST and (6) L 

SM (BF, biceps femoris; L, left; R, right; SM, 

semimembranosus; ST, semitendinosus). 

Figure 3. Region of interest selection in the T2-

weighted (T2 map) image before exercise. (1) R BF, (2) 

R ST, (3) R SM, (4) L BF, (5) L ST and (6) L SM (BF, 

biceps femoris; L, left;  R, right; SM, 

semimembranosus; ST, semitendinosus). 
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between the injury group and the control group would have biased our results.
24 36 37

 Multivariate 

analysis (general linear model) compared the resting state T2 values for the different muscle bellies 

between both groups, and revealed no influence of the factor ‘injury’ on the resting state T2 values: p 

values of 0.881, 0.728, 0.581 and 0.968 for the BF, the ST, the SM and the entire hamstring muscle 

portion, respectively (cf. table 3). 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Exercise-related increase in transverse relaxation time of muscle water representing the 

magnitude of the metabolic muscle activity in the separate muscle bellies (BF, biceps femoris; ST, 

semitendinosus; SM, semimembranosus). 

Figure 6. The individual share/portion of each individual muscle belly within the summated T2 increase 

(metabolic muscle response) for the hamstring muscles in the control group and the injury group (BF, 

biceps femoris; SM, semimembranosus; ST, semitendinosus). 



69 

 

Table 3   The average T2 relaxation times of the individual muscle bellies gathered before (T2 pre) and after (T2 post)  

                exercise, the relative increase (%) of the individual muscle bellies (relative to the resting state T2 relaxation time  

                and corresponding metabolic status) and their combined average 

Control  Injury 

 T2 pre (ms) T2 post (ms) T2 increase (%)  T2 pre (ms) T2 post (ms) T2 increase (%) 

BF 40.99 ± 2.38 47.45 ± 4.00 16.09 ± 11.50  40.89 ± 2.96 49.26 ± 4.98 20.36 ± 10.92 

ST 38.81 ± 2.28 49.92 ± 4.52 28.89 ± 12.30  39.02 ± 2.11 53.10 ± 4.61 36.64 ± 11.81 

SM 41.44 ± 2.37 46.20 ± 3.32 11.78 ± 2.71  41.06 ± 2.71 46.57 ± 3.29 14.44 ± 8.68 

mean 40.75 ± 2.15 47.75 ± 10.03 18.20 ± 10.03  40.60 ± 2.24 49.57 ± 3.91 22.87 ± 9.29 

*mean difference of 4.8%, p < 0.027 

BF, biceps femoris; SM, semimembranosus; ST, semitendinosus 

 

 

Time to exertion 

 

The mean time to exertion in the injury group was significantly lower compared to the control group: 

219s (04’07”) ± 151s and 292s (05’26”) ± 109s, respectively, with a mean difference of 72.9 s 

(01’13”), p = 0.045. 

 

Time elapsed since the last injury and injury severity 

 

The time elapsed since the last hamstring injury and the duration of the corresponding rehabilitation 

period (time loss period) were not associated with the magnitude of the exercise-related metabolic 

muscle response or with the magnitude of intramuscular activity variability (table 4). 

 

Table 4   Spearman correlations between the injury-mfMRI time interval and the rehabilitation duration of the last  

                hamstring injury and the mfMRI outcome measures 

  
Mean exercise-related T2 increase 

in the entire hamstring muscle 

Magnitude of intramuscular 

activity variability 

Time elapsed since the last 

injury (months) 

Spearman’s rho 

P value 

-0.114 

0.588 

0.114 

0.586 

Rehabilitation period since 

the last injury (days) 

Spearman’s rho 

P value 

0.209 

0.295 

0.157 

0.434 

mfMRI, muscle functional MRI 
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Discussion 

 

This study demonstrated significantly more symmetrical activation patterns between the BF, ST and 

SM in the injury group compared to the control group. The prominent role of the ST was evident in 

both groups. However, in the injury group, the activity of the ST was partly traded in for more 

involvement of its synergists. The ST seems to be activated most during the prone leg curling exercise. 

Previous research reported that the ST had the highest muscle activity and was recruited more than 

both the BF and the SM in strength exercises and in locomotion.
15,  38–42

 This activation pattern appears 

to be the result of sophisticated, complex neuromuscular coordination within the hamstring muscle 

complex, which possibly provides the most efficient muscle functioning and most economic force 

production. Previous research demonstrated that the ST has the highest levels of muscle activity 

during the front swing phase (whereas the BF is predominantly active prior to and after touch 

down),
15,18, 20

 where the hamstring muscle group has to withstand the highest levels of muscle tendon 

Figure 7. Scatter-dot diagram of the negative linear relation between the magnitude of the metabolic muscle 

response due to exercise and the magnitude of the intramuscular activity variability: the higher the 

variability, the lower the T2 increase and vice versa. 
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stretch and negative work. This supports our hypothesis and suggests that under intense eccentric 

loading conditions, the ST has a prominent role in producing and controlling the torques around both 

hip and knee joints. We also found a high correlation between the magnitude of intramuscular activity 

variability and the mean exercise-related T2 increase, with higher exercise-related signal intensity 

shifts in the presence of a more balanced muscle recruitment pattern. This finding suggests that the 

more symmetrical and less dissociated the hamstring muscles work together, the higher the 

physiological changes will be inside the recruited muscle fibres. More intramuscular variability can 

thus be associated with a lower metabolic turnover and (probably) more economic muscle functioning. 

More symmetrical muscle activation (lower level of intramuscular dissociation) might imply 

compensatory and (mal)adaptive neuromuscular coordination patterns, causing the hamstring muscle 

bellies to contract less efficiently, with earlier onset of pH changes and muscle fatigue. These aberrant 

muscle recruitment patterns may contribute to an elevated risk of hamstring injury under high loading 

circumstances, as seen in track and field sports. Interestingly, the BF and the ST are most frequently 

injured in running-related hamstring strains. The complex inter-relationship, synergistic activation and 

fibre recruitment patterns between the BF and the ST (which share a proximal tendon) indicate that 

both muscle bellies are highly interdependent in terms of the magnitude of tissue loading and the 

adequacy of muscle functioning. 
18– 20,  41,  42

 When one muscle displays an aberrant recruitment pattern 

(both in timing as in spatial distribution of fibre recruitment), excessive load would be placed on its 

neighbour which would also induce excessive tensile shear stresses close to the proximal 

myotendinous aponeurosis of both muscle bellies. Bourne et al
43

 published a cross-sectional study in 

which they observed the mfMRI activation patterns of the different hamstring muscles during a 

specific sprinting task. They evaluated the differences in recruitment patterns between the formerly 

injured and the healthy hamstrings in five track or field athletes after sprinting. Contrary to our 

findings, they reported a decrease in T2 shift and hence lower levels of underlying metabolic activity 

in the formerly injured hamstring muscle belly, compared to the homonymous hamstring muscle in the 

contralateral leg. Given that the T2 increase represents the magnitude of the underlying metabolic 

changes in the recruited muscle fibres, a higher T2 increase and a lower exercise capacity (duration to 

exhaustion) in our findings would demonstrate a less effective and less economic recruitment pattern 
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in the hamstring muscle, which has a lower strength endurance and loading capacity. The exercise-

related T2 increase or signal intensity shift indicates physiological changes within the muscle fibre, 

which are caused by osmotic changes in intracellular fluid volumes and pH, in turn triggered by the 

accumulation of metabolites. Therefore, this outcome measure gives an indication of the efficiency of 

muscle recruitment and the muscle fibre endurance capacity. Why the above mentioned study 

demonstrated opposite results, might be explained by the differences in study population and sample 

size, as well as the possibly longer time span between the sprinting task and the second functional 

scanning sequence. The similarity in baseline T2 values in our study sample, demonstrates no 

between-group difference in metabolic fibre characteristics. Since the exercise-related signal intensity 

shift did differ between the injury group and the control group, it is likely that the formerly injured 

hamstrings have a lower loading capacity and display less efficient recruitment patterns, as the injured 

group also scored significantly lower in terms of strength endurance (lower time to exertion). These 

compensatory recruitment patterns could possibly make the homonymous muscle more prone to future 

injury. Indeed, biomechanical and isokinetic testing after clinically and functionally recovered and 

rehabilitated hamstring strain injuries have shown that eccentric strength deficits as well as altered 

running kinematics, with a decreased stride length, smaller knee extension and hip flexion angles, are 

present at time to return to play.
44

 Our study outcome supports the finding that predominantly the BF 

and secondly the ST are prone to injury in high-speed running (heavy eccentric loading). When the ST 

cannot keep up with its former predominant role in force production and negative work delivery (due 

to injury) under high eccentric loading circumstances, the BF will compensate for this functional 

deficit. Owing to the smaller fascicular length of the BF muscle, compared to the ST,
45

 it is less stretch 

tolerant and less suited to contribute to energy storage through negative work and to control the hip 

and knee torques in its distal range of motion in this crucial terminal phase of running. As a 

consequence, even minor deficits in ST functioning or coordination within the synergistic interplay of 

the BF and the ST would cause one or both muscles to fail. In line with our findings, we suggest that 

injury to the BF and/or the ST most probably occurs because the BF is not optimally suited for force 

production in the distal range of motion and the ST probably is more prone to premature acidification 

and the onset of fatigue. 
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There were some limitations to this study. We chose the prone leg curling exercise with free weights 

in order to simulate the hamstring loading characteristics in running and to provide an adequate 

exercise intensity. We are aware that hamstring loading in the prone leg curling exercise is very 

different from hamstring loading in high-speed running, so the muscle recruitment patterns could 

differ substantially. Owing to the exercise intensity-dependency and the short half-life of the activity-

related T2 signal intensity increase, we chose not to include a sprinting protocol in our study. As we 

found substantial differences between the injury group and the control group, we believe that these 

differences are attributable to prior hamstring injuries, even though the exercise could not mimic the 

biomechanics and kinematics of sprinting. Exercise related T2 increase has a very high spatial 

specificity, and may have been different had we decided to make axial slides at another level or at 

multiple levels of the thigh. The influence of the location of the hamstring injury (involvement of the 

BF or the ST as well as the proximodistal location of the lesion within the tendon–muscle– tendon 

continuum) was not known. Since we did not have medical imaging of the hamstring injury of all 

participants in the injury group, and since an extra subdivision within the injury group, based on injury 

location, would consequentially lower the power of this study, we chose to keep the injury group 

together. Finally, although there was no association between the (1) time elapsed since the last injury 

and the injury severity (duration of the last rehabilitation period) and (2) the intramuscular activity 

variability or the magnitude of the exercise-related metabolic muscle response, this might have been 

due to the small sample size. Therefore, no conclusions or assumptions should be made about mfMRI 

in establishing injury severity and readiness for return to play. 

 

 

 

Conclusion 
 

This study evaluated the magnitude and the distribution of the metabolic changes within the hamstring 

muscles after a strenuous eccentric hamstring exercise. A more symmetrical muscle recruitment 

pattern in the formerly injured group of male football players was found, corresponding to higher 
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levels of metabolic activation within the entire hamstring muscle. The injury group had a lower 

exercise capacity, suggesting that hamstring injuries in football are associated with compensatory 

neuromuscular activation and recruitment patterns in heavy eccentric loading, causing the hamstring 

muscle to acidify and fatigue prematurely and to a greater extent. This may explain the high reinjury 

rate in male football competition. Since the control group presented a higher magnitude of dissociation 

and variability in hamstring muscle recruitment, we suggest that the exact quality and quantity of 

hamstring muscle recruitment and the underlying neuromuscular coordination mechanisms are critical 

in the hamstring injury mechanism and injury risk. mfMRI has proven to be a valid and reliable 

technique to monitor this complex synergist interplay. Clinicians should account for complex 

neuromuscular mechanisms within the hamstring muscle unit, especially for the BF and the ST. 

Instead of focusing on the BF, which gets injured most frequently, attention must be paid to training 

and strengthening both the BF and the ST. The function of the ST is critical in injury prevention and 

performance progression and deserves the same (if not more) attention as the function of the BF. 

 

 

 

Acknowledgements  

The authors gratefully acknowledge the assistance of P Vandemaele, Engineer of the Ghent University 

Hospital (GIFMI-UZ Gent), for his assistance in the MR scanning and data processing series. 

Furthermore, they would like to thank their colleagues at the Department for Rehabilitation Sciences 

and Physiotherapy for their kind support, as well as the participants of this study, without whom this 

paper could not have been accomplished. For their financial support, the authors’ gratitude goes out to 



75 

 

the Agency for Innovation by Science and Technology in Flanders (IWT—Brussels, Belgium), who 

made this MRI— research possible. 

 

Contributors  

EW customized the study design, guided the statistical analysis and the writing process. DVT provided 

valuable assistance during the testing procedures and gave constructive feedback during the data 

analysis. LD was involved in the preparation of the scanning sequences and data analysis. JS was in 

charge of the participant recruitment, testing procedure and data analysis, and wrote this manuscript. 

 

Competing interests  

None. 

Patient consent Obtained. 

Ethics approval The University Hospital of Ghent. 

Provenance and peer review  

Not commissioned; externally peer reviewed. 

 

 

 

 

 

 

 

 

 

 

 



76 

 

 

References 
 

1  Verrall GM, Kalairajah Y, Slavotinek JP, et al. Assessment of player performance following 

return to sport after hamstring muscle strain injury. J Sci Med Sport 2006;9:87–90. 

2  Woods C, Hawkins RD, Maltby S, et al. The Football Association Medical Research 

Programme: an audit of injuries in professional football—analysis of hamstring injuries. Br J 

Sports Med 2004;38:36–41. 

3 Hicke J, Shield AJ, Williams MD, et al. The financial cost of hamstring strain injuries in the 

Australian Football League. Br J Sports Med 2014;48:729–30. 

4  Opar D, Williams MD, Shield AJ. Hamstring injuries: factors that lead to injury and reinjury. 

Sports Med 2012;42:209–26. 

5  Elliot M, Zarins B, Powell J, et al. Hamstring muscle strains in professional football players: a 

10 year review. Am J Sports Med 2011;39:843. 

6  Ekstrand J, Hägglund M, Waldén M. Injury incidence and injury patterns in professional 

football: the UEFA injury study. Br J Sports Med 2011;45:553–8. 

7  Carling C, Le Gall F, Orhant E. A Four-Season Prospective Study of Muscle Strain 

Reoccurences in a Professional Football Club. Res Sports Med 2011;19:92–102. 

8  Askling CM, Tengvar M, Saartok T, et al. Acute first-time hamstring strains during high speed 

running. A longitudinal study including clinical and magnetic resonance imaging findings. Am 

J Sports Med 2007;35:197–206. 

9  Schache AG, Dorn TW, Blanch PD, et al. Mechanics of the human hamstrings during 

sprinting. Med Sci Sports Exerc 2012;44:647–58. 

10  Desmet AA, Best TM. MR imaging of the distribution and location of acute hamstring injuries 

in athletes. Am J Roentgenol 2000;174:393–9. 



77 

 

11  Askling CM, Koulouris G, Saartok T, et al. Total proximal hamstring ruptures: clinical and 

MRI aspects including guidelines for postoperative rehabilitation. Knee Surg Sports Traumatol 

Arthrosc 2013;21:515–33. 

12  Mendiguchia J, Alentorn-Geli A, Brughelli M. Hamstring strain injuries: are we heading the 

right direction? Br J Sports Med 2012;46:81–5. 

13  van Beijsterveldt AMC, van der Horst N, van de Port IG, et al. How effective are exercise-

based injury prevention programmes for soccer players? A systematic review. Sports Med 

2013;43:257–65. 

14  van Beijsterveldt AMC, van de Port IGL, Verijken AJ, et al. Risk factors for hamstring 

injuries in male soccer players: a systematic review of prospective studies. Scand J Med Sci 

Sports 2013;23:253–62. 

15  Schache AG, Dorn TW, Wrigley TV, et al. Stretch and activation of the human biarticular 

hamstrings across a range of running speeds. Eur J Appl Physiol 2013;113:2813–28. 

16  Chumanov ES, Heiderscheit B, Thelen DG. The effect of speed and influence of individual 

muscles on hamstring mechanics during the swing phase of sprinting. J Biomech 

2007;40:3555–62. 

17  Chumanov ES, Heiderscheit BC, Thelen DG. Hamstring musculotendon dynamics during 

stance and swing phases of high-speed running. Med Sci Sports Exerc 2011;43:525–32. 

18  Higashihara A, Ono T, Kubota J, et al. Functional differences in the activity of the hamstring 

muscles with increasing running speed. J Sports Sci 2010;28:1085–92. 

19  Onishi H, Yagi R, Oyama M, et al. EMG-angle relationship of the hamstring muscles during 

knee flexion. J Electromyogr Kinesiol 2002;12:399–406. 

20  Higashihara A, Ono T, Kubota J, et al. Functional differences between individual hamstring 

muscles at different running speeds. Med Sci Sports Exerc 2010;42:404–10. 



78 

 

21  Sole G, Milosavljevic S, Nicholson H, et al. Altered muscle activation following hamstring 

injuries. Br J Sports Med 2012;46:118–23. 

22  Cagnie B, Elliot J, O’Leary S, et al. Muscle functional MRI as an imaging tool to evaluate 

muscle activity. J Orthopaedic Sports Phy Ther 2011;41:896–903. 

23  Segal RL. Use of imaging to assess normal and adaptive muscle function. Phys Ther 

2007;87:704–18. 

24  Dickx N, Cagnie B, Achten E, et al. Differentiation between the deep and superficial fibers of 

the lumbar multifidus by magnetic resonance imaging. Eur Spine J 2010;19:122–8. 

25 D’hooghe R, Cagnie B, Crombez G, et al. Lumbar muscle dysfunction during remission of 

unilateral recurrent nonspecific low-back pain. Evaluation with muscle functional MRI. Clin J 

Pain 2013;29:187–94. 

26  Cagnie B, Dickx N, Peeters I, et al. The use of functional MRI to evaluate cervical flexor 

activity during different cervical flexion exercises. J Appl Physiol 2007;104:230–5. 

27 Akima H, Takahashi H, Kuno S, et al. Coactivation pattern in human quadriceps during 

isokinetic knee-extension by muscle functional MRI. Eur J Apply Physiol 2004;91:7–14. 

28  Akima H, Kinugasa R, Kuno S. Recruitment of the thigh muscles during sprint cycling by 

muscle functional magnetic resonance imaging. Int J Sports Med 2005;26:245–52. 

29  De Ridder EMD, Van Oosterwijck JO, Vleeming A, et al. Muscle functional MRI analysis of 

trunk muscle, recruitment during extension exercises in asymptomatic individuals. Scand J 

Med Sci Sports 2014. 

30  Pattyn EP, Verdonk A, Steyaert D, et al. Muscle functional MRI to evaluate quadriceps 

dysfunction in patellofemoral pain. Med Sci Sports Exerc 2013;45:1023–9. 

31  Clark BC, Walkowski S, Conatser R, et al. Muscle functional magnetic resonance imaging and 

acute low back pain: a pilot study to characterize lumbar muscle activity asymmetries and 



79 

 

examine the effects of osteopathic manipulative treatment. Osteopath Med Prim Care 

2009;3:1–10. 

32  Kubota J, Ono T, Araki M, et al. Non-uniform changes in magnetic resonance measurements 

of the semitendinosus muscle following intensive eccentric exercise. Eur J Appl Physiol 

2007;101:713–20. 

33 Fisher MJ, Meyer RA, Adams GR, et al. Direct relationship between proton T2 and exercise 

intensity in skeletal muscle MR images. Invest Radiol 1990;25:480–5. 

34  Small K, McNaughton LR, Lohkamp M, et al. Soccer fatigue, sprinting and hamstring injury 

risk. Int J Sports Med 2009;30:573–8. 

35  Peterson J, Hölmich P. Evidence based prevention of hamstring injuries in sport. Br J Sports 

Med 2005;39:319–23 

36  Prior BM, Ploutz-Snyder LL, Cooper T, et al. Fiber type and metabolic dependence of T2 

increases in stimulated rat muscles. J Appl Physiol 2001;90:615–23. 

37 Bonny J, Zanca M, Boesfplug-Tanguy O, et al. Characterization in vivo of muscle fiber types 

by magnetic resonance imaging. Magn Reson Imaging 1998;16:167–73. 

38 Oliver G, Dougherty C. Comparison of hamstring and gluteus muscles electromyographic 

activity while performing the razor curl vs. the traditional prone hamstring curl. J Strength 

Cond Res 2009;23:2250–5. 

39  Mendiguchia J, Garrues MA, Croninc JB, et al. Nonuniform changes in MRI measurements of 

the thigh muscles after two hamstring strengthening exercises. J Strength Cond Res 

2013;27:574–81. 

40  Mendiguchia J, Los Arcos A, Garrues MA, et al. The use of MRI to evaluate posterior thigh 

muscle activity and damage during Nordic Hamstring Exercise. J Strength Cond Res 

2013;27:3426–35. 



80 

 

41  McAllister MJ, Hammond KG, Schilling BK, et al. Muscle activation during various 

hamstring exercises. J Strength Cond Res 2014;28:1573–80. 

42  Orishimo KF, McHugh MP. The effect of an eccentrically-biased hamstring strengthening 

home program on knee flexor strength and the length-tension relationship. J Strength Cond 

Res 2014. 

43  Bourne M, Opar D, Shield A. Hamstring muscle activation during high-speed overground 

running: impact of previous strain injury. Br J Sports Med 2014;48:560–674. 

44  Lee MJC, Reid SL, Elliot BC, et al. Running biomechanics and lower limb strength associated 

with prior hamstring injury. Med Sci Sports Exerc 2009;41:1942–51. 

45  Kellis E, Galanis N, Kapetanos G, et al. Architectural differences between the hamstring 

muscles. J Electromyogr Kinesiol 2012;22:520–6. 



81 

 

 

 

 

 

 

 

Chapter I – Part II 

 

Susceptibility to hamstring injuries in soccer 

A prospective study using muscle functional 

Magnetic Resonance Imaging 

 

 

 

 



82 

 

 

 

 

 

 

 

 

 

 

 



83 

 

CHAPTER I - PART II 

Susceptibility to Hamstring Injuries in Soccer 

A Prospective Study Using Muscle Functional Magnetic Resonance Imaging 

 

Joke Schuermans, MS,
1
 Damien Van Tiggelen, PhD,

1
 Lieven Danneels, PhD,

1
 and Erik Witvrouw, 

PhD
1,2

 

Investigation performed at the Department of Rehabilitation Sciences and Physiotherapy Ghent, Ghent 

University, Ghent, Belgium 

 

1 
Department of Rehabilitation Sciences and Physiotherapy Ghent, Ghent University, Ghent, Belgium 

2 
Department of Physiotherapy, Aspetar, Doha, Qatar 

 

Correspondence to Schuermans Joke, Department of Rehabilitation Sciences and Physiotherapy, 

Ghent University, De Pintelaan 185, 3B3, –Ghent 9000, Belgium; Joke.schuermans@ugent.be 

 

Am J Sports Med published online February 24, DOI: 10.1177/0363546515626538 

The American Journal of Sports Medicine 2016 May;44(5):1276-85.Vol.  

 

Abstract 

 

Background  Running-related hamstring strain injuries remain a delicate issue in several 

sports such as soccer. Their unremittingly high incidence and recurrence rates 

indicate that the underlying risk has not yet been fully identified. Among other 

factors, the importance of neuromuscular coordination and the quality of 

interplay between the different hamstring muscle bellies is thought to be a key 

determinant within the intrinsic injury risk. Muscle functional magnetic 

resonance imaging (mfMRI) is one of the tools that has proven to be valid for 

evaluating intermuscular coordination. 
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Purpose  To investigate the risk of sustaining an index or recurring soccer-related 

hamstring injury by exploring metabolic muscle characteristics using mfMRI. 

Study Design   Cohort study; Level of evidence, 2. 

Methods   A total of 27 healthy male soccer players and 27 soccer players with a history  

of hamstring injuries underwent standardized mfMRI. The mfMRI protocol 

consisted of a resting scan, a strenuous bilateral eccentric hamstring exercise, 

and a postexercise scan. The exercise-related T2 change, or the signal intensity 

shift between both scans, was used to detect differences in metabolic 

characteristics between (1) the different hamstring muscle bellies and (2) the 

prospective cohorts based on the (re)occurrence of hamstring injuries during a 

follow-up period of 1.5 seasons. 

Results  The risk of sustaining a first hamstring injury was associated with alterations 

in the intermuscular hierarchy in terms of the magnitude of the metabolic 

response after a heavy eccentric effort, with the dominant role of the 

semitendinosus set aside for a higher contribution of the biceps femoris (P = 

.017). Receiver operating characteristic (ROC) curve analysis demonstrated 

that this variable was significantly able to predict the occurrence of index 

injuries with a sensitivity of 100% and a specificity of 70% when the 

metabolic activity of the biceps femoris exceeded 10%. The risk of sustaining 

a reinjury was associated with a substantial deficit in hamstring strength 

endurance (P = 0.031). Soccer players who sustained a reinjury were only able 

to perform prone leg curls for a mean duration of 146.50 ± 76.16 seconds, 

whereas those with an injury history but no recurrence during follow-up were 

able to continue for a mean of 237.45 ± 110.76 seconds (95% CI, 11.9-230.5 

seconds; P = 0.031). 
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Conclusion  This was the first study to assess the causal relation between the intramuscular 

recruitment pattern and the risk of sustaining an index or secondary hamstring 

strain. Changes in intermuscular interplay seem to significantly increase the 

risk of sustaining index hamstring injuries in male amateur soccer players. 

Inadequate eccentric muscle endurance could be associated with an increased 

risk of sustaining a recurring hamstring injury. 

Keywords  hamstring strain injury; etiology; soccer; magnetic resonance imaging 

 

Introduction 

 

Hamstring strain injuries are the single most common sports injuries in male soccer players. Given the 

associated time loss and the substantial recurrence rates, these injuries have been the subject of 

research within sports medicine for many years.
11, 20 ,34, 44

 In soccer, most commonly the biceps femoris 

(BF) (and to a lesser extent, the semitendinosus [ST]) is subject to structural or functional lesions.
34, 44

 

These muscles are most likely to sustain injuries during explosive running accelerations and kicking 

activities because of the high biomechanical loads placed on the muscle-tendon unit throughout the 

front swing phases in running and kicking.
3, 6

 Next to extensive muscle stretch and heavy eccentric 

loading, the importance of intermuscular coordination and cooperation between the 3 major biarticular 

hamstring muscle bellies during these eccentric muscle efforts is increasingly being explored in 

current research.
21-23, 25, 37, 40

 The predominant vulnerability of the BF could possibly be related to its 

morphological characteristics,
24

 the substantial amount of stretch and eccentric loading it is prone to 

throughout the front swing phase of running,
6, 21

 and the efficiency of intermuscular coordination.
21, 37

 

Bearing in mind that the hamstring muscle unit presents a considerable vulnerability for both structural 

and (to an even higher extent) functional injuries,
10

 exploring the role of neuromuscular coordination 

in injury susceptibility seems essential. Previous research has already demonstrated that the BF, ST, 

and semimembranosus (SM) are activated in a specific sequence and with a diverging intensity of 

contraction throughout the front swing phase in running.
21-23

 When the 3 muscle bellies are not capable 
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of engaging in synergistically adequate and economic contractions, this may cause one of the muscles 

to fatigue prematurely, ultimately resulting in a functional and/or structural injury.
37

 The exact 

quantity (spatial distribution of muscle work) and quality (temporal activation characteristics) of 

intermuscular interplay within the hamstring unit are suggested to be of great importance in hamstring 

muscle load-bearing capacity and injury vulnerability.
37

 In a previous study, we already pointed out 

the value of muscle functional magnetic resonance imaging (mfMRI) in assessing intermuscular 

coordination and the interplay features within the posterior thigh unit.
37

 In the prior study,
37

 mfMRI 

analysis revealed that exercise-induced metabolic activity and the exact intermuscular interplay 

differed significantly between soccer players with a (recent) history of hamstring injuries and their 

matched controls. Although surface electromyography (EMG) is a valuable tool to measure muscle 

activity as well, it is less suited to distinguish muscle activity within the same muscle group,
32-33

 as it is 

inevitably subject to cross-talk (in which neighboring muscles produce a significant amount of the 

EMG signal that is detected by the local electrode site, challenging correct evaluation of the isolated 

activity of each one of the hamstring muscle bellies).
11-13, 15-17

 More so, even though EMG measures 

the amplitude and frequency of the real-time motor unit discharges within the underlying muscle 

tissue, it is not capable of evaluating the metabolic efficacy with which the muscle is able to perform 

its imposed task. This is where mfMRI provides an interesting advantage. The T2 relaxation time 

constant of muscle water, represented by the signal intensity of the muscle tissue captured in T2 

weighted MRI scans, gives an indication of the metabolic status of the muscle fibers.
5, 30

 Comparing 

the signal intensity or the magnitude of the T2 relaxation time constant of the muscle tissue in a scan 

before and after exercise allows clinicians and researchers to evaluate to what extent the intended 

muscle has been activated during that specific exercise. The higher the osmotic and pH changes within 

the loaded muscle unit, the bigger the increase in signal intensity or the more extensive the T2 shift. 

