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Abstract 
 

A key process underlying synapse development and plasticity is stimulus-

dependent translation of localized mRNAs. This process entails RNA packaging 

into translationally silent granules and exporting them over long distances from 

the nucleus to the synapse. Little is know about (a) where ribonucleoprotein 

(RNP) complexes are assembled, and if in the nucleus, how do they exit the 

nucleus; (b) how RNPs are transported to specific synaptic sites. 

At the Drosophila neuromuscular junction (NMJ), we uncovered a novel 

RNA export pathway for large RNP (megaRNP) granules assembled in the 

nucleus, which exit the nucleus by budding through the nuclear envelope. In this 

process, megaRNPs are enveloped by the inner nuclear membrane (INM), travel 

through the perinuclear space as membrane-bound granules, and are de-

enveloped at the outer nuclear membrane. We identified Torsin (an AAA-ATPase 

that in humans is linked to dystonia), as mediator of INM scission. In torsin 

mutants, megaRNPs accumulate within the perinuclear space, and the mRNAs 

fail to localize to postsynaptic sites leading to abnormal NMJ development. We 

also found that nuclear envelope budding is additionally used for RNP export 

during Drosophila oogenesis. 

Our studies also suggested that the nuclear envelope-associated protein, 

Nesprin1, forms striated F-actin-based filaments or ‘‘railroad tracks,’’ that span 

from muscle nuclei to postsynaptic sites at the NMJ. Nesprin1 railroad tracks 

wrap aoround the postsynaptic regions of immature synaptic boutons, and serve 
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to direct RNPs to sites of new synaptic bouton formation. These studies elucidate 

novel cell biological mechanisms for nuclear RNP export and trafficking during 

synapse development. 
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 Long-term changes in synapses are the underlying basis of our ability to 

learn and remember. This requires modifications in synaptic structure and 

strength, termed as “plasticity” in response to environmental cues (Wiersma-

Meems et al., 2005; Mayford et al., 2010). Localized translation of mRNAs at 

synaptic sites is a key process underlying synaptic plasticity. This requires 

mRNAs to be packaged and transported over long distances from the cell body 

(Richter 2001; Barco et al., 2008; Wang et al., 2010). Little is known about where 

these mRNAs are packaged, how they exit the nucleus and how they are 

targeted to specific synaptic sites. The goal of the studies in this thesis was to 

understand the mechanisms underlying these processes. 

 

Synaptic plasticity 

 The circuitry of the human brain contains about a 100 billion neurons and 

each individual nerve cell can make up to 10,000 different synaptic connections. 

It is these synaptic connections that allow communication between neurons, 

which orchestrates various sensory, motor and cognitive behaviors. While overall 

the structure/position of each neuron is genetically hard-wired, individual 

synapses are dynamically changing throughout an individual’s lifetime. Synapses 

have the ability to modulate their strength and structure based on environmental 

cues- a process termed “synaptic plasticity” (Griffith and Budnik, 2006). This 

circuitry sculpting and rewiring underlies the basis of perception, emotion, 

learning and memory (Kandel, 2001).  
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 The concept of “plasticity” dates back to the early 1900s, when Santiago 

Ramon y Cajal, the father of modern neuroscience, while studying regenerative 

“plasticity” upon spinal cord injury, discovered that there are dynamic structural 

changes in neuronal connections in the central nervous system (CNS) (DeFelipe, 

2002) (Cajal, 1904). His findings led to a new era in neuroscience and 

encouraged neuroscientists to explore different aspects of synaptic plasticity. In 

1906, Ernesto Lugaro and Eugenio Tanzi, proposed that neurons could change 

in an adaptive fashion to enable learning (Berlucchi and Buchtel, 2009) . Years 

later, in 1949, this concept was further elaborated upon by Donald Hebb in The 

Organization of Behavior; a Neurophysiological Theory. Hebb postulated that 

“when an axon of cell A is near enough to excite a cell B and repeatedly and 

persistently takes part in firing it, some growth process or metabolic change 

takes place in one or both cells such that A’s efficiency, as one of the cells firing 

B, is increased (Hebb, 1949). Hebb’s rule that “neurons that fire together wire 

together” (Brown and Milner, 2003; Hebb, 1949) has been the foundation of 

neural network theory. T. Bliss and T. Lomo described experimental evidence 

supporting the Hebbien theory, when upon high frequency stimulation of the 

presynaptic neuron, they observed long-lasting increased excitatory post-

synaptic potential accompanied by a decrease in the threshold required to fire an 

action potential in the postsynaptic neuron (Bliss and Lomo, 1973). They termed 

this increase long-lasting potentiation, now referred to as long-term potentiation 

(LTP). Such changes in synaptic strength are bidirectional, wherein a failure to 
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consistently activate a target neuron to induce potentiation leads to long-term 

depression (LTD) (Dudek and Bear, 1992).  

 The significance of LTP in learning and memory came from studies 

wherein pharmacological blockade of LTP resulted in spatial memory 

impairments in rats that were previously trained in a Morris water maze (Morris et 

al., 1986). LTP can be divided into two stages e-LTP (early) and l-LTP (late). 

While molecular mechanisms underlying e-LTP involve post-translational 

modifications of proteins, l-LTP involves localized synthesis of new proteins 

(Klann and Dever, 2004).  

 

Neuronal RNA granules and localized RNA 

 Previously, it was postulated that new protein synthesis takes place in the 

cell body and proteins are subsequently transported to distal compartments of 

the neuronal cell. When polyribosomes were first observed at the base of 

synaptic spines, (Steward and Levy, 1982), it raised the possibility that RNAs 

could be locally translated upon receiving a synaptic signal. This was supported 

by the experiments in rat hippocampal slices, where the cell body is spatially 

separated from the synaptic neuropil. The neuropil treated with protein synthesis 

inhibitors like anisomycin and cycloheximide showed a reduction in neurotrophin-

mediated synaptic plasticity (Kang and Schuman, 1996). Thus this would require 

that mRNAs, which are localized at synaptic sites, to be packaged and 

transported over long distances away from the cell body.  Researchers injected 
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fluorescently-tagged transcripts of myelin basic protein (MBP) into 

oligodendrocytes and observed that the mRNA assembled into granules and was 

rapidly transported along microtubules (Ainger et al., 1993). In another study, 

using a membrane permeable nuclei acid stain, SYTO14, it was observed that 

RNA granules are rapidly transported in neurons (Knowles et al., 1996).  

 These latter results raised the question of the composition of RNA 

granules.  Subsequently, it was demonstrated that these RNA granules contain 

transcripts that were packaged with proteins and transported as translationally 

silent granules. It has been suggested that these localized mRNAs are 

associated with “stalled” ribosomes, which upon membrane depolarization led to 

local translation (Krichevsky and Kosik, 2001). A number of RNA binding proteins 

(RBPs), such as eukaryotic initiation factor 4E (eIF4E) binding proteins, fragile X 

mental retardation protein (FMRP), cytoplasmic polyadenylation element-binding 

protein (CPEB), Staufen, zipcode binding protein (ZBP), play roles in packing 

and trafficking of RNAs in translationally silent granules (Kiebler and Bassell, 

2006).  

  The mRNAs encoding microtubule associated protein2 (MAP2) (Kindler et 

al., 1996), activity-regulated cytoskeleton associated protein (Arc) (Lyford et al., 

1995), β-actin (Tiruchinapalli et al., 2003), CaMKIIα (Mayford et al., 1996) and 

NMDA receptors are some of the transcripts synaptically localized and increased 

neuronal activity leads to rapid trafficking of these RNAs into dendrites (Martin 

and Zukin, 2006). Furthermore, these studies revealed that the absence of these 
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transcripts, (e.g. CaMKII) lead to defects in l-LTP and long-term memory (Miller 

et al., 2002). With improved technologies like compartmentalized cultures 

wherein neuronal cell bodies can be separated from their projections, and high-

throughput sequencing, 2000-4500 localized transcripts have been identified in 

both dendrites and axons, respectively (Holt and Schuman, 2013).  

 Localized RNAs play a role in synapse formation and refinement, axon 

growth guidance, dendritic spine morphology and synaptic plasticity (Holt and 

Schuman, 2013; Swanger and Bassell, 2011). The study of these RNA granules 

is of significant importance because a large number of neurological disorders are 

linked to RNA binding proteins (RBP) which play roles in RNA granule 

translation, (e.g. Fragile X syndrome FMR1) (Mazroui et al., 2002), or granule 

assembly, (e.g. FUS whose mutation underlies Amyotrophic lateral sclerosis) 

(Bosco et al., 2010).  

 In this thesis, I present our findings on Wnt signaling-mediated assembly 

of localized RNAs, their export from the nucleus and trafficking to the synapse at 

the Drosophila larval neuromuscular junction. 

 

The Drosophila Larval Neuromuscular Junction: A model to study synapse 

development and plasticity 

 Discoveries in Drosophila have greatly contributed to our understanding of 

a number of neurobiological processes such as neurotransmitter release, ion 

channel function, synapse physiology, axon path finding, synapse development 
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and plasticity. The Drosophila larval neuromuscular junction (NMJ) is a simple 

yet powerful model system for studying synapse development and plasticity 

(Ruiz�Cañada and Budnik, 2006). The larval NMJ consists of a single synapse 

between a presynaptic motor neuron, and the post-synaptic muscle cell, which is 

organized in a stereotypic fashion. This provides researches the ability to study 

synapses with single cell resolution as well as allowing comparison of the same 

synapse across multiple animals. During larval development from first instar to 

third instar, there is a 100-fold increase in the body wall muscle size (Figure1.1). 

In order to maintain synaptic efficacy, the motor neuron terminals grow in a 

contiguous fashion, by the addition of new synaptic varicosities or “boutons”, 

which are the sites of neurotransmitter release (Gorczyca et al., 1993; 

Keshishian and Chiba, 1993; Zito et al., 1999) (Figure1.2). Alongside 

developmental plasticity, the NMJ can be used to study activity and experience-

dependent synaptic plasticity (Ataman et al., 2008; Koon et al., 2011).  

 The NMJ is highly accessible for both, electrophysiology and imaging. The 

larval cuticle is transparent, allowing for live imaging of the synapse at different 

stages of development (Koon et al., 2011; Zito et al., 1999). Furthermore, the 

Drosophila NMJ is glutamatergic (Jan and Jan, 1976), similar to vertebrate 

central synapses, and the molecular players and mechanisms underlying NMJ 

development are highly conserved across species. Together, these make 

findings in this model system highly relevant for all organisms. The larval NMJ 

has provided seminal contributions to our understanding of synapse 
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development, plasticity and has become a popular model to study the etiology of 

neurodegenerative and neuromuscular diseases such as muscular atrophy, 

myotonic dystrophy and Amyotrophic lateral sclerosis (ALS) (Lloyd and Taylor, 

2010). 

 The success of this system can be attributed to the availability of genetic 

tools such as bipartite Gal4/UAS expression system (Brand and Perrimon, 1993) 

(that allows for temporal and spatial control of knockdown or expression of 

transgenes), the availability of mutants from decades of forward genetic screens 

and collections of transgenic RNAi lines targeting essentially all fly genes. The 

short life cycle of Drosophila, and a myriad of genetic tools allow for easy genetic 

manipulation in a relatively short time. Thus, taken together the tractability and 

accessibility of the system makes the NMJ a convenient and powerful model 

system. 
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Figure1.1- Drosophila larval body wall muscle and development of the NMJ 

A. (Adapted from Budnik and Ruiz-Canada, 2006) Wandering third star stage 

(left) and first instar stage (right) larval body wall muscle preparations. Muscles 

are labeled with FITC-conjugated phalloidin. During larval development, the 

number of muscles does remains unchanged, however each muscle can 

increase up to100-fold in size. Abdominal segments 1-7 are labeled as A1 to A7. 

B. A schematic illustrating NMJ expansion. The presynaptic terminals of the 

motor neuron grow by addition of new synaptic boutons as the body wall muscle 

grows in size.  (Image courtesy: Vivian Budnik) 
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General anatomy of the Drosophila larval NMJ 

 The Drosophila larva consists of seven segments, A1 to A7. Each 

hemisegment consists of 30 skeletal, body wall muscles aligned in a stereotypic 

fashion (Figure 1.1A). Each muscle cell consists of a single multinucleated 

myofiber. The cell bodies of the motor neurons are present in the ventral 

ganglion and they project their axons onto the muscle (Figure 1.2A). (Landgraf 

and Thor, 2006). The terminals of the motor neurons consist of round 

varicosities, which are termed “synaptic boutons”, and they are the sites of 

neurotransmitter release. Similar to vertebrate NMJ, the Drosophila NMJ is 

glutamatergic (Petersen et al., 1997). Ultrastructural analysis of boutons reveals 

that they contain synaptic vesicles, active zones and mitochondria. Active zones 

appear as electron dense T-shaped structures probably due to highly enriched 

protein content (Jia et al., 1993).  

 Development of mature synapses (during larval growth or activity-

dependent new bouton formation) begins with the addition of new synaptic 

boutons. Initially, these naïve or “ghost” boutons contain synaptic vesicles but 

lack any post-synaptic specializations. Subsequently, recruitment of post-

synaptic components such as scaffolding proteins and glutamate receptors 

results in synapse maturation (Ataman et al., 2008). 
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Figure 1.2- Larval neuromuscular junction 

(A) An illustration of larval anatomy: brain, ventral ganglion (red) and muscles 

(green). (Top right) A schematic of motor neuron terminals or “boutons” at 

muscles 6 and 7. 

(B) Synaptic boutons from a 3rd instar larval preparation, double-stained with 

presynaptic membrane marker anti-HRP (green) and postsynaptic protein anti-

DLG (red). (B’) An illustration of the presynaptic (green) and postsynaptic (red) 

compartments. 

Throughout this dissertation, muscles 6 and 7 at segments A2-A4 were 

examined. 
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Figure 1.2- Larval neuromuscular junction 
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Wnt Signaling Pathway 

 Since the identification of RNP assembly and export from the nucleus in 

Chapter II is linked to Wnt signaling, this pathway is described here in more 

detail. 

 Wnts are secretory proteins that are known to play a role in patterning, 

axon guidance, dendritic morphogenesis, synapse development and plasticity 

(Budnik and Salinas, 2011; Ciani et al., 2004). The Wnt family has multiple 

members, 5 in worms, 7 in flies, 15 in zebrafish and 19 in mice and a myriad of 

Frizzled receptors which include 3 in worms, 5 in flies, 12 in zebrafish and 11 in 

mammals, along with non-conventional receptors such as Derailed (DRL), which 

belongs to the receptor tyrosine kinase (RYK) family. The combinatorial use of 

different Wnts and its multiple receptors can mediate diverse cellular functions 

(Speese and Budnik, 2007). Wnt pathway mutants in humans have been linked 

to Alzheimer’s disease, Huntingtin’s disease and schizophrenia (Caricasole et al., 

2005; De Ferrari and Moon, 2006). 

 Wnt signaling has different down-stream modulators. In the canonical 

pathway, Wnt binding to Frizzled receptors activates Dishevelled (DLV) that 

stabilizes cytoplasmic β-catenin, which can enter the nucleus and regulate gene 

expression (Clevers and Nusse, 2012; Wodarz et al., 1999). In the divergent 

canonical pathway, DVL binds to microtubules and inhibits GSK3β-mediated 

phosphorylation of microtubule-associated proteins, thereby increasing 

microtubule stability (Ciani et al., 2004). This pathway plays a role in presynaptic 
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differentiation, receptor clustering and axon growth cone remodeling (Korkut, 

2009). Other pathways include the planar polarity pathway, Wnt/Calcium 

pathway and the Frizzled Nuclear Import (FNI) pathway (FNI- described in detail 

below). 

 

Wnt Signaling Pathway at the Drosophila NMJ 

 The role of Wnts specifically at the NMJ is conserved across species, from 

worms to mammals (Korkut, 2009; Speese and Budnik, 2007). At the fly NMJ, 

Wnt1/Wingless (Wg) released by presynaptic boutons activates bidirectional 

transduction pathways in the pre- and post-synaptic compartments. Packard et 

al. used a temperature sensitive Wg mutant to block Wg signaling at the NMJ 

and observed both, a decrease in synaptic outgrowth and altered bouton 

morphology (Packard et al., 2002). A subset of these boutons lacked proper 

assembly of the postsynaptic specializations, like Discs large (DLG), a 

scaffolding protein and GluR assembly and were termed “ghost boutons” 

(Ataman et al., 2006). The ultrastructural analysis of these boutons revealed that 

they lacked active zones, mitochondria and had a poorly developed subsynaptic 

reticulum. These defects could be rescued by expressing Wg in the motor 

neuron. Consistent with this result, overexpression of Wg in the motor neuron led 

to increased synaptic outgrowth, thus establishing a role of Wg signaling in NMJ 

development. Wnt signaling (a divergent canonical Wnt pathway described 

above) in the motor neuron regulates the cytoskeletal dynamics required for NMJ 
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growth and postsynaptically it activates the Frizzled Nuclear Import (FNI) 

pathway (Mathew et al., 2005). 

 In this pathway, Wg binds to the Drosophila Frizzled-2 (DFz2) receptor on 

the muscle surface and triggers internalization of the receptor, which is then 

trafficked to the nucleus via interaction between the carboxy-terminal PDZ-

binding sequence of DFz2 and dGRIP (Drosophila homologue of GRIP, a 7-PDZ-

domain glutamate-receptor binding protein) (Ataman et al., 2006b). An 8 kDa C-

terminal fragment of the receptor (DFz2C) is cleaved (by an as yet unknown 

protease) and is imported into the nucleus (Mathew et al., 2005). Activity-

dependent remodeling of synapses is also linked to Wnt signaling (Ataman et al., 

2008). Spaced stimulation by either high potassium-induced stimulation or 

optogenetic stimulation enhances Wg secretion leading to bouton outgrowth and 

formation of ghost boutons- which here represent a transient state of new bouton 

formation that initially lack any postsynaptic specializations but over time acquire 

active zones and GluRs. Concurrently, nuclear import of DFz2C is also 

increased. Since FNI pathway mutations have increased “ghost” or immature 

boutons, the nuclear role of DFz2C was linked to synapse maturation, however 

the underlying mechanisms were unknown. 

 In Chapter II of this dissertation, in collaboration with Sean Speese and 

James Ashley, we found that nuclear DFz2C associates with large 

ribonucleoprotein granules that localize in the perinuclear (between inner and 

outer nuclear membrane) space and exit the nucleus by budding through the 
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nuclear envelope (NE) instead by canonical export through the Nuclear Pore 

Complex (NPC). This mechanism resembles the nuclear egress of Herpes 

viruses (discussed below).   

 

RNA granule assembly and export from the Nucleus 

  The nuclear pore complex (NPC), composed of multiple copies of ~30 

nucleoporins (NUPs) is a barrier that selectively gates cargos entering or exiting 

the nucleus (Grunwald et al., 2011). mRNAs once transcribed are coated with the 

5’ cap-binding, poly-(A) binding protein, exon junction complex (EJC) and other 

such proteins and thus exist in the cell as ribonucleoprotein (mRNP) particles 

(Moore, 2005). mRNAs exit the nucleus by forming a complex with NXF1/Tap1 or 

Crm1, both of which are export factors. They bind mRNPs and interact with FG 

(Phenylalanine Glycine) repeats of the NUPs, which form a molecular sieve-like 

permeability barrier (Kohler and Hurt, 2007) and facilitate the exit of the 

transcripts.  

 Transcripts that have common function or that are localized to specific 

subcellular sites can be co-packaged into a single RNP granule, which includes 

the mRNAs, and RBPs that regulate the fate of the transcripts (Gerber et al., 

2004; Keene and Tenenbaum, 2002). An intriguing question has been where 

these supramolecular assemblies of RNP granules are assembled (Moore, 

2005), in the nucleus or the cytoplasm?  

 The nuclear pore also serves as a size-exclusion barrier, allowing 



 18 

macromolecular assemblies of <39nm diameter to exit the nucleus (Grunwald et 

al., 2011). However, the Balbiani ring mRNA (40kb) of Chironomous tetanus is 

packaged in a 50nm particle, which undergoes structural rearrangement of RNP 

packaging and threads or squeezes out of the NPC (Zhao et al., 2002). 

Furthermore, not all pores are identical and some NPCs may be specialized to 

handle export of specific mRNPs (Grunwald et al., 2011). While in some cases 

there is possibly bulk RNA export, in other instances RNA export can be 

selective process since not all mRNAs are exported immediately after 

transcription and maybe retained in the nucleus until signals to export the RNP 

are received (Wickramasinghe and Laskey, 2015) .  

 Export of β-actin mRNA has been studied extensively and it has been 

found that β-actin mRNAs exit the nucleus one molecule at a time (Grunwald and 

Singer, 2010). Given the size barrier of the NPC and the studies revealing that 

RNAs can exit the nucleus as singletons, it was thought that supramolecular 

assemblies of RNP granules takes place solely in the cytoplasm. A large number 

of RNP granules are assembled in the cytoplasm. For example, processing 

bodies (PBs) and stress granules (SGs) that serve to silence mRNA translation 

are found in a large number of cell types and are assembled in the cytoplasm 

(Thomas et al., 2011).  

 However, in our study at the Drosophila NMJ, we found large RNP 

granules (~200nm) that assembled in the nucleus/perinuclear region, raising the 

question of how they can be exported via the nuclear pore complex.  
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Nuclear egress of Herpes Viruses- another mode of nucleocytoplasmic 

communication 

 A unique mode of nucleocytoplasmic communication is the nuclear egress 

of herpes viruses. The process of viral maturation involves two steps: a) the 

double-stranded viral DNA genome is first encased in an icosahedral 

proteinaceous capsid in the nucleus, b) the capsid is then surrounded by 

proteinaceous material (tegument), followed by envelopment by an outer lipid 

envelope derived from cellular membranes in the cytoplasm. However, the 

transition of the virion from the nucleus to the cytoplasm involves a unique 

mechanism. Electron microscopy studies of herpes virus infected cells reveal that 

herpes virus capsids exit the nucleus by budding through the nuclear envelope 

(Mettenleiter et al., 2009; Mettenleiter et al., 2013a). 

 The viral capsid assembled in nucleus is too large (~125nm) to exit via the 

NPC. Instead they exit the nucleus by remodeling the nuclear lamin network and 

nuclear envelope.  Nuclear Lamins are Type V intermediate filament proteins that 

form a structural meshwork just beneath the inner nuclear membrane (INM). This 

framework forms a barrier that must be broken down in order for the virion to gain 

access to the INM (Johnson and Baines, 2011). Two Herpes virus proteins, 

pUL34 and pUL31 interact with each other and associate with the INM where 

they recruit protein kinase C (Park and Baines, 2006), which can phosphorylate 

and induce the local thinning of the Lamin framework. Other viral proteins pUL17, 

pUL25 and glycoproteins then dock at the INM, select mature capsids and begin 
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the primary envelopment process by budding into the inner nuclear membrane. 

This leads to the formation of an INM bound virion in the perinuclear space. 

(Figure 1.3A) The viral glycoproteins then mediate fusion between the virion 

vesicle and outer nuclear membrane (ONM), and the virion is released naked 

into the cytoplasm (Figure 1.3B). This budding pathway was thought to be 

exclusive to herpes family of viruses.  

 We now know that akin to HSV budding, there is an endogenous pathway 

for budding large RNA granules out of the nucleus and that Herpes viruses likely 

high jacked this pathway for their own export (Chapter II). Thus to elucidate the 

mechanism of the pathway, we screened for host candidates that facilitate 

egress.  
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Figure 1.3- Herpes Virus egress 

Illustration of Herpes virus egress pathway. This includes local breakdown of 

Lamins to primary envelopment at the INM. This results in the formation of a 

membrane-bound virion residing in the perinuclear space, which then fuses with 

the outer nuclear envelope to complete the de-envelopment process. 

 

  



 22 

Figure 1.3- Herpes Virus egress 
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Torsin- AAA ATPase and its role in nuclear membrane remodeling 

 With the aim of understanding the mechanism underlying nuclear 

envelope budding for RNP export we decided to exploit what was known about 

herpes virus egress. Torsin, a host protein, plays a role in Herpes Virus egress 

(Maric et al., 2011b), where expression of dominant-negative Torsin leads to an 

accumulation of virus-like vesicles in the perinuclear space and ER. 

 Torsin-1A belongs to the AAA+ family of ATPases (ATPases associated 

with various activities) that resides in the lumen of the endoplasmic reticulum 

(Kustedjo K, 2000). Mammals have four torsin isoforms; Torsin-1A, Torsin-1B, 

Torsin-2A and Torsin-3A. A hallmark of members of this family is a 200-250 

amino acid ATPase domain. This ATPase domain encompasses several motifs, 

such as the ATP-binding motif, Walker A and the ATP-hydrolysis motifs Walker 

B, Sensor 1 and Sensor 2 (Hanson and Whiteheart, 2005; Laudermilch and 

Schlieker, 2016). AAA-ATPases generally assemble into homohexameric rings 

and interact with their substrates via a central pore (Iyer et al., 2004; Neuwald 

AF, 1999). They play a role in a variety of cell biological processes like 

cytoskeletal dynamics (dynein), protein folding and degradation (Clp/Hsp100 

family), membrane trafficking and organelle biogenesis (Vps4) (Breakefield et al., 

2001). Interestingly, AAA-ATPases can remodel membranes by disassembling 

supramolecular complexes: a) N-ethylmaleamide sensitivity factor (NSF) plays a 

role in vesicle fusion by recycling of v-SNARE and t-SNARE and b) Vps4 
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provides the motive force to disassemble the ESCRT III complex during mutli-

vesicular body biogenesis (Iyer et al., 2004).  

 A three base pair deletion, (ΔGAG, ΔE- 30% penetrant) in Torsin-1A has 

been implicated in early-onset dystonia (Ozelius et al., 1997), a movement 

disorder characterized by involuntary muscle contractions. Onset of symptoms 

occurs between ages 5-28, a time window critical for learning and plasticity in the 

brain (Granata et al., 2008). Early research, given the ER localization and AAA-

ATPase function of Torsin, suggested that it plays a role in protein quality control 

(Hewett et al., 2003). In recent years, Torsin has been shown to have a role at 

the NE (Goodchild et al., 2005; Naismith et al., 2004) via its interaction with 

Lamin associated polypeptide 1 (LAP1), a transmembrane INM protein 

(Goodchild and Dauer, 2005). This is consistent with the observations that the 

Dystonia modeled TorsinΔE mutant (Cao et al., 2005) and the torsin substrate-

trap mutant TorsinE-Q (that binds to ATP but does not hydrolyze it, forming a 

“locked” complex) both abnormally accumulate at the NE (Naismith et al., 2009). 

Torsin interacts with LULL1 (Luminal domain Like LAP1) in the ER, where LULL1 

functions to recycle Torsin back to the nuclear envelope (Vander Heyden et al., 

2009). Interestingly, Torsin knockout (Torsin-/-) and dystonia knock-in mouse 

models (TorsinΔE/ΔE) both display abnormal blebbing of INM in neurons in the 

spinal cord and cortex (Goodchild et al., 2005). This apparent neuronal specificity 

is due to presence of Torsin-1B in non-neuronal tissue, since double knockdown 

of Torsin-1A and 1B results in similar defects in the nuclear envelope in non-
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neuronal cells (Kim CE, 2010). Intriguingly, knockdown of LAP1 alone results in 

defects at the nuclear envelope in neuronal as well as non-neuronal cells. Recent 

studies demonstrate that LAP1 is essential for not just recruiting Torsin to the NE 

but also for stimulating ATPase activity of Torsin (Zhao et al., 2013).  

 Interestingly, the blebbing phenotypes in the mouse models bear some 

resemblance to perinuclear RNP granules (Chapter II and Speese et al., 2012).  

Given the roles of Torsin in Herpes virus egress, Torsin was a prime candidate 

for playing a role in the budding of cellular RNPs. Furthermore, being an ATPase; 

Torsin could potentially mediate membrane remodeling.  

 In Drosophila, there is only one Torsin isoform. Knockdown of Torsin 

results in locomotion defects in the larvae and is lethal by the pupal stage of the 

life cycle (Wakabayashi-Ito et al., 2011). We investigated the role of Torsin in 

RNP budding in Chapter III. 
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Figure1.4- Domains and localization of Torsin 

(A) Representation of the conserved domains across AAA-ATPases. Like other 

AAA-ATPases, Torsin has the ATP-binding domain (Walker A) and the ATP 

hydrolysis domains (Walker B, Sensor 1 and Sensor 2). 

(B) Torsin (purple) resides in the perinuclear space and ER. It is recruited to the 

NE via interaction with LAP1 and it interacts with LULL1 in the ER. 
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Figure1.4- Domains and localization of Torsin 
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Targeted localization of released RNA granules in the cytoplasm   

 Once RNAs exit the nucleus, the next question is how are they targeted to 

specific synaptic sites. In the case of a neuron with a 100 different synapses, 

how would an RNP know its correct destination? Little is known about targeted 

RNP localization. 

 As mentioned in Neuronal RNA granules section, work by Ainger et al., 

1993 and Knowles et al., 1996 demonstrated that RNA granules are rapidly 

transported along microtubules. In these studies RNA granule trafficking was 

disrupted upon colchicine treatment (a microtubule-depolymerizing agent) but not 

upon Cytochalasin-D (an actin-depolymerizing agent) treatment. This was some 

of the early work that suggested that long-range transport of RNA granules was 

mediated by microtubules (MTs).  

 In order to transport RNAs to specific sites, they are bound by RNA 

binding proteins (RBPs), adaptor proteins and motor proteins (Buxbaum et al., 

2015). RBPs like hnRNP A2 (myelin basic protein mRNA), ZBP (β-actin mRNA), 

CPEB (CaMKIIα mRNA), all play a role in neurons or oligodendrocytes to traffic 

specific transcripts (Sinnamon and Czaplinski, 2011). In order to translocate the 

RNPs, the kinesin and dynein families of processive motor proteins are required 

traffic cargo along microtubules in the anterograde and retrograde directions 

respectively (Gagnon and Mowry, 2011).  

 In neuronal RNA trafficking the role of kinesin has been best 

characterized. Kinesins are composed of two heavy chains (KHC or KIF5) and 
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two light chains (KLC). In Kanai et al., 2004, researchers purified neuronal RNA 

granules that were enriched for CaMKIIα and Arc mRNA and associated 42 

RBPs (Kanai et al., 2004). Their study revealed that kinesin traffics RNPs distally 

to dendrites. This transport was enhanced upon overexpression of KIF5, while 

blocking kinesin reduced dendritic trafficking of select transcripts. Studies also 

indicate that actin filaments and their motors, such as MyosinV, play a role in the 

translocation of RNPs to dendritic spines (Fujii et al., 2005).  

 During Drosophila oogenesis, oskar mRNA is localized to the posterior of 

the developing oocyte. This localization of oskar is essential to establish the 

anterior-posterior axis, and requires an interplay of both microtubules and actin-

based motors (Krauss et al., 2009). While microtubules mediate long-range 

movements of RNPs from the nucleus to the posterior of the oocyte, precise 

short-range localization and entrapment of oskar RNPs at the posterior is 

mediated by actin (Krauss et al., 2009). However, these long versus short-range 

interactions are still ill defined. Recent studies have demonstrated that actin can 

serve as tracts for long-range transport of vesicles (Schuh, 2011). However, very 

little is known about the long-range transport of mRNP cargo along actin tracks. 

 

Nesprin: A “railroad track” in the cytoplasm 

 Nesprins (Nuclear Envelope SPectRIN repeat proteins) are a conserved 

family of proteins localized to the ONM (Starr DA, 2002). The characteristic 

structural features of Nesprins include an N-terminal motif that allows interaction 
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with the cytoskeleton, a central rod region which is composed of multiple spectrin 

repeats, transmembrane domain and a C-terminal KASH (Klarsicht/ANC-1/Syne 

homology). Some Nesprin isoforms can span both ONM and INM and interact 

with nuclear Lamins (Razafsky and Hodzic, 2009). KASH domain proteins 

interact with SUN (Sad1, UNC-84) domain proteins, which reside in the INM 

(Hodzic et al., 2004). The C-terminal SUN domain resides in the perinuclear 

space, whereas the N-terminal region interacts with the nucleoskeleton, which is 

LaminA/C or LaminB. SUN domain proteins recruit KASH proteins to the nuclear 

envelope (Razafsky and Hodzic, 2009). Together they form the LINC complex 

(LInkers of Nucleoskeleton to Cytoskeleton) and function as a molecular scale, 

defining the distance between the nuclear envelopes. 

