
University of Massachusetts Medical School University of Massachusetts Medical School 

eScholarship@UMMS eScholarship@UMMS 

GSBS Dissertations and Theses Graduate School of Biomedical Sciences 

2016-05-11 

Activation and Inhibition of Multiple Inflammasome Pathways by Activation and Inhibition of Multiple Inflammasome Pathways by 

the Yersinia Pestis Type Three Secretion System: A Dissertation the Yersinia Pestis Type Three Secretion System: A Dissertation 

Dmitry Ratner 
University of Massachusetts Medical School 

Let us know how access to this document benefits you. 
Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss 

 Part of the Bacterial Infections and Mycoses Commons, Bacteriology Commons, Immunity Commons, 

and the Immunology of Infectious Disease Commons 

Repository Citation Repository Citation 
Ratner D. (2016). Activation and Inhibition of Multiple Inflammasome Pathways by the Yersinia Pestis 
Type Three Secretion System: A Dissertation. GSBS Dissertations and Theses. https://doi.org/10.13028/
M21P4V. Retrieved from https://escholarship.umassmed.edu/gsbs_diss/850 

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and 
Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact 
Lisa.Palmer@umassmed.edu. 

https://escholarship.umassmed.edu/
https://escholarship.umassmed.edu/gsbs_diss
https://escholarship.umassmed.edu/gsbs
https://arcsapps.umassmed.edu/redcap/surveys/?s=XWRHNF9EJE
https://escholarship.umassmed.edu/gsbs_diss?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F850&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/966?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F850&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/49?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F850&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/34?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F850&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/35?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F850&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.13028/M21P4V
https://doi.org/10.13028/M21P4V
https://escholarship.umassmed.edu/gsbs_diss/850?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F850&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Lisa.Palmer@umassmed.edu


ACTIVATION AND INHIBITION OF MULTIPLE 

INFLAMMASOME PATHWAYS BY THE YERSINIA PESTIS TYPE 

THREE SECRETION SYSTEM 

 

 

A Dissertation Presented 

By 

DMITRY RATNER 

 

 

Submitted to the Faculty of the  

University of Massachusetts Graduate School of Biomedical Sciences, Worcester,  

in partial fulfillment of the requirements for the degree of 

 

 

DOCTOR OF PHILOSOPHY 

May 11, 2016 

 

PROGRAM IN IMMUNOLOGY AND VIROLOGY 

 

 

 

 



ACTIVATION AND INHIBITION OF MULTIPLE 

INFLAMMASOME PATHWAYS BY THE YERSINIA PESTIS TYPE 

THREE SECRETION SYSTEM 
 

A Dissertation Presented  
By 

 
DMITRY RATNER 

 
This work was undertaken at the Graduate School of Biomedical Sciences 

Program in Immunology and Virology 
 

Under the mentorship of  
 

Dr. Egil Lien, Thesis Advisor 
 

The signatures of the Dissertation Defense Committee signify 

completion and approval as to style and content of the Dissertation 
 

________________________________________________________________________ 
Dr. Doug Golenbock, Member of Committee 

 
________________________________________________________________________ 

Dr. Jon Goguen, Member of Committee 
 

________________________________________________________________________ 
Dr. Stuart Levitz, Member of Committee 

 
________________________________________________________________________ 

Dr. Lee Wetzler, External Member of Committee 
 

The signature of the Chair of the Committee signifies that the written dissertation meets 
the requirements of the Dissertation Committee 

 
________________________________________________________________________ 

Dr. Kate Fitzgerald, Chair of Committee 

 

The signature of the Dean of the Graduate School of Biomedical Sciences signifies 

that the student has met all graduation requirements of the School. 
 

________________________________________________________________________ 
Anthony Carruthers, Ph.D., 

Dean of the Graduate School of Biomedical Sciences 

May 11 2016 



i 
 

Table of Contents 

Acknowledgements...................................................................................................................iv 

Abstract.....................................................................................................................................vii 

List of Publications..................................................................................................................viii 

List of Figures...........................................................................................................................ix 

List of Tables............................................................................................................................xi 

CHAPTER I: Introduction..........................................................................................................1 

 Innate Immunity.............................................................................................................2 

 Inflammasomes and their Role in Disease....................................................................4 

 Heterogeneity of Inflammasome structure, activation, and regulation mechanisms...5 

 Secretion Systems of Bacterial Pathogens..................................................................10 

 Interactions of specific bacterial secretion systems with Inflammasomes.................13 

  Salmonella.......................................................................................................13 

  Burkholderia....................................................................................................18 

  Pseudomonas...................................................................................................20 

  Francisella.......................................................................................................26 

  Legionella........................................................................................................29 

  Shigella............................................................................................................31 

  Yersinia...........................................................................................................33 

 Yersinia pestis vs other Yersinia.................................................................................36 

 Y. pestis as a model for T3SS interaction with Inflammasomes................................38 

 Objectives for Thesis...................................................................................................38 



ii 
 

Preface to CHAPTER II...........................................................................................................39 

CHAPTER II: Y. pestis YopM and YopJ Inhibit IL-1Β/IL-18 Production...........................40 

 Abstract........................................................................................................................41 

 Introduction..................................................................................................................42 

 Results..........................................................................................................................44 

  YopM and YopJ differentially influence inflammasomes  

  and inflammatory cytokines and chemokines................................................44 

  YopM and YopJ have redundant effects on virulence in vivo.......................47 

  Inhibition of IL-1Β and IL-18 production are overlapping 

  functions of YopM and YopJ in mice, but other effects differ......................50 

  YopM and YopJ may have different functions in other cell types................53 

  Interpretation of the relative roles of  

  YopM and YopJ in vitro and in vivo..............................................................53 

 Conclusion...................................................................................................................58 

Preface to CHAPTER III.........................................................................................................59 

CHAPTER III: Specific inhibition of the Pyrin inflammasome  

by Yersinia pestis type III secretion effector YopM...............................................................60 

 Abstract........................................................................................................................61 

 Introduction..................................................................................................................61 

 Results..........................................................................................................................64 

  YopK, but not YopM, keeps NLRP3 and NLRC4  

  activation by the Y. pestis needle/translocon in check...................................64 



iii 
 

  YopM specifically inhibits the Pyrin inflammasome,  

  which is activated by YopE.............................................................................69 

  Pyrin interacts with YopM, Pkn1, Rsk1, Iqgap1,  

  and is controlled by 14-3-3e............................................................................74 

 Conclusion....................................................................................................................83 

CHAPTER IV: Discussion.......................................................................................................84 

 Immune evasion by T3SS pathogens related to Y. pestis...........................................85 

 Inflammasome Activation and Inhibition by the Y. pestis T3SS...............................86 

 Control of Pyrin Inflammasome Activity....................................................................92 

 Familial Mediterranean Fever and Plague..................................................................95 

 Conclusion...................................................................................................................97 

Experimental Procedures.........................................................................................................98 

References...............................................................................................................................109 

 

 

 

 

 

 

 

 



iv 
 

Acknowledgements 

 I wish to express my deepest thanks and appreciation to my advisor, Dr. Egil 

Lien, for his phenomenal support and guidance through this journey. He was always 

ready to discuss and consider new ideas, which at times resulted in very creative 

experiments and approaches in this study.  Importantly, having independence to try new 

things and to work according to my own rhythm has sustained my motivation to keep 

pursuing this project in earnest. Flexibility was especially crucial in the months after I 

became a f ather, and I cannot thank Egil enough for unwavering support and 

understanding when I would work at odd hours or take off unexpectedly to help out at 

home. Through his respectful, kind, and flexible approach to mentoring, Egil inspired 

trust, loyalty and gratitude from this student.  

 I also want to express my appreciation for the ways in which Egil's style differs 

from my own. Egil is meticulously attentive to quality control in experiments, which 

balances my tendency to favor speed, multitasking, and large experimental setups at the 

possible expense of quality. In some mentoring relationships such differences can turn 

into a source of friction, but our stylistic differences were complementary and resulted in 

high quality, comprehensive experiments at a fast rate. I also admire Egil’s tempered 

approach to data – he remains remarkably composed when presented with exciting data, 

but also when assays do not work or when results may otherwise be disappointing. My 

relationship with Egil has been the most positive, productive, and transformative factor in 

my research training, and I thank him with all my heart. 



v 
 

 I would like to thank my thesis committee, Dr. Kate Fitzgerald, Dr. Jon Goguen, Dr. 

John Harris, and Dr. Neal Silverman for their guidance and input during the course of this 

research. Dr. Jon Goguen has been a great ally and teacher through the toughest parts of this 

research, and I want to especially thank him for the insightful discussions and advice on 

topics ranging from how to apply inductive reasoning in this project, to how to best organize 

my data for presentation. I also thank Dr. Lee Wetzler for taking the time to read and 

evaluate this dissertation as my external committee member. 

 I thank all the members of the Lien lab who have supported me through these years 

and contributed to the completion of this work either by training me, through help with 

experiments, or through invaluable moral support. I especially want to thank Pontus Ørning 

for his friendship and support; it's probably not a coincidence that his arrival in the lab 

coincided with the turning point when my research progress accelerated dramatically. I also 

thank Dr. Kristian Starheim and Dr. Kimberly Pouliot for their advice, discussion, and moral 

support, and to Dr. Robyn Marty-Roix for the time she took to train and assist me in BSL3 

work. I thank Gail Germain for the indispensable and difficult work of maintaining our 

animal resources and managing competing pleas for animal availability and budget-

consciousness. 

 This work would not have been possible without the bacterial strains generated by 

Megan Proulx in the Goguen lab. Heartfelt thanks to her, to Samantha Palace, and once 

more to Dr. Jon Goguen for providing me with this support. Furthermore, I greatly thank Dr. 

Chris Sassetti for his help with help with a particularly technically challenging mouse 

experiment; Dr. Donghai Wang for discussions and insight about Pyrin; Dr. Sanjay Ram for 



vi 
 

helping to draw blood from human donors; Drs. Mikhail Gavrilin, Dr. Mark Wewers, Dr. 

Joan Mecsas, Dr. Emad Alnemri, Dr. Peter F Johnson, and Dr. Ray Welsch for their kind 

reagent gifts. 

 Thanks also to all the wonderful, kind, and generous people in the Department of 

Medicine who readily share their reagents, equipment, insight and advice. Special thanks to 

Roland Elling, Sandhya Ganesan, Shruti Sharma, Zhaozhao Jiang, Srinjoy Chakraborti, and 

Dr. Vijay Rathinam for their help and advice. My gratitude and appreciation also goes to 

Kim West for maintaining the BSL3 lab and helping to train me in using that facility. 

I also want to express how important the support of MD/PhD students is for one another, 

and particularly thank my classmates Abhishek Satischandran, Evelyn Santos, Victor Liu, 

Barry Kriegsman, Jacob Schrum, Gregory Orlowski, and Brian Quattrochi for support, 

discussion, and camaraderie. 

 Finally, appreciation that would be shameful to express merely as a 'thanks' goes to 

my family, who have vicariously experienced the ups and downs of my student experience 

and stuck it out with me. My wonderful and supportive partner, Sveta, and my mother have 

worried and jumped for joy with and for me during these years. They, along with my son 

Savi, my grandmother, and my parents in law, have been as much a part of this experience 

as I have, and I could not have done this without their presence in my life. Our whole family 

looks forward to the days where the awful word "Yop" regains its rightful place as a 

curseword in our Russian-speaking home. 

 

 



vii 
 

Abstract 

Host survival during plague, caused by the Gram-negative bacterium Yersinia pestis, is 

favored by a  robust early innate immune response initiated by IL-1β and IL-18. 

Precursors of these cytokines are expressed downstream of TLR signaling and are then 

enzymatically processed into mature bioactive forms, typically by caspase-1 which is 

activated through a process dependent on multi-molecular structures called 

inflammasomes. Y. pestis  evades immune detection in part by using a Type three 

secretion system (T3SS) to inject effector proteins (Yops) into host cells and suppress IL-

1β and IL-18 production. We investigated the cooperation between two effectors, YopM 

and YopJ, in regulating inflammasome activation, and found that Y. pestis lacking both 

YopM and YopJ triggers robust caspase-1 activation and IL-1Β/IL-18 production in vitro. 

Furthermore, this strain is attenuated in a manner dependent upon caspase-1, IL-1β and 

IL-18 in vivo, yet neither effector appears essential for full virulence. We then 

demonstrate that YopM fails to inhibit NLRP3/NLRC4 mediated caspase-1 activation 

and is not a g eneral caspase-1 inhibitor. Instead, YopM specifically prevents the 

activation of a Pyrin-dependent inflammasome by the Rho-GTPase inhibiting effector 

YopE. Mutations rendering  Pyrin hyperactive are implicated in the autoinflammatory 

disease Familial Mediterranean Fever (FMF) in humans, and we discuss the potential 

significance of this disease in relation to plague.  Altogether, the Y. pestis T3SS activates 

and inhibits several inflammasome pathways, and the fact that so many T3SS 

components are involved in manipulating IL-1β/IL-18 underscores the importance of 

these mechanisms in plague. 
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Innate Immunity 

 Cells of innate immunity comprise the first line of defense against microbes that 

breach integumentary barriers. Macrophages, dendritic cells, and neutrophils respond to 

direct or indirect pathogen contact, tissue damage, and other signals by e ngaging in 

specialized cell-specific roles to ensure that infection does not progress. These responses 

include phagocytosis and 'sampling,' production of cytokines to communicate with other 

cells, recruitment of other immune cells, inflammation, killing of invading microbes, by 

tissue repair. Lastly, cross-presentation of antigens serves to engage adaptive immunity to 

develop molecular memory preventing future infection.  

 Innate immune cells sense conserved and recognizable pathogen- and danger-

associated molecular patterns (PAMPs and DAMPs) through pattern recognition receptors 

(PRRs)[1, 2]. Activation of these receptors turns on specific intracellular pathways to relay 

the signal to the DNA level and activate transcription of cytokines, chemokines, interferons, 

and other genes important for priming an immune response. PRR families include NOD-like 

receptors (NLRs), Toll-like receptors (TLRs), AIM2-like receptors, and others. 

 TLRs represent an important class of PRRs, capable of recognizing a r ange of 

bacterial and viral molecules to arrest infection in the early stages. These receptors are 

transmembrane proteins found in cell membranes and endosomes. Ligands are bound by 

horseshoe-shaped leucine-rich regions (LRR), followed by a conformational change in the 

Toll-interleukin receptor (TIR) domain on the cytoplasmic side of the membrane and the 

recruitment of adaptor molecules to trigger downstream signaling pathways[3]. TLRs 2, 4, 

5, and 6 a re located at the cell surface and recognize PAMPs including Pam2Cys4 from 
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Gram-positive bacteria (TLRs 2 and 6), LPS from Gram-negative bacteria (TLR4), and 

bacterial flagellin (TLR5) among others[1]. TLRs 3, 7, 8, 9, 11 , and 13 a re found on 

endosomal membranes and primarily recognize nucleic acids. 

 TLR4, together with MD-2 and CD14, recognize LPS - the major constituent of the 

cell wall of Gram-negative bacteria. Specifically, TLR4/MD-2 homodimerize around the 

hexa-acyl chains of the lipid A component of the LPS molecule, five out of six acyl chains 

buried within a hydrophobic pocket in MD-2, to trigger downstream adaptors MyD88, Mal, 

TRIF, and TRAM[4, 5]. The integrity of signaling downstream of TLR4 is protected by 

molecular oversight mechanisms to ensure proper signal propagation. Checkpoint 

mechanisms include RIP kinases, TAK1, cIAPs, caspase-8, and others [6-12]. 

Pharmacologic or pathogen-mediated inhibition of some of these pathways may lead to cell 

death, often accompanied by the release of additional cytokines to signal danger to other 

immune cells. 

 TLR4 signaling feeds into a sophisticated cross-signaling network which leads to 

activation of different transcription pathways depending on inputs through other receptors. 

Classically, TLR4 signaling is described to activate the MyD88-dependent and independent 

signaling cascades, followed by activation of MAP Kinases and/or NEMO, and finally 

initiation of gene expression by t he NFkB, AP-1, and C/EBPbeta transcription factors; 

however, it is increasingly clear that linear representations of this process are gross 

oversimplifications[13-16]. Systems biology approaches show that complex cross-talk 

following the activation of multiple PRRs is precisely what confers specificity and 

effectiveness to immune responses. 
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 Activation of NFkB downstream of TLR4 results in production of chemotactic and 

pro-inflammatory cytokines including TNFa, IL-6, IL-8, IL-1β, and IL-18. However, IL-1β 

and IL-18 are translated as pro-forms which cannot be secreted until they are enzymatically 

cleaved into their mature forms. This is classically accomplished by molecular complexes 

called inflammasomes. These complexes form upon activation of additional PRR sensors, 

thus ensuring the specificity of IL-1β/IL-18-dependent immune responses. 

 

Inflammasomes and their Role in Disease 

 Inflammasomes are increasingly recognized as critical orchestrators of immunity[17, 

18]. These large protein complexes are at the center of a variety of pathways in innate 

immune cells, including cytokine production[19], cytoskeletal remodeling[20], and cell 

death[21]. The primary function of an inflammasome may be to produce biologically active 

IL-1β and IL-18 cytokines in response to an activating event. Typically, inflammasome 

formation is initiated when a sensor, such as Nucleotide-binding domain Leucine-rich 

Repeat containing protein (NLR) proteins NLRP3 or NLRC4, recognize pathogen or 

danger-associated molecular patterns (PAMP or DAMP). This allows the adaptor protein 

Asc to nucleate and oligomerize at the site of the NLR, and recruit pro-caspase-1 to its 

CARD domain[22, 23]. Dimers of pro-caspase-1 are then cleaved to active caspase-1 

through autoproteolysis, which then catalyzes the final processing of pro-IL-1β and pro-IL-

18 into their mature secreted forms. Activation of caspase-1 is also accompanied by an 

inflammatory form of apoptosis, termed pyroptosis. Non-canonical caspase-11 
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inflammasomes, as well as pathways dependent on caspase-8 or neutrophil proteases may 

also lead to IL-1β and IL-18 processing [24-27].  

 Inflammasome-dependent secretion of IL-1β and IL-18 is critical for immune 

control of many microbes[17, 28-32], and some have suggested they may play an important 

role in signaling induced by vaccine adjuvants[33-35]. However, dysregulation or 

inappropriate activation of inflammasomes can also produce severe autoinflammation[36-

39] and contribute to autoimmune disorders[40-42], Alzheimer's disease[43], Parkinson's 

Disease[44], and many other pathologic processes.  

 To some extent, the roles of IL-1β and IL-18 overlap. Both are considered pro-

inflammatory cytokines, both are processed by inflammasome-dependent caspase-1 

activation, both are controlled by NF-kB-mediated transcription, and both have the capacity 

to induce NF-kB-mediated transcription[45-47]. Nevertheless, there are also important 

differences. Unlike IL-1β, IL-18 does not induce fever or inflammatory prostaglandin 

production[48]; moreover, in human epithelial cells IL-18 appears to activate the MAP 

kinase pathway but not NF-kB-mediated gene transcription, suggesting that its specific 

effect varies by cell type. Another important role of IL-18 is to induce NK cells and T-cells 

to produce IFN-g, which activates macrophages[49].  

 Prominent effects of IL-1β include recruitment of neutrophils to sites of infection, 

promoting endothelial cell adhesion, and stimulating adaptive Th17 as well as allergic Th2 

responses[50, 51]. Activation of the IL-1β receptor leads to NF-kB-mediated expression of 

TNFa, RANTES and chemokines IL8 and KC which lead to rapid recruitment of 

neutrophils[52-61]. Thus, IL-1β in particular has the capacity to cause host tissue damage, 
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although this robust induction of inflammation is necessary in the context of certain 

infections, such as Staphylococcus aureus[60, 61]. By contrast, IL-18 tends to have a less 

toxic effect while still playing an important role in controling infection. The difference in the 

physiology of IL-1β and IL-18 may be particularly critical in the lung, where IL-18 tends to 

play a more protective role while IL-1β is generally associated with increased tissue 

damage[54, 62-65]. Yet under different circumstances, both cytokines can be be important 

for the clearance of intracellular pathogens, and for efficient activation of adaptive immune 

responses. Consequently, inflammasome-activated caspase-1 and subsequent levels of IL-1β 

and IL-18 secretion are key events in many infectious and non-infectious diseases. 

 

Heterogeneity of Inflammasome structure, activation, and regulation mechanisms 

 Consistent with the delicate balance needed between a sufficiently robust immune 

response and minimal tissue damage, sophisticated mechanisms exist to tightly regulate the 

specificity and sensitivity of inflammasome pathways. While the general model of Ligand-

NLR-Asc-Caspase-1 from early inflammasome studies is useful for a basic 

conceptualization of this system, the extent of its heterogeneity is being increasingly 

recognized and appreciated. 