These physiological processes within the muscle tissue are directly related to the amount of muscle 

work, so the higher the T2 shift, the higher the metabolic muscle activity. As the most important risk 

factor for sustaining a hamstring strain injury is presence of an injury history, adequate primary 

prevention is essential.
34, 44 

However, considering that the risk of sustaining a secondary hamstring 

injury is more than twice as high as the risk of sustaining a first injury,
12

 accurate comprehension and 
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acknowledgment of the reinjury risk and its implications are even more important. In our previous 

study,
37

 soccer players with a history of hamstring injuries demonstrated an aberrant and less 

economic muscle activation pattern in which the BF partly compensated for the lack of activation 

(corresponding with less metabolic changes) of the (originally eccentrically more capable) ST. This 

pattern was associated with weaker strength performance, possibly indicating an increased risk of 

sustaining a subsequent injury. Although we already assessed the retrospective relationship between 

the intermuscular coordination characteristics and soccer-related hamstring injuries, no research has 

attempted to unravel the potential causal association between the quality and quantity of exercise-

induced metabolic changes in the BF, ST, and SM and the risk of sustaining a future injury. In 

addition, the existing literature has never explored the nature of the reinjury risk profile and its 

possible disparities with the risk of sustaining a first hamstring injury. 

Therefore, this prospective study intended to explore the relevance of mfMRI for the purpose of 

identifying the future injury risk in male soccer players, making a distinction between the occurrences 

of first and secondary hamstring strain injuries. In line with the results of previous research,
37

 it was 

our hypothesis that the risk of hamstring injuries is associated with an altered pattern of intermuscular 

cooperation between the medial and lateral hamstring muscle bellies, with the BF exhibiting more and 

the ST exhibiting too little effort compared with what they are supposed to produce. The decision to 

solely include male soccer players was made deliberately, certainly taking into account the recurrence 

rates which indicate that hamstring injuries are still the single most common type of injury within this 

sport and the financial, personal, and performance-related stakes are considerable.
44 
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Methods 

 

Subjects 

 

This study was approved by the ethics committee of the Ghent University Hospital (approval no. 

EC/2013/118). From March to May 2013, soccer players from 7 recreational regional soccer clubs 

(Oost-Vlaanderen, Belgium; community level) were addressed for participation in this study by 

contacting respective trainers, coaches, physical therapists, or sports physicians. Potential candidates 

were excluded from the study if they had 

- a history of severe knee or hip injuries (eg, anterior cruciate ligament or medial collateral 

ligament ruptures, femoroacetabular impingement, or athletic groin injuries requiring surgery); 

- a history of lower back complaints or current lower back complaints; 

- less than 5 years of competitive soccer experience; or 

- electronic implants, foreign (ferromagnetic) bodies close to the thigh region, or 

claustrophobia, which made them unsuitable for MRI evaluation. 

To rule out (subclinical) age-related degenerative changes (confounders), only soccer players between 

the age limits of 18 and 35 years were considered for inclusion. All participants were required to be 

completely free from injuries and ready to play at the moment of testing. 

Ultimately, 27 male soccer players with a recent history of hamstring injuries (within the last 2 

seasons) and 27 matched controls underwent a standardized mfMRI protocol during the between-

season period of July 2013. Soccer players in the injury history group had to be recovered completely 

and have returned to competition. Participant characteristics of the formerly injured players and the 

matched controls are presented in Table 1. Participants were instructed not to engage in intensive 

training or soccer competition 48 hours before testing to ensure a valid measure of the exercise-related 

‘‘T2 increase’’ or ‘‘signal intensity shift’’.  

 



89 

 

Table 1   Participant Information
a
 

 Control Group (n = 27) Injury History Group (n = 27) 

Weight, kg 71 ± 7 74 ± 7 

Height, m 1.80 ± 0.05 1.79 ± 0.06 

Body mass index, kg/m² 21.87 ± 1.72 22.99 ± 2.02 

Age, y 23 ± 5 24 ± 4 

Time since last injury, mo / 6 ± 4 

Rehabilitation period of last injury, d / 28 ± 22 (range, 7 – 84) 

aData are reported as mean ± SD. 

kg, kilograms; m, meter; y, years; mo, months; d, days 

 

mfMRI protocol 

 

The testing protocol consisted of 2 Carr-Purcell-Meiboom-Gill echo train acquisition T2 scanning 

sequences (Table 2) with a strenuous eccentric hamstring exercise between scans (prone leg curls with 

5-kg free weights in the distal range of motion until exhaustion) (Figure 1). The difference in the 

transverse relaxation time of the separate hamstring muscle bellies before and after exercise (T2 

increase or signal intensity shift) indicated the magnitude of the underlying metabolic muscle 

activity.
13,18 

After completing the MRI safety checklist and signing the informed consent form, the 

participants were familiarized with the scanning sequence and the hamstring exercise. The entire 

testing procedure was performed by the same researcher (J.S.), which minimized the risk of intertester 

bias. For more details on participant recruitment, the scanning procedure and attributed scanning 

sequences, eccentric hamstring exercise between scans, and data analysis, the reader is referred to 

earlier work.
36
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Table 2   Carr-Purcell-Meiboom-Gill T2 Slice Positioning and  

                Image Acquisition Parameters for Scanning Sequences  

                Before and After Exercise 

No. of slices 5 

Slice thickness, mm 5 

Field of view, mm 380 

Middle slice location Upper border distal third 

upper leg (ASIS – lateral 

epicondyle femur) 

Repetition time, ms 1500 

Echo time, ms 10.5 - 168 

No. of Echoes 16 

Voxel size, mm 1.5 x 1.5 x 5.0 

mm, millimeters; ms, milliseconds; ASIS, anterior superior iliac spine 

 

 
Figure 1. Prone leg curls performed to exertion between the 2  

Carr-Purcell-Meiboom-Gill magnetic resonance imaging scanning  

sequences of the testing procedure.  

 

Prospective monitoring of hamstring injury occurrence 

 

Differently from what has been conducted before,
37

 the present study consisted of a prospective 

follow-up for the registration of hamstring injuries. After the scanning session, participants were asked 

to complete an online diary for their weekly exposure (match and training) and the incidence or 

presence of soccer-related injuries and complaints (http://www.hsi.ugent.be). If the hamstring injury 

occurred for the first time in the respective leg, it was defined as a primary injury. If the reported 

injury was a sequel of the injury for which the participant was originally recruited into the injury 

history group (same leg and location), it was considered to be a recurring injury. 
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The participants were asked to complete this survey every Monday throughout the entire 2013-2014 

season as well as the first half of the 2014-2015 season, resulting in a follow-up period of 1 and a half 

seasons. Participants’ compliance to this online survey was verified on a weekly basis. Submission of 

the entire cohort was verified on Tuesday morning, after which the players who did not yet complete 

their survey were notified by email. The end of follow-up was set at the 2014-2015 winter break, 

during which period all participants were contacted again for a final injury inquiry. 

 

Data Analysis 

 

After gathering the injury data during follow-up, the resulting cohort was subdivided into 4 categories 

based on the injury incidence during follow-up and injury history: 

- healthy controls,  

- players with an injury history but no recurring injury during follow-up, 

- players who sustained an index injury during follow-up, and 

- players who sustained a reinjury during follow-up. 

Analysis of the T2 relaxation times in both the resting and postexercise scans was performed using 

T2Processor software (copyright P. Vandemaele, engineer; Ghent Institute for Functional and 

Metabolic Imaging, Ghent University Hospital) in Matlab (R2014a; The MathWorks Inc). Hereafter, 

exercise-induced T2 shifts were determined manually for the BF, ST, and SM of both legs in each 

participant
36

 (Figures 2 and 3) using the following formula: 

𝑇2 𝑠ℎ𝑖𝑓𝑡 =
T2 postexercise value −T2 pre−exercise value

T2 pre−exercise value
.  

The relative T2 shift (normalized to the baseline T2 value), rather than the absolute T2 shift, was used 

for statistical analysis as this out ruled potential bias caused by between-participant differences in 

baseline metabolic muscle features/activity. 
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Statistical Analysis 

 

The following variables were subjected to statistical analysis:  

1. The T2 shift within each muscle belly, representing the amount of metabolic muscle activity 

between scans (𝑇2 𝑠ℎ𝑖𝑓𝑡 =
T2 post − T2 pre

T2 pre
)

37
 

2. The proportional activity shares of the hamstring bellies (BF, ST, and SM) within the entire 

hamstring–T2 shift, for which the T2 shift per muscle belly was normalized to the summated 

shifts of all muscle bellies (proportional activity =
T2 shift (BF or ST or SM)

T2 shift (BF+ST+SM)
).

37
 

3. The hamstring strength endurance (time to exertion on eccentric prone leg curls between both 

scans in seconds). 

 

After assessing the normality of the data distribution for the different outcome variables, Mann-

Whitney U tests and independent samples t tests were used to compare differences in metabolic 

hamstring activation between groups (index injury vs control, and no reinjury during follow-up vs 

reinjury during follow-up, respectively). Variables for which the mean values differed significantly 

between groups were submitted for logistic regression analysis to verify to what extent the evaluated 

parameters were able to predict the (re)occurrence of hamstring injuries during follow-up. Additional 

receiver operating characteristic (ROC) curve analyses were performed if relevant. Statistical analysis 

was conducted using SPSS 22 Statistical Software package (IBM Corp); α was set at 0.05.  
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Results 

 

Of the 54 soccer players who underwent the mfMRI procedure in July 2013, 2 sustained a severe knee 

injury and had to end their soccer career, 2 stopped playing because of academic priorities, and 6 were 

lost to follow-up. Ultimately, MRI data of 44 participants could be obtained for prospective analysis: 

24 controls and 20 with an injury history. A flowchart with details regarding the composition of the 

cohort throughout testing and follow-up is provided in Figure 4. 

  

 

 

 

 

 

 

 

 

 

 

Figure 4. Flowchart of study design. 

Figure 3. Region of interest selection in the T2 map 

acquired after exercise. (A) Right side: biceps femoris, 

1; semitendinosus, 2; and semimembranosus, 3. (B) Left 

side: biceps femoris, 4; semitendinosus, 5; and 

semimembranosus, 6. 

 

Figure 2. Region of interest selection in the T2 map 

acquired  before exercise. (A) Right side: biceps 

femoris, 1; semitendinosus, 2; and semimembranosus, 3. 

(B) Left side: biceps femoris, 4; semitendinosus, 5; and 

semimembranosus, 6. 

 

4; semitendinosus, 5; and semimembranosus, 6. 
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Four of 44 players sustained a first-time hamstring injury during follow-up (3 players in the injury 

history group sustained a first time hamstring injury in the opposite leg and were counted as part of the 

index injury group), resulting in an index hamstring incidence of 15%. Six of 20 players sustained a 

recurrent hamstring injury, generating a recurrence rate of 29% within our cohort. As it was the 

intention to associate metabolic activation patterns and their mediolateral (a)symmetry with the 

occurrence of hamstring (re)injuries during follow-up, the exercise-related T2 shifts were evaluated 

and compared between (1) a control group (n = 23) and an index injury group (n = 4) and (2) a group 

with a history of hamstring injuries but no recurrence during follow-up (n = 11) and a reinjury group 

(n = 6). This design would enable us to evaluate to what extent the metabolic muscle activation 

patterns of participants who sustained a first or recurring injury during follow-up differed from those 

of healthy controls or participants with a history of hamstring injuries but no reinjuries during follow-

up, respectively.  

 

 

Index Injury During Follow-up 

 

Comparing the exercise-related T2 shifts between the index injury group (n = 4) and the control group 

(n = 23), the index injury group presented a significantly higher T2 shift in the BF (mean difference, 

16.1%; 95% CI, 5.2%-26.9%; P = .005) (Figure 5) and the SM (mean difference, 11.1%; 95% CI, 

0.0003%-22.2%; P = 0.050). No significant difference could be observed for the ST (mean difference, 

7.3%; P = 0.285) (Figure 5). Logistic regression revealed that only the exercise- related metabolic 

activity characteristics of the BF were significantly able to predict a first-time injury within our cohort, 

with the chance of sustaining a first-time injury increasing exponentially with an increased the T2 shift 

of the BF (P = 0.028; R
2
 = 0.402). More specifically, ROC curve analysis demonstrated that this 

variable was significantly able to predict the occurrence of index injuries with a sensitivity of 100% 

and a specificity of 70% when the metabolic activity of the BF exceeded 10%. For the evaluation of 

the symmetry between the different hamstring muscle bellies in terms of exercise-induced changes in 

metabolic muscle fiber characteristics, we assessed the T2 shift for each muscle belly relative to the 
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total T2 shift, which was set at 100%. Considering this intramuscular activation symmetry within both 

groups, a significant between-group difference could be demonstrated for the relative contribution of 

both the BF and ST in which the BF showed a significantly higher contribution in the exercise-induced 

T2 shift (mean difference, 5.5%; 95% CI, 1.1%-10.0%; P = 0.017), whereas the ST contributed 

significantly less (mean difference, 15.6%; 95% CI, 3.4%- 27.7%; P = 0.014) in the index injury group 

compared to the healthy controls (Figure 6). Logistic regression revealed that only the proportional 

activity share of the ST was significantly able to predict a first-time hamstring injury, with the risk of 

sustaining an index injury increasing significantly when the ST demonstrated less contribution to the 

total metabolic activity, demonstrated by the hamstring muscle unit after the prone leg curls. More 

specifically, ROC curve analysis demonstrated that this variable was significantly able to predict the 

occurrence of index injuries with a sensitivity of 100% and a specificity of 61% when the ST 

contributed less than 34% to the summated T2 shift of the entire hamstring portion. Activity shares of 

the SM did not differ significantly between groups (mean difference, 4.4%; P = 0.350), nor did logistic 

regression analysis reveal a meaningful association between the contribution of the SM and the 

occurrence of index injuries during follow-up (P = 0.340). 

 

 

 

Figure 5. Exercise-related T2 shift in each muscle belly ([T2 postexercise – T2 pre-exercise]/T2 pre-exercise). The T2 

shift of the biceps femoris (BF) was significantly higher in the index injury group (**P = 0.005). The semimembranosus 

(SM) tended to be activated to a higher extent in the index injury group as well (*P =0 .050). The primary injury risk 

reached a maximum when the BF activity exceeded 14%.. The dotted line indicates the crucial cut-off level of absolute 

metabolic  BF activity, as from where metabolic activity increments increase the risk of injury significantly (ROC curve 

outcome measure). ST, semitendinosus. 



96 

 

 

 

 

 

Recurring Injury During Follow-up 

 

The possible association between the metabolic hamstring features and the risk of sustaining a 

recurring hamstring injury was assessed by comparing the exercise-related metabolic activation 

patterns of the participants who sustained a reinjury during follow-up (n = 6) with those of the 

participants with a history of hamstring injuries but no reinjury during follow-up (n = 11). No 

significant differences in the T2 shift could be demonstrated between groups (Figure 7). Furthermore, 

the relative contribution of each muscle belly in the total hamstring T2 shift was almost identical in 

both groups (Figure 8). Logistic regression revealed no meaningful relation between the amount of 

metabolic changes and their distribution within the hamstring unit and the risk of sustaining a reinjury 

during the subsequent season. For a very comparable metabolic activity profile, however,  the reinjury 

group demonstrated significantly poorer strength endurance, shown by the time to exertion on the 

eccentric hamstring exercise between scans (Figure 9). The reinjury group was only able to perform 

prone leg curls for a mean duration of 146.50 ± 76.16 seconds, whereas the participants with an injury 

history but no recurrences during follow-up were able to persevere for a mean of 237.45 ± 110.76 

seconds (95% CI, 11.9-230.5 seconds; P = 0.031). More so, ROC curve analysis revealed that the 

Figure 6. Individual share of each hamstring muscle belly in the total T2 shift for the entire hamstring group 

(portion of 100%). The share of the biceps femoris (BF) was significantly higher in the index injury group (*P = 

0.017), while the share of the semitendinosus (ST) was significantly lower (**P = 0.014). The primary injury risk 

reached a maximum when the share of the ST was less than 37%. The dotted line indicates the crucial cutoff level of 

metabolic muscle activity, as from where decreases in relative activity of the ST increase the risk of injury during 

follow-up (ROC curve outcome measure). SM, semimembranosus. 
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eccentric (strength) endurance capacity on the prone leg curl was significantly able to predict recurring 

hamstring injuries during follow-up (P = 0.031) with a sensitivity of 100% and a specificity of 52% if 

the time to exertion was ≤ 256 seconds.  

 

 

 

 

 

 

 

Figure 7. Exercise-related T2 shift in each muscle belly ([T2 postexercise – T2 

pre-exercise]/T2 pre-exercise) for the injury history group and the reinjury 

group. BF, biceps femoris; SM, semimembranosus; ST, semitendinosus. 

Figure 8. Individual share of each hamstring muscle belly in the total T2 shift for 

the entire hamstring group (portion of 100%) for the injury history group and the 

reinjury group. BF, biceps femoris; SM, semimembranosus; ST, semitendinosus. 
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Discussion 

 

The results of this innovative, prospective mfMRI study demonstrate that hamstring injuries in soccer 

are most probably associated with alterations in neuromuscular coordination within the biarticular 

muscle unit. The risk of sustaining a first hamstring injury was strongly related to elevated levels of 

metabolic changes in the BF after eccentric exercise and a significant decrease in assistance of the ST. 

This study could not associate the risk of sustaining a reinjury with the same divergent recruitment 

pattern during eccentric exercise. However, the players who sustained a recurring injury during 

follow-up presented a significantly inadequate deficit in hamstring strength endurance. Taking 

together the results of the present study and a prior study,
37

 we are inclined to believe that the lacking 

strength endurance could possibly be related to aberrant intermuscular interplay.  

 

Figure 9. Time to exertion on the loaded prone leg curl between both T2 

scans. The index injury, reinjury, and injury history groups performed 

less compared with the control group; only the performance of the group 

that sustained a reinjury during follow-up was significantly weaker 

compared with controls (**P = .014). 



99 

 

 

Index Injury Risk 

 

The results of this study demonstrated that the risk of sustaining a first-time hamstring injury increased 

significantly if the BF was activated beyond 10% of its metabolic resting state or if the ST did not 

participate sufficiently (relative contribution < 34% threshold) during the prone leg curls. The 

metabolic hierarchy of the control group differed substantially and clearly indicated an exercise-

related metabolic dominance of the ST, which is in agreement with former findings
37

 and indicates the 

existence of a causal association between intermuscular interplay (or task distribution) and the 

vulnerability for hamstring injuries. In the existing literature, prospective research identifying 

functional/dynamic risk factors for first-time hamstring injuries is lacking. Because of the limitations 

of the design (need for large cohorts to encounter sufficient incidence rates as well as potential 

dropouts and adequate monitoring), such studies have predominantly investigated the influence of 

injury history, ethnicity, and anthropometric features as well as musculoskeletal characteristics or 

features of functional performance on the susceptibility to subsequent hamstring injuries in soccer.
3, 12, 

16, 18, 19, 34, 42
 Likewise, isokinetic strength profiles with a particular focus on bilateral balances and 

inadequate antagonist ratios have been implemented in prospective designs repeatedly.
4, 9, 45

 In terms 

of neuromuscular coordination and interplay between the different hamstring muscle bellies, there are 

no prospective studies available. Some studies have investigated the differences in BF and ST 

activities during exercise and running, but only in healthy controls or in retrospective designs.
21-23, 25, 28, 

38
 Likewise, the mfMRI technique has predominantly been used in a healthy population, mostly to 

identify the most suitable exercises for rehabilitation.
20-31

 As a consequence, the role of the exact 

mediolateral interplay in the susceptibility to hamstring injuries used to be part of the frontiers of 

knowledge. In a fairly recent review, however, the role of neuromuscular inhibition in the recurrence 

of hamstring injuries has been discussed.
15

 Although the authors did not mention intermuscular 

balance nor the potential association with the primary injury risk (because of the lack of available 

prospective research), they concluded that hamstring strain injuries result in neuromuscular 

adaptations, among which are selective eccentric weakness and selective atrophy of the long head of 

the BF. Interestingly, the present study could also associate recurring injuries with lacking strength 
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endurance during prone leg curls. Moreover, the selective atrophy of the BF might ultimately result in 

a higher metabolic response after exercise, as the remaining fibers will inevitably be subject to 

overloading. If, in addition, the ST would not be able to take the lead (as it most probably is designed 

to do during eccentric work), the (next) injury might be just around the corner. 

In our previous work,
37

 we stated that the natural hierarchy in the activity distribution within the 

hamstring muscle unit probably relates with the differences in muscle fiber typology and functional 

purposes of both the medial and lateral muscle bellies. We believe that because of its fairly short, 

voluminous muscle fibers and considerable pennation angle, the BF is better suited for concentric and 

isometric muscle work (stance and backswing phases), whereas the longer, thin, and fairly straightly 

aligned muscle fibers of the ST should be more capable of engaging in eccentric actions (front swing 

phase).
25

 This presumption could explain our findings (leading role of the ST in eccentric muscle 

effort) and could account for the particular injury vulnerability of the BF in running and kicking. In 

agreement with this hypothesis, Higashihara and colleagues 
21 

reported a discrepancy between the 

onset of peak muscle stretch and peak EMG activity in the hamstring muscle unit throughout the 

explosive front swing phase in sprinting, with the BF reaching peak EMG activity after the onset of 

peak muscle stretch. The ST, on the other hand, presented peak EMG activity before peak stretch. 

These findings support our train of thought, as they indicate that the ST is perfectly able to engage in 

rapid eccentric contractions, effectively controlling flexion and extension torque generated around the 

hip and knee joints, whereas the BF does not seem to be. Therefore, the alterations in absolute and 

relative metabolic activity within the hamstring muscle unit due to eccentric exercise are most 

probably partly responsible for an increased risk of sustaining a functional or structural injury. 

 

Recurring Injury Risk 

 

In contrast with our original hypothesis, we were not able to associate this divergent muscle 

recruitment pattern with the risk of sustaining a recurring hamstring injury. Interestingly and in line 

with what has previously been stated,
8, 15, 41 

the reinjury group performed strikingly weak on the prone 
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leg curling exercise, indicating an insufficient hamstring load-bearing capacity and (probably) an 

unjustified return to play.  ROC curve analysis demonstrated that the time to exertion on the prone leg 

curls, a parameter for hamstring muscle strength-endurance, was able to predict the recurrence of 

hamstring injuries within our cohort. This study could not demonstrate that the intramuscular 

recruitment pattern and interplay are related to the risk of sustaining a recurring hamstring injury, as 

the metabolic activation pattern of the participants with a recurring injury during follow-up did not 

differ from those with a history but no recurrence during follow-up. Because the cohort in which this 

pattern was assessed in relation to the reinjury risk was small (n = 17), these results must be 

interpreted carefully, as lacking power might have influenced the outcome. However, in accordance 

with the results of the present study, predominantly, the functional muscle output and strength capacity 

seem to be key for secondary prevention. 

 

Association Between Metabolic Muscle Features and Strength Endurance 

 

In agreement with previous research,
37

 this study revealed substantially lower strength endurance in 

both the index and reinjury groups, corresponding with a higher and a similar metabolic expense, 

respectively. This finding once again indicates that the hamstring muscles of the players who sustained 

a first or recurring injury function less effectively (probably because of the divergent intermuscular 

interplay), which causes them to acidify more easily and probably makes them more prone to 

functional and structural injuries.
10, 37

 Next to this potentially locally mediated decrease in fatigue 

tolerance (deviated intermuscular hierarchy and muscle recruitment), central fatigue mechanisms 

altering peripheral motor output characteristics might play a role as well. It has been demonstrated 

repeatedly that muscle injuries tend to occur more frequently toward the end of the season or the end 

of a match.
10-12 ,35

 Aside from peripheral fatigue mechanisms due to metabolic changes in muscle and 

cardiorespiratory systems, centrally mediated fatigue, caused by changes in the central nervous system 

(mostly by alterations in autonomic and hormonal balances), will also cause the muscle to contract in a 

less coordinated manner, making it more susceptible to functional and/or structural injuries.
27, 29, 36 ,39

 

As we evaluated local strength endurance by means of a prone leg curl to exertion, we believe that we 
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predominantly verified the characteristics of local metabolic muscle functioning rather than the fatigue 

tolerance and load-bearing capacity of the central nervous system. Consequently, we cannot discuss 

the possible influence of centrally mediated fatigue (tolerance) in the reinjury risk based on the present 

results. If we had intended to monitor central fatigue and its association with hamstring (re)injuries 

during follow-up, we should have included outcome measures to assess possible 

overreaching/overtraining,
29,36

 as well as hormonal or autonomic nervous system homeostasis, with 

additional functional exercise capacity screens (peak VO2 estimation, heart rate at maximum running 

speed or maximum aerobic speed,
18,43

 yo-yo intermittent test,
26

 etc). We specifically chose to verify 

the role of local metabolic muscle function characteristics and their intermuscular coordination in the 

risk of hamstring injuries in soccer, so the influence of centrally mediated fatigability of the 

participants in terms of their injury vulnerability was beyond the scope of this study. On the basis of 

what has been demonstrated in this study as well as the results from previous research assessing 

peripheral/local and central fatigability,
27,29,36,39

 we believe that the latter is a considerable risk factor 

for both primary and secondary muscle injuries, whereas local fatigability probably predominantly 

deteriorates in the presence of a history of muscle injuries because of morphological and functional 

changes in the previously injured muscle unit.
15,37

 Therefore, the evaluation of local muscle strength 

endurance (preferably with mfMRI quantification) seems to be ideally suited for investigating 

deviating muscle function (coordination) after an injury and to verify the risk of recurrence. 

 

 

Clinical Message 

 

Based on the present results, we suggest that the hierarchic shift in the metabolic activity contribution 

is most probably (partly) responsible for the first hamstring strain injury and that this altered pattern of 

muscle activation is associated with poorer strength endurance.
37

 Bearing this in mind and presuming 

that a deviated activation pattern could be both a cause and consequence of hamstring strain injuries in 

soccer, the quality of the recruitment pattern should be acknowledged in preventing first and recurring 

hamstring injuries. The findings of this prospective study indicate that a perfectly and functionally 
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balanced out BF-ST unit appears to be of major importance in the prevention of hamstring (re)injuries 

and, most probably, in the athlete’s performance as well. In attempting to protect the BF against 

structural or functional damage, the clinician should bear in mind this natural intramuscular hamstring 

hierarchy and effectively train both the BF and ST plyometrically, dominantly addressing the ST 

during heavy eccentric loading in the distal range of motion. Furthermore, prone leg curls with 

eccentric overloading could be implemented as an exercise and a test for the purpose of rehabilitation 

and determining the readiness for return to play in community-level soccer players, with a cutoff value 

of 4 minutes and 30 seconds. 

 

Limitations 

 

For the limitations to this study, we partly refer the reader to the previous work.
36

 Because of the 

prospective design, the distinction between index and recurring injuries, and the high costs of the 

mfMRI protocol, the sample sizes for between-group comparison were small. This lowers the power 

of this study considerably, which must be acknowledged when drawing conclusions. Future largescale 

prospective research using mfMRI for the assessment of the importance of intermuscular 

interplay/coordination in the risk of hamstring (re)injuries is needed to be able to affirm or refute the 

results of this preliminary study. However, this is the very first prospective mfMRI study to assess 

metabolic hamstring characteristics and intramuscular activation features for the purpose of identifying 

the risk of index injuries and reinjuries in soccer. 

 

 

Conclusion 

 

This is the first prospective study using mfMRI to assess the influence of metabolic muscle 

functioning and intramuscular coordination in the context of identifying the risk of hamstring injuries. 

The present results indicated that the occurrence of index hamstring injuries could be associated with a 

hierarchical change in the metabolic activity distribution within the hamstring muscle complex after 
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eccentric work in which the ST is most probably meant to take the leading part, followed by the BF 

and SM. When the BF increases its contribution and is activated to a proportionally higher extent, the 

risk of sustaining an index hamstring injury might increase substantially. This study is also the first to 

assess the risk factors for index and recurring injuries, considering both injury entities separately but 

acknowledging their similarity and interdependence. Subjects with reinjuries within our cohort 

presented a particularly weak performance capacity on the prone leg curling exercise. This type of 

heavy eccentric loading might be suitable to determine the athlete’s readiness to return to play. The 

athlete should be able to perform the standardized prone leg curls with 5 kg attached to each foot, at a 

standardized pace of 90 rpm for at least 4 minutes and 30 seconds, before safely returning to 

competition. 
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Abstract 

 

Background  ‘Core stability’ is considered essential in rehabilitation and prevention. Particularly in 

preventing hamstring injuries, assessment and training of lumbo-pelvic control is 

thought to be key. However, supporting scientific evidence is lacking. To explore the 

importance of proximal neuromuscular function with regards to hamstring injury 

susceptibility, this study investigated the association between the Prone Hip Extension 

(PHE) muscle activation pattern and hamstring injury incidence in amateur soccer 

players.   