 Drosophila has two SUN domain proteins (Klaroid and Giacomo) and two 

KASH domain proteins (Klarsicht and msp-300/Nsp1). While Nsp1 interacts with 

actin, Klarsicht interacts with microtubules. Nsp1 is a giant protein and has 

several isoforms, some in excess of 1.4 megaDaltons. At the Drosophila NMJ, 

Nsp1 plays roles in positioning the muscle nuclei (Elhanany-Tamir et al., 2012b) 

and GluRIIA assembly at the postsynapse (Morel et al., 2014b). While studying 

the localization of Nsp1, we found Nsp1 formed long filaments, extending from 

the nucleus to the synapse, which served as tracks for RNP transport (described 

in Chapter V). 
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Figure 1.5- A schematic representation of Nsp1 

Nsp1 is a giant transmembrane protein that is inserted in the outer nuclear 

membrane. At the cytoplasmic end it interacts with Actin, and via its KASH 

domain it can interact with SUN domain proteins in the perinuclear space. SUN 

domain proteins interact with Lamins, which represent the nucleoskeleton.   
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Figure 1.5- A schematic representation of Nsp1 
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 In summary, in Chapter II of my thesis, I will present findings from a 

project led primarily by Sean Speese, a former postdoc in the lab, which resulted 

in the discovery of a novel pathway for large RNP export. Our investigations into 

the FNI pathway and the nuclear role of DFz2C lead to the seminal discovery 

that, as a consequence of Wg signaling, large RNP granules containing 

synaptically localized transcripts are assembled in the nucleus in association with 

Dz2C and exit the nucleus by budding through the nuclear envelope.  

 In Chapter III, I present the studies that provide further mechanistic 

insights in the nuclear envelope budding pathway (NEB) pathway. We found that 

Torsin, a AAA-ATPAse, whose mutation in humans is linked to dystonia, 

mediates remodeling of the INM. Torsin likely mediates scission of the INM 

during primary envelopment of mega-RNPs. Thus in the absence of Torsin, these 

RNPs fail to exit the nucleus and are trapped, maintaining connection to the INM, 

in the lumen of the nuclear envelope. This study provides significant insight into 

the role of Torsin in synaptic development. In Chapter IV, I describe how the 

Drosophila ovary can be used as a model system to further elucidate 

mechanisms underlying megaRNP budding. 

 In Chapter V, I describe how long-range transport of synapse-specific 

RNPs from the nucleus to the synapse is mediated. We show that Nsp1-F-actin 

filaments serve as “railroad” tracks to transport synaptic RNAs from the nucleus 

to specific synaptic sites. 
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Preface to Chapter II 
 

This chapter describes the discovery of nuclear envelope budding as a novel 

RNA export pathway within the context of Wnt signaling and synaptic 

development at the Drosophila NMJ.  
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Chapter II 
 

Nuclear Envelope Budding Enables Large 
Ribonucleoprotein Particle Export during 

Synaptic Wnt Signaling  
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Introduction 

Wnts are secreted signaling proteins that are important for embryonic pattern 

formation and cellular differentiation (Siegfried E, 1994 ) and also play pivotal 

roles during activity-dependent synaptic development (Budnik and Salinas, 

2011). In mammals, Wnts promote synapse differentiation and plasticity and 

contribute to neuronal excitability (Budnik and Salinas, 2011; Cerpa et al., 2011; 

Varela-Nallar L1, 2010). At the Drosophila larval neuromuscular junction (NMJ) 

the Wnt-1, Wingless (Wg), is released by presynaptic boutons in a manner 

regulated by neuronal activity and is critical for proper synaptic bouton 

differentiation (Ataman et al., 2008; Packard et al., 2002). In the absence of Wg 

signaling, NMJs fail to expand properly during larval development (Miech et al., 

2008). Further, a subset of synaptic boutons (ghost boutons) is devoid of active 

zones and postsynaptic structures and fails to recruit postsynaptic proteins 

(Ataman et al., 2006b; Packard et al., 2002). Wg release by motorneurons 

activates alternate transduction pathways in motorneurons and muscles (Mathew 

et al., 2005; Packard et al., 2002). In postsynaptic muscles, Wg turns on the 

Frizzled Nuclear Import (FNI) pathway in which the Wg receptor, DFrizzled-2 

(DFz2), is internalized and transported to muscle nuclei (Ataman et al., 2006; 

Mathew et al., 2005). Subsequently, a C terminal cleavage product, DFz2C, is 

imported into the nucleus (Mathew et al., 2005) via canonical nuclear import 

machinery (Mosca and Schwarz, 2010) where it localizes to discrete foci 

(Ataman et al., 2008; Mathew et al., 2005). A similar transduction pathway has 
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been reported for the Wnt receptor Ryk during mammalian cortical neuron 

development (Lyu et al., 2008). However, the nuclear function of these 

DFz2C/Ryk C-terminal fragments remains unexplored. We report that FNI 

signaling leads to nuclear DFz2C fragments being organized into 

ribonucleoprotein particles containing mRNAs encoding postsynaptic proteins. 

These particles exit the nucleus via a mechanism akin to the nuclear egress of 

herpes virus capsids. During viral capsid egress, the nuclear lamina is disrupted 

through phosphorylation by protein kinase C (PKC), which is required for the 

budding of an inner nuclear membrane (INM) bound viral particle into the 

perinuclear space (between the INM and the outer nuclear membrane [ONM]). 

Subsequent fusion of the INM surrounding the virus with the ONM releases the 

naked viral capsid into the cytoplasm. We find that localization of DFz2C 

granules to the perinuclear space requires the A-type lamin, LamC. Further, 

formation of INM invaginations, through which the DFz2C granules exit, requires 

atypical PKC (aPKC), which likely phosphorylates LamC. Significantly, disruption 

of this process leads to phenotypes paralleling those observed in laminopathy 

models. Our studies thus provide evidence for an unanticipated mechanism by 

which cellular mRNAs can exit the nucleus, insight into the mechanisms of 

postsynaptic apparatus assembly in response to Wnt signaling, and a potential 

explanation for how certain human lamin mutations result in muscular dystrophy. 
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RESULTS 

DFz2C and Lamin C form specializations at the nuclear lamin 

To elucidate the nuclear function of DFz2C, we sought to determine the 

subnuclear localization of DFz2C foci in muscle cells using confocal microscopy 

(Figure 2.1). DFz2C foci localized to the nuclear periphery (Figure 2.1A) and 

consisted of accumulations of discrete DFz2C puncta (Figure 2.1A; arrows). Co-

labeling with antibodies to the Drosophila A-type lamin, LamC, a component of 

the nuclear lamina that forms a lattice beneath the inner nuclear membrane 

(INM), revealed that LamC forms “framework-like” structures surrounding the 

DFz2C puncta (Figure 2.1A). Thus, DFz2C fragments are associated with a 

specialization of the nuclear lamina. 

Formation of DFz2C foci was dependent on the presence of LamC, as null 

mutants in lamC virtually eliminated DFz2C foci (Figure 2.1B).  Likewise, LamC 

framework-like structures depended on DFz2, as mutations in dfz2, 

downregulation of dfz2, or DFz2 overexpression [which behaves as a dominant 

negative (Mathew et al., 2005; Packard et al., 2002)] significantly decreased the 

number of LamC foci (Figure 2.1B). Further, both DFz2C foci and LamC 

framework-like structures were significantly upregulated in the hyperexcitable K+ 

channel double mutant eag Sh, which exhibits increased synaptic activity (Wu et 

al., 1983) (Figure 2.1B). This parallels previous data showing that the number of 

nuclear DFz2C foci correlates with synaptic activity (Ataman et al., 2008). Thus, 
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DFz2C foci and LamC framework-like structures are mutually dependent for their 

formation, and synaptic activity leads to analogous changes in their numbers.  

Mutations in the human LMNA gene lead to a diverse set of disorders 

(Burke and Stewart, 2002), including muscular dystrophies (Burke and Stewart, 

2002; Mejat et al., 2009) such as autosomal dominant Emery-Dreifuss muscular 

dystrophy (AD-EDMD) (Mejat et al., 2009; Ostlund et al., 2001). Expression of 

the AD-EDMD mutant protein results in formation of LMNA-positive "O-ring" 

structures in the nucleus (Ostlund et al., 2001; Schulze et al., 2005). The same 

structures are also observed when expressing a mutant lamC transgene 

modeled after the human mutant gene (Schulze et al., 2005) Notably, we also 

observed nuclear O-ring structures in the muscles of Drosophila larva 

heterozygous for a LamC-GFP-trap (lamCGFP-trap/+), in which GFP is inserted in 

frame within the region encoding the LamC rod domain (Morin et al., 2001) 

(Figure 2. 1C). In this strain, we found that both DFz2C and LamC-GFP acquired 

the form of an O-ring, and both the appearance of DFz2C as individual granules 

and LamC as a framework surrounding the granules was lost (Figure 2.1C). This 

suggests that insertion of GFP within the rod domain in lamCGFP-trap alters the 

normal behavior of the protein, and underscores the dependence of DFz2C foci 

on wild type LamC. 

The strong dependence of DFz2C foci on normal LamC predicts that 

mutations in lamC should elicit phenotypes resembling those of mutations 

disrupting the FNI Wnt signaling pathway. Consistent with this, lamC null 
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mutants, larvae expressing LamC-RNAi in muscle and lamCGFP-trap/+ larvae all 

exhibited a significant increase in the number of “ghost boutons” (Figure 2.1D-J), 

undifferentiated synaptic boutons that are a hallmark of FNI pathway disruption 

(Ataman et al., 2006a; Packard et al., 2002). These undifferentiated ghost 

boutons lack the entire complement of postsynaptic proteins, including the PSD-

95 homolog, Discs-Large (DLG) (Figure 2.1F-I), and glutamate receptors 

(Ataman et al., 2006a). In both lamC null animals and those expressing LamC-

RNAi in muscles, synaptic arbors were morphologically disrupted, being 

composed of enlarged tubular boutons instead of the normal small “beads on a 

string”(Figure 2.1L). This phenotype is also observed in wg mutants (Packard et 

al., 2002). Like other mutations affecting the FNI pathway, lamC null mutants 

also exhibited a decrease in the number of mature boutons (Figure 2.1K). Recent 

evidence in mice indicates that NMJ defects precede muscle degeneration during 

laminopathies (Mejat et al., 2009).  

Synaptic transmission was also altered in a similar manner in lamC and 

dfz2 mutants, as well as upon overexpressing DFz2 in muscles, conditions that 

severely reduce the number of DFz2C/LamC foci. In the above genotypes, the 

frequency of spontaneous miniature excitatory junctional potentials (mEJPs) was 

significantly increased (Figure 2.1M). The amplitude of mEJPs was also 

increased in these strains (Figure 2.1N), suggesting a defect in postsynaptic 

receptors. This suggestion was supported by morphological analysis of GluRIIA 

clusters, which showed an increase in volume normalized to bouton volume and 
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an increase in total signal intensity (Figure 2.1P-S). Nevertheless, the amplitude 

of EJPs was normal (Figure 2.1O). This is not surprising, as larval NMJs are 

capable of homeostatic compensation as a result of changes in postsynaptic 

activity (Petersen et al., 1997). A slightly different profile was observed in 

lamCGFP-trap/+ larvae, in which DFz2C/LamC foci are still present, albeit with 

abnormal morphology. Although mEJP amplitude was increased (Figure 2.1N), 

mEJP frequency was unaltered (Figure 2.1M) and EJP amplitude showed a small 

but significant decrease compared to wild type controls (Figure 2.1O). Taken 

together, our results indicate that the nuclear lamina plays a specific role in 

synapse development and function by participating in the FNI signaling pathway 

in postsynaptic muscles.  
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Figure 2.1- Subnuclear localization of DFz2C and LamC at larval muscle 

nuclei, their interdependence, and defective NMJs in lamC mutants. 

(A) LamC (green) and DFz2C (red) immunolabeling (deconvolved) of a muscle 

nucleus containing a DFz2C/LamC foci (box; enlarged in right panels) localized 

to the periphery of the nucleus (arrowhead in XZ plane panel). Arrows point to a 

DFz2C granule within the framework-like structure formed by LamC. 

(B) Number of DFz2C and LamC foci per nucleus normalized to wild type 

controls in the indicated genotypes. ***= p< 0.0002; *= p<0.05. Number of foci 

analyzed is wild type=450, LamC=413, dfz2/Df=302, eag Sh=530, Gal4 driver 

control (C57-Gal4/+)= 328, muscle expression of DFz2 =617, muscle expression 

of DFz2-RNAi =593. 

(C) Localization of LamC-GFP (green) and wild type LamC (blue) in a muscle 

nucleus from the lamCGFP-trap/+ strain in relationship to DFz2C (red), the 

DFz2C/LamC foci appear as “O-rings” (box; enlarged in right panels). Inset in 

upper left panel is the same nucleus but overexposed to show low levels of 

LamC-GFP at the nuclear lamina. Calibration bar is 5 µm for A (left column), 2 

µm for A and C (right columns), 7µm for C (left column). All images are single 

confocal slices. 

(D-I) Third instar larval NMJs at muscles 6 and 7 double labeled with antibodies 

to HRP (red) and DLG (green) in (D,E) a wild type NMJ at (D) low and (E) high 

magnification, (F, G) a lamC null mutant NMJ at (F) low and (G) high 

magnification, and (H, I) an NMJ from a larva expressing LamC-RNAi in muscles 
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using the C57-Gal4 driver (LamC-RNAi-muscle). Arrowheads point to “ghost 

boutons”, which are devoid of DLG immunoreactivity. Calibration bar is 30 µm for 

D, F, H, and 12 µm for E, G, I. 

(J, K) Morphometric analysis of NMJs showing (J) the number of ghost boutons, 

and (K) the number of boutons. 

***= p<0.0001; **= p<0.001; number of NMJs analyzed are 10 for wild type; 19 

for lamC; 16 for LamC-RNAi-muscle and LamCtrap-GFP/+. 

(L) Morphology of synaptic boutons in (top) wild type and (bottom) lamC mutant, 

showing the “beads on a string” and “tubular” morphology of NMJ branches in 

wild type and lamC mutant respectively. Calibration bar is 12µm. 

(M-O) Electrophysiological analysis of larval NMJs showing (M) frequency of 

spontaneous mEJPs, (N) amplitude of spontaneous mEJPs, and (O) amplitude of 

evoked EJPs  

***= p<0.0001; **= p<0.001; *=p<0.05; number of NMJs analyzed are 8 for wild 

type; 8 for lamC; 5 for LamCtrap-GFP/+; 5 for dfz2/Df; and 7 for DFz2 

overexpression in muscle. 

(P,Q) Third instar larval NMJs double labeled with antibodies to HRP (red) and 

DGluRIIA (green) in (P) wild type and (Q) a larva expressing LamC-RNAi in 

muscles. Calibration bar is 5 µm. 

(R,S) Morphometric analysis of GluRIIA clusters at the larval NMJ showing (R) 

Normalized volume of GluRIIA immunoreactivity in relation to bouton volume and 

(S) Normalized total intensity of GluRIIA immunoreactivity.  



 44 

Figure 2.1- Subnuclear localization of DFz2C and LamC at larval muscle 

nuclei, their interdependence, and defective NMJs in lamC mutants. 
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DFz2C granules are localized at invaginations of the inner nuclear 

membrane 

The association of DFz2C foci with the nuclear periphery and their 

dependence on LamC is suggestive of a specialized function of the nuclear 

lamina. Vertebrate A-type lamins are known to form foci at sites of DNA 

replication (Kennedy et al., 2000). However, DNA was undetectable at the 

DFz2C/LamC foci as determined by co-labeling with DNA markers (Figure 2.2A, 

B; N=30 foci). LamA/C also localizes to and is required for expansion of the 

nucleoplasmic reticulum (NR), double-walled invaginations of the nuclear 

envelope involved in signaling and transport (Gehrig et al., 2008; Lagace and 

Ridgway, 2005). NR contain both the inner (INM) and outer (ONM) nuclear 

membranes and are labeled by markers of the nuclear pore complex (Lagace 

and Ridgway, 2005). Using membrane markers, we found that 92% of the DFz2C 

foci were wrapped by nuclear membrane (Figure 2.2C; N= 60 DFz2C foci), but 

unlike the NR, DFz2C foci were not coincident with nuclear pore complexes 

(Figure 2.2E; N= 35 DFz2C foci).  

 The NR define lumens projecting into the nucleus but continuous with the 

cytoplasm, as revealed by cytoplasmic injection of fluorescent dextrans with 

molecular masses above the cutoff for passive diffusion through nuclear pores 

(~40 kDa) (Keminer and Peters, 1999; Lagace and Ridgway, 2005). However, we 

observed no association between DFz2C/LamC foci and a Texas Red-

conjugated 70 kDa dextran injected into muscle cells (Figure 2.2D; N= 40 DFz2C 
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foci). Thus DFz2C/LamC foci are not within reticuli continuous with the 

cytoplasm. Instead they are either surrounded by the INM at the nuclear 

periphery or are located within the perinuclear space (between the INM and 

ONM). 

Yet another type of nuclear membrane invagination is INM infolding. Such 

INM infoldings occur during nuclear egress of herpes viruses (e.g. HSV and 

CMV) in mammalian cells (Buser et al., 2007; Darlington and Moss, 1968). 

Herpes viral particles are assembled in the nucleus and are far too large to be 

exported through nuclear pores. Instead, they become enveloped by the INM as 

they bud into the perinuclear space. This is followed by a de-envelopment 

process, in which the INM-derived envelope fuses with the ONM, releasing the 

naked nucleocapsids into the cytoplasm (Lee and Chen, 2010).  
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Figure 2.2- Localization of DFz2C/LamC foci at larval muscle nuclei in 

relationship to DNA, nuclear membrane, and nuclear pore complexes, and 

permeability of foci to cytoplasmic 70 KDa-dextran 

(A-E) Larval muscle nuclei containing DFz2C/LamC foci (arrows) showing the 

relationship of the foci with (A, B) the DNA markers propidium iodide and 

Hoechst respectively, showing the absence of DNA labeling at the foci, (C) the 

membrane marker Concanavalin-A (ConA; deconvolved), showing that foci are 

wrapped by membrane, (D) 70 KDa dextran injected into the cytoplasm 

(deconvolved), showing that the dextran does not penetrate the foci, (E) mAb414 

antibody which labels the nuclear pore complex (NPC;(Davis and Blobel, 1986)), 

showing that DFz2C granules do not colocalize with areas of the nuclear 

envelope containing nuclear pore complexes. E1 shows a raw image of the 

nucleus, which has been deconvolved in E2. E3 is a high magnification view of 

the focus shown in E2. 

All images are single confocal slices; c= cytoplasm; n=nucleoplasm; calibration 

bar is 14 µm for A, 8 µm for B, E1-2, and 4 µm for C, D, E3. 
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Figure 2.2- Localization of DFz2C/LamC foci at larval muscle nuclei in 

relationship to DNA, nuclear membrane, and nuclear pore complexes, and 

permeability of foci to cytoplasmic 70 KDa-dextran 
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Ultrastructural analysis of DFz2C/LamC foci and resemblance to Herpes 

Virus egress 

To determine if the DFz2C/LamC foci correspond to INM infoldings, we 

carried out an ultrastructural analysis of muscle nuclei (Figure 2.3). In electron 

micrographs (EMs) we could routinely observe nuclear membrane invaginations 

bounded by a single membrane, likely the INM (Figure 2.3A, B; N= 7 

preparations; 9 foci). We also observed large electron-dense granules (average 

diameter = 192±0.01 nm: min/max 143/286; N=31 granules from 7 foci) (Figure 

2.3A, B), located within the enlarged perinuclear space bounded by these INM 

invaginations (Figure 2.3A, B). Similar INM invaginations were also observed in a 

Schneider-2 (S2) cell line endogenously expressing DFz2 and Wg, which also 

display nuclear DFz2C foci (Figure 2.3C, D). Similar to muscle, S2 cells can also 

import DFz2C into the nucleus in the presence of Wg (Mathew et al., 2005).  

DFz2C antibody labeling of these electron dense granules in larval muscle cells, 

confirmed that they correspond to the DFz2C foci observed at the light 

microscopy level (Figure 2.3F, H; see Figure 2.3H’ for no antibody control; N=29 

animals; 93 foci). 

The DFz2C granules within the INM invaginations appeared to be 

bounded by membrane (Figure 2.3D; arrow). If these granules are enveloped by 

the INM, then Lamin immunoreactivity could surround the dense granules. 

Indeed, LamC immunoreactivity lined the outer edge of the DFz2C granules 

(Figure 2.3E, G; see Figure 2.3G’ for no antibody control; N= 29 animals; 93 
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foci), which correlates well with our observations of DFz2C/LamC foci at the light 

level.  

Some DFz2C foci were also associated with ONM evaginations highly 

reminiscent of herpes nucleocapsids emerging from the nuclear envelope (Buser 

et al., 2007) (Figure 2.4A-D; arrows; see cartoon in Figure 2.4E for models of 

how viral capsids are thought to be released). Such evaginations often contained 

the DFz2C electron dense granules (Figure 2.4A; asterisks), but some were 

devoid of granules (Figure 2.4B, F), as has been observed after HSV egress 

from the perinuclear space (Buser et al., 2007; Granzow et al., 2001).  Consistent 

with this idea, we also observed electron dense granules in the cytoplasm, close 

to the evaginations (Figure 2.4E; arrowhead). At the light level, evaginations of 

the lamina containing DFz2C labeling were also observed (Figure 2.4F). Thus, 

DFz2C foci are composed of electron dense, DFz2C- and LamC-associated 

granules that localize within the perinuclear space and are bounded by the INM. 

Further, these granules appear to be released into the cytoplasm either by 

evagination of the ONM or fusion of an INM bound granule localized to the 

perinuclear space, with the ONM (Figure 2.4E). Interestingly, in lamCGFP-trap/+, in 

which DFz2C/LamC foci are morphologically disrupted, the foci appeared as 

large electron dense and amorphous structures associated with the nuclear 

envelope, in which no individual DFz2C granules could be distinguished (Figure 

2.4D; arrows), also correlating with our light level analysis (Figure 2.1C). 
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Figure 2.3- Ultrastructural organization of DFz2C/LamC foci 

Transmission electron micrographs of larval muscle or S2 cell nuclei containing 

DFz2C/LamC foci.  

(A) Low magnification view of a focus (box) within a muscle nucleus. Inset: 

enlargement of the region enclosed by the box.  

(B-D) High magnification views of INM invaginations containing electron dense 

granules (g) from (B) larval muscle (C, D) S2 cells. Note that the dense granules 

appear to be bounded by membrane (arrow in D).  

(E-H) Immunoelectron micrographs of larval muscle nuclei labeled with (E, G) 

antibodies to LamC and 18 nm gold conjugated second antibody shown at (E) 

low and (G) high magnification. Note that the LamC label surrounds both the 

nuclear granules and the nuclear lamina; (F, H) antibodies to DFz2C and LamC 

with 12 nm and 18 nm gold conjugated second antibody, respectively, shown at 

(F) low and (G) high magnification. (G’, H’) Micrographs of foci in larval body wall 

muscle preparations processed for immunoelectron microscopy, in which the 

primary antibody was omitted, using (G’) 18 nm gold-conjugated second antibody 

and (H’) 12 nm gold-conjugated second antibody. Note DFz2 signal associated 

with the granules within the nuclear invaginations.   

N= nucleus; C= cytoplasm; nu= nucleolus; h=heterochromatin; inm= inner 

nuclear membrane; onm= outer nuclear membrane; m= myofibrils; z= perforated 

z band. Calibration bar is 0.5 µm for A, 0.3 µm for B, D, 0.4 µm for E, F, 0.1 µm 

for C, G, H. 
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Figure 2.3- Ultrastructural organization of DFz2C/LamC foci 
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Figure 2.4- Evagination of the Nuclear Envelope Resembling HSV Egress  

(A) Electron micrograph of a larval muscle nucleus region exhibiting a double-

walled evagination (arrow) containing two RNA granules (asterisks). The 

evagination displays a “neck” possibly for pinching off or driving scission of the 

INM (see model in (E): steps 2 and 3 in blue pathway). 

(B) Another double-walled evagination (arrow) appearing to have undergone INM 

scission (see model in F: step 2 in blue pathway). A RNA granule can be seen 

nearby in the cytoplasm (arrowhead). 

(C) A double-walled evagination near a granule (g)-containing INM invagination. 

(D) View of an abnormal focus shown at (D1) low and (D2) high magnification in 

a lamCGFP-trap/+ preparation. Note the presence of electron dense amorphous 

material associated with the nuclear lamina (arrow). 

(E) Cartoon depicting a model for two potential pathways for the release of 

granules from the nucleus, based on mechanisms of HSV egress and our 

observations in this article. The two nuclear egress pathways (red and blue 

annotations) are not mutually exclusive, and while the end result of either 

pathway is the release of membrane-free granules to the cytoplasm, they are 

morphologically different. 

(F) A single slice through a SIM reconstruction of a muscle nucleus showing a 

possible egression event. 

C = cytoplasm, N = nucleus, h = heterochromatin, NP = nuclear pore complex. 
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Scale bars: (A), (B), and (C) 0.3 µm; and (D2) 0.5 µm; (D1) and (F4) 1 µm; (F1–

F3) 5 µm 
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Figure 2.4- Evagination of the Nuclear Envelope Resembling HSV Egress  
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DFz2C/LamC foci contain RNAs that exit the nucleus 

Whereas HSV nucleocapsids contain dsDNA, DFz2C/LamC foci occur in 

DNA-free regions (Figure 2.2A, B). To determine if the DFz2C-immunoreactive 

granules contained RNA instead, we screened the Drosophila flytrap database 

for fly stains expressing GFP fused in-frame with endogenous proteins involved 

in RNA binding, maturation or localization (34 strains; Table 2.1), and determined 

if any such GFP fusion proteins localized at or near the DFz2C/LamC foci. One 

such strain contained GFP fused in-frame with endogenous Poly(A) Binding 

Protein 2 (PABP2/PABPN1). In PABP2-GFP muscle nuclei GFP signal was 

observed both as diffuse nucleoplasmic fluorescence expected for PABP2 and 

bright GFP foci at the nuclear periphery (Figure 2.5A). This was distinct from the 

localization of NLS-GFP when expressed with a muscle Gal4 driver, which 

yielded diffuse staining throughout the nucleoplasm (Figure 2.5A2,A3; of 498 

LamC foci examined in 6 animals, 0% showed discrete NLS-GFP enrichment at 

the foci). The GFP distribution in PABP2-GFP larval nuclei was similar to the 

endogenous PABP2 distribution revealed by labeling wild-type larvae with an 

antibody against Drosophila PABP2 (Benoit et al., 1999) (Figure 2.5A1). About 

40% of the bright PABP2-GFP foci were juxtaposed with DFz2C/LamC foci and 

32% of the DFz2C foci were juxtaposed with a bright PABP2 focus (N=118 foci). 

Further, there was a significant positive correlation between the number of 

PABP2 and DFz2C foci per nucleus (Figure 2.5B2; R= 0.52; p<0.0001). Further, 

the presence of bright PABP2 foci was dependent both on LamC and DFz2C, as 



 57 

both the lamC null mutation and a strong dfz2 loss of function mutation drastically 

decreased the number of PABP2 foci (Figure 2.5B). This suggests that the 

PABP2 foci are formed in conjunction with DFz2C/LamC foci.  

PABP2 binds to the short poly(A) tail of immature transcripts in the 

nucleus, promoting poly(A) tail elongation by poly(A) polymerase (Kuhn et al., 

2009). To determine if the DFz2C granules contained polyadenylated RNA we 

conducted fluorescent in-situ hybridization (FISH) with Digoxigenin-conjugated 

oligo-dT. Sixty four percent of the LamC foci contained high oligo-dT 

fluorescence (Figure 2.5C; N= 25 foci in 6 preparations) and the signal was 

completely eliminated by RNase treatment (Figure 2.4D; 0% of LamC foci 

contained oligo-dT fluorescence; N= 26 foci in 6 preparations).  

The presence of RNA at the foci was additionally supported by performing 

Bernhard's regressive EDTA stain on thin sections. This procedure chelates the 

electron dense uranyl acetate label from DNA, but not from RNA (Bernhard, 

1969), as evidenced by the preferential retention of electron dense staining in the 

ribosomes dotting the nuclear envelope (Figure 2.5 E1, arrowhead) and in the 

cytoplasm (Figure 2.5 E1, E3, F1, F3), and its near elimination from DNA (Figure 

2.5 E2, F2). Notably, the large electron dense granules at the nuclear periphery 

were resistant to EDTA treatment (Figure 2.5 E1, F1, G). Taken together, these 

data indicate that DFz2C granules contain RNA, and at least some of these 

RNAs are polyadenylated. 
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In the Bernhard’s regressive EDTA EM mages, we also observed electron 

dense granules similar to DFz2C granules in the cytoplasm close to the nuclear 

envelope (Figure 2.5G; arrows), supporting the idea that DFz2C granules are 

released from the perinuclear space into the cytoplasm. To directly monitor 

whether RNA granules found at the DFz2C/LamC foci were released into the 

cytoplasm, we conducted live imaging of the foci from larval body wall muscle 

preparations, using the RNA-specific dye E36 (Li et al., 2006). In these 

experiments, fluorescent granules emerging from nuclei in E36-labeled 

preparations were imaged blind by time-lapse microscopy at focal planes 

spanning the entire nuclear volume. Then, preparations were fixed and labeled 

with antibodies to LamC and DFz2C. Images from the fixed preparations were 

then sized and superimposed to the live images using a number of fiduciary 

markers, including the nucleolus, trachea, and the distance between two imaged 

nuclei (Figure 2.6A, B; Movie 1, 2; please click at links at the end of 

Supplemental Material to download the movies). As expected, E36-positive 

aggregates and granules were observed in both nucleus and cytoplasm. Close 

examination revealed E36-positive puncta emerging from the LamC foci and 

exiting the nucleus. Thus, at least some of the foci-associated RNA granules 

translocate to the cytoplasm. 
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Figure 2.5- PABP2 and poly(A) RNA are associated with DFz2C/LamC foci. 

(A) Confocal slice of a larval muscle nucleus showing the relationship between a 

DFz2C/LamC focus and PABP2-GFP foci (arrows), displayed at (top) low and 

(bottom) high (deconvolved) magnification. (A1) Deconvolved confocal image of 

a muscle nucleus labeled with LamC and PABP2 antibodies showing intense 

PABP2 foci, above nucleoplasmic levels of PABP2, localized adjacent to LamC 

foci.(A2 and A3) Single confocal slice through the nucleus of larva expressing 

nls-GFP in muscle cells, at (A2) low magnification and (A3) high magnification. 

n = nucleus; c = cytoplasm. Scale bars: (A1) and (A2) 2 µm, (A3) 7 µm. 

(B) Number of PABP2 foci per larval muscle nuclei, normalized to control, 

showing that PABP2 foci depend on normal lamC and dfz2 function. 

***=p<0.0001; number of foci analyzed is control=229, LamC=175, dfz2/Df= 301. 

(B2) Number of DFz2C foci versus number of PABP2-GFP foci in muscle nuclei. 

Numbers below each data point represent the number of nuclei found at each 

value. 

(C, D) Confocal slice of a larval muscle nucleus labeled with poly (dT) FISH and  

anti-LamC,  either (C) under normal conditions, or (D) treated with RNase. 

(E-G) View of DFz2/LamC foci at a larval muscle nucleus in sections (E) treated 

with the Bernhard’s regressive EDTA (rEDTA) technique and (F) not treated with 

EDTA (same preparation as in (E)). N= nucleus; C= cytoplasm. (E2, F2) High 

magnification views at the nuclear area of E1 and F1 around a DFz2C granule 

showing the presence of a dark meshwork surrounding the granule. While this 
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meshwork is bleached after EDTA treatment (E2), DFz2C granules retain 

electron density (F2). (E3, F3) High magnification of E1 and F1, showing 

ribosomes in the cytoplasm, which retain electron density after EDTA treatment.  

(G) Low magnification view of a larval muscle focus showing retention of electron 

density by DFz2C granules after rEDTA treatment (g; arrow). Arrowheads point 

to ribosomes at the ONM. Arrow points to a cytoplasmic granule of the same size 

and morphology as DFz2C granules at INM invaginations. 

Calibration bar is 8µm for A (top row), 3µm for A (bottom row), 8µm for C, D, 

0.6µm for E1, F1, 0.2µm for E2-3, F2-3, and 1µm for G. 
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Figure 2.5- PABP2 and poly(A) RNA are associated with DFz2C/LamC foci. 
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Figure 2.6- RNA granules from DFz2C/LamC foci exit larval muscle nuclei. 

