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Abstract  
 
 

Autoimmune diseases such as rheumatoid arthritis (RA) are associated with 

debilitating chronic inflammation, autoantibody production, articular bone erosions and 

systemic bone loss. The underlying mechanisms and cell types that initiate these diseases 

are not fully understood, and current therapies mainly address downstream mechanisms 

and do not fully halt disease progression in all patients. Moreover, previous studies have 

largely focused on the role of adaptive immunity in driving these diseases, and less 

attention has been given to the contribution of innate immune pathways such as DNA 

sensor signaling pathways in initiating and/or perpetuating autoimmunity and erosive 

inflammatory arthritis. 

Detection of microbial nucleic acids by DNA sensors such as endosomal toll-like 

receptors (TLRs) and cytosolic sensors is an early form of antiviral defense. Upon 

detection of nucleic acid, TLRs dependent on Unc93B and cytosolic sensors dependent 

on the adaptor stimulator of interferon genes (STING) orchestrate production of type 1 

interferons and pro-inflammatory cytokines to resolve infection. Additionally, the 

cytosolic DNA sensor absent in melanoma 2 (AIM2), which is not dependent on STING, 

also recognizes microbial DNA and coordinates the cleavage of pro-IL-1β. Previous 

studies have largely focused on the role of these DNA sensors in macrophages and 

dendritic cells in the context of antiviral immunity. In recent years, however, the 

inappropriate recognition of host nucleic acids by these sensors has been associated with 

several autoimmune diseases including RA.  
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This dissertation aims to delineate the mechanisms by which DNA sensors 

contribute to inflammatory arthritis and bone remodeling in the context of a murine 

model of autoimmunity. In DNase II deficient mice, excessive accrual of undegraded, 

endogenous DNA leads to robust production of type 1 interferons (IFNs) and pro-

inflammatory cytokines. The high levels of type 1 IFNs result in anemia and embryonic 

lethality; therefore, the gene for the type 1 IFN receptor (IFNaR) has also been deleted so 

that the mice survive. DNase II-/- IFNaR-/- double knockout (DKO) mice develop erosive 

inflammatory arthritis, anti-nuclear antibodies, and splenomegaly not seen in the DNase 

II+/- IFNaR-/- (Het) control group. To evaluate whether cytosolic or endosomal DNA 

sensors contribute to the clinical manifestations of DKO mice, genes involved in TLR or 

cytosolic sensor signaling were deleted on the DKO background. Genetically altered 

mice include STING/DNaseII/IFNaR TKO (STING TKO), AIM2/DNase II/IFNaR TKO 

(AIM2 TKO), and Unc93b/DNase II/IFNaR TKO (Unc93 TKO) mice.  

Our hypothesis was that the STING, AIM2, and/or Unc93 pathways would 

contribute to the autoimmune manifestations in DNase II deficient mice. Rigorous 

examination of inflammation in these lines revealed important roles for both the STING 

and AIM2 pathways in arthritis. Despite the substantial effects of the STING and AIM2 

pathways on arthritis, STING TKO and AIM2 TKO mice still exhibited prominent 

autoantibody production. Interestingly, inflammation persisted in Unc93 TKO mice while 

autoantibody production to nucleic acids was abrogated. Collectively, these data indicate 

that innate immune pathways contribute to the initiation/perpetuation of inflammatory 

arthritis and demonstrate that cytosolic and endosomal pathways play distinct roles in the 
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manifestations of autoimmunity. Moreover, they reveal a previously undescribed role for 

AIM2 as a sensor of endogenous nucleic acids in inflammatory arthritis. Thus, 

therapeutics that target the STING and AIM2 pathways may be beneficial for the 

treatment of inflammatory joint diseases.  

While the role of hematopoietic cells in driving autoimmunity has been well 

established, the contribution of stromal elements to disease pathogenesis is less well 

understood. Therefore, we generated bone marrow chimeras to delineate the contribution 

of hematopoietic and non-hematopoietic cells to the various autoimmune manifestations 

in DKO mice. These studies revealed that both donor hematopoietic and host 

radioresistant cells are required for inflammation in the joint as well as for other features 

of autoimmunity in DKO mice, including splenomegaly, extramedullary hematopoiesis, 

and autoantibody production. This data demonstrates that stromal host cells play a major 

role in DNA-driven autoimmunity. Moreover, these results suggest that targeting not only 

hematopoietic but also stromal elements may be advantageous in the setting of 

inflammatory arthritis.  

In the final chapter of this thesis, a role for innate immune sensor pathways in 

bone is described. The majority of inflammatory arthritides have been shown to lead to 

systemic loss of bone. Surprisingly, however, we found that DKO mice accumulate 

trabecular bone in the long bones over time as well as ectopic bone in the spleens, both 

sites of robust DNA accrual. Moreover, deficiency of the STING pathway abrogated this 

bone accumulation. Collectively, these data demonstrate that DNA accrual promotes 

dysregulated bone remodeling through innate immune sensing pathways. These findings 
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are the first to reveal a role for the STING pathway in bone and may unveil novel targets 

for the treatment of diseases associated with bone disorders. 
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CHAPTER I 
 
 
 

Introduction 
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Rheumatoid Arthritis 
 

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by 

synovial inflammation and hyperplasia, autoantibody production, articular bone erosions 

and systemic bone loss. This disease affects nearly 1% of the population worldwide and 

presents with symmetrical joint pain and tenderness, but also systemic and cardiovascular 

complications that result in reduced life expectancy (1). The clinical progression of RA is 

extremely variable ranging from a mild slowly progressing disease to a rapidly 

developing disease accompanied by severe joint destruction and permanent disability (2).  

The pathophysiology of RA involves several cell types and factors within the 

inflamed synovial joint (3). Local hypoxic conditions within the RA joint stimulate 

neoangiogenesis and activate endothelial cells to express adhesion molecules and 

chemokines which, in turn, recruit adaptive and innate immune cells into the synovial 

lining including macrophages, T cells, B cells, neutrophils, dendritic cells, and mast cells. 

Secretion of the pro-inflammatory cytokines tumor necrosis factor (TNF), interleukin-1 

(IL-1), interleukin-6 (IL-6), and interleukin-17 (IL-17) by these cell types lead to further 

leukocyte infiltration and local inflammation. The presence of these pro-inflammatory 

cytokines also drives osteoclast differentiation (4-6) and inhibits osteoblast maturation 

(7), leading to bone destruction and visible joint damage (8). 

In addition, apart from hematopoietic cells, stromal cells such as synoviocytes, 

fibroblasts, and chondrocytes also contribute to arthritic joint destruction (9).  Activation 

of local synovial fibroblasts derived from mesenchymal precursor cells results in 

profound synovial hyperplasia. This inflamed “pannus” tissue releases various factors 
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including matrix metalloproteinases (MMPs) that induce chondrocyte cell death and 

cartilage destruction. The precise role of activated synoviocytes in arthritic joints is still 

under investigation. A schematic of the RA joint can be seen in Figure 1.1.  

 

Figure 1.1 Inflamed RA joint. In RA the 

synovial membrane becomes swollen and 

inflamed by infiltrating leukocytes and 

synovial hyperplasia. Eventually this 

inflammatory “pannus” tissue invades and 

destroys cartilage and articular/subchondral 

bone, resulting in joint destruction and 

deformity. 

 

The first recorded description of inflammatory arthritis was documented in Ebers 

Papyrus, the medical papyri of ancient Egypt, around 1500 B.C. Samples collected from 

Egyptian mummies also suggest the presence of RA during this time period (10). Later, 

around 400 B.C., the Greek physician Hippocrates, likely described a patient with RA in 

these words, “In the arthritis which generally shows itself about the age of thirty-five 

there is frequently no great interval between the affection of the hands and feet; both 

these becoming similar in nature, slender, with little flesh… For the most part their 

arthritis passeth from the feet to the hands, next the elbows and knees, after these the hip 

joint. It is incredible how fast the mischief spreads” (11). Although RA has possibly been 
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present for over 3500 years, the etiology of this disease remains unknown and a cure has 

yet to be found.  

Immense progress has been made during the last two decades in the treatment of 

RA including the development of biologic therapies and small molecule inhibitors that 

alleviate symptoms and diminish radiographic progression (12). However, despite these 

therapeutic advances, the majority of contemporary therapies target downstream 

pathways, as opposed to initiating events, and a variety of unmet needs remain in the 

patient population (13). For example, current treatment regimes and biologic therapies 

are often costly and difficult to administer in the form of injections or infusions and may 

result in serious side effects. Additionally, although these therapies reduce the rate of 

bone erosions in RA, they typically do not result in healing of the erosions and the repair 

of damaged joints (14, 15). Perhaps of greatest consequence, is the finding that current 

therapeutic regimes rarely switch off the disease to result in permanent remission. 

Moreover, these therapies are not effective in all patients. In fact, randomized placebo-

controlled clinical trials of numerous therapies consistently show a subset of 15-30% of 

patients who do not respond to therapy and others who become resistant to therapy over 

time (16). 

RA patients not only have variable responses to therapy but also present clinically 

with diverse phenotypes (2). This heterogeneous nature of RA likely reflects a 

combination of unidentified genetic and environmental factors that initiate this disease. 

While much progress has been made in understanding the role of adaptive immunity in 

RA, the impact of the innate immune system in this disease is just beginning to be 
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appreciated. Moreover, further exploring the interplay between the hematopoietic and 

stromal cell types present in inflamed joints may also shed some light on the etiology of 

this disease. Elucidation of the mechanisms that initiate and perpetuate RA may 

eventually explain why current therapies are not effective in all patients and answer how 

we can permanently induce remission of this disease at the molecular level.  

 
Adaptive Immune Mediators  
 

The genetics associated with RA and the production of autoantibodies in this 

disease have long suggested a critical role for adaptive immunity in the rheumatic 

process. The well-known HLA-DRB1 locus represents the largest genetic risk factor for 

RA. In fact, it is estimated to account for nearly 60% of the disease risk and implicates a 

role for T cells in early disease pathogenesis. The Th1 subset of CD4+ T cells are 

abundant in the RA synovium and have been shown to activate macrophages, dendritic 

cells, and synovial fibroblasts and to promote B cell proliferation and autoantibody 

production (17, 18). Another subset of Th1 cells, Th17 cells, have also been identified in 

RA synovial tissue and implicated in contributing to this disease (19). Th17 cells express 

the pro-inflammatory cytokine IL-17A along with other cytokines including IL-17F, IL-

6, IL-23, and IL-22 (20). In addition, T regulatory cells, which suppress pathogenic T 

cells and contribute to immunologic homeostasis (21), are impaired in RA patients. 

Interestingly, TNF was shown to inhibit the suppressive function of T regulatory cells 

and CD4+CD25hi T regulatory cells isolated from RA patients were found to be less 

active than the same population of cells isolated from healthy controls (22). Moreover, 

treatment with anti-TNF therapy restored the suppressive function of these cells. This 
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finding suggests an imbalance between T regulatory cells that suppress inflammation and 

Th17 cells that promote inflammation in RA. Therapeutic targeting of T cells has had 

variable efficacy in RA. T cell depletion therapies such as cyclosporine and anti-CD3 

antibodies have had meager success in treating RA (23); however, inhibition of T cell 

activation by the drug Abatacept has been efficacious in treating arthritis (24). 

Autoreactive B cells have also been identified as an important component of the 

rheumatoid synovium. B cells in RA serve as antigen presenting cells, promote activation 

of T cells, and also produce autoantibodies. It is recognized that B cells exist in inflamed 

joints within lymphoid aggregates or germinal follicle-like structures in both the synovial 

lining and bone marrow. B cells isolated from these structures demonstrate affinity 

maturation and intraclonal diversity, suggesting that germinal center reactions can take 

place in the synovium, outside of lymphoid tissue (25). These ectopic lymphoid 

structures have also been shown to support autoantibody production (26). Specific 

disease-associated autoantibodies are often found in the sera and joints of RA patients, 

including rheumatoid factor (RF), an autoantibody against the Fc portion of 

immunoglobulin and anti-citrullinated protein antibodies (ACPAs) (27, 28). These 

autoantibodies are often used as diagnostic markers for the identification and prognosis of 

RA; for example, RF can be detected in 60-80% of patients while ACPAs are detectable 

in nearly 70% of patients and are 98% specific for RA (29).  