 NLR sensor molecules such as NLRP1, NLRP3, NLRP6, and NLRP12 contain 

LRRs which are believed to be involved in activation, an ATPase NACHT domain (except 

NLRP1), and a pyrin domain through which they interact with Asc. However NLRC4 

(sometimes referred to as IPAF) contains a CARD domain, which recruits Asc but can also 

directly recruit caspase-1. Although NLRC4 activation is more robust in the presence of 
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Asc, it is not required. The sensors NLRP1b[66] and NOD1[67] can also activate caspase-1 

independently of Asc.  

 Non-NLR sensors such as Pyrin, IFI16, and AIM2 also exist; these sensors contain 

Asc-interacting pyrin domains, but lack the LRR domains present on many other sensors. 

Instead, AIM2 and IFI16 contain DNA-sensing HIN domains[68], and have been reported 

to respond to viral as well as bacterial DNA in the cytosol[69-71]. In the case of the Pyrin 

inflammasome, a directly activating pathogen ligand has not been established but it has been 

proposed that this sensor responds to pathologic Rho-GTPase activity induced by multiple 

Gram-negative pathogens[36]. 

 The case of Pyrin also demonstrates that inflammasome activation is not necessarily 

the result of a direct interaction of a sensor with a PAMP or DAMP ligand. Pyrin was 

initially proposed to be an inhibitor of caspase-1 activity, based on evidence that Pyrin 

knockdown leads to increased NLRP3 activity in vitro[72]. Yet more recent studies point to 

a different mechanism, whereby the Pyrin inflammasome is spontaneously activated by 

mutations in the SPRY domain[73]. In humans, such mutations result in Familial 

Mediterranean Fever (FMF)[74]. Activity of the Pyrin inflammasome has been reported to 

be influenced by PSTPIP1[75, 76], Siva[77], certain 14-3-3 isoforms[78, 79], the leading 

edge of polymerizing actin[80, 81], and a diverse variety of microbial molecules[82]. Many 

aspects of the activation mechanism remain unknown, but the emerging picture is one where 

Pyrin is triggered by changes in intracellular homeostasis, which are sensed by the 

endogenous binding partners of Pyrin rather than by direct binding of a pathogenic ligand. 
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 Other inflammasomes require cofactors for activation as well. The NLRC4 

inflammasome is a well-established sensor of flagellin, yet it does not bind flagellin directly; 

instead, the presence of flagellin is relayed to NLRC4 by NAIP proteins[83, 84]. NLRP3, 

often regarded as the quintessential classical inflammasome, also has a complex mechanism 

of activation which senses DAMPs and PAMPs indirectly. For example, NLRP3 sensing of 

double stranded DNA (dsDNA) occurs downstream of TRIM33-dependent ubiquitination of 

DXH33, which allows it to interact with NLRP3 and activate it[85, 86]. In general, NLRP3 

can be activated by a v ariety of triggers including excessive influxes of calcium and/or 

efflux of potassium, oxidative damage, elevated ATP levels, and bacterial pore-forming 

toxins, crystallized molecules such as silica or uric acid, oxidized mitochondrial DNA, and 

many others[87]. Activation by mitochondrial DNA appears attractive as a unifying 

mechanism, since the other activating events may trigger the upstream damage which causes 

the release and oxidation of mitochondrial DNA. Whether NLRP3 interacts with 

mitochondrial DNA directly or via intermediate sensors is still incompletely understood. 

The mitochondrial DNA hypothesis may also explain observations that autophagy is 

associated with reduced inflammasome activation[88], as turnover of damaged mitochondria 

as well as ubiquitinated inflammasome components increases[89-91]. If so, a recent study 

by Orlowski et al showing that multiple endogenous cathepsins potentiate NLRP3 activity 

may reveals another important mechanism of inflammasome regulation[92], considering 

that cathepsin activity is known to inhibit autophagy[93-95]. 

 Another important NLRP3-activating mechanism occurs through upstream 

recognition of intracellular LPS by caspase-11. In this pathway, termed the non-canonical 
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inflammasome, LPS-activated caspase-11 cleaves gasdermin, which then activates both 

pyroptosis and NLRP3-dependent caspase-1 activation[96, 97]. Caspase-11 activity depends 

on interferon pathways, as TLR4, TRIF, and IFNAR1 deficient cells show heavily 

impaired caspase-11 processing[98]. Recently it was shown that type-I interferons 

activate guanylate binding proteins (GBPs) which are involved in trafficking proteins to 

the plasma membrane or membranes of intracellular organelles, and are required for 

activation of the inflammasomes pathways as well as o ther antimicrobial actions in 

response to vacuolar Gram negative bacteria[99-103]. However, while the non-canonical 

caspase-11 inflammasome plays a c ritical role in host defense against intracellular Gram 

negatives[98, 104-106], mice lacking gasdermin or caspase-11 are also protected from LPS-

mediated septic shock[96, 107]. 

 It is also important to note that some NLR sensors, such as NLRP6 and NLRP12, 

also have major anti-inflammatory functions[108, 109]. NLRP6 was shown to negatively 

regulate NF-kB driven innate immune responses and actually impede clearance of bacterial 

pathogens[110]. Interestingly, in gut epithelial cells and neurons NLRP6 has a protective 

effect independent of inflammasome activity[111, 112]. NLRP6 was recently shown to 

recognize dsRNA together with Dhx15 (another cofactor?), and play an important role in 

defense against norovirus in the gut independently of caspase-1[113]. The unusual functions 

of NLRP6 raise the question whether it f orms an inflammasome at all; currently, the 

evidence for this is lacking. 

 Like NLRP6, NLRP12 negatively regulates NF-kB[114] and limits 

autoinflammatory immune responses both in the gut and in neurons[115, 116]. Yet in 
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certain disease contexts NLRP12 may also forms an Asc-dependent inflammasome and 

promote caspase-1 activation. NLRP12 contributes to caspase-1 activity and IL-1β 

production in response to malaria parasites [117], Y. pestis[118], and K. pneumonia[119]. To 

date, however, no specific trigger of an NLRP12 inflammasome has been identified. 

 A number of pathways are also capable of processing IL-1β and IL-18 

independently of inflammasomes. Indeed, the IL-1β response to certain stimuli can be 

nearly unchanged in mice lacking caspase-1 or Asc[120-122]. Several neutrophil proteases 

including serine proteinase-3, cathepsin G, and neutrophil elastase are known to directly 

process IL-1β and IL-18[123]. In addition, caspase-8 can activate caspase-1 through an 

incompletely understood mechanism which may or may not involve inflammasomes[11, 

124]; however, caspase-8 has also been reported to process IL-1β independently of caspase-

1[27, 125, 126]. 

 Finally, it should be noted that inflammasome expression varies by cell type, stage 

of maturation, and type of activation. Expression of NLRP3, for example, is generally too 

low under resting conditions and needs to be induced by priming before it may be activated. 

By contrast, expression of NLRC4 relative to NLRP3 may inverse within hours of 

stimulation in some cells[127], which may have important implications for studies involving 

long periods of priming or infection. Priming is also sometimes necessary to restore 

expression of Pyrin[75], which Gavrilin and colleagues showed to be lost in macrophages 

upon differentiation; however, monocytes and PBMCs differentiated in the presence of 

additional growth factors restores Pyrin expression[128]. Similarly, NLRP12 is not 

expressed in fully differentiated macrophages but is present in neutrophils[129]. For these 
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reasons, inflammasome studies in any cell line should be carefully scrutinized for 

appropriate expression of relevant components. However, some inflammasome components 

may not even be expressed in certain mouse strains, a good example being NLRP1b[130]. 

Expression of cofactors involved in regulation of various inflammasomes may also differ 

significantly. Therefore, caution is warranted when drawing conclusions about negative 

results in inflammasome studies, both in vitro and in vivo. 

 In summary, the remarkable variety in these pathways raises questions about what 

defines an inflammasome, and should caution against generalizations about their 

mechanisms. 

 

Secretion Systems of Bacterial Pathogens 

 The ability to export molecules to manipulate the host environment is an essential 

ability of many bacterial pathogens. Some of the most virulent bacteria have evolved type 

3, 4 and 6 secretion systems capable of penetrating host cells and injecting effector 

proteins to alter normal cellular processes in ways that benefit the pathogen. Examples of 

such bacteria - Salmonella, Shigella, Francisella, Legionella, Burkholderia, 

Pseudomonas, Yersinia, and others - cause worldwide infections in the hundreds of 

millions, and deaths in the millions annually. In addition to the health & economic burden 

owed to these pathogens, some are candidates for bioterror and biowarfare. 

 There has been significant progress in understanding the structural and 

mechanistic aspects of bacterial secretion systems[131]. Yet the complex roles they play 

in the host-pathogen interaction, particularly as they pertain to immune responses, are 
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only beginning to be recognized and appreciated. Considering the breadth of pathways 

involved in inflammasome regulation described earlier, it should be reasonably expected 

that molecules delivered by bacterial secretion systems with the design to manipulate host 

cell homeostasis would in one way or another influence inflammasome pathways. The 

functions of many of these molecules remain unknown or incompletely characterized, 

keeping this field rich with questions and opportunity for inquiry. 

 Of the six secretion systems known in bacteria, the type 3 secretion system, 

(T3SS), type IV secretion system (T4SS), and type VI secretion system (T6SS) are 

associated with the most virulent human pathogens. Examples of pathogens with a T4SS 

are Legionella and Burkholderia pathogens, as well as Helicobacter pylori (not discussed 

in this review). The T6SS was discovered relatively recently, and is present in Vibrio, 

Pseudomonas, Burkholderia, and Francisella species. 

Of these secretion systems, the T3SS is the best studied and common to some of 

the most important and deadly bacterial pathogens (Yersinia, Salmonella, Shigella, 

Burkholderia, Pseudomonas, and others). The delivery apparatus of the T3SS has 

remained well conserved across species, and consists of the basal body, the needle, and a 

pore-forming complex at the tip. The needle/translocon, also called the needle/translocon, 

spans both the inner and out bacterial membranes and protrudes from the cell. The basal 

body is partially in the bacterial cytoplasm, anchored to the membrane. Its function is to 

recruit specific effector proteins and secrete them through the needle, assisted by an 

ATPase complex. Effectors pass from the base to the needle via an inner rod, and rod 

components can become secreted through the needle itself. The needle is a multimeric 
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structure composed of a single protein, approximately 60-80nm in length, with a 3nm 

diameter hole. The tip of the needle is composed of a pore-forming complex and 

translocon, which inserts into the host cell membrane and allows passage of effector 

proteins through the needle into the host cytoplasm[131]. 

The T3SS structure is critically important for pathogen virulence; however, some 

key components cannot be easily altered without significantly compromising the ability 

to deliver effectors[132-140]. Perhaps for this reason the secretion systems of several 

pathogenic species have become recognizable immune targets, or pathogen-associated 

molecular patterns (PAMPs) - molecules which are pathognomonic with bacterial 

infection for host immunity. Cytokine responses to the T3SS tend to be quite robust and 

involve the activation of toll-like receptors and inflammasomes[83, 141-143]. Likewise, 

T3SS needle/translocon proteins, particularly those involved in attachment and 

penetration of the host cell, have a disproportionate number of immune epitopes 

compared to other bacterial proteins (IEDB.org); several of these are established 

protective antigens that confer adaptive immunity against the pathogen[144]. 

Consequently, there is constant evolutionary pressure on T3SS pathogens to limit or 

manipulate the host response to its T3SS, and likewise there is pressure on the host to 

develop sophisticated methods of immune recognition with minimal immunotoxic harm 

to self. 
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Interactions of specific bacterial secretion systems with inflammasomes 

Salmonella 

Species of the Gram-negative Salmonella genus are the leading source of acute 

gastroenteritis worldwide, resulting from foodborne poisoning through consumption of 

contaminated poultry, pork, eggs, and milk. In total, Salmonella causes 1.3 billion cases 

of human disease each year and approximately 800,000 de aths [145-147]. Salmonella 

typhi, spread through contaminated water, causes up to 20 million additional cases and 

220,000 deaths per year globally[148]. The combined 15.2 million disability-adjusted life 

years (DALYs) lost per year due to typhoidal and non-typhoidal Salmonella[149, 150] 

make it the second greatest bacterial contributor to global disease burden after 

tuberculosis. 

 Salmonella enterica serovar typhimurium, one of the most common serovars 

causing nontyphoidal salmonellosis, is a facultative intracellular bacterium able to 

survive and reproduce both inside and outside of host cells. This adaptability requires a 

large number of genes which are distributed throughout the Salmonella genome, 

distinguishing it f rom many other pathogens whose virulence genes are typically more 

compartmentalized[151]. Horizontal transfer of pathogenicity islands (so called because 

of their absence in nonpathogenic serovars) gives some Salmonella enterica serovars the 

ability to survive inside host cells and effectively evade the immune system. 

The two major virulence determinants of Salmonella are the pathogenicity islands 

SPI-1 and SPI-2. These gene clusters encode two type III secretion systems (T3SS) 

capable of forming needle-like structures on the surface of the bacteria through which 
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more than thirty specialized effector proteins can be injected directly into host cells[152, 

153]. 

SPI-1 is a 40-kb region which encodes two distinct regulatory proteins, InvF and 

HilA, in addition to a T3SS termed Inv/Spa and a cluster of effector proteins. This 

secretion system was shown to be necessary for initial bacterial contact with host cells, 

and effectors secreted through this system trigger host cell pathways to internalize the 

bacteria[154].  

The second pathogenicity island, SPI-2, encodes a t wo-component regulatory 

system as well as another distinct T3SS (Spi/Ssa) which is a major virulence factor found 

in all subspecies of Salmonella enterica[155, 156]. The Spi/Ssa T3SS of the SPI-2 

pathogenicity island differs in structure and function from the Inv/Spa T3SS of the SPI-1, 

and while Inv/Spa mediates uptake of the bacterium, Spi/Ssa enables the survival and 

replication inside the host cell[155, 156].  

During enteric infection Salmonella invades the intestinal mucosa, followed by 

phagocytic uptake or entry into non-phagocytic enterocytes[146]. The bacteria restricts 

the expression of SPI-1 and SPI-2 until it encounters the appropriate host environment, at 

which point it expresses the T3SS genes required for further survival and 

propagation[157, 158]. Culturing Salmonella typhimurium at different conditions can 

mimic different host environments. For example, bacteria is grown to log-phase will 

express SPI-1[159], but at stationary phase expression of SPI-1 decreases while 

expression of SPI-2 will increase [160]. Thus, the bacteria seem to sense whether it is in 
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an extracellular or intracellular environment, and alters the expression of its virulence 

factors for optimal adaptation. 

The host immune system is able to sense and react to these bacterial factors. 

Salmonella typhimurium expressing SPI-1 and the Inv/Spa T3SS induces rapid 

macrophage cell death and IL-1β production, which is dependent on NLRC4 as well as 

the NLR apoptosis inhibitory proteins (NAIPs)[83, 161]. As mentioned previously, 

NAIPs interact with NLRC4 upon sensing PAMPs and DAMPs, and trigger activation of 

the NLRC4 inflammasome. Mice express four NAIP paralogs (NAIP 1, 2, 5 a nd 6) of 

which NAIP5 and NAIP6 detect bacterial flagellin, NAIP2 detects the Inv/Spa T3SS 

inner rod protein PrgJ[83, 161], and NAIP1 and its human homolog NAIP detect the 

Inv/Spa T3SS needle protein PrgI[143, 162]. Interestingly, there is only one known 

human NAIP protein, which raises the question whether it may singularly be responsible 

for detecting both PrgI and flagellin. A study in human cells suggests this may indeed be 

the case[163], which warrants further investigation of the mechanism. 

As mentioned above, S. typhimurium grown to stationary phase (mimicking an 

intracellular niche) will upregulate SPI-2 while downregulating SPI-1. Macrophages 

infected with these bacteria will undergo a much slower cell death (12-17 hours 

compared to 1-2 hours for log-phase bacteria), which is not dependent on t he Inv/Spa 

T3SS. Instead, this cell death is triggered by the Spi/Ssa T3SS and occurs predominantly 

through NLRP and the noncanonical caspase-11 inflammasome, and to a l esser extent 

through NLRC4[164]. The Spi/Ssa T3SS is used by the bacteria to inject effector proteins 

into the cell cytoplasm, but it also allows translocation of flagellin protein which triggers 
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the NLRC4 inflammasome. Using a Δflag mutant which does not produce flagellin, Broz 

et al showed that S. typhimurium initiates two host inflammasome pathways, with 

flagellin and SPI-2 respectively triggering NLRC4 and caspase-11[164]. 

 

Figure 1.1. NLRC4 inflammasome structure and common recognition patterns of 
flagellin and T3SS molecules. Known activators include Salmonella, Shigella, 
Burkholderia, Pseudomonas, and Yersinia. In the upper left are shown homologs of PrgI 
and PrgJ which are known or predicted to activate NLRC4 via NAIP1 or NAIP2, 
respectively. 

 

Caspase-11 is capable of detecting intracellular LPS through an TRIF/interferon 

assisted pathway[98] and activate what has been termed the noncanonical inflammasome, 

leading to release of IL-1β and IL18 and initiation of pyroptosis[24, 107, 165]. It was 

proposed that caspase-11 binds directly to LPS[166] leading to cleavage of gasdermin D 
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and initiation of cell death[96, 167]. The Spi/Ssa T3SS encoded by SPI-2 likely 

introduces bacterial LPS into the host cytoplasm, activating caspase-11. The fact that 

some caspase-11 dependent IL-1β production still occurs in the absence of SPI-2 suggests 

an alternative mechanism for LPS to enter the cytoplasm. 

S. typhimurium has several mechanisms to avoid immune detection and maintain 

an intracellular growth niche. The bacteria shifts from SPI-1 to SPI-2 expression, and 

also down-regulates flagellin expression in order to minimize activation of NLRC4. SPI-

2 drives the expression of the Spi/Ssa T3SS, which the bacteria uses to secrete effector 

proteins that help it persist in its vacuolar niche. One secreted protein, SifA, induces 

stabilization of the vacuole by microtubules, and is critically important for virulence[105, 

168]. Yet the Spi/Ssa T3SS, which is required by the bacteria for virulence, also activates 

inflammasome pathways by the mechanisms described above and results in the eventual 

clearance of the pathogen. 

 

Burkholderia 

 Burkholderia species are closely related to Pseudomonas, and include several 

opportunistic pathogens which can cause serious disease in humans. B. pseudomallei 

causes the highly lethal disease melioidosis, and has even been considered as a candidate 

for biowarfare. Many species of Burkholderia are considered harmless; however, CF 

patients are uniquely susceptible to chronic lung infection with Burkholderia species, 

including ones which normally do not cause disease in humans.  
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 Burkholderia pathogens are able to survive inside macrophages, and infection is 

typically eventually resolved by adaptive immunity. Nevertheless, in the early stages of 

infection, the Burkholderia secretion systems interact with several inflammasomes with 

important consequences for the course of disease. Some polymorphisms of NLRC4, for 

example, significantly impact survival in melioidosis in humans[169]. 

 In general, it is difficult to distinguish whether effectors or secretion systems 

themselves are responsible for activating an inflammasome, but it is even more 

challenging when multiple interacting secretion systems are present. B. cenocepacia has a 

T2SS, T3SS, T4SS, and T6SS, each of which may contribute to activation NLRP3 and 

possibly to a lesser extent NLRC4[170]. The T6SS and T2SS cooperate in the delivery of 

metalloproteinases zmpA and zmpB, which are essential for intracellular survival and 

also partially contribute to NLRP3 activation. Yet there seem to be other NLRP3 

activators which have yet to be identified, and may include structural components of the 

secretion systems or other translocated proteins. 

 By contrast, B. pseudomallei does not seem to trigger NLRP3 activation in 

macrophages, but instead the early inflammasome response appears entirely dependent 

on NLRC4[171]. This inflammasome activity arrests replication of intracellular bacteria. 

The NLRC4 activation appears to be primarily driven by the flagellin protein FliC and 

the basal body pr otein BsaK - a homolog of the NLRC4-activating PrgJ protein in 

Salmonella. Later in infection, IL-1β secretion is driven by an NLRC4-independent 

pathway, and is curiously accompanied by caspase-1 independent cell death. Both 

NLRC4 and TLR5 are required for host survival and resolution of B. pseudomallei lung 
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infection in vivo, but indeed there appears to be another unidentified inflammasome 

activated later during infection[169]. Although some inflammasome activity is essential 

for the host response, production of IL-1β specifically leads to excessive neutrophil 

recruitment and elastase-mediated lung damage[172]. Rather than resolution of infection, 

this results in increased host mortality and systemic invasion by the pathogen. Instead, it 

is IL-18 production by inflammasome activity which appears to assist survival and 

bacterial clearance. 

 B. cenocepacia has also been shown to activate the Pyrin inflammasome in 

human monocytic cells by G avrilin and colleagues[173], and this was recently also 

demonstrated in mice[82]. The B. cenocepacia T6SS, but not the T3SS activates Pyrin 

and induces its recruitment to phagosomes. The B. cenocepacia T6SS is known to disrupt 

Rho-GTPases and cytoskeletal regulation[174-176], which are events that have been 

hypothesized to activate Pyrin[36, 80-82, 177]. Loss of Pyrin is associated with increased 

intracellular bacterial survival, but also reduced inflammation in the lungs of infected 

mice[82]. This may be an important insight for CF lung infection with Burkholderia 

species, as evidence suggests higher mortality and ineffective clearance of the related P. 

aeruginosa pathogen associated with increased inflammasome responses. 