(A, B) Spinning disk confocal images of nuclei imaged live from larval body wall 

muscle preparations after incubation with E36 RNA dye (green). After time-lapse 

imaging, samples were fixed and labeled with antibodies to DFz2C and/or LamC. 

N=nucleus; nu=nucleolus. Complete movies are shown in Supplementary Movie 

1 and 2. Calibration bar is 10µm for A(top row), B(top row), and 4µm for A(bottom 

row), B(bottom row).  

Top rows in A, B show (top panel) a single image of a larval body wall muscle 

nucleus labeled with E36, (middle panel) the same nucleus after fixation and 

immunolabeling with DFz2C and/or LamC antibodies, and (right panel) their 

superposition obtained after resizing using fiduciary markers. Arrowheads mark 

the position of the E36 and DFz2C/LamC foci.  

Bottom rows in A, B display time-lapse imaging series, showing an E36 labeled 

granule exiting the nucleus of a larval body wall muscle. Arrows mark the initial 

position of the granule, while arrowheads point to the granules while moving 

away from the nucleus. Time marks correspond to hr:min:sec. 
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Figure 2.6- RNA granules from DFz2C/LamC foci exit larval muscle nuclei. 
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Atypical Protein Kinase C is required for DFz2C/LamC foci formation 

HSV nucleocapsids recruit a host protein kinase C (PKC), which 

phosphorylates A and B-type Lamin, disrupting the nuclear lamina at the INM 

and allowing the capsid to bud into the perinuclear space (Park and Baines, 

2006). The PKC involved in this process is likely not a conventional PKC (Leach 

and Roller, 2010). Notably, we observed that a binding partner of Drosophila 

atypical PKC (aPKC), Bazooka (Baz)/Par3, colocalized with LamC, both in the 

nuclear lamina and at foci (Figure 2.7A). Low levels of aPKC immunoreactivity 

were also detected inside the nucleus (Figure 2.7B). These observations raised 

the possibility that aPKC might be involved in remodeling the lamina around INM 

invaginations defining DFz2C/LamC foci. To test this, we modified aPKC activity 

in muscles. In particular, we downregulated aPKC by expressing an aPKC-RNAi 

transgene in muscles, or increased aPKC activity by expressing a constitutively 

active form of aPKC (PKM) using the muscle-specific Gal4 driver, C57-Gal4. 

Expressing aPKC-RNAi in muscles nearly eliminated DFz2C/LamC foci (Figure 

2.7C, D, J), suggesting that aPKC is required for foci formation. This conclusion 

was supported by pharmacological experiments showing that feeding larvae for 

21 hours with 100 µM chelerythrine, a PKC inhibitor (Herbert et al., 1990), 

significantly reduced the number of DFz2C/LamC foci (Figure 2.7E, J). 

Conversely, increasing aPKC activity by expressing PKM in muscles dramatically 

increased both the size and number of LamC foci (Figure 2.7F, J), suggesting 

that increasing aPKC activity promotes LamC foci formation. However, these foci 
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were completely devoid of DFz2C signal (Figure 2.7F). Thus, although 

constitutively activating aPKC throughout larval development promotes 

reorganization of the lamina, it prevents normal loading of LamC foci with DFz2C 

granules. To both limit PKM expression and allow for temporal control of its 

delivery, we expressed PKM under control of the heat-shock promoter (hs-PKM). 

At permissive temperature hs-PKM larvae displayed an increase in the number of 

DFz2C/LamC foci compared to wild type animals, likely due to the known 

leakiness of the hs promoter (Figure 2.7J; (Hans et al., 2011)). A much larger 

increase in DFz2C/LamC foci was produced by a 30 min heat shock at 30˚C 

followed by 2 hr at permissive temperature prior to dissection (Figure 2.7G, J), 

while no significant change in the number of DFz2C/LamC foci was elicited in 

wild type controls subjected to the same temperature shift paradigm (Figure 

2.7J). In these larvae, LamC foci also contained DFz2C immunoreactivity (Figure 

2.7G), consistent with the idea that while chronic PKM expression interferes with 

DFz2C foci formation, acute PKM activation allows for normal formation of 

DFz2C granules within the LamC foci.  

Interestingly, labeling body wall muscles with an antibody specific for 

phosphorylated PKC substrates (Zhang et al., 2002a) resulted in intense 

immunoreactivity at the foci (Figure 2.7H), and treatment of the samples with 

lambda-phosphatase eliminated this signal (Figure 2.7I). Western blotting of body 

wall muscle extracts with the phosphorylated PKC substrate antibody revealed a 

band at the same molecular weight as LamC (Figure 2.7L). The intensity of this 
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band increased in larvae expressing PKM in muscles and, conversely, it 

decreased when aPKC-RNAi was expressed in muscles (Figure 2.7L). 

Consistent with the idea that this band corresponded to LamC, 

immunoprecipitation of body wall muscle extract with LamC antibodies revealed 

that LamC is recognized by the phosphorylated PKC substrate antibody (Figure 

2.7M). Further, the intensity of this band, when the blots were probed with the 

antibody against phosphorylated PKC substrate, was increased in LamC 

immunoprecipitates from larvae expressing PKM in muscles (Figure 2.7M). 

Taken together, the above results suggest that PKC-dependent phosphorylation 

is necessary and sufficient to locally remodel the lamina in order to form 

DFz2C/LamC foci. Downregulating the aPKC-binding partner, Baz/Par3, by 

expressing Baz-RNAi in muscles, virtually eliminated the foci (Figure 2.7J), 

suggesting that Baz might function in conjunction with aPKC.  

We next assessed whether altering aPKC activity or Baz levels elicits 

ghost bouton formation. Previous studies demonstrated that both downregulation 

and constitutive activation of aPKC, as well as downregulation of Baz, leads to a 

reduction in the number of synaptic boutons at the NMJ, partly due to a local 

function of these proteins in cytoskeletal regulation at the NMJ (Ramachandran 

et al., 2009; Ruiz-Canada et al., 2004). However, whether ghost boutons were 

formed in the above genotypes was not tested. To determine if ghost boutons 

were present, we downregulated aPKC or Baz or expressed PKM, all specifically 

in muscles. NMJs in all of the above genotypes displayed a significant increase 
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in the number of ghost boutons (Figure 2.7K). Thus, like mutations that interfere 

with DFz2C foci formation, manipulations in aPKC and Baz lead to the formation 

of undifferentiated boutons. 
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Figure 2.7- aPKC is required for foci formation, possibly by 

phosphorylating LamC. 

(A-I) Single confocal slices of larval body wall muscle nuclei labeled with 

antibodies to either Baz, aPKC, PKC-phosphorylated substrate (aPKC subs), or 

DFz2C (green), double labeled with antibodies to LamC (red) in wild type and 

genetic variants altering aPKC activity showing (A) that Baz is localized at the 

nuclear lamina and LamC foci, in exact colocalization with lamC, (B) that aPKC is 

diffusely localized within the muscle nuclei, (C) a representative image of a 

DFz2C/LamC foci in wild type body wall muscle nucleus, (D) that expressing 

aPKC-RNAi in muscles, using the C57-Gal4 driver, virtually eliminates 

DFz2C/LamC foci, (E) that feeding larvae with the aPKC inhibitor, chelerythrine, 

drastically decreases the number of DFz2C/LamC foci, (F) that expressing PKM 

in muscles leads to an enlargement and increase in the number of LamC foci, 

which are devoid of DFz2C, (G) that expressing PKM for just 30 min in hs-PKM 

larvae leads to a substantial increase in the number of DFz2C/lamC foci, (H)- 

that labeling body wall muscles with an antibody against PKC phosphorylated 

substrates shows an enrichment of immunoreactivity at the LamC foci, and (I) 

that this label is eliminated after treatment of the samples with lambda 

phosphatase. Calibration bar is 15µm. 

(J) Normalized number of foci per nuclei upon altering aPKC activity. Number of 

nuclei analyzed is 2146 for wild type, 532 for aPKC-RNAi-muscle, 726 for wild 

type with chelerythrine treatment, 677 for PKM-muscle, 713 for wild type with 
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heat shock, 601 for hs-PKM without heat shock, 595 for hs-PKM with heat shock, 

and 652 for Baz-RNAi-muscle. 

(K) Normalized number of ghost boutons from the indicated genotypes.  Number 

of animals analyzed is 6 for wild type, muscle expression of aPKC-RNAi, Baz-

RNAi, and PKM. 

(L) Western blot of body wall muscle extracts probed with antibody against 

phosphorylated PKC substrates, showing a band of the same molecular weight 

as LamC (arrow) which increases in intensity in extracts derived from larvae 

expressing PKM in muscles, and which decreases in intensity in extracts from 

larvae expressing aPKC-RNAi in muscles. N=3 independent blots.  

(M) Immunoprecipitation of body wall muscle extracts with LamC antibody, 

showing that LamC is labeled by the PKC substrate antibody, and that the 

intensity of the label increased when using extracts from larvae expressing PKM 

in muscles. N = 3 independent immunoprecipitations. 
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Figure 2.7- aPKC is required for foci formation, possibly by 

phosphorylating LamC. 
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DFz2C/LamC foci contain synaptic protein transcripts 

We next sought to identify specific mRNAs trafficked through the foci, 

possibly for local translation at postsynaptic sites. Using a candidate approach 

for mRNAs encoding known postsynaptic proteins and others involved in nervous 

system development, we identified 6 transcripts localizing to the foci among 19 

mRNAs tested (Table 2.2). Of these, the PDZ protein Par6 was selected for 

further study (Figure 2.8). Par6 is part of a tripartite protein complex, consisting of 

Baz, Par6, and aPKC (Betschinger et al., 2003). At the Drosophila NMJ all three 

proteins localize both pre- and postsynaptically (Ruiz-Canada et al., 2004), and 

both Baz and aPKC have been implicated in cytoskeleton remodeling during 

synaptic growth (Ramachandran et al., 2009; Ruiz-Canada et al., 2004). In 

addition to colocalizing with nuclear LamC foci (Figure 2.8A), Par6 mRNA was 

observed in puncta near folds of the lamina, where LamC foci were not yet 

apparent (Figure 2.8B). These could represent granules in the process of 

formation prior to their translocation into the perinuclear space. Notably, we also 

observed Par6 mRNA granules within evaginations of the nuclear lamina (Figure 

2.87C,D), likely representing the nuclear envelope evaginations observed at the 

ultrastructural and light microscopy levels.  

In S2 cell extracts, an antibody against the C-terminus of DFz2 

immunoprecipitated Par6 mRNA but not an mRNA (Mad) absent from DFz2C foci 

(Figure 2. 8M; Table 2.2). The Par6 primers used were in adjacent exons and the 

RT-PCR product was of the size expected from spliced mRNA.  The identity of 
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the RT-PCR product was confirmed by sequencing.  Thus the Par6 RNA 

associated with DFz2C is spliced, suggesting that it is mature. 

The presence within DFz2C granules of mRNAs encoding postsynaptic 

apparatus components raises the possibility that these granules are trafficked to 

the NMJ where the mRNAs within are locally translated, as has been 

demonstrated for RNA granules in neurons (Wang et al., 2010). Indeed, local 

translation of GluRs has been reported at the NMJ (Sigrist et al., 2000) and the 

SSR contains polyribosomes (Sigrist et al., 2000). Using two different Par6 

probes we found that Par6 mRNA was associated with the NMJ (Figure 2.8H-J) 

and no signal was observed with a wg probe (Figure 2.8K). The NMJ Par6 signal 

was virtually eliminated upon expressing LamC-RNAi in muscles (Figure 2.8L) 

confirming the specificity of the signal. Further, ghost boutons present in lamC 

mutants were devoid of postsynaptic Par6 protein, and showed a marked 

decrease in overall postsynaptic Par6 levels (Figure 2.8E, F). Taken together 

these data suggest that proper localization and local translation of at least one 

postsynaptic transcript, Par6, requires the FNI pathway. 
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Figure 2.8- par6 transcript is localized to nuclear body wall muscle LamC 

foci and the NMJ, and forms a complex with DFz2C.  

(A-D, G-L) In situ hybridization to larval body wall muscles using par6 or wg 

probes showing (A) association of par6 mRNA with a LamC focus (arrow); (B) 

localization of par6 transcript near a nuclear membrane fold; (C, D) localization of 

par6 transcript to cytoplasmically directed projections of the nuclear boundary. 

A2-D2 are high magnification views of the nuclei shown in A1-D1. (G) Absence of 

FISH signal when using a wg probe; (H) a low magnification view of par6 mRNA 

at the postsynaptic larval NMJ; (I-J) synaptic par6 mRNA localization using 2 

different par6 probes; (K) absence of synaptic wg mRNA localization; (L) synaptic 

par6 mRNA localization in a larva expressing LamC-RNAi in muscle, showing 

virtual elimination of postsynaptic par6 mRNA. 

(E-F) Larval NMJs labeled with antibodies against HRP and Par6 in (E) wild type 

and (F) lamC mutant showing a ghost bouton (arrow) devoid of Par6 

immunoreactivity and an overall decrease in Par6 levels throughout the NMJ. 

Calibration bar is 15µm for A1, B1, G, 7µm for A2, B2, 5µm for C1, D1, J, 2.5µm 

for C2, D2, 20µm for H, and 10µm for E, F, I, K, L. 

(M) Immunoprecipitation of par6 RNA using DFz2C antibodies.  Left: 

immunoprecipitation of DFz2C fragment using anti-DFz2C antibody. Middle: RT-

PCR from S2 cell RNA showing the presence of par6 and mad transcripts in S2 

cells. Right:  RT-PCR of the DFz2C immunoprecipitate showing the presence of 

par6 but not mad transcripts. 
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Figure 2.8- par6 transcript is localized to nuclear body wall muscle LamC 

foci and the NMJ, and forms a complex with DFz2C.  
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DISCUSSION 

The canonical view of nucleocytoplasmic transport posits that the sole 

gateway into and out of the nucleus is the nuclear pore complex (NPC).  Thus all 

RNAs and RNPs synthesized and assembled in the nucleus are thought to 

access the cytoplasm by transiting the NPC.  Our study now provides evidence 

for an alternative RNP export pathway:  nuclear envelope budding.  We 

uncovered this pathway while investigating Wnt-dependent NMJ synapse 

development in Drosophila larval body wall muscles.  We find that C-terminal 

fragments of the Wg receptor DFz2 accumulate in nuclear foci in association with 

large RNA granules localizing to the space between the INM and ONM.  These 

granules are found at sites of INM invaginations, are bounded by LamC, and can 

be seen leaving the nucleus.  Further, the granules contain transcripts encoding 

postsynaptic proteins, and mutations interfering with foci formation prevent 

proper differentiation of synaptic boutons.  Thus we suspect that, after exiting the 

nucleus by budding, the DFz2C RNP granules translocate to sites of synapse 

formation where local translation of the encoded proteins contributes to synapse 

assembly.   

In addition to describing a novel pathway for nuclear export of 

endogenous RNPs, our work sheds light on the previously mysterious 

mechanisms by which mutations in nuclear lamins and INM proteins lead to 

muscular dystrophies and related movement disorders (Burke and Stewart, 2002; 

Mejat et al., 2009).  Further, by showing that nuclear import of a membrane 
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receptor fragment serves to promote export of mRNA transcripts, this work adds 

a novel twist to the molecular mechanisms governing membrane to nucleus 

communication in Wnt signaling pathways. 

 

Nuclear envelope budding and herpes viral egress 

The nuclear budding pathway described here bears remarkable 

resemblance to the nuclear egress mechanism employed by herpes viruses. 

Herpes capsids containing dsDNA are assembled in the nucleus, where they 

form multimegadalton complexes much too large to pass through NPCs. Instead, 

they exit via INM envelopment and ONM de-envelopment (Figure S2.3H) (Lee 

and Chen, 2010; Roller, 2008). Until now this highly unusual nuclear export 

pathway had been thought unique to this family of viruses, and not representative 

of any endogenous nuclear export pathway (Roller, 2008).  Rather it was 

supposed that herpes viruses had hijacked the lamina disassembly pathway 

operational during nuclear replication (Haas and Jost, 1993).   

Both herpes virus egress and replication-dependent nuclear envelope 

disassembly involve multiple phosphorylation events (Roller, 2008). In capsid 

egress, viral proteins pUL34 and pUL31 are targeted to the INM where they 

recruit viral pUS3 kinase and host PKCs (Park and Baines, 2006; Reynolds et al., 

2004; Ryckman and Roller, 2004). Both pUS3 and the host PKCs disrupt the 

nuclear lamina by phosphorylating lamins, including LMNA, and other lamina-

associated proteins (Bjerke and Roller, 2006; Leach and Roller, 2010; Milbradt et 
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al., 2010). Both pUL34 and pUL31 have also been suggested to induce INM 

curvature around the capsid, facilitating budding into the perinuclear space 

(Klupp et al., 2007).  

We present multiple lines of evidence supporting the idea that local lamina 

remodeling at sites of DFz2C granule formation is driven by the same 

mechanisms at work in viral capsid egress and that these mechanisms have 

profound implications for synapse development. First, atypical PKC is required 

for both lamina remodeling and formation of INM invaginations containing DFz2C 

granules (Figure 2.6D-F, J).  Second, the apparent phosphorylation level of a 

species with identical electrophoretic mobility to LamC paralleled changes in 

aPKC activity (Figure 2.6L), and this same band was immunoprecipitated with 

antibodies to LamC (Figure 2.6M). Third, the aPKC recruitment factor Baz also 

localized to DFz2C/LamC foci (Figure 2.6A), and Baz downregulation in muscles 

prevented DFz2C/LamC foci formation (Figure 2.6J). Fourth, altered aPKC 

activity through RNAi or expression of a constitutively active enzyme, as well as 

decreasing Baz levels, resulted in an increase in ghost bouton number (Figure 2. 

6K), similar to other disruptions of the FNI pathway (Figure 2. 1J). Fifth, 

downregulation of the FNI pathway through LamC-RNAi, or DFz2 overexpression 

in muscles, led to an increase in GluRIIA clustering similar to that observed in 

mutations in dapkc and baz (Figure 2. 1P-S and Ramachandran et al 2009; Ruiz-

Canada et al 2004).  This increase in GluR clustering was reflected by an 

elevation of mEJP amplitude (Figure 2. 1N), as also observed in dapkc and baz 
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mutants. Finally, immunofluorescence from an antibody recognizing 

phosphorylated PKC substrates was greatly enhanced at DFz2C/LamC foci 

(Figure 2.6H, I).  Thus we propose that herpes viruses have in fact hijacked a 

nuclear export pathway employed by endogenous RNPs. 

 

Other reports of perinuclear granules 

That nuclear envelope budding has not been previously investigated as a 

means for endogenous RNP egress raises the question of whether this is a 

highly specialized mechanism utilized only by Drosophila larval muscle cells, or is 

a more widespread phenomenon.  Our results and reports in the literature 

strongly support the latter view.  Notably, we observed DFz2C/LamC foci in both 

Drosophila salivary gland (Figure S2.1C) and in S2 cell nuclei (Figure 2.3C, D), 

both of which appear to utilize the FNI signaling pathway.  Others have also 

reported INM infoldings containing electron dense granules (suggested to be 

aggregates of RNPs) in Drosophila salivary glands and midgut cells at specific 

developmental stages (Gay, 1956; Hochstrasser and Sedat, 1987). Similar 

perinuclear granules have likewise been observed in diverse contexts, from 

plants (Dickinson, 1971) to mammals, where they are particularly prevalent in 

early embryonic stages (Hadek and Swift, 1962; Szollosi, 1965).  Indeed, that 

such granules might reflect an alternate mode of nucleocytoplasmic export has 

been previously proposed (Gay, 1956; Szollosi and Szollosi, 1988), but it had not 

been experimentally validated until now.  The combination of our data with the 
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numerous cytological reports of perinuclear granules strongly supports the notion 

that nuclear envelope budding is a general mechanism for nuclear export of large 

RNP granules in many cell types. 

 

Congenital neuromuscular diseases and nuclear budding  

Mutations across the human LMNA gene lead to a diverse set of disorders 

(Burke and Stewart, 2002) termed laminopathies, with extreme variability in their 

tissue specificity and pathogenesis. Some manifest as muscular dystrophies 

affecting specific skeletal muscles (Burke and Stewart, 2002; Mejat et al., 2009). 

While laminopathies affecting muscles have been historically classified as 

myopathies, recent evidence in mice indicates that gross NMJ defects are 

detectable well before any signs of muscle degeneration (Mejat et al., 2009).  

Similarly, we observed no alterations in Drosophila larval muscle morphology or 

organization in the same lamC mutants wherein defects at the NMJ were clearly 

evident (Figure 2.1F-L, S2.1L).  Thus, the underlying basis of many muscle-

specific laminopathies could be disruption of nuclear budding leading to improper 

NMJ development.  Consistent with this are observations that insertion of GFP 

sequences in the highly conserved rod domain of fly LamC (this report and 

(Schulze et al., 2009)) results in formation of LMNA-positive "O-ring" structures in 

the nucleus, as well as disruption of both DFz2C granule organization and NMJ 

development.  Similar O-rings have been observed in humans with autosomal 
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dominant Emery-Dreifuss muscular dystrophy (AD-EDMD) (Ostlund et al., 2001; 

Schulze et al., 2009), which is caused by mutations in this same rod domain.  

An additional link between congenital neuromuscular disease and nuclear 

budding is provided by studies of Dystonia, a sustained muscle contraction 

disorder (Robottom et al., 2011). Dystonia symptoms are ameliorated by 

botulinum toxin treatment (Lim and Seet, 2010), suggesting defects in 

neurotransmission. The AAA+ ATPase TorsinA is responsible for most cases of 

early-onset autosomal-dominant primary dystonia (Breakefield et al., 2001). 

Besides its role in synaptic vesicle recycling (Granata et al., 2008), a recent study 

indicates that TorsinA is required for HSV nuclear egress (Maric et al., 2011b). 

Moreover, ultrastructure analysis of developing motorneurons in torsinA mutant 

mice revealed accumulations of vesicular structures in the perinuclear space 

(Goodchild et al., 2005).  Taken together, these results raise the intriguing 

possibility that TorsinA functions to promote nuclear envelope scission during 

nuclear budding, and that alterations in RNP granule export might contribute to 

the phenotypic characteristics of Dystonia. 

 

Role of DFz2C granules in synapse development 

Using a candidate approach, we identified several transcripts colocalizing 

with DFz2C/LamC foci encoding postsynaptically localized proteins required for 

synapse development and plasticity.  Packaging of these RNAs into DFz2C 

granules appeared quite specific, as numerous transcripts encoding other 
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synaptic proteins were absent from the foci. The observation that RNAs in 

DFz2C foci exit the nucleus and that at least one of the transcripts, Par6, is 

localized to synaptic boutons, suggests that mRNAs exported by nuclear 

envelope budding translocate to postsynaptic sites for local translation, as has 

been well documented for large RNA granules in neurons (Wang et al., 2010). 

However, where such RNA granules are initially formed has not been eese et  

An important future direction will be to determine whether each granule 

contains a single mRNA, or is a combination of transcripts. Further, the exact role 

of DFz2C in assembly and/or transport of granules is at present unclear. Neither 

is it known whether DFz2C remains associated with the granules after nuclear 

egress.  Intriguingly, DFz2C contains a C-terminal PDZ binding motif, raising the 

possibility that it may provide a zip code for targeting the granules to postsynaptic 

sites.  

Combined, our results provide novel insight into how synapses 

communicate with the nucleus to regulate both gene expression and nuclear 

envelope architecture.  In the future it will be of great interest to determine the 

extent to which the nuclear budding pathway extends to other Wnt receptors and 

whether it contributes to localized protein expression in response to other signal 

transduction pathways. 
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Table 2.1- GFP-Trap Lines Screened 

Trap ID symbol Name; function Gene ID 
CA06921 Hrb98DE Heterogeneous nuclear ribonucleoprotein at 98DE CG9983 
CA06961 pUf68 poly(U) binding factor 68kD CG12085 
CA07692 Spt6 chromatin binding CG12225 
CB02119 Rm62 RNA interference CG10279 
CB02655 sqd Squid; mRNA binding CG16901 
CB03028 SF2 nuclear mRNA splicing CG6987 
CB03248 xl6 nuclear mRNA splicing CG10203 
CB04769 eIF3-S9 translation initiation factor CG4878 
CC00233 sm Smooth; mRNA binding CG9218 
CC00236 shep Alan Shepard; mRNA binding CG32423 
CC00479 pum Pumilio CG9755 

 
CC00511 

 
CG32062 

Ataxin-2 binding protein 1; transcription factor 
binding 

 
CG32062 

CC00645 CG7185 alternative nuclear mRNA splicing, CG7185 
 
CC00737 

Tudor- 
SN 

transcription coactivator activity  
CG7008 

CC01220 CG33123 leucine-tRNA ligase activity CG33123 
CC01391 CG11266 CAPER; alternative nuclear mRNA splicing CG11266 
CC01563 Hrb98DE Heterogeneous nuclear ribonucleoprotein at 98DE CG9983 

 
CC01925 

 
tra2 

transformer 2; regulation of nuclear mRNA 
splicing 

 
CG10128 

 
CC02043 

Aats- 
glupro 

Glutamyl-prolyl-tRNA synthetase  
CG5394 

CC06033 Hrb87F Heterogeneous nuclear ribonucleoprotein at 87F CG12749 
CC06119 CG9809 Spargel; mRNA binding CG9809 
G00108 CG32423 Alan Shepard; mRNA binding CG32423 
G00261 shep Alan Shepard; mRNA binding CG32423 
P00002 sqd Squid; mRNA binding CG16901 
YB0052LE Rm62 RNA interference CG10279 
YB0060 sqd Squid; mRNA binding CG16901 
YB0077 Rm62 RNA interference CG10279 
YB0256 Rm62 RNA interference CG10279 
YC0015 Hrb98DE Heterogeneous nuclear ribonucleoprotein at 98DE CG9983 
YC0023 sm Smooth; mRNA binding CG9218 
YD0623 Rm62 RNA interference CG10279 
ZCL0588 Hrb98DE Heterogeneous nuclear ribonucleoprotein at 98DE CG9983 
ZCL0734 sqd Squid; mRNA binding CG16901 
ZCL2020 Pabp2 poly(A) RNA binding. CG2163 
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Table 2.2- Transcripts Tested for Their Localization at LamC Foci 

 
Gene Probe ID Forward 

Primer 
Reverse 
Primer 

Signal at 
foci 

Evenness 
Interrupted/Wntless 

Evi/Wls AAGGTCACACTGCTTT 
GTTG 

ACAGAAAGAGGA 
AATAAATGGCTG C 

no 

Atypical Protein 
Kinase C 

aPKC TTTAAGACAGAGGCC 
GCACG 

ACACATCTTCCA 
GGCCAAGC 

no 

dCASK/Caki dCASK AGTTTCAGAAGAACAC 
GGAC 

AAGAAGTGACCG 
TATAGCTG 

yes 

Saxophone Sax GGCCCAGTAAACGCA 
ATACG 

CTATCACGCAGG 
AGCCGTTC 

no 

Mothers against Dpp Mad ATGGATTTCAATCCAA 
CAGG 

GTCTCCCATCGC 
AAGGGTCT 

no 

Wishful thinking Wit GCTTTGTAGGGAGGT 
GTTGC 

ACACTTTCTGTTT 
CACCATC 

no 

Thick vein Tkv CACACCCAAGCTGAC 
CACAC 

TACATCATCCTC 
CTGCCAGC 

yes 

Shibire Shi TTGGCGTGGTGAATA 
GATCC 

CCATCGGGACTA 
AATAAAGC 

no 

Par6 Par6 
probe 1 

GTCGAAGAACAAGAT 
AAACACAACG 

GCAGCACTCCAT 
CCTTGACATC 

yes 

Par6 Par6 
probe 2 

GGATTAACCCGGCGA 
TACAG 

GACGAGTATTGG 
ACACAATGAC 

yes 

Bazooka/Par3 Baz CCAGCGCCTCCCATT 
CCGGT 

GATAAGCAGCGC 
CGTGTTGC 

no 

Discs-Large DLG ATGGCGATGATAGCT 
GGTTATACG 

CTCTTGGTCGCT 
GCCATCTTC 

no 

Actin 5C Act5C AAATGTGTGACGAAG 
AAGTTGCTG 

TTAATACGCTGG 
AACCACACAAC 

no 

Fasciclin 2 FasII GCTCGAAATGATCGG 
AATAG 

CACAGCAAGAGG 
CAAACCAG 

no 

dPak dPak TCCAAGAAGCCAGTG 
GAGAAG 

TATTCTTGTCCAG 
CGTCGTCG 

yes 

Beta Spectrin ßspec TATGTGGATATGCGG 
GATGG 

ATAACGCTCCGA 
TTCCAGTTC 

no 

Ca2+/ Calmodulin- 
dependent protein 
kinase II 

CamKII TGTACGCGTTTTTCGG 
ACAATTACG 

CGACTGTAGTAC 
TGCGATCAACGG 

yes 

Membrane associated 
guanylate kinase 
Inverted 

Magi GCCAATAATCACGGC 
CACGAC 

TCCCGTCACTTC 
CCACAATC 

yes 

Glutamate Receptor 
IIC 

GluRIIC AGTTCGACGAGG 
ATGGACAG 

GGTCAACACCTT 
CCAGATTGTC 

no 

Wingless Wg CATTGCCAAGGTCGG 
CG 

GCCGGTATCGAC 
GAATTCC 

no 
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Movie 2.1- RNA Granule Leaving the Foci 

This movie represents a single confocal slice through a body wall muscle nucleus 

stained with E36 dye. The entire movie represents 3 min, 36 s in real time (18 s 

per time point), or 12 frames, played back at 3 frames per second. Arrowhead 

points to exiting granule. N = nucleus, nu = nucleolus 

http://www.cell.com/cell/fulltext/S0092-8674(12)00420-5# 

 

Movie 2.2- RNA Granule Leaving the Foci 

This movie represents a projection of three confocal slices (∼1.5 µm) through a 

body wall muscle nucleus stained with E36. The movie represents 2 min, 8 s in 

real time (17 s per timepoint), or 8 frames, played back at 3 frames per second. 

Arrowhead points to exiting granule. N = Nucleus, nu = nucleolus. 

http://www.cell.com/cell/fulltext/S0092-8674(12)00420-5# 
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EXPERIMENTAL PROCEDURES 

Fly Strains. All flies were reared on standard Drosophila medium at 

temperatures between 18-29 ˚C, depending on the nature of the experiment.  

The following strains were used: Canton S (CS) (wild type);  w;LamCEX296 / 

w;LamCEX265, P-element excisions predicted to be protein nulls (Schulze et al., 

2005); w;;dfz2C1 FRT2A /Df(3L)dfz2 (Mathew et al., 2005). For muscle rescue of 

lamC nulls we used w;LamCEX265 / BG487, LamCEX296; UAS-LamC-3 / +, with 

BG487-Gal4 driving expression in muscle 6/7 in an antero-posterior gradient 

(Gorczyca et al., 2007).  The following RNAi lines were utilized: UAS-DFz2-RNAi 

(ID – 44391; Vienna Drosophila RNAi Center [VDRC]) (Dietzl et al., 2007), UAS-

LamC-RNAi built in the pWiz vector (see below) and UAS-aPKC-RNAi 

(Ramachandran et al., 2009). UAS-Par6-RNAi (ID-19371, VDRC), and UAS-Baz-

RNAi (Ramachandran et al., 2009). For DFz2 overexpression, we used UAS-

DFz2 (Mathew et al., 2005). For PKM expression we used UAS-PKM (Ruiz-

Canada et al., 2004) and hs-PKM (Drier et al., 2002). RNAi knockdown, DFz2 

overexpression and UAS-PKM expression was carried out using the muscle-

specific Gal4 strain C57-Gal4 (Budnik et al., 1996). We also used the GFP traps: 

PABP2-GFP (ZCL2020) and lamCGFP-trap/+ (G00158) (Yale FlyTrap collection); 

Morin et al., 2001), containing GFP fused in frame to the endogenous loci 

(Buszczak et al., 2007; Kelso et al., 2004; Morin et al., 2001). 