Methods 60 healthy male soccer players underwent a comprehensive clinical examination, 

comprising of range of motion assessments, and the investigation of the posterior 

chain muscle activation pattern during PHE. Subsequently, the hamstring injury 

incidence was recorded prospectively throughout a 1.5 season monitoring period. 

mailto:Joke.schuermans@ugent.be


115 

 

Results  Players that got injured presented a PHE activation pattern that differed significantly 

from those who did not. Opposed to the controls, hamstring activity onset was 

significantly delayed (p = 0.018), resulting in a deviating activation sequence. Players 

were 8 times more likely to get injured if the hamstring muscles were activated after 

the lumbar Erector Spinae instead of vice versa (p = 0.009).  

Conclusion Assessment of muscle recruitment during PHE demonstrated to be useful in injury 

prediction, suggesting that neuromuscular coordination in the posterior chain is of 

influence in hamstring injury vulnerability.  

Key words   hamstring muscle injury; soccer; physical examination; surface electromyography; risk 

assessment  

 

 

Introduction 

 

Hamstring injuries are a common and frequently reoccurring problem in several sports.
5, 13, 17, 18, 62 

 

Especially in male soccer, given its high physical demands, this muscle injury remains an obstacle.
3, 6, 

29
 This type of muscle injury is still the single most common sports injury in soccer (representing 

approximately 12% of all sports injuries) and is also associated with a considerable risk of recurrence 

(rates ranging from 12 to 30% after return to play; up to 35% of all recurring muscle injuries involve 

the hamstrings).
 10, 14, 27, 45, 60, 62

 Furthermore, although a substantial amount of research already has 

been (and still is being) conducted aimed at reducing the number and severity of these soccer-related 

injuries, a recent study has demonstrated that the injury incidence has not decreased, and even 

presented a slight increase, throughout the last years.
15

 The particularly high hamstring injury 

occurrence in male soccer, is due to the fact that explosive running and kicking (which movement 

patterns are inherent to soccer play) imposes massive mechanical loads on respective muscle entity. 

Particularly the front swing phase of sprinting (and kicking) incurs a risk of muscle failure, as the 
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hamstrings have to engage in intense negative work to control for the strong flexion and extension 

torques acting upon the hip- and knee joints. Biomechanical research, objectifying hamstring 

mechanics during sprinting, has suggested that the terminal front swing phase might indeed hold the 

primary injury mechanism, as muscle-tendon loads are maximized at that moment.
12, 62

 Among others, 

alterations in neuromuscular coordination
51-52 

and neuromuscular inhibition
20

 are suggested to play a 

role in hamstring injury vulnerability. Both local
20, 51-52 

and more proximally oriented coordination 

dysfunctions
43, 49 

have been associated with hamstring injuries in athletes. To what extent these 

neuromuscular features are the cause or merely the consequence of hamstring injuries, is not to be 

deducted as prospective research is lacking.  

Neuromuscular coordination, in particular lumbo-pelvic function is suggested to be key in safe 

hamstring functioning.
43

 The hamstrings are primarily responsible for controlling and generating 

forces around the knee- and the hip joints throughout running. However, in theory, due to their 

biarticular function and anatomical connections with proximal stabilizing structures, they have the 

capacity to contribute to stabilizing the pelvis, sacro-iliac joint and lower spine as well.
43-44

 

Nonetheless, this stabilizing function is only secondary, as the hamstrings are prime mobilizing 

muscles, morphologically and topographically best suited to generate and control torques around hips 

and knees.
61

 To guard optimal tissue homeostasis and to prevent the hamstrings from overload during 

running, adequate synergetic functioning in the entire posterior muscle chain is essential. Next to the 

hamstrings, the gluteal muscles and lumbar erector trunci are suggested to be responsible for effective 

and safe force transfer from lower limb towards trunk (and vice versa) during locomotion.
9, 31, 36, 44, 53-54 

 

Both the gluteus maximus and the (superficial) lumbar erector spinae too have a dual function.  They 

are designed to create and control extension- and flexion torques, respectively, and to generate 

sufficient muscle tone for safeguarding the necessary force closure and joint stability within the pelvic 

girdle. Adequate synergistic interplay and muscle balance within this posterior continuum, has mostly 

been investigated in terms of lower back complaints.
1, 7, 11, 24, 32-34, 36, 43, 46

 However, it seems to us that 

this feature is essential in hamstring injury prevention as well. The Prone Hip Extension (PHE) test 

was originally introduced by Janda
30

 and has been adopted in multiple studies to investigate 
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impairments in lumbo-pelvic neuromuscular coordination.
1, 7, 11, 24, 36, 40

 By investigating the activation 

order among the hamstrings, gluteal muscles and lumbar spine muscles, the practitioner intends to gain 

insights in the synergistic balance and possible dominance / inhibition within the posterior muscle tract 

(causing relative overload and injury more proximally or distally). Figure 1 illustrates the posterior 

sling system, with a diagonally directed force vector crossing the lumbo-pelvic girdle from lower limb 

towards trunk and vice versa.  

 

Figure 1. The functional posterior chain unit, consisting of the hip- and contralateral back extensor muscles. 

 

Although mostly suggested to be important in prevention of lower-back and sacro-iliac complaints,
31-

34, 36, 40, 46, 49-50, 53
 this interplay might have important repercussions for hamstring functioning as well,

42
 

but this has never been investigated before. Therefore, this study wanted to investigate the influence of 

neuromuscular coordination in the posterior muscle chain (hamstrings, gluteus maximus and lumbar 

erector spinae) on hamstring injury vulnerability in a cohort of male amateur soccer players, by 

assessing PHE muscle recruitment patterns using surface Electromyography (sEMG). Because joint 

mobility and muscle tightness within and around the lumbo-pelvic-hip complex would evidently effect 

associated muscle activation characteristics during PHE, respective clinical features were thoroughly 

examined prior to sEMG analysis. 
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Methods 

 

Participants 

 

Throughout the second half of the 2013 soccer season, male soccer players, active in the same amateur 

competition series (Oost-Vlaanderen, Belgium), were recruited.  Players were excluded if they  

- had not fully returned to play (soccer training and matches) after a previous hamstring injury 

or reported having suffered any functional discomfort in the hamstring region the past 3 

months (Cf. reinjury definition by UEFA)
25

 

- were still recovering from any injury, which disabled them to fully participate in training and 

match play  

- had a history of severe lower limb injury, lower back complaints / lower back complaints at 

present, which could have biased clinical outcomes and consequentially, disabled risk 

estimation 

A hamstring injury was defined being an injury in the hamstring muscle region, sustained during 

soccer training or match play, preventing the player to participate in training or competition for at least 

one entire week.
25

 Although potentially inducing significant inhibition and neuromuscular alterations, 

we decided not to encounter for less severe hamstring complaints (not preventing the participant from 

participating in soccer play), to make sure we would not unfoundedly take along the covariate 

‘hamstring injury history’ in statistical analysis. Ultimately 60 male soccer players were included for 

study participation. At the time of testing, all participants were completely injury free and none of 

them reported any pain or discomfort in the hamstring region during soccer participation or during the 

assessment protocol in this study.  
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Screening protocol 

 

All tests were conducted at the Ghent University Hospital and were performed by the same researcher 

(JS). Participants were asked not to engage in intensive physical exercise 48 hours prior to testing to 

rule out fatigue induced bias or a temporal change in tissue homeostasis. After being informed about 

the purpose and the content of the testing protocol, each participant was asked to affirm his agreement 

with participation by signing the informed consent and to fill out a shot questionnaire to gather data on 

participant’s age, anthropometrics and (hamstring) injury history. This study was approved by the 

Ethics Committee of the Ghent University Hospital (EC/2013/118) and meets the ethical standards of 

the International Journal of Sports Medicine.
26

 

Evaluating the posterior chain muscle activation order to gather more insights in neuromuscular 

coordination and potential deficits in lumbo-pelvic control / function, was the main purpose of this 

research. However, as neuromuscular coordination, assessed by means of the PHE exercise, requires 

adequate joint mobility and muscle length, those needed to be examined as well in order to correctly 

estimate the nature of deviating muscle recruitment and thus, possible neuromuscular coordination 

impairments. Therefore, the protocol consisted of a comprehensive clinical examination, covering 

Range Of Motion (ROM) assessments throughout the entire lower extremity, as well as surface 

electromyography (sEMG) recording of the hamstrings, the Gluteus Maximus and the Lumbar Erector 

Spinae during PHE. 

 

Range Of Motion (ROM) assessment 

 

After being familiarized with the content of the testing protocol, each subject underwent a 

standardized 5 minute warm up on a stationary bike. Subsequently,  hamstring flexibility (passive knee 

extension test from a 90° hip- and knee flexion position(Figure 2) (intra-rater ICC > 0.83, inter-rater 

ICC > 0.93)
19, 21

, Iliopsoas flexibility and Rectus Femoris flexibility were evaluated (modified Thomas 
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test (Figure 2) (intra-rater ICC > 0.63, inter-rater ICC > 0.90) 
2, 16, 19, 21-22

 For the hamstring flexibility 

assessment, passive knee extension capacity was measured from a 90° hip and knee flexion position, 

as described by Gabbe and colleagues.
22

 Contrary to their protocol, knee extension was performed 

passively. We decided not to perform the passive knee extension test as originally described by 

Fredriksen (passive knee extension starting from a 120° flexion position in the hip joint),
19

 as we felt 

we could control the hip joint angle better when starting from a 90° hip flexion position and because 

this position allowed a more reliable measurement of knee extension using a digital inclinometer. 

 

Figure 2. Hamstring flexibility – and Hip flexor flexibility assessment quantified by a digital inclinometer by means of 

passive knee extension and Modified Thomas testing. 

 

Next, hip flexion, internal and external rotation ranges of motion were objectified with the subject 

adopting a relaxed supine or sitting position, respectively [Figure 3] (intra-rater ICC > 0.83, inter-rater 

ICC > 0.88)
21, 47

.  

 

Figure 3. Mobility assessment of the hip joint using a digital inclinometer by means of flexion, external- and internal 

rotation range of motion. 
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All ROM measurements were conducted using a digital inclinometer. Bilateral and unilateral Finger 

To Floor (FTF) reaching distances
5, 48  [

Figure 4] (intra-rater ICC = 0.98, inter-rater ICC = 0.95)
23

 were 

assessed using measuring tape. Lastly, the neuromuscular stretch tolerance of the entire posterior chain 

was assessed by measuring the knee extension capacity from the Slump-position (active Slump test)
21-

22, 56
 [Figure 5] (intra-rater ICC > 0.80, inter-rater ICC = 0.92)

21
.  

 

Figure 4. Bilateral and Unilateral finger to floor reaching test. 

 

 

Figure 5. Active Slump Test; amount of knee extension quantified using a digital inclinometer. 

 

EMG assessment 

 

For this sEMG analysis, the Noraxon Direct Transmission System (DTS) was utilized (Noraxon 

U.S.A. Inc., Arizona). After shaving, abrading and cleansing the skin with alcohol, electrodes (Ambu 

A/S, Denmark) were placed on the Biceps Femoris, the medial hamstrings, Gluteus Maximus and 
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Lumbar part of the Erector Spinae bilaterally, corresponding the SENIAM guidelines.
28, 38

 We chose to 

primarily take into account the contralateral erector muscle (Contralateral Erector Spinae (CLES)) for 

final data-analysis, as force transmission across the pelvis occurs cross-coordinated and this crossing 

posterior muscle chain (hamstrings – gluteus maximus – contralateral paravertebral muscles) is the 

one working synergistically in daily locomotion as well.
4, 43, 49, 59

 After electrode placement, 8 

amplifiers, which served to capture and amplify the electric signal prior to forwarding it to the DTS 

desk receiver, were attached to the skin in the proximity of the measuring site. A tight pair of shorts 

and a cohesive, stretchable bandage made sure that all electrodes and amplifiers remained firmly 

attached to the skin during analysis. After checking the quality and validity of the EMG signal in each 

of the 8 channels (normal baseline voltage, proper zero-offset), 3 maximal voluntary contraction 

(MVC) trials were acquired per muscle (group), adding up to the registration of 15 MVC trials per 

participant (3 repetitions for the back muscles, 3 for both the left and right hamstrings and Gluteus 

Maximus). This was procedure was conducted according to the Noraxon guidelines,
35 

with the 

participant adopting a neutral prone position on the examination table. For the lumbar part of the 

erector spinae, the participants were instructed to perform a back extension, maximally resisting the 

tester’s force applied at level of the shoulder blades, square to the lever of the trunk. For the 

hamstrings, the participant was instructed to maximally resist a torque towards knee extension from a 

30 degree (°) knee flexion position (lower leg and foot supported by the upper leg of the tester). For 

the gluteus maximus, the participant was asked to extend the hip joint, maximally resisting the tester’s 

torque towards hip flexion. For each of these procedures, the participants was commanded to gradually 

raise the amount of muscle force, reaching a maximum in approximately 3 seconds. This maximum 

force output was maintained for 5 seconds, after which the participant was instructed to gradually 

lower muscle force until full relaxation was reached. For the subsequent PHE EMG signal acquisition, 

the subject was asked to adopt a neutral prone position again, with the head down straight and both 

arms positioned next to the trunk, resting on the examination table. Afterwards, each subject was 

instructed to lift up his leg at a 0.5Hz (Hertz) pace, going into an isolated hip extension with a fully 

extended knee, without rotating or tilting the pelvis, and to lower it again towards the table hereafter. 

[Figure 6] This Prone Hip Extension test was repeated 3 times in each leg, starting with the dominant 
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leg in each subject. The beginning of each hip extension was signalled within the EMG record using a 

marker, synchronized with the verbal command of the investigator (not the onset of hip extension). 

The participants were instructed to relax completely in between repetitions, to safeguard a solid 

baseline resting signal. The main outcome parameter during this PHE study was the time elapsed 

between the verbal command and the very first burst of muscle activity, so the pre-motor time of each 

of the included posterior sling muscles (instead of the motor-time, which encompasses the timeframe 

between activity burst and muscle force development)
 37

 was the measure of interest. To allow valid 

interpretation of the possibly differing activation sequence within the posterior muscle chain, average 

normalized EMG amplitudes during PHE were gathered as well. This was done because information 

regarding the quantity of muscle fibre recruitment (intensity of muscle contraction relative to the 

voluntary maximum) within each of the investigated muscles, is essential to make conclusions 

regarding neuromuscular coordination and consequences as regards injury vulnerability. We used a 

sampling frequency of 1500 Hz for the assembly of all EMG records. Rotation or any compensation in 

the frontal and transverse planes was prohibited and carefully monitored by 2 testers.  

 

 

Figure 6. Resting-, mid- and end-range position for Prone Hip Extension test. 

 

Prospective recording of injury occurrence 

 

After testing, the participants were requested to sign up to an online diary for registration of weekly 

exposure and injury incidence. They were instructed to complete this survey on a weekly basis 
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[http://www.hsi.ugent.be]. The end of this monitoring phase was set at the 2014-2015 winter break 

(December 2014), during which period all participants were contacted again for final injury enquiry.  

As we were able to keep in contact with the participants throughout respective period and because 

adding an additional couple of months of soccer exposure would potentially increase the power of our 

study, we chose to register injury occurrence throughout one and half a season, instead of just the one 

after testing. As mentioned previously, a hamstring injury was defined being an injury in the 

hamstring muscle region, sustained during soccer training or match play, preventing the player to 

participating in training or competition for at least one entire week. Because the UEFA guidelines state 

that a reinjury occurs at the exact same location as the prior one, within two months after the final 

rehabilitation day of the previous injury, all recorded injuries were considered to be index injuries.
25

 

However, as the presence of in an injury history has demonstrated to increase the risk of a subsequent 

one,
19

 this variable was taken along as a covariate in prospective data analysis.  

 

Data analysis 

 

All clinical records were organized and catalogued in a central datasheet. The EMG signals of the PHE 

records were submitted to electrocardiography (ECG) – and high pass (20 Hz)  filtering, rectification 

and smoothing in a 50 milliseconds (msec) window. Additional zero-offsetting of the collected records 

was not necessary as each one of the signals presented a correct and solid baseline in between the PHE 

related activity bursts (± 2 µV (microvolt)).  

The processed EMG signals of respective records were submitted to a timing analysis algorithm, to 

evaluate the activation sequence among the hamstrings, gluteus maximus and lumbar erector spinae.  

Mean onset times were calculated and sorted using a 3 SD (Standard Deviation) threshold within a 0.1 

sec time interval, on the basis of which absolute onset times for each muscle (hamstrings, gluteus 

maximus and lumbar erector spinae; (msec)) could be listed, as well as the relative activity onset of 

each of those compared to their neighbours (1, 2 or 3). To gather insights as regards the intensity of 

the muscle contraction (respectively the volume and intensity of motor unit recruitment), Root Mean 
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Square calculations and post hoc assembly of the average activation patterns and the normalized 

amount of muscle activity throughout PHE was performed as well. All EMG data-processing was 

proceeded using the MR3.6 software(Noraxon U.S.A. Inc., Arizona). Based on the  ratio [dominant  / 

non-dominant leg involvement] of the recorded hamstring injuries, the same ratio was used in 

randomly selecting the left or right leg of the non-injured participants, for comparative prospective 

analysis.  

 

Statistical analysis 

 

After checking the shape of data distribution within all cohorts, each of the intended variables was 

submitted to  

(1) general linear model repeated measures analyses and post hoc tests (continuous variables), 

(2) as well as binary logistic - and multi-nominal logistic regression analysis (ordinal and nominal 

variables)  

to verify whether a causal association between the clinical and EMG variables on one hand and the 

hamstring injury risk on the other could be identified, taking injury history along as a confounding 

covariate. If differing significantly based on injury occurrence, Cohens d values were calculated to 

quantify the strength of the effect of the muscle activity onset times on the risk of sustaining a 

hamstring injury. After regression, additional Receiver Operating Characteristic (ROC) curve analysis 

was performed when indicated. All statistical procedures were conducted in the SPSS 22 Statistical 

Software Package (IBM Corp. New York, USA). The level of significance was set at α = 0.05. 

Because the BF and MH systematically presented very similar activation features in terms of absolute 

(individual muscles (msec)) and relative onset times (activation order within the posterior chain (1-4)) 

(paired samples t = -0.35, p = 0.73; Pearson Correlation = 0.84, p < 0.001), outcome measures of both 
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were taken together for further analysis. Hence, the onset features of the “Hamstrings” represent the 

average EMG timing features of the BF and the MH.   

 

 

 

Results 

 

Of the 60 participants screened in July 2013, 4 stopped playing because of severe injuries (other than 

hamstring injury) and/or work related priorities, and 5 were lost to follow-up, resulting in a sample 

size of 51 players for prospective data-analysis. 15 of those sustained a hamstring injury, during the 

1.5 season monitoring period (incidence rate of 29%). Average time elapsed between the testing series 

and injury occurrence was 15 weeks (range [3 – 26] weeks) and the average absence from soccer 

participation was 3 weeks (range [1 – 6] weeks).  

Among the participants that sustained a hamstring injury: 

- 8 participants (± 50%) sustained a hamstring injury in the dominant (preferred kicking) leg 

- 8 participants reported having a laterally oriented pain location, whereas the other 7 indicated 

that the primary locus of pain was situated rather medially  

- only one of the injured participants reported the lesion to be situated rather close to the 

proximal insertion, whereas the other 14 indicated to have a more central or distal injury 

location.    

Details on participant inclusion throughout the study trajectory can be consulted in figure 7.  
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Figure 7. Flowchart study course. 

 

Anthropometric - and injury related features of the participants are presented in table 1. 

 

 

 

 

 

 

 

SD, Standard Deviation; kg,  kilograms; m, meter; m2 ,  square meter; y,  years;  wks,  weeks.  

 

 

 

Table 1    Demographic results remaining cohort after follow-up 

  Control 

(n=36) 

Injury 

(n=15) 

Body mass (mean ± SD; kg)  73 ± 7 73 ± 5 

Height (mean ± SD; m)  1.80 ± 0.06 1.81 ± 0.04 

BMI (mean ± SD; kg/m
2
)  22.41 ± 1.55 22.50 ± 1.650 

Age ( mean ± SD; y)  24 ± 4 24 ± 3 

Time to injury during follow-up (mean [range]; wks) / 18  [4 – 36] 

 Absence from sports (mean [range]; days) / 21 [7 – 56] 



128 

 

ROM measurements and injury occurrence 

 

ROM outcomes, in function of injury incidence during prospective injury registry, are presented in 

table 2.  

 

 

 

SD, Standard Deviation; °, number of degrees ; PKE, Passive Knee Extension; cm, centimetre 

 

No association was found between hamstring injury occurrence and any of the ROM features. As table 

2 indicates, ROM measures were nearly identical in both prospective groups. 

 

 

 

 

 

 

 

Table 2     Comparison of the clinical features between soccer players who sustained a hamstring injury  

                  during follow-up and those who did not.   

 Control  

(n = 36) 

Injury  

(n = 15) 

Hip flexion Mobility (mean ± SD; °) 117.52 ± 7.89 116.46 ± 8.01 

 
Iliopsoas Flexibility (mean ± SD; °) 21.77 ± 8.10 19.04 ± 9.37 

 
Rectus Femoris Flexibility (mean ± SD; °) 62.13 ± 13.62 65.21 ± 12.59 

 
Hip External Rotation Mobility (mean ± SD; °) 37.19 ± 7.96 36.92 ± 4.62 

 
Hip Internal Rotation Mobility (mean ± SD; °) 30.33 ± 5.43 30.61 ± 5.27 

 
Hamstring Flexibility (PHE) (mean ± SD; °) 131.67 ± 11.28 132.53 ± 12.54 

 
Bilateral Finger To Floor (FTF) Reaching Distance 

(mean ± SD; cm) 

6.19 ± 6.92 8.73 ± 7.00 

 

Unilateral FTF Reaching Distance (mean ± SD; cm) 4.72 ± 6.28 4.64 ± 7.06 

 
Knee Extension during Slump (mean ± SD; °) -26.43 ± 9.24 -27.51 ± 6.85 
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Muscle activation during the prone hip extension and injury occurrence  

 

To objectify the posterior chain muscle activation order, timing analysis was performed within the 

EMG signals of respective muscles of the injured leg in the injury group, and a ‘matched’ leg in the 

control group, based on the factor leg-dominance.  As such, PHE muscle activation signals of the 

Gluteus Maximus (GM), the Biceps Femoris (BF) and Medial Hamstrings (MH) (taken together and 

simply referred to as ‘Hamstrings (H)’ in the following sections), and the paravertebral lumbar Erector 

Spinae at the contralateral side (CLES) were selected for prospective statistical analysis. Based on this 

selection, 6 possible activation patterns could be retrieved [Table 3].   

 

Table 3     Possible PHE activation sequences 

Order of muscle activity onset 

1 2 3 

a) Contralateral Lumbar 

Erector Spinae (CLES) 
Gluteus Maximus (GM) Hamstrings (H) 

b) Contralateral Lumbar 

Erector Spinae (CLES) 
Hamstrings (H) Gluteus Maximus (GM) 

c) Hamstrings (H) 
Contralateral Lumbar 

Erector Spinae (CLES) 
Gluteus Maximus (GM) 

d) Hamstrings (H) Gluteus Maximus (GM) 
Contralateral Lumbar Erector 

Spinae (CLES) 

e) Gluteus Maximus (GM) 
Contralateral Lumbar 

Erector Spinae (CLES) 
Hamstrings (H) 

f) Gluteus Maximus (GM) Hamstrings (H) 
Contralateral Lumbar Erector 

Spinae (CLES) 

CLES, Contralateral Erector Spinae; GM, Gluteus Maximus; H, Hamstrings 

 

EMG signal timing analyses and subsequent statistical hypothesis testing revealed the following 

findings:  

First, two distinct recruitment patterns appeared to be most common in the entire cohort (irrespective 

of injury occurrence), namely  

- the sequence in which the hamstrings are activated first, followed by the CLES and lastly, the 

GM, and  
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- the sequence in which the CLES demonstrates primary activity, followed by the hamstrings 

and finally, the GM.   

When isolating both recruitment patterns, to exclude the cells with zero counts, χ2 testing revealed 

the in between group difference in recruitment order to be significant (χ2 = 7.70, p = 0.006) . In 

the control group, the most frequently observed activation pattern was the one in which the 

hamstrings were recruited first, whereas the contralateral erector spinae was solicited first most 

frequently during PHE in those who got injured [Table 4].  

 

Table 4    Frequency distribution within the different patterns of activation during  

                 the Prone Hip  

                Extension Exercise for prospective control and injury groups.  Control 

(n = 32)* 

Injury 

(n = 15) 

CLES - GM - H 0 1 

 CLES - H - GM 6 9 

 H - CLES - GM 15 3 

 H - GM - CLES 8 0 

 GM - CLES - H 0 2 

 GM - H - CLES 3 0 

CLES, Contralateral Lumbar Erector Spinae; GM, Gluteus Maximus; H, Hamstrings.  

* The EMG signals of 4 individuals in the control group presented to much noise and were excluded for timing analysis. 

 

Next to the relative activation times (activation order rather than the exact activity onset times), the 

absolute activity onset times were thoroughly investigated as well. Table 5 presents the mean 

(absolute) onset times of all muscles in both the control- and injured groups. 

Table 5    Average muscle onset times during PHE in players that remained injury free 

                during follow-up (control) and those who sustained a hamstring injury (injury). 

 

 Control  

(n = 32)* 

Injury  

(n = 15) 

CLES onset time (mean ± SD ; sec) 0.89 ± 0.29 0.92 ± 0.24 

 
H onset time (mean ± SD ; sec) 0.81 ± 0.24 1.04 ± 0.38 

 
GM onset time (mean ± SD ; sec) 1.05 ± 0.40 1.14 ± 0.35 

* The EMG signals of 4 individuals in the control group presented to much noise and were excluded for timing analysis. 

SD, Standard Deviation ; sec, seconds ; CLES, Contralateral Lumbar Erector Spinae; H, Hamstrings; GM, Gluteus Maximus 

; (1) significant difference in onset time between hamstrings and CLES, p = 0.001; (2) significant difference in onset time 

between CLES and GM, p = 0.037; (3) significant difference in onset time between the hamstrings and the GM, p = 0.003); 

(4) significant difference in onset time between the CLES and the GM, p = 0.004. 

(3) 

(1) 
(2) (4) 
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Within-group-comparison (General Linear Model – Repeated Measures) revealed that the onset times 

of these 3 agonist differed significantly from each other in the control group, where the hamstrings 

were primarily recruited, followed by the erector spinae and lastly, the gluteus maximus (p < 0.04). 

Yet in contrast, this systematic in-between-muscle onset time-difference was not observed in the 

injury group. In the latter, only erector spinae – and gluteus maximus onset times remained 

significantly different from one another (p = 0.004), but the time differences between the hamstrings 

and the CLES (p = 0.114), and between the hamstrings and the GM (p = 0.384), were nullified. 

Subsequent in-between-group analyses revealed that the primary cause of this shift in onset time-

differences within the injured group, was a delay in onset time of the hamstrings. In the injury group, 

hamstring activity onset presented to be significantly delayed compared to the control group (0.81 

msec in the control group, versus 1.04 msec in the injury group; p = 0.013, Cohen’s d = 0.76), this was 

not the case when comparing the activity onset times of the CLES and GM between groups (p = 0.667 

and p = 0.461, respectively).  

Binary logistic analysis including both the relative (ordinal variable) and the absolute (scale variable) 

activity onset times, revealed that the risk of sustaining a hamstring injury increases significantly when 

the PHE exercise is characterized with 

(1) a delay in hamstring activity onset (p = 0.018) 

(2) an activation sequence in which the lumbar erector muscles are recruited prior to the 

hamstrings (p = 0.009) 

Subsequent Receiver Operator Curve Analysis (ROC) revealed that, within our cohort, injury 

incidence could be estimated with a sensitivity of 0.80 and a specificity of 0.23 (p = 0.001 ; Area 

Under the Curve (AUC) = 0.80 (95% Confidence Interval (CI) : 0.64 – 0.97)) if the onset time of the 

hamstrings exceeded 1.04 sec.  

Assessing the contraction intensity of each of the intended muscles with respect to injury vulnerability, 

no significant effect could be established (p > 0.38). Average muscle activity (muscle fibre 
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recruitment) during PHE for the participants that sustained an injury and the healthy controls are 

demonstrated in table 6.  

 

 

 

CLES, Contralateral Lumbar Erector Spinae; GM, Gluteus Maximus; H, Hamstrings; SD, Standard Deviation  

 

 

 

Discussion 

 

The present study demonstrated that the PHE muscle recruitment was significantly associated with 

injury occurrence during a 1.5 season monitoring period for prospective injury registry. In terms of 

lumbo-pelvic mobility and flexibility measures, no relation could be established with injury risk.  

With regard to the activation order in the posterior muscle chain during PHE, two distinct patterns 

revealed to be most common in both the control – and the injury group. The sequence in which the 

hamstrings are activated first, followed by the contralateral erector spinae and lastly the gluteus 

maximus, was the pattern that was most commonly observed in healthy participants, whereas the 

pattern in which the contralateral erector spinae takes the lead, followed by the hamstrings and finally, 

gluteus maximus, was most frequently seen in players who got injured during the period of exposure. 