Interestingly, ACPAs can be detected in serum years before the onset of RA (30). 

During this initial phase of autoimmunity, patients are asymptomatic and often unaware 

of their potential for developing RA. In addition, ACPAs are a strong predictor of joint 
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erosion (31). It has now been demonstrated that even during the pre-clinical phase of 

disease, prior to synovitis, systemic bone loss occurs in ACPA-positive patients, raising 

very interesting questions regarding the mechanistic role of ACPAs in bone resorption 

(32). Antibodies to other autoantigens can also be found in RA including anti-nuclear 

antibodies (ANAs) that are found in 20% of patients (33). The important role for B cells 

in RA is further demonstrated by the efficacy of anti-CD20 B cell depletion therapies in 

this disease (34). 

 

Innate Immune Mediators 

In addition to adaptive effector cells, innate immune cells including neutrophils, 

mast cells, and macrophages also play pivotal roles in the pathogenesis of RA. 

Neutrophils are largely found in RA synovial fluid, as opposed to the synovial 

membrane, and produce a spectrum of cytokines, prostaglandins, proteases, and reactive 

oxygen intermediates (35, 36). Moreover, neutrophils from patients with RA form 

neutrophil extracellular traps (NETs) that contain citrullinated proteins. Thus neutrophils 

may be a source of autoantigens in this disease (37). Despite their small numbers in the 

RA joint, mast cells are increased in arthritic synovium compared to controls and have 

been observed to be a source of cytokine, chemokine, histamine, and eicosanoid 

production (38). Surprisingly, a large percentage of the IL-17A in RA synovium is 

derived from mast cells, suggesting that innate immune cells, in addition to T cells, 

contribute to the IL-17A response (39). Mast cells secrete proteases, including tryptase, 

which induces neutrophils and synovial fibroblasts to release cytokines. Additionally, 
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mast cell-derived tryptase has been shown to inhibit the apoptosis of arthritic synovial 

fibroblasts (40). This mechanism may contribute to the process of synovial hyperplasia in 

RA.  

 Macrophages are abundant in the RA synovium and likely play a central role in 

the pathogenesis of this disease. Interestingly, the number of macrophages in the 

synovium correlates positively with radiographic disease progression and negatively with 

therapeutic success (41). Growth factors that enhance macrophage maturation such as 

granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-

stimulating factor (M-CSF) are increased in RA synovial fluid and blockade of these 

factors consistently reduces the severity of arthritis in animal models (42-44). 

Macrophages are involved in phagocytosis, antigen presentation, and in the production of 

chemokines and pro-inflammatory cytokines including TNF, IL-1, IL-6, IL-12, IL-18, 

type I interferons (IFNs), and IL-23 (45). These inflammatory cytokines, especially TNF 

and IL-6, have been shown to play critical roles in disease pathogenesis. For example, 

therapeutic blockade of the TNF and IL-6 pathways have shown dramatic benefits in the 

clinic and are some of the most promising therapies that currently exist for the treatment 

of RA (46, 47). Moreover, both etanercept and infliximab, anti-TNF therapies, have been 

shown to induce cell-specific apoptosis in monocytes/macrophages but not in 

lymphocytes, again placing macrophages at the center of RA pathogenesis (48). 

It has been well established that toll-like receptors (TLRs) in macrophages 

recognize numerous pathogen-associated molecular patterns (PAMPs) and damage-

associated molecular patterns (DAMPs) from bacterial and viral ligands	 (49). Upon 
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detection of these ligands, macrophages are activated to produce pro-inflammatory 

cytokines as a means of resolving the infection. Interestingly, a spectrum of infectious 

agents have been linked to RA including Epstein-Barr virus (EBV), E. coli, 

porphyromonas gingivalis, and proteus mirabilis; however, the exact significance of these 

pathogens in RA remains unknown	 (50-54). In recent years, cytosolic nucleic acid 

sensors have been identified in the cytosol of macrophages and other cell types and have 

been found to detect microbial DNA and RNA. It is of interest to determine whether 

TLRs and cytosolic sensors play a role in macrophage activation and in the initiation and 

perpetuation of inflammation in arthritic joints. Understanding the molecular basis for 

inflammation in response to microbial and endogenous ligands has broad implications for 

the treatment of autoimmune, autoinflammatory, and even infectious diseases. 

 
Role of DNA-sensing pathways autoimmunity 
 

Autoimmune diseases including RA are classically thought of as diseases 

involving autoreactive T cells and B cells. In recent years, however, components of the 

innate immune system have been identified as key players in driving the overproduction 

of type I IFNs and pro-inflammatory cytokines TNF, IL-6, and IL-1 in these diseases. 

The pattern recognition receptors (PRRs) and ligands responsible for triggering and 

sustaining the cytokine production in the setting of RA have not been fully evaluated. In 

the past, attention in this area has largely focused on the role of microbial nucleic acids 

and nucleic acid sensing TLRs in the pathogenesis of autoinflammatory disease (55). The 

recent discovery of PRRs in the cytosol of cells, namely cytosolic DNA and RNA 

sensors, has suggested that additional receptors may be involved (56). Recent data also 
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indicate that endogenous (host) ligands, as opposed to microbial ligands, may also trigger 

these PRRs and contribute to autoimmunity (57). By identifying the role of innate 

immune receptors and their ligands in inflammatory arthritis, potential targets may be 

discovered for the development of novel therapeutics intended to inhibit the early 

signaling events in RA.  

 
Endosomal Toll-like Receptors 
 

TLRs were the first innate immune PRRs identified in the context of host defense. 

These receptors have evolved to recognize several PAMPs expressed by microbes such as 

lipopolysaccharide (LPS), flagellin, dsRNA, and CpG DNA. Once activated by ligand 

binding, TLRs form homo- or hetero-dimers and initiate a downstream signaling cascade, 

which ultimately leads to the nuclear translocation of key transcription factors such as 

interferon regulatory factors (IRFs) that induce the production of type I IFNs, and nuclear 

factor kappa B (NF-kB) that drives the production of pro-inflammatory cytokines (49). 

The production of these factors is intended to resolve infection.  

Ten human TLRs have been identified, the majority of which are expressed on the 

cell surface. TLRs 3, 7, 8, and 9, however, are trafficked to endosomal compartments via 

the adaptor Unc93b where they recognize foreign nucleic acid (58). TLR3 recognizes 

dsRNA, whereas TLR7 and TLR8 detect ssRNA. TLR9 responds to unmethylated CpG 

dsDNA motifs present in bacterial and viral genomes. These TLRs are likely localized to 

endosomes to prevent aberrant activation by host nucleic acids. 

There is a growing body of evidence that indicates that endosomal TLRs not only 

recognize microbial ligands, but also aberrantly detect endogenous DNA and RNA 
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released from stressed or dying cells. As a result, TLRs may play an important role in the 

initiation and progression of chronic inflammatory diseases, including systemic lupus 

erythematosus (SLE) and RA. In fact, endosomal TLR signaling has been implicated in 

the pathogenesis of SLE through a variety of murine and clinical studies. Deficiency of 

TLR7, TLR9, Unc93b1, or IRF5 in autoimmune-prone mice decreases manifestations of 

SLE including inflammatory cytokine and autoantibody production as well as nephritis 

(59-62). Furthermore, endosomal TLRs 7 and 9 are often essential to the activation of B 

cells and the production of autoantibodies in SLE (63). TLR7 promotes the production of 

autoantibodies reactive to RNA or RNA-binding autoantigens, whereas TLR9 promotes 

the production of autoantibodies reactive to DNA or nucleosomes. In the Yaa mouse 

model, overexpression of TLR7 results in increased production of autoantibodies reactive 

to RNA as well as in the development of lupus nephritis (64). In human genetic studies, 

polymorphisms in IRF5, a transcription factor downstream of TLR7 and TLR9, was 

linked with SLE (65). Additionally, increased TLR7 copy number is a risk factor for the 

onset of juvenile SLE (66).  

Activation of endosomal TLRs may also contribute to the pro-inflammatory 

cytokine and autoantibody production in RA. In the murine model of collagen-induced 

arthritis (CIA), TLR7 deficiency was shown to decrease clinical paw swelling and 

histological joint inflammation in comparison to wild type (Wt) mice (67). In agreement 

with this data, knockdown of TLR7 using lentiviral delivery of shRNA suppresses paw 

swelling, radiographic progression, and IL-1/IL-6 expression in synovial tissue in the 

CIA model (68). Moreover, abundant expression of TLR-7 and TLR-3 has been shown in 
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synovial tissue from RA patients (69). Interestingly, patients deficient in Unc93b1, whose 

cells cannot respond to TLR3, TLR7, TLR8, or TLR9 ligands, do not develop 

autoreactive antibodies in their serum (70). 

Polymorphisms in IRF5, a transcription factor downstream of TLR signaling, are 

associated with an elevated risk of developing RA (71) and in the modulation of the 

erosive nature of this disease (72). Moreover, in the K/BxN serum-transfer arthritis 

model, IRF5-deficient, TLR3-deficient, and TLR7-deficient mice demonstrated reduced 

arthritis severity compared to Wt mice (73). These findings indicate that microbial or 

endogenous RNA ligands may be present in inflamed arthritic joints. The presence of 

dsDNA from EBV was recently identified in monocytes and neutrophils isolated from the 

synovial fluid in a significant portion of RA patients (74). EBV has long been suspected 

to contribute to RA pathogenesis (75). In this same study, overexpression of TLR9 was 

shown in monocytes derived from RA synovial fluid. Interestingly, compared to healthy 

controls, monocytes from RA patients demonstrated an increased capacity to produce 

pro-inflammatory cytokines after stimulation with TLR9 agonists such as EBV. Thus, 

various TLR ligands may be present in the RA joint, activating endosomal TLRs and 

promoting the breakthrough of tolerance and inflammation.  

Additional support for a role of TLRs in driving autoimmunity is demonstrated by 

the efficacy of antimalarial drugs such as hydroxychloroquine and chloroquine that have 

been used for decades to treat RA and SLE. Hydroxychloroquine blocks endosomal TLR 

activation by inhibiting endosomal acidification. Additionally, antimalarials have recently 

been shown to modify nucleic acid ligands so that they no longer bind and activate their 
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TLR receptors (76). Understanding the contribution of endosomal TLR ligands and 

pathways may allow for the development of therapeutics to target initiating events in 

inflammatory diseases and RA pathogenesis. 

 

Cytosolic DNA Sensors 
 

In recent years, additional PRRs have been identified, apart from TLRs, which are 

located in the cytosol and also detect and respond to nucleic acid. These cytosolic 

receptors include RNA sensors belonging to the RIG-I family (i.e. RIG-I and Mda5) and 

numerous DNA sensors (77). Several receptors for intracellular DNA are upstream of the 

endoplasmic reticulum (ER)-associated protein stimulator of interferon genes (STING), 

including cyclic GMP-AMP synthase (cGAS), IFN-inducible protein 16 (IFI16, and its 

mouse orthologue, Ifi204/p204), DAI, and DDX41 (78-83). Upon activation with a DNA 

ligand, these sensors promote the dimerization of STING, which then leads to the 

activation and nuclear translocation of IRF3 and NF-kB and the subsequent transcription 

of type I IFNs and pro-inflammatory cytokines, respectively. Another cytosolic DNA 

receptor, which is not dependent on STING, has recently been identified as absent in 

melanoma-2 (AIM2). AIM2 also recognizes DNA, but instead coordinates the assembly 

of an inflammasome complex that activates caspase-1 and cleaves pro-IL-1β and pro-IL-

18 into their active forms (84). The endosomal TLR and cytosolic sensor pathways that 

are described in this thesis are displayed in Figure 1.2.  