Immunocytochemistry and Fluorescent Dye Labeling. The following 

antibodies and fluorescent labels were used: mouse anti-LamC, 1:30 (LC28.26; 
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Developmental Studies Hybridoma Bank (DSHB))(Riemer et al., 1995), rabbit 

anti-DFz2-C, 1:500(Mathew et al., 2005), mouse anti-nuclear pore complex 

mAb414, 1:300 (ab24609- Covance)(Aris and Blobel, 1989), rabbit anti-PABP2, 

1:1500 (Benoit et al., 1999), rabbit anti-Baz, 1:600 (Wodarz et al., 1999), rabbit 

anti-aPKC, 1:2000 (Sigma)  rabbit anti-PKC substrate, 1:2000 (Cell Signaling 

Technology),  goat anti-Horseradish Peroxidase (HRP) 1:200 comjugated to 

Dylight 488, 594, or 649 (Jackson Immunoresearch), Alexa Fluor 488 

conjugated-Conconavalin-A (ConA) 50 µg/ml (Molecular Probes), Propidium 

Iodide (PI) 10 µg/ml (Sigma), Hoechst 3342, 100 µg/ml, texas red (TxR)-

conjugatged dextran, 50 µg/ml (70kD; Molecular Probes), and E36 RNA dye(Li et 

al., 2006), 10µM in HL3 saline and 0.2% DMSO. For PI staining, fixed body wall 

muscle preparations were first treated with 500 µg/ml RNAse A for 20 minutes 

and then incubated with PI for 20 minutes.  Hoechst 3342 staining was applied to 

preparations for 1.5 hours. Fixable texas red (TxR)-conjugatged dextran was 

pressure injected into the muscle using a PV380 Pneumatic PicoPump and 

beveled sharp electrodes. Briefly, sharp electrodes (~4-5 megaohm) were pulled 

on a Flaming/Brown micropipette puller and then beveled at a15˚ angle to a final 

resistance of ~2 megaohm.  Dextran dye was resuspended in an internal patch 

clamp solution(Yoshihara et al., 2000) and passed through a 0.2 µm filter via 

centrifugation.  Muscles 6 or 7 from dissected larval body wall muscle 

preparations bathed in 0.1 mM Ca2+ HL3 saline were pressure injected using 4 

ms pulses of ~ 8-10 lbs until sufficient dye was injected as determined under 
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epifluorescence. After injection, the dye was typically given ~ 40 minutes to 

diffuse before fixation. All fixations were performed at room temperature with ice-

cold, freshly made, 4% paraformaldehyde for 15 minutes.  

Image acquisition and analysis. Confocal images were acquired using a Zeiss 

LSM5 Pascal confocal microscope equipped with a Zeiss 63x Plan-Apochromat 

1.4 NA DIC oil immersion objective at a digital zoom of 3x which met the Nyquist 

sampling requirements (pixel size equals 51 nm in XY) and Z step of 170 nm, 

unless otherwise indicated. Hoechst 3342 images were captured with a spinning 

disk confocal microscope equipped with a CoolSNAPTM HQ camera (1392x1040) 

and a Nikon 60x Plan-apochromatic, NA 1.4 objective.  FISH images were 

captured on a spinning disk confocal microscope equipped with a Zeiss 63x 

Plan-Apochromat 1.4 NA DIC oil immersion objective and a Hamamatsu C9100-

13 EM-CCD camera (512x512), with a total magnification of 150X to the CCD 

(pixel size = 100 nm in XY) and a 200 nm step. For deconvolution, as noted in 

figure legends, images were deconvolved using measured point spread functions 

(PSF) and the iterative deconvolution algorithm in the image analysis software 

package Volocity (Perkin Elmer).  Briefly, a PSF was obtained for each 

acquisition channel (laser lines 488, 543 and 6330 to avoid chromatic aberration 

issues and reregistering images if necessary) by drying the appropriate 

wavelength Molecular Probes PS-Speck beads (505/515, 540/560 and 633/660) 

onto the back of a coverslip and imaging the beads under the same conditions as 

for the experimental images, with the exception of the laser power and PMT/CCD 
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gain.  To check for changes in the PSF at depth in the muscle, beads were 

injected into the muscle and imaged as they lay on top of the actin contractile 

apparatus, roughly the same plane at which nuclei lie. No obvious differences 

were seen with the PSF from these beads and those at the back of the coverslip, 

and deconvolution using the two PSFs gave similar results. Thus, PSF 

measurements from the back of the coverslip were utilized for the remainder of 

the studies. In Volocity, an iteration limit of 13 was set on the deconvolution 

process.  Deconvolved images were exported as TIFFs from Volocity and 

opened in Photoshop for image construction. 

Quantification of foci, ghost boutons, and bouton volume. Nuclear foci were 

counted at muscles 6 & 7 from abdominal segments A2 and A3 of wandering 

third instar larvae.  All nuclei in each of these muscles were quantified.  The 

average number of foci per nucleus was calculated by dividing the total number 

of foci by the total number of nuclei quantified. The number of foci/nucleus was 

normalized to simultaneously processed wild type controls. Number of nuclei 

analyzed is: wild type=2596, eag Sh=530, DFz2-RNAi-muscle=593, UAS-DFz2-

muscle=617, dfz2C1/Def=302, LamCEX265/ LamCEX296=413, C57/+= 328, aPKC-

RNAi-muscle=532, wild type with chelerythrine=726, PKM-muscle=677, wild type 

heat shock=713, hs-PKM no heat shock=601, hs-PKM with heat shock=595, 

Baz-RNAi-muscle=652. Total number of boutons was quantified in 3rd instar 

larval preparations double labeled with antibodies to HRP and GluRIII, at 

segments A3 muscles 6-7. The number of ghost boutons was assessed by 
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counting HRP immunoreactive boutons that were devoid of GluRIII 

immunoreactivity. Number of NMJs analyzed: wild type=12, LamCEX265/ 

LamCEX296 =12, LamCEX265/ LamCEX296 muscle rescue=18).. Number of NMJs 

analyzed is: wild type=17, LamCEX265/ LamCEX296 =25, LamC-RNAi-muscle=16, 

lamCGFP-trap/+=16. Muscle surface was measured by multiplying the width by the 

length of muscle 6 in segment A3, determined using a scale within the ocular of 

the epifluorecence microscope. Number muscles measured is: wild type=18, 

LamCEX265/ LamCEX296 =31, UAS-LamC-RNAi-muscle=15, lamCGFP-trap/+=15. 

Bouton volume was quantified using Volocity by cropping the image to individual 

boutons based on HRP staining, and then using the software to measure volume. 

Number of boutons analyzed is: wild type= 263, LamCEX265/ LamCEX296=108, 

LamCEX265/ LamCEX296 muscle rescue=64. For the analysis of PABP2-GFP foci 

vs. F2zC foci, the number of PABP2-GFP and dFz2C foci in a given nuclei was 

counted and then plotted against each other (N=113 nuclei) (Fig. SF4B).  As not 

all nuclei have a PABP2-GFP or Fz2C foci a Spearman correlation analysis in 

Prism5 was run on the data, which suggested there is a significant positive 

correlation between PABP2 and DFz2C foci (Spearman R=0.52). Analysis of the 

data with a Generalized Extreme Studentized Deviate (ESD) test suggested 

there were multiple outliers in the data set (these outliers were not excluded from 

the graph in Fig. SF4B). To ensure that these were not eliciting an erroneous 

correlation, the outliers were removed and the analysis performed again. This 

analysis also suggested a significant positive correlation (p<0.0001) between the 
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two foci (Spearman R= 0.44). The number of PABP2-GFP foci was quantified by 

placing the PABP2-GFP strain into the two experimental genetic backgrounds. 

Number of nuclei is: control=229, LamCEX265/ LamCEX296 =175, dfz2C1/Def= 301. 

Chelerythrine feeding. Wild type larvae were raised under ideal density (50 just 

hatched larvae per 5 ml medium) in a 25-degree humidity controlled incubator.  

When larvae were mid-third instar (selected based on size) they were placed on 

food plates containing, freshly mixed, either 15µL 26mM Chelerythrine (in water) 

or 15µL water (control) per 4 ml media and incubated at 25 ˚C for 21 hours prior 

to fixing. Plates were wraped with aluminum foil as Chelerythrine is light 

sensitive. 

Lambda Phosphatase treatment. Wild type larvae were dissected and fixed 

and then divided between two 0.5mL tubes, both containing 400 µL of 1X 

NEBuffer for PMP with 1mM MnCl2.  One tube contained 10,000 Units of Lambda 

protein phosphatase (New England Biolabs) and the other an equal volume of 

water.  Both tubes were incubated on a rotating shaker at 37°C for 1 hour.  

Samples were then washed in 0.2% Phosphate buffered triton and processed for 

immunocytochemistry. 

Heat shock protocol. Food plates were made as above, but with no drug added.  

Mid-late third instar larvae were collected from wild type and hs-PKM vials and 

either left at room temperature (control) or shifted to 30°C for 30 minutes. Then, 

they were returned to room temperature for a two-hour recovery period prior to 

dissection.   
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Statistical Analysis. Statistical analysis was performed on raw data (i.e.- not 

normalized or transformed). Unpaired two-tailed Student’s t-tests were run for 

comparisons of experiments where a single experimental sample was processed 

in parallel with a wild type control. If the variance between the samples was 

significant, an unpaired t-test with Welch’s correction was performed. In cases 

where multiple experimental groups were compared to a single control, a one-

way ANOVA was performed, with either a Tukey (if variance was not statistically 

significant) or Dunnet  (if variance was not homogeneous) post-hoc tests.   All 

statistical analysis was carried out in Prism 5 (Graphpad Software, Inc.). Error 

bars in all graphs represent ±SEM. 

E36 RNA dye staining and live imaging. Larvae were grown at 25˚C at low to 

mid density. One hour prior to dissection and imaging, larvae were placed for 1 

hour at 29˚C to increase activity. Single larvae were dissected in 0.1 mM Ca++-

containing HL3 saline, leaving body wall muscles and CNS intact. Then, the 

preparation was incubated in 100 µM E36 for approximately 20 minutes at room 

temperature, washed, and the nuclei imaged by time-lapse microscopy for 

approximately 20 min at 150X magnification using a 40X 1.2NA water immersion 

objective, using an Improvision spinning disk confocal microscope. Image 

acquisition was carried out through a Z-stack spanning the entire volume of the 

nuclei, including fiduciary markers, such as trachea, neighboring nuclei and 

nucleoli. After imaging, samples were fixed and immunostained with antibodies to 

LamC and/or DFz2C. Samples were imaged again to identify the foci and images 
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scaled to time-lapse images using the fiduciary markers.  For analysis of movies, 

individual granules were tracked across Z-sections by hand. The movie shown 

Suppl. Movie 1 is a single confocal slice and represents 3 minutes, 36 seconds 

(18 seconds per frame), while Suppl. Movie 2 is a Z-stack of 3 slices, as the 

granule moved across these focal planes and represents 2 minutes, 8 seconds 

(17 seconds per frame).  

Fluorescence In-situ Hybridization (FISH). The FISH protocol is an adaptation 

of (Tam et al., 2002). Briefly, larvae were dissected, pre-extracted for 5 min in 

RNAse-free 0.1M Phosphate buffer containing 0.5% Triton-X100 (0.5% PBT) and 

10mM Ribonucleoside-vanadyl complex (RVC, New England Biolabs), and then 

fixed in ice-cold 4% Paraformaldehyde (Sigma) in 0.1M phosphate buffer for 30 

minutes. Preparations for synaptic FISH were then transferred directly to 0.2% 

PBT with 10mM RVC, while preparations for nuclear in situ were fixed for an 

additional 10 min in ice cold 100% Methanol, and then transferred to 0.2% PBT 

with 10mM RVC.  Preparations were dissected quickly to minimize RNA 

degradation, with less than 30 min between the first and last preparation.  

Samples were incubated for a minimum of 20 min in 0.2% PBT, with one 

exchange of fresh 0.2% PBT with 10mM RVC after 10 min.  Samples were then 

gradually exchanged into hybridization buffer (2X SSC, 10% Dextran Sulfate, 

20mM RVC, 50% Formamide), by first mixing with 50% hybridization buffer for 5 

min, and then with 100% hybridization buffer for 10 min.  Probes (see below) 

were mixed (equal parts digoxigenin-tagged probe and blocking probe) and 
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heated to 80°C for 10 min, then combined with concentrated hybridization buffer 

(4X SSC, 20% Dextran Sulfate, 40mM RVC) to a final concentration of 2.5ng/µL 

probe and blocking probe, applied to samples, and incubated at 37°C for 3 hr (for 

synaptic FISH) or up to 18 hr (for nuclear FISH).  Samples were then washed 

sequentially in 2X SSC with 50% formamide, 2X SSC, and 1X SSC for 15 min 

each.  Samples were then exchanged back to 4X SSC, and then incubated in 

1:100 Sheep anti-Digoxigenin (Sigma) with 20mM RVC for 1 hr at 37°C.  

Preparations were then washed in 4X SSC, 4X SSC with 0.1% Triton-X100, and 

4X SSC for 10 min each, then fixed in 4% paraformaldehyde for 10 min, and 

washed 3 times in 0.2% PBT for 10 min each.  Preparations were subsequently 

treated for 2 hours with 1:200 Donkey anti Sheep-FITC, washed 3 times in 0.2% 

PBT, and then overnight in 1:700 Rabbit anti-FITC (Invitrogen) and either 1:30 

Mouse anti-LamC (DSHB) (for nuclear FISH) or anti-FITC alone (for synaptic 

FISH).  Finally, preparations were incubated with fluorescently labeled 

quaternary antibodies labeled with Dylight 488, Dylight 594, or Dylight 649, and 

Goat anti HRP-Dylight 594 or Dylight 649 (Jackson Immunoresearch).   

Probe preparation for FISH. Probes were designed against 0.8-1.4 Kb regions 

of genes of interest (Suppl. Table 2) that showed minimal (less than 18 bp 

similarity) to no homology to other genes in the Drosophila genome. Probes were 

PCR amplified from cDNA, purified, and then applied to a Bionick (Invitrogen) 

nick translation kit, along with digoxigenin-11-dUTP (Roche), incubated for 2.5 hr 

at 18°C, treated with 5% SDS plus 0.25M EDTA and heated to 65°C for 10 min.  
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Probes were then mixed with 10µg salmon sperm DNA for every 1µg probe, and 

precipitated with ethanol and sodium acetate.  Probes were resuspended in 

100% formamide to a concentration of 10ng/µL, and stored at -20°C until 

needed.  Blocking probe was prepared the same way as above, but with dTTP in 

place of dig-dUTP.  PolyT and PolyA probes were 24 nucleotide oligos with 

digoxigenin tags on both the 3’ and 5’ ends (Integrated DNA Technologies). 

Electron Microscopy. Transmission electron microscopy was carried out as in 

(Korkut et al., 2009). Immuno-gold labeling was accomplished by a modification 

of the protocol by (Yamashita et al., 2009). Briefly, larvae were dissected and 

fixed with 4% formaldehyde containing 2.5 mM CaCl2, 1.25 mM MgCl2 in a 0.1 M 

HEPES buffer (pH 7.4) for 2 hrs and then with the same fixative in 0.1 M HEPES 

(pH 8.5) overnight at room temperature. Osmolarity of the fix solution was 

adjusted to ~ 330 mOsm by the addition of glucose. After fixation, specimens 

were rinsed in fresh HEPES buffer and dehydrated in a graded series (50%, 

70%, 90%, and 100%) of dimethylformamide (DMF) on ice. Samples were 

infiltrated with DMF and LR White at ratios of 2:1 and 1:2 respectively for 30 min 

each and finally with pure LR White overnight at 40°C.  Polymerization of the 

resin was carried out overnight at 55°C. Ultrathin sections were collected on 

Nickel grids and incubated with 20 mM Tris buffer (pH 9.0) for 2 hr at 95°C in a 

PCR cycler.  After cooling, the grids were washed in 0.1M TBS (pH 7.2) for 30 

min at room temperature.  Subsequently the grids were incubated with LamC 

(1:50 to 1:5) and/or DFz2C  (1:500 to 1:250) antibodies overnight at 4°C.  Grids 
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were then washed in 0.1 M TBS (pH 7.2) for 30 min at room temperature.  

Immuno-gold labeling was accomplished with 12 nm or 18 nm colloidal gold 

particles conjugated to secondary antibodies for 1-3 hrs. After washing in TBS for 

30 min the grids were fixed with 2% glutaraldehyde containing 0.05% tannic acid 

in 0.1 M phosphate buffer (pH 5.5) for 5 min.  Some grids were exposed to 

osmium vapor for 5- 10 min and then all grids were stained with uranyl acetate 

and lead citrate and viewed with a FEI EM 10 electron microscope at 80 kv.     

Regressive EDTA. Regressive EDTA was conducted as in(Monneron and 

Bernhard, 1969) Briefly, grids were stained with freshly prepared 5% uranyl 

acetate for 3 min, then rinsed in water for 3 min. Grids were then immersed in 

0.2M EDTA pH-7 for 3 -4 hr, washed in water, stained with lead acetate and 

viewed with a Philips EM10 electron microscope.  

Molecular Biology. The UAS-LamC-RNAi construct was subcloned in the 

Drosophila pWiz transformation vector(Lee and Carthew, 2003).  Briefly, a 547 

base pair fragment  

(1:ATCGATCTCAAGCTTGGCCTTCTCTTTGGCGGTCTCATCGAGCAGCTTGC

GAGCGGCGGCCAGCTCCTTCTCATAGACCGCCTTCAGATTAGAGGTCTCCC

TGTTGACGGTATCCTGGGCGAGATTCAGTTCCTGGGTGAGCCGGCTGTTCT

CGTTCTCCAGGTTGCGCATGCGATCGATGTAGCAGGCCAGGCGATCGTTCA

AATGCTGCAGTTCCTCCTTCTCCTGCTGCCGGCTGGTGCGCGTGGGCGAG

GTGGGTGAGGTGGCGCCCACCCTTGACGAGGTGGATGCCCCGCCCACCG

GCGTGGAGGTGGAGGCGCGCGAAACGCGTGTGTTCAATGTGACGCGGCGT
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GCTGACATTTTTGCAATGTGTTTTCTTTTCTTTTTGCGAGGTGCGAGTTGCTA

AGTTAAGTACGTAATCCTCTCAAGTCACTGTCAATATTTTTCCAGACGTTTGA

TTCTGAATTTTTTTTGCTTGTACGTCCGCCTGCTTTGACGACTAAAAATTGAC

TGAAACTTTGACTCGAAACGAACGGCTATCATCGAC:547) was cloned from a 

cDNA library and ligated in opposing orientations into the EcoR1/AvrII and 

NheI/XbaI sites of pWiz, which flank a consensus Drosophila intron from the 

white gene, thus creating a double stranded snapback RNA when expressed. 

Western Blot. Body wall muscles were dissected and homogenized in lysis 

buffer with phosphatase inhibitors (Ramachandran et al., 2009) and 2-3 larval 

equivalents were loaded in each lane of a 10% acrylamide gel and transferred to 

a nitrocellulose membrane.  The membrane was then blocked with 3% BSA, and 

probed with either Rabbit anti-PKC phosho-serine substrate (Cell signaling) or 

Mouse anti-LamC (DSHB).  After second antibody incubation, using either 

Donkey anti-rabbit or anti-mouse secondary antibodies conjugated to peroxidase, 

a Chemiluminescent detection kit (GE life sciences) was used to detect the 

signal.   
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Preface to Chapter III 
 

 

In this chapter we begin to elucidate the molecular mechanisms underlying 

mega-RNP budding. We identify Torsin, a AAA-ATPase, implicated in early onset 

dystonia, as a mediator of the inner nuclear membrane scission during nuclear 

envelope budding of large RNA granules.  

 

 
 
 
 
 
 
 
My contribution to this Chapter are: Figures 3.1, 3.2A-G, 3.3A-L, 3.4A-G, 3.6, 
3.7A-B 
John Nunnari contributed: 3.2A-G, 3.3A-D, 3.4C-G 
James Ashley contributed: Figure 3.5, 3.7C-D 
Vivian Budnik contributed: Figure 3.2H-I 
 
The following chapter has been published as: 

Jokhi V, Ashley J, Nunnari J, Noma A, Ito N, Wakabayashi-Ito N, Moore MJ, 
Budnik V. Torsin mediates primary envelopment of large ribonucleoprotein 
granules at the nuclear envelope. Cell Rep. 2013 Apr 25; 3(4):988-95. 
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Chapter III 
 

Torsin mediates primary envelopment of 
large ribonucleoprotein granules at the 

nuclear envelope 
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  INTRODUCTION 

Polarized assembly of cellular complexes often depends on formation of 

translationally silent RNA transport granules containing mRNAs and associated 

structural and regulatory components (e.g., proteins and miRNAs). These RNA-

protein complexes (RNPs) are shuttled to distinct cellular locales where, upon 

specific stimuli, the mRNAs are translated into protein building blocks for local 

cellular architectures and macromolecular complexes (Richter, 2001). Particularly 

notable is RNP transport in the nervous system, where long-term changes in 

synaptic structure and function frame key events enabling organisms to respond 

to their changing environment. A special case of this adaptation is the ability of 

organisms to learn and remember (Wiersma-Meems et al., 2005). In these 

processes, localized translation of mRNAs links synaptic plasticity-inducing 

stimuli to the synthesis of effector proteins underlying enduring changes in 

synaptic structure and function (Barco et al., 2008).  

Until recently, it was thought that all mRNA export occurred one molecule at a 

time through the nuclear pore complex (NPC) suggests that mRNAs are exported 

one molecule at a time (Grunwald et al., 2011; Kohler and Hurt, 2007). However, 

we recently uncovered a previously unrecognized mechanism by which large 

ribonucleoprotein (megaRNP) granules exit the nucleus via nuclear envelope- 

(NE) budding (Speese et al., 2012), a mechanism previously shown to be utilized 

for the nuclear export of large Herpes-type viral capsids (Maric et al., 2011a; 

Mettenleiter et al., 2006). This budding process and the signaling pathway that it 
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initiates are essential for normal synaptic bouton development at the Drosophila 

larval NMJ (Ataman et al., 2006a; Mathew et al., 2005; Speese et al., 2012). NE-

budding entails primary envelopment of viral capsids (Mettenleiter et al., 2006) or 

megaRNPs (Speese et al., 2012) by the inner nuclear membrane (INM); scission 

of this envelope from the INM creates a membrane bound particle within the 

perinuclear space, which subsequently fuses with the outer nuclear membrane 

(ONM) to allow nuclear escape of the enclosed material. However, the molecular 

mechanisms required for primary envelopment, INM scission and fusion were 

previously unknown. Here we identify Torsin, a AAA-ATPase that in humans is 

linked to both dystonia (Breakefield et al., 2008) and Herpes virus nuclear egress 

(Maric et al., 2011a), as a major mediator of primary megaRNP envelopment 

during NE-budding, likely functioning to promote INM scission. In torsin mutants, 

including those mimicking genetic abnormalities in dystonia patients, megaRNPs 

accumulate within the perinuclear space and the mRNAs contained within fail to 

reach synaptic sites, preventing normal synaptic protein synthesis, and thus 

proper synaptic bouton development. 
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RESULTS  

Torsin mutants result in nuclear DFz2C/LamC foci morphology 

 In humans, the dystonia-specific Torsin1A (TOR1A) mutation 

TOR1AΔE302/303 (also known as TOR1AΔGAG; referred to as TorsinΔE in this paper) 

at the DYT1 gene locus is linked to early onset primary dystonia (Tanabe et al., 

2009). Mouse models expressing TOR1A∆E302/303 accumulate abnormal vesicular 

structures at the NE (Goodchild et al., 2005; Naismith et al., 2004). These NE 

structures show a striking resemblance to the perinuclear megaRNPs we 

recently reported in Drosophila (Speese et al., 2012), raising the intriguing 

possibility that these structures could be related. In cultured Schneider-2 (S2) 

cells and Drosophila larval muscles, megaRNP clusters at the NE can be marked 

at the light microscopy level by antibodies to the C-terminus of the Wnt receptor, 

DFrizzled2 (DFz2C) and the INM-associated protein, Lamin C (LamC). DFz2C 

and LamC partially colocalize at NE-associated foci (DFz2C/LamC foci) (Mathew 

et al., 2005; Speese et al., 2012). To determine if NE defects observed in TOR1A 

mutant animal models reflect defects in NE-budding, S2 cells were treated with 

Torsin-dsRNA, targeting the sole Drosophila homolog of mammalian TOR1A 

(Wakabayashi-Ito et al., 2011). This resulted in significant abnormalities in 

DFz2C/LamC foci at the NE. In untreated S2 cells, NE-DFz2C foci appear as 

bright immunoreactive spots embedded in a thickening of the lamina, marked by 

LamC (Speese et al., 2012) or the B-type lamin LamDm0 (Figure 3.1A). In 

contrast, Torsin-dsRNA-treated cells displayed small DFz2C-immunoreactive 
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puncta dotting the NE, and thickenings of the lamina were barely visible or 

absent (Figure 3.1B; see below for quantification of this phenotype in vivo). In 

mammals, Torsin isoforms are derived from four genes: Tor1A, Tor1B, Tor2A, 

and Tor3A. The DYT1 mutation in Tor1A specifically affects the neuronal NE 

(Goodchild et al., 2005), consistent with the belief that dystonia is a disease of 

the nervous system. This neuronal specificity is likely due to compensation by 

expression of torsinB in nonneuronal tissues, as knockdown of TOR1B in a DYT 

mutant background caused NE defects in nonneuronal cells (Kim et al., 2010). In 

Drosophila, there is a single torsin gene, thus overcoming difficulties associated 

with redundancy. Moreover, we previously showed that NE budding occurs in 

several cell types, including larval body wall muscle cells wherein the large nuclei 

are particularly suitable for high-resolution studies (Speese et al., 2012). In 

addition, the glutamatergic larval NMJ is a powerful model system in which to 

understand mechanisms of synapse development and function. 

 To determine the significance of the S2 cell NE phenotype upon Torsin 

downregulation, DFz2C/LamC foci were examined in torsinKO78-null mutants 

(Wakabayashi-Ito et al., 2011) and in larvae in which Torsin was specifically 

downregulated in muscles by expressing Torsin RNAi using the muscle-specific 

Gal4 driver C57-Gal4 (Budnik et al., 1996). As in untreated S2 cells, NE 

DFz2C/LamC foci were observed in wild-type larvae as DFz2C immunoreactive 

spots surrounded by a thickening of LamC immunoreactivity (Speese et al., 

2012) (Figure 3.1C). In contrast, in larvae expressing Torsin-RNAi in muscles 
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(Figure 3.1D) or in torsin-null mutants, DFz2C foci were observed as small 

puncta decorating the NE but lacking any detectable thickening of the lamina. 

These phenotypes were quantified by determining the percentage of nuclei 

containing DFz2C spots surrounded by a thickening of the lamina (normal foci; 

Figure 3.1G) and the percentage of nuclei containing small NE-associated 

DFz2C puncta lacking LamC thickening (Figure 3.1H). There were highly 

significant differences between wild-type controls and both torsin null mutants as 

well as larvae expressing Torsin-RNAi in muscles (Figures 3.1G and 3.1H). 

 Typical of AAA-ATPases, Torsin contains Walker A and Walker B domains 

involved in ATP binding and ATP hydrolysis, respectively (Neuwald et al., 1999; 

Wakabayashi-Ito et al., 2011; Walker et al., 1982), as well as Sensor1 and 

Sensor2 domains also involved in ATP hydrolysis (Iyer et al., 2004). A conserved 

amino acid deletion in the Sensor2 domain (TorsinΔE; TorsinΔE306 in Drosophila) 

is dominantly linked to dystonia (Ozelius et al., 1997). In addition, an amino acid 

substitution in the Walker B domain (TorsinE!Q; TorsinE177Q in Drosophila) leads 

to a Torsin protein that can dominantly bind to its substrate but is unable to 

hydrolyze ATP and therefore remains bound to this substrate, thus constituting a 

substrate trap (Goodchild et al., 2005; Wakabayashi- Ito et al., 2011). To 

determine if TorsinΔE or TorsinE!Q transgene expression would also disrupt 

DFz2C/LamC foci morphology, we expressed these proteins in larval muscles. 

Expressing TorsinΔE mimicked the torsin-null and Torsin-RNAi phenotypes 

(Figures 3.1E, 3.1G, and 3.1H). In contrast, TorsinE!Q expression resulted in the 
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formation of numerous NE LamC foci, most of which were devoid of DFz2C 

immunoreactivity (Figures 3.1F1 and 3.1G–1I). Careful examination of these 

depleted LamC foci by confocal microscopy demonstrated that many contained a 

small DFz2C puncta, but this signal was barely visible (Figure 3.1F2, arrows). 

The above phenotypes observed upon expressing TorsinDE and TorsinE/Q were 

the specific results of the mutations in the Torsin transgenes, as larvae 

expressing a wild-type Torsin transgene were indistinguishable from wild-type not 

expressing this transgene (Figures 3.1G–3.1I).  
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Figure 3.1- Morphology of Nuclear DFz2C/Lam Foci Is Disrupted in Torsin 

Mutations 

(A and B) Localization and morphology of DFz2C/Lam foci at the nuclei of S2 

cells in (A) untreated cells and (B) cells treated with Torsin-dsRNA. 

(C–F) Localization and morphology of nuclear DFz2C/LamC foci in larval 

muscles of (C) wild-type and (D–F) larvae expressing (D) Torsin RNAi, (E) 

TorsinDE, and (F) TorsinE/Q in muscles. F1 is a low-magnification view. F2 

shows a high-magnification view of DFz2 puncta in the YZ and XY planes. (A)–

(F) correspond to singe confocal slices.  

(G–I) Percentage of nuclear foci showing (G) normal organization of 

DFz2C/LamC, (H) the presence of small DFz2C puncta associated with the 

lamina (see text), and (I) the presence of thickenings of the lamina devoid of 

DFz2C signal. Mus, muscle; N ([number of nuclei;number of larvae]), 

[908;6],[731;6],[639;6],[802;6],[846;6],[733;6],[693;6]. Error bars represent 

±SEM;***p < 0.0001. 

Calibration scales are 14 mm (4 mm for insets) in (A) and (B) and 10 mm (6 mm 

for insets) in (C)–(F). 
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Figure 3.1- Morphology of Nuclear DFz2C/Lam Foci Is Disrupted in Torsin 

Mutations 
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Ultrastructural Organization of NE-Associated megaRNPs Is Disrupted in 

Torsin Mutations 

 To determine the ultrastructural correlates of the above phenotypes, 

untreated and Torsin-dsRNA-treated S2 cells were examined by transmission 

electron microscopy (TEM). As previously described (Speese et al., 2012), 

untreated S2 cells displayed local singlets or clusters of megaRNPs within INM 

invaginations at discrete regions of the NE (Figures 3.2A, 3.2H, and 3.2I), 

paralleling light microscopy observations (Figure 3.1A). In contrast, in Torsin-

dsRNA-treated cells, these local megaRNPs at the NE were reduced by ~75% 

(Figures 3.2H and 3.2I), and instead many mega-RNP granules were often 

observed in rows of singlets lining the perinuclear space (Figures 3.2B and 

3.2C). In these regions, the perinuclear space appeared distended (green in 

Figures 3.2B and 3.2C) and the ribosome-decorated ONM appeared to 

evaginate. About half of megaRNPs appeared attached to the INM through a 

collared neck (arrows in Figures 2B, 2C, 2H, and 2I; see Experimental 

Procedures for definition). However, NPCs and the rest of the NE appeared 

normal (Figures 3.3A–D). In addition, the distribution of a number of nuclear 

proteins, such as the fly Emerin homolog Bocksbeutel (Figures 3.3E and 3.3I); 

dMan1 (Figures 3.3F and 3.3J); Otefin, a protein required for NE assembly 

(Figures 3.3G and 3.3K); and the Drosophila homolog of Hsap, Squid, a 

ribonuclear protein (Figures 3.3H and 3.3L), were normally distributed in the 

mutants. Thus, downregulating Torsin results in abnormal attachment of 
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megaRNPs to the INM, raising the possibility that Torsin could be involved in INM 

scission after primary megaRNP envelopment. Corroboration of the above 

results in vivo was obtained by examining larval body wall muscles of torsin-null 

mutants. As in S2 cells, megaRNPs tethered to the INM by a collared neck were 

observed in torsin-null mutant muscles and epithelial cells (Figures 3.2D, 3.2E, 

3.2H, and 3.2I), suggesting this pathway functions in even more tissues than 

previously characterized. Similarly, muscles expressing TorsinE!Q displayed INM-

tethered megaRNPs (Figures 3.2F, 3.2H, and 3.2I). In ~30% of cases, 

megaRNPs in muscles expressing TorsinE!Q appeared as large (>250 nm), 

amorphous, dense structures directly apposed to the INM (Figures 3.2G–3.2I). 