 

Pseudomonas 

 Certain Pseudomonas species, particularly Pseudomonas aeruginosa, are 

important opportunistic and nosocomial pathogens. They are particularly dangerous for 

immunocompromised and severely ill patients, as well as individuals with cystic fibrosis 
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(CF). P. aeruginosa is able to establish chronic lung infection in CF patients due to the 

uniquely permissive environment of the CF lung; the ensuing inflammation results in 

progressive lung damage and is currently the leading cause of death among CF patients. 

Given the high hazard that P. aeruginosa poses to the sizable population of individuals 

with CF worldwide, inflammasome responses to this pathogen in the context of the CF 

lung deserve special attention. 

 The relationship between Pseudomonas infection and inflammasomes is complex 

and controversial. Some studies indicate reduced bacterial clearance when inflammasome 

activation is defective[178]. Yet a majority of studies suggest that inflammasome 

activation is counterproductive to bacterial clearance, particularly in the lungs, and may 

even exacerbate tissue damage and mortality[127, 179-183]. In the study by Faure et al, it 

appears that inflammasome-driven IL-18 dampens IL-17 activity, which is critical for 

clearing Pseudomonas lung infection. It is  possible that these discrepancies highlight a 

difference between corneal infection, where an IL-1β/IL-18 response is beneficial to the 

host, and lung infection, where the same type of response is inappropriate. A curious 

observation is that P. aeruginosa appears to exploit the regulation of host autophagy by 

IL-1β and caspase-1, with the net result that inflammasome activation promotes the 

survival of the pathogen[127, 184, 185]. 

 Pseudomonas is primarily known to activate NLRC4 and NLRP3, although a 

caspase-1 independent pathway will also be discussed. The AIM2 inflammasome does 

not appear to be activated[186]. The Pseudomonas RhsT protein has been suggested to be 

an inflammasome activator, however the authors do not elaborate on pos sible 
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mechanisms[182]. RhsT contains conserved sequence homology with the C. difficile 

toxin B (TcdB), a known activator of the Pyrin inflammasome. Whether this protein 

indeed activates Pyrin or another inflammasome warrants investigation, as t he RhsT 

family proteins are widespread and conserved among many pathogens, including several 

that have been shown to activate Pyrin[82]. P. aeruginosa also contains two potent GAP 

enzymes, ExoS and ExoT, which inhibit RhoA[187-189]. Based on the hypothesis of Rho 

GTPase inhibition but forth by Xu and colleagues[82], these toxins could potentially be 

Pyrin activators. 

 The NLRC4 inflammasome is activated by multiple Pseudomonas molecules, 

likely including the T3SS needle/translocon itself, both in vivo and in vitro[179, 190]. 

Potentially recognized needle/translocon components include PscI (a homologue of the 

NLRC4-activating Salmonella basal body pr otein PrgJ), and PscF (a homologue of 

Yersinia needle protein YscF). NLRC4 is also known to be activated by flagellin proteins 

of many bacterial species, and Pseudomonas flagellin follows this pattern as well[183]. It 

is worth noting that NLRC4 activation correlates with bacterial motility, and some 

investigators have suggested that it may be flagellar motility, rather than the flagellin 

protein per se, which leads to phagocytosis and inflammasome activation[191, 192]. Yet 

this view is challenged by experiments showing that surfactant protein A directly binds 

recombinant flagellin as well as live Pseudomonas in vitro and in vivo, enhancing the 

phagocytosis and capacity of both to activate NLRC4[193]. Findings by Anantharajah 

and colleagues also suggest that IL-1β release and pyroptosis are not correlated to 

flagellar motility[194]. Thus, it is possible that decreased inflammasome activation by 
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non-motile Pseudomonas is due to reduced contact with host cells; this is especially 

worth considering given that clinical isolates of Pseudomonas from chronically infected 

lungs are typically mucoid strains, which are resistant to contact with immune cells and 

phagocytosis. 

 The P. aeruginosa T3SS has been shown to activate both NLRP3 and, 

surprisingly, NLRC4 by inducing mitochondrial damage and DNA release[127, 184]. In 

the latter study, Jabir et al demonstrated mitochondrial DNA binding to NLRC4 

downstream of Pseudomonas infection, uncovering aspects of the NLRC4 mechanism 

which may have been previously overlooked[185, 195]. Pseudomonas-triggered 

inflammasome activation induces autophagy, which seems to be associated with 

defective killing of the bacteria. Moreover, in an acidic microenvironment, as is typically 

the case in bacterial infection foci, Pseudomonas T3SS triggers enhances inflammasome 

activation immune cells[196]. This may be significant because acidic conditions are 

known to favor autophagy[197-199], further assisting bacterial survival. Cumulatively 

this adds to a growing body of evidence that in most cases, inflammasome activation 

infection with P. aeruginosa is ineffective and histotoxic - particularly in the lung where 

excessive inflammatory damage is associated with worse clinical outcome. 
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Figure 1.2. NLRP3 inflammasome structure and function, including the non-canonical 
caspase-11 pathway. Known activators are in red, and triggering molecules and processes 
are detailed. 
 
 These findings may help explain why CF patients are more vulnerable to P. 

aeruginosa lung infection. First, the pH of the CF lung is more acidic than in healthy 

individuals[200, 201], which was shown to negatively impact bacterial killing by Pezzulo 

and colleagues[202]. According to the studies cited earlier, this lower pH would be 

associated with even greater inflammasome activation and decreased bacterial clearance. 

Second, a recent elegant study by Rimessi and colleagues demonstrated that 

Pseudomonas activates NLRP3 and NLRC4 more strongly in CF cells due to intrinsically 

impaired calcium homeostasis[203]. CFTR is a chloride ion channel, and its deficiency 

leads to abnormally high intracellular and mitochondrial calcium levels. P. aeruginosa 
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infection triggers additional calcium entry via the mitochondrial calcium uniporter, 

resulting in greater mitochondrial damage, oxidative stress and subsequent NLRP3 

activation in CF cells. Thus, the intrinsically aberrant calcium homeostasis and increased 

acidity exacerbate the inappropriate inflammasome activation in response to P. 

aeruginosa, and lead to exaggerated neutrophil influx with subsequent lung damage by 

neutrophil elastase despite perpetual failure to clear the bacteria. Indeed, inhibiting the 

Pannexin-1 (P2X7) channel with probenecid prior to Pseudomonas infection successfully 

prevents calcium influx-driven caspase-1 activation, and reduces the severity of infection 

in vivo[204, 205].  

  Yet if caspase-1 inhibition in the lung is beneficial for the host and detrimental 

for Pseudomonas, then what is the significance of ExoU - a Pseudomonas toxin which is 

reported to be a potent caspase-1 inhibitor? According to Anantharajah and colleagues, 

IL-1β secretion is abrogated in the presence of ExoU, and pyroptosis is replaced with 

rapid cell death[194], which is not caspase-8 dependent[11] and is likely necrotic[206]. 

Neither the mechanism of cell death nor caspase-1 inhibition are fully understood. ExoU 

is a phospholipase, which is unique among T3SS effectors[206], and it is apparently able 

to effectively suppress both NLRC4-dependent and independent caspase-1 processing. 

However, Pseudomonas strains which lack ExoU appear to have a competitive advantage 

over ExoU(+) strains[207]. Over time, the clinical isolates recovered from chronic 

Pseudomonas lung infections tend to becomes ExoU(-), non-motile, and often completely 

lacking a T3SS. 
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 In addition to NLRP3 and NLRC4, Pseudomonas also appears to trigger a non-

canonical inflammasome pathway. This pathway appears to be activated by p ilin and 

requires a functional T3SS, but is not dependent on N LRP3, NLRC4, or Asc[208]. 

Karmakar et al also identified a pathway of IL-1β production by neutrophils in response 

to Pseudomonas corneal infection which is independent of Asc and caspase-1, but 

dependent on the activity of neutrophil elastase and serine proteases[178]. Here, IL-1β 

was found to be necessary for bacterial clearance from the cornea, in contrast to the 

detrimental effects of IL-1β in Pseudomonas lung infection. Others have also reported a 

neutrophil-driven pathway in response to Pseudomonas with similar non-canonical 

characteristics[180, 209], with potential regulation by Pstpip2[209]. If these studies 

indeed describe a single pathway, then the fact that it is independent of caspase-1 narrows 

the possibilities of enzymes known to directly cleave IL-1β to caspase-8, neutrophil 

elastase, proteinase 3, and cathepsin G. Although evidence to confidently exclude a role 

for caspases-8 and 11 is incomplete, currently it appears Pseudomonas does not activate 

these pathways[11, 24, 98]. Synthesizing all of these results suggests a scenario where 

pilin is secreted by the Pseudomonas T3SS, and activates direct processing of IL-1β and 

IL-18 by neutrophil serine proteases independently of inflammasomes or caspase-1.  

 

Francisella 

The facultative intracellular bacterium Francisella tularensis is the causative 

agent of tularemia, an acute systemic disease with high mortality. It is a highly virulent 

pathogen which, like Yersinia pestis, is classified as a  category A select agent with the 
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potential to be used for bioterror and biowarfare. For bench research, the model of choice 

is F. novicida because it is virulent in mice but attenuated in humans[210-212]. 

F. novicida avoids degradation by phagocytes by escaping from the phagosome 

into the cytosol, where it is then free to replicate. However, upon e scape from the 

phagolysosome, F. novicida triggers caspase-1 cleavage and IL-1β secretion[213]. Unlike 

other pathogens discussed in this review, Francisella does not seem to activate neither 

NLRC4 nor NLRP3[214] in mice, but in human cells both NLRP3 and AIM2 are 

triggered[215]. Activation of NLRP3 was recently corroborated by another study where 

human monocytes produced IL-1β in response to Francisella bacteria and ATP[216]; this 

IL-1β secretion also required K+ influx, strongly suggesting an NLRP3-dependent 

mechanism. Perhaps a Francisella effector is able to inhibit NLRP3 activation in mice 

but not in humans[217], or perhaps mice and humans have other significant differences in 

NLRP3 regulation. Another mouse-human difference concerns Francisella activation of 

the Pyrin inflammasome. Gavrilin and colleagues showed that in human monocyte-

derived macrophages and THP-1 cells, Francisella triggers the Pyrin 

inflammasome[128]. This contrasts with findings by F ernandes-Alnemri et al, who 

showed that mice lacking Pyrin still produce IL-1β in response to Francisella, while mice 

lacking AIM2 produce little to none. Significant differences in the sequence and function 

of mouse Pyrin versus human Pyrin may be at the core of this discrepancy[218]. 
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Figure 1.3. Pyrin inflammasome structure and function. Francisella and Burkholderia 
are known activators of Pyrin. Pseudomonas is a suspected activator based on the GAP 
activity of ExoS and ExoT, as well as the homology of RhsT to known Pyrin activator 
TcdB. 
 

The mechanism by which F. novicida activates AIM2 is also unusual, occuring 

through an IRF-1 dependent pathway[219]. Activation of the cytosolic DNA sensor 

cGAS and STING in response to cytosolic F. novicida leads to IRF-1 mediated 

transcription of GBPs; specifically, GBP 2 a nd 5 were found to induce AIM2, but not 

NLRP3, in a dsDNA dependent manner in mouse macrophages. As mentioned earlier, the 

AIM2 inflammasome assembles upon di rectly binding dsDNA via the HIN domain[68, 

220-222]. Yet the study by Man and colleagues shows that although AIM2 and cGAS can 
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both bind dsDNA, cGAS activation is upstream of AIM2 and is necessary for 

inflammasome formation in response to F. novicida. Both AIM2 and IRF1 were required 

for restriction of F. novicida replication in vitro, and survival in vivo[219]. Potentially, 

interferon signaling could be necessary to increase AIM2 expression, however other 

studies show that even small amounts of transfected dsDNA are enough to rapidly trigger 

activation of the AIM2 inflammasome[223]. A specific trigger of this pathway is not 

known, although one possibility is that the F. novicida activator of STING is a secreted 

cyclic nucleotide, similar to L. monocytogenes[224]. 

Cytosolic LPS from the intracellular F. novicida would be expected to also trigger 

caspase-11 activation. However, Francisella produces tetra-acylated rather than hexa-

acylated LPS, which loses its ability to bind and activate caspase-11[107]. This is a 

similar strategy to that of Y. pestis, limiting activation of TLR4[225], and downstream 

expression of inflammasome factors such as NLRP3, pro-caspase-1, pro-IL-1β, and pro-

IL-18. 

The Francisella pathogenicity island (FPI) encodes 16-19 genes which express a 

Type VI secretion system (T6SS). The secreted IglC protein induces phagosome rupture 

and allows Francisella to escape into the cytosol[211]. This is in contrast to S. 

typhimurium, which secretes factors in order to stabilize the phagosome and avoid 

cytosolic entry. Francisella lacking functional IglC fail to escape the phagosome, and 

also fail to trigger the AIM2 inflammasome[219]. This may suggest that activation of 

AIM2 requires the presence of the bacteria in the cytosol, and bacterial secretion of 
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effectors and other factors into the cytosol from inside the phagosome is not sufficient to 

trigger inflammasome activity. 

 The function of IglC is still under investigation, and it may potentially be part of 

the T6SS apparatus itself[226]; indeed, it appears to be a homolog of Hcp, which is 

thought to form the tube-like structure of the T6SS for delivery of effectors[227, 228]. In 

this case, an IglC mutant may fail to activate AIM2 simply because the activating 

molecule is not translocated into the cytosol. This also raises a question: if IglC is part of 

the T6SS apparatus, how is it secreted? Notably, its Hcp homolog is secreted as 

well[227], and some components of the T3SS such as PrgJ are also secreted. From this a 

common pattern suggests itself, where conserved homologues of PrgJ activate NLRC4, 

homologues of Hcp may potentially activate AIM2, and each of these proteins is 

necessary for the proper function of the its respective secretion system. 

 

Legionella 

 Legionella pneumophila is a Gram-negative intracellular pathogen responsible for 

the respiratory infection known as Legionnaire's disease. The ability of Legionella to 

survive inside macrophages and the way it interacts with inflammasomes is in many ways 

comparable to Salmonella. After phagocytosis, survival and replication by L. 

pneumophila requires inhibition of phagosome-lysosome fusion, so that the bacteria may 

persist in a protected vacuole. The requirement to stabilize this intracellular niche is 

evident from the fact that bacteria that are incapable of growing inside host cells are also 

incapable of causing disease in animals[229]. However, upon s ufficient replication the 
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bacteria induces rupture of the vacuole followed by lysis of the infected cell[230]. This 

releases the bacteria into the host environment, allowing it infect more cells and for the 

infection to continue. 

Legionella has a type IV secretion system (T4SS) encoded by a  region of the 

genome called icm (intracellular multiplication). The T4SS translocates hundreds of 

effector proteins into the cytoplasm in order to stabilize the bacterial vacuole and 

establish a replicative niche[229-232]; this high number of effectors distinguishes 

Legionella among pathogens with secretion systems. Most of the effectors are involved in 

manipulating host pathways to prevent fusion of the bacterial vacuole with 

lysosomes[233]. Some effectors such as S idF and SdhA prevent the host cells from 

undergoing apoptosis in order to limit inflammatory responses and immune 

detection[234, 235]. 

Despite having a T4SS rather than a T3SS, Legionella also triggers activation of 

the non-canonical caspase-11 dependent NLRP3 inflammasome [236, 237]. Pyroptosis 

requires caspase-11, but not NLRP3 in cells infected with Legionella, which is consistent 

with the gasdermin-dependent mechanism proposed by K ayagaki and colleagues[96]. 

Interestingly, it has also been reported that activated caspase-11 induces fusion of the L. 

pneumophila-containing phagosome to the lysosome through actin remodeling[106]. 

Legionella flagellin translocated into the cytoplasm through its secretion system is 

detected by the NLRC4 inflammasome through the adaptor molecule Naip5[32, 237-

240]. In other bacteria, the T3SS needle protein PrgJ and its homologs may also trigger 

NLRC4, however Legionella lacks a T3SS and flagellin appears to be the only NLRC4 
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activator in this pathogen. This NLRC4 pathway seems to be sufficient for controlling 

bacterial replication, based on evidence that deficiency of caspase-1 but not caspase-11 

impairs bacterial clearance both in vitro and in vivo[241]. However, lack of caspase-1 is 

functionally similar to a lack of caspase-11 and NLRC4, so it is not possible to evaluate 

the relative importance of the caspase-11 pathway using a capase-1 deficient model. 

Given the robust caspase-11 dependent activation of caspase-1 by L. pneumophila 

lacking flagellin[237], as well as its role in fusing the bacterial vacuole with 

lysosomes[106], it is conceivable that caspase-11 may be redundant with NLRC4 and 

sufficient for bacterial control on an NLRC4 -/- background. Legionella lacking the T4SS 

(dotA -/-) does not show any inflammasome activation or cell death[237], most likely 

because these mutant bacteria fail to secrete LPS and flagellin along with essential 

effector proteins to stabilize the vacuole; these mutants traffic to the lysosome where they 

are efficiently neutralized[238]. 

 

Shigella 

The Gram-negative Shigella is the causative agent of shigellosis, a foodborne 

illness prevalent in developing countries. Shigella results in severe gastrointestinal 

disease in humans, but does not seem to cause significant disease in other animals. Its 

invades the colonic and rectal mucosa leading to leukocyte recruitment, severe 

inflammation, and often bloody diarrhea (dysentery) which leads to further spread of 

infection in poorly sanitized regions. Like several other pathogens discussed in this 

review, the ability of Shigella to survive intracellularly is central to its infection strategy. 
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Shigella is closely related to Salmonella, but one major distinction is that Shigella 

lacks flagellin. Like S. typhimurium, Pathogenic Shigella species are capable of entering 

gut epithelial cells as well as macrophages, and trigger rapid cell death. Shigella also uses 

a T3SS to secrete effectors which induce vacuole rupture and release the bacteria into the 

cytosol. Although Shigella lacks flagellin it still readily triggers the NLRC4 

inflammasome through the same T3SS it uses to escape this vacuole. NLRC4 is activated 

by Naip2, which detects the inner rod protein MxiI[242], and Naip1, which recognizes 

the needle component MxiH[143].  

Release of Shigella into the cytoplasm of the host cell also triggers IFN dependent 

caspase-11 activation[98], with downstream activation of caspase-1 through the non-

canonical inflammasome, secretion of IL-1β and IL-18, and pyroptosis via gasdermin 

D[96]. It was also reported that caspase-4, the human homolog of caspase-11, is involved 

in host resistance to Shigella[243]; however, Shigella secretes the effector protein OspC3 

which inhibits caspase-4 activation. It is  interesting that OspC3 is highly specific to 

caspase-4 and does not inhibit caspase-11, suggesting the preference Shigella has for 

infecting humans 

The Shigella T3SS also appears to induce autophagy[244], which is known 

suppress inflammasome activation; inhibition of autophagy promoted cell death in 

infected macrophages, which is again suggestive of pyroptosis. In the absence of caspase-

1 or NLRC4 autophagy was dramatically enhanced, which is consistent with reports that 

caspase-1 negatively regulates autophagy[185]. 
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Similar to Yersinia, Shigella modifies its LPS in order to evade immune 

detection[245]. Paciello and colleagues show that during intracellular replication, 

Shigella predominantly expresses tri- and tetra-acylated LPS with fewer acyl chains in 

lipid A than when it is cultured in growth media. This hypoacylated LPS is much less 

potent in activating TRL4, resulting in limited expression of pro-caspase-1, pro-IL-1β, 

and pro-IL-18. However, the authors also suggest that in late infection, when Shigella is 

obligated to proliferate extracellularly due to decreasing access to live local cells to 

infect, the bacteria reverts to production of immunopotent hexa-acylated LPS. This 

allows leukocytes to respond to the pathogen more effectively and eventually clear it 

from the body. 

 

Yersinia 

 Yersinia pestis is the etiologic agent of plague, causing the deadliest pandemics in 

human history, with deaths in the hundreds of millions. Y. pestis continues to cause 

disease worldwide, particularly impacting the African sub-continent[246]. However, Y. 

pestis is endemic in rodents in the Western North America, and sporadic cases of 

infection and death in the United States. 

 Pathogenic Yersiniae share a conserved T3SS with essentially identical needle 

structure and injected effector proteins (Yops). The structure and function of the 

needle/translocon is analogous to that of related pathogens. The Y. pestis 

needle/translocon is assembled from 25 Ysc proteins, forming a st ructure which spans 

both the inner and outer membranes, and protrudes from the bacterial surface. At the tip 
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of the structure are the translocon proteins, YopB, YopD and LcrV, whose role is to 

penetrate the host cell membrane and form a pore through which other Yop effectors can 

be delivered into the cytoplasm[247, 248]. 

 The Yops play an important role in suppressing host immune functions and 

promoting bacterial survival. Avoiding immune surveillance is particularly key to the 

biological strategy of the Y. pestis, the etiologic agent of the bubonic plague; immune 

evasion enables this pathogen to cause systemic disease with extremely high mortality. 