These DNA sensors are crucial in macrophages and dendritic cells for detecting 

the presence of viruses and activating a potent antiviral response. In recent years, 
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however, the inappropriate activation of these receptors by endogenous (host) ligands has 

been associated with autoinflammatory conditions (85). Several sources of endogenous 

immunostimulatory nucleic acids have been identified. Self DNA released from stressed, 

damaged, or dying cells can be displayed on the surface of apoptotic cells and 

subsequently endocytosed, triggering PRRs (86, 87). Mitochondrial DNA is another 

major source of host nucleic acid. Typically, stressed and damaged mitochondria are 

engulfed by autophagosomes and trafficked to lysosomes for recycling. However, defects 

in autophagy or lysosomal integrity (i.e. lysosomal storage diseases) can result in accrual 

of mitochondrial DNA in the host and trigger PRRs (88, 89). 

Recently, oxidized DNA has been identified as a DAMP that activates cytosolic 

DNA sensors. Oxidative damage results in structural changes to DNA, decreasing its 

susceptibility to degradation by the cytosolic exonuclease Trex1 (56). As a consequence, 

oxidized DNA accumulates in the cytosol and acts as a much more potent agonist of 

STING-dependent DNA sensors than unmodified DNA. In humans, oxidative damage to 

DNA accrues with aging and results largely from sun exposure and reactive oxygen 

species. An additional source of autologous nucleic acids includes transcribed and 

reverse-transcribed retrotransposons (57). Endogenous retroelements represent remnants 

of non-infectious viruses that constitute over 40% of the mammalian genome. 

Retrotransposons have been linked to multiple examples of autoinflammatory diseases. 
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Figure 1.2 Endosomal TLR and cytosolic DNA sensor pathways. Cytosolic DNA is 

detected by a number of sensors that signal through the adaptor STING including cGAS, 

DDX41, and IFI16, leading to the production of type 1 IFNs and pro-inflammatory 

cytokines. DNA can also be detected by STING-independent cytosolic sensors such as 

AIM2. AIM2 leads to the formation of a caspase-1 activating inflammasome that cleaves 

pro-IL-1β and pro-IL-18 into their active forms. Another pathway for DNA detection is 

through endosomal TLRs, including TLR7 and 9. These TLRs traffic from the 

endoplasmic reticulum (ER) to endosomes via Unc93b where they sense nucleic acid and 

also lead to the production of IFNs and pro-inflammatory cytokines.  
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Additionally, inactivation of intracellular DNases leads to endogenous DNA 

accrual and results in autoinflammatory syndromes. Perhaps the best described example 

of this is deficiency of the exonuclease DNase III (Trex1). In mice, deficiency of Trex1 

leads to accrual of DNA in the cytosol, which triggers STING-dependent cytosolic 

sensors and production of type I IFNs and pro-inflammatory cytokines, ultimately leading 

to systemic inflammation and lethal myocarditis (90). In humans, loss-of-function 

mutations in Trex1 are associated with Aicardi-Goutieres syndrome, an early onset neuro-

inflammatory disease, chilblain lupus, and SLE (91-96). In addition, gain-of-function 

mutations in STING have also been shown to result in an autoimmune syndrome now 

called STING-associated vasculopathy with onset of infancy (SAVI) (97). In these 

patients, gain-of-function mutations in Tmem173 cause the spontaneous dimerization and 

constitutive activation of STING and lead to vasculopathy, skin and pulmonary 

inflammation, and arthritis. These clinical features are a result of enhanced production of 

IFNs and pro-inflammatory cytokines. 

Finally, inactivation of another DNase, DNase II, also leads to endogenous DNA 

accrual and autoimmune manifestations. The enzyme DNase II is a ubiquitously 

expressed lysosomal nuclease that degrades double-stranded DNA engulfed from either 

apoptotic cell debris or the extrusion of reticulocyte nuclei (98). In non-phagocytic cells, 

DNase II degrades damaged DNA that leaks out of nuclear pores and is delivered to 

lysosomes via autophagosomes (88). In humans, single nucleotide polymorphisms 

(SNPs) in the promoter region of the DNase II gene that result in reduced DNase II 

activity confer a significant increase in RA disease susceptibility (99). In mice deficient 
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in DNase II, endogenous DNA accumulates in phagolysosomes and in the cytosol of 

multiple cell types including macrophages, fibroblasts and dendritic cells and leads to the 

production of pro-inflammatory cytokines including TNF, IL-1β, and IL-6, as well as 

type 1 IFNs (100). Excessive type I IFN production leads to severe anemia and 

embryonic lethality. These DNase II-/- mice are rescued by intercrossing them with mice 

that fail to express the type I IFN receptor (IFNaR). DNase II-/- IFNaR-/- double deficient 

(DKO) mice survive, but develop a distal, erosive inflammatory arthritis by 2-3 months 

of age that resembles RA, which is absent in DNaseII+/- IFNaR-/- (Het) controls (100). 

Importantly, these DKO mice also develop additional manifestations of autoimmunity 

including robust autoantibody production and splenomegaly. In this dissertation we 

reveal the PRRs that detect the accumulated DNA and drive the autoimmune 

manifestations in DKO mice.  

 

Synovial Fibroblasts: Key players in RA  

While the role of hematopoietic cells in driving RA has been well established, the 

contribution of non-hematopoietic stromal elements to disease pathogenesis is just 

beginning to be appreciated. The synovium is a key site of pathology in RA. In healthy 

joints, the thin synovial layer is only 2-3 cells thick; however, in RA joints, synovial 

fibroblasts undergo robust hyperplasia and result in a thickened synovium nearly 10-15 

cells thick	(101). This hyper-proliferative synovial tissue constitutes a large percentage of 

the “pannus” tissue that invades and destroys articular cartilage and bone. In fact, 

activated fibroblasts secrete MMPs that destroy cartilage and receptor activator of NF-κB 
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ligand (RANKL) that promotes osteoclast differentiation leading to bone erosions. The 

increased fibroblast population in RA is largely due to inhibition of pro-apoptotic 

pathways	 (101). In addition, a variety of oncogenes including c-fos, ras, and myc are 

overexpressed in RA synovial fibroblasts (RASFs) (102, 103). Mutations in the p53 

tumor suppressor gene were also identified in RASFs and likely contribute to fibroblast 

survival (104). 

For years, macrophages in the inflamed synovium have been known to detect 

innate immune stimuli via PRRs and respond by producing a broad repertoire of 

chemokines and cytokines. These pro-inflammatory factors have been shown to activate 

RASFs. Recently, increasing evidence has suggested that RASFs themselves respond to 

innate stimuli and produce a variety of inflammatory mediators that recruit and prolong 

the survival of leukocytes. Synovial fibroblasts were shown to express TLRs 1-6, and in 

synovial tissues from RA patients, TLR-3 and TLR-4 were highly expressed compared to 

levels in osteoarthritis (105). In addition, stimulation of RASFs with TLR3 ligands leads 

to the production of IFN-β, IL-6, CCL5, and CXCL10. Moreover, incubation of RASFs 

with necrotic synovial fluid from RA patients upregulated these cytokines through TLR-3 

(106). In a recent study, IL-17 was shown to increase TLR-3 expression via STAT3 in 

RASFs (107). TLR-2 has also shown to play a role in RASFs. Synovial tissues from RA 

joints demonstrated increased TLR2 expression compared to controls (108), and 

stimulation of RASFs by TLR-2 ligands upregulated numerous chemokines and 

cytokines including granulocyte chemotactic protein (GCP)-2, RANTES, monocyte 

chemoattractant protein (MCP)-2, and IL-8 (109). These findings suggest that microbial 
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or endogenous TLR ligands may contribute to the initiation of inflammatory arthritis 

through activation of synovial fibroblasts.  

RASFs have also been shown to drive the chronicity of inflammation by 

recruiting and prolonging the survival of leukocytes in the inflamed synovium. Thus, the 

stroma may play a key role in driving the persistence of chronic inflammatory diseases 

(110). Resolution of inflammation requires apoptosis of the infiltrated immune cells; 

however, RASFs inhibit this process by producing leukocyte survival factors. For 

example, RASFs have been shown to mediate CD4 T cell survival by producing type 1 

IFNs and augment the survival of neutrophils through production of GM-CSF (111).  

Additionally, evidence suggests that RASFs recruit and retain B cells in the 

rheumatoid joint. In RA, B cells migrate and accumulate in the synovium and often form 

ectopic germinal centers in diseased joints. These B cells have been shown to experience 

prolonged survival and demonstrate clonal expansion. RASFs have been shown to 

constitutively express the chemokines stromal cell-derived factor-1 (SDF-1) and CD106 

(VCAM-1), which support B cell recruitment/migration (112). Furthermore, 

immunohistochemistry (IHC) staining of synovial tissue in RA compared to normal or 

osteoarthritic tissue, revealed increased expression of the B cell survival factor, B cell-

activating factor of the TNF family (BAFF) (113). This same study found that IFN-γ and 

TNF induced BAFF mRNA expression in fibroblast-like synoviocytes (FLS). 

Furthermore, B cells co-cultured with IFN-γ/TNF-treated FLS lived longer than B cells 

cultured alone. RASFs have also been reported to constitutively express IL-15 on their 

surface, which was subsequently shown to protect B cells from apoptosis. Consistent with 
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this finding, peripheral blood B cells in RA patients demonstrated upregulation of IL-15R 

and increased survival in co-cultures with RASFs (114). Collectively, these findings 

demonstrate that RASFs recruit leukocytes in the rheumatoid joint and prolong their 

survival in inflammatory environments.  

The initiation and persistence of inflammation within arthritic joints likely result 

from a complex interaction between leukocytes and mesenchymal stromal cells. While 

the interplay between these elements is still not fully understood, stromal cells have 

emerged as key players in the pathogenesis of RA. Stromal cells contribute to the 

initiation of inflammation through activation of their PRRs and the subsequent 

production of inflammatory mediators. Additionally, stromal cells contribute to the 

chronicity of inflammation by promoting leukocyte migration and survival. Current 

therapies for RA and other autoinflammatory diseases largely target hematopoietic cells 

and the factors produced by these cells. Moreover, these therapies are not effective in all 

patients. The development of therapeutics that target the stromal microenvironment may 

increase the number of patients that respond to therapy and prove beneficial for the 

treatment of RA.   

 

Pathogenesis of Bone Loss in RA 

Chronic inflammation in RA promotes focal articular bone erosions within 

inflamed joints as well as systemic osteopenia/osteoporosis involving the axial and 

appendicular skeleton. Destruction of articular bone is a critical measure for the 

assessment of therapeutic interventions and is predictive of long-term disability and 
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increased mortality in these patients. Furthermore, if left untreated, bone loss can lead to 

joint deformity and fractures	(115).  

Disruption of the bone remodeling process is seen in several rheumatic diseases. 

Under normal physiologic conditions, there is a balance between the action of osteoclasts, 

cells that resorb bone, and osteoblasts, cells that form bone. The coupling of these two 

cell types is tightly coordinated to avoid a net loss or gain of bone. In RA, local and 

systemic production of pro-inflammatory cytokines disrupts the balance between bone 

resorption and bone formation, resulting in abnormal bone loss. While their effects on 

bone are complex, cytokines expressed in the inflamed synovium and pannus such as 

TNF, IL-1, IL-6, and others, mediate the erosive process by enhancing osteoclast 

differentiation and activity. In addition, inflammation also targets the osteoblast in RA, 

inhibiting osteoblast maturation and limiting the repair of erosions	(8).  

 

Osteoclast: Increased Bone Resorption in RA 

Since the late 1990s, the osteoclast has become widely recognized as the cell 

responsible for bone erosions in RA. It was first noted that cells expressing the osteoclast 

marker tartrate resistant acid phosphatase 5b (TRAP5b) were present in subchondral bone 

in surgical samples from RA patients (116). Large, multinucleated cells were noted not 

only in subchondral bone, but also at the pannus-bone interface in these surgical samples. 

These cells expressed osteoclast-specific markers including TRAP5b, cathepsin K, and 

calcitonin receptor, placing osteoclasts squarely at the site of bone erosion (117).  
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Subsequent studies also showed that osteoclasts were present at similar sites within 

erosions in animal models of arthritis (118-121).  

Osteoclasts were demonstrated to be essential for bone erosion in the K/BxN 

serum transfer model of arthritis by demonstrating that mice deficient in RANKL, a 

factor required for osteoclast differentiation, develop arthritis as well as cartilage 

destruction, but are protected from bone erosions in the absence of osteoclasts (121). 