Thus, disruption of Torsin function in vivo leads to abnormal megaRNP tethering 

to the INM. 
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Figure 3.2- Ultrastructural Organization of NE-Associated megaRNPs Is 

Disrupted in Torsin Mutations 

(A–G) Electron micrographs of nuclear regions in (A–C) S2 cells, (D, F, and G) 

larval body wall muscles, and (E) larval epithelial cells showing NE-associated 

megaRNPs. Red, nucleus; blue, cytoplasm; green, perinuclear space. N, 

nucleus; C, cytoplasm. (A) Untreated S2 cell showing a normal nuclear focus 

(arrow) containing electron-dense megaRNP granules. (B and C) NE of Torsin-

dsRNA-treated S2 cells displaying megaRNPs tethered to the INM by collared 

necks (arrows), shown at (B) low and (C) high magnification. ribo, ribosome. (D 

and E) NE in torsin-null mutants also showing megaRNPs tethered to the INM 

(arrows). (F and G) NE in muscle cells expressing TorsinE/Q showing the 

presence of (F) a megaRNP (arrow) tethered to the INM and (G) a large, 

amorphous megaRNP (arrow) tightly apposed to the INM. mi, mitochondria. 

(H) Percentage of megaRNP granules present in INM invaginations (black), with 

collared necks (blue) and being large and amorphous (red). 

(I) Average number of megaRNP granules in INM invaginations (black), with 

collared necks (blue), being large and amorphous (red), or per focus (gray). N 

[number of granules;foci]), [159;36],[366;122],[207;33],[166;68],[181;88]. Error 

bars represent ±SEM; *p < 0.05; **p < 0.001; ***p < 0.0001). 
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Figure 3.2- Ultrastructural Organization of NE-Associated megaRNPs Is 

Disrupted in Torsin Mutations 
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Figure 3.3- Ultrastructure of the NE and localization of NE proteins in wild 

type and torsin mutants  

(A-D) Electron micrographs of the NE at larval body wall muscles from (A, B) 

untreated and (C, D) Torsin-dsRNA-treated S2 cells, shown at (A, C) low 

magnification and (B, D) high magnification.  Arrows point to NPCs. N=nucleus, 

C=cytoplasm, g=megaRNP.  (E-L)  Confocal images of muscle nuclei labeled 

with antibodies to (E, I) Bocksbeutel, (F, J) dMan1, (G, K) Otefin, (H, L) Squid, in 

(E-H) wild type, and (I-L) torsin null mutant muscles 6 or 7. Calibration scale is 

300 nm for A, C, 90 nm for B, D and 30 µm for E-L.  
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Figure 3.3- Ultrastructure of the NE and localization of NE proteins in wild 

type and torsin mutants 
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The TorsinE!Q Protein Accumulates at megaRNP Collared Necks 

 If Torsin is involved in INM scission during megaRNP primary 

envelopment, then the substrate trap TorsinE!Q should accumulate at the 

electron-dense collared necks. This prediction was tested by generating wild-type 

and TorsinE!Q variants fused to a mini-SOG tag (Shu et al., 2011) at their C 

termini. Mini-SOG is a flavoprotein derived from Arabidopsis Phototropin 2 that 

when illuminated by blue light produces oxygen species that can convert 

diaminobenzidine into an electron-dense precipitate (Shu et al., 2011). We first 

determined if C-terminally tagged Torsin was localized to the NE. Although mini-

SOG excitation results in fluorescence emission, its rapid bleaching upon 

illumination prevented highresolution acquisition of images. Therefore, we 

generated Flag-tagged Torsin constructs and expressed them in S2 cells. The 

wild-type Torsin-Flag signal localized to bright spots coinciding with Lamin foci at 

the NE; low levels were also observed at the NE and in the cytoplasm (Figure 

3.4A). In contrast, TorsinE!Q-Flag was observed in a punctate pattern lining the 

NE (Figure 3.4B). Consistent with the above observations, S2 cells expressing 

Torsin-SOG displayed an electron-dense signal at sites of megaRNP occurrence 

in the NE (Figures 3.4C and 3.4E; see Figures 3.5A and 3.5B for specificity 

control). An electron-dense SOG induced signal surrounded each megaRNP 

(Figures 3.4C and 3.4E) in a relatively homogenous fashion, but local 

accumulations of the signal were also apparent (arrows in Figure 3.4E). A SOG 

specific signal was also observed at the INM and ONM in proximity to 
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megaRNPs (Figure 3.4E). In contrast, in cells expressing the substrate trap 

TorsinE!Q-SOG, a SOG-induced signal was concentrated at collared necks of 

INM-associated megaRNPs and little SOG signal surrounded the megaRNPs 

(Figures 3.4D and 3.4F). In cases where large amorphous megaRNPs were 

tightly apposed to the INM in TorsinE!Q, the SOG signal was considerably denser 

at the sites of contact between the megaRNP and the INM (Figure 3.4G). These 

observations suggest that Torsin is present at sites of NE budding. Further, 

accumulation of the TorsinE!Q substrate trap protein at collared necks of 

megaRNPs suggests that these necks represent the normal site of Torsin action 

and provide evidence that Torsin is involved in scission of the INM during primary 

envelopment. 
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Figure 3.4- The TorsinE!Q Protein Accumulates at megaRNP Collared Necks 

(A and B) S2 cells expressing (A) wild-type Torsin-Flag and (B) the TorsinE/Q-

Flag showing that Torsin-Flag accumulates at foci and TorsinE/Q is punctate 

at the NE. 

(C–G) Electron micrographs of nuclear regions of S2 cells expressing (C and E) 

Torsin-SOG showing an electron-dense signal surrounding megaRNPs (arrows 

point to areas of increased signal density). (D, F, and G) TorsinE/Q-SOG 

showing that signal accumulates (D and F) at megaRNP collared necks or (G) at 

appositions of amorphous megaRNPs with the INM. 

Calibration scales are 7 mm (A and B), 0.7 mm (C and D), and 0.3 mm (E–G). 
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Figure 3.4- The TorsinE!Q Protein Accumulates at megaRNP Collared Necks 
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Figure 3.5- Torsin-SOG controls  

(A, B) Electron micrographs of nuclear regions of S2 cells expressing Torsin-

SOG without photoconversion, showing no increase in electron dense signal 

surrounding megaRNPs. (A1, B1) Are imaged under the same conditions as the 

micrographs in (Figure 3.4), while (A2, B2) have been taken at longer exposures 

to show structures more clearly. Calibration scale= 0.5µm 
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Figure 3.5- Torsin-SOG controls 
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The Distribution of mRNAs at the NE and Synaptic Sites Is Disrupted in 

torsin Mutants 

 Our previous study revealed that in Drosophila larval muscles, megaRNPs 

contain transcripts encoding postsynaptic proteins, including the PDZ scaffolding 

proteins Par6 and MAGI (Speese et al., 2012). In the case of Par6, interfering 

with megaRNP formation by inhibiting the Frizzled nuclear import (FNI) pathway 

or LamC expression results in decreased NMJ localization of par6 mRNA 

(Speese et al., 2012), decreased postsynaptic Par6 protein levels (Speese et al., 

2012), and marked defects in NMJ structure (Ataman et al., 2006, 2008; Packard 

et al., 2002; Speese et al., 2012). In particular, under these conditions, NMJs fail 

to expand normally as muscles grow in size during larval development, and a 

subset of synaptic boutons (called ghost boutons) remain in an immature state. 

These ghost boutons fail to recruit postsynaptic proteins and to organize 

postsynaptic specializations, such as the postsynaptic density and subsynaptic 

reticulum (Ataman et al., 2006, 2008; Packard et al., 2002; Speese et al., 2012). 

 The above observations support a model in which alterations in Torsin 

function inhibit nuclear megaRNP exit by slowing or blocking INM scission during 

primary envelopment. As a consequence, such alterations should result in 

abnormal transcript localization both in the nucleus and at synaptic sites as well 

as decreased synaptic protein synthesis, abnormal NMJ expansion, and an 

accumulation of ghost boutons. To ascertain the localization of megaRNP 

transcripts known to be present in megaRNPs at the NE, we carried out 
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fluorescence in situ hybridization (FISH) using par6 and magi RNA probes. As 

previously described (Speese et al., 2012), in wild-type muscles, par6 and magi 

mRNAs are enriched at NE foci associated with LamC foci or nuclear folds 

marked by antibodies to LamC (Figures 3.6A and 3.6B, top row). In contrast, in 

torsin-null mutants, par6 and magi FISH signals appeared as foci that, while 

associated with the NE, were on the cytoplasmic side of the LamC signal 

(Figures 3.6A and 3.6B, bottom row panels; Figure 3.6C). This is in agreement 

with the light and electron microscopy studies, showing that altering Torsin 

function prevents megaRNP nuclear egress and results in megaRNPs remaining 

attached to the INM within the perinuclear space.  

 When we examined FISH signals at the NMJ in wild-type controls, par6 

mRNA was concentrated at subsynaptic sites as previously reported (Figure 

3.6D, top panels) (Speese et al., 2012). However, this synaptic par6 FISH signal 

was virtually eliminated in torsin-null mutants (Figure 3.6D, bottom panels). 

Similarly, the synaptic localization of magi mRNA was significantly decreased in 

the torsin mutants (Figure 3.6E). The marked decrease in par6 and magi mRNA 

levels at the NMJ appeared specific for the NE-budding pathway, as no 

significant differences around the NMJ in torsin mutants were observed upon 

FISH of discs-large (dlg) RNA, which is not associated with nuclear DFz2C/LamC 

foci (Figures 3.7A-C) (Speese et al., 2012). Thus, in the absence of Torsin 

function, synaptic mRNAs known to be present in megaRNPs exhibit reduced 

localization at the NMJ, but a non-megaRNP mRNA does not. We also examined 
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Par6 and MAGI protein levels using antibodies specific to Drosophila Par6 (Ruiz-

Canada et al., 2004) and MAGI (this report). In wild-type larvae, Par6 and MAGI 

immunoreactivity localized primarily to the postsynaptic muscle region of the NMJ 

(Figures 3.6F and 3.6G, top panels). In addition, Par6 immunoreactivity was 

observed in a diffuse manner at presynaptic boutons (marked by the anti-HRP 

signal), being particularly prominent at presynaptic microtubule bundles (Ruiz-

Canada et al., 2004) (Figure 3.6F, top panels) and at low levels at the muscle cell 

cortex (Figure 3.6F, top panels). MAGI immunoreactivity was also observed at 

presynaptic compartments, but without noticeable concentration at microtubule 

bundles (Figure 3.6G, top panels). In torsin-null mutants, postsynaptic 

localization of Par6 immunoreactivity as well as muscle cell cortex signal was 

severely reduced (Figure 3.6F, bottom panels; Figure 3.6H), while presynaptic 

localization of Par6 at microtubule bundles appeared normal (Figure 3.6F, 

arrows). Similarly, postsynaptic MAGI protein localization was severely reduced 

in these mutants (Figure 3.6G, bottom panels; Figure 3.6I). Unlike Par6 and 

MAGI, DLG immunoreactivity was not changed in torsin mutants (Figure 3.6J; 

Figure 3.7D), suggesting that the defect is not general but affects only a subset 

of postsynaptic proteins. Thus, disrupting Torsin function prevents normal 

localization of some synaptic mRNAs and, as a consequence, normal 

postsynaptic levels of their encoded proteins. The functional consequence on 

NMJ structure of reduced Par6 and MAGI mRNA and protein levels at the 

postsynaptic compartment in torsin mutants was assessed by counting the 
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number of normal and undifferentiated ghost boutons observable in the last 

(third-instar) larval stage. Interfering with Torsin function resulted in a significantly 

reduced number of synaptic boutons (Figures 3.6J and 3.6K) and a significantly 

increased number of undifferentiated ghost boutons (Figure 3.6J, arrowheads; 

Figure 3.6L).  
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Figure 3.6- The Distribution of mRNAs at the NE and Synaptic Sites Is 

Disrupted in torsin Mutants 

(A and B) FISH to body wall muscles showing the nuclear distribution of (A) par6 

and (B) magi transcripts in wild-type and torsin mutants. 

(C) Quantification of FISH signal outside the nucleus. N [nuclei;larvae], 

[18;6],[18;6],[18;6],[14;6]. 

(D and E) FISH to body wall muscles showing the distribution of (D) par6 and (E) 

magi transcript at the NMJ in wild-type and torsin-null mutants. 

(F and G) Distribution of (F) Par6 and (G) Magi immunoreactivity at the NMJ in 

wild-type and torsin mutants. 

(H and I) Quantification of postsynaptic (H) Par6 and (I) Magi immunoreactive 

signal, normalized to wild-type control. N([NMJs;larvae]) is [16;6],[18;6] (H) and 

[17;6],[15;6] (I). 

(J) NMJs in wild-type and torsin mutants labeled with anti-HRP and anti-DLG 

showing reduced size and increased ghost boutons (arrowheads) in torsin 

mutants. 

(K and L) Quantification of the number of (K) synaptic boutons and (L) ghost 

boutons. N([NMJs;larvae]), [19;10],[18;10],[19;10],[19;10],[20;10],[19;10],[19;10] 

for (K) 

and (L). Error bars represent ±SEM; **p < 0.001; ***p < 0.0001. 

Calibration scale are 3 mm (A and B), 10 mm (D–G), and 20 mm (J). 
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Figure 3.6- The Distribution of mRNAs at the NE and Synaptic Sites Is 

Disrupted in torsin Mutants 
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Figure 3.7- Postsynaptic DLG signal  

FISH to body wall muscles of (A) wild type and (B) torsin mutants in preparations 

labeled with antibody to HRP and a RNA probe to dlg. (C,D) Quantification of 

postsynaptic levels of (C) dlg RNA and (D) DLG protein levels normalized to wild 

type controls. N in C is (NMJ;larvae; left to right)=[10;5] N in D is ([NMJs;larvae; 

left to right])= [9;5].  Calibration scale is 10 µm. Error bars represent ±SEM.  

  



 126 

Figure 3.7- Postsynaptic DLG signal 
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DISCUSSION 

 Together, these results demonstrate that inhibiting Torsin function results 

in megaRNP accumulation at the NE, likely due to a defect in INM scission 

during primary envelopment. As a consequence, synaptic transcript-containing 

megaRNPs fail to efficiently exit the nucleus, limiting trafficking of the mRNAs 

contained within to postsynaptic sites where they are normally enriched. This 

reduced synaptic mRNA localization results in reduced levels of specific 

postsynaptic proteins during NMJ expansion and thus in poorly developed NMJs 

containing fewer synaptic boutons and increased numbers of undifferentiated 

ghost boutons lacking postsynaptic proteins. These results provide mechanistic 

insight into the molecular machinery underlying nuclear egress of megaRNPs by 

NE budding. They also provide a mechanism by which Torsin influences synaptic 

development as well as important clues as to how torsinA dysfunction might lead 

to the alterations in synaptic plasticity observed in DYT1 mouse models and 

human patients. 
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EXPERIMENTAL PROCEDURES 

Fly Strains. We used wild type (CantonS; CS); torsinKO78 (Wakabayashi-Ito et 

al., 2011), UAS-Torsin (Wakabayashi-Ito et al., 2011), UAS-Torsin∆E, UAS-

TorsinE!Q, Torsin-genomic rescue (Wakabayashi-Ito et al., 2011) and UAS-

Torsin-RNAi (ID –110073; Vienna Drosophila RNAi Center (Dietzl et al., 2007), 

C57-Gal4 (Budnik et al., 1996). Flies were reared on standard Drosophila 

medium at 25˚C. RNAi crosses and controls were performed at 29˚C.   

Molecular Biology. Torsin dsRNA was prepared by amplifying exon1 by PCR 

using the primers  

TAATACGACTCACTATAGGGATGATGAGCTTTCCACGCATG and 

TAATACGACTCACTATAGGGCATCTATTCTCGCCGGAATGTTTC and in-vitro 

transcribed using Ambion MEGAscript T7 kit. Torsin dsRNA (DRSC36478) was 

also obtained from the Drosophila RNAi Screening Center (DRSC). To generate 

Torsin∆E and TorsinE!Q, a 1.2kb Torsin cDNA was amplified using the primers 

ATAATAGCGGCCGCATGATGAGCTTTCC and 

ATAATATCTAGATCAGTAAATGGCCATGG. The product was digested with NotI 

and XbaI and cloned into pBSK-II vector. Site directed mutagenesis was 

performed using the primers for UAS-Torsin∆E  

CTAATGGAGGAGTTTATTATGTCAATGATTTTTTGGTTGTTCGC and 

GCGAACAACCAAAAAATCATTGACATAATAAACTCCTCCATTAG               and  

the primers for TorsinE!Q  
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GTTCATCTTCGACCAGGTGGATAAAATGCCCAGCGG and 

CCGCTGGGCATTTTATCCACCTGGTCGAAGATGAAC.  

Mutagenized constructs were then subcloned into the pUAST-attB vector(Bischof 

et al., 2007). To generate stably transfected Torsin-SOG S2 cell lines, Torsin and 

TorsinE177Q cDNAs were amplified using primers 

ATAATAGGTACCATGATGAGCTTTCC(KpnI) and 

ATAATAACTAGTGTAAATGGCCATGG(SpeI). Mini-SOG(Shu et al., 2011) was 

amplified using ACTAGTATGGAGAAAAGTTTCGTG(SpeI) and 

GCGGCCGCTCATCCATCCAGCTGC(NotI). PCR products were ligated into the 

pMT-Puro plasmid (Addgene, ID: 17923) and SL2-NP2 cells transfected with 

0.5µg DNA using Effectene (Qiagen). Stable cell lines were maintained under 

10µg/ml puromycin (Invitrogen) selection. To generate Torsin-Flag constructs, 

Torsin and TorsinE!Q cDNAs were amplified using primers 

ATAATAGGTACCATGATGAGCTTTCC(KpnI) and ataatatctagacta 

cttgtcatcgtcatccttgtaatcGTAAATGGCCATGGCCACC (XbaI) (Flag encoded by 

primer- in bold). The PCR product was ligated into the pMT-Puro plasmid 

(Addgene, ID: 17923). 

S2 cell culture and dsRNA treatment Drosophila SL2-NP2 cells were cultured 

and treated as in (Koles et al., 2012). 

Immunocytochemistry. Third instar larval body wall muscles were dissected 

and fixed as in (Budnik et al., 1996). We used anti-LamC, 1:30 (LC28.26; 

Developmental Studies Hybridoma Bank (DSHB)); anti-LamDm0, 1:30 (ADL101; 
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DSHB); anti-DFz2-C(Mathew et al., 2005), 1:500; anti-DLGPDZ2(Koh et al., 

1999), 1:40,000; anti-Par6(Ruiz-Canada et al., 2004), 1:50; anti-MAGI, 1:200 

(see below); anti-Flag, 1:100 (Sigma), anti-FITC, 1:800 (Thermo Scientific); anti-

Bocksbeutel 1:50 (Wagner et al., 2004); anti-dMan1, 1:50 (Pinto et al., 2008), 

anti-Otefin, 1:100 (Padan et al., 1990) and anti-squid, 1:10 (Goodrich et al., 

2004). Secondary antibodies (Jackson ImmunoResearch and Fisher) were anti-

rabbit-DyLight488 (1:200), anti-rabbit- FITC (1:200); anti-mouse-DyLight594 

(1:200), anti-rat-Dylight488 (1:200), anti-HRP-Dylight594. 

Antibody Generation. The MAGI antibody was generated by immunizing rats 

with a bacterially generated peptide (aa337-558) produced using pET30 (EMD 

Millipore). 

Fluorescence In-situ Hybridization. Procedures for FISH were as in (Speese et 

al., 2012) 

Transmission Electron Microscopy (TEM). TEM was performed as in(Ashley 

et al., 2005), but muscles 6 and 7 were sectioned sagittally.  Cells were fixed in 

the culture dish, scraped and pelleted at 700xg before TEM processing.  For cells 

expressing miniSOG-tagged Torsin constructs, uranyl acetate or lead citrate was 

omitted, such that all electron density was due to DAB precipitates. Chapter II 

Diaminobenzidine conversion of Mini-SOG. Diaminobenzidine 

photoconversion was adapted from(Grabham and Goldberg, 1997). Briefly, SL2-

NP2 cells stably transfected with Torsinwild-type-miniSOG and TorsinE177Q-miniSOG 

were fixed with 0.5% glutaraldehyde and 4% paraformaldehyde in 0.1M sodium 
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cacodylate buffer (pH 7.4) for 1-2 hrs. Cells were rinsed with 3X10 min washes in 

cacodylate buffer, and treated for 1-1.5 hr in blocking buffer (50mM glycine, 

10mM KCN, and 100mM ammonium chloride), followed by a wash with 

cacodylate buffer. For photooxidation, diaminobenzidine (DAB) (Rockland 

Biosciences) was freshly diluted to 1mg/ml in 0.1M sodium cacodylate buffer, pH 

7.4, and filtered through a 0.22µm filter (Millipore).  The solution was then placed 

on ice, and oxygen was gently bubbled through it for 5 min. Cells were 

illuminated with a 100W mercury lamp and a BP 470/40 excitation filter, under a 

40X objective for about 3-8 min, until visible darkening was observed. Multiple 

areas on the dish were photoconverted with oxygenated DAB solution replaced 

every few minutes.  Following photoconversion, cells were fixed overnight with 

1% glutaraldehyde and 4% paraformaldehyde in 0.1 M sodium cacodylate buffer 

(pH 7.4). Cells were then postfixed with 1% osmium tetroxide in 0.1M sodium 

cacodylate buffer for 30 min and processed for TEM as above. 

Image Acquisition. Confocal images were acquired using a Zeiss LSM700 

confocal microscope equipped with a Zeiss 63x Plan-Apochromat 1.4 NA DIC oil 

immersion objective at a digital zoom of 3X for high magnification images, and 

0.7X for low magnification images.  Identical settings were used for control and 

experimental samples processed on the same day. 

Quantification. The number of samples employed for each experiment is 

specified in the figure legends. 
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Categorization of DFz2C/LamC foci at the light microscopy level. To 

morphologically categorize nuclear DFz2C/LamC foci at the light microscopy 

level, larval body wall muscle preparations labeled with antibodies to DFz2C and 

LamC, were visually inspected under epifluorescence at 630X magnification. The 

percentage of nuclei with normal DFz2C foci was determined at muscle 6 

(abdominal segments A2-4) by counting the number of nuclei containing DFz2C-

immunoreactive spots (about 2µm(Speese et al., 2012)) contained within a 

thickening of the lamina (Figure 3.1A). Nuclei were cataloged as containing small 

DFz2C puncta if numerous (5 or more) DFz2 immunoreactive puncta doted the 

lamina, were below 0.5µm and were not associated with a thickening of the 

lamina (Figure 3.1B). Nuclei were considered as containing depleted foci if they 

were devoid of any observable DFz2C immunoreactivity when visually examined 

under epifluorescence under 630X magnification (Figure 3.1C). Note that a 

nucleus could be cataloged in more than one category.  

Ultrastructural categorization of megaRNPs. Micrographs of foci at 78,000-

110,000X total magnification were visually inspected. MegaRNPs were 

categorized as within INM invaginations if they appeared as a single granule or 

cluster surrounded by an INM invagination. They were categorized as containing 

a collared neck if the megaRNP was present within the perinuclear space in 

association with the INM through an electron dense tether. MegaRNPs were 

cataloged as amorphous, if they were larger than 250nm and individual 

megaRNP granules could not be distinguished.  
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Categorization of NE associated FISH signal. To determine the % of signal 

outside the lamina, the number of lamina-associated FISH puncta was 

subdivided into those that were present either in the nucleoplasmic or 

cytoplasmic side of the LamC-immunoreactive lamina.  

Measurements of postsynaptic protein and mRNA levels. Normalized postynaptic 

protein levels were determined as in(Ramachandran et al., 2009).  Briefly, 

Confocal images of NMJs at muscles 6 and 7 (segment A3) labeled with 

antibodies to HRP to mark the presynaptic arbor and par6, magi, or dlg probes 

were obtained using identical acquisition parameters and analyzed using Volocity 

software (PerkinElmer). The presynaptic HRP signal was subtracted, and the 

remaining signal (postsynaptic signal) was normalized to bouton volume.  Values 

were normalized to wild type controls.  

Quantification of bouton and ghost bouton number. Bouton number and ghost 

bouton number was assessed as in(Speese et al., 2012).  Briefly, bouton 

numbers were counted at muscles 6 and 7 (segment A3) in 3rd instar larval 

preparations labeled with antibodies to HRP and DLG with an epifluorescence 

microscope under 630X magnification. Total bouton number was counted in the 

HRP channel. The number of ghost boutons was determined by counting HRP 

positive boutons that were devoid of DLG immunoreactivity. 

Statistical Analysis. Statistical analysis was performed on raw data, or data 

normalized to wild type controls that were processed simultaneously (number of 

samples is stated in figure legends). Unpaired two-tailed Student’s t-tests were 
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run for comparisons of experiments where a single experimental sample was 

processed in parallel with a wild type control. An F-test was applied to the data to 

compare variance, and if the variances were significantly different, an unpaired t-

test with Welch’s correction was performed. In cases where multiple 

experimental groups were compared to a single control, a one-way ANOVA was 

performed, with either a Tukey (for pairwise comparison) or Dunnet (for 

comparison to a control) post-hoc tests. All statistical analysis was carried out in 

Kaleidagraph (Synergy Software) and Prism 5 (Graphpad Software, Inc.). Alpha 

levels were 0.05 for all tests. For all quantifications, wandering third instar larvae 

were chosen at random, and as cells were pelleted prior to embedding for TEM 

analysis, there could be no positional bias within the dish of cells.  Error bars in 

all graphs represent ±SEM. 
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Preface to Chapter IV 
 

 

In this chapter we show that nuclear envelope budding is likely to be a 

generalized mechanism for large RNP export. We show that DFz2C/LamC-

associated megaRNP granules are present in the nurse cell nuclei in Drosophila 

ovary and blocking megaRNP budding leads to severe germline defects. 

 
 
 
 
 
 
 
 
 
My contribution to this Chapter: Figures 4.1, 4.2, 4.3, 4.4, 4.5 
Linda Hassinger contributed: Figure 4.2 
Travis Thomson contributed: Figure 4.4 E-H 
 
 
The following chapter is a manuscript in preparation: 

Jokhi V*, Hassinger L, Thomson T and Budnik V. Nuclear envelope budding 
regulates RNA localization during Drosophila oogenesis.  
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Chapter IV 
 

 Nuclear envelope budding regulates RNA 
localization during Drosophila oogenesis 
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INTRODUCTION 

 

RNA localization is a major mechanism involved in embryonic pattern 

formation during Drosophila oogenesis and embryogenesis (Lasko, 2012). These 

mechanisms are not exclusive to the above processes but are used throughout 

the organism during asymmetric RNA translation. Thus, Drosophila oogenesis 

has served as a powerful and pioneering model to uncover the molecular 

components underlying the transport and localization of mRNAs to their site of 

translation, the mechanisms that maintain the RNAs translationally silent until 

they reach their destination, and the stimuli that de-repress translation at target 

sites. Notably, these mechanisms and components are highly conserved, and 

are used from worms to humans for localized translation (Meignin and Davis, 

2010). A prominent example is the local translation of RNAs at postsynaptic sites 

during synaptic plasticity, a process central to our ability to learn and remember 

(Meignin and Davis, 2010).  

The mechanisms of trafficking and localization of maternal RNAs during 

Drosophila oogenesis, which are essential to proper establishment of embryonic 

body axis, have been the focus of intense investigation (Lasko, 2012). The 

Drosophila ovary is composed of 14-16 ovarioles. Each ovariole has a 

germarium at their most anterior pole, and followed by a string of developing egg 

chambers. Within each ovariole the entire developmental sequence, from stem-

cell cytoblast to mature oocyte can be observed in a linear fashion, from anterior 
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to posterior. During early stages, stem-cells give rise to stem-cell cystoblasts 

through asymmetric cell division, and each committed cystoblast undergoes four 

cell divisions with incomplete cytokinesis to form the egg chambers, which are 

surrounded by an epithelium of somatic cells known as follicle cells. The resulting 

16 germline derived cells remain connected through actin-based canals, the ring 

canals. One of the 16 cells differentiates into the oocyte and the remainders 

become nurse cells.  

During oogenesis, nurse cells produce maternal RNAs, which are dispensed 

to the oocyte. Some of these mRNAs become localized at the anterior or 

posterior oocyte pole, and this localization is a major determinant of the body 

anterior-posterior (AP) axis plan (Becalska and Gavis, 2009). In initial stages, 

oskar (osk) mRNA becomes localized at the anterior pole of the oocyte and its 

translation is critical for the posterior localization of nanos mRNA. In contrast, 

bicoid (bcd) mRNA localize at the anterior oocyte pole. Another RNA, gurken 

(grk), localizes initially along the posterior cortex of the oocyte, but by mid stage 

egg chamber development, it becomes tightly localized to the future dorsal 

anterior corner of the oocyte. This grk RNA localization restricts the distribution of 

Gurken protein and is critical to defining both the AP and dorsal–ventral (DV) 

axes of the embryo. 

Compared to our knowledge of mechanisms of RNA transport and localization 

in the oocyte, comparatively little is known about the mechanism of export of the 

above RNAs from the nucleus. A central principle in the cellular biology of 
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eukaryotic cells, both in unicellular organisms and metazoans is that all RNAs 

must exit the nucleus through the nuclear pore complex (Grunwald et al., 2011). 

However, studies from Herpes-type virus nuclear egress (Mettenleiter et al., 

2013b) and Drosophila muscles and epithelial cells (Speese et al., 2012) have 

unraveled an alternative mechanism for the nuclear export of RNAs, the process 

of nuclear envelope (NE) budding. According to this mechanism, nucleocapsids 

or very large RNPs (megaRNPs) undergo a process of envelopment and de-

envelopment at the NE. During envelopment, the nucleocapsids or RNPs disrupt 

the nuclear lamina, a thick filamentous network underneath the inner nuclear 

membrane (INM) and remodel the INM, budding into the perinuclear space 

(between the outer nuclear membrane (ONM) and the INM). This results in the 

presence of membrane bound RNPs or viral capsids at this site. Subsequent 

fusion of the membrane rimming the particles with the ONM results in the de-

envelopment of the particle, thus releasing a naked viral capsid or RNP to the 

cytoplasm. This process is blocked by the AAA-ATPase Torsin, which is required 

in the process of scission of the INM during envelopment (Jokhi et al., 2013a; 

Maric et al., 2011a). As a consequence, capsids accumulate at the perinuclear 

space (Maric et al., 2011a), and in the case of RNPs they fail to reach their 

destination at the postsynaptic region of Drosophila larval neuromuscular 

junction, where they are required for the synthesis of postsynaptic proteins (Jokhi 

et al., 2013a). In Drosophila, the NE-budding mechanism was discovered while 

studying a Wnt signaling pathway essential for postsynaptic development at the 
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NMJ, mediated by the Wnt1 Wingless (Wg), the Frizzled Nuclear Import (FNI) 

pathway (Mathew et al., 2005). In this pathway, the Wg receptor DFz2 is 

internalized in postsynaptic muscles, and a cytoplasmic C-terminal fragment of 

the receptor (DFz2C) is cleaved and imported into the muscle nuclei. Within the 

nucleus, DFz2C associates with megaRNP granules that exit the nucleus 

through NE-budding, and that are destined to become localized at the 

postsynaptic region of the NMJ, during NMJ expansion at larval stages (Speese 

et al., 2012). 

Structures similar to megaRNPs have been identified in mammalian fertilized 

oocytes and early embryos at the perinuclear space (Szollosi and Szollosi, 

1988). In addition, Wnt signaling is essential for the development of germline 

stem-cells, and is localized at the germarium in cap cells (Song and Xie, 2003), 

as well as in somatically-derived follicular cells that surround the developing 

oocyte (Song and Xie, 2003).  Thus, we sought to determine if NE-budding, 

particularly through the FNI Wg signaling pathway operates during Drosophila 

oogenesis. 

 We found that LaminC (LamC) foci containing the Wingless (Wg) receptor, 

DFrizzled-2 (DFz2), Nuclear poly(A)-binding protein (PABP2), and poly(A) RNA, 

typical features of megaRNPs at the perinuclear space (Speese et al., 2012), 

were present in nurse cells from the earliest stages of oogenesis. 