Lack of a functional T3SS renders Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica 

essentially avirulent[249-254]. 

 In the case of Yersinia, a robust early immune response orchestrated by 

Interleukin-1β (IL-1β) and IL-18 favors host survival[118, 225]. The expression of these 

cytokines is effectively suppressed by injected Yops, despite evidence that Yersinia can 

activate the NLRP3, NLRC4, and NLRP12 inflammasomes[118, 255], as well as a non-

canonical caspase-8 pathway[11, 124]. How specific Yersinia molecules activate and 

inhibit these pathways is not fully understood.  

 In the case of NLRP3 and NLRC4, activation depends on t he presence of the 

functional T3SS apparatus[255, 256]. The extent to which these inflammasomes are 

triggered by the needle/translocon itself or by secreted components remains to be 

determined. Notably, Brodsky and colleagues suggested that the rate at which effectors 

are injected into cells may be an important contributor to inflammasome activation, and 

demonstrated that the effector YopK controls the rate of delivery[255]. 
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 The Yersinia effector YopM also limits caspase-1 mediated IL-1β/IL-18 

production through another incompletely understood mechanism. YopM was originally 

proposed to directly bind and inhibit caspase-1[257], yet on followup this mechanism has 

been challenged; instead, the indirect ability of YopM to inhibit caspase-1 seems to 

depend on the presence of the cytoskeletal scaffolding protein Iqgap1[258]. Furthermore, 

the confirmed bindings partners of YopM are kinases Prk1/2 and Rsk1/2 (also known as 

p90 ribosomal S6 kinase), neither of which has previously been associated with 

inflammasome regulation[259, 260]. There is also disagreement as t o whether YopM 

inhibits NF-kB dependent cytokine production, and whether its main role may be in 

promoting IL-10 production to silence innate immunity. Also, YopM is currently classified 

as a E3-ubiquitin ligase based on its homology to IpaH (Shigella) and SspH1 (Salmonella); 

however YopM is not known to ubiquitinate any targets, and neither SspH1 nor IpaH are 

known to regulate caspase-1. Thus, both the mechanism of caspase-1 inhibition by YopM 

and its biological role remain elusive and warrant continued investigation. 

 Another effector, YopJ, robustly inhibits transcription of pro-inflammatory 

cytokines by N F-kB, and induces caspase-8/RIP1-mediated apoptosis, caspase-1 

cleavage, and IL-1β activation - effects which are dependent on its enzymatic activity[11, 

124, 261]. Caspase-8 is important in host defense against Y. pestis[11, 225], but it is not 

clear whether this is due to its role in processing IL-1β/IL-18, its pro-apoptotic activity, 

or its role in regulating other NF-kB dependent cytokines. YopJ was originally reported 

to behave as a deubiquitinase[262], however subsequent in vitro studies indicated that it 

is an acetyltransferase targeting IKKβ[263], MAP Kinase Kinases[264, 265], and 
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Tak1[266, 267]. Yet despite its powerful effects in vitro, YopJ appears perplexingly 

dispensable during Y. pestis infection in vivo[268, 269]. 

 Host survival of infection by Y. pestis is associated with increased recruitment and 

activation of monocytes, macrophages, dendritic cells, and T-cells[270-276]. Consistent 

with this, IL-18 is indispensible for defense against plague, considering that it differs 

from IL-1β in its enhanced ability to activate these cell types[118]. Notably, the same 

study shows that IL-1β is also critical for defense against plague, while another study 

suggests that early neutrophil recruitment to the lung plays a protective role[277]. This is 

interesting since excessive IL-1β production and associated neutrophil recruitment to the 

lung can be detrimental to the host in the context of other lung infections; yet in plague 

this does not appear to be the case. This could be explained by the fact that neutrophils 

are resistant to the cytotoxic action of YopJ, and may be more effective at intracellular 

killing of the bacteria[278, 279]. 

  

Yersinia pestis vs other Yersinia 

 The enteric pathogens Yersinia pseudotuberculosis and Yersinia enterocolitica are 

closely related to Y. pestis genetically but are adapted to a different biological niche, and 

are not nearly as dangerous to humans. All three species contain a plasmid encoding 

nearly identical T3SS and Yop proteins; pCD1 in Y. pestis, pIB1 in Y. 

pseudotuberculosis, pYV in Y. enterocolitica[249]. In Y. pseudotuberculosis and Y. 

enterocolitica, the T3SS confers the ability to invade the intestinal epithelium and 

proliferate in mesenteric lymph nodes despite the presence of immune cells[280, 281]. 
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 Y. pestis is the most recently evolved of the three pathogens, marked by 

acquisition of the pPCP1 and pMT1 plasmids. The genes encoded by these plasmids 

adapted Y. pestis for transmission between flea and host, enabled infection via a 

peripheral route, and allowed it to gain access to systemic circulation through the 

lymphatic system, rather than through an oro-fecal route[282]. This niche transition was 

accompanied by pressure to achieve maximum immune silence, since systemic immune 

surveillance is much less tolerant to the presence of bacteria and components such as LPS 

compared to the intestine. Distinguishing examples of Y. pestis adaptation to this niche 

include: fraction 1 ( F1) capsule protein, which hinders contact with phagocytes[283]; 

plasminogen activator (Pla), critical for fibrinolysis and tissue invasion[284-288]; outer 

membrane protein Ail, which reduces complement-mediated lysis[289]; loss of flagellin, 

which is a major PAMP recognized by TLR5 and NLRC4[290]; and the shift to tetra-

acylated LPS production, which is an extremely weak agonist of TLR4 compared to 

hexa-acylated LPS[225]. Many of these and other Y. pestis virulence factors are under 

temperature control, and are rapidly expressed when the bacteria switches from flea 

(26°C) to mammalian host temperature (37°C)[291, 292]. 

 Despite the drastic differences in the way Y. pestis infection presents compared to 

other Yersinia, these microbes share nearly identical T3SSs with similar in vitro 

phenotypes. For this reason, studies in one Yersinia species are often expected to be 

analogous in other Yersinia species. While such parallels can provide important insight 

into pathways across Yersinia species, it is important to keep in mind that in vivo studies 
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of enteric Yersinia are not reflective or predictive of the dynamics at play during Y. pestis 

infection. 

 

Y. pestis as a model for T3SS interaction with Inflammasomes 

 A particularly fascinating feature of Y. pestis is the fact that it activates many 

inflammasome pathways, but its T3SS effectively suppresses almost all of them using 

just 7 t ranslocated Yops. Furthermore, loss of these 7 effectors brings Y. pestis from an 

LD50 of ~10 CFU to being essentially avirulent[282]. Compared to Y. pestis, other T3SS 

relatives have a much higher diversity of effectors (e.g. Salmonella has >60)[293]. The low 

number of Yops and their powerful phenotypes make a genetic approach particularly 

feasible for their study. For these reasons, we believe Y. pestis is an excellent candidate for 

describing the first complete model of interaction between inflammasomes and a T3SS. 

 

Objectives for Thesis 

1)  Determine the independent and combined effects of Y. pestis effectors YopM and 

 YopJ on pathways regulating inflammasome activation in vitro and in vivo. 

2)  Characterize the mechanism through which YopM achieves caspase-1 inhibition. 

3)  Investigate the dynamics between inflammasome activation and cell death pathways 

 by the Y. pestis needle/translocon/translocon and the seven injected Yops. 
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Abstract 

 Innate immunity plays a central role in resolving infections by pa thogens. Host 

survival during plague, caused by the Gram-negative bacterium Yersinia pestis, is 

favored by a robust early innate immune response initiated by Interleukin-1β (IL-1β) and 

IL-18. These cytokines are produced by a  two-step mechanism involving NF-kB 

mediated pro-cytokine production and inflammasome-driven maturation into bioactive 

inflammatory mediators. Because of the anti-microbial effects induced by IL-1β/IL-18, it 

may be desirable for pathogens to manipulate their production. Y. pestis type III secretion 

system effectors YopJ and YopM can interfere with different parts of this process. Both 

effectors have been reported to influence inflammasome caspase-1 activity; YopJ 

promotes caspase-8 dependent cell death and caspase-1 cleavage, while YopM inhibits 

caspase-1 activity via an incompletely understood mechanism. Yet neither effector 

appears essential for full virulence in vivo. Here we report that the sum of influences by 

YopJ and YopM on IL-1β/IL-18 release is suppressive. In the absence of YopM, YopJ 

minimally affects caspase-1 cleavage, but suppresses IL-1β, IL-18 and other cytokines 

and chemokines. Importantly, we find that Y. pestis containing combined deletions of 

YopJ and YopM induces elevated levels of IL-1β/IL-18 in vitro and in vivo, and is 

significantly attenuated in a mouse model of bubonic plague. The reduced virulence of 

the YopJ-YopM mutant is dependent on t he presence of IL-1β, IL-18 and caspase-1. 

Thus, we conclude that Y. pestis YopJ and YopM can both exert a tight control of host 

IL-1β/IL-18 production to benefit the bacteria, resulting in a redundant effect on 

virulence. 
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Introduction 

 Many pathogens rely upon a strong suppression or evasion of host immune 

responses in order to cause disease. Yersinia pestis, the etiologic agent of plague, 

achieves high virulence in part by actively suppressing the host immune system. A key 

component of this strategy is the Type III secretion system (T3SS), by w hich the 

bacterium delivers seven Yersinia outer protein (Yop) effectors into host immune cells. 

These Yops manipulate intracellular pathways to inhibit phagocytosis, motility, cytokine 

expression, and other vital immune processes[282]. Two effectors, YopJ and YopM, have 

been extensively studied in isolation for over two decades, but key questions about their 

roles in disease remain unanswered. 

 In vitro studies have revealed YopJ to be an acetyl transferase targeting 

IKKβ[263], MAP Kinase Kinases[264, 294], and TAK1[266, 267]. YopJ has also been 

reported to behave like a deubiquitinase[262]. YopJ robustly inhibits NF-kB-mediated 

transcription of pro-inflammatory cytokines, and induces caspase-8/RIP1-mediated 

apoptosis, caspase-1 cleavage, and IL-1β activation - effects which are dependent on its 

enzymatic activity[11, 124, 261]. Yet despite its powerful effects in vitro, YopJ appears 

perplexingly dispensable during Y. pestis infection in vivo[268, 269]. 

 YopM has also been reported to limit the recruitment of monocytes, neutrophils, 

and NK cells to infected organs[295, 296]. It was recently demonstrated that YopM 

inhibits caspase-1[257, 258]. Caspase-1 mediates maturation of IL-1β and IL-18, 

cytokines which promote a robust early immune response that enhances host resistance 

against Y. pestis infection [118, 225]. Thus, YopM may promote virulence by inhibiting 
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processing of these cytokines. Yet the impact of YopM on Y. pestis virulence appears 

minor[296, 297], and it is unclear if IL-1β/IL-18 levels would increase in vivo during Y. 

pestis infection without YopM. 

 IL-1β and IL-18 are produced in a two-step process requiring an initial signal to 

trigger the transcription/translation of their pro-forms, and a second signal to trigger their 

processing by caspase-1 into their biologically active secreted forms[87]. The first signal 

is NF-kB-dependent, typically downstream of stimulation via Toll-like receptors by 

microbial associated molecules such as L PS. The second signal is catalyzed by 

inflammasomes. A canonical inflammasome is formed when a pathogen or danger-

associated molecular patterns (PAMP or DAMP) are sensed by a NOD-like receptor (NLR), 

such as NLRP3, NLRC4, or AIM2. This leads to recruitment and oligomerization of the 

adaptor protein ASC, which in turn recruits pro-caspase-1 dimers to be autoproteolysed into 

the catalytically active p20 form. This process is normally accompanied by an inflammatory 

form of apoptosis called pyroptosis. Importantly, non-canonical inflammasomes involving 

caspases-8[298, 299] or 11[24, 25] have also been described. 

 Because of the potential importance of IL-1β/IL-18 during infection, the 

interaction of Y. pestis with host inflammasomes warrants close attention. Since YopJ and 

YopM appear to target the IL-1β/18 maturation pathway in distinct ways, we 

hypothesized that these two effectors may cooperate for optimal immune suppression. 

We set out to investigate whether such an interaction exists, and what role this may play 

during infection. Surprisingly, we found that Y. pestis lacking both YopJ and YopM 

induced increased IL-1β/IL-18 compared to parental bacteria or strains lacking one of the 
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effectors. We also found a strain lacking both effectors to be significantly attenuated in a 

bubonic plague model in an IL-18/IL-1β/caspase-1 dependent fashion, suggesting that 

tuning down inflammasome activity and IL-1β/IL-18 release are key features of Y. pestis 

pathogenesis. 

 

Results 

 YopM and YopJ differentially influence inflammasomes and i nflammatory 

cytokines and chemokines. Deletion of YopM results in increased IL-1β/IL-18 secretion 

and caspase-1 cleavage (Fig 2.1A, 2.1B) in BMDMs compared to the parental strain. By 

contrast, loss of YopJ alone results in reduced IL-1β/IL-18 secretion (Fig 2.1B) and 

caspase-1 activation (Fig 2.1A), despite an increase in pro-IL-1β and pro-caspase-1. Loss 

of both YopM and YopJ leads to a further increase in ASC/caspase-1 dependent IL-1β 

and IL-18 secretion but an insignificant increase in caspase-1 activation compared to loss 

of YopM alone (Fig 2.1A, 2.1B, 2.1D). We confirmed Yop expression in the ∆YopJ and 

∆YopM strains (Fig 2.1E).  
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 FIGURE 2.1. YopM and YopJ have opposing effects on caspase-1 cleavage, but 
in sum reduce IL-1β and IL-18 levels during infection. A) Total protein from total 
BMDM samples (cell lysate and supernatant) at 6 hours post-infection (p.i.) was 
separated by SDS-PAGE and analyzed by Western Blot for IL-1β and caspase-1. B,C) 
BMDMs were infected with Y. pestis strains at MOI 10 and supernatants were harvested 
at 6 hours p.i. for analysis of IL-1β or IL-18 for ELISA. D) Supernatants from BMDMs 
from the indicated mouse genotypes were harvested 6 hours p.i. with KIM5 ∆YopM/J 
(MOI 10) and assayed for IL-1β by ELISA. E) RNA was extracted from Y. pestis (grown 
at 37°C to up-regulate T3SS expression), and amplified by R T-PCR using primers 
specific for YopM or YopJ. C(t) values for each primer pair were normalized to Y. pestis 
16S rRNA internal control C(t) values. Figures are representative of three or more 
experiments. Shown is mean plus s.d. for triplicate wells. * p<0.05, **p<0.01, 
***p<0.001. 
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FIGURE 2.2. YopJ, but not YopM, inhibits expression of Pro-IL-1β and other cytokines, 
and is a major driver of macrophage cell death. A) RNA from peritoneal macrophages or 
B) BMDMs were harvested at 2 hours p.i. and amplified by RT-PCR using primers 
specific for Pro-IL-1β, Pro-IL-18, IL-6, or IFN-β. (C, E) Cell death in BMDMs was 
assayed either at 5 hours p.i. by assaying LDH release, or D) continuously by measuring 
intracellular EtHD-1 entry. F) Cell death was assayed at 5 hour s p.i. with KIM5 
∆YopM/J at MOI 10 by assaying LDH release. G) Caspase-8 enzymatic activity in 
BMDMs was assayed at 3 hours p.i. H) BMDMs were infected with Y. pestis at MOI 10 
and supernatants were harvested at 6 hours p.i. for quantification of cytokines by ELISA. 
Figures are representative of two or more independent experiments. Shown is mean plus 
s.d. for triplicate wells. * p<0.05, **p<0.01, ***p<0.001. 
 

 RT-PCR analysis demonstrated that YopJ, and not YopM, is primarily responsible 

for inhibiting the transcription of IL-1β/IL-18 precursors, as well as IL-6 and IFN-β (Fig 

2.2A, 2.2B). We found that YopM confers protection from caspase-1 dependent cell 

death in the absence of YopJ, but has only a weak cytoprotective effect when YopJ is 

present (Fig 2.2C, 2.2D, 2F). We also confirmed that YopJ, but not YopM, drives the 

enzymatic activity of caspase-8 (Fig 2.2G). Expression of TNFα, CXCL1, MCP1, 

CXCL5, and IL-10, which require no i nflammasome processing, is also inhibited by 

YopJ but not YopM (Fig 2.2H). Notably, the pCD1 plasmid containing the T3SS is 

essential for IL-1β induction, as the KIM6 strain lacking pCD1 failed to induce any IL-

1β. (Fig 2.1A-C, Fig 2.2C-E). The lack of another known virulence factor, the 

plasminogen activator protein (Pla)[288], had no effect on cell death or IL-1β release (Fig 

2.1C, Fig 2.2E). 

 YopM and YopJ have redundant effects on virulence in vivo. We found that in the 

mouse bubonic plague model, Y. pestis KIM1001 lacking both YopM and YopJ was 

significantly attenuated. In contrast, Y. pestis lacking either YopM or YopJ alone induced 

lethality comparable to the parent strain, with no significant differences from the fully 
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virulent KIM1001 (Fig 2.3A). In mice lacking caspase-1, IL-1β, or IL-18, the attenuation 

of the KIM1001∆M/J strain was significantly reduced (Fig 2.3B), suggesting that these 

components play central roles in the host defenses towards Y. pestis lacking both YopM 

and YopJ. We note that both WT and IL-18 KO mice die of low doses of the parental 

KIM1001 strain[118]. On day 4 of subcutaneous infection, bacterial loads were 

significantly lower in mice infected with KIM1001∆M/J both in the spleen and lymph 

nodes, but KIM1001∆M and KIM1001∆J did not result in statistically different bacterial 

loads from the parental KIM1001 (Fig 2.3C). 

 The increased activation of innate immunity as observed with the KIM1001∆M/J 

may also impact adaptive immune responses. We found that wild-type mice that survive 

initial challenge with KIM1001∆M/J were effectively protected from subsequent 

infection with fully virulent Y. pestis (Fig 2.3D), indicating that strains containing 

deletions of YopM and YopJ, perhaps in combination with expression of LpxL[225] 

could be promising vaccine candidates. Adaptive immunity may also contribute to 

resistance of attenuated Y. pestis strains[225, 271], and T cells appear to play a key 

role[270, 300]. To explore this question further, we subjected mice lacking T-cell 

receptors (TCR β/δ -/- mice lack both αβ and γδ TCRs)[301] to the same s.c. challenge 

with KIM1001∆M/J as in Figure 2.3B. We found that the T-cell receptor is very 

important  for mice to survive the initial infection with KIM1001∆M/J (Fig 2.3E). 

Furthermore, the three TCR β/δ -/-mice which survived the initial challenge were not 

protected from KIM1001; when infected with KIM1001 on day 21, all three died by day 

30 whereas 100%  (total 21 out of 21) of the re-challenged wild-type controls survived  
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FIGURE 2.3. Deletion of both YopM and YopJ attenuates Y. pestis in a manner 
dependent on Caspase-1, IL-1β, and IL-18. A) C57Bl6/J mice were injected s.c. with 50-
140 CFU of KIM1001, KIM1001∆M, KIM1001∆J, or KIM1001∆M/J and monitored for 
survival. Results represent pooled data from two separate experiments. B) C57Bl6/J 
(n=14), IL-18 KO (n=12), IL-1β KO (n=9), or caspase-1/11 KO (n=12) mice were 
injected with 50-140 CFU of KIM1001∆M/J  s.c. and monitored for survival. P values 
reflect comparisons between KIM1001∆M/J and other bacterial strains (A), or between 
wild-type mice and other mouse strains (B). C) C57Bl6/J mice were injected s.c. with 50-
140 CFU of KIM1001 (n=7), KIM1001∆M (n=5), KIM1001∆J (n=5), or KIM1001∆M/J 
(n=7); spleens and lymph nodes were harvested 90 hr s p.i. and bacterial load was 
determined. Geometric mean values are shown. D) C57Bl6/J mice which survived 
infection with KIM1001∆M/J (n=7) or naïve controls (n=8) were injected s.c. with 400 
CFU of KIM1001 and monitored for survival for 25 da ys. The p va lue reflects the 
comparison of vaccinated vs naive animals. E) C57Bl6/J mice (n=14) or TCR β/δ -/- 
mice (n=20) were injected s.c. with 120-180 CFU of KIM1001∆M/J and monitored for 
survival for 25 da ys. Results represent pooled data from two separate experiments. P 
value reflects comparison between wild-type and TCR β/δ -/- mice. 
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beyond day 40. One limitation of these studies is that we cannot rule out a role of B-cells 

or antibodies; nevertheless, T cells are crucial for the resistance against bacterial 

challenge, suggesting participation of both innate and adaptive immune responses in 

optimal host responses to these bacterial strains. 