Inflamed synovial tissues provide several cellular sources of RANKL, including 

lymphocytes and FLSs. RANKL synergizes with pro-inflammatory cytokines to promote 

the differentiation of osteoclasts from mononuclear precursors in synovial tissues. These 

findings were confirmed in a follow up study in which mice lacking c-fos, a transcription 

factor essential for osteoclastogenesis, were crossed with transgenic mice expressing 

human TNF (hTNFtg) (122).  These mice are osteoclast deficient and develop a TNF-

dependent inflammatory arthritis closely resembling RA. Despite the presence of 

inflammation, the arthritic joints of these mice were also protected from bone erosion and 

destruction. Furthermore, blocking the RANK-RANKL interaction using osteoprotegerin 

(OPG), the decoy receptor for RANKL, protected against systemic bone loss in hTNFtg 

mice (123), as well as arthritic bone loss in other animal models of arthritis (124, 125). 

Inhibition of osteoclast activity in patients with RA has also demonstrated some 

efficacy in inhibiting the progression of bone erosion. The bisphosphonate zolendronic 

acid has been shown to reduce development of new erosions in the joints of both arthritic 

mice (126, 127) and in patients with RA (128). Furthermore, neutralization of RANKL 

with the monoclonal antibody denosumab attenuated bone erosion and systemic bone loss 
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in RA patients (129-131). Collectively, these studies have confirmed that osteoclasts 

mediate bone erosions in patients with RA, and provide a target cell type for the 

prevention of articular bone loss.  

 Osteoclastogenesis is enhanced in the RA joint by several factors. Well known are 

the effects of pro-inflammatory cytokines on osteoclastogenesis, and recently the 

production of autoantibodies have also been linked enhanced osteoclast differentiation. 

Cytokines including TNF, IL-1 and IL-17 promote the differentiation of osteoclast 

precursors to osteoclasts through several mechanisms, including upregulating the 

expression of RANKL in osteoblasts (132-134). IL-17 (6) and TNF (135) induce 

RANKL expression in FLSs. TNF also directly promotes the differentiation of osteoclast 

precursor cells, as well as expands the pool of these precursor cells (136). In addition, IL-

1 directly enhances the ability of osteoclasts to resorb bone (4) and is a mediator of TNF-

induced osteoclastogenesis (132). The development of biologic agents that inhibit pro-

inflammatory cytokines such as anti-TNF agents (46), IL-6R antagonists (47), and small 

molecule agents that block JAK/STAT signaling (137-139), among others, can retard or 

arrest radiographic progression in RA and has revolutionized the treatment of this 

disease. 

In addition, clinical studies have helped to validate the impact of pro-

inflammatory cytokines on osteoclastogenesis in RA. On MRI scanning, there is a strong 

relationship between the presence of “bone marrow edema” and the subsequent 

progression of bone erosions in RA patients (140-142). The phrase “bone marrow 

edema” was coined to reflect the decreased fat and increased water content seen by MRI 
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in the marrow of arthritic joints. Histologic analysis of areas of bone edema in animal 

models of inflammatory arthritis and of joints from patients with RA has revealed that 

this MRI finding represents the replacement of bone marrow fat by inflammatory 

infiltrates, comprised largely of mature B cells, activated T cells, and macrophages (140). 

Thus, “bone marrow edema” is better referred to as “osteitis.” This influx of 

inflammation into the marrow space introduces cell types that express RANKL, as well 

as pro-inflammatory cytokines that further induce osteoclastogenesis and promote the 

progression of articular bone erosions.  

Intriguing new data has linked the production of autoantibodies to the process of 

osteoclast differentiation. Clinical studies have demonstrated that high titers of ACPAs 

are associated with radiographic progression in RA patients (143, 144). Furthermore, 

ACPAs and RF together have been shown to have an additive effect on erosion size and 

number in patients with RA (145). These findings are further supported by the surprising 

discovery that ACPA-positive healthy individuals show signs of bone loss compared to 

ACPA-negative individuals (32). Micro-CT analysis was performed on joints of age and 

gender-matched ACPA-positive individuals who showed no signs of synovitis, and 

ACPA-negative healthy individuals. Although no evidence of bone erosion was seen in 

ACPA-positive individuals, bone volume per total volume and bone mineral density 

(BMD) were both significantly reduced in ACPA-positive individuals compared to 

ACPA-negative controls. Since ACPAs can be detected in serum years before the onset 

of RA (146, 147), it appears likely that bone damage in RA precedes the clinical onset of 

disease through mechanisms independent of inflammation. 
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Since autoantibodies have been shown to promote inflammatory-mediated as well 

as inflammatory-independent bone loss in RA (148), there has been a great deal of 

interest in possible mechanisms. Stimulation of mononuclear cells or macrophages with 

immune complexes and ACPAs from RA patients results in the production of high levels 

of TNF by these cells, contributing to osteoclastogenesis (149-151). Recent studies have 

shown that autoantibodies not only bind macrophages, but also bind osteoclast 

precursors. ACPAs bind citrullinated vimentin on the surface of osteoclast precursors, 

inducing these precursors to produce TNF, thus promoting their differentiation to mature 

osteoclasts (152).  

The effect of immunoglobulin (IgG) sialylation on the interaction of immune 

complexes with osteoclasts has also been investigated (153). Modification of IgGs by 

attachment of sialic acid residues to the Fc portions is known to mediate the anti-

inflammatory effects of intravenous IgG (154).  Harre and colleagues have demonstrated 

that only non-sialylated immune complexes stimulate osteoclastogenesis in vitro and in 

vivo. Furthermore, administration of a sialic acid precursor results in elevated sialylation 

levels of IgG and decreased bone erosions in mice with collagen-induced arthritis (153). 

Together, these studies emphasize the importance of autoantibodies in mediating bone 

loss in RA, and suggest a new mechanism by which osteoclastogenesis in RA may be 

promoted. 
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Limited repair of bone erosions in the RA joint 

Clinical studies have shown that therapies that reduce joint inflammation can slow 

or halt the progression of osteoclast-mediated bone resorption in patients with RA. 

Despite treatment, however, repair of existing erosions is unusual (155). These persisting 

erosions are associated with cartilage loss, as subchondral bone, which provides the 

scaffold for articular cartilage, is typically eroded. With erosion of subchondral bone, 

articular cartilage is lost. Persistent erosions have been shown to be associated with 

functional decline, and are associated with joint instability and likely also changes in 

mechanical forces across joints, which may further impact articular cartilage.  

Dohn and colleagues investigated the frequency and extent of erosion repair in 

patients with RA given combination therapy with anti-TNF and methotrexate (MTX) 

(14). After 12 months of therapy, high resolution computed tomography (CT) of the wrist 

and hand joints demonstrated that although erosion progression was halted, repair of 

erosions was rare. Subsequently, it was demonstrated that although biologic therapy 

significantly decreased synovitis scores in a cohort of RA patients, all patients had 

remaining synovitis after 12 months of treatment as determined by MRI (15).  This same 

study showed that erosion repair occurred in only 6% of patients treated with 

adalimumab, suggesting that residual inflammation may impair osteoblast function and 

healing of erosions.  

Similar findings were published in a study that examined erosion repair in RA 

patients treated with TNF inhibitors and MTX compared to matched patients treated with 

MTX alone (156). The width and depth of erosions in joints were measured by high-
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resolution micro-CT at baseline and after one year of treatment. Repair of erosions was 

shown to be very limited and all erosions could still be identified following treatment. 

Similar findings were demonstrated in RA patients treated with IL-6R blockade (157). 

Collectively, these results suggest that despite treatment, residual inflammation persists in 

joints, likely impairing osteoblast function and healing of erosions.  

 

Osteoblast Differentiation Pathways  

Despite the focus on osteoclasts at known sites of bone loss in RA, it has recently 

been shown that inflammation not only induces osteoclastogenesis, but also inhibits 

osteoblast differentiation and function (7). This inhibition contributes to the development 

of arthritic bone loss in RA, as well as to the markedly diminished capacity of existing 

erosions to heal through new bone formation. For this reason, it is important to 

understand the pathways that promote or inhibit osteoblast differentiation. Unlike 

osteoclasts, osteoblasts derive from mesenchymal precursor cells and are responsible for 

the synthesis and mineralization of bone, as well as the modulation of osteoclast 

differentiation. Several factors are known to regulate the stages of differentiation from 

mesenchymal stem cells (MSCs) to mature osteoblasts (Figure 1.3). These include 

growth factors and hormones such as insulin-like growth factor (IGF) and parathyroid 

hormone (PTH) that aid in the transition of MSCs to mesenchymal stromal cells (158). 

Upregulation of the pro-osteogenic transcription factor runt-related transcription factor 2 

(Runx2) commits stromal cells toward an osteoprogenitor cell fate, while expression of 

the transcription factor osterix further promotes differentiation of the cell into a mature 
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osteoblast. Mature osteoblasts produce type I collagen as well as non-collagenous 

proteins involved in bone mineralization, including osteocalcin and bone sialoprotein. 

This newly formed bone matrix eventually surrounds mature osteoblasts, embedding 

these cells within the bone matrix as terminally differentiated osteocytes.  

 

 

Figure 1.3. Stages of Osteoblast Differentiation. Osteoblasts are derived from 

mesenchymal stem cells. Wingless (WNT) and bone morphogenic protein (BMP) 

pathways promote their differentiation to mesenchymal stromal cells, in conjuction with 

Runx2, insulin-like growth factor (IGF) and parathyroid hormone (PTH). Activation of 

BMP signaling promotes Runx2 expression in stromal cells, leading to further 

differentiation to osteoprogenitors. Runx2 subsequently induces expression of the 

transcription factor osterix, with further differentiation to a mature osteoblast. These 

ultimately become embedded in bone matrix as terminally differentiated osteocytes. 
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In addition to their role in bone formation, osteoblasts also regulate osteoclast 

differentiation through the production of several factors including M-CSF, RANKL, and 

OPG. M-CSF acts to expand the pool of osteoclast precursor cells and promotes their 

survival (159). RANKL, an essential factor for osteoclastogenesis, interacts with the 

RANK receptor on the osteoclast precursor to promote osteoclast differentiation (160). 

To protect against excessive bone resorption, osteoblasts also produce OPG, a soluble 

decoy receptor that binds RANKL to inhibit osteoclast differentiation.  

The wingless (Wnt) (161) and bone morphogenetic protein (BMP) (162) 

pathways known to regulate skeletal development and organogenesis are also critical 

pathways regulating osteoblast differentiation. Wnt signaling includes the canonical 

Wnt/β-catenin pathway and two noncanonical pathways, the Wnt-calcium and the Wnt-

planar cell polarity pathways (163). In the canonical Wnt pathway, secreted Wnts, such 

as Wnt1 and Wnt3a, bind and activate a complex that includes the low-density 

lipoprotein receptor related proteins (LRP)5 and LRP6. These receptors complex with 

Frizzled co-receptors in the plasma membrane to promote the stabilization of cytosolic β-

catenin, allowing its translocation to the nucleus to induce transcription of genes that 

promote osteoblast differentiation and bone formation.  

Several antagonists to the Wnt pathway, including Dickkopf (DKK) and secreted 

frizzled-related protein (SFRP) family members, as well as sclerostin, have been 

identified. DKK-1 crosslinks LRP5/6, leading to the suppression of Wnt signaling in 

osteoblast precursors. Inhibition of DKK-1 expression has been linked to high bone mass 

(164) while overexpression of DKK-1 results in osteopenia in mice (165). SFRPs inhibit 
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Wnt signaling by binding directly to Wnt proteins. Deletion of the SFRP1 gene results in 

increased bone volume in mice (166), while its overexpression has been linked to 

decreased bone density (167). Interestingly, inflamed synovial tissue has been found to be 

a source of DKK-1, which inhibits osteoblast-mediated bone formation in arthritic joints 

(168). In contrast, the expression of DKK-1 is diminished in animal models and patients 

with ankylosing spondylitis (AS) (169). The expression of SFRPs is also upregulated in 

arthritic synovial tissue (170) and likely contributes to the inhibition of osteoblast 

differentiation in inflammatory arthritis. Sclerostin, a glycoprotein secreted 

predominantly, if not exclusively, by osteocytes, also inhibits canonical Wnt signaling by 

binding to the LRP5/6 receptor (171). The effects of sclerostin on bone were originally 

brought to light when loss-of-function mutations in or near the sclerostin-encoding gene 

SOST were identified in patients with van Buchem’s disease (172-174) and sclerosteosis 

(175, 176), diseases associated with high bone mass.  