Interestingly, subsequent analysis revealed that this altered sequence of posterior chain muscle 

recruitment is predominantly caused by the delay in onset time of the hamstring muscles, forcing the 

erector trunci to participate in force production prematurely. Looking at the contraction intensity, no 

significant in-between-group effect or association with injury occurrence could be established, 

Table 6    Average EMG amplitude during PHE, normalized to the MVC reference 

 

 

 Control 

(n=36) 

Injury 

(n=15) 

CLES  (mean ± SD; %)  25,0 ± 30,2 20,4 ± 10,2 

GM (mean ± SD; %)  29,7 ± 19,2 24,0 ± 19,0 

H (mean ± SD; %)  21,5 ± 10,0 19,0 ± 9,3 
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indicating that the timing rather than the amount of muscle fibre recruitment is key in muscle injury 

susceptibility, with respect to neuromuscular coordination and interplay throughout the posterior sling. 

Our study was the first to identify a delay in hamstring muscle activity onset during PHE, and it was 

also the first to prospectively investigate the posterior chain muscle recruitment pattern in a cohort of 

male soccer players in association with hamstring injury occurrence. In terms of neuromuscular 

coordination and its possible association with hamstring injuries, and to some extent in agreement with 

the present findings, the work of Opar and colleagues
41

 revealed reduced EMG signals and reduced 

Rates of Torque Development (RTD) in previously injured hamstrings. Their findings suggested that 

in participants with a hamstring injury history, respective hamstring muscles present insufficient early 

torque generation capacity. Although demonstrating reductions in early EMG activity onset, no 

differences in peak torque could be presented during eccentric isokinetic contraction. The authors 

suggested that this reduction in ‘early neural drive’ could point out a detrimental prolonged neural / 

neuromuscular deficit, comprising the rehabilitation process. This relative delay in force production 

would result in depriving the weakened hamstring from sufficient training stimuli, needed to bring 

about muscular adaptations such as sufficient hypertrophy and sarcomerogenesis.
41

 Although this was 

assessed retrospectively and by means of synchronized isokinetic dynamometry and sEMG under 

eccentric loading conditions, we believe that the clinical implications of respective findings are 

compatible with the ones resulting from our study. The present study also found a delay in hamstring 

activity onset (albeit during PHE and not during maximal eccentric contractions), which might just as 

well be caused by inhibited neural drive or alterations within both local and proximal neuromuscular 

control. These inhibitory mechanisms would result in relative disuse of the entire hamstring unit, 

leading to decreased neuromuscular control capacity with a higher risk of injury. Our study was a 

prospective study, in which the presence of a hamstring injury history was taken along as a covariate 

in statistical analysis. Although injury history appeared to be an independent predictor of hamstring 

injury, it did not have any influence on the muscle activation features during PHE, nor did it appear to 

be of significance in the general logistic model, revealing that delay in hamstring recruitment and 

earlier onset of lumbar muscle activity was significantly able to predict injury occurrence, 
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independently from injury history. Accordingly, neuromuscular inhibition and imbalances in the 

synergistic posterior chain interplay, seem to be more than just a consequence of previous injury. 

Interestingly both in agreement and in contrast with what has been published earlier,
1, 7, 24, 31, 40, 50

 the 

GM activity onset was very similar in both groups and did not present any association with hamstring 

injury occurrence. Nonetheless, the GM demonstrated to be systematically recruited last, with an onset 

time being significantly later than the one of the lumbar erector muscles (injury and control group) and 

the hamstrings (control group). Existing research tends to point out the importance of early activity 

onset of the GM during the PHE, to adequately stabilize the sacro-iliac joint and allow safe force 

transmission to the pelvis and lower back throughout PHE.
31, 40, 44, 53

 In these terms, the study of 

Bullock and colleagues (1994) demonstrated that the GM activity onset was significantly delayed in 

subjects with a history of lateral ankle sprains, compared to healthy matched controls.
8
 In accordance 

with these findings, Bruno and Bagust (2007) found the activity onset of the GM to be delayed as well, 

when comparing PHE muscle activation patterns between subjects with and without low back pain.
7
 

This research was inspired by Janda, who originally postulated that the ‘ideal’ muscle recruitment 

during PHE concerned primary activity of the gluteus maximus, followed by the  hamstrings and 

lastly, the lower back muscles. This pattern was assumed to reflect optimal muscle recruitment during 

locomotion and was thought to provide the most proximal stability and thus, the safest biomechanical 

loading conditions. This assumption was merely based on a theoretical biomechanical framework, and 

not on actual scientific evidence. More recent study findings suggest that this ‘ideal’ recruitment is 

uncommon in healthy subjects,
36

 and that the most frequently observed activation pattern consists of 

primary activity onset of the hamstrings, followed by the contralateral ES and lastly the GM.
50

 

In the injured group the hamstrings were recruited significantly later, suggesting a delay in hamstring 

recruitment and activity onset. This finding could possibly be interpreted in analogy with the rationale 

behind the delayed GM activity onset. In the presence of lower back complaints, the phasic GM is 

believed to be subject to functional inhibition and relative weakness, causing muscle imbalance, 

deviant neuromuscular coordination and movement impairment throughout the posterior chain.
31

 

Therefore, it is plausible that the hamstring muscles of the players in our injured cohort are similarly 
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subject to neuromuscular inhibition (or dominance of the erector trunci, respectively), disabling them 

to be recruited first throughout respective movement tasks. After all, the ability to produce sufficient 

muscle force within an optimal time-frame is a general necessity for all (mobilizing, multi-articular) 

muscles. This feature allows the muscle to provide the best biomechanical conditions for adequate 

performance and injury prevention.
30

 Indeed, research should definitely invest in exploring the 

importance of timing and coordination in hamstring activity, because deficits in (isokinetic) muscle 

strength alone cannot explain the unremittingly high hamstring injury occurrence in football.
55, 58

 The 

hamstring muscles are extremely important with regard to efficient running and kicking performance. 

Engaging in  voluminous bouts of intense muscle-tendon loading, their ability to produce a sufficient 

amount of force, exactly where and when needed (i.e. neuromuscular control) is key. The fact that we 

found a delay in activity onset during this PHE (both in the BF and the medial hamstrings), which is 

thought to reflect functional muscle recruitment during locomotion,
33, 36

 might point out 

neuromuscular control deficits and imbalances in the synergistic interplay, causing the hamstring 

muscles to work less efficient and making them more susceptible to injury.  

Although assessing the association between ROM measures and hamstring injury vulnerability was 

not the main portion of this study, the fact that these clinical features did not present any association 

with injury occurrence, once again puts emphasis on the complexity of the hamstring injury risk 

profile in young athletes. Albeit an essential part of pre-participation screening,
4
 checking and 

correcting for flexibility and mobility deficits in the lower back, pelvis and the lower limbs, does not 

suffice for (adequate) hamstring injury prevention purposes.  

This was the first prospective study investigating the relevance of muscle recruitment during PHE in 

function of hamstring injury susceptibility in male soccer. Even though having generated some 

renewing insights, this research was not without limitations. First, data collection on injury occurrence 

was based on participants’ self-report, as most of the clubs did not have an associated medical staff. In 

only taking along hamstring injuries that caused the participant to be out for at least one entire week 

and by systematically verifying the nature and clinical presentation of the injury by phone, we 

attempted to minimize the risk of reporting bias, which might have influenced the results. Second, we 
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did not include kinematic analysis within this testing protocol, as we were primarily interested in 

muscle activation rather than movement control as such. However, one must bear in mind that both 

features are highly interdependent. Adding kinematic analysis to verify the quality of movement 

control during the PHE, in association with the underlying muscle activation features, might have 

revealed valuable additional insights in posterior chain neuromuscular control and related hamstring 

injury vulnerability.  

Nonetheless, the PHE and the corresponding muscle activation features have shown to be valuable in 

hamstring injury risk estimation. As the present results suggest that hamstring muscle recruitment 

preferably proceeds solicitation of the proximal synergists in the posterior extensor continuum during 

PHE, further research on rehab and injury prevention should determine which functional exercises 

allow primary recruitment of the hamstrings relative to their agonists, and to what extent these 

interventions effectively lower the hamstring injury risk in running athletes. By analogy with 

rehabilitation guidelines for patellofemoral disorders,
39

 practitioners could aim to effect rapid 

hamstring muscle recruitment/contraction (reducing the pre-motor muscle activation time) by using 

biofeedback training methods.  

Although scientific evidence is still scarce, the PHE might be a valuable tool to assess neuromuscular 

control and the presence of relative dominance, respectively inhibition, within a functional muscle 

unit. Appearing to have a place in both articular (lower back) and muscular dysfunctions, researchers 

and practitioners should attempt to formulate guidelines on practical use and clinical interpretation of 

this simple test in daily practice.  
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Conclusion 

 

The results of this study demonstrate that alterations in muscle recruitment during PHE are associated 

with hamstring injury susceptibility in male soccer players. A delay in hamstring activity onset and 

primary activation of the lower back muscles was associated with hamstring injury occurrence. The 

PHE recruitment pattern in which the contralateral lumbar paravertebral muscles were activated first, 

only secondary followed by the hamstrings and lastly, the gluteus maximus, presented an association 

with an increased risk of hamstring injury. These posterior chain muscle activation features assessed 

during the PHE, might reflect the adequacy of neuromuscular control and synergistic muscle balance 

in the posterior chain continuum and could be important in hamstring injury risk identification. Future 

research should verify whether injury prevention strategies, focussing on primarily soliciting the 

hamstrings during functional exercise, are effectively able to reduce hamstring injury susceptibility in 

soccer players. 
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Abstract 

 

Background  With their unremittingly high incidence rate and detrimental functional repercussions, 

hamstring injuries remain a substantial problem in male soccer. Proximal 

neuromuscular control (‘core stability’) is considered to be of key importance in 

primary and secondary hamstring injury prevention, although scientific evidence and 

insights on the exact nature of the core-hamstring association are non-existing at 

present. 

Hypothesis  Departing from a null-hypothesis, this study hypothized that the muscle activation 

pattern throughout the running cycle would not differ between participants based on 

injury occurrence during follow-up. 

Study Design Prospective cohort study, level of evidence 1b. 

mailto:Joke.schuermans@ugent.be
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Methods  Throughout the in between seasons period of 2013, 60 amateur soccer players 

participated in a multi-muscle surface electromyography (sEMG) assessment during 

maximal acceleration to full speed sprinting. Subsequently, hamstring injury 

occurrence was registered during a 1.5 season follow-up period. Hamstring-, gluteal 

and trunk muscle activity time-series during the airborne- and stance phases of 

acceleration were evaluated and statistically explored on possible causal association 

with injury occurrence, respectively absence, during follow-up. 

Results  Players that remained spared from hamstring injury during follow-up, presented 

significantly higher amounts of gluteal muscle activity during the front swing phase (p 

= 0.027), and higher amounts of trunk muscle activity during the backswing phase of 

sprinting (p = 0.042). In particular, the risk of sustaining a hamstring injury during 

follow-up lowered 20% and 6%, with a 10% increment in normalized muscle activity 

of the Gluteus Maximus during front swing and the trunk muscles during backswing, 

respectively (p < 0.024). 

Conclusion  Muscle activity of the core unit during explosive running presented to be associated 

with hamstring injury occurrence in male soccer players. Higher amounts of gluteal – 

and trunk muscle activity during the airborne phases of sprinting were associated with 

a lower risk of hamstring injury. Hence, the present results provide a basis for 

improved, evidence based, rehabilitation and prevention, particularly focusing on 

increasing neuromuscular control of the gluteal muscles and trunk muscle during sport 

specific activities (eg. sprint drills, agility drills). 

Key words  hamstring injury; aetiology; soccer; surface electromyography; sprinting acceleration 

Clinical Relevance Present findings confirm the importance of proximal muscle control in 

hamstring injury susceptibility, suggesting that functional neuromuscular core training 

might effectively reduce the risk of hamstring injury. Assessing and correcting 

(deficient) core control (strength and stability), as well as objectifying the quality of 
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running kinematics with regard to proximal muscle performance, should be part of 

hamstring injury prevention and rehabilitation. How the core muscles should be 

trained optimally in order to maximize their performance during explosive running, is 

still to be determined. 

What is known about the subject Hamstring injury rehabilitation incorporating agility and core 

strengthening exercises are associated with precipitated return to play and decreased 

recurrence rates. How proximal control or ‘core stability’ and hamstring injury 

vulnerability are actually related, and whether there is a real causal association 

between both, is not known.  

What this study adds This is the first study to elucidate the importance of adequate functional core 

muscle activity with regards to running related hamstring injuries. In demonstrating 

the presence of an association between hamstring injury occurrence during follow-up 

and muscle activity of the core (trunk - and gluteal muscles) throughout the airborne 

phases of the running cycle, this work supports the argument for adequate (functional) 

core strengthening in hamstring injury prevention. 

 

Introduction 

 

Hamstring injuries are the single most common type of sports injury in male soccer. Functional 

anatomy, muscle architecture and - morphology, partly explain why in particular this muscle complex 

presents itself to be this vulnerable for injury.
6, 12, 13, 29, 32

 However, the issue of which intrinsic risk 

factors exactly predispose athletes to a hamstring injury, still raises many questions in research and 

daily practice. The fact that, despite growing knowledge and increasing efforts as regards evidence 

based injury prevention strategies, incidence rates do not seem to diminish in both professional
13

 and 

amateur soccer
47

, and even appear to have increased in the UEFA premier league over the last 

decade,
13

 puts emphasis on the lack of evidence regarding the underlying intrinsic risk profile and the 

questionable adequacy of current prevention strategies. Multiple studies have already tried to 
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prospectively investigate which factors predispose an athlete to soccer related hamstring injury. Due to 

limited evidence and because of feasibility considerations, those studies mostly consisted of the 

assessment of clinical - and strength related risk estimates.
1-2, 5, 10-12, 14, 17, 19, 45, 48, 51

 Next to those and 

because of the emerging evidence in terms of the possible influence of neuromuscular inhibition,
18

 

research nowadays is focusing on specific hamstring muscle activity features and intramuscular 

coordination properties within the biarticular hamstring unit as well.
33-34, 42-43

 To shed light on the 

nature of respective hamstring muscle activity, both surface electromyography (sEMG)
15, 18, 27, 33-34, 

 

and muscle functional Magnetic Resonance Imaging (mfMRI)
 42-43

 procedures have been conducted.
 

Although providing increased insights in hamstring functioning, underlying study designs consisted of 

rather limited (not sport-specific nor injury-mechanism-related) and local muscle activity 

assessments.
1-5, 11-12, 14, 16-17, 19, 28, 45, 48, 51 

Those studies never looked at muscle function apart from the 

hamstrings, let alone having done this during high speed running. This limitation causes the research 

findings to be limited as well, as multiple possibly related parameters are not taken into account. More 

so, most of the existing research consists of cross-sectional or retrospective study designs, 

investigating the consequences of prior hamstring injury on muscle mechanics and activation patterns, 

or observational studies merely describing the nature of those muscle mechanics and  activity patterns. 

Prospective research assessing neuro-muscular hamstring function, in direct association with the 

proximal muscle activity and the predominant injury mechanism, is non-existent at present.  Therefore 

the aim of the present study was to objectify to what extent the muscle activation patterns of the trunk 

and gluteal muscles (taken together representing the ‘core’), and the hamstrings during the maximal 

acceleration phase of sprinting, could be linked with hamstring injury vulnerability in male soccer 

players. As we were unable to predict there to be any effect (nor the direction of the effect) as regards 

amount of muscle activity during sprinting and subsequent hamstring injury susceptibility due to lack 

of preliminary research, we adopted a null-hypothesis stating that muscle activation patterns during 

sprinting would not present an(y) association with hamstring injury occurrence during follow-up. 

When mentioning to the ‘core’ (muscles) throughout this work, we are referring to both trunk- and 

gluteal muscles.   
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Methods 

 

Participants 

 

Throughout the second half of the 2013 soccer season, male soccer players, active in the same amateur 

competition series (Oost-Vlaanderen, Belgium), were recruited.  Players were excluded if they  

- had not fully returned to play (soccer training and matches) after a previous hamstring injury 

or reported having suffered any functional discomfort in the hamstring region the past 3 

months (Cf. reinjury definition by UEFA)
20

 

- were still recovering from (any) injury, which disabled them to fully participate in training and 

match play  

- had a history of severe lower limb injury, which could have influenced running kinematics and 

features of neuromuscular recruitment  

- had a history of lower back complaints / lower back complaints at present, which could bias 

the intrinsic risk profile 

A hamstring injury was defined being an injury in the hamstring muscle region, sustained during 

soccer training or match play, preventing the player to participate in training or competition for at least 

one entire week.
20

 Ultimately 60 male soccer players were included for study participation. At the time 

of testing, all participants were completely injury free and none of them reported any pain or 

discomfort in the hamstring region during soccer participation or during the running protocol in this 

study.  

 

Testing Procedure 

 

The EMG analysis during full sprint took place in Topsporthal Vlaanderen, Zuiderlaan 14, Ghent, 

Belgium.  
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In order to get a valid impression of muscle recruitment throughout acceleration towards full speed 

sprinting, without bias of fatigue or muscle soreness, subjects were instructed not to engage in 

intensive training or soccer competition 48h prior to testing. 

All participants were informed about the content and the purpose of the testing procedure,  signed the 

Informed Consent, and were asked to fill out a short questionnaire to gather data on participant’s age, 

anthropometrics and (hamstring) injury history. Subsequently, they were familiarized with the running 

protocol and the course of the synchronized 14 channel sEMG-analysis. This information was 

consistently provided by the same qualified researcher (JS), who was in charge of the entire testing 

procedure (participant preparation, data assembly and –processing) as well, which minimized the risk 

of inter-tester bias. This study was approved by the Ethics Committee of the Ghent University 

Hospital (number of approval: EC/2013/118). 

After testing, participants were requested to sign up to an online diary which was put together for the 

purpose of prospective registry of injury occurrence [http://www.hsi.ugent.be]. This online survey 

contained questions about weekly exposure (match and training) and the incidence/presence of soccer 

related injuries and complaints. The participants were asked to complete this survey every Monday 

throughout the entire 2013-2014 season, as well as the first half of the 2014-2015 season, accounting 

for a follow-up period of one entire and one half of a soccer season. 

Follow-up was terminated at the winter break of the 2014-2015 season, during which period all 

participants were contacted again for final injury inquiry. As we were able to keep in contact with the 

participants throughout respective period and because adding an additional couple of months of soccer 

exposure would potentially increase the power of our study, we chose to register injury occurrence 

throughout one and half a season, instead of just the one after testing. By analogy with what was stated 

in our original inclusion criteria, a hamstring injury was defined being an injury in the hamstring 

muscle region, sustained during soccer training or match play, necessitating the player to consult 

(para)medical care and preventing him to participating in training or competition for at least one entire 

week. When a hamstring injury or another injury preventing the participant from participating was 
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reported, the player was contacted by telephone to verify the nature and the localization of the 

complaint, and to check whether a medical caregiver was consulted.  

Because the UEFA guidelines state that a reinjury occurs at the exact same location as the prior one, 

within two months after the final rehabilitation day of the previous injury, all recorded injuries were 

considered to be index injuries.
20

 However, as the presence of in an injury history has been 

demonstrated to increase the risk of a subsequent one,
12, 14, 16

 this variable was taken along as a 

covariate in the prospective data analysis. 

 

sEMG analysis during linear sprint 

 

The 14 channel EMG analysis during maximal acceleration towards full sprint was conducted on a 40 

meter (m) running track, which was flanked by 2 sets of bars of the Optogait system (Microgate, 

Bolzano-Bozen, Italy). This system was installed between meter 15 and 25 along the 40m running 

track, and allowed step detection (swing- and stance phase differentiation). We chose to perform 

sEMG analysis and step-detection within along this part of the track, as this is the distance at which 

maximal acceleration is achieved in maximal sprinting.
24 

[Figure 1] Within this specific measuring 

volume, EMG signals were captured during one entire stride, such that muscle activation could be 

objectified in both the stance and swing phases of the running cycle for both legs. Both the Optogait 

(step detection) and the myoMUSCLE EMG analysis (Noraxon, Scottsdale, USA) software systems 

were synchronized and incorporated within the Qualisys Track Manager (QTM 2.11) interface 

(Qualisys Motion Capturing Systems, Ghotenburg, Sweden), to facilitate simultaneous data-

acquisition. We deliberately chose to use the Optogait system (Microgate corporation, Bolzano-Bozen, 

Italy) for step detection instead of using a installing a force plate along the running track because we 

wanted to perform EMG analyses during one entire stride and the length of a force plate does not 

allow this. 

When indicating having understood the content and course of the testing procedure, participants were 

instructed to dress down to a pair of tight shorts and indoor soccer shoes. Subsequently, 28 pre-gelled 
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Ag/AgCl electrodes (Ambu® Bluesensor, P-00-S) and 14 wireless EMG-amplifiers were attached to 

the skin according to the SENIAM-guidelines,
26,30 

 in order to capture muscle activity from the 

external and internal obliques, the thoracic and lumbar erector trunci, the gluteus maximus, the medial 

hamstrings and the biceps femoris bilaterally (inter-electrode distance of 20 millimetres) [Figure 2]. 

Elastic fixation bandages (Elastomull® haft, BSN Medical) were used to warrantee a stable amplifier 

position during the subsequent repeated sprinting trials. Muscle activity signals were amplified and 

transferred to the Noraxon DTS – desk receiver wirelessly, enabling sEMG-analysis during over-

ground sprinting (16 channel Desktop Direct Transmission System, Noraxon, Scottsdale, USA). After 

checking the quality of the EMG signal in each of the 14 channels, participants were instructed to 

perform a first warm up session consisting of jogging up and down the running track at a comfortable, 

self-chosen pace. Afterwards, 3 maximal voluntary contraction (MVC) trials were acquired per muscle 

(group), adding up to the registration of 24 MVC trials per participant. Opposed to what was the case 

for EMG signal acquisition during full sprint, the MVC signals were captured within the MyoMuscle 

software interface of Noraxon (MyoResearch 3.4), as this permitted real time evaluation of motor unit 

signals more easily. MVC data acquisition was conducted according to the Noraxon guidelines,
26

 with 

the participant adopting a neutral prone position on the examination table for the assembly of the 

MVC trials of the back, gluteal, and hamstring muscles. This was performed starting from a neutral 

supine position for MVC data collection of the abdominal muscles. For the thoracic and lumbar parts 

of the erector spinae muscle, the participants were instructed to perform a back extension, maximally 

resisting the tester’s force applied at level of the shoulder blades, square to the lever of the trunk. For 

the gluteus maximus, the participant was asked to extended the hip joint, maximally resisting the 

tester’s torque towards hip flexion. For the hamstrings, the participant was instructed to maximally 

resist a torque towards knee extension from a 30 degree (°) knee flexion position (lower leg and foot 

supported by the upper leg of the tester). The oblique abdominals were tested maximally, having the 

participant perform an oblique curl-up, which was isometrically resisted in the mid-range of motion 

(medium trunk flexion and rotation ROM). As such, the right inner and left outer abdominal Obliques 

were tested during curl-up with trunk rotation towards the right (left shoulder up), and the left inner 

and right outer abdominal Obliques during a curl up with trunk rotation to the left (right shoulder up).  
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For each of these procedures, the participants were asked to gradually raise the amount of muscle 

force, reaching a maximum in approximately 3 seconds. This maximum force output was maintained 

for 5 seconds, after which the participant was instructed to gradually lower muscle force while 

returning to the neutral starting position until full relaxation was reached. After MVC recording, the 

participant was instructed to perform a second 5 minute warm up, running up and down the track at a 

self-chosen pace once more. Because this second warm up session served to prepare the participant for 

the repeated maximal sprints, jogging was alternated with short sprint-intervals (as if they would 

perform starting speed drills). 

 

 

Figure 1.  40m sprinting track with 10*2m 3D measuring volume in between Optogait system. 

 

 

 

 

 

 

2 m 
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Figure 2. Electrode and amplifier placement for MVC- and sprint trial sEMG data collection. 

 

Hereafter, each participant was instructed to sprint up the track over a distance of (at least) 30m, trying 

to reach maximal sprinting speed as quickly as possible. 14 channel EMG signal acquisition and step 

detection were conducted simultaneously throughout the 10m measuring volume (meter 15 – meter 

25) at a sampling frequency of 1500 Hz (Hertz). Every player had to perform 12 maximal sprints, 

adding up to 6 decently captured right-, and left strides, respectively. A sprinting trial could only be 

taken along for data analysis if it consisted of three full stance phases (“touch downs”, given the 

sprinting mode of locomotion) within the measuring volume.  

 

Data analysis 

 

For each participant, 12 EMG-time series (representing one entire stride each) per muscle were 

gathered within QTM. First, sprinting trials were divided into swing- and stance phases using 4 events: 

left toe off, right touch down, right toe off and left touch down in the left stride trials; right toe off, left 

touch down, left toe off and right touch down in the right stride trials, respectively. These labelled 
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trials were exported to the C3D format, after which they could be imported in Visual 3D (V3D, C-

Motion Inc., USA) to filter (Butterworth High Pass 20 Hertz (Hz)), rectify, smooth (50 milliseconds 

(msec) window) and normalize the EMG signals. For each phase (front-swing, stance and backswing), 

EMG data were normalized to 101 data frames, enabling time-dependent in between subject 

comparison. After all, as we requested maximal acceleration from every participant, running speed 

could not be standardized inter- nor intra-individually, which lead to the gathering of multiple trials at 

varying running speeds. Therefore post-hoc time normalization was necessary for in between group 

comparison of the multi-muscle EMG time-series. This was done normalizing the average data series 

of each phase, smoothing these series down to 101 data points per muscle, per phase and per 

participant. Average time-normalized EMG series of each muscle were exported for front swing, 

stance and backswing phases per participant, after which these time-normalized average activity 

signals were normalized to MVC voltage.  Ultimately, time-dependent, MVC-normalized, EMG-series 

during maximal acceleration (expressed in %) were categorized per muscle and based on injury 

incidence during follow-up for the purpose of in between group analysis.  

Based on their similar time-dependency and synergistic activation characteristics, we clustered time-

dependent EMG-series of left and right internal and external oblique abdominal muscles, left and right 

erector trunci at thoracic and lumbar level into one time-dependent muscle activity vector (trunk-

cluster). Because of the specific function of the gluteus maximus, time-dependent activations series of 

this muscle were investigated separately for both legs. In terms of the hamstrings, time-dependent 

signals were assessed for the entire hamstring unit, as well as for the biceps femoris and medial 

hamstrings separately. Ultimately, 5 time-dependent EMG series were analysed in association with 

hamstring injury vulnerability: integrated trunk muscle activity, gluteus maximus activity, 

integrated hamstrings, medial hamstrings activity, biceps femoris activity.  

As we subsequently aimed to investigate if proximal muscle activity would be able to prevent 

hamstring injury occurrence, our research primarily focussed on protective factors rather than risk 

factors, opposed to what is done traditionally in injury risk detection research. Originally presuming 

the muscle activity patterns during sprint not to have an effect on the hamstring injury risk, we asked 
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ourselves if soccer players that did not sustain a hamstring injury during follow-up presented different 

muscle activation patterns in the trunk- and lower limb muscles during the running cycle, possibly 

making them sprint more safely and protecting them against future hamstring injury. Hence, statistical 

analysis was carried out as such. 

 

Statistical analysis 

 

The average activation pattern (Root Mean Square (RMS)) within the trunk cluster, the hamstrings and 

the gluteal muscles were compared between the participants that sustained an injury during follow-up 

and those who did not , to objectify an association with injury occurrence during follow-up. EMG-

series were compared between groups for one entire stride, incorporating front-swing, stance and 

backswing phases. Comparative Curve analysis (time-dependent pattern of ‘innervation behavior’)
26 

was conducted using Statistical Parametric Mapping (SPM), version M.03, in Matlab (R2014a, The 

Mathworks Inc, Natick, MA). This method conducts statistical inference based on the Random Field 

Theory. Whilst commonly used for the analysis of functional brain images it is becoming 

commonplace in biomechanical data analysis.
36-39

 Using the mean normalized muscle activity 

amplitude (per cluster/muscle, group and phase of the running cycle) and corresponding standard 

deviation at each of the 101 data frames (i.e. the overall activation pattern), it allows statistical 

comparison of the entire time-dependent EMG signal, instead of the commonly used in between group 

peak  or mean amplitude comparison which only takes into account one or a couple of point estimates, 

irrespective of time. Another advantage of using SPM and embedded vector-field analysis (multiple 

time-dependent muscle signals clustered within one vector), is that it provides better control of type I 

and type II statistical error,
39 

enabling more valid risk estimation.  