 Inhibition of IL-1β and IL-18 production are overlapping functions of YopM and 

YopJ in mice, but other effects differ. During the subcutaneous infection described above 

(Fig 2.3) it is likely that systemic IL-1β and IL-18 levels may correlate to bacterial loads, 

and thus this experimental setup may not be optimal to study direct effects of YopM/J 

deletion on cytokine expression. For this reason, we injected the Y. pestis strains into 

mice intravenously and harvested tissue at 42 hours to compare systemic IL-1β and IL-18 

with smaller differences in host bacterial loads between the different strains (Fig 2.4). We 

confirmed that bacterial loads in the spleen at this time were equivalent in all groups with 

no statistical differences, validating the comparison of cytokines between the groups (Fig 

2.4A). We found significantly elevated IL-1β and IL-18 in the serum of mice infected 

with KIM1001∆M/J (Fig 2.4B, 2.4C). In contrast, however, we also detected a small but 

significant reduction in IL-18 when YopJ alone was deleted. Furthermore, while IL-1β 

and IL-18 expression in the KIM1001∆M/J group was expressed in a caspase-1 

dependent manner, KIM1001 induced low but significant levels of these cytokines 

independently of caspase-1, perhaps indicating a role of caspase-8[11]. The NF-kB-

dependent chemokines CXCL1, CXCL10, CXCL5 and MCP1 were elevated in the 

absence of YopJ but not YopM (Fig 2.4D-F, 2.4H), similar trends as observed with 

macrophages in vitro (Fig 2.2). Although CXCL5 levels were not significantly different  
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FIGURE 2.4. YopM predominantly suppresses IL-1β and IL-18, while YopJ limits cell 
recruitment in part by reducing chemokine expression during infection in vivo. C57Bl6J 
or caspase-1/11 KO mice were injected i.v. with 40-50 CFU of KIM1001, KIM1001∆M, 
KIM1001∆J, or KIM1001∆M/J in 200μL PBS (n=5 caspase-1/11 KO mice infected with 
KIM1001∆M/J, all other groups n=6). Tissues were harvested at 42 hours p.i. A) 
Bacterial load was determined from spleen homogenates. (B) Serum was used to quantify 
IL-1β and (C) IL-18, and D-H) spleen homogenates were used to quantify CXCL10, 
MCP1, CXCL5, IL-10, and CXCL1 by ELISA. Shown are median values. (I) Livers were 
stained with H&E and representative foci of infection were selected. * p<0.05, **p<0.01, 
***p<0.001. 
 

 

FIGURE 2.5. YopJ and YopM may have different effects on IL-1β in dendritic cells 
compared to neutrophils and macrophages. A) Mice were injected intraperitoneally with 
0.7mL 4% thioglycolate for 3 hou rs to trigger heavy neutrophil influx, followed by 
injection with 1x108 CFU of the indicated bacterial strains in 0.3mL PBS for an 
additional 6 hours. Peritoneal lavage fluid was assayed for IL-1β ELISA (left panel); 
Cells from peritoneal lavage were analyzed for cell surface markers by FACS to confirm 
comparable and robust influx of Ly6G/CD11b positive cells (right panel: 
%Ly6G+/CD11b+ of all conditions). B) BMDCs were infected with Y. pestis at MOI 10 
and supernatants were harvested at 6 hours p.i. and assayed for IL-1β by ELISA. Shown 
are means of triplicates representative of two separate experiments. 
 

in any strain, they trended higher in the absence of YopJ (Fig 2.4F). IL-10 levels were not 

affected by either YopM or YopJ in vivo (Fig 2.4G). On evaluation of liver histology we 

noted that deletion of YopJ, but not YopM, appeared associated with increased presence 

of both polymorphonuclear and mononuclear cells at foci of infection (Fig 2.4C). 
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 YopM and YopJ may have different functions in other cell types. In view of some 

of the overlapping effects of YopM and YopJ, we investigated how they affect IL-1β 

production in other innate immune cells[302]. We found that the relative roles of YopM 

and YopJ in IL-1β production in vivo in a neutrophil-enriched (90-98% Ly6G/CD11b+) 

peritoneal cell population (Fig 2.5A) follow a pattern similar to macrophages in vitro (Fig 

2.1B). In BMDCs, however, IL-1β secretion is triggered  by KIM5 and significantly 

reduced in the absence of YopJ. By contrast, IL-1β secretion is minimally inhibited by 

the absence of YopM unless YopJ is absent (Fig 2.5B). These results suggest that the 

bacterial regulation of IL-1β release in dendritic cells (DCs) is markedly different from 

macrophages and neutrophils. 

 Interpretation of the relative roles of YopM and Y opJ in vitro and i n vivo. We 

summarize some of our major findings about the respective roles of YopM and YopJ in 

the regulation of IL-1β/IL-18 production in Figure 2.6. The Y. pestis effectors YopJ and 

YopM have apparent opposite effects on caspase-1 processing; however, in the absence 

of both effectors, it becomes apparent that the sum of the actions of YopJ and YopM 

suppresses IL-1β and IL-18 release more effectively than either YopM or YopJ alone. In 

general, the dampening of caspase-1 processing mediated by YopM is dominant, and 

when YopM is deleted, YopJ appears to mainly suppress pro-IL-1β and not contribute to 

caspase-1 cleavage in a major way. Neither of these effectors appears to enhance disease 

progression when the other is present, and we propose that their actions promote 

virulence in vivo by a redundant net effect on IL-1β and IL-18. Nevertheless, their effects 

may vary by cell type and reflect the heterogeneity of the pathways regulating IL-1β/IL-
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18 production. While their net effects on I L-1β/IL-18 overlap, their roles in regulating 

other aspects of the immune response are distinct and in some ways appear to oppose one 

another. Thus our data suggest that YopJ and YopM, rather than being dispensable for 

plague virulence, are effective promoters of virulence capable of replacing each other's 

net effect in vivo by targeting different arms of the same immune defense mechanism. 

 

 

FIGURE 2.6. Summary of proposed YopM and YopJ effects on IL-1β/IL-18 production 
and cell death in host cells. In the absence of YopJ and YopM, cells respond to Y. pestis 
by expressing high levels of pro-IL-1β and pro-IL-18, and activating robust caspase-1 
cleavage accompanied by pyr optotic cell death. YopM can inhibit IL-1β/IL-18 release 
and cell death by inhibiting inflammasome-mediated caspase-1 cleavage, but it has little 
effect on expression of pro-IL-1β/IL-18 or other cytokines not requiring inflammasome 
processing. In contrast, YopJ limits IL-1β/IL-18 production by suppressing expression of 
precursors, and possibly by i nducing rapid cell death which may overshadow the 
cytoprotective effect of YopM. Additionally, YopJ alone triggers modest caspase-1 
cleavage with some degree of IL-1β/IL-18 production, limited by the reduced levels of 
precursors, including pro-caspase-1 itself. 
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 The parental KIM5 strain normally triggers only low levels of IL-1β/IL-18 release 

in BMDMs compared to the ∆T3SSe strain which lacks the seven translocated Yops; this 

reflects the efficient suppression of IL-1β/IL-18 by the cumulative action of these Yops. 

We and other groups have previously observed that YopJ triggers caspase-8 activation, 

which triggers some caspase-1 activation and IL-1β/IL-18 release[11, 124, 303]; here, 

this is likely reflected in Figure 2.1A/2.1B and Figure 2.4B/C. Low levels of IL-1β/IL-18 

in response to Y. pestis in vivo appear independent of caspase-1 and could be due to direct 

processing of the precursor forms by caspase-8[304]. Nevertheless, these YopJ-triggered 

IL-1β/IL-18 levels do n ot appear to alter the outcome of infection (Fig 2.3, 2.4) . It is 

possible that this YopJ-induced activation is offset by the significant inhibition of pro- 

IL-1β and pro-IL-18, or other NF-kB-dependent factors (Fig 2.2, 4). This effect on signal 

1 may explain why IL-1β/IL-18 levels remain relatively low in the absence of YopM in 

vivo (Fig 2.4B, 2.4C).  

 By contrast, YopM appears not to have any effect on signal 1 (Fig 2.2), but rather 

achieves IL-1β/IL-18 suppression by inhibiting caspase-1 activation (Fig 2.1A, 2.1D). 

Consistent with this role, YopM inhibits caspase-1 dependent cell death although in the 

presence of YopJ the cytoprotective role of YopM appears minor (Fig 2.2C, 2.2D, 2.2F). 

It is unclear what the implications of this small effect would be in vivo. YopJ appears to 

be a major driver of cell death, with some inhibitory effects by YopM. 

 Considering the seeming redundancy of YopM and YopJ which we report here, it 

is notable that YopM and YopJ sequences are well-conserved in the Y. pestis genome and 

present in all virulent strains of Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis; 
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however, it is also worth considering that the CO92 strain, which contains a less 

catalytically active version of YopJ, is more recently evolved than the KIM1001 strain 

used in this study. Furthermore, Y. pestis infects a wide range of animals, with significant 

differences in immune systems and sensitivities to infection. Since a major strategy of Y. 

pestis is immune evasion to assist propagation, rather than to kill the organism, it is likely 

that YopM and YopJ evolved to suppress the IL-1β/IL-18 producing pathway in 

alternative ways without a significant difference in host survival.  

 Our results underscore some important differences between YopM and YopJ 

which suggest that while their effects on IL-1β/IL-18 and survival in mice overlap, their 

functions should not be viewed as completely redundant. There may be other factors 

important for the fitness of Y. pestis in its unique life cycle which make both effectors 

indispensible, independent of host survival. YopJ inhibits the expression of multiple 

cytokines and chemokines both in vitro (Fig 2.2H) and in vivo (Fig 2.4D-H) in addition to 

IL-1β/IL-18, while YopM appears to primarily inhibit IL-1β/IL-18 maturation by 

caspase-1. One study shows that YopM barely affects the expression of immunity-related 

genes in vivo[305], supporting the idea of a more targeted role compared to YopJ. 

Furthermore, although YopM and YopJ may have similar effects on IL-1β secretion in 

neutrophils and macrophages (Fig 2.1, Fig 2.5A), their respective roles are less clear in 

DCs (Fig 2.5B). It appears that the absence of YopM has little bearing on IL-1β secretion 

in DCs, although YopM may have an effect when YopJ is absent (Fig 2.5B). In any case, 

we propose that regulation of IL-1β release by YopJ and YopM in DCs is markedly 

different than in macrophages and neutrophils. Evidence for a direct role of YopM in 
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DCs is lacking, although YopM appears to limit recruitment of DCs as well as other cell 

types[295, 306]; however, we believe these observations can be largely explained by the 

role YopM plays in suppressing IL-1β and IL-18 secretion. YopJ, in contrast, has been 

shown to inhibit signaling and cytokine production in DCs directly [307, 308]. 

Importantly, YopJ prevents DCs from activating Natural Killer cells, T-cell proliferation, 

and IFN-γ induction. Our findings support a critical role of T-cells during Y. pestis 

infection (Fig 2.3E), and studies in Y. enterocolitica also argue for the importance of a 

DC-induced T-cell response[309]. The ability of YopJ to inhibit TNFα and IFN pathways 

likely contributes to a defective CD8+ T-cell response in pneumonic plague[270], 

potentially promoting bacterial propagation independently of YopM in some 

circumstances. Taken together, we think this suggests that YopJ, but not YopM, may be 

particularly important for regulating immune responses coordinated by DCs and T-cells.  

 While it is unclear which mechanisms YopM uses for inhibition of inflammasome 

activation, direct interaction with caspase-1 and the scaffold protein Iqgap1 have been 

proposed [257, 258]. Interactions betweenYopM and kinases such as RSK1/2 and 

PKN1/2[259, 260, 310], known for binding to the effector, may also play a role in 

caspase-1 regulation. Regardless of the method for YopM-mediated inhibition, it is 

possible that the pathway blocked by YopM could be a dominant pathway in Yersinia-

induced inflammasome activation. Multiple candidate pathways could potentially be 

blocked by YopM, as NLRP3, NLRC4,  and NLRP12 have all been proposed as 

mediators of Yersinia-induced IL-1β/IL-18 production. We also cannot exclude the 

possible involvement of additional pathways that sense type III secretion system 
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molecules. We also cannot disregard the idea that bacterial molecules other than those 

belonging to the T3SS contribute to modulation of  c aspase-1 cleavage and IL-1β 

production in vivo[311]. We add to a large body of evidence (Fig 2.1) suggesting minimal 

macrophage IL-1β release in the absence of the pCD1 T3SS-containing plasmid or the 

YopB/YopD components of the pore-forming translocon[17]. 

 

Conclusion 

 In summary, our findings illustrate parallel strategies of a microbial pathogen to 

suppress generation of pro-inflammatory cytokines as a m eans of resisting host defense. 

As IL-1β and IL-18 are central mediators of anti-microbial host defenses, it may be 

particularly desirable to block their production. These cytokines are produced in a multi-

step process, potentially as a f ail-safe mechanism as ex cess production may also 

contribute to shock[164]. However, this complex regulation also opens opportunities for 

diverse microbial approaches to dampen their production and release. The picture that 

emerges is complex and this suggests that many T3SS-related molecules together 

regulate IL-1β/IL-18 release. Our experiments indicate that their relative roles may be 

dependent upon the presence or absence of other specific molecules. 
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Abstract 

 Type III secretion systems (T3SS) are central virulence factors for many 

pathogenic Gram-negative bacteria used to control host innate immune responses. The 

Yersinia pestis T3SS is particularly effective and sophisticated in manipulating the 

production of pro-inflammatory cytokines IL-1β and IL-18, which are typically processed 

into their mature forms by active caspase-1 or in some cases caspase-8. The Y. pestis 

T3SS initiates caspase-1 activation by at least three different pathways. In the weakest 

pathway, the effector YopJ triggers caspase-8- dependent caspase-1 activation; 

additionally, the T3SS needle/translocon activates NLRP3 and NLRC4-dependent 

caspase-1 maturation, which is blocked by YopK but not YopM. Importantly, we show 

here that YopM specifically prevents activation of the Pyrin inflammasome by the RhoA-

inhibiting effector YopE, blocking caspase-1 dependent IL-1β/IL-18 production and cell 

death. We propose a model in which YopM and its binding partners PKN1 and RSK1 

kinases interact with Pyrin, with potential roles in its regulation that were not previously 

considered. Thus, we introduce a novel regulatory pathway for the Pyrin inflammasome 

which is exploited by a plague effector protein for maximal immune evasion. 

 

Introduction 

 We and others have previously demonstrated that a key strategy of Yersinia pestis, 

the causative agent of plague, is to actively suppress production of IL-1β and IL-18 by 

multiple combined mechanisms in order to promote virulence and favor bacterial 

survival[118, 225, 255, 257, 312]. Yersinia can activate the NLRP3, NLRC4, and NLRP12 
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inflammasomes[118, 255], as w ell as a n on-canonical caspase-8 pathway[11, 124]. 

However, the expression of IL-1β and IL-18 is effectively suppressed by the injected 

Yops. The discrepancy between the large number of inflammasome pathways being 

activated and the small number of Yops sufficient to shut down production of IL-1β and 

IL-18 substantiates the impressive efficiency of this system (Fig 3.1). 

 Aside from the high virulence conferred by this small effector toolkit, we believe 

that the small number of Yops makes Yersinia an excellent model for characterizing 

T3SS functions. Since the survival strategy of Y. pestis appears heavily dedicated towards 

immune evasion and suppression, we posited that mapping the mechanisms by which the 

Y. pestis T3SS activates and inhibits inflammasomes is an auspicious long-term aim. 

 The T3SS is required for Y. pestis virulence, but it also triggers inflammasome 

activation which is critical for controlling Y. pestis infection[17, 118, 225]. One of the 

strongest drivers of inflammasome activation may be the needle/translocon itself (Fig 

2.1B/C, 2.5B). Studies in Y. pseudotuberculosis show that NLRP3 and NLRC4 may be 

activated by the hypertranslocation of the needle/translocon, and possibly by i ncreased 

delivery rate of Yop effectors[255, 256]; this activation can be prevented by the effector 

YopK. Consistent with this, we observed that the needle/translocon encoded by the pCD1 

plasmid strongly triggers IL-1β and IL-18 in response to Y. pestis lacking the seven 

translocated Yops (we refer to this strain as ∆T3SSe). 
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Figure 3.1. The seven tranlocated Yops of Y. pestis effectively suppress the IL-1β in 
response to the needle/translocon to near-zero levels, and confer a high degree of 
virulence to the pathogen (see Experimental Procedures for strain construction details). 
 

 Previously we showed that loss of YopM and YopJ results in high levels of active 

caspase-1 and IL-1β comparable to ∆T3SSe. Thus, we were interested to investigate 

whether YopM and/or YopJ would also be sufficient to suppress IL-1β and 

inflammasome activity if added back to the ∆T3SSe background. YopJ triggers apoptosis 

mediated by caspase-8 and RIP1, and also caspase-8-dependent caspase-1 processing 

which leads to a small amount of IL-1β secretion (Fig2.1)[11]. However, YopJ can limit 

overall production of IL-1β by inhibiting expression of pro-IL-1β precursor (Fig 2.2). 

YopM was originally proposed to be a direct caspase-1 inhibitor[257], although Chung et 
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al recently advanced an alternative mechanism for YopM inhibition of caspase-1 which 

relies on the cytoskeletal scaffolding protein Iqgap1.  

 We expected that if YopM is a general caspase-1 inhibitor as proposed by LaRock 

and Cookson[257], then YopM would suppress much of the IL-1β produced in response 

to the ∆T3SSe strain, save for any non-canonical pathways that do not rely on caspase-1. 

With regards to YopJ, we expected it to  partially inhibit IL-1β production through 

suppression of transcription, and to partially contribute to IL-1β release through caspase-

8-activation. In conjunction, we expected YopM and YopJ to complement one another 

and bring IL-1β levels down potentially as low as t ypically seen with the parental Y. 

pestis strain (KIM5). 

 Instead, we were surprised to discover that YopM is unable to inhibit caspase-1 

activation triggered through NLRP3, NLRC4, or caspase-8, but instead it s pecifically 

inhibits another signal occurring through a Pyrin-dependent pathway. We identified the 

effector YopE as the trigger for Pyrin in the absence of YopM, and characterized some 

key mechanistic features of how this pathway is regulated during Y. pestis infection.  

  

Results 

YopK, but not YopM, keeps NLRP3 and NLRC4 activation by the Y. pestis 

needle/translocon in check. We began this investigation first by c onfirming the 

dependence of needle/translocon-triggered IL-1β secretion on NLRP3 and NLRC4, based 

on studies in Y. pseudotuberculosis indicating this to be the case[255, 256]. As we 

discussed in chapter 1, many T3SS bacteria activate NLRC4 via conserved homologues 
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of the inner rod protein PrgJ and via flagellin, if expressed. Unlike many of its relatives, 

Y. pestis does not express flagellin; however its inner rod protein YscI is a PrgJ homolog, 

and is thus a potential NAIP-2 dependent activator of NLRC4. 

 

Figure 3.2. The Y. pestis needle/translocon triggers robust IL-1β production via NLRP3 
and NLRC4, but cell death occurs independently of inflammasomes or the known pro-
inflammatory caspases, through an undetermined pathway. A) Unprimed BMDMs of 
indicated genotypes were infected with Y. pestis strain ∆T3SSe (containing a functional 
secretion structure but lacking secreted effectors) at MOI 10, and supernatants were 
harvested at 6 hour s p.i. for analysis of IL-1β. B) Unprimed wild-type BMDMs were 
infected with KIM5 (complete T3SS), ∆T3SSe, or KIM6 (lacking the whole T3SS) at 
MOI 10 and supernatants were analyzed for TNFa by ELISA. C) Unprimed BMDMs of 
indicated genotypes were infected with ∆T3SSe for measurement of LDH release to 
assay cell death. Figures are representative of three or more experiments. Shown is mean 
plus s.d. for triplicate wells. * p<0.05, **p<0.01, ***p<0.001. 
 

 We observed a strong IL-1β signal in response to ∆T3SSe, to which NLRP3 and 

NLRC4 both partially contributed(Fig 3.2A). This signal vanished entirely in BMDMs 

lacking both NLRP3 and NLRC4. Caspase-1 and Asc, but not caspase-11 were required 

for the IL-1β response to ∆T3SSe; however, a small amount of IL-1β was still produced 
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in the absence of Asc, consistent with the fact that NLRC4 is able to directly recruit 

caspase-1 via its CARD domain. We also measured TNFa production as an additional 

control to confirm that the presence of the needle/translocon in ∆T3SSe did not 

significantly impact baseline cytokines compared to the KIM6 strain, lacking all T3SS 

components (Fig 3.2B).  

 We expected this apparent robust inflammasome activity to be accompanied by 

caspase-1 dependent cell death (pyroptosis); indeed, infection with ∆T3SSe 

unequivocally results in rapid cytotoxicity, but to our surprise this death pathway was not 

dependent on caspase-1, NLRP3, NLRC4, Asc, caspase-11, or RIP3/Caspase-8 

(Fig3.1C). We are currently investigating which alternative cell death pathway that would 

be accompanied by such dramatic inflammasome-driven IL-1β release. Notwithstanding 

the fascinating implications of this finding, we concluded that the NLRP3 and NLRC4 

inflammasomes are responsible for the entire IL-1β release in response to the Y. pestis 

needle/translocon. 