Downregulation of torsin, which inhibits nuclear RNA export through NE-budding 

resulted in egg chamber development arrest at stage 6. Escapers had abnormal 
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egg appendages, a hallmark of DV, but also AP polarity defects (Berg, 2005), 

and delayed or absent oskar posterior localization. These results reveal that 

nuclear export through NE-budding plays a central role in the development of the 

oocyte. 
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RESULTS 

RNA containing DFz2C /LamC foci are present in nuclei of nurse cells 

 To determine if NE-budding was observed during Drosophila oogenesis, 

we labeled ovaries with antibodies to LamC and DFz2 and examined nurse cell 

nuclei at different stages of egg chamber development. We observed the 

presence of nuclear DFz2C/LamC foci in many of the nurse cell nuclei (Figure 

4.1A-C). These foci were particularly abundant at earlier stages of egg chamber 

maturation (Figure 4.1A, G). These DFz2C/LamC foci resembled the foci 

visualized in larval body wall muscle and salivary gland epithelial cell nuclei 

(Speese et al., 2012). A feature of nuclear DFz2/LamC foci in the larva is the 

presence of nuclear Poly(A)-binding protein-2 (PABP2) within the foci, which has 

been viewed using antibodies against Drosophila PABP2, or via GFP in a 

PABP2-GFP trap line, in which GFP has been inserted in frame within the pabp2 

gene (Speese et al., 2012). Similarly, we found that DFz2C/LamC foci contained 

PABP2 (Figure 4.1D). In addition, our studies at the larval NMJ demonstrate that 

nuclear DFz2C/LamC foci are enriched in poly-adenylated RNA, representing the 

presence of postsynaptic-specific transcripts (Speese et al., 2012). To establish if 

nuclear DFz2C/LamC foci in nurse cells were similarly enriched in poly(A)-RNA, 

we carried out fluorescent in situ hybridization (FISH) using a poly(dT) probe. We 

found that the nuclear foci were clearly enriched in poly(dT) signal (Figure 4.1E). 

In contrast, FISH using a poly(dA) probe did not result in positive signal within the 

nucleus and cytoplasm (Figure 4.1F). Thus, the presence of nuclear 
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DFz2C/LamC foci containing PABP2 and enriched in poly(A)-RNA, suggest that 

the nuclear foci observed in nurse cells represent mega-RNPs, similar to larval 

muscles and salivary gland cells. 
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Figure 4.1- RNA containing DFz2C/LamC foci are present in nuclei of nurse 

cells of wild type ovaries 

(A-C) Ovaries were labeled with antibodies to LamC (red) and DFz2 (green) and 

nurse cell nuclei were examined at different stages of egg chamber development. 

(A) Shows labeling in multiple stages of egg chambers (B) Arrows mark nurse 

cell nuclei with DFz2C/LamC foci (C) High Magnification of a nucleus with 

multiple DFz2C/LamC foci 

(D) Ovaries stained with LamC (red), DFz2 (blue) and PABP2 (green) 

(E-F) Immunofluorescence for LamC (red) and fluorescent in situ hybridization 

(FISH) using a (E) poly (dT), (F) poly(dA) probe (green) in ovaries. 

(G) Percentage showing DFz2C/LamC foci at different stages of nurse cell 

nuclei. 

Figures represent single slice confocal.  
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Figure 4.1- RNA containing DFz2C/LamC foci are present in nuclei of nurse 

cells of wild type ovaries 
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Nurse cells contain nuclear mega-RNPs 

 To confirm that DFz2C/LamC foci corresponded to the ~200 nm 

megaRNPs that accumulate at the perinuclear space in the larva, we examined 

developing egg chambers at ultrastructural level with electron microscopy (EM). 

We found that nurse cell nuclei contained dense granules at the perinuclear 

space, similar to the megaRNPs observed in larval tissues (Figure 4.2A). The 

megaRNPs appeared either as single granules (Figure 4.2B) or in clusters 

(Figure 4.2C), and, as expected from the process of NE-budding, they were 

bounded by membrane (Figure 4.2B; inset). As previously shown in the larva, NE 

membranes surrounding megaRNPs did not contain nuclear pore complexes 

(NPCs), but NPCs were visualized elsewhere at the NE (Figure 4.2B, C; 

arrowheads). 

 Previously, we had shown that NE-budding of mega-RNPs is inhibited by 

null mutations or downregulation of torsin, a gene encoding an AAA-ATPase 

involved in the scission of the INM during primary envelopment of megaRNPs 

(Jokhi et al., 2013a). If the granules observed at the EM level in the perinuclear 

space of nurse cells correspond to megaRNPs, then, similar to the larva, 

downregulating Torsin should result in the accumulation of megaRNPs at the 

perinuclear space, attached to the INM. We downregulated Torsin using two 

different UAS-Torsin-RNAi transgenes targeted to different regions of the torsin 

transcript. Transgene expression was driven by Nanos-Gal4, which expresses 

Gal4 in most nurse cells, but not in follicle cells. Expression of Torsin-RNAi 
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resulted in the presence of rows of megaRNPs attached to the INM, which 

decorated the NE (Fig. A.2D-F). torsin null mutant flies are semi-lethal with only a 

few males, which are sterile that survive to adulthood (Wakayabashi-Ito). To 

bypass this we generated germline clones for Torsin using FRT and dominant 

female sterile technique (Chou TB, 1993, 1996) (Figure 4.3A- outline for 

generating germline clones). The ultrastructural analysis of the torsin germline 

clone was consistent with the RNAi, were megaRNPs were found apposed to the 

inner nuclear membrane. 
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Figure 4.2- Nurse cells contain nuclear mega-RNPs 

(A-G) Electron micrographs of nurse cell nuclei showing NE-

associated megaRNPs. Red=nucleus; blue=cytoplasm; 

green=perinuclear space. N=nucleus; C=cytoplasm RC=ring canals.  

(A) Wild type nurse cell show nuclei have foci (asterisk) containing 

electron dense megaRNP granules either as (B) a single granule or 

(C) clusters. Inset in (B) shows magnified image of a part of a 

megaRNP. ONM=outer nuclear membrane, INM=inner nuclear 

membrane, ribo=ribosome, NPC= nuclear pore complex, ER= 

endoplasmic reticulum, g= granules 

(D-F) Electron micrographs of Torsin-RNAi nurse cells displaying 

megaRNPs (arrows) attached to the inner nuclear membrane. Shown 

at higher magnification levels (E-F). 
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Figure 4.2- Nurse cells contain nuclear mega-RNPs 
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Figure 4.3- Torsin germline clone  

(A) A schematic representation of generation of Torsin germline clone using the 

dominant female sterile (DFS) ovoD mutants. The advantage of these mutants is 

that the ovoD transgene kills all of the germ cells, so the only egg chambers that 

survive are those that have lost ovoD and are homozygous for the torsin null 

(Figure adapted from (St Johnston, 2002)). 

(B) Ultrastructure torsin germline clones where megaRNPs are attached to the 

inner nuclear membrane 
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Figure 4.3- Torsin germline clone  
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Torsin knockdown causes germline development defects 

 To examine how knockdown of the budding pathway affects germline 

development, we examined the gross morphology of the ovary. Ovaries 

dissected from 3 day-old mated females showed a reduction in size in the Torsin-

RNAi (Figure 4.4C-D) and torsin germline clone (Figure 4.4B) in comparison to 

wild-type ovaries (Figure 4.4A). 

 Next, upon DNA staining of ovaries isolated from 3-day-old wild-type 

mated females showed ovarioles containing egg chambers of all the stages of 

oogenesis (Figure 4.4E). However, Torsin-RNAi ovaries had ~60% of ovarioles 

containing egg chambers arrested at stage 6-8 of development (Figure 4.4F) (n= 

25/40 ovarioles in 6 ovaries). Some of the egg chambers appear to have 

condensed DNA, which is indicative of apoptosis (Figure 4.4F, arrows). 

Interestingly, a subset Torsin-RNAi ovarioles showed irregular arrangement of 

egg-chambers (12/40 ovarioles in 6 ovaries). These ovarioles had egg chambers 

where a mature stage preceded an earlier stage egg (Figure 4.4G) instead of 

having a linear arrangement of developmental stages (Figure 4.4E). These could 

likely represent escapers that made it further in development. 

 These defects were associated with the fecundity of the females. Torsin 

RNAi females are almost completely sterile and have severe egg laying defects 

(Figure 4.4H Table). 
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Figure 4.4- torsin knockdown causes germline development defects 

(A-D) Ovaries dissected from 3 day-old mated (A) wild-type, (B) torsin-germline 

clone (C) Torsin-RNAi (TRIP) (D) Torsin-RNAi (KK) females viewed under bright-

field dissecting microscope.  

(E-G) DNA staining (DAPI) and phalloidin (green) of ovarioles from ovaries 

isolated from 3-day-old (E) wild-type, (F,G) Torsin-RNAi (KK) females. (F) 

Arrowhead shows an egg chamber with condensed DNA. (G) A more mature egg 

chamber (Stage 10) (arrow) preceding a less mature stage (Stage 6) 

(arrowhead).  

(H) Table representing number of eggs laid per 10 females per day. 
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Figure 4.4- torsin knockdown causes germline development defects 

 

H. Number of eggs/10 3-day-old females/day 

 Normal Fused None Short 

Driver Control 645 0 0 0 

KK RNAi Control 587 0 0 0 

Torsin KK-RNAi 8 1 1 3 

TRIP RNAi Control 789 0 0 0 

Torsin TRIP-RNAi 3 0 1 0 
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Torsin knockdown causes mislocalization of oskar mRNA 

 To address the cause of developmental defects we wanted to examine if 

the levels or localization of specific transcripts is affected in Torsin knockdown.  

The rare eggs that were laid showed D/V patterning defects. Gurken specifies 

both A/P and D/V. Downstream of the initial A/P and D/V patterning events are 

the proper localization of bicoid and oskar. Only when there is proper A/P and 

D/V patterning of the oocyte, can bicoid accumulate at the anterior and oskar at 

the posterior. Thus we first examined Gurken localization and observed that Grk 

was unaffected in Torsin-RNAi (Figure 4.5I) when compared to wild-type controls 

(Figure 4.5H). 

 Fluorescence in-situ hybridization (FISH) of osk mRNA demonstrated that 

osk transcript is present in LamC foci (Figure 4.4A). Interestingly, no such 

localization for bcd was observed (data not shown). Furthermore, FISH studies in 

the Torsin-RNAi demonstrated that osk localization to the posterior of the 

developing oocyte was affected. Instead of localizing as a consolidated tight 

band at the posterior (Figure 4.4E), osk has a punctate distribution throughout 

the oocyte (Figure 4.4F). Dual in-situ of bcd within the same egg chamber where 

osk is mislocalized, bcd is unaffected. To corroborate the FISH studies, we used 

oskar-MS2-bs flies. MS2bs is a phage RNA aptamer sequence that can be 

recognized by the phage MS2 coat protein. This sequence is cloned within the 

3’UTR of the transcript and GFP-tagged coat protein is co-exporessed to 

determine the localization of the transcript. oskar-MS2-bs also localized to LamC 
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foci (Figure 4.5B-C) while MCP-GFP alone showed no localization to LamC foci 

(Figure 4.5D). To confirm if oskar is associated with DFz2C/LamC foci, we 

performed RNA immunoprecipitation (RIP) and found oskar transcript associates 

with DFz2C (Figure 4.5G). Hence we hypothesize that blocking megaRNA 

budding pathway may lead to incorrect packaging and transport of this transcript 

thereby leading to mislocalization of the transcript.  
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Figure 4.5- torsin knockdown causes mislocalization of oskar mRNA 

(A) FISH using oskar probe (green) and LamC (red) 

(B-D) Fluorescence imaging of oskar-MS2-bs X MCP-GFP. High magnification of 

nurse cell nuclei (B) with MCP-GFP (green) and LamC foci (red). Low 

magnification of egg chamber (C), arrowhead: oskar at the posterior. MCP-GFP 

only controls (D). 

(E-F) Dual FISH, of oskar (red) and bicoid (green) in wild-type controls (E) and 

Torsin-RNAi (F). 

(G) RIP for oskar with DFz2C antibodies 

(H-I) Gurken localization (green) colabeled with DAPI (blue) and Phalloidin (red) 

in controls (H) and Torsin RNAi (I). 
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Figure 4.5- torsin knockdown causes mislocalization of oskar mRNA 

 



 159 

DISCUSSION 

 Taken together, we find megaRNPs associated with DFz2C/LamC foci in 

nurse cell nuclei in Drosophila ovary. This shows that nuclear envelope budding 

is a general pathway for large RNP export in other tissue types besides the 

neuromuscular junction (Jokhi et al., 2013). This pathway could be essential in 

cell types where rapid RNA synthesis and export takes place. These granules 

are observed at all stages of oocyte development in wild-type nurse cell nuclei. 

Knockdown of Torsin leads to an accumulation of these granules in the 

perinuclear space of the nurse cell nuclei. This is accompanied by an arrest in 

development of the ovary as indicated from ovary size, ovarioles defects and egg 

laying defects. 

 The sole function of nurse cell nuclei is to pump maternal RNA in the 

developing oocyte and budding could likely be an efficient bulk RNA export 

pathway. However, considering that only oskar mRNA is present in the LamC 

foci and mislocalized upon Torsin-RNAi, this pathway could be specific. To 

address this unbiased genome wide analysis need to be performed to determine 

the repertoire of transcripts that utilize nuclear envelope budding pathway for 

their export. One approach could involve purifying the RNP granules, either by 

RNA-IP using DFz2C or PABP-GFP. An alternative approach would be to use 

nuclear vs cytosolic fractions to determine the loss of cytosolic levels of 

transcripts upon torsin knockdown. Furthermore, while some oskar mRNA can 

exit the nucleus, what contributes to oskar mislocalization in the Torsin RNAi 
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needs to be determined. To elucidate this, we will examine RNA binding (RBP) 

and adaptor proteins associated with oskar localization and determine if they 

have a role in megaRNP budding. One possibility is that the absence of adaptors 

proteins are mistargeting the transcript, other possibility is the absence of 

adaptors may lead to premature translation of the transcript and oskar protein 

may contribute to further ectopic accumulation of the transcript (Zimyanin et al., 

2007). 

 The Drosophila ovary is a powerful system to study nuclear envelope 

budding. This tissue is highly amenable for biochemical and high-throughput 

analysis to purify both the transcripts as well as RBPs associated with 

megaRNPs. A number of RBPs such as Staufen, Syncrip, SMN, FMR are 

common between the germline and neurons and thus can provide valuable 

information about proteins associated with neuronal granules ((Martin and 

Ephrussi, 2009)). Furthermore, the ovary can also be used to elucidate the next 

steps in the budding pathway, for e.g. how megaRNPs bud from the perinuclear 

space to the outer nuclear membrane and released into the cytosol? 

 In conclusion, megaRNP budding is likely to be a generalized pathway for 

export of large RNA granules in times of active transcription. 
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EXPERIMENTAL PROCEDURES 

Fly Strains. We used wild type (CantonS; CS), UAS-Torsin-RNAi (TRIP) 

(Bloomington Drosophila Stock Center-BDSC: 50620), UAS-Torsin-RNAi (ID –

110073; Vienna Drosophila RNAi Center), osk-MS2-bs and MCP-GFP (Zimyanin 

et al., 2008). For constructing Torsin germline clones: torsinKO78 (Wakabayashi-

Ito et al., 2011), P(hsFLP,neoFRT)19A (BDSC: 31418), P(ovoD1,hsFLP)19A 

(BDSC: 23880). Flies were reared on standard Drosophila medium at 25˚C. RNAi 

crosses and controls were performed at 29˚C.   

 

Immunocytochemistry. 3-day old mated ovaries were dissected and fixed as in 

(McKim et al., 2009). We used anti-LamC, 1:30 (LC28.26; Developmental 

Studies Hybridoma Bank (DSHB)); anti-Grk, 1:50 (1D12; DSHB) anti-DFz2-

C(Mathew et al., 2005). Secondary antibodies (Jackson ImmunoResearch and 

Fisher) were anti-rabbit-DyLight488 (1:200), anti-rabbit- FITC (1:200); anti-

mouse-DyLight594 (1:200), anti-rat-Dylight488 (1:200), anti-HRP-Dylight594. 

 

Fluorescence In-situ Hybridization. Procedures for FISH were as in 

(Zimmerman et al., 2013).  

 

Transmission Electron Microscopy (TEM). TEM was performed as in (Ashley 

et al., 2005). Ovaries were treated en bloc with 1% uranyl acetate for 1 hr prior to 

dehydration. 
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Image Acquisition. Confocal images were acquired using a Zeiss LSM700 

confocal microscope equipped with a Zeiss 63x Plan-Apochromat 1.4 NA DIC oil 

immersion objective at a digital zoom of 3X for high magnification images, and 

0.7X for low magnification images.  Identical settings were used for control and 

experimental samples processed on the same day. Intact ovaries were imaged 

using a Ziess Axio a wide field camera on an upright Ziess microscope with a 

2.5X objective. 
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Preface to Chapter V 
 

 

In this chapter we study the mechanism by which synapse-specific RNPs are 

targeted to their destination. We identify dNesprin-1, which is a giant 

transmembrane protein that forms “rail-road tracks” from the nucleus to specific 

synaptic sites and serve as a path for RNP transport. 
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Chapter V 
 

Nucleus to Synapse Nesprin Railroad Tracks 
Direct Synapse Maturation Through RNA 

Localization 
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INTRODUCTION 

A crucial property of synaptic connections is their ability to change, which is 

thought to be at the core of adaptive processes, such as learning and memory 

and the refinement of connectivity (Mayford et al., 2012). A key feature of long-

term changes in synaptic structure and function is the requirement for new 

protein synthesis (Mayford et al., 2012). In hippocampal neurons 

ribonucleoprotein (RNP) granules are transported to the base of dendritic spines, 

and following plasticity-eliciting stimuli result in RNP translocation to activated 

spines and induction of protein synthesis (Wang et al., 2010).  

An important, yet poorly understood question is “How are RNPs directed to 

their precise destinations once they exit the nucleus?” Studies in several systems 

provide evidence for directed trafficking of RNPs by binding to kinesin and dynein 

motors, thus supporting a role for microtubules in this process (Hirokawa, 2006). 

However, studies also implicate actin filaments or actin-based motors, such as 

MyosinV/Didium, in the translocation of RNPs to dendritic spines (Fujii et al., 

2005) or the posterior pole of the Drosophila oocyte (Krauss et al., 2009). In the 

oocyte, the precise posterior localization of oskar mRNA, required to establish 

the anterior-posterior axis, requires both the activities of microtubules and actin-

based motors. In this process MyosinV/Didium interacts with Kinesin heavy chain 

(Krauss et al., 2009), suggesting an interplay between the actin and microtubule 

cytoskeleton. It is proposed that microtubules could mediate long-range 

movements of RNPs from the nucleus to the periphery, but that precise 
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localization of RNPs requires short-range interactions between RNPs and the 

actin-based cytoskeleton (Krauss et al., 2009). However, these long versus 

short-range interactions are still ill defined.  

To determine a potential role of the actin cytoskeleton in the postsynaptic 

localization of RNPs, we focused on the actin-binding protein MSP300/Nesprin-1 

(Nsp1; also known as Syne1), a component of the LInker of Nucleoskeleton and 

Cytoskeleton (LINC) complex (Simpson and Roberts, 2008; Volk, 1992). The 

LINC complex links the nuclear cytoskeleton with the actin-based cytoplasmic 

cytoskeleton. Nsp1 is a giant transmembrane protein of the spectrin superfamily 

(Noegel and Neumann, 2011; Rajgor and Shanahan, 2013; Zhang et al., 2002b), 

which is associated with a variety of musculoskeletal disorders, such as X-linked 

Emery-Dreifuss Muscular Dystrophy (EDMD), movement disorders such as 

autosomal recessive cerebellar ataxia type 1 (ARCA1), bipolar disorder, and it is 

a risk gene for schizophrenia and autism (Bione et al., 1994; Cartwright and 

Karakesisoglou, 2013; Shinozaki and Potash, 2014; Taranum et al., 2012b). The 

largest isoform of Nsp1 is embedded in the outer nuclear membrane (ONM) via 

its transmembrane domain. The C-terminal tail, containing a Klarsicht/Anc1/Syne 

(KASH) domain, faces the nuclear intermembrane space (also referred as to the 

perinuclear space) between the ONM and the inner nuclear membrane (INM) 

and interacts with the INM Sad1/Unc84 (SUN) domain-containing proteins, thus 

connecting ONM and INM proteins. Its giant N-terminal domain faces the 

cytoplasm and contains multiple spectrin-type repeats as well as two calponin 
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actin-binding domains. However, many Nsp1 isoforms lack the KASH domain 

and thus not likely directly linked to the nuclear envelope. 

At the mammalian neuromuscular junction (NMJ) Nsp1, is involved in 

interactions with the acetylcholine receptor (AChR) clustering molecule Muscle-

Specific Kinase (MuSK) (Apel et al., 2000). In the central nervous system CPG2, 

an isoform of Syne1, participates in the trafficking of glutamate receptors (GluRs) 

(Cottrell et al., 2004). Studies in Drosophila and mice show that Nsp1 is required 

for normal nuclear localization in muscle cells (Volk, 2013; Zhang et al., 2010) 

and the integrity of muscle cell insertion sites into the cuticle (Volk, 1992). 

Recently, reports suggest that Nsp1 isoforms lacking the KASH domain are also 

required for normal Drosophila larval locomotion, selective localization of GluR-

IIA and synaptic function at the NMJ, independent of its nuclear localization role 

(Morel et al., 2014a). However, its potential involvement in the localization of 

synaptic mRNAs has not been investigated.  

Here we report that interfering with Nsp1 isoforms at the Drosophila NMJ 

disrupts the postsynaptic localization of mRNAs in muscle, and thus the 

localization of the proteins encoded by these mRNAs at the postsynaptic region. 

In addition, mutations in nsp1 alter synapse development and activity-dependent 

plasticity. In these mutants mRNAs accumulate in the cytoplasm at the nuclear 

periphery, suggesting that the defect likely originates from abnormal transport of 

these mRNAs to synaptic sites and not from the nuclear export of these mRNAs. 

Strikingly in wild type muscles, Nsp1 protein is organized into long striated 
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filaments, dubbed “railroad tracks”, which extend all the way from the nucleus to 

the periphery of the NMJ. Nsp1 railroad tracks are the first postsynaptic elements 

found to associate specifically with immature synaptic boutons formed during 

NMJ expansion or upon spaced stimulation. We show that Nsp1 binds to a 

synaptically localized RNA. In addition, Nsp1 colocalizes and cosediments with 

F-actin, confirming its relationship with the actin cytoskeleton. Furthermore, its 

exclusive localization around nascent synaptic boutons is similar to the 

distribution of the unconventional actin motor, Myo31DF, the Drosophila ortholog 

of human Myo1D. Null mutations in myo31DF mimic the phenotypes of the 

severe hypomorphic nsp1sZ75 mutant, and both Nsp1 and Myo31DF are required 

for each other’s localization. These studies unravel a novel filamentous network 

connecting the nucleus to nascent synaptic boutons, and this network functions 

with actin motors for proper localization of postsynaptic RNPs. 
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RESULTS 
 
Nsp1 is required for normal mRNA localization at the NMJ 

To determine a potential role of Nsp1 in the postsynaptic localization of 

mRNAs, we carried out fluorescent in situ hybridization (FISH) with probes to 

mRNAs previously found enriched at the larval NMJ. Drosophila larval NMJs are 

composed of synaptic boutons organized as beaded strings (Figure 5.1R). These 

NMJs innervate identified muscles of the body wall in a stereotypic manner, 

making comparisons across animals and genotypes straightforward. Synaptic 

boutons contain multiple glutamate release sites, and the entire presynaptic 

arbor can be selectively labeled with antibodies to HRP, which crossreact with 

neuronal carbohydrate epitopes (Jan and Jan, 1982). At the postsynaptic muscle 

region, synaptic boutons are apposed by the postsynaptic membrane containing 

GluR clusters in register with presynaptic active zones. Surrounding GluR 

clusters is the subsynaptic reticulum (SSR) a highly folded membrane structure 

derived from the muscle plasma membrane (Guan et al., 1996). This 

postsynaptic SSR is strongly labeled by antibodies to Discs-Large (Dlg) a 

scaffolding protein of the PSD95 family (Figure 5.1R) (Lahey et al., 1994). 

In this study, we focused on transcripts encoding the PDZ-scaffolding 

proteins, Par6 and MAGI (Jokhi et al., 2013b; Speese et al., 2012). As reported, 

in wild type larvae par6 and magi FISH signals were enriched at the postsynaptic 

region of the NMJ, outside of the HRP-labeled presynaptic terminal (Figure 

5.1A,C). In contrast, in the severe hypomorphic mutant, nsp1sZ75, the NMJ FISH 
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signal was markedly decreased (Figure 5.1B,D,J). This reduction was specific to 

mutations in nsp1, as the defect was completely rescued by a duplication of the 

nsp1 locus (Figure 5.1J). Other mRNAs not concentrated at the NMJ, such as 

dlg, were not affected in nsp1sZ75 mutants (Figure 5.1L).  

The nsp1sZ75 mutation introduces an early stop codon into the 12th exon of 

the nsp1 gene, thus predicting the truncation of 80% of the giant full-length 

protein (~1.5 MDa) and potentially generating truncated protein species of 260-

300 kDa (Yu et al., 2006). Nsp1 immunoprecipitation from body wall muscle 

protein extracts using an antibody that recognizes nearly all Nsp1 isoforms (Volk, 

1992) shows that the nsp1sZ75 mutation eliminates all giant Nsp1 isoforms (above 

1 MDa), although lower molecular mass species (below 300 kDa), which may 

include truncated species, are still observed at lower levels (Figure 5.1I). Thus, in 

the absence of giant Nsp1 isoforms, transcripts known to localize at the 

postsynaptic region are severely decreased. 

The depletion of par6 and magi mRNAs at the NMJ could be explained by 

abnormal nsp1 transcription, RNP packaging/ RNA stability, defective nuclear 

export, or inappropriate transport of RNPs to the NMJ. To discern between these 

possibilities we examined the distribution of par6 and magi transcripts within the 

nucleus and in the cytoplasm around the nucleus. Notably, the reduction of 

postsynaptic par6 and magi mRNA in nsp1sZ75 mutants was correlated with a 

two-fold increase in FISH signal in the cytoplasm at the nuclear periphery (Figure 

5.1N,O,M). The increase in signal resulted from both an increase in the number 



 171 

of bright fluorescent punctae and a more diffuse signal and was completely 

rescued by a duplication of the nsp1 locus (Figure 5.1N-P,M). Together with the 

data showing that levels of par6 and magi RNA are decreased at postsynaptic 

sites, these observations raise the possibility that in nsp1sZ75 mutants megaRNPs 

are exported normally from the nucleus but that their transport to postsynaptic 

sites might be disrupted. Consistent with this idea, the total levels of par6 RNA in 

larval body wall muscles was not decreased in nsp1sZ75 mutants as determined 

by real time PCR  (Figure 5.1Q), further suggesting that RNA stability is unlikely 

to be affected in the nsp1sZ75 mutant. Similarly, the levels and distribution of 

Torsin at the nuclear envelope were normal (data not shown) and we never 

observed abnormal megaRNP granules in the nsp1sZ75 mutant as in the case of 

torsin mutants at the EM level (Jokhi et al., 2013b)(not shown; N: 37 nuclei from 

3 animals). Taken together, the most straightforward explanation for the 

decrease in FISH signal at the postsynaptic region is a defective RNA transport. 

A decline in the transport of par6 and magi mRNA from the perinuclear 

area to the NMJ should be reflected in a decrease in the levels of postsynaptic 

Par6 and MAGI protein, which was tested using antibodies specific for these 

proteins (Jokhi et al., 2013b; Ruiz-Canada et al., 2004). As with the FISH signal 

at the NMJ, we found that mutations in nsp1sZ75 led to a substantial decrease in 

the levels of Par6 and MAGI immunoreactivity at the postsynaptic site, which was 

completely rescued by a duplication of the nsp1 locus (Figure 5.1E-H,K). 

Interestingly, an additional nsp1 mutation (nsp1∆KASH) lacking the C terminal 
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region, including the nuclear transmembrane domain and the KASH domain, a 

domain known to link Nsp1 to nuclear envelope proteins, showed no such 

alteration in Par6 protein localization (Figure 5.1S-U). Thus, interfering with giant 

nsp1 isoforms, but not deletion of the transmembrane and KASH domains, 

prevents normal transport of transcripts that are normally localized at the NMJ, 

and this defect interferes with normal postsynaptic protein composition. 
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Figure 5.1- magi and par6 mRNAs are depleted at the NMJ of nsp1sZ75 

mutants  

(A-D) Larval NMJs labeled with anti-HRP and FISH to (A,B) a par6 probe and 

(C,D) a magi probe in (A,C) wild type and (B,D) nsp1sZ75 mutants.   

(E-H) Larval NMJs labeled with anti-HRP and either (E, F) anti-Par6 or (G,H) 

anti-MAGI in the indicated genotypes.  

(I) Immunoprecipitation of Nsp1 in wild type and nsp1sZ75 mutants.  

(J-L) Quantification of postsynaptic signal intensity normalized to wild type control 

(see Methods) for (J) par6 and magi RNA, (K) Par6 and MAGI protein and (L) 

DLG RNA and protein, in wild type, nsp1sZ75, and nsp1sZ75 mutants containing 2 

copies of a duplication of the nsp1 locus (rescue).  

(M) Ratio of FISH signal (intensity:background) in the region surrounding the 

nucleus in the above genotypes.  

(N-P) Muscle nuclei labeled with Hoechst, and FISH to par6 in (N) wild type, (O) 

nsp1sZ75 mutants, and (P) rescue. (Q) qPCR of par6 mRNA from wild type and 

nsp1sZ75 mutants normalized to ef1α48D. Calibration scale(µm): A-H:4; N-P:6. 

Error bars represent ±SEM (*p<0.05, **p<0.001, ***p<0.0001).  

Number of samples (animals:arbors/muscles)= (J) 

20:38,18:36,10:20,9:18,10:20,9:18; (K) 8:15,8:16,8:15,8:16,8:15,8:16; (L) 

9:18,9:18,9:18,9:18; (M) 7:13,7:14,7:13,6:12,6:12,6:12; (Q) 3.  

(R) wild type NMJ labeled with anti-HRP and anti-Dlg, to label pre- and 

postsynaptic compartments, respectively.  
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(S,T) NMJs labeled with anti-Par6 and anti-HRP in (S) wild type and (T) 

nsp1ΔKASH mutants. Calibration scale (µm): (R)12 (left column), 4 (right column); 

(S,T) 4. Error bars represent ±SEM.  

(U) Quantification of postsynaptic Par6 signal intensity in the indicated 

genotypes.Sample numbers in (U) are (animals:muscles): 4:14,4:23.  

Image panels correspond to single confocal slices. 
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Figure 5.1- magi and par6 mRNAs are depleted at the NMJ of nsp1sZ75 

mutants 
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Nsp1 establishes a long-range filamentous network that specifically 

interacts with nascent boutons at the NMJ 

We next determined how Nsp1 could participate in the transport of 

postsynaptic mRNAs to the NMJ. We first examined the distribution of Nsp1 

protein in wild type body wall muscles using Drosophila anti-Nsp1 antibodies 

(Volk, 1992). As previously reported (Elhanany-Tamir et al., 2012a), Nsp1 had a 

wide distribution in muscle cells, showing strong immunoreactivity at Z-bands 

within the contractile apparatus (Figure 5.2A) and throughout the muscle cell 

cortical region. Nsp1 immunoreactivity also outlined the nucleus, but was 

excluded from the nucleoplasm (Figure 5.2A,B). We also observed long Nsp1 

positive filaments that fully extended all the way from the nuclear periphery to 

distant regions of the muscle cell cortex, including regions neighboring the NMJ 

(Figure 5.2B,G; arrowheads). Similar filaments were observed in nsp1∆KASH 

(Figure 5.2C, arrowheads), suggesting that these filaments do not depend on 

direct interactions between Nsp1 and the nuclear envelope. These filaments, 

similar to the filaments observed at Z-bands had a striated appearance (Figure 

5.2G; arrowheads), and thus we dubbed them “railroad tracks”.  