Particularly, multi-muscle EMG series were prospectively compared between groups, using two-tailed 

SPM vector-field analyses (based on the Hotelling’s T
2
 statistic) and SPM two-tailed independent t-

tests.
39

 A SPM Hotelling’s T
2 
test is the vector-field equivalent to a two-sample T-test. The Hotelling’s 

T was used for cluster comparison (trunk- and hamstring clusters), whereas the SPM two-sample T-
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test was used for single vector comparison (gluteus maximus EMG time-series). When indicated, 

ANOVA tests were implemented in the post-hoc analysis to identify exactly which one of the trunk 

muscles was responsible for the main effect in the association between cluster-activity and injury 

during follow-up. For each one of these analyses, the SPM{t} statistic was calculated at each time 

frame, after which statistical inference was examined based on the behaviour of random curves with 

the same temporal smoothness. Time-dependent (multi-)muscle EMG-series differed significantly 

between groups, were then exported to the SPSS 22 Statistical Software package (IBM Corp. New 

York, USA) for logistic regression and (re-)injury risk prediction taking along data on participant 

demographics and hamstring injury history as covariates. For both the SPM T-test analysis within 

Matlab and the statistics within SPSS, α was set at 0.05 (with correction depending to the number of 

muscles incorporated into the vector field in case of cluster analyses). All SPM analyses were 

implemented using the open-source SPM1D code (http://spm1d.org) and the SPSS 22 Statistical 

Software package.   

 

 

 

Results 

 

Of the 60 participants that were screened during the 2013 off season period, 9 were lost to follow-up, 

resulting in a cohort of 51 players for prospective analysis. 15 of those sustained a hamstring injury 

during follow-up, whereas 36 remained injury free during the 1.5 season follow-up. An overview of 

the cohort composition throughout the study period, as well as details on time to injury during follow-

up, are provided in table 1 and figure 3.  

 

 

 

http://spm1d.org/
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Figure 3.  Flow chart study course 

 

 

The average time elapsed between the testing series and injury occurrence was 15 weeks (range [3 – 

26] weeks) and the average absence from soccer participation was 3 weeks (range [1 – 6] weeks).  

Among the participants that sustained a hamstring injury: 

Table 1    Participant characteristics after group allocation according to injury occurrence 

 
Control group 

(n = 36 ) 

Injured group 

(n = 15) 

Age (years) 24.3 ± 4.4 22.8 ± 2.5 

Weight (kilogram) 75.2 ± 7.3 72.6 ± 5.6 

Height (meter) 1.81 ± 0.06 1.78 ± 0.07 

Playing Position (count) 
Attack Midfield Defense Wing Attack Midfield Defense Wing 

10 14 9 2 6 3 5 2 
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- 8 participants (± 50%) sustained a hamstring injury in the dominant (preferred kicking) leg, 

whereas the other 7 sustained an injury in the non-dominant leg 

- 8 participants reported having a laterally oriented pain location, whereas the remaining 7 

indicated that the primary locus of pain was situated rather medially  

- only one of the injured participants reported the lesion to be oriented rather close to the 

proximal insertion, whereas the other 14 indicated to have a more central or distal injury 

location.    

Demographic statistical analysis revealed that participant’s age, anthropometry or position on the field 

did not have any effect on injury occurrence within our cohort. All the participants within this study 

were playing in the same amateur league division (same training and match exposure in terms of 

volume, frequency and intensity) and none of the players reported to participate in any other sport, so 

exposure could not have been of any influence.  

 

Data on muscle activity during sprint 

 

Comparing the lower limb and trunk muscle activation patterns between the players who sustained a 

hamstring injury during follow-up and those who did not, revealed significant differences in 

normalized gluteal muscle activity and trunk muscle activity during front- and backswing, 

respectively. Players that remained injury free during follow-up, presented higher normalized gluteus 

activity, accentuated near the start of the front swing phase (p = 0.027) [Figure 4,6]. In addition, these 

subjects presented significantly higher levels of trunk muscle activity during terminal backswing (p = 

0.042) [Figure 5-6]. Subsequent binary logistic regression analysis revealed that the activity of the 

Gluteus Maximus during initial front swing and the clustered activity of the trunk muscles during 

terminal backswing, were indeed capable of predicting injury absence during follow-up. In particular, 

the risk of injury lowered with 20% and 6%, with a 10% increment in normalized muscle activity of 

the Gluteus Maximus during initial front swing (p = 0.023; OR 0.98 ; 95% CI [0.963 – 0.997]) and the 
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trunk muscles during backswing (p = 0.007; OR 0.99 ; 95% CI [0.989 – 0.998], respectively. 

Accordingly, Receiver Operator Curve (ROC) analysis demonstrated GM activity during initial front 

swing to be able to predict hamstring injury occurrence with a sensitivity of 82% and a specificity of 

74% (AUC = 0.828, p = 0.003) with a cut-off value at 145% of normalized activity, as was also the 

case for clustered trunk muscle activity during terminal backswing, with a sensitivity of 60% and a 

specificity of 68% (AUC = 0.618, p = 0.006) at a 90% of normalized activity cut-off. Subsequent post-

hoc analyses, were not able to identify a significant association between the activity of any of the 

individual trunk muscles (Internal or external oblique abdominals, thoracic  or lumbar erector spinae) 

and  hamstring injury occurrence. Gluteus maximus activity during stance and backswing phases 

presented no significant association with injury occurrence during follow-up, neither did the trunk 

muscle activity during front swing- and stance phases. Although a history of hamstring injury 

presented to be a significant predictor of injury during follow-up as well (Odds Ratio (OR): 5.08, p = 

0.016; 95% CI [1.35 – 19.06]), core muscle activity during front (gluteus maximus) and backswing 

(trunk) demonstrated to be significant independent predictors of injury occurrence (p < 0.024). 
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Figure 4. Normalized muscle activity of the Gluteus Maximus throughout the front swing, stance and backswing 

phases of sprinting; Gluteus Maximus activity during the initial front swing phase presented a significant 

association with injury occurrence, p = 0.027 

MVC, Maximal Voluntary Contraction; %, percentage; SPM{t}, Scalar trajectory variable indicating the magnitude 

of the in-between-group differences (magnitude of the difference between both curves per time frame throughout 

respective phase of the running cycle) as demonstrated in the left-hand graphs; α, level of significance; t*, critical 

t-value corresponding with the upper limit of the 95% Confidence Interval as defined by α; p, probability with 

which the magnitude of the in between group difference within the time-frame during which SPM{t} exceeds its 

critical value could have been produced by a random field process with the same temporal smoothness 
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Figure 5. Integrated Normalized activity of the trunk muscles throughout the front swing, stance and backswing 

phase of sprinting: Trunk muscle activity during the terminal backswing phase presented a significant association 

with injury occurrence, p = 0.025 

MVC, Maximal Voluntary Contraction; %, percentage; SPM{t}, Scalar trajectory variable indicating the 

magnitude of the in-between-group differences (magnitude of the difference between both curves per time frame 

throughout respective phase of the running cycle) as demonstrated in the left-hand graphs; α, level of significance; 

t*, critical t-value corresponding with the upper limit of the 95% Confidence Interval as defined by α; p, probability 

with which the magnitude of the in between group difference within the time-frame during which SPM{t} exceeds its 

critical value could have been produced by a random field process with the same temporal smoothness 
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Figure 6: Normalized muscle activity during airborne phases of sprinting based on injury occurrence during follow-up at 

SPM{t}max; FU, Follow-Up ; MVC, Maximal Voluntary Contraction; SPM{t}max, time-frame within front swing (Gluteus 

Maximus)  and backswing (Trunk Muscles) trajectory at which the in-between-group difference was the highest.  

** post-hoc analyses after SPM for logistic regression presented the highest in-between-group difference at the beginning of 

the front swing phase (1st % of the front swing): p = 0.002 

* post-hoc analyses after SPM for logistic regression presented the highest in between group difference at frame 89 of the 

normalized time-series throughout backswing (at 88% of the backswing phase): p = 0.006 

 

In terms of hamstring activity, no association between the EMG time series biceps femoris and/or  

medial hamstrings and the occurrence of injury during follow-up were found. Increments in core 

muscle activity could not be associated with decrements in hamstring activity.  

 

 

 

 

 

 

0

50

100

150

200

250

300

350

Gluteus

Maximus

Frontswing

Trunk muscles

Backswing

% MVC 
no injury during FU

injury during FU

** 

* 



169 

 

Discussion 

 

The results of this study demonstrated that higher levels of normalized sEMG activity of the Gluteus 

Maximus during front swing, and higher levels of normalized sEMG activity of the trunk-cluster 

(Internal and external Oblique Abdominals, Erector Spinae at the Thoracic and Lumbar level) during 

backswing, were significantly associated with a lower injury risk during follow-up.  As a consequence, 

time-dependent muscle activity analysis revealed that players appear to be relatively protected against 

hamstring injury, when the proximal muscles are recruited to a greater extent throughout the airborne 

phases of sprinting. More specifically, the risk of injury seems to decrease with 20% and 6% with a 

10% increase in normalized gluteal and trunk muscle activity throughout the front swing and 

backswing phases of sprinting, respectively (p < 0.024).  

Although both researchers and clinicians estimate the influence of the core to be key in (sports) injury 

vulnerability, scientific evidence has remained forthcoming. The present findings indicate that 

sufficiently dosed and well-timed neuromuscular control in the core unit (gluteal muscles and trunk), 

possibly providing adequate stability during locomotion and running, seems important in hamstring 

injury prevention. Our research findings are somewhat in accordance with previous research results. 

As such, former EMG research has demonstrated that the use of external pelvic compression 

(passively increasing sacro-iliac stability and potentially lumbo-pelvic control as well) had a 

significant effect on electromyographic hamstring function. To what extent this improved force-

closure might have a protective effect as regards running related hamstring injuries, could not be 

determined based on these observational and cross-sectional study results.
3-4

  

In direct association with hamstring injury susceptibility, previous research has merely been focusing 

on comparing the functional outcome of hamstring rehabilitation consisting of neuromuscular core 

training, compared to rather isolated hamstring training.
6, 44, 47 

As such, scientific outcome measures 

have remained limited to injury occurrence and time to return to play up until now. Accordingly, the 

prospective study of Freckleton and colleagues could demonstrate that Single Leg Hamstring Bridge 

(SLHB) performance, presuming it to necessitate sufficient neuromuscular control and strength 
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endurance in both the hamstring  and core muscles, was related with hamstring injury vulnerability.
17 

In line with these findings, Sherry and Best demonstrated a rehabilitation program consisting of 

progressive agility and trunk stabilization exercises (PATS program), to be more efficient than a 

program consisting of hamstrings stretches and strengthening exercises, in terms of secondary injury 

prevention.
44

  de Visser et al. confirmed the effectiveness of agility and stabilization exercises for the 

purpose of hamstring injury prevention in male soccer players.
12

 Unfortunately, these studies do not 

allow identification of the exact contribution of proximal muscle functioning or ‘core-stability’ in 

injury vulnerability and it remains unknown to what extent these interventions improved the functional 

outcome of hamstring rehabilitation through the acquirement of better core strength and stability. 

Consequently it could be that the athletes allocated to the PATS program were simply the ones with 

stronger hamstrings.
44 

The same could have been the case for the athletes who did not get injured in 

the prospective study of Freckleton.
17

 Although we did not kinetically measure hamstring strength 

output, our study did assess the hamstring activation patterns, next to those of the core muscles during 

sprinting. Because we found the activity of the gluteal and trunk muscles during respective airborne 

phases to be independent predictors of injury occurrence, without any effect or in between subject 

difference as regards normalized hamstring muscle activity, this might help us in defining the value of 

‘core stability’ (and its underlying mechanisms) in hamstring injury prevention. As such, the present 

results suggest that neuromuscular activation characteristics of the core unit are associated with 

hamstring injury vulnerability in male soccer players. 

Next to the above mentioned studies, our results are in agreement with the assumptions of other 

authors, discussing the possible association between core muscle activity and hamstring loading.
8, 35

 

Those authors have predominantly been focusing on the anatomical and structural association between 

the core- and hamstring units, in which adequate proximal control is proposed to be essential for safe 

hamstring functioning and in preventing the occurrence of excessive strain within this biarticular 

muscle unit.
35 

Based on this line of reasoning, Chumanov et al. performed biomechanical 

investigations on a study sample consisting of healthy sprinters. In possible compatibility with the 

present findings, their results revealed that the amount of stretch the biceps femoris needs to withstand 
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during running, is associated with the amount of activity generated by the pelvic muscles.
8
  This 

association was most significant during the airborne phases and at maximal running speed. In 

particular, the amount of hip flexor muscle activity was related to significant increments in biceps 

femoris stretch during front swing, whereas the amount of activity produced by the gluteus maximus 

and the oblique abdominals were associated with a decrease in the level of biceps femoris stretch 

during the crucial (front) swing phase. The authors concluded that lumbo-pelvic agonist-antagonist 

balance during functional activities (e.g. sprinting), should be considered indispensable in hamstring 

injury prevention.  

The fact that we did not find particular effects of muscle activity at terminal swing / initial stance on 

hamstring injury occurrence but rather during backswing (trunk muscle activity) and the beginning of 

the front swing phase, emphasizes the importance of both timing and amount of muscle activity during 

high speed running. If we would not have chosen to use of SPM for the gathering of statistical 

inference on prospective analyses and just would have looked at the normalized EMG amplitude 

during terminal swing, where the hamstrings are expected to be loaded the most, we would have come 

to a completely different conclusion. If we had decided to do so, results would demonstrate that the 

amount of core muscle activity had no significant effect on hamstring injury occurrence. Statistically 

assessing the muscle activation pattern throughout the entire stride, revealed significant differences in 

muscle activity of (1) the gluteal muscles at the beginning of the front swing phase, and (2) the trunk 

muscles at the end of the backswing phase (which equals the end of the front swing for the opposite 

leg as well, evidently). These fairly discrete and very time-dependent deficits in normalized muscle 

activation are, according to us, most probably the cause of (subtle) dysfunctions in neuromuscular 

coordination in the lumbo-pelvic muscle unit, rather than actual deficits in strength capacity. 

Therefore, the present findings implicate that (if confirmed by additional prospective research), 

hamstring injury prevention should not just include strengthening of the core muscles or ‘core 

stability’ training as it is most often presented in a ‘fitness’ context. It should aim to train the core 

under functional loading circumstances, trying to facilitate properly timed gluteal and trunk muscle 

recruitment during explosive running(-like) exercises. In these terms, it seems very plausible that the 
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hamstrings might be exposed to higher mechanical loading and have to engage in higher metabolic 

output, when the supporting proximal musculature does not take its responsibility in time. A delay in 

muscle activity onset has been associated with the hamstring injury risk in former research.
23, 34

  As 

such, the research group of Opar demonstrated that the hamstrings present a delay in rate of torque 

development after injury, primarily caused by decrements in Biceps Femoris fiber recruitment (as 

observed by sEMG).
34

 Although those findings were most probably the consequence rather than the 

cause of the injury, they are possibly the cause of deficits in neuromuscular coordination and efferent 

hamstring muscle guidance and might explain why hamstring injuries tend to reoccur so often. In a 

completely different study, assessing mechanical hamstring muscle loading and activation properties 

during over-ground running at maximal intensity,
23 

 Higashihara and colleagues concluded that the 

Biceps Femoris only present peak muscle activity after the installation of peak muscle-tendon stretch, 

whereas the markedly less injured Semitendinosus presents peak EMG activity prior to reaching peak 

muscle-tendon stretch. To what extent this discrepancy (relative deficit in muscle recruitment as 

regards timing) has an actual share in the laterally biased hamstring injury vulnerability, cannot be 

judged based on these observational study findings. Nonetheless, similar to ours and the findings of 

Opar, they do suggest that timing of (1) (peak) motor unit recruitment and (2) time-dependent 

magnitude of muscle activity (and possibly torque-output) might be associated with hamstring injuries. 

Possibly, this might shed a completely different light on the exact nature of functional core stability 

and the points of particular interest with regard to injury prevention, and, as such, the associated 

training recommendations and guidelines.  

Leaving the particular time-dependency aside, the present study was able to demonstrate that 

hamstring injury vulnerability presents a direct association with proximal muscle functioning during 

the airborne phases of sprinting. It hereby provides some rationale for the necessity of neuromuscular 

control in the core-unit in hamstring injury prevention in soccer. In stating this, we essentially refer to 

neuromuscular - rather than kinematic proximal control (‘core stability’), as this study does not 

provide the necessary kinematic output to support these findings. As such, this study merely wishes to 

broaden the clinical perspective of the interplay between neuromuscular input (afferent 
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proprioception) and output (efferent coordination) in the intrinsic hamstring injury risk profile, without 

assuming that higher levels of muscle activity might indeed result in less kinematic perturbations and 

increased postural control (and less mechanical loading of the hamstring unit). So, although this 

cannot be confirmed biomechanically, our findings suggest that discrete discrepancies in 

neuromuscular coordination in the proximal core unit, with the gluteal muscles and trunk muscles 

presenting significantly less muscle activity within very particular periods throughout the front- and 

backswing phases, increase the risk of hamstring injury. Whether this relative incapability to activate 

the core muscles with an appropriate intensity (recruiting a sufficient amount of motor units) in 

function of the contemporary biomechanical demands increases the risk of a hamstring injury due to 

kine(ma)tic perturbations and whether this increases mechanical hamstring loading, cannot be judged 

based on the present results. This is exactly what we aim to verify based on the results of a similar 

study conducted by our research group, this time around primary focusing on running kinematics 

instead of multi-muscle sEMG. This work is still in the pipeline towards publication. Be that as it may, 

the present findings do underline the importance of adequate proximal coordination (‘neuromuscular 

core stability’) in the context of hamstring injury prevention. 

Based on the results of this study, the clinician is recommended to functionally strengthen the core in 

hamstring rehab and injury prevention, particularly focusing on the gluteus maximus, the oblique 

abdominals and the erector trunci. Moreover, special focus should be directed to maximal sprint drills 

and explosive agility exercises, aiming to sufficiently and rapidly address the core-unit, as hamstring 

demands are the highest under these intense loading conditions and adequate proximal assistance is 

most required.  

This study was not without limitations. First, data collection on injury occurrence was based on 

participants’ self-report, as most of the clubs did not have an associated medical staff and we could not 

systematically get in touch with the participant’s doctor or physiotherapist to check his medical record. 

In only taking along hamstring injuries that caused the participant to be out for at least one entire week 

and by systematically verifying the nature and clinical presentation of the injury by phone, we 

attempted to minimize the risk of reporting bias, which might have influenced the results. Second, we 
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must acknowledge that the sample size was quite limited, certainly given the prospective nature of this 

study, which could have led to type 2 statistical error. However, as the statistical procedures (SPM 

vector field analyses) attributed within this study, strongly control for both type 1 and type 2 errors, 

the associated risk is limited as well.
39

 Second, the results of this study are dependent on the validity 

and reliability of the MVC data collection procedure, as proposed by the SENIAM guidelines.
26,

 
30

 The 

ability to analytically recruit a muscle unit, could have varied within our cohort of soccer players, 

which could have led to over- or underestimation of the functional electromyographic potential of the 

evaluated muscles. However, this is an important limitation of sEMG analysis in general. As 

normalization is essential for the purpose of inter-individual comparison, this limitation could not have 

been overcome in the present study. The strength of this study however, is that it consisted of a very 

well controlled, multi-muscle sEMG investigation in a context directly related to the most common 

injury mechanism, with delineated prospective follow-up (which has never been done before). Hence, 

present findings can contribute to valid implementation of core- and functional chain training in injury 

prevention, and provide a basis for the discussion concerning the content of return to play screening 

protocols for better secondary injury prevention. 

 

 

 

Conclusion 

 

This is the first study to investigate the exact role of core muscle functioning during high speed 

running, with regard to the hamstring injury risk in male soccer players. Adequate proximal muscle 

control was found to be essential during maximal sprinting in order to decrease hamstring injury risk. 

Indeed, during sprinting, sufficient trunk and gluteal muscles activity seems to be of particular 

importance during the airborne phases, as the risk of hamstring injury seems to decrease when these 

muscles are activated to a higher percentage throughout both the back and front swing phases of the 

running cycle, respectively. As a consequence, our results imply that hamstring injury prevention 
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should focus on sufficient development and preservation of proximal stability, particularly addressing 

both trunk- and gluteal muscles. 
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Abstract   

 

Background Although the vast majority of hamstring injuries in male soccer are sustained during 

high speed running, the association between sprinting kinematics and hamstring injury 

vulnerability has never been investigated prospectively in a cohort at risk. 

Purpose This study aimed to objectify the importance of lower limb and trunk kinematics 

during maximal acceleration towards full sprint in hamstring injury susceptibility. 

Study Design Cohort study; level of evidence, 2. 

Methods At the end of the 2013 soccer seasons, three-dimensional kinematic data of the lower 

limb and trunk were collected during sprinting (acceleration) in a cohort consisting of 

30 soccer players with a recent history of hamstring injury and 30 matched controls. 

Subsequently, a 1.5 season follow-up was conducted for (re)injury registry. 

Ultimately, joint and segment motion patterns were submitted to retro- and 

prospective statistical curve analyses for injury risk detection and prediction. 
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Results Statistical analysis revealed that index injury occurrence was associated with higher 

levels of anterior pelvic tilting and thoracic side bending throughout the airborne 

phases of sprinting, whereas no kinematic differences were found  in comparing the 

running kinematics of players with a recent hamstring injury history with their 

matched controls. 

Conclusion Functional deficits in core control, enabling excessive pelvis and trunk motion during 

swing, probably increases the primary hamstring injury risk. Although sprinting 

encompasses a relative risk of hamstring muscle failure in every athlete, running 

coordination demonstrated to be essential in hamstring injury prevention.  

Key Terms hamstring injury;  aetiology; soccer; 3D kinematics; sprinting coordination; 

acceleration  

 

Introduction 

 

Hamstring injuries are the single most frequent non-contact muscle injury in male soccer.
23, 27, 40

 The 

vast majority of those occur during high speed running, where the muscle fails structurally or 

functionally,
7
 due to excessive strain and loading throughout the front- and (early) stance phases of the 

running cycle.
14, 16-17, 32-33

 The posterior thigh unit is at highest risk of injury during explosive 

acceleration towards full speed sprint. Accelerating induces higher hamstring muscle loading than 

constant speed sprinting, as the kinetic energy cannot just be recycled throughout absorption and 

release, but needs to be magnified with every step, through intense and highly efficient plyometric 

muscle work and optimal intermuscular coordination.
5, 12, 16-17, 26, 32-34

 Sufficient acceleration capacity 

and adequate starting speed are key motor components in soccer performance, for which optimal 

hamstring functioning is essential. In trying to identify intrinsic risk factors for adequate injury 

prevention, rehabilitation, and safe return to play, existing research tends to be restricted to the 

investigation of functional and structural regional neuromuscular characteristics in resting state 
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conditions.
11-12, 27, 32, 40

 Considering the TRIPP (Translating Research into Injury Prevention Practice) 

frame-work guidelines to be gold standard for evidence based injury prevention,
9
 current observational 

research for risk factor identification seems to be focusing beside the most critical point in injury 

prevention: the injury mechanism as starting point.
9
 

Among others, muscle strength and flexibility, morphological and –metabolic features, as well as 

neuro-dynamics and stretch tolerance have been investigated in relation to hamstring injury 

vulnerability.
11, 23, 27, 34, 40 

However, these possibly important muscle characteristics have never been 

examined in coherence with the injury mechanism. In addition, because of the functional integrity of 

lower limbs and the lumbo-pelvic complex, joint mobility of the spine and lower limb as well as 

multiple other factors responsible for functional lumbo-pelvic control (postural control, coordination, 

strength,  etc.) are thought to be crucial in rehabilitation and prevention.
2-4, 6, 20, 23, 31, 38 

Nonetheless, 

these potential hamstring injury correlates have only rarely been scrutinized during explosive 

acceleration for full speed sprinting, during which the hamstring is at highest risk of injury.  

High amounts of negative work and tensile strain are inherently present in acceleration and high speed 

running. Why some players manage to keep their hamstrings in optimal shape and others sustain 

(recurring) muscle injuries throughout those repeated sprint(-acceleration)s, is a capital question that 

needs to be resolved in order to adequately and sport specifically prevent these types of high speed 

running injuries. Besides, although core stability (lumbo-pelvic control) has proven to be key in 

rehabilitation outcome and secondary injury prevention,
1, 4, 8, 15, 21, 22-24, 35-36, 39

 its exact role in primary 

injury vulnerability and influence on muscle mechanics during running and kicking, remains unclear.  

Bearing in mind the evidence behind the injury mechanism,
32-33

 it would seem merely logical that 

running technique and the associated biomechanical features within the (high speed) running cycle 

could be of substantial influence in the risk of sustaining a hamstring injury.  

The biomechanics of running have been subject of study repeatedly. Strikingly however, high speed 

running kinematics have never been investigated in direct association with hamstring injury 

occurrence.  Therefore, this study intended to investigate the association between lower limb and trunk 
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kinematics throughout maximal acceleration towards full speed sprinting and hamstring injury 

vulnerability in a sample at risk, consisting of male soccer players. This association was explored both 

retro- and prospectively, to allow strict differentiation between possible kinematical causes and 

consequences of hamstring injury.  

 

 

 

Methods 

 

Participants 

 

Throughout the second half of the 2013 soccer season, 30 soccer players with a recent history (last 

injury sustained within the past season or the prior one (past 24 months))  and 30 matched controls, all 

active in the same amateur competition series (Oost-Vlaanderen, Belgium), were recruited.  Players 

were excluded if they had  

- a history of severe lower limb injury, which could have influenced kinematics 

- a history of lower back complaints / lower back complaints at present, which could bias the 

intrinsic risk profile 

- less than 5 years of competitive soccer experience, as this could induce selection bias  

 

To exclude age related pathologies, soccer players aged beneath 18 or above 35 years were excluded 

from the study as well. All participants were completely free from injury and ready to play at the 

moment of testing. 

A hamstring injury was defined as a soccer related injury in the hamstring muscle region, preventing 

the player from participating in training or competition for at least one entire week and necessitating 

him to consult a (para)medical caregiver.
13

 The majority of respective hamstring injuries within the 
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injury group was diagnosed clinically, with or without enclosed medical imaging (depending on the 

decision of the medical staff). Actual recruitment and inclusion of formerly injured participants was 

mainly based on self-report, as we were not able to get in touch with all physicians and 

physiotherapists involved in prior diagnosis and rehabilitation. At the time of testing, none of the 

players experienced any pain or discomfort in the hamstring region during soccer participation or 

during the running protocol in this study. 

 

Testing Procedure 

 

All participants were informed about the content and the purpose of the testing procedure and signed 

the Informed Consent, after which they were familiarized with the running protocol and the course of 

the three-dimensional (3D) motion analysis. This information was consistently provided by the same 

qualified researcher (JS), who was in charge of the entire testing procedure (participant preparation, 

data assembly and –processing) as well, which minimized the risk of inter-tester bias. This study was 

approved by the Ethics Committee of the Ghent University Hospital (number of approval: 

EC/2013/118). 

In order to get a valid impression of the running coordination throughout acceleration towards full 

speed sprinting, without bias of fatigue or muscle soreness, subjects were instructed not to engage in 

intensive training or soccer competition 48h prior to testing. 

After testing, participants were informed about the online diary which was put together for the purpose 

of injury registration during follow-up (http://www.hsi.ugent.be). This online survey contained 

questions about weekly exposure (match and training) and the incidence/presence of soccer related 

injuries and complaints. The participants were asked to complete this survey every Monday 

throughout the entire 2013-2014 season, as well as the first half of the 2014-2015 season, accounting 

for a follow-up period of one entire and one half of a soccer season. 

Follow-up was terminated at the winter break of the 2014-2015 season, during which period all 

participants were contacted again for final injury inquiry.  
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Three-dimensional kinematic testing protocol 

 

When indicating having understood the content and course of the testing procedure, participants were 

instructed to undress, wearing only a pair of tight shorts and indoor soccer shoes. Afterwards, 40 

passive infrared reflective markers (12mm lightweight markers, Qualisys AB, Sweden) were attached 

in accordance with the LJMU Lower limb and Trunk Model for motion analysis (Van Renterghem J., 

Liverpool John Moores University), representing respective bony landmarks and segment clusters 

[Figure 1(a)]. The kinematic analysis of the linear acceleration to full speed sprinting was conducted 

on a 40 meter (m) running track, which was surrounded by 8 cameras for 3D motion capturing (Oqus, 

Qualisys AB, Göteborg, Sweden). These cameras were installed along  meter 15 and 25 of the running 

track, resulting in a kinematic measuring volume of (10*2)m
2
. This camera location enabled to capture 

running kinematics during full sprinting acceleration, as this is the average distance over which 

maximal acceleration is achieved in attempting to reach maximal running speed
19

 [Figure 1(b)]. All 

reflective markers were attached to the skin firmly by using double sided carpet tape, to prevent them 

from coming loose or falling off. The entire 3D data assembly of the acceleration phase in sprinting 

was carried out by the Qualisys Track Manager hard- and software systems. A 10m Optogait system 

(Microgate, Bolzano-Bozen, Italy) was used for step detection. Because we wanted to perform 

kinematic analysis of one entire stride this would have been impossible using a force plate. First, one 

static trial and 4 functional joint trials (left and right knee and hip joints) were recorded to create a 

virtual model. Subsequently, 8 markers were removed (left and right acromion, greater Trochanters, 

left and right medial epicondyles of the knee joint and left and right medial malleolus at ankle level) as 

these were redundant for motion capture [Figure 1(a)]. Hereafter, the participant was instructed to 

perform a 5 minute warm up by running up and down the running track at a self-chosen pace, 

alternated with short sprint-intervals, as if they would perform starting speed drills. 