Mesenchymal stem cells also require activation of BMP signaling to commit to 

the osteoblast lineage. BMPs belong to the transforming growth factor beta (TGF-β) 

superfamily and are secreted mainly by osteoblasts, chondrocytes, and endothelial cells 

(162). Pro-osteogenic BMPs, such as BMPs 2, 4, and 7, bind membrane-bound receptors 

and result in phosphorylation of intracellular SMADs 1/5/8. These factors complex with 

SMAD4 and translocate to the nucleus to promote the transcription of BMP-responsive 

genes. A variety of secreted molecules, such as noggin and sclerostin itself, have been 

identified that sequester BMP ligands and inhibit their interaction with their receptor 

(177). Dysregulation of BMP signaling has been associated with several skeletal 
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disorders including heterotopic ossification, osteoporosis, and low and high bone mass 

diseases.  

 

Osteoblast: Inhibition of function in RA  

Many studies now suggest that pro-inflammatory cytokines not only provoke 

osteoclastogenesis, but additionally contribute to bone loss by inhibiting osteoblast 

differentiation. For example, TNF is a potent inhibitor of osteoblast differentiation in 

cultured cells. Treatment of calvarial osteoblasts or the MC3T3 osteoblast-lineage cell 

line with TNF inhibited differentiation, as shown by reductions in both mineralizing 

nodules and osteocalcin secretion (178). TNF also induces degradation of Runx2, a 

critical transcription factor for osteoblast differentiation (179). In addition, high dose 

TNF treatment of osteoblast precursor cells induces their apoptosis (180). Exposure of 

osteoblast cultures to IL-1 has also been shown to inhibit mineralizing nodule formation, 

as well as collagen protein synthesis and cellular replication (181) and IL-1 impairs the 

recruitment and migration of osteoblasts toward chemotactic factors (182). Furthermore, 

the interaction of IL-6 with sIL-6R on osteoblasts upregulates prostaglandin E2 synthesis 

and reduces the ratio of OPG/RANKL, thus promoting osteoclast differentiation (183). 

Thus, in vitro studies demonstrate that pro-inflammatory cytokines influence the 

osteoblast by impairing its differentiation and/or function, and in some cases by 

promoting osteoblasts to induce osteoclast differentiation.  

Arthritic inflammation has also been shown to inhibit osteoblast differentiation 

and function in vivo.  Arthritis was induced in mice using the K/BxN model and dynamic 
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histomorphometry was adapted to erosion sites to evaluate bone formation rates (BFRs) 

(7). BFRs were significantly reduced at bone surfaces adjacent to inflammation compared 

to bone surfaces adjacent to normal marrow, demonstrating that inflammation inhibits 

osteoblast activity. Furthermore, in and around sites of articular erosion, there was a 

complete absence of cells expressing late-stage osteoblast lineage markers (mature 

osteoblasts). These findings demonstrate that synovial inflammation inhibits the capacity 

of osteoblasts to mature and form mineralized bone. 

Studies in the hTNFtg model of RA have shown that cells within inflamed 

synovial tissues secrete the Wnt signaling pathway antagonist DKK-1, impairing 

osteoblast-mediated bone formation (168). Furthermore, TNF was shown to upregulate 

DKK-1 expression in synovial fibroblasts, as well as in osteoblasts. Blockade of DKK-1 

when given at the onset of inflammation, led to an absence of joint erosions in typical 

sites, despite the presence of arthritic inflammation. Histomorphometry performed on the 

periosteal surface of bone showed increased BFRs with DKK-1 blockade, as well as an 

increase in osteoblast numbers and osteoid deposition in the arthritic mice treated with 

the DKK-1 neutralizing antibody compared to controls. Clinical studies have validated 

the relevance of DKK-1 in arthritic joint remodeling. Serum levels of DKK-1 were 

significantly increased in patients with RA compared to healthy controls, and DKK-1 was 

expressed in the inflamed synovium from patients with RA compared to controls (168). 

These studies illustrate the impact of the Wnt antagonist DKK-1 on osteoblast inhibition 

in the setting of inflammatory arthritis.    
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The Gravallese laboratory identified several Wnt signaling antagonists whose 

expression was upregulated in arthritic synovium using the K/BxN model, including 

members of the DKK family as well as SFRP1 and 2 (7, 170). In addition, they induced 

arthritic inflammation and subsequently allowed the inflammation to resolve. Dynamic 

histomorphometry and micro-CT showed that upon resolution of inflammation, mature 

osteoblasts populated the eroded bone, and bone formation was induced at these sites, 

followed by repair of erosions. Notably, as synovial inflammation almost completely 

resolved, synovial expression of the Wnt antagonists sFRP1 and sFRP2 was 

downregulated and expression of the Wnt agonist Wnt10b was induced compared to 

arthritic synovium. These findings demonstrated that significant resolution of 

inflammation is necessary to promote Wnt signaling and erosion repair in the arthritic 

joint. Thus, cells within inflamed synovial tissues secrete factors that antagonize the Wnt 

signaling pathway and inhibit osteoblast differentiation and osteoblast-mediated bone 

formation. These effects are manifested clinically in the arthritic joint, where persistent 

inflammation likely contributes to the limited healing of erosions. Figure 1.4 provides a 

summary of pathways involved in the regulation of osteoclasts and osteoblasts in RA.  
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Figure 1.4 Cell types and factors regulating bone in rheumatic disease.   
 

Resorption: The inflamed synovium/pannus produces several inflammatory mediators 

that enhance osteoclastogenesis and inhibit osteoblast maturation in the joint, leading to 

the development and persistence of articular bone erosions. These mediators promote the 

differentiation of osteoclast precursors to mature osteoclasts, in part by the upregulation 

of receptor activator of NF-kB ligand (RANKL). Anti-citrullinated protein antibodies 

(ACPAs) can also promote osteoclastogenesis by binding to macrophages and/or 

osteoclast precursor cells and inducing TNF production, thus enhancing cellular 

expansion and differentiation.  
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Formation: Bone formation occurs through the action of mature osteoblasts that produce 

organic bone matrix and orchestrate bone mineralization. These derive from 

mesenchymal precursors, whose differentiation is inhibited by antagonists of the Wnt 

signaling pathway, including Dickkopf (DKK) and secreted frizzled-related protein 

(SFRP) family members, and sclerostin, derived from osteocytes embedded in bone 

matrix. Inflammatory mediators also induce the production of RANKL, and inhibit the 

production of osteoprotegerin (OPG) by stromal cells/osteoblasts.  
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Role of the Innate Immune System in Heterotopic Ossification  

Dysregulation of the immune system and of the TGF-β/BMP signaling pathways 

can also result in excess bone formation, as in the disorder heterotopic ossification (HO). 

Acquired and hereditary HO is a debilitating condition associated with formation of 

lamellar bone at extra-skeletal sites. The progression of this disease is episodic and the 

mechanism is unknown. Viral or traumatic events are thought to initiate flare-ups of the 

innate immune system in HO and precede the development of new ectopic bone lesions 

(184). Acquired HO occurs in cases of various types of soft tissue traumatic events, 

including combat-related trauma, amputations, total joint replacement surgery, elbow and 

acetabular fracture repair, traumatic brain injury, spinal cord injuries, encephalitis, and 

severe burns (185). HO was recognized during World War I when it was found that 

soldiers with blast-related injuries frequently acquired ectopic bone lesions. Today, HO 

remains a major concern and cause of morbidity in soldiers serving in Iraq and 

Afghanistan and has been reported in 63% of traumatic amputations in this population 

(186). Acquired HO also commonly occurs in orthopedic trauma after fixation of 

acetabular or elbow fractures (187). Presently, there is no cure for this disease and 

treatments aim to limit inflammation. Non-steroidal anti-inflammatory medications such 

as indomethacin and celecoxib are mildly effective as prophylaxis against HO (188). 

Surgical excision is at times used to remove the heterotopic lesions; however, surgical 

trauma itself can induce reoccurrence of ectopic bone (189). 

Hereditary syndromes of HO are rare, but include life-threatening disorders such 

as fibrodysplasia ossificans progressiva (FOP). Heterotopic bone formation in FOP 
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causes severe physical immobility, including loss of joint mobility, restricted movement 

of the jaw, and limited expansion of the rib cage and diaphragm. Eventually, this 

condition will encase patients in a “second skeleton” of ectopic bone, leaving them 

immobile and with a life expectancy of around 40 years (190). Heterozygous, missense 

gain-of-function mutations in activin A receptor type I (ACVRI), a BMP type I receptor, 

are known to contribute to FOP. These mutations lead to a conformational change in the 

receptor and enhanced BMP signaling (191). Interestingly, transgenic mice with 

constitutively activated ACVR1 do not develop ectopic bone formation without an 

inflammatory stimulus. Only transgenic mice infected with adenovirus and demonstrating 

subsequent inflammation will form heterotopic lesions (192). Thus, ACVR1 mutations 

are necessary but perhaps not sufficient to induce bone formation. Accordingly, despite 

the presence of ACVR1 mutations, FOP patients exhibit variability in the severity and 

progression of their disease, and form bone episodically, rather than continuously, 

following a viral infection or tissue trauma (184, 193). These FOP flare-ups precede the 

development of new ectopic bone lesions and strongly implicate a role for innate immune 

triggers and inflammatory pathways in the pathophysiology of heterotopic bone 

formation. 

It has been postulated that HO may be considered an auto-inflammatory disease. 

Trauma and viral-induced release of DAMPs and PAMPs are thought to stimulate TLRs 

and other PRRs of the innate immune system, leading to the production of bone-inducing 

factors like BMPs, activins, and TGF-β family members (184). Indeed, inhibition of 

BMP and TGF-β signaling pathways has been shown to ameliorate osteogenic 
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differentiation in models of FOP (194, 195). Furthermore, the requirement for 

inflammation in the process of HO is demonstrated by the infiltration of macrophages, 

lymphocytes, and mast cells in affected sites during early phases of flare-ups (196, 197), 

and also by the improvement of symptoms in patients after treatment with high-dose 

corticosteroids (189). Thus, while the cells postulated to give rise to the ectopic bone 

formation are of mesenchymal-endothelial origin (198), hematopoietic cells likely 

contribute to FOP progression as well (199). Understanding the interplay between innate 

immune triggers and ectopic bone formation will be critical for identifying effective 

therapeutic targets and treatments for debilitating conditions such as HO. 
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Introduction of Dissertation Aims 

Despite emerging evidence implicating innate immune pathways in the generation 

of autoimmune diseases, a number of questions remain concerning the contribution of 

distinct DNA sensors to inflammatory arthritis and bone remodeling. The aim of this 

dissertation is to elucidate the cytosolic and endosomal DNA receptors that may initiate 

or perpetuate inflammatory arthritis and dysregulated bone remodeling. To address this 

aim the research in this dissertation is divided into three objectives:  

 

1) Investigate the distinct contributions of STING-dependent cytosolic sensors, AIM2, 

and endosomal TLRs dependent on Unc93b1 to the generation of pro-inflammatory 

cytokines, inflammatory arthritis and autoantibody production. Using the DNase II-/- 

IFNaR-/- double knockout (DKO) model of DNA accrual, we reveal central roles for the 

STING and AIM2 pathways in initiating and perpetuating the erosive inflammatory 

arthritis in DKO mice. Furthermore, we show that anti-nuclear autoantibody production 

in DKO mice depends on a third type of DNA sensor, endosomal TLRs. Collectively, 

these data support distinct roles for cytosolic and endosomal nucleic acid sensing 

pathways in disease manifestations, and suggest that therapeutics that target the STING 

and AIM2 pathways may be beneficial for the treatment of inflammatory joint diseases. 