Although extending towards the NMJ, Nsp1 was largely excluded from the 

majority of synaptic boutons at the NMJ (Figure 5.2A). However, Nsp1 signal was 

often observed surrounding a very small number of synaptic boutons (Figure 

5.2A; arrows). This NMJ Nsp1 signal was examined in conjunction with pre- and 

postsynaptic markers (anti-HRP to label the presynaptic compartment and anti-
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DLG to label the postsynaptic NMJ region). Strikingly, boutons that were 

surrounded by Nsp1 immunoreactivity were devoid of Dlg signal and thus 

correspond to “ghost” boutons (Figure 5.2D,E,I). Previous studies show that 

during larval development, presynaptic boutons are first formed from an 

expanding NMJ arbor, and that the recruitment of their postsynaptic proteins 

occurs after bouton extension (Ataman et al., 2008). Thus, ghost boutons 

correspond to a transient, immature synaptic bouton developmental stage, which 

lacks the post-synaptic apparatus. The filamentous postsynaptic localization of 

Nsp1 at ghost boutons was also demonstrated using STimulated Emission 

Depletion (STED) microscopy (Figure 5.2F). Quantification of the association of 

Nsp1 with ghost boutons revealed that 97% of ghost boutons were surrounded 

by Nsp1. Figure 5.2J shows relative intensities of Nsp1, HRP and Dlg at the peak 

of HRP intensity (±0.4 µm; bouton border) in mature and ghost boutons, showing 

that in contrast to mature boutons, ghost boutons are associated with Nsp1 and 

have minimal Dlg signal (Figure 5.2J,K). 

Nsp1 immunoreactivity was specific, as it was virtually eliminated in the 

nsp1sZ75 severe hypomorphic mutant (Figure 5.2H). In addition, the localization of 

Nsp1 to ghost boutons was unaffected in the nsp1∆KASH mutants (Figure 5.2M,N), 

suggesting that direct anchoring of Nsp1 to the nuclear envelope is not required 

for Nsp1 targeting to ghost boutons. This is consistent with the observation that 

the levels of postsynaptic Par6 were not affected in the nsp1∆KASH mutants 

(Figure 5.1S-U). To our knowledge, Nsp1 is the first identified protein that 
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specifically marks these immature boutons, raising the possibility that Nsp1 is 

involved in the first stages of synaptic bouton maturation. Further, the lack of 

postsynaptically localized transcripts in the severe hypomorphic mutant, 

combined with the accumulation of these transcripts at the periphery of the 

nucleus, implicates Nsp1 railroad tracks in the transport of mRNAs required for 

the formation of postsynaptic structures.  

To determine if Nsp1 could associate with RNAs, we immunoprecipitated 

Nsp1 from body wall muscle protein extracts and tested whether par6 RNA co-

precipitated with Nsp1 in wild type and nsp1sZ75 mutants. We found that par6 

RNA indeed co-precipitated with Nsp1 in wild type (over 12-fold increase 

compared to no antibody control), and that the levels of par6 coprecipitation was 

substantially reduced in nsp1sZ75 mutants (~2-fold increase compared to no 

antibody control; 5.2L). The association between Nsp1 and par6 RNA was 

specific, as the negative control transcripts, ef1α48D and rpL32, co-precipitated 

with Nsp1 to a far lesser extent in both wild type and nsp1sZ75 mutants (Figure 

5.2O). 

In wild type larvae, ghost boutons are observed infrequently presumably 

because they rapidly mature. However, previous studies show that ghost boutons 

are induced by spaced electrical stimulation paradigms based on motor nerve 

stimulation, activation of motorneuron-expressed Channelrhodopsin 2 (ChR2), or 

high K+-induced depolarization (Ataman et al., 2008). To determine if Nsp1 

associates with newly formed ghost boutons, we first used a spaced paradigm of 
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5 cycles of high K+-induced depolarization, each separated by 15 min of rest, to 

induce ghost bouton formation. Then, preparations were fixed and triple-labeled 

with antibodies to HRP, DLG, and Nsp1. In unstimulated controls, ghost boutons 

were seldom observed (Figure 5.3A). However, in stimulated preparations many 

ghost boutons that were surrounded by Nsp1 were formed, (Figure 5.3B; see 

below for quantification of ghost boutons upon stimulation). These observations 

support the notion that Nsp1 is one of the earliest localized proteins at 

postsynaptic sites during synaptic bouton formation. 
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Figure 5.2- Nsp1 railroad tracks specifically wrap around ghost boutons  

(A-I) Body wall muscles and NMJs labeled with anti-Nsp1, anti-HRP and anti-

DLG in (A,B,D-G, I) wild type, (C) nsp1∆KASH and (H) nsp1sZ75 mutants. 

Arrowheads point to Nsp1 railroad tracks; z=Z-line; n=nucleus. (D,E) are high 

magnification views of the regions marked by the boxes in (A,I, respectively) 

showing the presence of ghost boutons (arrows), which are labeled with anti-

Nsp1 and anti-HRP, but not with anti-DLG. (F) STED image of a ghost bouton, 

showing Nsp1 label wrapping around a ghost bouton.  

(J) Quantification of anti-DLG, anti-Nsp1, and anti-HRP signal at the bouton 

border (see Methods; N=6) normalized to HRP intensity.  

(K) Representative relative signal intensity across the midline of a mature and a 

ghost bouton.  

(L) Relative levels of par6 RNA immunoprecipitated with Nsp1 as measured by 

real time PCR (N=3 biological replicates).  

(M-N) NMJs labeled with anti-Nsp1, anti-HRP, and anti-DLG in (M) wild type and 

(N) nsp1ΔKASH mutants, showing Nsp1 at ghost boutons (arrows). Calibration 

scale: 11µm. Images are single confocal slices. (O) Real time PCR of the control 

transcripts ef1α48D and rpL32 (n=3 biological replicates). 

Calibration scale(µm): A-C,G-I:10; D,E:4; F:2. Number of samples in (J) is 6 

boutons. Image panels represent single confocal slices. Error bars represent 

±SEM (*p<0.05, **p<0.001, ***p<0.0001). 
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Figure 5.2- Nsp1 railroad tracks specifically wrap around ghost boutons  
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Figure 5.3- Nsp1 is localized to new ghost boutons induced by spaced 

stimulation (see Figure  5.5 for quantification).   

(A,B) Wild type NMJ arbors labeled with anti-Nsp1, anti-HRP and anti-DLG in (A) 

unstimulated samples (box in A1 is shown at higher magnification in A2), and (B) 

samples subjected to high K+ stimulation (boxes in B1 are shown at high 

magnification in B2 and B3), showing that activity-induced ghost boutons 

(arrows) are wrapped by Nsp1. Calibration scale (µm): A1,B1:50; A2,B2,B3:20. 

Image panels represent single confocal slices. 
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Figure 5.3- Nsp1 is localized to new ghost boutons induced by spaced 

stimulation 
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Nsp1 function is required for normal synaptic bouton maturation and 

activity-dependent plasticity 

To determine the role of Nsp1 during synaptic bouton formation, we 

examined the NMJ in mature 3rd instar larvae in wild type and nsp1sZ75 mutants. 

We found that in nsp1sZ75, the number of synaptic boutons was markedly 

reduced (Figure 5.4A,C,F). Furthermore, as in other mutants that prevent 

synaptic bouton maturation (Ataman et al., 2006a; Korkut et al., 2009), NMJs 

from nsp1sZ75 mutants had a significant increase in the number of ghost boutons 

(Figure 5.4B,D,E (arrows),G). These mutant phenotypes were specific, as they 

were completely rescued by two copies of a duplication of the nsp1 locus (Figure 

5.4F,G). Interestingly, nsp1sZ75/+ heterozygotes also showed an enhancement in 

the number of ghost boutons, which was on average more pronounced than 

nsp1sZ75 homozygotes (Figure 5.4G). However, this difference between the 

nsp1sZ75 homozygote and heterozygote was not statistically significant. The 

defect in the hererozygote was rescued by introducing one copy of the 

duplication of nsp1 (Figure 5.4G). Notably, no significant changes were observed 

in the number of synaptic boutons or ghost boutons in a nsp1 mutation deleting 

the C-terminal region, including the transmembrane and KASH domains, 

nsp1∆KASH (Figure 5.4F,G). These results support a role for Nsp1 in synaptic 

maturation and suggest that this role is independent of interactions between 

Nsp1 and nuclear envelope proteins. 
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We also determined whether Nsp1 functions in the postsynaptic muscle or 

presynaptic neuron during NMJ development as Nsp1 is expressed in both 

tissues (http://flybase.org/reports/FBgn0261836.html). In these experiments we 

expressed Nsp1-RNAi either in neurons (using the neuronal elav-Gal4 driver) or 

muscles and quantified the number of synaptic boutons and ghost boutons in the 

third instar larval stage. Downregulating Nsp1 in neurons elicited a small but 

significant decrease in the number of synaptic boutons (Figure 5.4F). However, 

this decrease was not accompanied by an increase in the number of ghost 

boutons (Figure 5.4G). In contrast, the phenotype of the nsp1sZ75 mutant was 

completely recapitulated by downregulating Nsp1 in muscles, with respect to total 

bouton count (Figure 5.4F) and number of ghost boutons (Figure 5.4G).  Thus, 

Nsp1 appears to function in both neurons and muscles, but its contribution to 

NMJ expansion is predominantly exerted by its function in muscle. This is 

consistent with our finding that maturation of ghost boutons requires a retrograde 

signal from muscle (Korkut et al., 2013). 

We next determined if, in addition to a role in synaptic maturation, Nsp1 

could be involved in rapid activity-dependent bouton formation. In these 

experiments, both wild type and nsp1sZ75 mutants were subjected to the spaced 

high K+ stimulation paradigm. Interestingly, both wild type controls and nsp1sZ75 

mutants were capable of generating new ghost boutons in response to spaced 

stimulation (Figure 5.5 A-D, I). However, the response of nsp1sZ75 mutants was 

significantly reduced (Figure 5.5I), providing support for the notion that Nsp1 is 
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required for bouton formation. We also determined the likely fate of ghost 

boutons over 8hrs after formation. In these experiments, intact (un-dissected) 

larvae expressing Channelrhodopsin2 (ChR2) in motor neurons were stimulated 

with blue light following our spaced protocol (Ataman et al., 2008; Koon et al., 

2011). Then, larvae were dissected at 2 and 8 hr after the start of stimulation. 

Similar to K+ stimulation, wild type larvae exhibited a highly significant increase in 

the number of ghost boutons upon light stimulation (Figure 5.5J). At 8 hrs, 

however, the number of ghost boutons was significantly decreased suggesting 

that these newly formed boutons either matured or were eliminated (Figure 5.5J). 

In nsp1sZ75 mutants, ChR2 activation by light also resulted in an increase in the 

number of ghost boutons, although significantly smaller than wild type, consistent 

with the results with K+ stimulation. Notably, however, these ghost boutons 

persisted even after 8hrs (Figure 5.5J). Together with the observations that 

nsp1sZ75 mutants have significantly fewer mature boutons, and an accumulation 

of ghost boutons, these results suggest that in nsp1sZ75 mutants newly formed 

boutons fail to mature.  
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Figure 5.4- NMJ expansion and synaptic bouton maturation depend on 

nsp1, but are independent from the KASH domain  

(A-E) Larval NMJs labeled with anti-HRP and anti-DLG shown at (A,C) low  and 

(B,D,E) high magnification from (A,B) wild type and (C-E) nsp1sZ75 mutant.  

Arrows point to ghost boutons, which are devoid of DLG label.   

(F,G) Quantification of (F) synaptic bouton number and (G) ghost bouton number 

(divided by total bouton number and normalized to wild type controls) in the 

indicated genotypes.  

Calibration scale(µm): A,C:40; B,D,E:12. Error bars represent ±SEM (*p<0.05, 

**p<0.001, ***p<0.0001).  

Number of samples are (animals:arbors; from left to right)   

(F) 31:62,28:56,33:65,23:45,28:55,12:24,12:24,12:24,12:24,12:24.  

(G) 31:62,28:56,33:65,23:46,29:57,12:24,12:24,12:24,12:24,12:24.  

Image panels correspond to (A,C) a maximal intensity Z-stack projection and 

(B,D,E) single confocal slices. 
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Figure 5.4- NMJ expansion and synaptic bouton maturation depend on 

nsp1, but are independent from the KASH domain 
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Nsp1 railroad tracks colocalize with F-actin filaments 

 The above observations suggest a role of Nsp1 railroad tracks in the 

transport of mRNAs required for postsynaptic development. As both F-actin and 

microtubules have been implicated in the transport of RNPs, we next determined 

if Nsp1 railroad tracks were associated with these cytoskeletal components. 

Labeling preparations with fluorescently conjugated phalloidin revealed that Nsp1 

railroad tracks coincided with F-actin microfilaments (Figure 5.5E,G,H). As with 

Nsp1, F-actin filaments had a striated organization and the striations were 

staggered with those of Nsp1 with a period of ~0.5 µm (Figure 5.5G,H). The 

association of Nsp1 and F-actin is consistent with previously published 

observations suggesting that Nsp1 cosediments with F-actin in both in mammals 

and Drosophila (Volk, 1992; Zhang et al., 2002b), which was confirmed for body 

wall muscle extracts (data not shown). They are also consistent with the 

presence of two calponin actin-binding domains in Nsp1. In contrast, no 

colocalization was observed between Nsp1 railroad tracks and microtubules, 

which were labeled with an antibody to tyrosinated tubulin (Figure 5.5F). 
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Figure 5.5- Mutations in nsp1 alter activity-dependent bouton formation and 

Nsp1 railroad tracks contain F-actin 

(A-D) NMJ arbors labeled with anti-HRP and anti-DLG from (A,C) unstimulated 

controls and (B,D) body wall muscles subjected to high K+ spaced stimulation, in 

(A,B) wild type and (C,D) nsp1sZ75 mutants. Arrows point to ghost boutons. 

(E,G,H) Larval body wall muscle labeled with anti-Nsp1, fluorescent phalloidin to 

mark F-actin, and anti-HRP showing that (E) long Nsp1 railroad tracks (arrow) 

spanning from the nucleus to the NMJ contain F-actin, and (G,H) that these 

railroad tracks are composed of staggered F-actin and Nsp1 striations.  

(F) Larval body wall muscle labeled with anti-tubulin and Nsp1, showing that 

Nsp1 and microtubules are non-overlapping. Box in F1 is shown at high 

magnification in F2.  

(I,J) Quantification of ghost bouton number (divided by total bouton number and 

normalized to wild type controls) from animals stimulated with spaced (I) high K+ 

or (J) Chr2 stimulation in the indicated genotypes showing that nsp1sZ75 mutants 

have reduced activity-dependent induction of ghost boutons and synaptic bouton 

maturation.  

Calibration scale(µm): A-D (panels 1,2):18; A-D (panel 3):6; E:7, F:10; and 

G,H:3. Error bars represent ±SEM (*p<0.05, **p<0.001, ***p<0.0001). Number of 

samples (animals:arbors; left to right)=(I) 31:62,33:65,11:21,11:22;(J) 

30:59,33:66,28:56,30:59,19:37,28:56.  
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Image panels correspond to (A-D) maximal intensity Z-stack projections and (E-

F) single confocal slices. 
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Figure 5.5- Mutations in nsp1 alter activity-dependent bouton formation and 

Nsp1 railroad tracks contain F-actin 
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Nsp1 function requires a Myosin 1 actin motor 

If Nsp1 railroad tracks serve to transport RNPs, then we predict that actin 

motors should be associated with Nsp1. We found that a member of the myosin1 

family, Myo31DF, which is 53% identical to human Myo1D was highly enriched at 

ghost boutons, although it was also observed at low levels at the entire NMJ 

(Figure 5.6A).  The immunoreactivity was specific as it was eliminated in the 

trans-allelic myo31DF mutant combination myo31DFK1/myo31DFK2 (Figure 5.6B). 

As expected, ghost boutons labeled by Myo31DF were also labeled by anti-Nsp1 

(Figure 5.6C). In the muscle cytoplasm Myo31DF had a low intensity punctate 

appearance (Figure 5.6C). Unfortunately, optimal preservation of Nsp1 railroad 

tracks required fixation conditions different from those required to visualize 

Myo31DF and although some of the Myo31DF puncta colocalized with Nsp1 

railroad tracks (insets in Figure 5.6C4), it was not possible to conclusively 

determine if Myo31DF was always associated with Nsp1 railroad tracks. Figure 

5.6G shows the Pearson’s colocalization index between Nsp1 and Myo31DF in 

the cytoplasm, at mature boutons, and at ghost boutons, showing near perfect 

colocalization at ghost boutons. Nevertheless, myo31DF null mutations not only 

mimicked the decrease in bouton number observed in nsp1sZ75 hypomorphic 

mutants (Figure 5.6H), but also far surpassed nsp1sZ75 mutants in ghost bouton 

accumulation (Figure 5.6I). 

To determine the extent of the similarities between nsp1sZ75 and myo31DF 

mutant phenotypes, we induced ghost bouton formation using the spaced 
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stimulation protocol either using high K+-induced depolarization or motorneuron 

stimulation via ChR2 in wild type and myo31DF mutants. As in nsp1sZ75 mutants, 

myo31DF mutants showed a significant reduction in activity-dependent formation 

of ghost boutons (Figure 5.6J). Similarly, whereas in stimulated wild type controls 

ghost boutons significantly decreased in number 8 hr after initiation of 

stimulation, in myo31DF mutants they remained unchanged at 8 hr (Figure 5.6J). 

Importantly, unlike wild type controls (Figure 5.6D), in the absence of Myo31DF, 

Nsp1 failed to surround any of the ghost boutons induced upon stimulation 

(Figure 5.6E). Thus, Myo31DF is required for the proper extension of Nsp1 

railroad tracks to nascent boutons. 

The abnormal localization of Nsp1 in myo31DF mutants raised the 

question of whether Nsp1 had a similar role in Myo31DF localization. We found 

that in nsp1sZ75 mutants the distribution of Myo31DF was completely altered 

(Figure 5.6F). Instead of localizing at low levels at the NMJ and being enriched 

around ghost boutons, Myo31DF formed filaments in the muscle cortical region 

near the NMJ (Figure 5.6F2) suggesting that Myo31DF and Nsp1 are mutually 

required for each other’s localization. Taken together, the above results suggest 

that Nsp1 and Myo31DF function together in synaptic bouton formation and 

maturation. This hypothesis was tested by examining if nsp1 and myo31DF 

interacted genetically. Neither heterozygous nsp1sZ75/+ or myo31DF/+ had a 

significant decrease in the number of boutons, but transheterozytotes nsp1sZ75/+, 

myo31DF/+ had a significant decrease (Figure 5.6K). Most strikingly, while 
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nsp1sZ75/+ heterozygotes had a substantial increase in the number of ghost 

boutons, this phenotype was completely suppressed in the nsp1sZ75/+, 

myo31DF/+ transheterozygote (Figure 5.6L). These observations suggest that 

nsp1 and myo31DF interact genetically and that myo31DF is downstream of 

nsp1.  

Since in myo31DF mutants ghost boutons are no longer surrounded by 

Nsp1, we also expected that in these mutants par6 and magi RNA transport to 

the NMJ should be severely inhibited. We found that indeed, both par6 and magi 

transcripts were depleted from the NMJ (Figure 5.7A-D,I). In addition, there was 

a drastic reduction in postsynaptic Par6 and MAGI protein levels at the NMJ 

(Figure 5.7E-H,J). Thus Nsp1 and Myo31DF are mutually required for specific 

transcript localization. 
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Figure 5.6- Myo31DF colocalizes with Nsp1 at ghost boutons in a mutually 

dependent manner and mutations in myo31DF mimic nsp1sZ75 mutant 

phenotypes 

(A-E, I) NMJs from stimulated (A,C,D) wild type and (B,E,I) myo31DFK1/K2, 

labeled with: (A,B) anti-Myo31DF (Myo1), anti-HRP, and anti-DLG, showing (A) 

enrichment of Myo31DF at ghost boutons and (B) elimination of Myo31DF signal 

in myo31DF mutants; (C) anti-Myo31DF and anti-Nsp1 showing colocalization of 

both proteins at ghost boutons (insets in C4 show colocalization between Nsp1 

and Myo31DF at railroad tracks); (D,E) anti-Nsp1, anti-HRP and anti-DLG 

showing that while activity induced ghost boutons in (D) wild type are surrounded 

by Nsp1, (E) myo31DF mutants show no Nsp1 signal at these boutons;  

(F) anti-Myo31DF and anti-HRP showing that the localization of Myo31DF at the 

NMJ is disrupted in nsp1sZ75 mutants.  

(G-L) Quantification of (G) Pearson’s colocalization coefficient of Myo31DF and 

Nsp1 signal at different regions, (H,K) total bouton number and (I,J,L) ghost 

bouton number (divided by total bouton number  and normalized to wild type 

controls). Preparations in (J) were stimulated with high K+ saline.  

Calibration scale(µm): A(1-3):40; B-E(1-3), I:30, A-D(4), I2:12. Error bars 

represent ±SEM (*p<0.05, **p<0.001, ***p<0.0001). Number of samples 

(animals:arbors) (G) 6,6,6; (H) 31:62,33:65,27:54,26:51,5:10; (I) 

31:62,33:65,27:54,19:37,5:10; (J) 30:59,11:21,13:25,19:37,5:9,5:10; (K,L) 

31:62,28:56,27:54,18:37.  Image panels represent single confocal slices. 
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Figure 5.6- Myo31DF colocalizes with Nsp1 at ghost boutons in a mutually 

dependent manner and mutations in myo31DF mimic nsp1sZ75 mutant 

phenotypes 
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Figure 5.7- Postsynaptic par-6 and magi mRNA and protein are decreased 

in myo31DF mutants 

(A-D) Larval NMJs labeled with anti-HRP and FISH to (A,B) par6 and (C,D) magi 

transcripts in (A,C) wild type and (B,D) myo31DFK2 mutants.   

(E-H) Larval NMJs labeled with anti-HRP and either (E, F) anti-Par6 or (G,H) 

anti-MAGI in (E,G) wild type and (F,H) myo31DFK2 mutants.  

(I-J) Quantification of postsynaptic Par6 and MAGI (I) RNA and (J) protein 

signals in the indicated genotypes.  

Calibration scale: (A-H) 8µm. Error bars represent ±SEM (*p<0.05, **p<0.001, 

***p<0.0001). Sample numbers (animals:arbors) (I) 

10:20,11:21,7:25,8:20,10:21,15:25; (J) 6:15,6:28,6:21,6:15,6:22,6:20.  

Image panels represent single confocal slices. 
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Figure 5.7- Postsynaptic par-6 and magi mRNA and protein are decreased 

in myo31DF mutants  
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DISCUSSION 

mRNA localization and local translation are critical for the formation and 

plasticity of synaptic connections. However, the exact mechanisms involved in 

precisely localizing mRNAs are still unclear. Here we provide evidence for a 

novel mechanism of mRNA delivery at the Drosophila larval NMJ, from the 

muscle nucleus to developing postsynaptic sites. We find that F-actin-associated 

Nsp1 railroad tracks, which run through the muscle cell cortex, bridge the 

distance from the nuclear envelope to the NMJ. At the NMJ, these railroad tracks 

enwrap immature synaptic boutons becoming the first identified proteins localized 

to boutons, which until this point lack postsynaptic proteins. Thus, Nsp1 railroad 

tracks provide a pathway of communication between the nucleus and sites of 

synapse formation. Our results suggest that Nsp1 railroad tracks serve to 

transport mRNAs required to build the postsynaptic machinery, since severe 

reduction in Nsp1 results in accumulation of postsynaptically enriched transcripts 

at the nuclear periphery and their depletion from the NMJ. Consistent with the 

association of Nsp1 railroad tracks with F-actin suggested by labeling body wall 

muscles and by the finding that Nsp1 cosediments with Nsp1, we found that a 

myosin1 motor, Myo31DF, colocalized with Nsp1. Absence of Myo31DF 

mimicked the synaptic phenotypes of nsp1sZ75 mutants. In addition, Myo31DF 

was required for normal association of Nsp1 with immature boutons and with 

transport of postsynaptic transcripts. Taken together, we propose that Nsp1 

railroad tracks form a pathway for the polarized transport of mRNAs to immature 
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synapses during development of postsynaptic structures. Further, based on the 

known properties of the Myosin1 family, we propose that this motor is required to 

either anchor Nsp1 railroad tracks to the membrane in their pathway to ghost 

boutons, to locally polymerize actin, or serve as motor to specifically transport 

RNPs to maturing postsynaptic sites. 

 

Nature of Nsp1 railroad tracks 

We show that Nsp1 filaments can go all the way from the nuclear envelope to 

sites of postsynaptic maturation. Nsp1 is part of the LINC complex linking the 

nucleoskeleton to the cytoskeleton (Taranum et al., 2012a). However, many 

Nsp1 isoforms lack the transmembrane and KASH domain. Whether these 

isoforms are still linked to the nuclear envelope through dimerization with 

transmembrane and KASH domain-containing isoforms is not known, but there is 

evidence that Nesprins can associate with each other and form filaments as 

observed in other proteins of the spectrin family (Mislow et al., 2002). Particularly 

prominent is the giant cytoplasmically localized N-terminal rod domain of about 

300-500 nm which projects into the cytoplasm.  The long rod domain contains 

multiple spectrin repeats similar to other proteins of this family, such as spectrin, 

α-actinin, dystrophin and utrophin. Of these, α-actinin has been shown to form F-

actin based striated filaments with staggered F-actin and α-Actinin striations 

(Friedrich et al., 2011) at a similar periodicity (0.5µm) to those described here for 

F-actin and Nsp1. If Nsp1 does behave as an antiparallel dimer, as observed 
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with α-actinin (Friedrich et al., 2011) and suggested in vitro for Nsp1 (Mislow et 

al., 2002), the actin-binding CH domains located at each end of the dimer could 

bind to F-actin, in a repeated manner, forming striations. Similar striated 

filaments have been observed in the case of actomyosin filaments (containing 

MyosinII) in several cell types and believed to convey elastic properties to the 

cells (Friedrich et al., 2011). Indeed, such actomyosin filaments have also been 

proposed to precede muscle myofibril formation (Sanger et al., 2005). In our 

studies we were unable to determine if F-actin also formed these arrangements 

with Myo1, as the fixation conditions to examine both proteins with antibodies 

and fungal toxins were incompatible. Here we demonstrate that these Nsp1 

striated filaments can extend all the way from the nuclear envelope to sites of 

postsynaptic maturation, and enwrap these sites. 

 

Nsp1 railroad tracks and synapses 

 Our studies demonstrate a specific association between Nsp1 railroad 

tracks and ghost boutons that are naturally occurring in wild type NMJs, as well 

as those induced by patterned electrical stimulation. Ghost boutons are thought 

to represent a transient state of synaptic bouton maturation, in which 

postsynaptic proteins have not yet been recruited (Ataman et al., 2008). So far, 

Nsp1 and Myo31DF are the first proteins found to be localized at the 

postsynaptic region of ghost boutons. This is consistent with the model that these 

proteins participate in the earliest events during postsynaptic maturation, 
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particularly the localization of specific postsynaptic mRNAs. Mutations that 

disrupt the maturation of ghost boutons result in NMJ arbors with fewer synaptic 

boutons and an overall accumulation of ghost boutons (Ataman et al., 2006a; 

Ataman et al., 2008; Jokhi et al., 2013b; Speese et al., 2012). Most of these 

mutations are associated with alterations in Wnt signaling, which is essential for 

postsynaptic maturation. Interestingly, mutations in the C elegans Nesprin 1, 

ANC-1, also lead to defects in synapse formation through interaction with Wnt 

signaling molecules (Tulgren et al., 2014). 

In mammals, the first Nesprin 1 isoform (Syne1) was isolated in a yeast two-

hybrid screen using the muscle specific kinase protein (MuSK) as bait (Apel et 

al., 2000). MuSK is a protein required for postsynaptic differentiation. 

Interestingly, Syne1 was found to be exclusively associated with synaptic muscle 

nuclei, the subset of nuclei that transcribe synaptic genes needed for 

postsynaptic assembly (Apel et al., 2000). Subsequent studies at mammalian 

central glutamatergic synapses revealed that CPG2, an activity-dependent brain-

specific isoform of Syne-1 was present at the postsynaptic region of excitatory 

synapses (Cottrell et al., 2004). Altering CPG2 levels resulted in abnormal 

dendritic spine size and disrupted constitutive endocytosis of AMPA receptors 

(Cottrell et al., 2004), which is linked to synaptic plasticity. Notably, mutations in 

syne-1 have been linked to autosomal recessive cerebellar ataxia (Gros-Louis et 

al., 2007), Emery Dreifuss muscular dystrophy (Zhang et al., 2007), autism, and 
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bipolar disorder (Yu et al., 2013) , suggesting its importance in nervous system 

function. 

At the Drosophila NMJ, Nsp1 is also involved in regulating the subunit 

composition of glutamate receptors (GluRs), synaptic transmission and larval 

locomotion (Morel et al., 2014a). However, in these studies the authors used a 

single Nsp1 mutation lacking the KASH domain. Our studies revealed that the 

KASH domain is not required for the regulation of bouton number or the 

localization of Par6 protein. Thus, the GluR phenotypes are most likely to 

represent a different function of Nsp1 in later stages of synaptic bouton 

maturation. 

 

Role of Myosin I within cells and synapses 

Myo31DF is a conserved protein belonging to the Myosin ID family of 

unconventional myosins. Class 1 myosins are monomeric and can interact with 

membranes through their C-terminal Tail Homology 1 (TH1) domain containing a 

Pleckstrin Homology (PH) lipid-binding domain. In addition, they bind to actin 

through their N-terminal ATPase motor head. Connecting the C- and N-terminal 

domains is the neck region, which binds to Calmodulin and behaves as a lever 

arm for force generation and membrane deformation. The monomeric nature of 

Myo1D makes it unlikely to function as a processive motor for cargo transport. 

However, MyoI ensembles have been shown to generate directed membrane 

movements when anchored to actin filaments (McConnell and Tyska, 2007). In 
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rats, Myo1D is believed to mediate vesicular transport (Huber et al., 2000) and fly 

Myo31DF interacts with dynamin (Speder et al., 2006). Studies in the fly have 

also suggested that Myo1D regulates contacts between cells since mutations in 

myo31DF lead to defective left-right asymmetry, a process highly dependent on 

adherens junctions (Speder et al., 2006). In the mammalian nervous system, 

Myo1D is found in dendrites and axons during development (Bahler et al., 1994; 

Benesh et al., 2012). As in the case of Nesprin 1, human Myo1D has also been 

linked to autism (Stone et al., 2007).  

Similar to Nsp1, we found that Myo31DF was enriched at ghost boutons, 

was required for activity dependent ghost bouton formation and maturation, and 

was needed for proper localization of par6 and magi mRNA at the postsynaptic 

region of the NMJ. The remarkable similarity between the phenotypes, as well as 

the colocalization of the proteins at ghost boutons suggest that Nsp1 and 

Myo31DF function in the same early process of bouton maturation. Supporting 

this conclusion is the observation that Nsp1 and Myo31DF were required for 

each other’s localization at ghost boutons and that both genes genetically 

interact. In myo31df mutants, cytoplasmic Nsp1 filaments were still observed, but 

they no longer associated with ghost boutons. Considering the properties of 

members of the myosin I family, it is possible that Myo31DF serves to direct and 

anchor Nsp1 railroad tracks to the postsynaptic membrane apposed to newly 

formed ghost boutons. Alternatively, or in addition, Myo31DF might be required 

for F-actin polymerization (Evangelista et al., 2000) and thus the formation of 
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Nsp1 railroad tracks around newly formed ghost boutons. Interestingly, Myo31DF 

binds to Calmodulin light chains and Nsp1 contains Calmodulin-binding sites 

(Rosenberg-Hasson et al., 1996), which might serve as a site for direct 

interaction.  

 

Nuclear envelope budding and megaRNP transport and localization 

We have recently determined that par6 and magi mRNAs exit the nucleus 

as part of large RNPs which exit the nucleus through a mechanism of budding at 

the nuclear envelope (Speese et al., 2012). Two lines of evidence suggest that 

the phenotypes observed in this study are unlikely to result from blocking nuclear 

envelope budding. First, the nsp1ΔKASH mutation lacking the C-terminus region 

required to associate Nsp1 with the nuclear envelope had normal Par6 protein 

levels at the NMJ and did not display the morphological NMJ defects associated 

with the severe hypomorphic nsp1sZ75 mutant. Second, in nsp1sZ75 mutants par6 

and magi RNAs were observed in the cytoplasm, suggesting that they are 

exported from the nucleus. However, they accumulated around the nucleus and 

were not transported to postsynaptic sites. We propose that in the absence of 

Nsp1 railroad tracks in the severe hypomorphic nsp1sZ75 mutant, megaRNPs fail 

to be transported in a polarized manner to the postsynaptic region of the NMJ. 