 We next investigated whether reconstituting endogenous levels of YopM or YopJ 

alone on a ∆T3SSe background (inserted back into the original pCD1 plasmid) would 

inhibit inflammasome activation and IL-1β release. While ∆T3SSe + YopJ demonstrated 

strong but incomplete inhibition of IL-1β, perhaps reflecting both inhibition of 

transcription and some activation of the caspase-8-dependent IL-1β pathway, ∆T3SSe + 

YopM surprisingly had no effect (Fig 3.3A). This is inconsistent with the hypothesis that 

YopM is a general an inhibitor of caspase-1[257], and it prompted us to explore the role 

of YopM more closely in subsequent experiments. 
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Figure 3-3. The NLRP3/NLRC4-driven IL-1β secretion in response to the Y. pestis 
secretion system is partially suppressed by YopJ, unaffected by YopM, and effectively 
inhibited by YopK. A-C) BMDMs or D) BMDCs were infected with indicated Y. pestis 
strains at MOI 10 and supernatants were assayed at 6 hours p.i. for IL-1β by ELISA, or 
for LDH to measure cell death. C) Infections were carried out in media with or without 
HEPES buffering to demonstrate the pH dependence of the T3SS-activated pathway. E) 
Shown are IL-1β levels secreted by unprimed BMDMs infected with Y. pestis strains 
lacking YopJ, YopK, or both. Figures are representative of three or more experiments. 
Shown is mean plus s.d. for triplicate wells. * p<0.05, **p<0.01, ***p<0.001. 
 

 As shown in chapter 2, KIM5 lacking YopJ triggers no detectable IL-1β in 

macrophages. Therefore, if YopJ is not required to completely inhibit the IL-1β response 

to the needle/translocon (even though it is independently capable of considerably 
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reducing it), and YopM is not able to, we reasoned that a different Yop must play the 

dominant role in this inhibition. An earlier report suggests YopK may limit NLRP3 

activation, either by p reventing hypertranslocation of the pore-forming complex or the 

hyperinjection of Yops[255, 256], thus we tested responses to the add-back strain 

∆T3SSe + YopK. Indeed, YopK reduces ∆T3SSe-triggered IL-1β at least as effectively 

as YopJ, and also prevents the inflammasome-independent cell death pathway(Fig 3-2B). 

This is also evident when YopK is deleted from a KIM5 or KIM5 ∆YopJ background(Fig 

3-2C), with a sharp rise in YopJ-independent cytotoxicity and IL-1β production. This IL-

1β production in response to infection with KIM5 ∆YopK was eliminated in 

NLRP3/NLRC4 deficient cells (Fig 3-2D). We therefore concluded that YopK is both 

necessary and sufficient to block inflammasome activation by the Y. pestis 

needle/translocon. 

 Incidentally, we found that both the inflammasome activation and cell death 

induced by the needle/translocon are dependent on pH, as lack of buffering by HEPES 

completely prevented IL-1β secretion(Fig 3.3E) and cytotoxicity(not shown). However, 

HEPES buffering was not required for IL-1β secretion in response to YopJ (Fig 3.3E), 

and did not have any remarkable effect on other cytokines such as TNFa (not shown). 

This is an interesting phenomenon with plausible explanations[196, 199, 313, 314] and 

important implications in disease[201-203], and deserves a separate inquiry.  

YopM specifically inhibits the Pyrin inflammasome, which is activated by YopE 

 Both we and others have shown that YopM is an inhibitor of caspase-1 activation 

[257, 258, 312, 315], however our data suggests it is not able to inhibit all types of 



70 
 

 
 

caspase-1 activating pathways. KIM5 lacking YopM triggers increased levels of active 

caspase-1 and IL-1β, indicating that YopM suppresses a bacteria-triggered inflammasome 

pathway. To identify the pathway inhibited by YopM, we tested whether BMDMs 

lacking specific inflammasome components would have reduced IL-1β production when 

YopM is absent (Fig 3.4A). Although YopM inhibits a pathway dependent on Asc and 

caspase-1, we did not observe any reduction of IL-1β in cells lacking NLRP3, NLRC4, 

NLRP12, or caspase-11. We also tested cells lacking AIM2, NALP6, RIP3, or caspase-8 

(not shown), and found none of them to be required for the IL-1β producing pathway 

which YopM suppresses. The same pattern was observed for cell death (Fig 3.4B); YopM 

inhibits caspase-1 dependent cell death (pyroptosis) as we described in chapter 2, but this 

cell death still occurs in the absence of the inflammasomes tested. 

 We took a comprehensive approach to cross-analyze how the relative interactions 

between YopM, YopJ, the needle/translocon, and different inflammasome pathways 

impact caspase-1 and IL-1β levels. We performed experiments directly comparing all of 

these factors (Fig 3.5). In general, mature IL-1β and caspase-1 closely reflected ELISA 

data in Fig 3.2 and Fig 3.4, and agreed with the findings presented in chapter 2 (Fig 2.1). 

YopJ suppresses pro-IL-1β and pro-caspase-1 production, and triggers a small amount of 

IL-1β processing in a caspase-8-dependent manner. Notably, caspase-1 and Asc are not  
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Figure 3-4. YopM is not a g eneral caspase-1 inhibitor, but instead suppresses an 
inflammasome pathway which is dependent on caspase-1 and Asc, but not on NLRP3, 
NLRC4, caspase-11, or caspase-8. Primed BMDMs were infected with indicated Y. pestis 
strains at MOI 10 and supernatants were assayed at 6 hours p.i. for A) IL-1β by ELISA, 
or for B) LDH to measure cell death. Figures are representative of three or more 
experiments. Shown is mean plus s.d. for triplicate wells. * p<0.05, **p<0.01, 
***p<0.001. 
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Figure 3-5. Primed BMDMs of indicated genotypes were infected with Y. pestis lacking 
YopM, YopJ, YopM and YopJ, or all seven translocated Yops (∆T3SSe) at MOI 10 for 6 
hours. Total protein from samples (combined cell lysate and supernatant) was separated 
by SDS-PAGE and analyzed by Western Blot for IL-1β and caspase-1. The banding 
pattern indicates that YopM inhibits caspase-1 activation triggered by a nother Yop 
effector through an Asc-dependent pathway which is not mediated by Y opJ-induced 
caspase-8, nor the by the ∆T3SSe-induced NLRP3 and NLRC4 inflammasomes, nor 
NLRP12. 
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required for caspase-8 dependent IL-1β processing in response to YopJ. Caspase-1 

activation by the needle/translocon (∆T3SSe) is fully dependent on NLRP3/NLRC4, 

while YopM inhibits caspase-1 processing independently of NLRP3, NLRC4, NLRP12, 

RIP3, or caspase-8. It is however a noteworthy point that in NLRP3/NLRC4 deficient 

cells, KIM5 ∆YopM/J triggers a substantial amount of caspase-1 and IL-1β processing 

while ∆T3SSe (which lacks the other 5 translocated Yops) does not; this indicates that 

YopM inhibits an Asc-dependent inflammasome triggered by another Yop effector. 

 To identify the effector triggering the unknown inflammasome blocked by YopM, 

candidate Yops were deleted from the KIM5 ∆YopM background. When we tested this 

strategy in wild-type BMDMs and BMDMs lacking Pyrin - one of the few remaining 

Asc-dependent inflammasomes which we had not yet evaluated - we found that the IL-1β 

signal inhibited by Y opM is fully dependent on Pyrin, and appears to be triggered by 

YopE (Fig 3.6A). By contrast, TNFa secretion was not appreciably impacted (Fig 3.6B). 

Pyroptosis (Fig 3.6C) and caspase-1 activation (Fig 3.6D) associated with ∆YopM were 

also abolished in the absence of Pyrin.  

 We observed a significant Pyrin-dependent reduction in secreted IL-1β in 

response to ∆T3SSe + YopE, but not to ∆T3SSe alone (Fig 3.6E). However, it is also 

possible that YopE may inhibit NLRP3/NLRC4-dependent IL-1β production, consistent 

with a report that YopE may suppress caspase-1 activation in some settings[20]. Thus, to 

clarify the inflammasome-activating role of YopE, we minimized the contribution of the 

needle/translocon to the IL-1β signal by conducting infections in NLRP3/NLRC4 

deficient cells, or in the presence of YopK (Fig 3.6F). Under these conditions, we 
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observed unambiguous YopE-dependent IL-1β secretion and cell death, which was 

suppressed in the presence of YopM. The Pyrin-activating compound, TcdB, was used as 

a control to demonstrate that NLRP3/NLRC4 deficient cells are not impaired in the 

ability to activate Pyrin (Fig 3.6G). 

 We and others have found it is necessary to prime macrophages with LPS in order 

to see i ncreased IL-1β secretion in the absence of YopM[257, 258, 312, 315]. This is 

somewhat counter-intuitive, since Y. pestis switches to production of non-stimulatory 

tetra-acylated LPS during infection, and we wondered what parallel such priming may 

have in vivo. We therefore experimented with the timing, dose, and agent used in priming 

to gain better insight into these mechanisms. In contrast to NLRP3-dependent responses 

where 3 hours of priming is typically used, we found that the Pyrin-dependent pathway in 

our system required at least 5 ho urs of priming to achieve a phenotype(Fig 3.7A). 

Importantly, use of heat-killed KIM5 instead of LPS also resulted in effective priming, 

even when the bacteria were grown at 37°C to express tetra-acylated LPS (Fig 3.7B). In 

this context, it is reasonable to imagine a s ituation where innate immune cells become 

primed upon encountering dead bacteria or debris either in the circulation or at the site of 

an infected lymph node. 

 Priming also up-regulates pro-IL-1β, and Pyrin itself (Fig 3.7C). This is 

significant because the baseline level of Pyrin in macrophages is very low[128, 218]. 

Furthermore, macrophages lacking the transcription factor C/EBPbeta were unable to 

produce IL-1β specifically in response to KIM5∆YopM or KIM5∆YopM/J (data not 

shown), consistent with the fact that transcription of Pyrin is controlled by 
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C/EBPbeta[316]. Interestingly, many C/EBPbeta-dependent genes begin to be expressed 

only 4-8 hours after stimulation with LPS[317]. It is also worth noting that without 

priming, KIM5∆YopM produces IL-1β indistinguishable from KIM5, whereas 

KIM5∆YopM/J triggers significantly elevated levels of IL-1β (data not shown). This 

indicates that YopJ suppresses priming that occurs during the course of the 6-hour 

infection, either by inhibiting NFkB-mediated gene expression, or by inducing apoptosis 

before sufficient priming can occur.  

 

Pyrin interacts with YopM, Pkn1, Rsk1, Iqgap1, and is controlled by 14-3-3ε 

 Next we aimed to characterize the mechanism by which YopM inhibits the Pyrin 

inflammasome. Using a Yersinia pseudotuberculosis model reconstituted with YopM 

mutants on a ∆YopM background[310], we determined that the C-terminus of YopM is 

needed to inhibit Pyrin-mediated IL-1β release and caspase-1 processing (Fig 3.8). This is 

also the region of YopM necessary for interaction with Rsk1, one of its known binding 

partners[260]. 

 Because human pyrin and mouse pyrin exhibit some important differences in 

structure and function, we wanted to confirm whether YopM is capable of inhibiting 

Pyrin in human cells. To do this, we isolated human donor peripheral blood mononuclear 

cells (PBMCs) from whole blood and infected them with Y. pestis using our standard in 

vitro infection protocol (Fig 3.9A). For this experiment, cells were not primed as PBMCs 

are known to produce IL-1β in response to LPS alone in an ERK-dependent manner[318]. 

Consistent with this, we observed powerful inhibition of IL-1β secretion by YopJ - the  
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Figure 3-6. YopM specifically silences the Pyrin inflammasome, which is activated in 
the presence of the effector YopE. Shown are supernatant cytokines (A, B, E), 
cytotoxicity as measured by LDH release (C, F), and maturation of caspase-1 and IL-1β 
by Western blot (D) in primed BMDMs after 6 hours of infection with indicated strains 
of Y. pestis. The elevation in A) secreted IL-1β, C) cell death, and D) mature caspase-1 in 
the absence of YopM disappears entirely when either Pyrin or YopE are also absent, 
whereas the relative levels of B) TNFa as well as D) caspase-1 and IL-1β proforms are 
not significantly impacted. E) Y. pestis strains expressing YopE on a ∆T3SSe background 
in combination with YopK or YopM were added to wild-type or NLRP3/NLRC4 
deficient cells respectively, in order to reduce confounding needle/translocon-driven 
activation and isolate YopE-driven E) IL-1β and F) cell death pathways. G) Primed cells 
treated with 0.4uM TcdB, a Rho-GTPase inhibitor known to activate Pyrin, to mimic 
YopE. Figures are representative of multiple experiments with similar results. Shown is 
mean plus s.d. for triplicate wells. * p<0.05, **p<0.01, ***p<0.001. 
 

reverse of what we observed in macrophages, but in line with the known role of YopJ in 

suppressing the MAPK2 upstream of ERK. Nevertheless, we confirmed that YopM also 

contributes to inhibition of IL-1β secretion in human PBMCs. 

 We next tested the effect of YopM in a monocytic human THP-1 cell line 

overexpressing YFP-Pyrin, and found an IL-1β secretion pattern generally comparable to 

human PBMCs, where YopM is also capable of inhibiting the Pyrin-mediated IL-1β 

production (Fig 3.9B). Therefore, we used human THP-1 cells overexpressing YFP-Pyrin 

as a tool for biochemical analysis of how YopM or its known bindings partners (Rsk1 

and Pkn1) interacts with the Pyrin pathway[259, 260, 310]. Rsk1, and recently the 

cytoskeletal scaffolding protein Iqgap1, have been suggested to be important for caspase-

1 inhibition by YopM[258]. Co-IP in these cells using anti-GFP antibody revealed Pyrin 

interaction with Pkn1 as late as 6 hours p.i., but not in the siPyrin knockdown control 

(Fig 3.9C). In a separate immunoprecipitation using either anti-Pkn1 antibody and anti-

GFP antibody at 3 hours p.i., we confirmed interaction between Pkn1 and Pyrin in the  
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Figure 3-7. Robust activation of the Pyrin pathway requires priming. Priming is 
necessary to upregulate weakly expressed components, including Pyrin itself. A) 
100ng/mL LPS or 1x108 CFU equivalents of heat-killed KIM5 was added to BMDMs 
either 5 hours before, or simultaneously with live KIM5 or ∆YopM at MOI 10. 
Supernatant from 6 hours p.i. was assayed for IL-1β by ELISA. B) RNA from BMDMs 
was harvested at the indicated hours after addition of 100ng/mL LPS, and amplified by 
RT-PCR using primers specific for Pro-IL-1β or Pyrin. C(t) values for each primer pair 
were normalized to GAPDH internal control C(t) values, and untreated controls. C) 
Priming can be achieved with heat-killed Y. pestis regardless of whether it is grown at 
26°C or 37°C, despite expression of non-stimulatory tetra-acylated LPS. 
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Figure 3-8. Deletions of sequences mapping to the C-terminus of YopM impair its ability 
to inhibit Pyrin. A-B) Wild-type and Pyrin -/- BMDMs were primed and infected with 
Yersinia pseudotuberculosis ∆YopM strains reconstituted with YopM containing 
sequential deletions of its LRRs, at MOI 10. A ) At 6 hour s p.i. protein from samples 
(combined cell lysate and supernatant) was separated by SDS-PAGE and probed for 
caspase-1 by Western Blot. B) A fraction of the supernatant was kept and assayed for IL-
1β by ELISA. 
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Figure 3-9. YopM maintains an inhibitory phenotype in human PBMCs, and in a human 
THP-1 cell line overexpressing YFP-Pyrin. Co-IP pulldowns in these cells indicate Pyrin 
interaction with Pkn1, Rsk1, and Iqgap1. A) PBMCs were isolated from healthy human 
donor blood and infected at MOI 10 with indicated Y. pestis strains without priming. At 6 
hours p.i. supernatant was collected for IL-1β detection by ELISA. B-D) Cultured YFP-
Pyrin and siPyrin THP-1 cells were differentiated with 100nM Vitamin D3 for 48-72 
hours, and either B-C) primed with 100ng/mL LPS for 5 h ours before infection or D) 
infected without priming with indicated Y. pestis strains at MOI 10. Shown in B) is IL-1β 
assayed from supernatants by E LISA. C) cells were harvested at 6 o r D) 3 hour s p.i., 
lysed, and either anti-GFP or anti-Pkn1 were used for IP pull-down with protein G beads. 
Following the IP protocol, bead-bound protein and lysates were separated by SDS-PAGE 
and analyzed by Western Blot for the proteins indicated.  
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Figure 3-10. YopM interacts with Pyrin and Rsk1 during Y. pestis infection in YFP-Pyrin 
THP-1 cells, and may influence Rsk1 S380-dependent activity. A) Shown are Western 
blot results of co-IP with anti-YopM using 1x107 Vitamin D3-differentiated, unprimed 
YFP-Pyrin cells after infection with the indicated strains at MOI 10 for 3 hours. B) 
BMDMs were primed for 5 hours and infected with either KIM5 or ∆YopM at MOI 10 
for 6 hours (hence 11 hours total in LPS). Time course samples were harvested at 2 hour 
intervals, including the priming stage. Shown is a Western blot detailing the impact of 
priming and infection on the phosphorylation status of Rsk1-S380, in the presence of 
absence of YopM. 
  

bound fraction of both immunoprecipitations. We found Iqgap1 interacting with Pyrin in 

the presence of bacteria, while Rsk1 was detected to interact with both Pyrin and Pkn1 

even in the absence of infection (Fig 3.9D). 

 Pull-down assays in YFP-Pyrin cells using anti-YopM antibody showed that 

YopM interacts with Rsk1 as expected, although we were unable to detect interaction 
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with Pkn1 or Iqgap1 (Fig 3.10A). However, we did detect Pyrin in the bound fraction, 

suggesting that it may directly or indirectly interact with YopM. YopM is known to 

interact with Rsk1 and Pkn1, and has been shown to prevent dephoshophorylation of 

Rsk1-S380 in HEK293 cells, keeping it in an activated state[259]. In our model system, 

however, we did not witness a major effect of YopM on phosphorylation status of Rsk1-

S380 in BMDMs (Fig 3.10B). In fact, we observed progressive dephosphorylation and a 

banding pattern suggestive of Rsk1 degradation over the course of the 6-hour infection, 

with no e ffect of YopM. It may be that a phoshophorylation site other than S380 is 

influenced by YopM and important for Pyrin inhibition, such as perhaps S154[319]. 

 

Figure 3-11. YopM prevents the formation of Pyrin-dependent Asc complexes, possibly 
by interfering with steady-state inhibition of Pyrin by 14-3-3 binding proteins. A) 
HEK293T cells stably expressing Asc-YFP were transfected with pCDNA3-Pyrin, 
pRBH-YopM, or both constructs together. pCDNA3-NLRP3 and respective empty 
vectors were used as positive and negative controls. Asc speckles were visualized, 
quantified, and normalized to cell number. In a separate experiment, B) pCDNA3-Pyrin 
was co-transfected with pCDNA3-14-3-3ε and Asc speckles per 100 cells were 
quantified. Figures are representative of three or more experiments. Shown is mean plus 
s.d. for triplicate fields quantified. * p<0.05, **p<0.01, ***p<0.001. 
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 Finally, we tested the ability of YopM alone to inhibit Pyrin activation. HEK293T 

cells stably expressing Asc-YFP were transfected with pCDNA3-Pyrin, pRBH-YopM, or 

both constructs together. We observed significantly increased Asc speckle formation 

upon transfection of pCDNA3-Pyrin, indicating Pyrin inflammasome assembly (Fig 

3.11A). This Asc speckling was significantly reduced upon co-transfection of pRBH-

YopM. The pCDNA3-NLRP3 control also triggered the formation of Asc-speckles, but 

was not affected by the addition of YopM .  

 Based on reports that 14-3-3 binding proteins τ and ε are downstream of RhoA 

and interact with Pyrin[78, 79], we posited that Pyrin is kept inhibited by 14 -3-3 and 

becomes activated when YopE inhibits RhoA, resulting in subsequent dephosphorylation 

and disassociation of 14-3-3 from Pyrin. We probed this possibility by c o-transfecting 

pCDNA3-Pyrin with pCDNA3-14-3-3ε, and we found that, indeed, 14-3-3ε significantly 

reduced Pyrin-dependent Asc speckling (Fig 3.11B). We believe the inhibition of Pyrin 

by 14-3-3 proteins is central to the mechanism of Pyrin activation by YopE and inhibition 

by YopM. Notably, Pkn1 and Rsk1 are known to interact with and influence the function 

of 14-3-3 isoforms [319-321], with input from RhoA[322, 323]. Thus, it is possible that 

YopM rescues Rsk1 and Pkn1 activity to keep 14-3-3 phosphorylated and bound to Pyrin 

despite RhoA inhibition by YopE, although more experiments are needed to describe a 

detailed mechanism. 
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Conclusion 

 In this chapter we confirmed that IL-1β secretion in response to the Y. pestis 

needle/translocon is dependent on NLRP3/NLRC4, and that it is partially suppressed by 

YopJ, unaffected by Y opM, and effectively inhibited by Y opK. We also revealed that 

although YopK can also avert the cytotoxicity induced by the needle/translocon, it 

proceeds independently of NLRP3, NLRC4, and inflammasome-associated caspases, but 

instead relies on an undetermined pH-dependent mechanism. We showed that rather than 

being a general caspase-1 inhibitor, YopM specifically prevents activation of a primed 

Pyrin inflammasome by YopE. We also showed that the same protein regions of YopM 

required for it to bind its interaction partner Rsk1 are required for its ability to inhibit 

Pyrin. Finally, YopM specifically inhibits the Pyrin inflammasome in human cells even 

outside the context of infection, and we suggest that this occurs in a scenario where Pkn1, 

Rsk1, Iqgap1, and 14-3-3ε interact with and regulate Pyrin through a novel, as yet 

unreported pathway. 