 

2) Define the cell types responsible for the inflammatory arthritis in DKO mice. Despite 

the emerging importance of DNA sensor pathways, little is known about their role in cell 

types other than hematopoietic cells. By generating and analyzing bone marrow 
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chimeras, we reveal that DNase II deficiency in both donor hematopoietic and host 

radioresistant cells is required for inflammation in the joint as well as for other features of 

autoimmunity in DKO mice. These data demonstrate that stromal host cells play a major 

role in DNA-driven autoimmunity and suggest that targeting not only hematopoietic but 

also stromal elements may be advantageous in the setting of inflammatory arthritis.  

 

3) Explore a role for DNA-sensing pathways in bone. While the effect of DNase II 

deficiency in macrophages has been well studied, the actual range of affected cell types, 

including cells involved in bone erosion and formation, has not been investigated. By 

rigorously analyzing the bone phenotype in DKO mice, we identified a novel role for 

cytosolic DNA sensing pathways in bone. We found that DKO mice accumulate 

trabecular bone in the long bones and form ectopic bone in the spleen, both sites of robust 

DNA accrual. Moreover, STING deficiency significantly inhibits this bone accumulation. 

These findings are the first to reveal a role for the STING pathway in bone and may 

unveil novel targets for the treatment of diseases associated with disorders of bone 

remodeling. 
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CHAPTER II 
 
 
 
 
 

AIM2 and endosomal TLRs differentially regulate arthritis and autoantibody 

production in DNase II deficient mice 

 

 

 
The work presented in this chapter is contained in the publication: 

 
Baum R, Sharma S, Carpenter S, Li Q, Busto P, Fitzgerald K, Rothstein A, Gravallese E. 
AIM2 and Endosomal TLRs differentially regulate arthritis and autoantibody production 

in DNase II-deficient mice. J Immunol; 2015 194 (3) 873-7. 
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Summary 
 
 
Innate immune PRRs sense nucleic acids from microbes and orchestrate cytokine 

production to resolve infection. Inappropriate recognition of host nucleic acids also results 

in autoimmune disease. Here we utilize a model of inflammation resulting from accrual of 

self DNA (DNase II-/- IFNaR-/-) to understand the role of PRR sensing pathways in 

arthritis and autoantibody production. Using mice deficient in DNase II/IFNaR together 

with deficiency in either STING or AIM2 (97), we reveal central roles for the STING and 

AIM2 pathway in arthritis. AIM2 TKO mice show limited inflammasome activation and, 

like STING TKO mice, have reduced inflammation in joints. Surprisingly, autoantibody 

production is maintained in AIM2 and STING TKO mice, while DNase II-/- IFNaR-/- mice 

also deficient in Unc93b, a chaperone required for TLR7/9 endosomal localization, fail to 

produce autoantibodies to nucleic acids. Collectively, these data support distinct roles for 

cytosolic and endosomal nucleic acid sensing pathways in disease manifestations. 
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Introduction 

 

Innate immune responses play a critical role in the initiation and perpetuation of 

several autoimmune disorders in which the sensing of self nucleic acids has become a 

common theme (200). While attention in this area has focused on the endosomal nucleic 

acid sensing TLRs, cytosolic DNA sensing receptors can also detect endogenous ligands 

and promote inflammatory and autoimmune responses (97). DNase II is a lysosomal 

endonuclease that plays a critical role in the phagosomal degradation of apoptotic debris. 

In DNase II deficient mice, undigested DNA is sensed by PRRs to induce fatal levels of 

type I IFNs. Deletion of the type I IFN receptor (IFNaR) rescues the embryonic lethality 

induced by DNase II deficiency (201). However, DNase II-/- IFNaR-/- double knock out 

(DKO) mice, eventually succumb to autoimmune disease associated with polyarthritis, 

autoantibody production and elevated levels of the proinflammatory cytokines TNF, IL-

1ß, and IL-6 (100, 202). 

In this model, DNA from the phagolysosomal compartment gains access to 

cytosolic nucleic acid sensing receptors. Cytosolic sensing of DNA results in the 

subsequent engagement of the adaptor protein STING and the downstream transcription 

factor IRF3, leading to the excessive production of type I IFN. In addition to their roles in 

type I IFN production, STING-dependent pathways play an important role in the IFN-

independent inflammatory arthritis that develops in adult DKO mice (203). However, the 

contribution of additional cytosolic or endosomal nucleic acid sensors to the systemic 

disease characteristic of DKO mice has not yet been explored. In addition to controlling 



	

 
	

44	 	

transcription of interferon responses and NF-kB-driven inflammation, cytosolic DNA is 

also recognized by AIM2 (204). AIM2 works independently of STING to form a caspase-

1 activating inflammasome that controls the proteolytic maturation of IL-1ß and IL-18 

and an inflammatory form of cell death called pyroptosis. Here we set out to define the 

contribution of the STING and AIM2 pathways in the development of arthritis in DKO 

mice by generating triple knockout (TKO) mice for comparative analysis to DKO mice. 

Rigorous examination of inflammation and clinical disease in these lines reveals 

important roles for both the STING and AIM2 pathways in arthritis. Furthermore, we 

define an additional contribution of endosomal nucleic acid sensors in regulating 

autoantibody production. Collectively these observations highlight the importance of 

multiple PRR pathways in controlling autoimmunity. Moreover, they unveil a previously 

undescribed role for AIM2 as a sensor of endogenous nucleic acids in autoimmunity. 
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Materials and Methods  
 
 

Mouse Strains: C57BL/6 DNase II+/- embryos were kindly provided by Dr. S. Nagata 

through the RIKEN Institute, and mice were crossed to IFNaR-/- C57BL/6 mice to 

produce DKO and DNase II+/- IFNaR-/- heterozygous (Het) mice. DKO mice were bred 

with STING-deficient mice on a B6/129 background (205) or AIM2-deficient mice (84) 

to yield STING or AIM2 TKO mice. AIM2-deficient mice on a B6/129 background were 

generated through the use of a gene-trap embryonic stem cell line and deletion of AIM2 

was confirmed by RT-PCR and immunoblot analysis (84). DKO mice were also bred to 

Unc93b-deficient mice on a B6 background, (Jackson Laboratories), yielding Unc93b 

TKO mice. All animal procedures were approved by and performed in accordance with 

the Institutional Animal Care and Use Committee at the University of Massachusetts 

Medical School.  

 

Clinical and Histologic Inflammation Scores: Clinical arthritis was measured using a 

previously described scoring system (121). Histologic inflammation was assessed in 

paraffin-embedded left hind limbs. Blocks from 10 month-old female mice (n=5-

8/genotype) were sectioned at 5 µm, deparaffinized, and stained with H&E. 50 sections 

were cut from each block and sections 10, 20, 30, 40, and 50 were scored using a 

modification of a previously described system (121) on a scale from 0-4.  
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K/BxN serum transfer arthritis: KRN T cell-transgenic mice (provided by Drs. Benoist 

and Mathis, Harvard Medical School and the Institut de Genetique et de Biologie 

Moleculaire et Cellulaire, Illkirch, France) (206) were crossed with NOD mice (Jackson 

Laboratory). Arthritogenic serum was obtained from progeny (121) and transferred to 11 

week-old male STING-deficient (STING KO) or 8 week-old male AIM2-deficient 

(AIM2 KO) mice and controls by intraperitoneal injection of 150ml on days 0, 2, and 7. 

Clinical inflammation scores and ankle thickness measurements were taken every other 

day. Histologic inflammation (n=8/genotype) was scored as previously described (121). 

 

Quantitative RT-PCR: Ankle joints from 10-12 month-old mice (n=4-6/genotype) were 

homogenized in liquid nitrogen using a mortar and pestle. Total RNA was isolated and 

500ng was amplified as previously described (7). Gene expression was normalized to 

expression of the housekeeping gene hydroxymethylbilane synthase (HMBS). All 

primers were obtained from Qiagen. Data are expressed as the fold-increase in gene 

expression compared to normalized Het controls, using the 2-∆∆CT method.  

 

ELISA and Western Blots: Serum levels of IL-18 were determined by ELISA according 

to the manufacturer’s instructions (Medical & Biological Laboratories). Hind ankles were 

homogenized and sonicated in RIPA buffer with protease inhibitors for Western blots. 

Equal amounts of protein were loaded and blots were probed with primary antibody for 

IL-18 (Biovision, 5180R). Chemiluminescence reagent (ThermoScientific) was used for 
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detection. Equivalent loading and transfer of protein was demonstrated by Ponceau S 

staining.   

 

Autoantigen arrays: Serum samples pretreated with DNAse I were diluted 1:100 and 

incubated with autoantigen arrays bearing 125 antigens. The autoantibodies binding to 

the antigens on the arrays were assayed with fluorescent-labeled secondary antibodies 

(cy3-labeled anti-mouse IgG and cy5-labeled anti-mouse IgM) and the images were 

generated using Axon 4300A Scanner and analyzed with Genepix Pro 7.0 software 

(Molecular Devices). Net fluorescence intensities (NFI) were defined as the background 

subtracted averaged signal intensity normalized to internal controls. The NFI of each 

autoantibody was used to generate heatmaps using Cluster and Treeview software (207). 

These data have been deposited in NCBI's Gene Expression Omnibus and are accessible 

through GEO Series accession number GSE63503. 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSExxx). 

 

Statistical analysis: Statistical significance of differences in mean values was analyzed 

with the unpaired, two-tailed Student’s t test or ANOVA for multiple comparisons. 

Statistical significance is represented by the following notation in the figures: p<0.05 = *, 

p<0.01 = **, p<0.001 = ***. 
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Results and Discussion 
 
 

To investigate the contribution of the AIM2 inflammasome to disease in DKO 

mice, we initially compared the spontaneous arthritis in DKO mice with that of STING 

TKO and AIM2 TKO mice and controls by clinical joint scoring and histologic 

evaluation. As reported previously (100), inflammation was significant in the distal joints 

and paws in DKO mice, but not in the Het control group. STING deficiency completely 

abrogated clinical arthritis (Figure 2.1 A and B), although we noted minimal but 

detectable inflammation in STING TKO mice upon histologic evaluation (Figure 2.1 C 

and D). This is consistent with previously reported findings in DNaseII/STING DKO 

mice (203). AIM2 TKO mice also demonstrated a significant attenuation of arthritis, as 

assessed by both clinical and histologic scoring. These results reveal a role for a second, 

STING-independent, cytosolic DNA sensor in arthritis resulting from the accumulation 

of DNA in DNase II deficient mice. Of note, unlike DNase II-/- STING-/- mice that are 

rescued from lethality, our DNase II-/-AIM2-/- mice were embryonic lethal, indicating that 

AIM2 is not a pathway responsible for type I IFN signatures (data not shown). 

To better understand how both STING and AIM2 contribute to the development 

of arthritis, we collected joint tissue from 10-12 month-old mice and compared RNA 

expression levels for the pro-inflammatory cytokine TNF, as well as expression levels of 

matrix metalloproteinase 3 (MMP3) as a surrogate marker of inflammation (Figure 2.2). 

STING TKO joints had significantly reduced levels of TNF compared with DKO joints, 

whereas AIM2 TKO joints showed a trend toward decreased TNF expression (Figure 

2.2A) as well as IL-6 expression (not shown). Expression of MMP3 mRNA was 
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significantly decreased in both STING TKO and AIM2 TKO mice compared with DKO 

mice, consistent with reduced inflammation.  

We then determined protein levels of IL-1ß and IL-18 in joint extracts as a marker 

of AIM2 inflammasome activity. Although we were unable to detect IL-1ß protein, IL-18 

protein expression was markedly diminished in the joints of AIM2 TKO mice compared 

with DKO mice (Figure 2.2B). In addition, consistent with defects in AIM2 

inflammasome activation, we found that the AIM2 TKO mice had reduced systemic 

levels of IL-18 (Figure 2.2C). IL-18 itself, a product of several cell types including 

macrophages and synovial fibroblasts, has been implicated as an important pro-

inflammatory cytokine in autoimmune diseases including rheumatoid arthritis (RA). 

Inflammation and cartilage destruction are significantly reduced in mice deficient in IL-

18 in the collagen-induced arthritis model of RA (208). As noted above, there is also a 

trend toward decreased TNF expression in the joints of AIM2 TKO compared to DKO 

mice. This trend could be explained by the presence of known feedback loops among 

cytokines in inflammatory arthritis. 