 

 



189 

 

 

 

 

 

 

Figure 1. (a) Static - and tracking marker placement - Functional joint capture protocol of the left knee ;  

(b) 40m sprinting track with [10*2]m 3D measuring volume in between the step detection bars of the Optogait system 

 

After warm up, each participant was instructed to sprint up the track over a distance of (at least) 30m, 

trying to reach maximal sprinting speed as soon as one could. 3D data collection and step detection 

were conducted simultaneously throughout the 10m measuring distance (meter 15 – meter 25), as both 

software systems were synchronised within the QTM interface (Qualisys Track Manager). Every 

soccer player had to perform 12 maximal sprints, because a minimum of six left – and six right side 

strides was needed for post hoc data processing and analysis within the Visual 3D interface (Visual 3D 

v5 Professional, C-Motion Research Biomechanics, Germantown, USA). A sprinting trial could only 

be taken along for data analysis when it consisted of three full stance phases within the measuring 

volume.  

 

Data analysis 

 

For each participant, a virtual model was created according to his specific anthropometric features, on 

the basis of which 3D segment coordinates and joint angles could be calculated throughout an entire 

stride. To serve this purpose, the static-, functional joint- and sprinting trials were labelled within the 

QTM interface (marker identification). Afterwards, sprinting trials were divided into swing- and 

stance phases using 4 events: left toe off, right touch down, right toe off and left touch down in the left 

stride trials; right toe off, left touch down, left toe off and right touch down in the right stride trials. 

Labelled trials were exported to the ‘C3D’ format, after which they could be imported in Visual 3D 
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(V3D, C-Motion Inc., USA) to quantify joint kinematics in the ankle-, knee- and hip joints, as well as 

segment kinematics for the pelvis and the thorax. For each phase (front-swing, stance and backswing), 

kinematic data were time-normalized to 101 data frames, enabling in-between-subject comparison. 

This time-normalization procedure was necessary as participants were instructed to perform maximal 

sprinting accelerations (perform at personal best), which lead to the assembly of a collection of sprint-

acceleration trials at varying running velocities (both within and between subjects).  

Ultimately, kinematics were prepared for statistical analysis by subcategorizing all processed data into 

excel files in function of  

- phase: “front swing”, “stance” or “backswing”  

- group: “Injury History” or “Control” for the retrospective analysis; “Injury” or “Control” for 

the prospective analysis 

- joint (or segment), and  

- plane (Sagittal, X; Coronal, Y; Transverse, Z). 

 

Statistical analysis 

 

For every joint- and segment angle, the entire kinematic curve throughout each of the three phases was 

submitted to both retro- and prospective in between group comparison based on the presence or 

absence of injury history on one hand and injury incidence during follow-up on the other. Curve 

analysis was conducted using Statistical Parametric Mapping (SPM, version M.03) in Matlab 

(R2014a, The Mathworks Inc, Natick, MA). This method retrieves results on statistical inference, 

based on the Random Field Theory. Whilst commonly used for the analysis of functional brain images 

it is becoming commonplace in biomechanical data analysis as well.
28-29

 Using the mean joint- or 

segment angle and its corresponding standard deviation at each of the 101 data frames within one 

phase, it allows statistical comparison of the entire kinematic profile instead of the commonly used 

peak - or mean amplitude comparison which only takes into account one or a couple of point 

estimates, irrespective of time. For more detail on the indications and benefits related to the use of 

SPM in biomechanical research, we refer the reader to previously published works of reference.
28-29
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Specifically, joint- and segment angle profiles were compared between groups, using SPM two-tailed 

independent t-tests. Firstly, the SPM{t} statistic was calculated at each data point within a given time 

frame (front swing, stance or backswing), then statistical inference was examined based on the 

behaviour of random curves with the same temporal smoothness. Besides taking into account the 

essential time-dependency of kinematic data behaviour, another advantage of using SPM is that it 

provides better control of type I and type II statistical error,
30

 enabling more valid risk estimation.  

For the SPM analysis within Matlab, α was set at 0.05. All statistical analyses within the scope of this 

study were implemented using the open-source SPM1D code (http://spm1d.org). 

 

 

 

Results 

 

We assessed the possible association between (deviant) sprinting kinematics and hamstring injury 

vulnerability with strict differentiation as regards kinematical cause or consequences of increased 

injury risk. To do so, we performed both baseline statistics within the entire cohort (kinematic 

consequences of previous hamstring injury?), and prospective statistical analysis within a cohort 

consisting of only those that reported never having sustained a hamstring injury at initial intake 

(kinematical cause of hamstring injury?). Average age, height and weight within the group of players 

with an injury history was 24.7 (± 3.4) years, 1.80 (± 0.06) meter and 75.2 (± 6.8) kilograms. This was 

23.7 (± 4.5) years, 1.81 (± 0.05) meter and 74.4 (± 7.1) kilograms within the group of matched 

controls.  

Of the 30 healthy controls submitted to the 3D sprinting analysis, only 1 was lost to follow-up. As 

mentioned above, mostly to prevent a biasing influence of injury history and to validly verify to what 

extent running kinematics presented a significant predictive association with hamstring injury 

http://spm1d.org/
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occurrence, only the data of this group (original control group) were included for prospective analysis. 

Within this original control group (n = 29), 4 players sustained an index injury, resulting in an (index) 

injury incidence of 13.8% during the 1.5 season follow-up. Details on study course are illustrated in 

figure 2.  

 

Figure 2. Flowchart study trajectory. 

 

Because we wanted to compare the trunk- and lower limb kinematics during full acceleration based on 

the presence of an injury history or the incidence of a hamstring injury during our 1.5 season follow-

up period, without leg dominance being a biasing covariate, we verified the ratio of dominant/non-
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dominant leg involvement both retro- and prospectively in the injury groups, and randomly elected the 

same ratio in the control groups.  

 

Baseline comparison 

 

Comparing the 3D  joint angles of the ankle-, knee- and hip complexes (i.e. the angles between 

adjacent segments) and  the pelvis and thorax segment (i.e. the time-dependent 3D position of 

respective segments in reference to the global laboratory) during front swing-, stance- and backswing 

phases of maximal sprinting acceleration between the soccer players with a recent hamstring injury 

history and the healthy controls, no significant in between group differences could be demonstrated. 

The ankle-, knee-, hip-, pelvis- and thorax kinematics in the coronal, sagittal and transverse planes did 

not present significant differences based on the presence or absence of a history of hamstring injuries. 

In other words, the factor ‘hamstring injury history’ did not present to have a significant effect on 

running kinematics. 

 

Prospective analysis: running kinematics and injury susceptibility during follow-up? 

 

Assessing the kinematic curves of the soccer players that sustained a first time hamstring injury during 

follow-up (n = 4) in reference to the healthy controls (n = 25), statistical parametric mapping revealed 

significant differences in pelvis – and thorax motion patterns. In particular, players that sustained a 

hamstring injury presented substantially more anterior pelvis tilt throughout the entire stride, with a 

statistically significant difference during the backswing phase (p = 0.0445), compared to the healthy 

controls [Figures 3,4]. Moreover, the index injury group presented significantly more thoracic side 

bending throughout the front-swing phase, compared to the healthy controls (p = 0.028) [Figures 3,5]. 

Additionally, the kinematic curves of the thoraco-pelvic complex in the index injury group presented 

to be less stable throughout the entire running stride, displaying more fluctuations and variability, 

compared to the quite neutral thoraco-pelvic motion pattern demonstrated by the healthy controls 
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[Figure 3]. Mean and standard deviations of these pelvis- and trunk kinematics at SPM{t}max (point 

within time frame at which the in-between-group differences are the highest and the probability with 

which this in between group difference could be attributed to coincidence is the lowest (pmin)) are 

presented in table 1.  
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Figure 3. (a) Sagittal plane pelvis kinematics throughout different running phases in maximal sprinting acceleration – 

Control versus Index Injury, displaying significantly more anterior tilting at the end of backswing, p = 0.045 ;  

Y-axis presents the degree of Anterior, respectively Posterior Pelvic Tilting throughout the different phases of one stride, X-

axis presents the duration of respective phases. (b) Side bending kinematics throughout different running phases in maximal 

sprinting acceleration – Control versus Index Injury, displaying significantly more side-bending throughout front swing – p= 

0.028; Y-axis presents the degree of Contralateral (+), respectively Ipsilateral (-) Thoracic Side Bending, X-axis presents the 

duration of respective phases.    

SPM{t}, Scalar trajectory variable indicating the magnitude of the in-between-group differences (magnitude of the difference 

between both curves per time frame throughout respective phase of the running cycle) as demonstrated in the left-hand 

graphs; α, level of significance; t*, critical t-value corresponding with the upper limit of the 95% Confidence Interval as 

defined by α; p, probability with which the magnitude of the in between group difference within the time-frame during which 

SPM{t} exceeds its critical value could have been produced by a random field process with the same temporal smoothness 
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Figure 4. (a) Controls versus (b)  Index Injuries: Sagittal plane Pelvis-Lab segment Angle in late Front swing phase (taking 

into account the backswing of the left leg in the control group, and the right left in the injury group) 

 

 
 

Figure 5. (c) Controls versus (d) Index Injuries: Coronal plane Pelvis-Thorax Angle in late Front swing phase (taking into 

account the front swing of the left leg in the control group, and the right left in the injury group) 
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Table 1    Pelvis and trunk kinematics during crucial* terminal back- and front  

                     swing phases 

 
Control  

(n = 25) 

Injury  

(n = 4) 

Amount of (sagittal plane) Pelvis Tilt during 

terminal backswing (mean ± SD; °)** 
12.73 ± 5.90 25.64 ± 7.90 

Amount of (coronal plane) thoracic side-bending 

during terminal front swing (mean ± SD; °)** 
3.89 ± 2.68 10.73 ± 4.30 

SD, Standard Deviation; °, number of degrees; *at time-frame of highest in-between-group difference as established by SPM 

analyses; **table demonstrates absolute values (anterior pelvic tilt and ipsilateral side-bending receive a negative sign in 

Visual 3D). Pelvis tilt and thoracic side-bending demonstrated to have a significant effect on hamstring injury occurrence 

during follow up (p= 0.045 and p = 0.028, respectively). 

 

 

 

Discussion 

 

In this study, the association between lower limb and trunk kinematics during maximal  acceleration to 

full speed sprinting, and hamstring injuries was assessed both retro- and prospectively in male soccer 

players. Comparison of the running kinematics of the participants with a recent history of hamstring 

injuries and their matched controls, revealed no in between group differences for any of the joints, 

planes or phases throughout the captured stride. Assessing the running kinematics in function of 

hamstring injury risk detection prospectively, however, demonstrated significant biomechanical 

differences in trunk- and pelvis kinematics between the participants that sustained a (first) hamstring 

injury during follow-up and those who did not. Index hamstring injury occurrence was associated with 

significantly more anterior pelvic tilting and thoracic side-bending during the back- and front swing 

phases of acceleration, respectively. Hip-, knee-, nor ankle kinematics, presented a prospective 

association with hamstring injury susceptibility.  

 

Quite interestingly, contrary to lower limb motion patterns, in particular trunk and pelvis kinematics, 

presented to be associated with the risk of sustaining a hamstring injury. As respective increments in 

sagittal and coronal plane movement of the core-region (trunk and pelvis) were also associated with 
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more variability within the kinematic trajectory over the course of the airborne phase, our findings 

might suggest that players appearing to be more vulnerable for hamstring injury, suffer from lacking 

proximal control and insufficient dissociative capacity within the lumbo-pelvic-hip complex. As such, 

these kinematic alterations might imply that the kinematic quality of the core and the ability to 

dissociate lower limb movement (hip-extension and –flexion) from compensatory contribution of the 

trunk and pelvis, is essential in primary hamstring injury prevention. Certainly given the fact that the 

increments in anterior tilting were particularly objectified during the backswing phase of running, 

where pelvic control is challenged the most, as sufficient hip extension is needed for propulsion.  

Because these kinematical differences in pelvis- and trunk segments were specifically found in the 

index injury group, we believe that these kinematic characteristics fundamentally contribute to a  less 

safe running pattern, making the running athlete more prone to sustaining hamstring injuries when not 

recognized and corrected. 

 

Although suggested to be key in sports injury prevention,
1, 4, 8, 15, 21-24, 35-36, 39

 the actual scientific 

background of the functional integrity of the core (trunk and pelvis) has not been objectified in a sport- 

and injury specific research setting. The present study is the first giving rise to actual scientific 

evidence concerning the importance of core stability in hamstring injury prevention. Adequate control 

in the lower back, pelvis and hip joints during the swing phase of running, warranting proper ground 

contact for forceful propulsion, is of capital importance in running performance.
25-26, 31

 Indeed, as 

functional kinetic chain integrity throughout the swing phases is key for the safety and the adequacy of 

subsequent touch down and propulsion, poor control in the proximal core might induce both an 

increased injury risk and poorer acceleration capacity / running economy. Next to possibly exerting 

excessive tensile strain on the (posterior) thigh muscles,
18

 reduced proximal control could also imply 

raising the metabolic and mechanical demands of the biarticular thigh muscles by means of additional 

force production, in an attempt to contribute to proximal stability to increase kinematic efficacy 

throughout both the swing- and stance phases.
2, 3, 20

 Interestingly, predominantly the airborne phase 

was observed to be subject to a lack of proximal control. Certainly in high speed running, where the 
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airborne phase (flight time) represents up to 80% of the entire stride time,
25-26, 31

  adequate core 

stability would be vital. Several authors have investigated the relation between core stability and 

hamstring injuries in soccer, however, mainly indirectly and in association with the efficacy of 

rehabilitation (association between exercise protocol allocation, time to return-to-play (RTP) and 

subsequent injury recurrence without investigating actual core function).
1, 4, 8, 36-37

 Accordingly, Sherry 

and colleagues compared the effectiveness of a rehabilitation protocol consisting of isolated hamstring 

stretch and strengthening exercises with the one of integrated kinetic chain training implying core 

stability and agility exercises.
36 

They found the recurrence rates and the time to RTP to be significantly 

lower in players allocated to the core stability training protocol. Yet, they did not measure core 

function nor functional coordination so the direct link with hamstring injury susceptibility could not be 

deducted. In contrast, Silder and colleagues found no significant differences in clinical presentation, 

functional performance or medical imaging at time to RTP between players allocated to a “Progressive 

Agility and Trunk Stability” training group and those submitted to a “Progressive Running and 

eccentric Strength” training group.
37

 Unfortunately, this study did not include measures of core muscle 

strength capacity either nor did they include a control group that did not receive a customized 

rehabilitation protocol. Assuming them to have a beneficial influence, many other intervention studies 

incorporated core stability exercises in their (secondary) prevention protocols as well.
1, 4-5, 8, 15, 21-22, 24, 39

 

Due to poor methodological design and lack of compliance, the exact influence of incorporating 

functional and isolated core training in (secondary) injury prevention, remains unknown.
1, 4-5, 8, 15, 21, 39

 

In particular, the evidence to validly link functional core stability with running related hamstring 

injury susceptibility is non-existing to date. Interestingly, previous research did demonstrate that the 

magnitude of anterior pelvic tilting is highly correlated with the amount of lumbar lordosis and hip-

extension range of motion during backswing.
10

 Franz and colleagues suggest that the increase in 

anterior pelvic tilt with increasing running velocity is predominantly due to increases in lumbar 

lordosis and trunk kinematics, as they found no statistical differences in hip extension range of motion 

with increasing running speed. More so, they could demonstrate that running athletes presented higher 

anterior tilting amplitudes, when hip extension capacity was decreased. Albeit not related to soccer or 

hamstring injury susceptibility in their observational study, the authors pointed out the importance of 
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lumbar spine and hip kinematics in lower back and hamstring injury vulnerability.  Another study 

investigated the effects of intentionally inducing forward trunk lean throughout sprinting versus 

regular sprinting in a sample of eight healthy male sprinters.
18

 Their results indicate that both the 

amount of hamstring muscle stretch and the lengthening velocity significantly increased when 

adopting a forward lean in running. As intentional forward trunk lean induces more anterior pelvic tilt 

as well, these could possibly explain why the players presenting an increased pelvic tilt, were subject 

of hamstring muscle failure during follow-up in our study.  

 

Although repeatedly suggested to be of potential importance for the prevention of lower limb injuries, 

our findings confirm the association between core kinematics/control and hamstring injury risk. In 

order to get an even better insight in this interplay, future research should attempt an integrated 

investigation of lower limb and trunk kinematics, surface electromyography (sEMG) and muscle 

mechanics.  

 

Limitations 

 

There were some limitations to this study. First, we must bear in mind that the sample size for 

prospective statistical analysis was small. This might have compromised the potential predictive 

validity of the kinematic outcome measures. However, as the statistical procedures (Statistical 

Parametric Mapping) attributed within this study, strongly control for both type 1 and type 2 errors, 

associated risk is limited as well.
29 

 Second, we did not have medical records of the injury history of 

the participants that entered this study, nor did we have any medical documentation on the injuries 

sustained during follow-up (physician’s report, records of medical imaging). Therefore, we were 

reliant on the participant’s reporting and study compliance, which might have induced a certain degree 

of recall/reporting bias. Moreover and because of the same reason, we decided not to take along 

information on the exact location of the lesion (muscle belly, distance from the ischial tuberosity and 

tissue involvement (muscle-tendon ratio)). Adding those covariates to the analysis, might have yielded 
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towards more detailed and possibly somewhat different insights in the running related hamstring 

injury risk. The strength of this study is however that it is the first study that investigated the 

association between running coordination and hamstring injury risk in male soccer players. More so, 

in performing both retro- and prospective analyses, it enabled differentiation as regards the direction of 

the association between running kinematics and hamstring injury risk, which appeared to be the cause 

rather than the  consequence of hamstring injury vulnerability in our cohort.  

 

Conclusion 

 

Surprisingly, this was the first study to relate lower limb and trunk kinematics during sprinting to 

hamstring injury risk. Our findings indicate that running coordination might actually be highly 

associated with the risk of sustaining a hamstring injury. Lacking control of the lumbo-pelvic unit 

(insufficient ‘core stability’), presented by excessive pelvis and trunk (range of) motion during the 

swing phases of running presented to be related to the primary hamstring injury risk. Therefore, 

assessing and addressing sprinting kinematics / running technique seem to be indispensable in primary 

hamstring injury prevention. Clinicians should acknowledge the importance of proper running 

technique in muscle injury rehabilitation and prevention in soccer, in which a bilaterally symmetrical, 

decently aligned running technique should be aspired, with adequate proximal neuromuscular control. 
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GENERAL DISCUSSION 

 

Summary 

 

All of the studies embedded within this dissertation have a remarkable common outcome, indicating 

that the hamstring injury risk presents a significant association with alterations in neuromuscular 

control within and beyond the hamstring muscle unit. Indeed, according to our original hypothesis, the 

results of each study indicate that the injury risk is not just to be assessed (nor addressed) locally. 

Quite the reverse, multiple modifiable factors, not directly related to (isolated) hamstring structure and 

function, seem to present an association with injury vulnerability. The research findings in Chapter I 

demonstrated that the risk of sustaining a hamstring injury increases significantly, when the ST does 

not present sufficient levels of metabolic activity (relative to the BF). This probably necessitates the 

BF to compensate by contributing more (excessively) to the shared muscle effort required during a 

heavy load prone leg curling exercise, as we also found a relative increase in BF activity in 

participants that sustained an injury. Additionally, results indicated that a weaker prone leg curling 

performance was associated with an elevated risk of sustaining a recurring hamstring injury. The prone 

leg curling performance appeared to be negatively correlated with (1) the amount of metabolic 

changes in the hamstring muscle unit and (2) the symmetry of metabolic muscle activation (more BF, 

less ST activity). Therefore, the results within this chapter suggest that the synergistic hamstring 

activation pattern in which the ST takes on the majority of effort, and the BF is only activated to a 

secondary extent, is associated with better performance through more economic and safer hamstring 

functioning. The 2
nd

 chapter revealed that the muscle recruitment pattern amongst the muscles of the 

posterior chain (lumbar erector spinae, gluteus maximus and hamstrings) was associated with 

hamstring injury occurrence if this pattern was characterized by a significant delay in hamstring 

muscle activity onset, with the lumbar muscles presenting activity before activity onset of the 

hamstrings instead of the other way around (as was the case in the participants that remained injury 

free during follow-up). The results of this second chapter indicate that, aside from deficits in 
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intramuscular coordination (interplay between the hamstring muscle bellies, Chapter I), intermuscular 

coordination properties (interplay between the posterior sling muscles) are significantly associated 

with hamstring injuries as well. Taking the first two chapters together, it seems that the quality of 

muscle recruitment within and between the extensor synergists in the posterior chain, is essential for 

safe hamstring functioning. In these terms we could demonstrate that the ST and BF not only need to 

make good agreements with regard to the amount of muscle recruitment and force production, but also 

need to do so meeting particular temporal demands relative to their proximal synergists in the 

posterior chain, when aiming to perform safe and effective. In the third chapter the results of 

investigating the injury-mechanism-related coordination features by means of muscle activity and 

kinematic quality during high speed running were discussed. Respective studies revealed that lacking 

activity of the core muscles during the airborne phase of sprinting and an inability to control for 

excessive pelvic and thoracic movements throughout respective open kinetic chain phase, are 

associated hamstring injury occurrence. Similar to research findings in Chapters I and II, the latter 

results indicate that the quality of neuromuscular coordination most probably has a substantial 

influence on the hamstring injury risk but this time with specific focus on core function during 

explosive, injury mechanism related, loading circumstances. Indeed, since the terminal swing phase of 

high speed running holds the primary injury mechanism, it can be expected that the quality with which 

the nervous system guides intentional muscular efforts (neuromuscular coordination) prior to and 

during these loading conditions, has a substantial impact on hamstring functioning and loading (most 

probably by altering running kinematics).  

Taken together, the present study results provide a scientific basis for the fact that neuromuscular 

control and associated muscle activation patterns play a prominent role in hamstring injury 

predisposition. In these terms, apart from the possible influence of age, injury history, strength and 

flexibility, muscle activation and interplay within and beyond the hamstring unit seem to be 

predominant determinants in the football related hamstring injury risk. Hence, the quality and quantity 

with which the hamstring muscles and their functional agonists and antagonists are activated during 

running-related efforts, seem to be important determinants in the intrinsic hamstring injury risk profile. 
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Discussion 

 

To substantiate the research findings embedded within this dissertation, the general discussion is 

organized in function of the original hypotheses, attempting to formulate a well-founded and clinically 

relevant answer to our main research questions. In providing arguments against and in favor of our 

results, we wish to provide the reader with a broader perspective on hamstring injuries and reinforce 

the existing evidence regarding the intrinsic risk profile. 

 

Do the different hamstring muscle bellies demonstrate significant functional differences and are 

these related to the hamstring injury risk? 

 

Inspired by (1) the remarkable differences in muscle architecture, (2) the most common injury location 

and (3) previous research that indicated that the separate hamstring muscle bellies are loaded 

differently throughout running,
17, 20

 we wanted to assess the possible association between 

intramuscular activation characteristics and the risk of sustaining a hamstring injury. In line with the 

particular muscle anatomy and morphometry, these chapters revealed that although sharing a proximal 

tendon, the BF and ST serve different purposes and are supposed to function accordingly. Specifically, 

the risk of injury seems to increase when the BF and ST put in a comparable effort, whereas the risk 

reduces when the ST takes the lead and the BF relatively restricts its contribution during exercise 

(prone leg curls). These results are in line with the findings regarding muscle activation features 

during high speed running,
 17, 20

 which demonstrated that the BF is activated most during late swing 

and early stance, whereas the ST is overall more active and presents significantly higher EMG activity 

during mid swing [Figure 4].  
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Figure 4. sEMG activity dominance of the BFLH and ST throughout the gait cycle in sprinting  

 

Respective findings are in line with what can be expected when looking at muscle anatomy:  

The ST consist of uniformly organized and lean muscle fibers with considerably less tendon tissue 

along its proximo-distal course. The BF has shorter, more voluptuous fibres that are organized both 

uni- and bipennately and comprises of a much larger tendon representative. These features suggest that 

the ST is more compliant and better suited to contribute to force output throughout the entire range of 

motion, whereas the BF will need to appeal to its passive force output more extensively, as it 

comprises of more tendon tissue and has a smaller angle of peak torque. In these terms, it is merely 

logical that the BF cannot be activated as extensively as the ST, as it has a lower ability to contribute 

to active force production (in time as well as in space). The findings in our mfMRI research, confirm 

this hypothesis, presenting that more pronounced differences between metabolic activation of the ST 

and BF are associated with more economic and safer hamstring muscle functioning. In short it can be 

stated that, the higher the contribution of the ST during (intense) hamstring loading, the better for (1) 

the efficiency of the shared force output as well as (2) the preservation of tissue homeostasis and load 
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bearing capacity. However, we need to bear in mind that, although demonstrating a significant 

retrospective association with hamstring injuries, only the players that sustained a first hamstring 

injury presented respective changes in muscle activation patterns in our prospective study. The 

participants that had a history of injury and got re-injured during follow-up, did not present an 

activation pattern that differed significantly from those with an injury history but no recurrence during 

follow up.  Interestingly, details on prospective hamstring injuries registered within this study suggest 

that the index hamstring injuries were somewhat more severe than the recurring ones: average time-

loss in the index injury group was 35 days (range [14 – 56]) , which was 21 (range [7 – 28]) in the 

recurring injury group [Table 3]. More so, all of the reoccurring hamstring injuries concerned late or 

even delayed recurrences (within and later than 12 months after previous injury).
12

 Given the lower 

severity and the delayed recurrence associated with the prospective injuries in the reinjury group, and 

the apparent absence of significant alterations in metabolic activity characteristics within the BF-ST 

unit (compared to those with an injury history but no (late) recurrences during follow up), we are 

inclined to believe that the intramuscular coordination features indeed were not (primarily) responsible 

for the recurring injuries in our study, although they might have been involved in inducing lower 

endurance capacity, somewhere throughout the hamstring injury history in this cohort. Therefore, as 

concerns our prospective cohort of male football players, we believe that deviating activation patterns 

were responsible for lowering the muscle endurance capacity and increasing injury vulnerability of the 

hamstring in subjects sustaining a first hamstring injury. In the reinjury group, these deviating 

activation patterns  might have initiated a reduction in muscle endurance capacity as well, but this time 

not in direct association with elevating injury vulnerability. It is very plausible that in this group, 

multiple other (compensatory) neuromuscular coordination mechanisms are involved in determining 

the secondary injury risk
7
 (by lowering the muscle endurance capacity, amongst others).  
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Table 3    Details on hamstring injury (re)occurrences,  Chapter I Part II 

 

 
Index Injury during follow-up 

(n = 4) 

Reinjury during follow-up 

(n = 6) 

Time between mfMRI analysis and 

prospective injury  

(mean [range], mo) 

5 [2 – 9] 4 [2 - 9] 

   

Time in between hamstring injuries  

(mean [range], mo) 
/ 10 [5 – 17] 

Time-loss prospective injury  

(mean [range], d) 
35 [14 – 56] 21 [7 – 28] 

mo, months; d, days 

 

In accordance with our findings, previous research assessing the intramuscular activation patterns 

within the hamstrings during a variety of exercises using similar methods, systematically concluded 

the ST to be predominantly active. As such, Kubuto and colleagues investigated regional differences 

in signal intensity shift immediately after and at different time intervals (1 day, 3 days and 7 days after 

exercise) following an eccentric knee flexion exercise protocol.
27

 They reported that the exercise 

induced T2 increase, was the highest for the ST. More so, the ST seemed to be the only muscle belly 

in which the elevated T2 value was still present several days after the exercise, indicating the ST was 

subject to the highest levels of acidification and accumulation of metabolic waste products. This 

suggests that the ST had been activated more extensively than the BF during respective hamstring 

exercise. This study included healthy young men (age 23.7 ± 1.8 years; height 171.8 ± 4.8 cm; weight 

66.9 ± 8.6 kg), not participating in a particular type of sports. Their preferential ST recruitment could 

thus not have been biased by sports-induced neuromuscular adaptations and suggests that the 

preferential solicitation of the ST has a biological (evolutionary) origin. Likewise, Mendiguchia 

assessed the activity-related T2 shift within the hamstring muscles after a Nordic hamstring exercise 

protocol.
29

 They found significant metabolic changes in both the BF and the ST muscles (opposed to 

the SM, which did not seem to contribute in eccentric contraction), with the highest prolonged T2 shift 

in the short head of the BF (BFSH). They concluded that, due to the predominantly BFSH-oriented 

prolonged exercise effect of the Nordic hamstring exercise, this exercise particularly requires 



215 

 

metabolic activation and induces muscle damage in the more distal muscle-tendon region. Their 

findings are evident, as the Nordic hamstring exercise maximizes muscle stress at the distal insertion 

site, were the lever (and thus, the external load) is maximal. In agreement with our findings, these 

results indicate that the different hamstring muscle bellies are designed to function differently, most 

probably allowing each of them to perform at best. These specific intramuscular task differentiation 

was also demonstrated by Ono and colleagues.
35

 Their study consisted of a combined muscle 

functional MRI protocol and real-time sEMG analysis of the hamstring muscle activity during an 

isolated hip extension exercise (stiff leg deadlift). They reported that only the SM presented significant 

metabolic changes, whereas both the SM and BF demonstrated similar levels of EMG activity during 

both concentric and eccentric phases of the stiff leg dead lift protocol. These findings suggest that the 

more voluptuous BF and SM muscles have a predominant role in controlling and generating torques 

across the hip joint, whereas the ST is possibly predestined to take the lead across the knee. Indeed, 

more recent research of Mendiguchia
30

  indicated that the lean ST muscle takes on the greater part of 

the effort during eccentric leg curls, compared to the BF, which presented to be dominant during lunge 

exercises.  