 With the newest addition of Pyrin, the number of distinct caspase-1 processing 

pathways triggered by Y. pestis now numbers five. Specifically, NLRP3 and NLRC4 are 

activated by the needle/translocon, Pyrin is activated by YopE, caspase-8 is activated by 

YopJ, and NLRP12 is activated by an as-yet undetermined mechanism[118]. This is the 

highest diversity of inflammasome activation of any other T3SS pathogen discussed in 

Chapter 1, a nd even more impressively, the Y. pestis T3SS overcomes these pathways 

with just seven translocated Yop to achieve nearly absolute suppression of IL-1β 

production in net. 
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Discussion 
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Immune evasion by T3SS pathogens related to Y. pestis 

 Pathogens use secretion systems to export molecules which can manipulate the 

host environment and promote bacterial fitness. The survival strategy of Y. pestis is to 

maintain maximum immune silence, and consequently its T3SS has evolved to suppress 

immune responses. Yet for enteric pathogens, such as Salmonella, Shigella, Y. 

pseudotuberculosis and Y. enterocolitica, immune silence is complicated by t he the 

intrinsic nature of the gut - a niche that is immunologically primed by t he constant 

presence of LPS and other molecules from a great number of diverse of bacteria. Instead, 

the T3SS of these pathogens is adapted for penetration and destruction of epithelial 

barriers and both intracellular and extracellular survival in the presence of phagocytes. 

This is not necessarily achieved by immunologically quiet mechanisms, in fact all four of 

these enteric pathogens activate robust NLRC4-dependent IL-1β (see chapter 1) and 

produce flagellin, which confer motility and epithelial invasiveness. These traits are 

particularly important in the gut environment, where lack of motility makes it easier to 

expel the bacteri from the body. At the same time, the non-silent but invasive nature of 

these enteric pathogens allows for rapid and sufficient replication of enteric bacteria, in 

order to be shed in the stool and continue its lifecycle. Salmonella, Shigella, Y. 

pseudotuberculosis, and Y. enterocolitica likely cause self-limiting infections precisely 

because their strategy does not entirely rely on total immune evasion, but rather retention 

in the gut for just long enough to reproduce in sufficient quantities. 

 Opportunistic pathogens such as Pseudomonas, Legionella, and Burkholderia 

typically establish temporary residence in the lung, and benefit from the tight control of 
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IL-1β production by the host. Burkholderia and Pseudomonas both apparently benefit 

when the host produces IL-1β and IL-18, which seems to hinder bacterial clearance while 

causing greater lung inflammation[127, 172, 179-183]. Why these cytokines fail to assist 

bacterial clearance is unclear, but one potentialy hypothesis concerns the fact that 

Pseudomonas exploits host regulation of autophagy to prevent immune recognition 

despite the activation of inflammasoms. This seems particularly true when Pseudomonas 

establishes chronic lung infection in CF patients - in these cases, the IL-1β response is 

disproportionately augmented and is associated with even less effective bacterial 

clearance[203]. While the details for this are not completely understood, this concept of 

IL-1β/IL-18 being beneficial to the bacteria runs counter to the strategy of Y. pestis, 

which is to avoid IL-1β and IL-18 production. Clearly,  immune evasion carries different 

meaning and different requirements in different niches, and the secretion system is not a 

one-size-fit-all tool. 

 

Inflammasome Activation and Inhibition by the Y. pestis T3SS 

 One of the advantages of this work is that it allows the comprehensive analysis of 

several components of the Y. pestis T3SS and multiple inflammasome pathways, side by 

side. This allowed us to cross-verify and disambiguate some of the confounding effects in 

this host-pathogen interaction, lending greater confidence in the final integrated model 

(Fig 4.1). A potential confounding factor in studying the Y. pestis T3SS is the effector 

YopJ, which kills cells, effectively suppresses signaling pathways on which other 

phenotypes rely, and may create the need for priming for some inflammasome studies. 
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Indeed, in vivo we saw little change in survival or most infection/immune related 

parameters unless both YopM and YopJ were deleted. 

 Previous studies have shown several immunosuppressive functions of YopJ[262, 

264, 266, 267, 294, 324], and it has been puzzling that this effector does not appear to be 

needed for Y. pestis virulence [268, 269], Fig 3A), in contrast to Y. pseudotuberculosis 

and Y. enterocolitica. In contrast, immune stimulation induced by this effector molecule, 

such as the activation of caspase-1 and IL-1β/IL-18 release, has also been reported [124, 

261]. One hypothesis is that the immunosuppressive and immune stimulatory actions of 

YopJ could balance each other, explaining why YopJ deletion has little effect on bacterial 

replication in vivo. Similarly, deletion of YopM has a modest effect on vi rulence via 

intradermal delivery of the CO92 strain[296], and no significant effect upon deletion in 

the KIM1001 strain upon s.c. delivery (Fig 2.3A). Notably, the CO92 strain carries a 

variant of YopJ which is less catalytically active than the KIM1001 variant[261, 325, 

326]. It is possible that this variant of YopJ in CO92 partially unmasks the contribution of 

YopM to virulence.  

 Another aspect worth considering is that reduced activity or secretion of 

YopJ/YopP may not necessarily benefit the host[303, 327]. YopJ robustly suppresses IL-

1β and IL-18 precursors as well as other NF-kB dependent cytokines[328, 329], but also 

triggers caspase-8 dependent activation of caspase-1, IL-1β and IL-18 at low levels[11, 

124, 261]. Interestingly, the catalytic activity of YopJ positively correlates with its ability 

to induce caspase-8 dependent cytoxicity and IL-1β secretion. The increased catalytic 

activity may also cause slight attenuation in pneumonic plague[327, 330] Indeed, some 
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studies in non-microbial systems indicate that inhibition or lack of IKKB leads to a 

paradoxical increase in IL-1β secretion and caspase-8 activation despite an expected anti-

inflammatory effect[331-333]. Could the non-canonical caspase-8 pathway be part of a 

host trapdoor mechanism for IL-1β/IL-18 production, designed to be triggered when 

pathogenic effectors such as Y opJ attempt to suppress the critical NF-kB or MAPK 

pathways after surface receptor activation? 

 Although YopJ has been proposed as a key Yersinia effector inducing caspase-1 

cleavage[124, 261], our results suggest that YopJ is the weakest contributor to caspase-1 

cleavage of the T3SS activators we describe. In macrophages, YopE-activated Pyrin and 

needle/translocon-activated NLRP3 and NLRC4 drive the majority of caspase-1 cleavage 

in the absence of YopM or YopK, respectively. Furthermore, YopJ may be particularly 

important in monocytes because unlike YopK or YopM it is able to prevent 

inflammasome-independent IL-1β production (Fig 3.9A). Finally, we have found that 

YopJ does not appear to directly induce cell death and IL-1β release in human PBMC, 

which could suggest that the YopJ-caspase-8 pathway to cell death and inflammasome 

activity could be of different significance in different cells and/or species (Fig 3.9A). In 

neutrophils, for example, YopJ does not seem to have the same pro-apoptotic function as 

in macrophages[278]. 

 It is also notable that we observed that YopJ plays a significant role in suppressing 

inflammasome-independent IL-1β production in PBMCs (Fig 3.9A), while in a the 

macrophage system the importance of YopJ in controlling IL-1β production seemed 

secondary to YopM (Fig 2.1A, B). This diversity of function may indicate varying 
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importance of the effectors in different body compartments or route of infection; for 

example, YopJ may be more important in suppressing IL-1β and IL-18 production in 

septicemic plague, where PBMCs would be expected to play a central role in host defense. 

Furthermore, the ability of YopM to inhibit Pyrin in PBMCs does not require these cells to 

be primed. Thus, compared to the macrophage model, there does not appear to be any 

redundancy in the suppression of IL-1B production in PBMCs. This is interesting to 

consider, because deletion of YopM has been shown to reduce LD50 by 100,000 fold in a 

septicemic model of plague[295]. By contrast, PBMCs are not known to play a prominent 

role in the bubonic disease, where we observed redundant effects of YopM and YopJ on 

both IL-1B production and virulence (Fig 2.3). 

 

Figure 4.1. Proposed model integrating the major interactions of the Y. pestis T3SS with 
inflammasome pathways. 
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 With regards to NLRP3 and NLRC4 by Y. pestis, activation of both 

inflammasomes depends on the presence of the functional T3SS apparatus[255, 256, 

312]. Potential activators of NLRC4 include parts of the needle/translocon structure 

itself, such as Y scI[334] or YscF[141]. This can be predicted because YscI and YscF 

have homologs in Salmonella, Shigella, Burkholderia, and Pseudomonas which activate 

NLRC4 via NAIP1 and NAIP2, respectively (Fig 1.2). Possible mechanisms for NLRP3 

activation include hyper-translocation of the YopB/D translocon into the cell 

cytoplasm[256], and the destabilizing effects of a l arge pore in cell membrane or 

endosomes[335] perhaps affecting flux of ions or ROS[278]. The role of the translocon is 

also emphasized by data suggesting that increased expression of YopB increases 

inflammasome activation[256, 261]. It is also possible that in the presence of a functional 

needle, other molecules (e.g. LPS) pass from the bacterium into the host cytoplasm and 

activate inflammasome pathways; however, we did not observe a role for caspase-11 (Fig 

3.2A), which would be expected in this scenario.  

 Very recent findings on cell death mediated by caspase-11 and caspase-1 via 

gasdermin D[96, 167] and by NEK7 via NLRP3/caspase-1[336, 337] suggest there are a 

number of additional players involved in regulation of inflammasome and pyroptosis 

pathways. Furthermore, bacterial components including YopK[255] could differently 

impact the various death pathways. Several molecules, in addition to those studied here, 

are likely involved in regulating cytotoxicity induced by t he different Yersinia strains. 
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The identification of new cell-death mediating proteins could add to the understanding of 

why the various pathways induce different types and degrees of cell death.  

 With regards to the caspase-1/11/8-independent cell death induced by the Y. pestis 

needle/translocon that we observed in Fig 1C, one possible explanation is that pore-

formation by the translocon triggers both caspase-1 dependent pyroptosis and caspase-1-

independent apoptosis in parallel. Pore formation and membrane instability may trigger 

ROS and entry of K+ and/or calcium which triggers NLRP3, but which also induces 

sufficient mitochondrial damage to activate classical caspase-3-dependent apoptosis in 

the absence of caspase-1. While the details of the mechanism(s) are not clear, the 

majority of NLRP3 and NLRC4 activation and cytotoxicity by the needle/translocon is 

effectively prevented by YopK (Fig 3.3)[255, 256]. Brodsky and Marketon propose that 

YopK acts at the site of the translocon and regulates the delivery of other Yops[338, 

339]. It is not clear if YopK may prevent the unintended entry of bacterial components 

other than Yops into the host cell. Potentially, YopK could also conceal inflammasome-

activating motifs of a hyper-translocated needle/translocon, or stabilizes the pore to 

prevent membrane-damage associated inflammasome activation. 

 There is also evidence indicating that YopE, whose GAP activity inhibits RhoA/G, 

Rac1, and Cdc42, may also inhibit inflammasome activation by stabilizing the translocon 

pore [335, 340] or by regulating effector translocation[341]. An early report by Schotte and 

colleagues suggested that YopE inhibits caspase-1 activation in a manner dependent on 

Rac1[20]. This is entirely reconcilable with our evidence that YopE activates Pyrin because, 

first, YopE will not trigger Pyrin in cells where it is not expressed unless Pyrin is induced by 
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priming. Second, the inflammasome-activating effect of YopE is not apparent in the 

presence of YopM, because YopM inhibits the Pyrin pathway. Finally, as exemplified by 

the case of YopJ, a single effector can inhibit one inflammasome pathway while triggering 

another. The same appears to be true of YopE, where its inhibition of GAP activity may 

trigger one inflammasome (Fig 3.6E)[82, 342], while preventing activation of another (Fig 

3.6E)[20, 335, 340, 341, 343].  

 It is also interesting that the stabilizing effect of YopE on translocation could be 

complemented by P. aeruginosa ExoS and ExoT, which are YopE homologues with GAP 

activity. It is not known whether ExoS and ExoT may also activate Pyrin. Our evidence also 

supports the idea that YopE can stabilize the translocon and reduce needle/translocon-

triggered inflammasome activation (Fig3.5E). One possible implication of using YopK or 

YopE mutants is that they may both regulate translocation of effectors in some 

systems[255, 338, 339, 341]. While we have not directly tested the impact of this 

phenomenon, others have suggested that the use of a mutant YopE does not have a major 

impact on YopJ-influenced IL-1β release in the context of YopM deletion[315]. 

However, this may warrant further studies. 

 Other studies and ours suggest that in the absence of YopE GAP activity, the impact 

of other Yops, such as YopJ, on IL-1β release is not significantly impacted[315]. Indeed, the 

finding by Schotte and colleagues[20] points to the understudied role of cytoskeletal GEFs 

and GAPs (including perhaps Iqgap1) in inflammasome regulation. Many pathogens target 

host GTPases to inhibit motility and phagocytosis, and there is compelling evidence 

showing that these pathways play important roles both in negative and positive regulation of 
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inflammasomes[24, 82, 341, 344]. However, it is not at all clear what kind of GAP activity 

would be sufficient to trigger Pyrin, and which GAP effectors can be predicted to be 

candidate Pyrin activators. 

 
Table 1. Summary of the functions of translocated Yops. References: Plano and Schesser 
2013[345], Lee et al 2015, [346], Hentschke et al 2010[259], Brodsky et al 2010[255]. 

 

 Importantly, Yops H, O, and T also impact intracellular GTPase activity and have 

been reported to inhibit phagocytosis and cytoskeletal dynamics to varying degrees (see 

Table 1 for an overview of the functions of the seven translocated Yops). Thus, while in our 

mouse macrophage system we identified YopE to be the dominant activator of Pyrin (Fig 

3.6), it is possible that other Rho GTPase inhibiting effectors may serve as alternative Pyrin 
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activators in other systems. Inhibition of phagocytosis by neutrophils is a critical aspect of Y. 

pestis pathogenesis, as the bacteria is unable to replicate within these cells. Because 

inhibition of phagocytosis (particularly by Yops E and H) is indispensible for the Y. pestis 

virulence[342, 345, 347, 348], it is  plausible that Y. pestis also relies on a mechanism to 

silence the immune responses resulting from this activity. In this context, YopM may play 

an important role as a general Pyrin inhibitor to silence immune responses triggered by the 

anti-phagocytic Yops. 

 

Control of Pyrin Inflammasome Activity 

 It has been proposed that the Pyrin inflammasome responds to inappropriate 

inhibition of Rho-GTPases by pathogens[36]. Pyrin has been shown to respond to a number 

of virulent pathogens and their secreted toxins, including Francisella, Burkholderia, Vibrio, 

and Clostridium[82, 128, 173, 218]. 

 The mechanism by which inhibition of Rho GTPases could lead to Pyrin activation 

is an exciting question open to broad speculation. One possibility is that Pyrin reacts to 

excessive depolymerization of actin[81] as a direct consequence of RhoA inhibition by 

toxins such as TcdB[349]. Indeed, Pyrin is known to bind actin and colocalize with it at the 

leading edge together with Pstpip1[76, 80, 350]. Pyrin activation is also inhibited by the 

cytoskeletal stabilizer colchicine; however, in preliminary experiments we treated cells with 

inhibitors of actin polymerization - latrunculin B or cytochalasin D - and did not observe 

any change in Pyrin activation. Furthermore, alternative evaluation of the relationship 

between actin and Pyrin suggests that Pyrin activation may be associated not with actin 
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depolymerization but rather reorganization of Pstpip1 into reticulated fibers[350, 351]. 

Colchicine inhibits the formation of these structures and interestingly also leads to down-

regulation of Pyrin expression. 

 Others have shown Pyrin to be activated in response to ribotoxic stress, which was 

attenuated by inhibition of p38 MAP Kinase[75]; inhibition of p38 also leads to increased 

activity of ERK[352], which is the direct activator of the YopM binding partner Rsk1. Rsk1 

is known to play an important role in mediating cytoskeletal activity, including reducing 

actin stress fibers and impacting cell motility[353, 354]. Thus, increased Rsk1 activity may 

be associated with reduced Pyrin activity through cytoskeletal stabilization. Consistent with 

this, our data confirm the importance of the YopM C-terminus for inhibiting caspase-1 

activation (Fig 3.8), which is also the region necessary for YopM to interact with Rsk1[258, 

260]. Pkn1 may also play a role in this pathway, as it has been suggested to be directly 

activated by RhoA[322, 355, 356] and Rac1[357], and its downstream functions also 

include regulation of actin organization. Yet in general, both Pkn1 and Rsk1 are better 

studied in the context of cancer pathways[353, 354, 358-361], with little known about what 

roles they may play during infection.  

 Our immunoprecipitation experiments demonstrate that Pkn1 and Rsk1 interact with 

Pyrin during infection with Y. pestis even in the absence of YopM (Fig 3.9C), suggesting 

these proteins could have a role in regulating Pyrin activation in infectious and non-

infectious situations. The ability of YopM to inhibit caspase-1 activation has been shown to 

depend on Iqgap1[258], which serves as a scaffolding protein for Rac1 and Cdc42[362], and 

has also been shown to interact with RhoA[363]. In our pull-down experiments we found 
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interaction between Pyrin and Iqgap1 as well. All of these proteins interact with and 

influence actin rearrangement, and it is fully conceivable that Pyrin regulation is indeed 

mediated by a cytoskeletal mechanism.  

 An alternative hypothesis stems from the fact that Pyrin is regulated by the cytosolic 

anchoring proteins of the 14-3-3 family, and has been shown to bind the isoforms 14-3-3ε, 

14-3-3τ, and others [78, 79]. A large body of evidence indicates that 14-3-3 proteins directly 

and indirectly interact with RhoA[364, 365], Rac1[366-368], and Cdc42[369] to regulate a 

diverse variety of pathways. Interestingly, 14-3-3 proteins have been shown to bind Dengue 

viral protein NS3 and inhibit RIG-1 dependent responses to the pathogen[370]. Inhibition of 

Rho GTPases by YopE or similar toxins could lead to de-inhibition of Pyrin by 14-3-3ε and 

τ, with subsequent inflammasome formation. Pkn and Rsk1 are known to interact with and 

influence the function of 14-3-3 isoforms [319-321], with input from RhoA[322, 323]. In 

the absence of RhoA activity, the role of YopM may be to re-activate these kinases to 

either keep 14-3-3 bound to Pyrin, or possibly directly maintain S242 phosphorylation on 

Pyrin[78] to silence it directly. 

 One potential caveat of this work is to what extent mouse and human Pyrin 

pathways overlap, since mouse Pyrin lacks the C-terminus B30.2 domain present in human 

Pyrin, and some important functional differences between mouse and human Pyrin have 

been reported[218]. However, our data in human PBMCs, THP-1 cells, and HEK293T cells 

suggests that the effects of YopM on the human pyrin pathway are comparable to the 

pathway in mice (Fig 3.9-3.10). Additionally, the phosphorylation sites on human Pyrin 

suggested to be important for binding and regulation by 14-3-3[78] are also present in mice, 
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and may have analogous function (S208, S209, and S242 in human Pyrin; S205, S206, S241 

in mouse Pyrin). If 14-3-3 is indeed the mediator of YopM inhibition of Pyrin, then the fact 

that these phosphorylation sites are common to mouse and human Pyrin would be consistent 

with a similar mechanism of inhibition by YopM in both the mouse and human system. 

 

Familial Mediterranean Fever and Plague 

 Mutations in the human Pyrin gene (Mefv) result in Familial Mediterranean Fever 

(FMF), the most common autoinflammatory disease in humans[74]. The majority of FMF 

cases involve mutations in the B30.2 domain causing spontaneous activation of the Pyrin 

inflammasome, and systemic inflammation[73]. This disease comes in waves of attacks 

accompanied by potentially severe abdominal pain, arthralgia, rashes, and progressive 

deposition of amyloid protein in kidneys and other organs (Fig 4.2). Treatment of choice is 

colchicine, which was described earlier. 