Our data point to a distinct and prominent role for the AIM2 inflammasome in 

arthritis pathogenesis. While AIM2 has previously been shown to act in a non-redundant 

fashion in response to intracellular bacteria and DNA viruses (84), these findings 

demonstrate that AIM2 also recognizes endogenous DNA, and that the recognition of 

cytosolic DNA by AIM2 contributes to the pathogenesis of clinical disease.  
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Arthritis is only one manifestation of the autoimmune disease that results from 

DNase II deficiency, as these DKO mice also show splenomegaly and autoantibody 

production (100). Interestingly, we found that although STING deficiency ameliorates the 

arthritis in DKO mice, it does not largely reverse splenic enlargement, whereas, AIM2 

deficiency reduces the size of the spleen to a greater extent (Figure 2.3 A and B). H&E 

images from splenic sections reveal that the normal splenic architecture, shown by the 

presence of organized follicles in the Het controls, is disrupted in the DKO and STING 

TKO spleens, but not in the AIM2 TKO sections (Figure 2.3C). 

Since B cells express both STING and AIM2 (209), it was of interest to determine 

whether STING and/or AIM2 are required for autoantibody production. As shown by an 

autoantigen microarray, DKO mice make autoantibodies reactive to an extensive panel of 

autoantigens by 10 months of age, but not at 3 months of age at a time when arthritis is 

not present (Figure 2.4A). Surprisingly, despite the significant effect of STING and 

AIM2 deficiency on arthritis and a prior report that STING is required for the production 

of anti-DNA autoantibodies (203), the STING TKO and AIM2 TKO mice demonstrate 

robust autoantibody production. Thus the STING and AIM2 pathways are not required 

for this process. In murine models of SLE, the production of anti-nuclear antibodies 

(ANAs) depends on the endosomal TLRs 7 and 9 that detect either RNA or DNA. We 

therefore evaluated autoantibody production in DKO mice that also failed to express 

Unc93b, a chaperone protein required for TLR7 and TLR9 endosomal localization. 

Despite the presence of arthritis in Unc93b TKO mice (Figure 2.4B), autoantibody 

production to nucleic acid is abrogated (Figure 2.4A), in stark contrast to the DKO mice.  
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STING TKO and AIM2 TKO mice developed significantly less joint 

inflammation than DKO mice, despite the presence of high titer autoantibody production. 

To clarify whether STING or AIM2 play a role in antibody-mediated joint inflammation, 

we generated arthritis in STING-deficient and AIM2-deficient mice and their respective 

controls by transfer of arthritogenic serum from K/BxN mice (206). Arthritis in this 

model is mediated by the deposition of immune complexes within the joint, leading to 

fixation of complement and ensuing pathology (210). Importantly, we found no 

differences between the arthritic inflammation generated in STING-deficient (Figure 2.5 

A and B), AIM2-deficient (Figure 2.5C), and control mice. Thus, antibody-induced 

inflammation proceeds independently of cytosolic nucleic acid sensors. Furthermore, 

STING and AIM2 appear to regulate inflammation strictly in settings where accrual of 

cytosolic DNA is a key pathogenic event.  



	

 
	

52	 	

Figure 2.1  Arthritis in DKO mice is regulated by distinct DNA sensing pathways.  

A) Representative images of clinical arthritis in forepaws (top) and hindpaws (bottom) 

from 10 month-old female mice demonstrating significant swelling in DKO mice, 

absence of swelling in STING TKO mice, and an intermediate arthritic phenotype in 

AIM2 TKO mice.  B) Clinical inflammation scores (n=14-24/genotype) showing a 

statistically different mean inflammation score in STING TKO and AIM2 TKO 

compared with DKO mice. 10 month-old mice: Het (14 female, 5 male), DKO (11 

female, 14 male), STING TKO (9 female, 6 male), AIM2 TKO (9 female, 13 male).      

C) Representative image of histologic inflammation at the ankle (upper panel) and 

midfoot (lower panel) and D) Quantitation of histologic inflammation (n=7 

mice/genotype), confirming differences in inflammation in STING TKO and AIM2 TKO 
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mice compared with DKO mice. Histological analysis performed on 10 month-old female 

mice. Values are the mean ± SEM; *** = p<0.001 compared to DKO. Arrow and (*) 

designate two sites of inflammation.  
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Figure 2.2 AIM2 TKO mice demonstrate a significant decrease in IL-18 expression.  

A) Joint cytokine mRNA levels show a significant decrease in TNF in STING TKO mice 

compared with DKO mice, whereas a trend toward a decrease in TNF is seen in AIM2 

TKO mice. MMP3 levels are significantly decreased in both STING TKO and AIM2 

TKO mice compared with DKO mice, consistent with attenuation of clinical arthritis 

(n=4-6/genotype). 10 month-old mice were used: Het (4 female, 2 male), DKO (2 female, 

4 male), STING TKO (3 female, 2 male), AIM2 TKO (2 female, 3 male). B) Western 

blot confirms a decrease in IL-18 protein expression in the joints of AIM2 TKO mice 

compared with DKO and STING TKO mice (n=1-4/genotype). n.s. designates non-

specific protein staining (Ponceau S.). 10 month-old male mice. C) Serum ELISA assay 

demonstrates that IL-18 levels are significantly decreased in AIM2 TKO mice compared 
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with DKO and STING TKO mice (n=6/genotype, 3 males, 3 females; 10 month-old 

mice).  Values are the mean ± SEM; * = p<0.05, ** = p<0.01, *** = p<0.001 compared 

to DKO.   
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Figure 2.3 AIM2 regulates splenomegaly in DKO mice. A) Spleen weights (n=8-12 

mice/genotype) B) Representative image of spleens C) H&E stain of splenic sections. 10 

month-old male and female mice. Values are the mean ± SEM; * = p<0.05, *** = 

p<0.001 compared to DKO.   
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Figure 2.4 The Unc93b pathway uniquely 

regulates autoantibody production to nucleic 

acid. A) Heat map of an array of 125 

autoantigens. Autoantibody production is 

minimal in DKO and STING TKO mice at 3 

months of age (left panel), prior to the onset of 

arthritis. Despite the significant decrease in 

arthritic inflammation in STING TKO and 

AIM2 TKO mice at 10 months, heat maps 

demonstrate autoantibody production, as in 

DKO mice. Marked attenuation of autoantibody 

production is seen in Unc93b TKO mice. B) 

Histologic inflammation scores for 10 month-

old female mice (n=6 mice/genotype). Values 

are the mean ± SEM; * = p<0.05, *** = 

p<0.001 compared to DKO. 
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Figure 2.5 STING and AIM2 do not regulate arthritic inflammation in an immune 

complex-mediated model. A) Clinical inflammation scores and measurements of change 

in ankle thickness demonstrate no difference in inflammation in STING deficient (KO) 

mice compared with controls. 11 week-old male mice (n=9-10 mice/genotype). B) H&E 

images and histologic scoring confirm equivalent inflammation. C) Clinical inflammation 
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scores and measurements of change in ankle thickness demonstrate no difference in 

inflammation in AIM2 deficient (KO) mice compared with controls (Wt). 8 week-old 

male mice (n=8 mice/genotype). Values are the mean ± SEM. (*) designates synovial 

inflammation.  
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There is mounting evidence for a role of cytosolic sensing of DNA during human 

autoinflammatory conditions. STING has been implicated in a number of type I IFN-

driven diseases. For example, patients inheriting mutations in Trex1, and therefore 

presumably unable to appropriately degrade cytosolic retroelements (90) develop the 

neuroinflammatory condition Aicardi-Goutieres syndrome (91), while gain of function 

mutations in STING can lead to pulmonary and vascular inflammation (97). Prior studies 

of the arthritic phenotype in DKO mice extended the scope of STING-mediated 

pathologies to the production of type I IFN-independent proinflammatory cytokines (202, 

203). We now demonstrate that additional cytosolic and endosomal receptors also 

contribute to the autoimmune features of DKO mice. AIM2 responds to endogenous 

ligands in this setting and contributes to the arthritic phenotype through inflammasome 

activation. Thus, deficiency of either STING or AIM2 attenuates arthritis. DKO mice 

also make anti-nuclear antibodies, but production depends on yet a third type of nucleic 

acid sensor, endosomal TLRs. This study highlights the complex relationships between 

multiple innate pathways engaged during autoimmunity, and demonstrates that distinct 

DNA sensor pathways play unique roles in the development of the various manifestations 

of autoimmune disease.  
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Chapter III 
 
 
 
 

 
Synergy between Hematopoietic and Radioresistant Stromal Cells is Required for 

Autoimmune Manifestations of DNase II-/- IFNaR-/- Mice 

 
 
 
 
 
 

The work presented in this chapter is contained within the manuscript: 
 

Baum R‡, Nündel K‡, Pawaria S, Sharma S, Busto P, Fitzgerald K, Gravallese E§, 
Rothstein A§. Synergy between hematopoietic and radioresistant stromal cells is required 

for autoimmune manifestations of DNase -/- IFNaR -/- Mice. J Immunol. 2016; 
196(3):1348-54. ‡Co-first authors; §Co-senior authors 
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Summary 
 

 

Detection of endogenous nucleic acids by cytosolic receptors, dependent on 

STING, and endosomal sensors, dependent on Unc93b1, can provoke inflammatory 

responses that contribute to a variety of autoimmune and autoinflammatory diseases. In 

DNase II deficient mice, the excessive accrual of undegraded DNA leads to both a 

STING-dependent inflammatory arthritis and additional Unc93b1-dependent autoimmune 

manifestations, including splenomegaly, extramedullary hematopoiesis, and autoantibody 

production. Here we utilize bone marrow chimeras to show that clinical and histological 

inflammation in the joint depends upon DNase II deficiency in both donor hematopoietic 

cells and host radioresistant cells. Additional features of autoimmunity in these mice, 

known to depend on Unc93b1 and therefore endosomal TLRs, also require DNase II 

deficiency in both donor and host compartments, but only require functional TLRs in the 

hematopoietic cells. Collectively, our data demonstrate a major role of both stromal and 

hematopoietic cells in all aspects of DNA-driven autoimmunity.  These findings further 

point to the importance of cytosolic nucleic acid sensors in creating an inflammatory 

environment that facilitates the development of Unc93b1-dependent autoimmunity.  
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Introduction 
 
 

Cytosolic DNA sensors were first identified in the context of host defense but, 

similar to endosomal nucleic acid detecting TLRs, these sensors can also detect 

endogenous ligands and thereby promote sterile inflammation. A number of cytosolic 

DNA receptors have now been identified, including cGAS and Ifi16, among others (77, 

78). These sensors converge on the ER-associated protein STING to activate downstream 

pathways leading to the expression of both IFN-stimulated genes and proinflammatory 

cytokines (211). Importantly, gain of function mutations in STING have recently been 

linked to a clinical syndrome called SAVI, associated with upregulation of type I IFN, 

severe vasculopathy, arthritis, pulmonary fibrosis, and in some cases autoantibody 

production (92-95, 97, 212). In addition, loss of function mutations in a variety of cellular 

nucleases can lead to the accumulation of self-DNA and also contribute to inflammatory 

disease. For example, loss of function mutations in Trex1 (a cytosolic DNase), SAMHD1 

(a cytosolic RNase), RNaseH2A, and ADAR1 have been linked to both the 

neuroinflammatory disease Aicardi-Goutieres syndrome (91, 213-215), and different 

forms of lupus (92). Trex1 deficiency can also lead to systemic inflammation in mice, 

initially evident as myocarditis with subsequent progression to other organs (90, 216). 

Furthermore, SNPs in the promoter region of the DNase II gene have been identified as 

risk factors for rheumatoid arthritis (99).   

Mice lacking the phagolysosomal nuclease, DNase II, are embryonic lethal due to 

excessive type I IFN production downstream of STING-dependent pathways. These mice 

can be rescued by intercrossing with mice that lack the type I IFN receptor (IFNaR). 
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DNase II-/- IFNaR-/- double knockout (DKO) mice survive to adulthood but then develop 

an inflammatory arthritis not seen in the DNase II+/- IFNaR-/- (Het) control group. The 

development of DKO arthritis is STING-dependent (203, 217). DKO mice also produce 

anti-nuclear antibodies (ANAs) and develop splenomegaly and extramedullary 

hematopoiesis, and these aspects of disease turn out to require a functional form of 

Unc93b1, and by inference, signaling by endosomal TLRs (61, 217). Thus, both cytosolic 

and endosomal nucleic acid sensing receptors contribute to the clinical manifestations of 

DKO mice.  