Because we wanted to mimic the hamstring muscle mechanics during running, still isolating and 

primarily addressing the hamstring muscles, our exercise consisted of prone leg curls with free 

weights from a prone position with the hip joints in 60° of flexion. As is the case in running, this 

exercise is likely to induce anterior translation of the tibia, that needs to be withstood by the 

hamstrings, working eccentrically in a more distal range of motion. Besides being more functional and 

injury-mechanism-related, this exercise does not maximize the load near the knee joint but rather 

distributes it across its trajectory from sciatic tuberosity towards tibia, as it requires the hamstrings to 

control for both a proximal and a distal lever (induction of load across hip- and knee joints). By 

selecting a scanning location in which each one of the hamstring muscle bellies consists of a 

comparable volume of metabolically active muscle tissue (proximal boarder of the distal third of the 

upper leg), we could assess the intramuscular coordination features validly and in association with the 

running related hamstring injury risk. More so, ours was the first study to assess these muscle 
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functional MRI features in a fairly large homogeneous cohort of football players, with subsequent 

prospective data analysis.  

Our findings are in agreement with those of previous research, indicating that the ST plays a leading 

role in controlling torques around the knee joint, whereas the more voluptuous and tendinous BF and 

SM muscles seem to be activated more extensively when (controlling for) additional torque is required 

around the (proximal) hip joint. In running, both the medial and lateral hamstrings present substantial 

levels of muscle activity throughout both the stance - and swing phases. However, the lateral 

hamstrings demonstrate more fluctuation in activity level throughout the running cycle with peak 

activity during the late swing and initial stance phases of running, whereas the medial hamstrings 

appear to be more continuously active, presenting a significantly higher EMG signal than the lateral 

muscle unit during the late stance and initial- to mid-swing phases.
17, 20

 Real-time muscle activity 

evaluation during high speed running, also revealed that the more vulnerable BFLH presents peak 

activity at the moment that peak muscle-tendon stretch occurs, whereas the more constantly active ST 

presents peak activity prior to reaching maximal muscle-tendon stretch.
18

 Linking our findings with 

previous research results, we suggest that the ST has a morphological advantage over the BF in terms 

of safe force production and load bearing capacity during high speed running. Because of this relative 

benefit, the ST should warrant the highest active force production throughout the entire range of 

motion, whereas the BF is probably essential in additional control of hip- and knee joint torques at 

more lengthened positions (distal range of motion; both hip flexion and knee extension kinematics), as 

this muscle is preponderantly designed to absorb and release elastic energy in energy throughout late 

swing and initial stance phases, respectively. In these terms, the ST needs to be primarily active when 

energy absorption through tendon tensioning is not possible, whereas the BF has a greater part when 

the latter is indeed required. Indeed, when this natural function-distribution (essentially determined by 

morphology and anatomy) gets outbalanced (intramuscular coordination dysfunction), the hamstrings 

presented to be more susceptible to injury (Chapter I).
45-46 

 

An important annotation the reader should take along in interpreting these results, is that the exercise 

related T2 shift the muscle tissue demonstrates after being activated, will differ based on the fibre 
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distribution and – dominance in respective muscle.  The fact that slow twitch muscle fibres appeal on 

oxidative metabolic processes to gather the necessary energy for contraction, while the fast twitch 

fibers function anaerobically, has important consequences for their presentation (T2 relaxation time / 

signal intensity) in the acquired mfMRI images. Due to their aerobic metabolism, slow twitch fibres 

have a higher resting state T2 signal intensity compared to fast twitch fibres.
2, 38-39

 This difference is 

mostly mediated by the higher intracellular concentration of protein components involved in the 

oxidative processes (mitochondria, myoglobin molecules) as well as the better circulatory provision 

(blood flow) the slow twitch fibers receive, giving rise to larger intracellular water volumes, compared 

to their faster counterparts. In these terms, based on differing metabolic characteristics, the baseline T2 

value will differ as well according to the baseline metabolism of respective muscle fibres. When 

looking at the exercise related increase in T2 signal intensity in both muscle fibre types, this difference 

in metabolic characteristics presents itself otherwise.
39

 Slow twitch fibres will be able to appeal on less 

energy for muscle contraction per time unit than is the case for fast twitch fibres, which also means 

that the intensity of muscle contraction and amount of force production will be much lower and their 

metabolism during activity will not differ substantially from the baseline situation. In fast twitch fibers 

however, the intracellular homeostasis will radically change from the very beginning of muscle fibre 

recruitment and contraction, because all fibres will contract explosively and intensively, giving rise to 

extensive accumulation of lactate and other residual osmolites derived from anaerobic force 

production. This intracellular acidification will cause the muscle water to migrate towards the 

intracellular environment (osmosis), which can be appreciated very clearly on mfMRI images due to 

an intense increase in T2 signal intensity in the muscle tissue that had been activated in between the 

resting and the post-exercise scan. Due to lack recent (in vivo) histochemical studies assessing the 

fiber distribution (and its possible association with muscle injury risk) in the hamstring unit, we are 

still under the assumption that the 4 muscle bellies have a same fiber distribution, implying a slight 

dominance of the fast twitch type.
14, 25

 Nonetheless, this might just as well not be entirely correct and 

subtle differences in fibre type distribution in between muscle bellies might make the importance of 

adequate intramuscular coordination even more important, as this would directly imply a higher risk of 

overload as well (due to increments in intramuscular strain caused by asynchronous muscle fibre 
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contraction). We found the ST to present the highest amount of metabolic activity during the prone leg 

curls in the entire study sample (Chapter I Parts I and II). Nonetheless, the ST systematically presented 

a slightly lower baseline T2 value as well, which might co-explain its particularly high activity during 

respective exercise. This paragraph is of course rather speculative and should be interpreted with a 

pinch of salt until this matter is reaffirmed by future research.  

 

 

Might muscle recruitment in the posterior muscle chain and, in particular, hamstring activity 

onset, detect an athlete at risk of hamstring injury? 

 

In Chapter II, the neuromuscular coordination features were observed from a broader perspective, 

taking into account the agonist muscles in the posterior muscle chain. In existing literature, the Prone 

Hip Extension test (PHE) is mostly adopted in the context of lumbar or sacro-iliac dysfunctions, in 

which a lack of neuromuscular coordination/control on account of the local stabilizing muscles 

(lumbar extensor spinae (LES) and (mostly) gluteus maximus (GM)) is thought to be the cause of 

functional (and structural) stability deficits and associated complaints. In these terms, Janda, Sahrman 

and many other authors suggested the PHE exercise/test to be a valuable tool for assessment and 

correction of deficiencies in proximal neuromuscular coordination.
24, 45

 In their theoretical framework, 

they propose early and substantial GM activation during PHE to be key, as this muscle needs to 

warrantee sufficient pelvic stability and sacro-iliac force closure for safe force transmission from the 

lower limb towards the trunk. This hypothesis has been investigated multiple times over the last 

decade, yet study results have shown to be conflicting. When assessing the recruitment sequence and 

intensity during PHE, some studies found no consistent recruitment pattern,
28

 whereas others did find 

one recruitment pattern to be most common, namely the one that appeared to be most common in in 

our healthy cohort as well [Chapter II].
15, 41

 Next to the discussion regarding the existence of a 

particular activation sequence by contrast with the PHE soliciting the posterior chain muscles merely 

at random,
28

 none of the available original research actually confirmed that initial activity onset of the 
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GM could be associated with optimal proximal control, as this pattern has only been documented 

rarely. Nonetheless, many studies did confirm that lower back and other musculoskeletal complaints 

present an association with a significant delay in GM activity onset. Although the GM always seems 

to be activated last  (relative to the onset times of the hamstrings and the lumbar muscles),
3, 5, 15, 23, 26, 42 

it presented to be activated significantly later in subjects with lower back dysfunction
26 

and a history of 

ankle sprain,
4
 compared to the healthy controls. However, this could not systematically be confirmed 

by similar studies.
15, 47

    

Interestingly and more within the scope our research, Chance-Larsen and colleagues hypothesized that 

the timing dissimilarities between the GM and the BF, in which the GM presents a relative delay in 

onset time, might put the hamstrings at risk of overload and injury.
5
 This due to lacking contribution 

and insufficient guard of proximal stability by the GM, necessitating the BF to raise its stakes. The 

authors investigated whether this relative timing difference could be remediated via the 

implementation of proximal control exercises consisting of lower abdominal hollowing and 

anticipatory isometric GM activation prior to exercise. They concluded that proximal control and 

dissociation exercise might be useful in amplifying and advancing GM recruitment during prone hip 

extension, possibly reducing the load imposed on the vulnerable BF muscle. Due to a very small 

sample size and the absence of an ‘injury’-variable within their study, the exact value of relative delay 

in GM onset or the relevance of implementing respective exercise protocol for the benefit of hamstring 

injury prevention, cannot be pronounced either. 

As it appears, delays in GM onset times might be associated with lower back complaints (possibly due 

to lacking pelvic- and sacro-iliac stability during  force transfer from the lower limb towards the trunk) 

as well as injuries in the lower limb, which indicates that this muscle entity is essential for safe and 

controlled force transfer between trunk and lower limb, both for local tissue homeostasis and load 

bearing capacity, as well as remote musculoskeletal functioning. Unfortunately, this association has 

only been made retrospectively to date, which renders it difficult to pronounce upon the causality 

within the objectified interdependence between differences in muscle recruitment and injury 

vulnerability. Taking all of the existing evidence into account, it seems that the outcome of the PHE 
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test in terms of muscle activity onset and the sequence of recruitment among the posterior sling 

muscles, must be interpreted with caution. Nonetheless, in an attempt to round out the knowledge with 

regards to the hamstring injury risk in male football, our PHE study did venture prospective analysis in 

investigating the association between the muscle activation pattern in the posterior chain and the risk 

of sustaining a hamstring injury (Chapter II). In accordance with previous research, the football 

players within our cohort, systematically presented a relative delay in GM onset time as well, 

compared to the onset of the hamstrings and LES, irrespective of hamstring injury occurrence during 

follow-up. On the contrary, hamstring injury occurrence did present a significant association with a 

delay in hamstring activity onset, which occurred after LES onset, in the players that sustained an 

injury instead of the other way around. These findings suggest that, as concerns hamstring injury 

vulnerability in football, the activity onset of the hamstrings, relative to the other posterior sling 

muscles seems essential (rather than the early recruitment of the GM). This seems very plausible, 

taking into account the fact that multiple researchers before us did not find an association between GM 

activity onset and injury neither,
15, 42, 47

 and that the timing properties of hamstring muscle activity 

have demonstrated to be essential in terms of the efficiency and safety of their function during high 

speed running.
6, 13, 17, 18, 44 

 

As such, Opar and colleagues found a significant decrease in early rate of torque development 

throughout eccentric contraction in subjects with a history of hamstring injury, and stated that this 

inhibited neural drive, might predispose the hamstrings to reinjury as this would make the muscle 

insufficiently able to safely anticipate for high muscle-tendon stress and strain throughout the rapid 

swing phase of the running cycle.
36

 As hamstring strain injury is most commonly located in the BF, 

and because recent research demonstrated that this muscle belly presents a delay in peak activity, 

relative to the onset of peak stretch and to peak activity of the ST throughout the critical front swing in 

running,
19

 our findings might concur with the theory of Opar. The BF differs substantially from the ST 

with regard to muscle morphology and functionality (Cf. General Introduction ; Chapter I) and most 

probably runs an elevated injury risk when both muscles do not live up to their predestined functions 

sufficiently. As such, additional deficits in neuromuscular coordination within the broader posterior 
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chain (significantly delayed activity onset), might effectively compromise safe hamstring functioning 

and increase the risk of injury. As the hamstrings (neurologically guided by the large sciatic nerve) are 

anatomically and biomechanically directly linked to the pelvis (and lumbar spine), proximal control 

should be a basic requirement for safe hamstring loading and hamstring functioning should have a 

direct impact on the load imposed on the lumbo-pelvic structures. Whether and exactly how (the 

hypothesis behind) this sufficient neuromuscular control/coordination can be objectified by assessing 

the recruitment sequence in the posterior chain, still needs to be brought to the evidence. Nonetheless, 

with regard to hamstring injury susceptibility in athletes, the necessity of properly dosed hamstring 

activity, carefully weighted up in time (Chapter II) and space (Chapter I) is beyond dispute. Indeed, 

when the hamstring muscles presented a delay in pre-motor activity onset time, they appeared to be 

more likely to get injured. 

 

 

Could running analysis hold the solution?  

 

The  hamstrings are at highest risk of injury throughout the terminal swing and initial stance phases of 

high speed running, when the mechanical load and associated demands imposed upon this muscle unit 

are maximized. During this explosive activity, not only the hamstrings, but the entire kinetic chain is 

being challenged to the utmost, both metabolically and mechanically. Certainly throughout the 

acceleration and deceleration phases, where kinetic energy, giving rise to generation of constant 

horizontal velocity, cannot just be recycled but needs to be magnified or reduced to increase or 

decrease horizontal force production (velocity), high-quality whole body coordination and interplay 

between each link in the kinetic chain is vital. Therefore, not only neuromuscular coordination within 

the hamstring muscle unit is essential when unraveling the risk of sustaining a running related 

hamstring injury. Quite the contrary, every musculoskeletal unit that contributes to horizontal force 

production, has the ability to increase or decrease mechanical loads or metabolic demands, imposed on 

or required by the hamstring muscles.
6
 Although it has been demonstrated that the hamstrings have the 

highest responsibility in horizontal force and velocity production in running accelerations,
29

 the other 
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lower limb and trunk muscles are activated to substantial extents as well, to guide and control the 

kinetic energy throughout the body and to establish a sound running pattern and an efficient movement 

outcome.
6, 34, 40, 44 

Besides their influence on running pattern and – speed, respective lower limb- and 

trunk muscles have demonstrated to be key in hamstring loading as well. The biomechanical research 

of Chumanov
6
 investigated (using electromyography) the influence of activity of a variety of lower 

limb and trunk muscles on hamstring muscle mechanics throughout the swing phase of sprinting. They 

found that the amount of stretch the hamstrings need to withstand is highly dependent on the amount 

of activity generated by the muscles in the lumbo-pelvic region (in contrast with the muscles acting 

about the knee and ankle), irrespective of running speed. The muscles that presented to induce 

increments in hamstring muscle-tendon stretch were the hip flexors, the knee extensors and the erector 

spinae muscles, whereas the gluteal muscles and the oblique abdominal muscles demonstrated to 

reduce mechanical hamstring tensioning throughout the swing phase. The authors concluded that the 

hamstring vulnerability to strain injury during sprinting is the consequence of (1) the large amounts of 

negative (eccentric) work this muscle unit needs to engage in repeatedly, and most probably also due 

to (2) perturbations in coordination of the pelvic muscles, inducing excessive hamstring muscle-

tendon stretch. Although their rationale seems very plausible, the theory of Chumanov and colleagues 

cannot be taken for gospel truth without reaffirming prospective research, verifying the presence of an 

actual causal relation between the quality of lumbo-pelvic coordination and the occurrence of injury.  

Similar to this biomechanical research, the group of Higashihara investigated the possible association 

between disturbances in running kinematics and hamstring loading.
19

 They found that deviating trunk 

kinematics by means of enlarged forward trunk lean, effectively led to significant increments in 

hamstring muscle stretch and elongation velocity. This was a repeated measures observational study in 

a healthy sample of 8 male sprinters, so the actual association with hamstring injury vulnerability was 

not assessed. Therefore, although the results of the biomechanical research of Chumanov
5
 and 

Higashihara
19

 suggest that, next to aberrant lumbo-pelvic muscle activity,
6
 kinematic deviations in the 

lumbo-pelvic area
19

 magnify hamstring loading, this has never been confirmed with prospective 

research designs neither to date. In these terms, exploring the actual (potentially causative) association 
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between lumbo-pelvic coordination (both neuromuscular and kinematic) and hamstring injuries as 

performed in the present work was quite innovative. 

This dissertation contains the very first biomechanical research investigating the association between 

lumbo-pelvic muscle activity and (most probably associated) – kinematics, or briefly ‘lumbo-pelvic 

coordination’, and hamstring injuries in a cohort of male football players. In accordance with what has 

been suggested in prior observational research, we statistically identified perturbations in proximal 

neuromuscular coordination both by means of muscle activation patterns and kinematics in the lumbo-

pelvic-hip complex, in players that sustained an injury. Interestingly, the muscles that have proven to 

reduce mechanical load on the hamstring muscles in the study of Chumanov,
6
 presented to be 

significantly less active throughout the airborne phases of running in our injured cohort. During 

respective open kinetic chain phase, sufficient proximal postural muscle control is of the highest 

importance, as the core and lower limb cannot appeal to a steady foundation (i.e. the ground) to 

provide a solid basis for the development and transfer of forces / kinetic energy. Under these airborne 

circumstances, the proximal lumbo-pelvic unit (containing the body center of mass) is the primary 

region from which the external (gravitational) force will originate. During this open kinetic chain 

phase, the substantial gravitational and horizontal forces acting upon the center of mass (core), are not 

counteracted by ground reaction forces as is the case in the contact phases of the gait cycle. Therefore, 

when being airborne, the core needs to succeed in preserving sufficient stability and postural control, 

while receiving and counteracting the external forces imposed upon the running body. Only in doing 

this adequately, the core unit can warrantee safe and sufficient guidance of the front – and hind leg 

during front- and backswing. This guidance is essential, as the efficiency of strike and subsequent 

contact for forceful propulsion, depends greatly on the stability and strength provided by the muscles 

in the lumbo-pelvic-hip complex.
44 

The studies embedded in Chapter III reported an increased 

hamstring injury risk in those football players who presented deficiencies in proximal control, by 

means of (1) lower activity of the gluteal and trunk muscles and (2) increments in kinematic deviations 

of the pelvis and trunk throughout the front- and backswing phases of high speed running (sprinting 

acceleration). Although we were the first to biomechanically assess proximal coordination features 
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during sprinting in association with hamstring injuries in football, our findings fit in perfectly with the 

speculative framework that has been drawn up by previous researchers occupied with this topic.
6, 19, 21-

22, 32, 37, 44
 These have postulated that the hamstring muscles count on a solid and properly controlled 

core during locomotion and sports, enabling them to primarily engage in their main function: 

generating horizontal force, without excessively having to account for pelvis stabilization as well. In 

these terms, respective authors have recommended to systematically assess and address lumbar- and 

pelvic function, to effectively cure and prevent hamstring injuries. The research findings demonstrated 

in the last chapter of this dissertation can substantiate this. Players that got injured during follow-up, 

effectively presented a lesser ability to warrantee core stability throughout the running cycle, most 

probably due to lack of neuromuscular coordination and adequate and properly timed core muscle 

activation. As a consequence, the hamstring muscles of the injured players might have been subject to 

excessive mechanical loading (strain), ultimately resulting in muscle failure during football activity. 

Indeed, when the proximal core muscles presented to be activated to a lesser extent during the 

unsteady airborne phases (Chapter III, Part I) and when the lumbo-pelvic region demonstrates 

increments in 3D kinematics throughout this phase (Chapter III, part II), the risk of sustaining a 

hamstring injury increased significantly.  

 

 

Hamstring injury susceptibility in football: it’s all about team play 

 

Taking together all research findings within this doctoral dissertation, the hamstring injury risk seems 

to be mediated by both local and global neuromuscular coordination features. The football player runs 

a higher risk of injuring his hamstrings when these muscles  

1) do not perform according to their predestined function 

2)  (re)act to slowly during functional exercise  

3) cannot count on the support of their agonists 
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These coordinative deficiencies might put both the BF and the ST at an increased risk of injury: When 

the ST does not take its responsibility sufficiently as regards amount of muscle fibre recruitment and 

active force output throughout the running cycle, when the BF has to engage in elevated metabolic 

efforts, and when they (both) fail to do this in time, they will both end up to be more prone to injury 

due to repeated functional under- (ST) or overload (BF). About half of the prospectively injured cohort 

reported perceiving a laterally oriented pain, whilst the other half gave notice of a more medially 

located lesion. (Chapters II and II(part I)). Although these findings are merely based on participant’s 

self-report and should be taken with a pinch of salt, former epidemiological research reported the same 

findings. In their prospective study, Woods et al.
48

 found that,  although the BF was subject of injury 

in the majority of the cases, a substantial amount of football players also demonstrated having injured 

the ST in high speed running. These results do support our hypothesis, stating that both the BF and ST 

muscles might be at risk of sustaining a running related injury in football when subject to/of 

coordination deficits.  

Irrespective of BF of ST involvement, a good result in football essentially depends on efficient team 

play and team integrity. This appears to be key in hamstring load bearing capacity as well. The better 

the hamstrings work together, the better they communicate with another and their neighbors, and the 

more they are able to count on their functional agonists- and antagonists throughout the kinetic chain, 

the more efficiently they will function and the higher the loads they will be able to bear – ultimately 

making them less susceptible to injury.  

 



226 

 

 

Time to switch glasses and broaden our clinical perspective, it is about time the hamstrings experience 

a successful game season.  

 

Why does the football player injure his hamstrings during sprinting ? 

 

Assembling the main findings of this doctoral thesis, it seems that the football player is predisposed to 

sustain a hamstring injury during high speed running when because:  

1) The ST does not generate sufficient force output during the mid-swing phase of the gait cycle 

in running, necessitating the BF to contribute more than it is supposed to do during respective 

phase  

2) The entire hamstring unit is solicited too late, allowing excessive muscle-tendon stretch at 

crucial terminal swing, which should be most detrimental for the BF because this muscle 

might be covering for the lack of ST contribution 

3) The core does not succeed in providing the necessary proximal stability, imposing even more 

metabolic and mechanical load on the hamstring muscles 

 

 

 

 

 

 

 

 

 

 

1 
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These conditions cause the hamstrings to be subject to substantial mechanical and metabolic loading 

demands, with the ultimate consequence of strain injury.  

 

 

Clinical Implications 

 

“ Bene diagnosticur, bene curatur” 

 

The key message distilled out this dissertation, is that muscle injuries (and most likely all non-contact 

sports injuries, for that matter) are not to be cured nor prevented by regionally assessing muscle 

function and load bearing capacity only. The present study results demonstrated that the hamstrings 

are more susceptible to sustain an injury, because of subtle changes in neuromuscular coordination 

within and far beyond the hamstring muscle unit. This might be caused by incomplete recovery from 

previous injury (any injury), or strength- and flexibility deficiencies/imbalances somewhere within the 

kinetic chain, leading to aberrant proprioception and coordination/guidance. As such, the basis of 

(secondary) hamstring injury prevention consists of exploring the kinetic chain for functional deficits 

in neuromuscular coordination/control, to identify the exact cause of respective dysfunctions in motor 

output.   

Therefore, in order to accurately cure and prevent hamstring injuries: 

(1) One must bear in mind the constitutional vulnerability to strain (injury), that is inherently 

present in the hamstring muscle unit (in particular, the biceps femoris). 

(2)  The hamstring unit needs to be trained sufficiently both in terms of (1) coordination and (2) 

strength and flexibility. Due to its inherent injury vulnerability and the high demands in load 

bearing capacity, the hamstring muscle needs to be conditioned intensely, with focus on 

functional hamstring eccentrics and plyometrics.   
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(3) The core needs to be able to warrant a solid basis from which the hamstring muscles can 

operate safely during functional activities like running and kicking. This can only be 

guaranteed by verifying and maintaining sufficient proximal control in the athletic population 

and providing the patient with additional core coordination and strengthening exercises whilst 

training the hamstrings (explosively) dynamically.  

(4) Particular focus should be directed towards conditioning the ST, to restore intramuscular 

hierarchy and biological functionality. Being far more stretch tolerant, the ST is designed to 

take on the greater part of active torque production during running - particularly throughout 

front swing. The BF on the other hand is stiffer and contributes to counteracting the 

momentum towards knee extension during that crucial phase more passively. If we want to 

minimize the risk of excessive strain and associated injury in the BF, we need to train the ST 

additionally, to increase its active contribution to the total amount of negative work 

throughout eccentric muscle contraction of the entire hamstring muscle unit. Hamstring 

exercises that dominantly solicit the Medial Hamstrings over the BF have demonstrated to be 

the Kettlebell Swing [Figure 5] and the Romanian Deadlift [Figure 6].
49 

Although these 

exercises do not have the potential to train the ST task specifically (negative work throughout 

rapid front swing in high speed running), they provide the ST with an intense eccentric 

loading stimulus, as the external momentum they have to control for (counteract) is much 

larger than during running. Performing those exercises does certainly not suffice when 

attempting to make the hamstring unit reach optimal load bearing – and performance capacity. 

They should be implemented within a comprehensive and diverse prevention/rehabilitation 

protocol, consisting of training the entire kinetic chain on endurance, strength, flexibility and 

speed. With respect to rehabilitation, we rigorously recommend to integrate the exercises from 

the ‘lengthening protocol’ (‘L-protocol’), proposed by Askling and colleagues as well, as this 

protocol has proven to have good functional outcomes.
1
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Figure 5.  Starting and end position of the Kettlebell Swing exercise (upper image) and the Romanian deadlift 

exercise (lower image) 

 

 

(5) The hamstring muscles should be trained explosively, as the timing of hamstring activity 

seems to be of capital importance as well (Chapter II). They need to be exposed to exercises 

that oblige them to take on the lead in terms of muscle activity onset (with respect to other 

(ant)agonists responsible for the given motion task).  Which exercises are best suited to serve 

this purpose, needs to be depicted in future research. Be that as it may, such exercises should 

also consist of providing an accurate stimulus to the trunk and pelvis as well, as precisely 

these muscles need to be coordinated with the highest accuracy, to allow safe and economic 

hamstring functioning and sports performance. In these terms, it would be very useful to 

determine which exercises integrate both hamstring muscle and core muscle 
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activation/stimulation, allowing the hamstring muscles to be recruited first. By analogy with 

rehabilitation guidelines for patellofemoral disorders which use biofeedback training to 

primarily solicit the Vastus Medialis Obliquus (VMO) during  quadriceps contractions,
32

 the 

authors suggest to explore the value of this real time biofeedback in eliciting rapid hamstring 

muscle recruitment/contraction (reducing the pre-motor muscle activation time). Besides 

being useful in trying to evoke early hamstring muscle recruitment, this feedback application 

might also allow to train the medial and lateral hamstrings more individually and thus, with 

higher efficiency. As such, it could provide the clinician with a tool to restore the natural 

functional hierarchy within the hamstring unit, and considerably reduce the risk of overload 

and injury.  

 

Next the possible application of hamstring biofeedback training, we propose the following hamstring 

exercises might be useful for training the core functionally and meeting the above mentioned loading 

demands (based on the present and prior study findings
1, 11, 16, 30 

and the currently existing assembly of 

exercises most commonly used in fitness and rehabilitation): Nordic Hamstrings and Glute-Ham 

Raises [Figure 5], Good Morning exercises, Supine Pelvic Lift variations, Bulgarian Split Squats, 

Diver exercise, Single Leg Hamstring Bridges , Single Leg Deadlifts, Supine and Prone Lengthened 

State Hamstring Curls, Single Leg Windmills [Figure 6], Prone Running [Figure 7], Wall Sprints (if 

desired with additional resistance using Kinetic Bands), Weighted Sled Sprint Drills [Figure 8], 

(Starting Speed) Acceleration Drills, etc. 