RNA localization is a major mechanism for the regulation of translation, as 

demonstrated by the observation that most cellular mRNAs are localized mRNAs 

(Lecuyer et al., 2007). The localization of mRNAs at postsynaptic sites allows a 
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rapid and synapse-specific translation of plasticity related transcripts in response 

to appropriate patterns of electrical activity, which appear essential for long-term 

synaptic plasticity (Wang et al., 2010). Studies of RNA localization to synapses 

and other cellular regions have implicated both microtubules and kinesin motors, 

as well as F-actin and myosin motors in transporting RNPs to their site of 

translation (Bramham and Wells, 2007; Hirokawa, 2006; Medioni et al., 2012). It 

has been suggested that microtubules constitute a long-range transport 

mechanism for RNP transport to sites close to the membrane while 

microfilaments may serve as a short-range transporters at the cellular cortex, 

with the unconventional myosins V and VI and the conventional myosinII serving 

as motors (Glotzer et al., 1997). Recent studies however have demonstrated that 

actin can serve as tracts for long-range transport of vesicles (Schuh, 2011).  Our 

studies uncover a novel acto-Nesprin filamentous pathway, Nsp1 railroad tracks, 

which serve as a long-range pathway for mRNA localization and synapse 

maturation during development and plasticity. 
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EXPERIMENTAL PROCEDURES 
 

Fly stocks. The following stocks were used: CS (wild type; 

Bloomington Drosophila Stock Center; BDSC), Dp(2;1)B19 (duplication 

of the nsp1 locus; BDSC), nsp1∆KASH mutant (BDSC), C380-Gal4 

(Budnik et al., 1996), C600-Gal4 (this report) nsp1sZ75 mutant (Volk, 

1992)., myo31dfK1 and myo31dfK2 mutants (Speder et al., 2006), UAS-

NLS-GFP (BDSC), and UAS-ChR2 (Schroll et al., 2006) torsinKO78 

(Jokhi et al., 2013b). 

Immunocytochemistry. Late third instar larvae were dissected in 

Ca2+-free saline (128mM NaCl, 2mM KCl, 4mM MgCl2, 35.5mM 

sucrose, 5mM HEPES, 1mM EGTA) and fixed in 4% paraformaldehyde 

in 0.1M phosphate buffer for 10 min. The following antibodies were 

used: guinea pig anti-Nsp1 (1:2000) (Volk, 1992), rat anti-Myo31DF 

(1:50) (Petzoldt et al., 2012); mouse anti-DLG (1:500; 4F3 - 

Developmental Studies Hybridoma Bank), rat anti-Par6 (1:50; fixed in 

Bouin’s fixative) (Ruiz-Canada et al., 2004), rat anti-MAGI (1:1000) 

(Jokhi et al., 2013b), rabbit anti-DLGPDZ (1:40,000) (Koh et al., 1999), 

rat anti-tubulin (1:50; Millipore MAB1864), sheep anti-digoxigenin 

(1:100; Sigma), rabbit anti-FITC (1:700; Invitrogen); mouse anti-Torsin 

(1:100; D-7,SantaCruz). Secondary antibodies were DyLight-594 or 

DyLight -649 conjugated goat anti-HRP (1:200; Jackson 
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ImmunoResearch), DyLight-405, DyLight-488, DyLight-594 or DyLight-

649 conjugated anti-rat, anti-mouse, or anti-rabbit (1:200; Thermo 

Fisher), and FITC conjugated anti-sheep (Jackson ImmunoResearch).  

Phalloidin conjugated to Rhodamine was used at a concentration of 

1:100, and Hoechst 33342 was used at a concentration of 1µg/ml.  

Preparations were mounted in Vectashield (Vector Labs, Burlingame, 

CA).  

Fluorescent In situ hybridization (FISH). NMJ FISH was performed as in 

(Speese et al., 2012).  

Morphometric analysis. For quantification of synaptic bouton and ghost bouton 

number, preparations were labeled with presynaptic marker, anti-HRP and 

postsynaptic marker, anti-Dlg. The number of boutons was determined by 

counting the boutons labeled with anti-HRP. The number of ghost boutons was 

determined as the number of boutons that lack Dlg staining. For quantification, 

NMJs labeled were processed simultaneously and imaged at identical settings 

for control and experimental groups using either a spinning disk confocal or a 

Zeiss LSM700 confocal microscope. Quantification was carried out using Volocity 

software as in (Korkut et al., 2009), unless otherwise specified. Samples were 

masked, such that the quantifying researcher was blind to the genotype, and 

quantified with the same automated routines, making this quantification unbiased. 

To control for different bouton volumes, total fluorescence intensity was divided 

by the respective bouton volume. Quantitation of FISH signal around the nucleus 
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was carried out using ImageJ software (NIH).  Within a single slice, mean 

fluorescence intensity was quantified within a defined rectangle in the area of the 

nucleus, and then the same rectangle was used to quantify the mean 

fluorescence intensity in a region away from the nucleus (close to the cell 

membrane). Mean intensity ratio was calculated by dividing the mean intensity in 

the nuclear area by the mean intensity in the cytoplasm. To determine Nsp1 

localization at mature and ghost boutons, preparations labeled with anti-HRP, 

anti-Dlg and anti-Nsp1 were imaged using identical confocal settings.  At the 

midline of each bouton, a single line was drawn through the center of each 

bouton, and an intensity histogram was generated.  Dlg, Nsp1 and HRP 

intensities were measured within a ± 0.4µm range of the HRP peak intensity at 

the bouton border and mean signal intensity for each antibody was calculated 

and normalized to the mean HRP intensity for each bouton.  For colocalization 

studies, regions of interest (cytoplasm, mature boutons or ghost boutons) were 

selected, and the Pearson’s Coefficient was measured with Volocity.  

For STED (STimulated Emission Depletion) imaging, samples were imaged 

using a TCS SP8 STED 3X confocal system using a tunable white light laser for 

excitation and 592nm and 660nm quenching lasers (for quenching Alexa488 and 

Alexa568 respectively).   

Spaced stimulation. Samples were stimulated as in (Ataman et al., 2008).   

Quantitative real-time PCR (qPCR). For comparison of total par6 RNA, RNA 

was extracted from 3 sets each of 10 larval body wall muscles from wild type and 
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nsp1sZ75, and treated with DNase. cDNA was synthesized using random hexamer 

primers. Real-time PCR was performed in triplicate as described previously (Ding 

et al., 2013). Par6 RNA levels were calculated by the 2-∆Ct method, normalized to 

the reference transcript, ef1α48D, and presented as percentage of this reference 

transcript. For qPCR of Nsp1 RIP product, a similar approach was used, with 

ef1α48D and rpL32 as negative controls. Results were normalized to no antibody 

control and expressed as fold enrichment. 

Statistical Analysis. Statistical analysis was done using the Student-t test for 

pair-wise comparisons or a one-way ANOVA with Tukey post-hoc test for 

comparison of multiple samples. 

Nsp1 immunoprecipitation and RNA immunoprecipitation (RIP). Third instar 

body wall muscles were dissected and frozen prior to use. Then, they were 

homogenized at 4˚C in RIP buffer (50mM HEPES-KOH pH7.5, 140mM NaCl, 

1mM EDTA, 1% Triton X-100, 0.15% sodium deoxycholate, protease Inhibitors 

(Complete from Roche) and RNasin 40U/ml (Promega)) using a Kontes tissue 

grinder. Extracts were centrifuged at 20,000 g for 5 min at 4˚C and the 

supernatant precleared with protein A/G magnetic beads (Pierce) for 2hr at 4˚C. 

In parallel, fresh A/G beads were incubated first with 1.3µg of Donkey anti-guinea 

pig and then, after washing with RIP buffer, with guinea pig anti-Nsp1 (0.5 µl of 

serum per assay). Precleared extracts were incubated with the above antibody-

beads overnight at 4˚C. Beads were then washed 3 times with RIP buffer and 

once with TE buffer (100mM Tris-Cl pH 8, 10mM EDTA plus RNasin 40U/ml), 
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resuspended in RIP elution buffer (100mM Tris-Cl pH 8, 10mM EDTA, 1% SDS 

plus RNasin 40U/ml), and treated with 20µg of proteinase K (Promega) for 1 hr at 

42˚C. RNA was extracted with acid phenol/chloroform and precipitated with 

sodium acetate. Precipitated RNA was resuspended in RNAse-free water and 

treated with Turbo DNase (Ambion) for 30 min at 37˚C. cDNA was synthesized 

using the SuperScript III First Strand kit (Invitrogen). To visualize Nsp1 protein, 

extracts and immunoprecipitates were run in an agarose gel as in (Warren et al., 

2003). 

F-actin cosedimentation assay. Larval body wall muscles were lysed in 50mM 

Tris-HCl (pH 7.4), 140mM NaCl, 0.1% Na-Deoxycholate, 1% Triton X-100 and 

protein inhibitor cocktail (Roche) at 4°C and were cleared by centrifugation at 

100,000 g for 30 min. To the lysate 0.4mg/ml of G-actin from rabbit skeletal 

muscle was added. Actin was allowed to polymerize by the addition of 0.1mM 

ATP and 0.1mM β-mercaptoethanol, 1mM MgCl2 for 30 min at room temperature 

and then centrifuged at 100,000 g for 30 min using a TLA100 rotor. The pellets 

and lysates were run in agarose gels as above. 
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Chapter VI 
 

General Discussion  
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GENERAL DISCUSSION 

FNI signaling and assembly of megaRNP granules 

 Secreted Wnts are important modulators of synapse development and 

plasticity (Speese and Budnik, 2007). At the larval NMJ, Wg released by the 

presynaptic motor neuron binds to the DFz2 receptor on the postsynaptic muscle 

and activates the Frizzled nuclear import (FNI) pathway. In this pathway, DFz2 

receptors are internalized and trafficked toward the nucleus (Ataman et al., 

2006a; Ataman et al., 2008). At the nuclear periphery, an 8 KDa cytoplasmic C-

terminal tail of DFz2 (DFz2C) is cleaved and the DFz2C fragment is imported into 

the nucleus (Mathew et al., 2005). Within the nucleus, DFz2C fragments form 

prominent foci associated with the nuclear envelope and surrounded by a Lamin 

C (A-type lamin) framework. These DFz2C granules associate with poly (A)- 

binding protein 2 (PABP2/PABPN1; a nuclear poly (A) binding protein required 

for mRNA maturation) and contain poly-A RNA as evidenced by an oligo-dT in-

situ hybridization.  

 Ultrastructural analysis of these foci reveal that the DFz2C foci are 

composed of electron dense granules that are ~200 nm in size and accumulate 

in the perinuclear space. Wnt signaling and increased activity induces the 

assembly of these DFz2C foci-associated with RNPs in the nucleus (Ataman et 

al., 2008; Speese et al., 2012). We have yet to identify another signaling pathway 

that triggers their assembly. Furthermore the role of DFz2C once the granules 

exit the nucleus, remains to be investigated. The C-terminal region of DFz2 has a 
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PDZ binding motif that is recognized by PDZ domains (Ataman et al., 2006a). 

Interestingly, many proteins that form the postsynaptic density have PDZ 

domains. An intriguing possibility is that the PDZ motif can function as a “zip 

code” to target transcripts back to synaptic sites. A potential experiment to test 

the nuclear role of DFz2C would be to tag DFz2 after the cleavage site with a 

photo-convertible fluorescent protein like Dendra (Gurskaya et al., 2006). DFz2C-

Dendra, once present in the nucleus can be photo-converted at 405nm from 

green to red. This would allow one to follow the fate or localization of nuclear 

DFz2C. However, a challenge in this experiment is to tag this small 8kDa C-

terminus of DFz2C with a fluorescent tag like Dendra (26kDa) at a site such that 

DFz2C remains functional. 

   

Composition of RNP granules and specificity of transcripts 

 Using a candidate approach we found that transcripts encoding proteins 

that play a role in the development of the postsynaptic region are enriched in the 

perinuclear granules. One such mRNA is par6. LamC mutants that fail to 

assemble granules, also demonstrate a failure to recruit Par6 at the postsynaptic 

region thus suggesting that these transcripts are targeted to the synapse for local 

translation. Some outstanding questions are: (1) Is there a specific signature in 

terms of RNA sequence, structure or function in transcripts that exit via this 

pathway? Recent studies in the lab also indicate that besides synaptic 

transcripts, some nuclear-encoded mitochondrial transcripts are also present in 
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these large RNP granules at the Drosophila NMJ (Li Y et al., Manuscript in 

preparation). However the complete repertoire of transcripts is unknown. (2) Is 

this pathway upregulated under circumstances wherein a bolus of transcripts is 

required to be delivered rapidly into the cytoplasm? This explanation seems 

plausible since in the Drosophila ovary, the function of the nurse cell nuclei is to 

pump RNAs in the developing oocyte. In the case of the NMJ, locomotion is main 

function of the expanding NMJ, and thus mitochondrial and synaptic transcripts 

are required in abundance. (3) Is each individual granule composed of a single 

RNA species or multiple species of mRNA? And do they travel as a “care-

package” wherein all the transcripts required for the maturation of the synapse 

are packaged in one granule and delivered to the synapse? Based on our 

candidate screen, preliminary studies hint that these granules contain single 

species of mRNA. A possible advantage of having bulk transport of single 

species of mRNA is that it allows transport of many transcripts simultaneously 

and could be kinetically or energetically more efficient.  

 Some of these questions may be addressable by high-throughput analysis 

to identify the complete set of transcripts and their signature sequences (deep-

sequencing and bioinformatic analysis) and RNA binding proteins (mass-

spectrometry) present in these granules. Other will require in-situ analysis via 

multicolor imaging or live imaging of megaRNP specific transcripts to study the 

kinetics of megaRNP export.  
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RNP granule assembly at the nuclear envelope 

 In our model, we demonstrate that RNP granules are assembled within 

the nucleus. However we know little about how and where in the nucleus these 

RNPs assemble. At ultrastructural level, we rarely find these granules “naked” in 

the nucleus i.e., without the nuclear envelope wrapped around it. This suggests 

that megaRNPs likely assemble at the nuclear envelope.  Is there a specific 

receptor or docking protein that targets the megaRNPs? How is membrane 

curvature mediated? One hypothesis for a possible mechanism is that an adaptor 

or receptor protein at INM signals RNA accumulation and specialized INM 

proteins may mediate membrane curvature. Second, these mRNAs may be 

translated close to INM and push through the INM as they accumulate. A 

genome-wide screen in S2 cells to identify molecular players that mediate a role 

in megaRNP assembly in the earlier stages may help address these questions.  

Studies from other labs suggest that RNP granules exist in a “hydrogel-like” state 

(Kato et al., 2012). Thus it is a possibility that specialized “pockets” are formed at 

the INM, after local dissolution of LamC that would allow the hydrogel-like RNPs 

to push through the INM. 

 

Why assemble large RNP granules in the nucleus? 

We know little about the RNP granules once they get across the INM or the fate 

of these granules once they enter the cytoplasm. Do these megaRNPs remain 

intact till they are transported to their destination or are they disassembled in the 
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cytoplasm? If the granules disperse in the cytoplasm, then why are they 

assembled in the first place? It is possible that bulk export via budding could 

have potential advantages in terms of kinetics of export or have a single export 

signal to transport multiple RNAs contrary to the NPC. However, the fact that we 

are able to capture these granules at ultrastructural levels in the nucleus 

suggests that kinetics of budding is not rapid. An alternative possibility is that 

megaRNPs transcribed and stored in the nucleus in these large granules, 

awaiting a second signal for nuclear export. In the case of the dystrophin gene 

(2600kbp), transcription takes 16 hrs; hence it is believed that the dystrophin 

mRNA is transcribed and stored in the nucleus before it is exported (Tennyson N 

et al., 1995). Thus, similarly, megaRNPs may serve to store mRNPs, which are 

subsequently exported into the cytoplasm where they disperse and are 

transported to synaptic sites. 

 

Perinuclear granules in Literature 

 Through an extensive literature survey, we have found that perinuclear 

granules resembling megaRNPs have been identified in many species and also 

in different cell types. Granules have been observed in yeast (Wente and Blobel, 

1993), rat oocytes (Szollosi, 1965), mouse oocytes (Szollosi and Szollosi, 1988), 

human oocytes (Tesarík J, 1988) and even in plants (Dickinson, 1971). Some of 

the early studies even suggested that perinuclear granules may be indicative of 

another mode of nucleocytoplasmic communication (Dickinson, 1971). However, 
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due to a lack of any light microscopy markers or methods to stimulate or induce 

the formation of these foci, they remained descriptive observations and their 

biological role wasn’t studied further. Thus large perinuclear granules resembling 

megaRNPs are likely to be present in different tissue-types and organisms 

mediating different biological processes. 

 

Nuclear Envelope Budding and Herpes Virus Egress 

 Our studies at the neuromuscular junction indicate that large RNPs exit 

the nucleus via budding through the nuclear envelope, a mechanism resembling 

the egress of Herpes viruses. This is due to the fact that like viral capsids, these 

RNPs are too large to exit the nucleus via a canonical NPC where the cut-off is 

~40nm. Previously, this pathway was thought to be mediated by viral proteins 

and unique to the viruses (Roller, 2008). We now know that like the virion 

capsids, the large RNP granules assembled in the nucleus need to 

phosphorylate with aPKC and locally breakdown the lamina by recruiting the 

protein kinase aPKC to gain access to the INM. There are however instances 

where, large RNP complexes like the Balbiani mRNP can disassemble and 

thread out of the NPC (Zhao J, 2002) and NPC can also dilate 50nm (Solmaz 

SR, 2013). These mechanisms appear to be distinct from nuclear envelope 

budding since there is no involvement of nuclear membranes in these processes.  
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Figure 6.1: Model of FNI pathway and budding of megaRNP granules (Image 

courtesy: Vivian Budnik) 

A model depicting release of Wg by the presynaptic motor neuron. The Wg then 

binds to DFz2 receptor on the muscle surface. This receptor gets internalized, 

and targeted towards the nucleus. A C-terminal fragment of the receptor is 

cleaved and imported in the nucleus. (Inset) In the nucleus DFz2C associates 

with large assembled RNPs, which exit the nucleus by budding through the 

nuclear envelope, a process that requires aPKC to locally break-down the LamC 

network. These mRNA granules are transported back to the synapse where they 

function in maturation of newly formed synaptic boutons.  
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Figure 6.1: Model of FNI pathway and budding of megaRNP granules 
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Role of Torsin in Nuclear envelope budding 

 Once the megaRNPs disassemble the Lamin framework, and have access 

to the INM, they undergo primary envelopment, followed by scission of INM. The 

membrane surrounded vesicular RNP then fuses with the ONM to release the 

RNP.    

 To understand the molecular players involved in the budding pathway, we 

started a pilot screen in S2 cells. Since S2 cells have both, a basal level of FNI 

signaling and megaRNP granules, they should likely thus have the molecular 

machinery to mediate nuclear budding. Candidates were selected for this screen 

based on their ability to remodel the membranes, their function in RNA export or 

the cellular location. Loss of one such protein, Torsin was previously linked to 

nuclear envelope integrity (Goodchild et al., 2005, Kim et al., 2010) and thus an 

important candidate in our pilot screen. 

 Upon knockdown of Torsin in S2 cells, DFz2C associated with megaRNPs 

displayed altered localization. Instead of forming prominent foci surrounded by a 

LamC framework, DF2C speckles appeared as small puncta that were 

juxtaposed to LamC. This was also observed upon the knockdown of Torsin in 

the larval muscles. Ultrastructural analysis revealed that these granules 

appeared “stuck” at the INM via a collared neck. Further EM analysis revealed 

that Torsin accumulates at the neck and thus could likely mediate scission at the 

INM after the primary envelopment process. Torsin being a AAA-ATPase, and its 

previously characterized role in NE integrity therefore indicates that it has the 
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potential to remodel membranes. AAA-ATPases adopt either spiral or ring 

conformations and use the energy from ATP hydrolysis to disassemble their 

target complex (Erberger and Berger, 2006). Similar to other ring-conformation 

AAA-ATPases, like NSF (disassembles SNARE complexes during vesicle 

recycling) and Vps4 (disassembles the ESCRT-III complex during mutivesicular 

body biogenesis) (White and Lauring, 2007); Torsin may provide the motive force 

to mediate the disruption of a yet-unknown scission complex. If Torsin adopts a 

spiral conformation, it could likely wrap around the INM and itself mediate 

scission. This can be addressed by studies that entail a detailed understanding of 

Torsin targets at the INM and its structure. 

 

Consequence of loss of functional Torsin 

 Our studies show that synapse-specific transcripts packaged in 

megaRNPs fail to localize to their target synaptic sites where they are normally 

enriched upon knockdown of Torsin. As a consequence of this, synapses fail to 

mature. This study could provide an explanation of how a perinuclear protein 

affects synaptic development. Human patients (as well as mouse models) of 

dystonia have altered dopamine neurotransmission (Balcioglu et al., 2007; 

Hewett et al., 2010). It would therefore be interesting to examine if loss of Torsin 

in these murine models leads to mislocalization or nuclear accumulation of 

specific transcripts involved in dopamine metabolism. Such a study could further 

our understanding of the etiology of the disease and provide a link between the 
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nuclear phenotype observed and dopamine regulation.  

 

Other “stuck” granules 

 The C.elegans Torsin ortholog, ooc-5 mutants have abnormal nuclear 

envelope evaginations and deficits in nuclear pore insertion (VanGompel et al., 

2015) but do not display RNPs trapped at the INM. Although they did not test 

with oligo-(dT) in-situ or regressive EDTA for electron microscopy to determine if 

RNPs are affected. In our studies at the Drosophila NMJ, NPCs and nuclear 

envelope appear to be intact (Figure 3.3) upon knockdown of Torsin.  

 Little is known about the mechanisms underlying new NPC insertion. 

During cell division there is a breakdown of the nuclear envelope, which is 

reassembled post-mitosis and studies reveal that the endoplasmic reticulum 

plays a role in NPC reassembly (Hetzer and Wente, 2009; Schooley et al., 2012). 

Recent studies are uncovering mechanisms underlying new NPC insertion in 

post-mitotic nuclei (Field et al., 2014). In our studies at NMJ or the nurse cells, 

both represent post-mitotic nuclei, which would require new NPC insertion with 

increase in cell size. It is likely that, Torsin may also contribute to remodeling the 

nuclear membrane during new NPC insertion. It will be essential to undertake 

further studies to understand and distinguish the contribution of the two pathways 

in RNA export. Furthermore, there is likelihood that vast accumulations of 

megaRNPs in the nuclear membrane could block sites for NPC insertion. 
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 Another study in yeast found that an accumulation of perinuclear granules 

(that appear similar to the “stuck” granule phenotype in Torsin mutants), may 

represent a nuclear compartmentalization site for storage of improperly 

assembled or malformed nuclear pores (Webster et al., 2014). Recent studies in 

our lab (in collaboration with Mary Munson’s lab) demonstrate that this subset of 

perinuclear granules is most likely distinct from megaRNP granules (Ding et al., 

unpublished results) although at ultrastructural level they may appear 

morphologically similar. Future studies will involve careful analysis to distinguish 

RNPs and other perinuclear granule-like accumulations to classify and distinctly 

characterize the different types of granules seen at the nuclear envelope.  

 

Nuclear Pore vs Budding 

 While RNA export through the NPC has been extensively studied, we are 

only beginning to learn more about nuclear envelope budding. Do distinct sets of 

transcripts utilize this pathway for their export or is there an overlap? Does this 

pathway function during high energy or demand conditions that require to rapid 

delivery of large amounts of mRNAs? Do these pathways compensate for each 

other? While there is selection of mature transcripts at the NPC, how is this 

selection mediated in the budding pathway? A preliminary study in our lab 

indicates that blocking canonical NPC-mediated RNP export may lead to an 

increased export via budding (Ding et al., unpublished results).   
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Quality control of megaRNP specific transcripts 

Export of mRNPs through the NPC requires surveillance for quality checks of 

mRNPs before they are exported into the cytoplasm (Kohler and Hurt, 2007; 

Grunwald et al., 2011). This involves RBPs and NUPs in NPC mediated RNP 

export. What is the mechanism underlying quality checks in the case of budding? 

Studies indicate that a group of NUPs can function as a permeability barrier 

independent of the NPC at the cilia to mediate ciliary transport (Kee et al., 2012; 

Schmidt and Gorlich, 2015). These NUPs allow for selective RNP export in the 

cilia. This raises questions if individual nuclear NUPs could act as a sieve to 

select for mature RNAs that are exported by budding to maintain a quality control 

check of transcripts that exit via budding. In our studies, while we used RNA dyes 

(Speese et al., 2012), we did not perform live imaging of a megaRNP granules 

export. As in the study of nuclear export of β-actin mRNA (Grunwald and Singer, 

2010), performing high resolution live imaging of a megaRNP-specific transcript, 

along with co-labeling individual NUPs, can answer some of these questions. 

These studies would also allow comparisons of the rate of RNP export and 

efficiency of the budding and NPC pathways. 
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Figure 6.2- Model demonstrating how nuclear Torsin affects synapse 

development (Figure courtesy: Vivian Budnik) 

(left) megaRNPs that assemble in the nucleus exit the nucleus via nuclear 

envelope budding. Torsin mediates INM scission and the RNPs are targeted to 

synaptic sites where they are locally translated leading to synapse maturation. 

(right) In the absence of torsin (top), or in the presence of mutant torsin (bottom), 

these RNPs accumulate at the INM, thus fail to reach they synaptic sites where 

they are normally localized, resulting in an abnormal post-synapse. 
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Figure 6.2- Model demonstrating how nuclear Torsin affects synapse 

development 
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The Drosophila ovary as a model system to study megaRNP budding 

 We now know that megaRNP budding is a more generalized mechanism 

for RNP export and nurse cell nuclei of Drosophila ovary have megaRNP 

granules. Disruption of this pathway causes severe defects in germline 

development and females are rendered sterile. This suggests that besides the 

NMJ, other tissue types also use this pathway, which may serve as an efficient 

mechanism for RNA export. 

 The Drosophila ovary is a powerful system to study nuclear envelope 

budding. A number of RBPs such as Staufen, Syncrip, SMN, FMR are common 

between the germline and neurons and thus can provide valuable information 

about proteins associated with neuronal granules (Martin and Ephrussi, 2009). 

Studies also indicate that the RNPs for localized transcripts are assembled in the 

nucleus (Besse and Ephrussi, 2008). However, there is very little known about 

how these RNPs export the nurse cell nuclei. The abundance of megaRNPs in 

this system along with the ease to perform biochemical analysis means that 

Drosophila ovaries can provide valuable information to elucidate the next steps in 

the budding pathway, identify proteins and mRNA that export via budding. The 

Drosophila ovary could be used as a screening system to identify other molecular 

players in budding process; like how the RNPs exit the ONM, is there a receptor-

like molecule at the INM that triggers RNP accumulation. It is likely that these 

molecular players are conserved in neuronal tissue and these findings could 

potentially be relevant to understanding neuronal RNA granules. 
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Nesprin1 filament localization 

 The cytoskeleton and associated proteins play critical roles in RNP 

localization. However, little is known about how RNPs are targeted from the 

nucleus to “specific” synaptic sites that are undergoing dynamic changes. 

Nesprin1 is a giant transmembrane protein present at the outer nuclear 

membrane and belonging to the spectrin superfamily of proteins. We found that 

Nsp1 forms striated F-actin-based filaments that span all the way from the 

nucleus to the NMJ. Upon detailed observation, we found that interestingly these 

tracks wrap specifically around immature boutons that lack post-synaptic 

specializations. This wrapping was independent of the transmembrane domain of 

Nsp1 since nsp1ΔKASH mutants also enwrap immature boutons. Thus Nsp1 is the 

identified first postsynaptic marker for ghost boutons. 

 

Nesprin1 tracks and RNA targeting 

 We hypothesized that these F-actin-Nsp1 “rail-road tracks” could serve as 

a pathway for long-distance communication between the nucleus and the NMJ. 

In the absence of Nsp1, mRNAs that normally localize at postsynaptic sites are 

missing and instead they now accumulate around the nucleus. Thus suggesting 

that the railroad tracks serve to direct the RNA to new synaptic sites. As a 

consequence of this, the NMJs do not expand normally and have fewer synaptic 

boutons. This indicates that Nsp1 railroad tracks likely serve as a path to target 

specific RNAs from the nucleus to postsynaptic sites. In the absence of these 
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tracks, the RNAs fail to localize to the postsynaptic region, resulting in an 

accumulation of immature boutons lacking postsynaptic proteins. We also found 

that the Nsp1 railroad track association with immature boutons depended upon 

an unconventional myosin, Myo1D, which is an actin motor protein.  

  

How do RNAs walk along Nsp1 railroad tracks? 

 While our studies suggest an important mechanism by which dNsp1 

railroad tracks, which serve as a long-range pathway for mRNA localization and 

synapse maturation, certain questions need further investigation. How is polarity 

established along Nsp1-Actin tracks? Do these tracks serve as a path for 

retrograde signaling too, as in the case of microtubules? What are the long-range 

processive motor proteins that are involved in trafficking along Nsp1-Actin 

tracks? What signals target Myo1D and Nsp1 to ghost boutons?  

 Very little is known about the role of actin in long-range RNP transport. An 

alternative hypothesis could be that Nesprin-actin rail-road tracks mark sites for 

synaptic maturation and serve to trap or enrich synaptic RNA. 

 Trafficking of RNAs to synaptic sites is an important step for achieving 

synaptic plasticity. This is of significant importance since Nsp1 is associated with 

a variety of musculoskeletal disorders, such as X-linked Emery-Dreifuss 

Muscular Dystrophy (EDMD), movement disorders such as autosomal recessive 

cerebellar ataxia type 1 (ARCA1), bipolar disorder, and it is a risk gene for 

schizophrenia and autism.  
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Figure 6.3- Model demonstrating how nuclear Nesprin-1 affects synapse 

maturation and growth 

(Left) In wild-type animals, as synapses develop and there is new bouton 

formation, where the presynaptic motor neuron form new synaptic boutons (red). 

At this point these immature boutons lack any post-synaptic specialization 

(purple). Nsp-1 railroad tracks (green) extend from the nucleus all the way to 

synaptic sites and specifically wrap around these immature boutons. These 

tracks serve as long-range communication from the nucleus to the synapse and 

paths for trafficking megaRNPs to specific synaptic sites. These transcripts are 

locally translated which then lead to mature bouton formation (Left bottom). 

(Right) In Nsp-1 mutants, due to the absence of these railroad tracks, mega-

RNPs accumulate around the nucleus and fail to reach synaptic sites where they 

are normally localized; leading to an accumulation of ghost boutons and poor 

synaptic development (right bottom).  
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Figure 6.3- Model demonstrating how nuclear Nesprin-1 affects synapse 

maturation and growth 
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RNP granule export and transport in development and diseases. 

LamC is essential for megaRNP assembly. Mutations in LamC have been 

implicated in muscular dystrophies (Burke and Stewart, 2002). These mutants 

affect skeletal muscle and studies reveal that skeletal defects appear long before 

signs of neurodegeneration (Mejat et al., 2009). In addition, Torsin has been 

implicated in early onset dystonia; a movement disorder characterized by 

involuntary and sustained muscle contractions (Robottom et al., 2011) and is 

essential for megaRNP export. Taken together, our studies provide mechanistic 

insights into how nuclear proteins affect synapse development.  

 A large number of neurological disorders are linked to RNA binding 

proteins (e.g. Fragile X syndrome FMR1) (Mazroui et al., 2002), or RNP granule 

assembly, (e.g. FUS whose mutation underlies Amyotrophic lateral sclerosis) 

(Bosco et al., 2010). Thus, RNP granule studies could provide a better 

understanding of molecular mechanisms underlying neurodegeneration and 

neuropsychiatric disorders. 
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FINAL CONCLUSION 

 In summary, the studies detailed in this dissertation have addressed 

fundamental questions regarding the mechanisms of RNP granule export and 

transport during synapse development and plasticity. This thesis has focused on 

the identification of a) a novel RNP export pathway, b) a prominent protein 

Torsin, implicated in early-onset dystonia involved in export of synaptic 

transcripts in this pathway of RNP granule egress from the nucleus and c) Nsp1-

Actin tracks that serve as a mode of nucleo-synaptic communication to target 

synaptic RNA. These studies reveal the importance of localized RNAs in synaptic 

development and plasticity. Further elucidation of these basic cell biological 

pathways in model organisms like Drosophila can facilitate a better 

understanding of complex processes occurring in the brain as well as provide 

insights in the processes that go awry in neurological diseases. 
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