 A particularly exciting future direction of this work could be to test whether YopM 

is capable of suppressing Pyrin activation in FMF patients and heterozygous carriers. A 

tempting hypothesis is that FMF carriers may have had a selective advantage during plague 

epidemics due to enhanced activity or increased resistance to YopM. FMF carriers 

frequency is highest in Middle Eastern and Mediterranean populations, where 

approximately 1 in 4 individuals are carriers[371]. This is particularly interesting given that 

hotbeds of the first two plague epidemics were in the Mediterranean basin. Comparing a 

map of the spread of plague to a map of the distribution of mutant MEFV alleles suggests a 

pattern consistent with co-evolution (Fig 4.2). 
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Figure 4.2. Hotspots of plague and areas with high FMF carrier frequency significantly 
overlap [372, 373]. 
 

Conclusion 

 In conclusion, we have generated a comprehensive model describing the 

dynamics of the Y. pestis T3SS interactions with inflammasomes. The fact that so many 

bacterial components are involved in regulating IL-1β/IL-18 highlights the importance 

for the bacterium to keep these cytokines in check. In that respect, Y. pestis serves as a 

robust and fascinating model system for investigating immune evasion by pathogens and 

microbial manipulation of host IL-1β and IL-18 release. 
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 The identification of YopE, YopM, Pkn1 and Rsk1 as potential novel exogenous 

and endogenous players in the regulation of the Pyrin inflammasome is a si gnificant 

advance, both for the understanding of plague biology as well as for innate immunity. We 

hope that these findings will provide insight for the identification of better drug targets 

and improved therapeutics for Familial Mediterranean Fever and other  d iseases 

influenced by the Pyrin protein. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 



101 
 

 
 

EXPERIMENTAL PROCEDURES 

 Bacterial Strains and Growth Conditions. The fully virulent KIM1001 strain of Y. 

pestis, the attenuated  KIM5 (∆pgm) BSL2 strain, and KIM5∆YopJ were previously 

described[11, 225, 288]. The ∆YopM, and ∆YopM/J strains were generated both on the 

KIM5 and KIM1001 background as follows: An in-frame deletion removing amino acids 

3 through 408 of 410 of the yopM gene was created via allelic exchange. PCR products 

made with primer sets yopM-A, yopM-B and yopM-C, yopM-D, respectively, were used 

to make a fused product by overlap PCR using primers A and D[374]. This product was 

cloned in the allelic exchange vector pRE107[375] in E.coli K12 strain β2155, a 

diamiopimelic acid auxotroph, and transferred to Y. pestis KIM1001 by conjugation. 

KIM1001 recombinants were selected on TB medium containing 100μg/ml ampicillin but 

no diaminopimelic acid. Following counter selection with 5% sucrose, deletion mutants 

were identified by P CR. The same procedure was followed to construct an in-frame 

deletion mutant of yopJ, yopE, and yopK in KIM1001, as well as yopJ, and yopE in 

KIM1001 ∆yopM using the respective gene specific A, B, C, and D primers shown in 

Table 2. Attenuated ∆pgm derivatives of each strain, bearing the designation KIM5 to 

indicate their altered chromosomal genotype, were derived from their respective 

KIM1001 parents by selection for loss of pigmentation on HIB Congo Red agar at 26°C. 

KIM5 ∆pla was also generated as described[288]. Loss of the pigmentation region 

(∆pgm)/iron acquisition was confirmed by PCR with primers pgm-F, pgm-R; psn-F, psn-

R; and hmsH-F, hmsH-R. Expression of YopM and YopJ was confirmed by RT-PCR. 



102 
 

 
 

 A Type III secretion effector deficient strain (∆T3SSe) was constructed by 

making sequential in-frame deletions, as described above, of yopM (amino acids 3-408 of 

410), yopE (amino acids 40-197 of 220), yopH (amino acids of 3-467 of 469), ypkA 

(amino acids of 3-731 of 733), yopJ (amino acids 4-288 of 289), yopK (amino acids 4-

181 of 183), and yopT (amino acids of 3-320 of 323) using the respective gene specific A, 

B, C, and D primers shown in Table 2. The deletions were made in Y. pestis KIM 1001 

and a K IM5 derivative was generated as described above. This strain lacks Yops 

M/E/J/H/T/K and YpkA, but expresses Yops B/D and the machinery necessary to 

assemble a T3SS needle with a functional pore-forming translocon complex. To examine 

the contribution of individual Yops, the full-length genes of yopK, yopM, or yopE were 

restored to the ∆T3SE background. PCR products made with each respective yop’s 

primer A and D (see Table 2), using wild-type KIM5 template, were cloned into pRE107 

and allelic exchange carried out as described above. Strains expressing pairs of Yops 

(only YopM and YopE, and only YopK and YopE) were constructed by r estoring the 

full-length yopE gene to the ∆T3SE yopM+ or ∆T3SE yopK+ backgrounds. 

 All Y. pestis strains were grown using TB media supplemented with 2.5mM 

CaCl2. KIM1001 and derivative strains were plated on agar incubated at 37°C overnight 

and passed once before preparing inoculum for injection. Strains on t he KIM5 

background were plated overnight from frozen glycerol stocks and then grown at 26°C in 

liquid broth overnight; on the day of infection cultures were diluted 1:20 and grown for 2 

hours at 26°C followed by a shift to 37°C for 2 hours. This transition is important to up-

regulate expression of the T3SS while minimizing expression of F1 protein capsule[376], 
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which interferes with cell-based assays. Bacteria were then washed three times in RPMI 

(pre-warmed to 37°C), quantified by OD600, and added to cells at a multiplicity of 

infection (MOI) of 10 bacteria per cell in a 10uL volume within 1 hour of preparation.  

 Y. pseudotuberculosis IP2666∆YopM and IP2666∆YopM+recM mutant strains 

were a k ind gift from Dr. Joan Mecsas an d have been previously described[310]. Y. 

pseudotuberculosis strains were grown identically to the KIM5-background strains 

described above, except 2xYT media was used instead of TB (also supplemented with 

2.5mM CaCl2). 

 Heat-killed KIM5 for priming was prepared by growing KIM5 in liquid broth 

from freshly streaked plates overnight either at 26°C or 37°C. Bacteria were diluted 1:20, 

and grown for an additional three hours at the same temperature. Bacteria were then 

washed three times in endotoxin-free PBS, quantified by OD600, and incubated at 65°C 

for 1 hour to heat-kill. An aliquot of each temperature prep was streaked out to confirm 

100% death, and the rest was frozen. For priming in subsequent experiments, an 

equivalent of MOI 10 of either prep was used. 

 Cell Culture and P reparation. Bone marrow derived macrophages (BMDMs) 

were differentiated in RPMI 1640 supplemented with 10% fetal calf serum (FCS), 25mM 

HEPES, 10ug/mL ciprofloxacin, and 10% L929 conditioned medium containing M-CSF 

for 5 da ys. Bone marrow derived dendritic cells (BMDCs) were differentiated in R10 

medium consisting of RPMI 1640, 10% FCS, 20mM HEPES, 2mM L-glutamine, 50μM 

β-mercaptoethanol, 100U/mL penicillin, 100μg/mL streptomycin, and 20ng/mL 

recombinant murine GM-CSF (Peprotech) for 9 days. BMDMs or BMDCs were 
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harvested and seeded at a density of 100,000 cells per well in a 96-well plate format 

overnight and stimulated the following day. HEK293T-Asc-YFP cells (a kind gift from 

Dr. Kate Fitzgerald) were maintained in DMEM supplemented with 10% fetal calf serum 

(FCS), 25mM HEPES, and 10ug/mL ciprofloxacin. THP-1 YFP-Pyrin and siPyrin cell 

lines were a generous gift from Drs. Mark Wewers and Mikhail Gavrilin, and were 

maintained in RPMI 1640 supplemented with 10% fetal calf serum (FCS), 25mM 

HEPES, and 10ug/mL ciprofloxacin. For stimulations, THP-1 cells were differentiated 

for 48-72 hours with 100nM Vitamin D3, harvested, and seeded for same day stimulation 

at either 100,000 cells in 96-well plate format, or at 1x107 cells per 10cm dish for 

immunoprecipitation experiments. Human PBMCs were isolated from donor whole blood 

using Lymphoprep density gradient (#07851, StemCell), washed once, and resuspended 

in RPMI 1640 supplemented with 10% fetal calf serum (FCS), 25mM HEPES. PBMCs 

were seeded at a density of 100,000 c ells per well in a 96-well plate format and 

immediately used for infection. 

 

Figure 4.3. Outline of a standard experimental protocol and typical assay readouts. 
 

 Cell Stimulations. Cells were primed with 100 ng/mL LPS for 5 hours or allowed 

to rest in antibiotic-free RPMI with 10% FCS and 25mM HEPES without antibiotic 
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before addition of bacteria at an MOI of 10. Endpoints were as follows: 2 hour s post-

infection (p.i.) for RNA extraction, 3 hours p.i. for caspase-8 enzymatic assays (Caspase-

Glo 8 K it, Promega #G8200), 5 or 6 hours p.i. for LDH assay (CytoTox 96, P romega 

#G1780), and 6 hours for harvesting of supernatant and/or cells for analysis of cytokines 

by ELISA (R&D) or caspase-1 activation by SDS-PAGE and Western Blot (anti-caspase-

1 #AG-20B-0042-C100, Adipogen; anti-IL-1β #DY401 840135, R&D; anti-pS380-Rsk1 

#AF889, R&D). For time points exceeding 3 hours, 50ug/mL gentamicin was added at 3 

hours p.i. In experiments with TcdB (#155, List), the inhibitor was directly added to cells 

at a final concentration of 0.4uM for 6 hour s. Each graph represents results of two or 

more independent cell stimulations on separate days. 

 Immunoprecipitations. Cells were infected at MOI 10 as described above, and 

harvested either at 3 hours or 6 hours p.i., with 50ug/mL gentamicin added at 3 hours. 

Cells were washed once and lysed in co-IP buffer for 15 m inutes (1% Triton X-100, 

150mM NaCl, 5mM KCl, 2mM MgCl2, 1mM EDTA, 25mM Tris-HCl, pH 7.4) with 

protease and phosphatase inhibitor (#04693116001 and #04906845001, Roche). Lysate 

was cleared by centrifugation and an fraction was saved as l oading input control. The 

remaining lysate was cleared once with protein G agarose beads (Thermo #20398) to 

remove non-specifically binding proteins, followed by i ncubation with fresh beads and 

pull-down antibody, either against GFP (#A11122, Life Technologies) or against Pkn1 

(#MAB6100, R&D), for 2 hour s at 4°C. Beads were then washed five times in co-IP 

buffer, and bound proteins were eluted by direct addition of SDS loading buffer buffer 

with 1mM DTT. Beads and saved lysate were analyzed by SDS-PAGE and analyzed by 
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Western Blot (anti-Iqgap1 #610611, B D Biosciences; anti-Rsk1 #sc-231, Santa Cruz; 

anti-Pyrin serum, a kind gift from Dr. Mark Wewers and Mikhail Gavrilin). 

 Cell death assays. The LDH assay was used to measure cell death at a fixed 5- or 

6-hour endpoint (as indicated in figure legend); for this assay, regular media was replaced 

with X-vivo (#04-744Q, Lonza) supplemented with 3.5% FCS prior to infection. 

Additionally, a kinetic cell death assay using a DNA-binding dye was performed as 

follows: cells were incubated with 0.2uM ethidium homodimer (EthD-1, Sigma #46043) 

in regular media one hour before adding bacteria. Upon infection, the plate was placed in 

a Synergy H4 Plate Reader at 37°C and UV-induced fluorescence was measured every 10 

minutes. Increased fluorescence correlates with DNA binding by E thD-1 upon entry 

through increasingly permeable cell membranes as cell death progresses. 

 RT-PCR. RNA was extracted using the QIAGEN RNEasy kit, followed by RT-

PCR with the SYBR Green DNA probe (BioRad). C(t) values were normalized to 

GAPDH internal controls and the means were normalized to the unstimulated negative 

control group. For RT-PCR on RNA extracted from bacterial lysates, results were 

normalized to Y. pestis 16S rRNA internal control. Primers used for RT-PCR are listed in 

Table 3. 

 Cloning. pCDNA3-Pyrin and pCDNA3-14-3-3ε were kind gifts from Dr. Emad 

Alnemri and Dr. Michaela Gack, respectively. pRBH-YopM was constructed as follows: 

endogenous YopM was amplified out of pCD1 by di rect PCR on KIM5 bacteria using 

primers YopM-F and YopM-R (see Table 2). Self-complementary oligos (Oligo 5.1 and 

Oligo 5.2) coding a his-tag sequence along with part of the YopM N-terminus were 
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designed and annealed to each other, resulting in 5' and 3' overhangs compatible for 

subsequent ligation. The YopM PCR product and pRBH vector were digested with 

BsrFI/XhoI and BamHI/XhoI respectively, gel-purified, and ligated together with the 

annealed  Oligos 5.1 a nd 5.2. T his resulted in YopM containing a His6 sequence 

immediately following the first methionine, inserted downstream of the CMV promoter 

and upstream of an mCherry reporter gene. The resulting pRBH-YopM construct was 

then cloned and maintained in TOP10 cells (Invitrogen). 

 Transfections. HEK293T cells stably expressing Asc-YFP were seeded at 1x106 

cells per well in 24-well format, and transfected with pcDNA3-Pyrin, pcDNA3-NLRP3, 

pcDNA3-14-3-3ε, pRBH-YopM, or empty control plasmids using Lipofectamine 2000 

(Thermo #11668030). 250ng of each plasmid was transfected together with 250ng of 

either pRBH-YopM, pcDNA3-14-3-3ε, or empty control vector for a constant total of 

500ng per well and no more than 250ng of any one plasmid. After 24 hours cells were 

stained with Hoechst 33342 and visualized using an epifluorescent microscope. Asc 

speckles were quantified and normalized to cell number in three separate fields per 

sample, using a standardized batch algorithm in Adobe Photoshop CS4. 

 Mice. All experiments involving mice were approved by the Institutional Animal 

Care and Use Committee. Mouse strains used in this study were described 

previously[118] and bred in-house. TCRβ-/-δ-/- (TCRβδ dKO, lacking TCRαδ and 

TCRγδ) were from Jackson Laboratories and provided by Ray Welsh. Pyrin-/- were from 

Jackson Laboratories on the 129S6/SvEvTac background, and for experiments with these 

mice littermates were used as controls. All other mice were on a C57Bl/6J background. 
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BMDMs were differentiated from bone marrow harvested from the femurs of 6-20 week 

old mice. Peritoneal macrophages were harvested by injecting mice intraperitoneally 

with1 ml of thioglycolate, and lavaging the peritoneal cavity 24 hours later with RPMI. 

Cells were seeded at 500,000 per well in 12-well format for subsequent stimulation. 

 To investigate a system where neutrophils are likely playing a major role in 

inflammatory signals, we conducted infections directly in the peritoneum of mice after 

stimulating heavy neutrophil recruitment with thioglycolate. Mice were injected 

intraperitoneally with 0.7mL 4% thioglycolate followed 3 hour s later by s ame-side 

injection with 1x108 CFU of KIM5, KIM5∆YopM, KIM5∆YopJ, KIM5∆YopM/J, or 

mock in 0.3mL PBS. This approach gave a similar cellular composition of 90-98% 

neutrophils. The peritoneal cavity was lavaged with 3mL of Hank's Buffered Saline 

Solution (HBSS) 6 hou rs p.i. Cells were centrifuged and analyzed by f low cytometry 

with anti-Ly6G ) and anti-CD11b (Becton Dickinson), and the cleared lavage fluid was 

assayed for IL-1β by ELISA. Flow cytometry data was analyzed by FlowJo software. 

 Subcutaneous (s.c.) inoculations were conducted by i njecting mice with 50-140 

CFU in 50μL of PBS in the nape of the neck behind the right shoulder blade; mice were 

then either monitored for survival for up to 40 days or sacrificed for collection of organs 

at 90 hours p.i. Intravenous (i.v.) inoculations were conducted by injecting mice with 40-

50 CFU in 200μL PBS via the tail vein and harvesting serum, spleen and liver at 42 hours 

p.i. Upon dissection (s.c. infection), a single large lymph node on the side of infection 

was harvested from each mouse. Spleens and lymph nodes were collected in 0.7mL PBS 

and homogenized in the closed-system Miltenyi gentleMacs dissociater. 50μL of 
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homogenate was taken for serial dilutions and quantification of bacterial loads per organ. 

Excess spleen homogenate was treated immediately with protease and phosphatase 

inhibitor (Roche) and ciprofloxacin, and analyzed for cytokines by E LISA. Blood was 

harvested by cheek bleed and processed for collection of serum as p reviously 

described[118]. Livers were fixed in 10% formalin and stained by hematoxylin and eosin 

(H&E). Vaccination experiments were performed by infecting mice surviving infection 

with KIM1001∆M/J on day 14 or 21 with virulent KIM1001 and monitoring survival for 

25 days. 

 Statistical Analysis. In vitro assays were analyzed by two-way ANOVA followed 

by Bonferroni post-test. In vivo cytokines were tested for significance by one -way 

ANOVA followed by B onferroni's multiple comparison. Non-parametric bacterial load 

data was analyzed by the Kruskal Wallis test followed by Dunn's post-test. Differences in 

survival were analyzed by Kaplan-Meyer analysis and logrank test. Values where p <  

0.05 were considered significant. 
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Table 2. Primers and oligos used for generation of bacterial strains 
Primer/Oligo 
Name Sequence 5’ to 3’  

yopM-A ATAGAGCTCTTCAAAAGGGGTACTGGATAC 
yopM-B GAACATATTGAATGCCTTTCT 
yopM-C AGAAAGGCATTCAATATGTTCGAGTAGTACGCAAGAGCGTTC 
yopM-D GGGTCTAGATTTACCAATTTTTTGATGGGG 
yopJ-A ATAGAGCTCCACTACTGATTCAACTTGGACG 
yopJ-B ACGGCAAATGCAGAGCAGTCCGATCATTTATTTATCCTTATTCA 
yopJ-C CTGCTCTGCATTTGCCGTTAATGTATTTTGGAAATCTTGCT 
yopJ-D GGGTCTAGACTGATGTCGTTTATTTCTGGGTAT 
yopE-A ATAGAGCTCAGCATTACACACTCCACAGTTGGGT 
yopE-B ACGCAGGCAGCAAATGAGATCAAA 
yopE-C CTCATTTGCTGCCTGCGTATATTGATCACTTGTTTG 
yopE-D ATATCTAGATATCCAGGCTGTTCAATGGTTGTCGAT 
yopK-A GGGGAGCTCTGTTAGCCATTATTTTGCTATAC 
yopK-B ACGGCAAATGCAGAGCAGAATAAACATAGTTACTACTCCCAAA 
yopK-C CTGCTCTGCATTTGCCGTGGATGAAGCTATATTAAAGAGTT 
yopK-D ATATCTAGACATTTAAAACAGGGCATGG 
Pgm-F CCGCAACAACATCATCCGTATTCA 
Pgm-R TTCGCTACCACTGAAATCCAAGAC 
Psn-F ATTGCTCCCCGCCATTGCTA 
Psn-R CATTGCTCTTACCCTGGTCGCCA 
hmsH-F CGTTTCAGTTGCCTGTGTGCTAAC 
hmsH-R CATCACTCGGTGTAGACATCGCT 
YopM-F CGCATAAAAATTCCCGGCG 
YopM-R GCACCTCGAGAATTATGAACGCTCTTGC 

Oligo 5.1 GATCCATGCATCATCACCATCACCACTTCATAAATCCAAGAAATGTATCT 
AATACTTTTTTGCAAGAACCATTACGTCATTCTTCTAATTTAACTGAGATG 

Oligo 5.2 CCGGCATCTCAGTTAAATTAGAAGAATGACGTAATGGTTCTTGCAAAAAA 
GTATTAGATACATTTCTTGGATTTATGAAGTGGTGATGGTGATGATGCATG 
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Table 3. Primers used for RT-PCR 
Primer Name Sequence 5’ to 3’  
GAPDH F TGTGTCCGTCGTGGATCTGA 
GAPDH R CCTGCTTCACCACCTTCTTGA 
Pro-IL-1β F AGGCCACAGGTATTTTGTCG 
Pro-IL-1β R GCCCATCCTCTGTGACTCAT 
Pro-IL-18 F CAGGCTGTCTTTTGTCAACGA 
Pro-IL-18 R GACTCTTGCGTCAACTTCAAGG 
Pyrin F TCATCTGCTAAACACCCTGGA 
Pyrin R GGGATCTTAGAGTGGCCCTTC 
IFN-β F CTGTCTGCTGGTGGAGTTCA 
IFN-β R ATAAGCAGCTCCAGCTCCAA 
IL-6 F GAGCATTGGAAATTGGGGTA 
IL-6 R AACGATGATGCACTTGCAGA 
YopM F TTACCGCAGAGCCTGAAATC 
YopM R GCAACTCTGGCAATTCTTCC 
YopJ F TAGAAGTCATGCCCGCATTG 
YopJ R TGTCCTTATTGCCAGCATCG 
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