 

Figure 5. Glute-Ham Raise exercise 
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Figure 6. Single Leg Windmills 

 

 

 

 

 

Figure 7. Prone Running 
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Figure 8. Weighted Sled Sprint Drills 

 

 

To conclude this section, I would like to stress the importance of causal differential diagnosis and 

correction of underlying risk factors in the management of hamstring injuries and hampering chronic 

hamstring syndromes (frequently caused by recurring hamstring injury). Only by tackling the 

underlying problem we can prevent the athlete’s hamstrings to become subject to repetitive overload 

and ultimately, injury, even before the player’s injury risk increases significantly. Certainly given the 

loading intensity and volume the hamstrings have to deal with in football, and their inherent 

vulnerability to strain, this muscle unit deserves the clinician’s undivided attention, even in case of a 

blank injury history. Next to injury history, hamstring strength and flexibility, the practitioner is 

stimulated to investigate and correct running kinematics, by amplifying proximal control and 

functional strength. Besides, the present findings suggest that the intra-muscular interplay and the 

timing of muscle recruitment are probably essential. However, more research needs to be conducted to 

establish how these issues can be investigated and remediated validly.  
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Strengths and Limitations 

 

However the main research findings look promising and potentially open doors towards increasing 

efficiency in hamstring rehabilitation and injury prevention, one must bear in mind that one swallow 

does not make a summer. Certainly given the fact that, the studies embedded in this dissertation were 

not without limitations. In these terms, the sample sizes of each of these studies were fairly small, 

implicating a relative risk of type 2 statistical error. This could have implications for the statistical 

power with which the present conclusions are drawn. Nonetheless, because of the strictness and 

comprehensiveness with which the (prospective) data were gathered and (statistically) processed (e.g. 

benefits of Statistical Parametric Mapping (Chapter 3 – Parts 1 and 2)), we believe we were able to 

validly control for those types of statistical errors for the greater part. In order to verify the strength of 

evidence of the outcome of each of the studies embedded within this dissertation (and to provide 

future researchers with some methodological guidelines), additional analysis was performed:  

1) As concerns the effect of metabolic hamstring activity on hamstring injury history and 

prospective hamstring injury susceptibility described in Chapter I Parts I and II, respectively, 

power and sample size calculations revealed that the power of the statistical analyses giving 

rise to the results for retrospective analysis (Part I) was 100%  as regards the primary outcome 

measure (intramuscular activity variability or shift in natural recruitment hierarchy), which 

was 94% (95 CI for β : 6.64% - 23.36%) for Part II (index injury risk estimation). Although 

this enforces the importance of respective findings,  future largescale prospective research 

using mfMRI for the assessment of the importance of intermuscular interplay/coordination in 

the risk of hamstring (re)injuries is needed to be able to affirm (or refute) the results of this 

preliminary study. Based on power calculations, fellow researchers are advised to select a 

sample size of at least 30, to successfully demonstrate a significant effect of 10% at a 

statistical power level of 80% (α = 0.05) as regards the amount of metabolic activity relative to 

baseline by means of magnitude of T2 increase. Of course, this suggestion is only made 

departing from the assumption that the demonstrated significant effect is of clinical relevance. 
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It could also be that a smaller effect would be of considerable clinical importance as well. 

Therefore, in order to be able to make any steady conclusions as regards the clinical 

importance of the intramuscular activation pattern in the athlete’s hamstring injury 

susceptibility, more related research is essential.  Be that as it may, Chapter I Part II provides a 

valuable basis for future initiatives, being the very first prospective mfMRI study to assess 

metabolic hamstring characteristics and intramuscular activation features for the purpose of 

identifying the risk of index injuries and reinjuries in football. 

2) In the second chapter, the hamstring activity onset time was the primary outcome variable of 

interest. Ad hoc effect size analysis demonstrated a Cohen’s d of 0.76, which indicates a large 

effect and suggests clinical relevance.
43

 Post hoc analysis of the statistical power with which 

the predictive value of a delay in hamstring activity onset on hamstring injury susceptibility 

was determined, revealed a statistical power of 73%. This indicates that, departing from a 

similar effect size and using a sample size of 51, the chance of unjustified acceptance of the 

null hypothesis (OR = 1; type II error) may amount to 27%. In order to be able to demonstrate 

a significant effect of hamstring activity onset time during PHE on subsequent hamstring 

injury risk with a statistical power of 80%, a minimal sample size of 60 is needed. However, 

due to the large effect-size for this outcome parameter within our somewhat smaller remaining 

cohort for prospective analysis (n = 51), we were sufficiently able to reject the null-hypothesis 

just as well.   

3) Power  calculations based on the methodological features and (descriptive) statistics in the 

first part of Chapter III, revealed that the predictive effect of Gluteus Maximus and trunk 

muscle activity was demonstrated with a statistical power of 93% within the logistic model 

that we used. This speaks highly in favor of the strength of evidence with which associated 

conclusions were drawn and enforces the clinical relevance of core-muscle sEMG analysis 

during high speed running in hamstring injury risk prediction. 

4) In the second part of the third chapter, sample size was too small to compose a valid 

prediction model (n = 29; event rate = 0.13), so only kinematic-curve analysis and in between 

group comparison was done based on the occurrence of first time injuries within a cohort with 
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a blanc injury history (SPM(t) analysis). (the statistical power was too low to allow valid 

estimation of the OR). Nonetheless,  the Cohen’s d values for the amount of pelvic tilt during 

terminal backswing and the amount of thoracic side-bending during terminal front swing were 

1.87 and 1.96 respectively, both indicating a very large effect size for both outcome 

measures.
40 

Moreover, the Minimal Detectable Change (MDC) values where 12.58° for the in-

between-group difference in pelvic tilt, and 6.10° for the difference in thoracic side-bending, 

which implies that the effect-sizes demonstrated within our study (12.92° and 6.84°, 

respectively), were of valid statistical significance. The fact that these MDC values, which 

indicate to what extent the mean group averages need to differ to be of statistical significance 

without a potentially biasing influence of the Standard Error (SE) around respective effect 

size, were lower than the differences retrieved in our kinematic study, again speaks in favor of 

the relevance of our findings. Evidently, future prospective research verifying the importance 

of running kinematics in a large cohort is necessary to reinforce these preliminary conclusions. 

Based on these arguments we can conclude that the strength of evidence of the general conclusion and 

take home message derived from the studies embedded in this thesis is high, although statistical power 

might have been questioned departing from the rather small sample sizes involved. 

Another common limitation of the studies within this dissertation is that we were reliant on 

participant’s self-report regarding the gathering of injury related data for both retrospective and 

prospective research purposes. We defined a hamstring injury as an injury occurring in the posterior 

thigh area during football, preventing the athlete to participate in training or match for at least one 

entire week. By systematically verifying the nature and severity of the complaint by phone and 

checking whether medical care was consulted, we hope we were able to prevent allocation bias in 

prospective analyses. However, we have no objective data on exact injury location within the 

hamstring muscle unit nor could we make judgements concerning the structural extent of the injury as 

we were not able to appeal on medical (imaging) records. Likewise, in terms of injury history, we 

were dependent on the accuracy of participant recall as well, which could have influenced the intrinsic 

risk and injury vulnerability of the included participants and as such, our results. Nonetheless, to our 
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opinion, it is mainly the functional burdenand the time-loss associated with a hamstring injury that 

need to be addressed and prevented in male football, rather than details on injury location and severity. 

Therefore, we believe this dissertation makes a valuable contribution to improve our insights in the 

hamstring injury susceptibility in football and lightens the pathway to more efficient and 

comprehensive management and prevention strategies. Next to these limitations, mostly with regard to 

data collection and statistical analysis, the strengths of the research within this dissertation are worth 

mentioning as well. Unlike what has been conducted in former research, the present studies took up 

the challenge of assessing fairly complex features related to hamstring muscle functioning, adopting 

prospective analysis methods. This implicates that substantial amounts of complex data needed to be 

collected, processed and submitted to laborious statistical analysis methods, requiring a lot of time and 

undivided focus of the researchers involved. However, it did enable us to make a valid differentiation 

with regards to whether alternations in neuromuscular control are to be considered the cause rather 

than the consequence of hamstring injuries. Another strength of this work, is that it made a clear 

differentiation between the primary and secondary hamstring injury risk, by (1) assessing players that 

got injured for the first or second time separately, (2) systematically taking the presence of a (recent) 

hamstring injury history along as a covariate in statistical analyses or (3) excluding participants with a 

recent hamstring injury history in the prospective data analysis. This allowed us to be even more 

certain of what causes or is merely just a consequence of a hamstring injury in male football, enabling 

more accurate and specific interpretation of primary and secondary prevention. Last but not least, the 

use of Statistical Parametric Mapping (SPM) for the statistical analysis of both the (essentially time-

dependent) electromyography - and the kinematic data in the last two chapters turned out to be a major 

advantage. Taking into account each and every data frame within the time period during which the 

biomechanical data were explored and statistically inquired (eg. front swing-, stance- or backswing 

phase, as elected within this work) and correcting the level of significance accordingly (depending on 

the number of variables involved), this technique does not only strictly control for type 1 and 2 

statistical errors, but it also sheds a very broad and refreshing light on biomechanical data analysis. 

Concretely, it frees the researcher from its restricting tunnel vision that constrains him/her to look at 

one or two certain variables at one moment in the acquired data series (or one average/integral 
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calculated over the entire period of data acquisition).  If we had solely taken into account muscle joint 

angles and muscle activity at touch down, or the peak or average value during front swing, for 

example (as generally has been done in previous research), we would never have been able to 

demonstrate respective effect of proximal (core) coordination features (kinematics and amount of 

muscle activity) on the like probability of sustaining a hamstring injury during follow-up.  

Both a strength and limitation related to the final strength of evidence derived from this thesis, is the 

methodological variety used to asses features of neuromuscular coordination. Each of the adopted 

screening protocols provided an essential advantage in addressing the different research questions 

embedded in this work. However, in an ideal research setting, free from financial, ethical and 

organizational restrictions, the importance of neuromuscular coordination in the intrinsic hamstring 

injury risk ought to be investigated by simultaneously measuring  

- multi-muscle metabolic activity features (mfMRI),  

- multi-muscle innervation behavior patterns (sEMG),  

- full body kinematics (3D motion capture)  

- and kinetics (grondreaction forces, joint torques and muscle-tendon mechanics; implementing 

a force plate) 

during the activity that holds the highest injury risk: maximal sprinting. 

 

 

 

Future Perspectives 

 

As the studies imbedded in this dissertation are the first to explore respective outcome measures 

prospectively in a study sample at actual risk of injury, additional research is definitely needed to 

reaffirm the present findings. More so, when confirmed by other researchers, these findings should be 

translated into specific rehabilitation and prevention strategies, to find out (1) if correction of deviated 

local and global neuromuscular coordination features is possible, (2) whether these adjustments 
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effectively have the capacity to reduce the hamstring injury risk, and (3) how this should be done 

preferably (type of exercise, frequency, volume, intensity, implementation within seasonal training 

schedule, etc.). Specifically, one should verify whether alternations in local (Chapter I), regional 

(Chapter II) and global (Chapter III) neuromuscular coordination are associated with a higher 

hamstring injury risk and whether correction of those factors prevents (re)injury. Particularly, As 

already mentioned in the beginning of the discussion, the possibility that the hamstring muscles bellies 

slightly differ in fibre type dominance is quite plausible, certainly bearing in mind their anatomical 

and functional differences. This would definitely partly explain their remarkable injury vulnerability 

and should definitely be investigated more thoroughly in future research. 

More so, it would be useful to assess to what extent these findings present an association with 

hamstring injury vulnerability in other sports populations like track and field, running, rugby, 

American football, Australian rules football, hockey, etc. In doing so, it is evident that previous 

research findings and associated best practices in terms of rehabilitation and prevention strategies 

should be respected and integrated. In addition, as recent research has demonstrated that the 

occurrence of hamstring injuries during football training (contrary to what has been established during 

match play) presented a significant increase over the years,
10 

researchers should identify the reason for 

this detrimental trend and attempt to reverse it. The main reason for this increase is undoubtedly the 

increasing intensity and explosiveness of the football game over the last decades.
3, 8-9

 In aspiring to 

raise the stakes during the game, it is merely logical that training sessions are being adjusted 

correspondingly as well. The balance between optimal training load and overload is precarious, and 

this is certainly the case for hamstring loading in male football.  

In particular, next to the confirmation of the present research findings, future work should focus on 

finding parallels and correlations between the investigation methods adopted in our research and more 

easy-to-administer, less time- and money consuming assessment tools, examining the same outcome 

parameters. As such, one could verify whether deficiencies in intramuscular interplay (BF versus ST) 

can be detected through (manual) strength testing or particular motion analysis. The same is true for 

the activation sequence in the posterior chain, where the ability to manually or visually identify muscle 
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recruitment patterns could be verified. With regard to running kinematics, it would be worthwhile to 

check whether lacking control in the lumbo-pelvic unit could be detected using simple one- or two-

dimensional motion analyses, and to what extent real time video-imaging and correction (kinematic 

biofeedback) could possibly reduce injury susceptibility.  

 

 

 

Lastly, although we gathered quite a few renewing findings within this doctoral dissertation, these 

issues most probably will not suffice to fully weapon the football player against hamstring injuries. 

Given the complexity of the biomechanical demands imposed upon the hamstrings in football, the 

associated complexity as regards the underlying intrinsic risk profile and trends in contemporary  

sports medicine,  future research should definitely invest in investigating and mapping the   

(1) interdependency in between intrinsic risk factors,  

(2) the differences and parallels between the risk of running a first hamstring injury and a 

recurring one (as there are the share of post injury compensations / adaptations and the 

influence of rehabilitation, to name a few)
7
,  
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(3) the influence of centrally mediated fatigue, overtraining,  autonomic dysfunctions, illness and 

deconditioning in (hamstring) injury susceptibility, and last but not least  

(4) the influence of the central nervous system and possible relations with central sensitization 

processes and neuroplasticity.  

By attempting to consider all these features and gathering the evidence that is available to date, we 

might just get really close to finally unraveling the mystery behind the hamstring injury risk in 

football. 

 

 

 

 

General Conclusion 

 

The research findings within this PhD thesis demonstrate that the hamstring injury risk comprises of 

much more than just local features of muscle functioning as there are strength and flexibility. The 

hamstrings seem to be subject to overload and increasing injury risk when  

(1) the ST is not recruited sufficiently (compared to the effort of the BF) during eccentric 

hamstring loading;  

(2) the hamstrings present an activation delay (relative to the proximal back extensor muscles) 

during the Prone Hip Extension Exercise; 

(3) the core unit lacks coordination and control, resulting in insufficient core muscle activation 

during the unstable airborne phase of high speed running and in deviating pelvis – and trunk 

kinematics  

 

In brief, our study findings suggest that the hamstrings are dependent on adequate neuromuscular 

guidance as concerns the functional interplay between the (1) separate hamstring bellies,  (2) the 

synergists within the posterior sling, (3) the qualitative (timing of activity) and quantitative (amount of 
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activity) cooperation with the core (gluteal – and trunk muscles) and (4) associated running 

technique/coordination (particularly during the airborne phase). Thus, the results of this dissertation 

identify a football player to be at increased risk of sustaining a running related hamstring injury when 

he presents obvious imbalances in medio-lateral hamstring muscle recruitment, a deficiency to 

contract the hamstring muscle unit rapidly and a lack of core-control / excessive pelvis and trunk 

motion during high speed running. 
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Epilogue 
“ Vulneratus nes victus “ 
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Epilogue 
 

When aiming to take into account these features in future research and clinical practice, a massive 

amount of work still needs to be covered. However, there is definitely no need for doom-mongering. 

Although hamstring injury incidence during training presented a subtle increase over the last decade, 

the incidence during matches remained status quo.
4
 On the contrary, football play did change 

substantially over the years. In particular the running distance at high speed and the number of sprints 

have increased significantly during match play
1-3

. The average number of sprints performed during a 

European Premier League football match, for instance, has doubled when comparing the season of 

2002 with the one of 2009.
2
 As a consequence, the demands in terms of power and speed have 

increased substantially, and will most probably continue to do so.  As the hamstring muscle is one of 

the most, if not the most important, prime mover in linear sprinting tasks,
5
 the loads imposed upon this 

unit and the associated demands in terms of coordination, strength and flexibility, have exponentially 

increased over the years as well. Therefore, we should consider it to be a victory rather than a defeat, 

that we managed to keep the incidence rates during competition more or less stable throughout the 

years.  

Nonetheless, stagnation means decline. If demands in football performance will keep on increasing, 

we must arm our athletes accordingly. Indeed, because the game keeps on getting “harder, better, 

faster and stronger”, so must our (secondary) prevention strategies.  
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Summary 
 

The research embedded within this doctoral thesis focused on the intrinsic hamstring injury risk profile 

in male football players. In spite of the substantial amount of effort that is being invested in the 

implementation of best practices as concerns (secondary) prevention of hamstring injuries to date, 

these muscle injuries present the tendency to occur more frequently as the time goes on. Because of 

the high reoccurrence risk, the detrimental influence on sports performance and mental health, as well 

as the high financial costs involved, this work attempted to contribute to a better understanding of the 

complexity of the football related hamstring injury risk, and hence, enable reduction of occurrence.  

The first chapter consists of both a retro- and a prospective study, investigating the role of metabolic 

muscle function and intermuscular interplay between the hamstring muscle bellies in the detection of 

(1) injury history and (2) future injury vulnerability. Both studies demonstrated that the quantitative 

cooperation features (spatial muscle fibre recruitment pattern) between the different hamstring muscle 

bellies, in particular the BF and ST,  are of key importance as regards hamstring injury susceptibility. 

The risk of sustaining an injury demonstrated to be significantly higher, when the medially oriented 

Semitendinosus muscle (ST) was activated to a lesser extent during prone leg curls, as this most 

probably obliged the laterally oriented, and most frequently effected, long head of the Biceps Femoris 

muscle (BFLH) to make an additional (possible excessive) effort during these types of exercise. By 

analogy with what muscle architecture has us believe, the ST and BFLH demonstrate to have 

individually differing functional purposes, which appeared to increase the risk of injury when not 

respected accordingly.  

In the second chapter, we adopted a slightly wider scope of interest in assessing the intermuscular 

interplay characteristics within the posterior sling muscle continuum (back muscle, gluteal muscles 

and hamstrings). In particular, we investigated whether the order of muscle activation during the Prone 

Hip Extension test (PHE), could be associated with the risk of sustaining a hamstring injury in 

conducting a prospective cohort study. We elected this exercise in the hamstring injury risk study 
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context, as we wanted to examine the influence of neuromuscular coordination properties both within 

(Chapter I) as well as between the hamstring muscle bellies and their most important synergists in the 

human body as regards gait and running: the posterior sling muscles (Chapter II). Previous studies 

suggested that a delayed onset of the gluteal muscles, relative to the activity onset of the back – and 

hamstring muscles, would be detrimental for lumbo-pelvic function and arthrokinematics of the lower 

back, which might possibly endanger this region of becoming subject to mechanical overload and 

associated degenerative changes and complaints. With respect to the hamstring injury risk in football, 

our study demonstrated that the hamstring muscles of the subjects that got injured during the follow-

up period presented a significant delay in activity onset, being solicited after recruitment of the lower 

back muscles, instead of the other way around as seen in the healthy subjects of our cohort. These 

findings lead to the conclusion that the quality of intermuscular cooperation and in particular, the 

relative timing  of muscle activity within the posterior sling continuum during respective Prone Hip 

Extension test, is an important feature to take along in assessing and addressing the hamstring injury 

risk. Similar to the functional imbalances between the BF and the ST found in Chapter I, the temporal 

delay in activity onset refers to deficits in neuromuscular guidance of the hamstring muscle unit, 

making it function less economic and less safe than it ought to do for efficient football performance. 

Indeed, as the efficacy of eccentric and concentric hamstring strength production during running and 

kicking activities in football, is highly dependent on (1) the timing of muscle activity and (2) the 

intermuscular task distribution, the study findings gathered in Chapters 1 and 2 are in accordance with 

previous findings and should be encountered for in performance enhancement, prevention and 

rehabilitation. 

Both prospective studies embedded in the concluding chapter (III) underline the absolute necessity of 

adequate neuromuscular coordination and sufficient, optimally timed muscle activity with regards to 

sound hamstring functioning as well. Concretely, respective study results revealed that a football 

player runs a higher risk of getting injured in the hamstring area, when the core muscles present lower 

activity levels and when the pelvis and trunk display more inconsistency (more anterior tilting of the 

pelvis and side bending of the trunk) throughout the airborne phase of sprinting (front-and backswing 
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phases). The latter indicates that, for the hamstrings to be sufficiently protected against overload and 

injury, not only the amount and (relative) timing of hamstring (belly-specific) activity is essential 

(Chapters I and II), but the conditional status and the functional performance capacity of the proximal 

lumbo-pelvic - or ‘core’ unit is absolutely vital as well.  

In the end, this dissertation attempted to enrich the (understanding as regards the) hamstring injury risk 

profile in male football play by demonstrating that efficient and safe hamstring functioning is most 

probably dependent on the quality of neuromuscular control and guidance within (1) the 

hamstring muscle unit,  (2) the synergistic entity of the posterior sling and (3) the proximal 

lumbo-pelvic - or ‘core’ unit. Only in adequately bundling their forces (intramuscularly as well 

as with their proximal team mates (core)), the hamstring muscles provide themselves with the 

opportunity to experience a successful season.  
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Nederlandstalige samenvatting 

 
De onderzoeksactiviteiten binnen dit doctoraal proefschrift, namen het intrinsiek risicoprofiel voor het 

oplopen van hamstringblessures onder de loep binnen een homogene steekproef van mannelijke 

voetbalspelers. Voormalig wetenschappelijk onderzoek leverde reeds aanzienlijke inspanningen in een 

poging het intrinsiek risico op het oplopen van een hamstringblessure te ontrafelen. Echter, gezien we 

moeten vaststellen dat dit type sportblessure tot op de dag van vandaag het frequentst voorkomt in het 

mannelijke voetbalcircuit, kan gesteld worden dat de therapeutische en preventieve maatregelen wat 

betreft hamstringblessure-management ontoereikend zijn de dag van vandaag. Omdat 

hamstringblessures naast hoge incidentiecijfers ook zeer frequent recidiveren en daar ze zodoende een 

zeer nefaste invloed hebben op het prestatievermogen en psychosociaal welbevinden van de 

voetbalspeler, en niet in het minst de sociale gezondheidskas of de portefeuille van de club/speler, had 

dit doctoraatsproject tot hoofddoel het intrinsiek risicoprofiel diepgaander te gaan identificeren en te 

definiëren. 

Het eerste hoofdstuk bespreekt de resultaten van een retro- en een prospectieve studie, waarin het 

mogelijke verband tussen de intramusculaire spierfunctie (coördinatie) en het hamstringblessurerisico 

onderzocht werd. Beide studies toonden aan dat het kwantitatieve samenwerkingsverband tussen de 

biarticulaire spierbuiken, in het bijzonder de Biceps Femoris (BF) en de Semitendinosus (ST), een 

significante invloed heeft op de hamstringblessurepredispositie. Het hamstringblessurerisico bleek 

veel groter te zijn voor spelers die tijdens de ‘prone leg curling’ oefening een relatieve 

activatietoename in de BF vertoonden, en een relatieve activatieafname in de ST, wanneer deze 

activiteit vergeleken werd met hun gepaarde controles.  Naar analogie met hetgeen de intramusculaire 

verschillen in spierstructuur tussen BF en ST suggereren, hebben beide, anatomisch zeer nauw 

verbonden spieren, verschillende functionele doeleinden en lijkt het risico op een spierblessure groter 

te zijn wanneer de functioneel anatomische taakdifferentiatie niet gerespecteerd wordt.  
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In hoofdstuk 2 namen we afstand van de hamstrings als geïsoleerde functionele eenheid en werd 

onderzocht in welke mate de kwaliteit van neuromusculaire coördinatie tussen de verschillende 

spieren van de posterieure keten (lumbale erector spinae, gluteus maximus en hamstrings) in verband 

gebracht kan worden met hamstringblessuregevoeligheid. In dit verband werd de  activatiesequentie in 

de posterieure musculaire keten tijdens de ‘Prone Hip Extension’ test (PHE) in kaart gebracht. Na het 

doorlopen van de onderzoeksactiviteiten in het eerste hoofdstuk, werd in functie van verdere 

risicodetectie, voor dit PHE protocol gekozen, om te verifiëren of naast de intramusculaire coördinatie, 

mogelijks ook intermusculaire coördinatie karakteristieken van belang zijn binnen risicodetectie (en zo 

ook blessurepreventie). Daar de synergie tussen bovenvermelde posterieure ketenspieren van cruciaal 

belang is tijdens functionele activiteit, werd de activatie volgorde bestudeerd in functie van 

prospectieve letselgevoeligheid. Voorgaand onderzoek aangaande de rekruteringsvolgorde tijdens de 

PHE, vertrok vanuit de veronderstelling dat laattijdige activatie van de gluteus maximus (ten opzichte 

van het solliciteren van de lumbale musculatuur en de hamstrings), nefast en mogelijks schadelijk zou 

zijn voor de lage rug en de sacro-iliacale gewrichten, daar hierdoor onvoldoende stabiliteit zou kunnen 

worden gevrijwaard bij disto-proximale krachtoverdracht. In hoofdstuk 2 werd gekeken naar de 

activatiesequentie in posterieure keten in functie van hamstring blessurepredispositie. Onze 

studieresultaten toonden aan dat de spelers die een hamstringblessure opliepen tijdens de prospectieve 

opvolgperiode, een significante laattijdigheid in hamstringactivatie vertoonden tijdens de PHE, in 

vergelijking met de gezonde controles. Op basis van deze bevindingen werd in dit hoofdstuk 

geconcludeerd dat de kwaliteit van intermusculaire coördinatie binnen de posterieure keten en in het 

bijzonder, de (relatieve) timing van hamstring spierrekrutering tijdens de PHE test, een belangrijke 

determinant is binnen het intrinsiek hamstring blessure risicoprofiel. In lijn met het belang van 

intramusculair functioneren binnen de hamstring eenheid zoals aangetoond in het eerste hoofdstuk, 

wijzen de resultaten in hoofdstuk 2 op het belang van neuromusculaire coördinatie, echter dit keer op 

intermusculair niveau. In dit verband blijkt dus dat zowel het exacte samenspel tussen BF en ST, als 

ook de timing van hun rekrutering ten opzichte van hun proximale synergisten een prominente rol 

spelen in het belang van veilige en efficiënte hamstringfunctie . Het predominante letselmechanisme 

indachtig (terminale zwaaifase tijdens de sprint) lijkt het inderdaad heel plausibel dat de efficiëntie van 
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de excentrische hamstring contractie (tijdens respectievelijke fase) in belangrijke mate afhangt van de 

kwaliteit van intra- en intermusculaire coördinatie, zowel wat hoeveelheid spieractiviteit als timing 

van spierrekrutering betreft: Wanneer de ST onvoldoende activiteit vertoont tijdens de zwaaifase, zal 

de BF dit moeten opvangen. Indien dit dan ook nog eens te traag gebeurt, worden deze spieren 

mogelijks excessief op lengte gebracht tijdens de explosieve voorste zwaaifase waardoor het risico op 

verrekking of ruptuur uiteraard aanzienlijk groter wordt. 

In hoofdstuk 3 werd in beide prospectieve studies het belang van adequate neuromusculaire controle in 

de lumbo-pelvische regio onderzocht. Dit in de veronderstelling dat niet enkel intramusculaire 

coördinatie en synergie binnen de posterieure keten van belang zijn binnen risicodetectie (en 

correctie), doch ook looptechniek en neuromusculaire coördinatie karakteristieken binnen de ruimere 

kinetische keten. Daar loopversnellingen en sprints wel degelijk maximale inzet en samenwerking van 

het volledige musculoskeletaal apparaat vereisen, werd hier gekeken naar de associatie tussen 

spieractiviteit en kinematica van romp- en bekken tijdens maximale springt en de prospectieve 

hamstringblessure incidentie. De resultaten in dit hoofdstuk toonden aan een voetbalspeler een hoger 

hamstringblessure risico loopt, indien tijdens de zweeffase van de sprintcyclus (1) de romp- en 

gluteale spieren minder activiteit vertonen en (2) romp en bekken meer kinematische deviaties (minder 

bewegingscontrole) vertonen. Deze finale onderzoeksbevindingen tonen aan dat, willen de hamstrings 

degelijk gewapend zijn tegen blessure, niet enkel de (onderlinge) hoeveelheid en timing van 

hamstringactiviteit essentieel zijn, doch ook de functionele capaciteit van de proximaal stabiliserende 

musculatuur in romp- en bekken en de hieraan gekoppelde bewegingspatronen tijdens explosieve 

loopversnellingen.  

Deze doctorale dissertatie had tot doel bij te dragen aan het verrijken van de inzichten in het intrinsiek 

hamstringblessurerisico. In dit verband kon worden aangetoond dat de efficiëntie en veiligheid 

waarmee de hamstrings functioneren tijdens loopactiviteiten meer dan waarschijnlijk sterk 

afhankelijk is van de kwaliteit van neuromusculaire controle (1) binnen de hamstring eenheid, 

(2) tussen de synergisten van de posterieure keten en (3) binnen de proximaal stabiliserende 

musculaire eenheid van romp en bekken. Als en slechts als de krachtenkoppels binnen de gehele 
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kinetische keten degelijk gebundeld worden (intra- en intermusculair), kunnen de hamstrings 

aanspraak maken op een succesvol seizoen, vrij van blessures. 
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