Previous studies involving radiation chimeras have indicated that radioresistant 

Trex1-/-endocardial cells are sufficient for lymphocyte activation and the development of 

myocarditis (218), while the arthritic phenotype of DNase II-/- mice was found to depend 

entirely on hematopoietic cells (202). However, the DKO chimeric mice in the latter 

study were evaluated at a relatively early stage in the disease process, and the Unc93b1-

associated manifestations were not examined. As considerable data now demonstrate a 

proinflammatory role for STING in non-hematopoietic cells, we reasoned that it was 

important to re-evaluate the contribution of hematopoietic cells and non-hematopoietic 

cells to the various DKO disease parameters. Our data reveal a major contribution of both 

bone marrow-derived hematopoietic and radioresistant host cells to all aspects of the 

DKO phenotype. Moreover, our data further point to a critical interplay between 

endosomal and cytosolic nucleic acid receptors in the development of systemic 

autoimmunity. 
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Materials and Methods 
 

 
Mouse Strains: DNase II+/- C57BL/6 embryos were kindly provided by Dr. S. Nagata 

(Osaka Medical School) through the RIKEN Institute, and mice were intercrossed with 

Ifnar-/- C57BL/6 or Igha/a C57BL/6 mice to produce DNase II-/- IFNaR-/- double knockout 

(DKO), DNase II+/- IFNaR-/- heterozygous (Het), and Igha DKO mice. C57BL/6 mice 

expressing GFP under the MHC I class promoter were kindly provided by Dr. R. Gerstein 

(UMMS), and were crossed to Ifnar-/- C57BL/6 mice to generate DNase II+/- IFNaR-/- 

GFP donor mice for bone marrow chimera studies. Unc93b13d/3d mice on a C57BL/6J 

background were kindly provided by Bruce Beutler (UTSW) (219). STING-deficient 

mice were generated on a 129SvEvxC57BL/6J background by Dr. G. Barber (UMiami) 

(220), backcrossed to C57BL/6J mice and kindly provided by Dr. D. Stetson 

(UWashington), and then further backcrossed to C57/BL6J at UMMS. The Unc93b13d/3d 

and STING-deficient mice were then crossed to the DKO strain to yield Unc93 TKO and 

STING TKO lines, respectively, as described previously (217). All animal procedures 

were approved by and performed in accordance with the Institutional Animal Care and 

Use Committee at the University of Massachusetts Medical School.  

Generation of Bone Marrow Chimeras: Lethally irradiated (850R) 8-12 week-old 

recipients were reconstituted by i.v. injection of 107 total bone marrow cells from 8-10 

week-old mice. For the Het/DKO chimeras, female Het (Ighb) or DKO (Ighb) hosts were 

reconstituted with cells from female Het (GFP) or DKO (Igha) mice.  For the Unc93 

TKO/DKO chimeras, the Unc93 TKO mice were Ighb and the DKO mice were Igha. 

Clinical monitoring for the development of arthritis was performed until the mice were 
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euthanized for analysis at 10 months post transplant (Het/DKO chimeras) or 4 months 

post transplant (Unc93 TKO/DKO chimeras). The extent of reconstitution was 

determined by flow cytometry for GFP+ or IgD allotype markers in total peripheral blood 

or mature B cells, respectively, and confirmed by FACS analysis of the spleen at the time 

of euthanasia. 

Clinical and Histologic Inflammation Scores: Clinical arthritis was measured using a 

previously described scoring system (121). Histologic inflammation was assessed in 

decalcified, paraffin-embedded left hind limbs. Blocks were sectioned at 5 µm, 

deparaffinized, and stained with H&E. 40 sections were cut from each block and sections 

10, 20, 30, and 40 were scored using a modification of a previously described system 

(121) on a scale from 0-4. Cellular infiltrates in the distal tibias were scored on a scale 

from 0-3 (0=no infiltrate, 1= slight infiltrate, 2= moderate infiltrate, 3=severe infiltrate). 

Antinuclear Antibodies: Mouse sera diluted 1:50 was incubated on HEp-2 antigen 

substrate slides (MBL BION), and bound Abs were detected with DyLight 488–coupled 

detecting reagents. ANA fluorescent intensity was scored on a scale from 0-4 per the 

manufacturer’s instructions. 

MMP-3 Quantification: MMP-3 protein levels were measured in the sera of mice per 

the manufacturer’s (R&D) instructions.  

Flow Cytometry: Spleen and bone marrow cell suspensions were stained with the 

following antibodies: Ter119, CD11b, Ly6G, Ly6C, B220, CD95 and GL-7 (eBioscience 

or BD Biosciences). Multicolor flow cytometry was performed using an LSR II with 

DIVA software (BD Biosciences), and analysis was conducted with FlowJo software 
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(TreeStar, Ashland, OR).    

Statistical analysis: Data are reported as mean ± SEM. Statistical significance was 

analyzed with the unpaired, two-tailed Student’s t test using Prism software (GraphPad). 

Statistical significance is represented by the following notation in the figures: p<0.05=*, 

p<0.01=**, p<0.001=***. 
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Results 
 
 
DNase II deficiency in both hematopoietic and radioresistant cells is required for the 

development of inflammatory arthritis and bone marrow (BM) hypercellularity in 

DKO mice. To investigate the relative contribution of hematopoietic vs. radioresistant 

host cells to the various autoimmune manifestations of DKO mice, lethally irradiated 

(850R) Het (DNase II+/- IFNaR-/-) or DKO (DNase II-/- IFNaR-/-) mice were reconstituted 

with Het or DKO stem cells to generate four experimental groups: Het!Het, 

DKO!DKO, Het!DKO and DKO!Het. We then assessed arthritis severity by clinical 

and histologic evaluation. As expected, Het!Het chimeras showed no evidence of 

clinical arthritis while DKO!DKO mice showed significant inflammation in the distal 

joints and paws (Figure 3.1A). Furthermore, serum levels of matrix metalloproteinase 3 

(MMP3), a surrogate marker for inflammation, reflected the arthritis scores and further 

confirmed the absence of inflammation in the Het!DKO and DKO!Het chimeras 

(Figure 3.1B). Histologic scoring of ankle joints (Figure 3.1C) also confirmed the 

presence of arthritis only in DKO!DKO mice. Remarkably, neither the Het!DKO nor 

the DKO!Het mice developed any clinical or histological evidence of arthritis over a 

10-month period (Figure 3.1A-C). Therefore both DKO donor hematopoietic cells and 

DKO host radioresistant cells are required for the development of arthritis. 

 Histological examination of the tibiae of DKO!DKO mice also revealed a dense 

accumulation of cells within the marrow space (Figure 3.1D), also evident in marrow 

cavities of the ankle sections (Figure 3.1C). This infiltrate included a high proportion of 

neutrophils as well as engorged erythropoietic island macrophages. This infiltrate was not 



	

 
	

69	 	

detected in Het mice, STING-/- DNase II-/- IFNaR-/- triple knockout (STING TKO) mice, 

or Unc93b13d/3d DNase II-/- IFNaR-/- triple knockout (Unc93 TKO) mice (Figure 3.1E).  

Furthermore, as evident from clinical inflammation scores, arthritis still develops in the 

Unc93b1 TKO mice (Figure 3.1F) whereas arthritis is abrogated in STING TKO mice 

(217).  Altogether our data indicate that the arthritic phenotype is completely dependent 

on STING and not Unc93b1 (203, 217), BM hypercellularity is dependent on both 

STING and Unc93b1, and both the arthritic and BM hypercellularity depend on a 

combination of hematopoietic and radioresistant cell types. These outcomes are unlikely 

to be due to residual host hematopoietic cells as complete hematopoietic repopulation of 

all groups by donor stem cells was verified through the use of transgene or congenic 

markers (Figure 3.1G). 

 

DNase II deficiency in both hematopoietic and radioresistant cells contributes to the 

development of additional TLR-dependent features of autoimmunity. DKO mice 

develop massive splenomegaly, clearly apparent by as early as 2 wks of age, which 

depends upon functional Unc93b1 and not STING (61). Since endosomal TLRs are 

preferentially expressed in hematopoietic cells, we expected TLR-mediated 

splenomegaly to track with the Unc93b1-sufficient DKO hematopoietic compartment. As 

expected, the DKO!DKO chimeras developed splenomegaly, and the Het!DKO did 

not. However, surprisingly, the DKO!Het mice also failed to develop splenomegaly 

(Figure 3.2A). Along with splenomegaly, normal splenic architecture, associated with 

the presence of organized follicles, is disrupted in DKO but not in Het mice. From H&E 
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staining of splenic sections, it was clear that a similar loss of defined T and B cell regions 

occurred in the DKO!DKO spleens but not in the Het!DKO or DKO!Het spleens 

(Figure 3.2B).  These data demonstrate that a host component is required for the TLR-

dependent splenic abnormalities characteristic of DKO mice. 

 Other Unc93b1-dependent abnormalities of DKO mice include disruption of bone 

marrow (BM) erythropoiesis and ensuing extramedullary hematopoiesis in the spleen 

(61).  To assess the contribution of the radioresistant host and hematopoietic elements to 

these aspects of hematopoiesis, the chimeric mice were evaluated for the frequency of 

BM and spleen cells expressing the RBC lineage marker Ter119. Similar to the DKO 

strain, the percentage and overall number of Ter119+ cells in the DKO!DKO chimeras 

was decreased in the BM and dramatically increased in the spleen. In contrast, the 

frequency of Ter119+ cells in the BM of the Het!DKO and DKO!Het chimeras was 

not significantly different from the Het!Het control, and the frequency of Ter119+ cells 

in the spleen of the Het!DKO and DKO!Het chimeras was only slightly increased 

relative to the Het!Het controls (Figure 3.3A). These data point to a requirement for 

both hematopoietic and non-hematopoietic elements in the overall disruption of 

erythropoiesis in DKO mice.    

 DKO mice also develop an increased frequency of CD11b+ myeloid cells, and 

especially Ly6C+ Ly6Ghi granulocytes, in both the BM and spleen. Comparable increases 

were only found in the DKO!DKO chimeras (Figure 3.3B,C). However, both the 

Het!DKO and DKO!Het chimeras tended toward a greater frequency of granulocytes 

in the spleen, consistent with the notion that hematopoietic and radioresistant DKO cells 
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independently provoke modest inflammatory responses, while more severe inflammation 

depends on donor and host cell synergy.   

 In addition, B cell differentiation is compromised in DKO mice, as evidenced by 

a markedly reduced frequency of immature and mature B cells in both the BM and spleen 

(19). Here again the DKO phenotype was recapitulated by the DKO!DKO chimeras, as 

shown by the overall percent of B220+ cells, but B cell development appeared relatively 

normal in Het!DKO and DKO!Het mice (Figure 3.4A,B). Normal B cell development 

was restored in the Unc93b1 TKO mice (19). Despite the reduced frequency of mature 

B220+ lymphocytes, the frequency of CD95+ germinal center (GC) cells, an indication of 

autoreactive B cell activation, was increased in the DKO!DKO chimeras, and not in the 

other chimera groups (Figure 3.4C).   

 As further evidence of B cell activation, DKO mice produce high titers of 

autoantibodies. Endogenous dsDNA associated with cell debris cannot activate TLR9 in 

DKO mice, because in the absence of DNase II the DNA is not degraded sufficiently to 

generate a functional TLR9 ligand (61, 221). Therefore sera from DKO mice normally 

show HEp2 immunofluorescent staining patterns consistent with BCR/TLR7 driven 

autoreactive B cell activation (e.g. speckled nuclear or cytoplasmic). As expected, 

Het!Het chimeras failed to make anti-nuclear antibodies and all the DKO!DKO mice 

developed high ANA titers with speckled nuclear or cytoplasmic staining patterns 

(Figure 3.4D,E). Remarkably, 4 of 7 Het!DKO mice also developed ANA titers, 

despite the fact that they failed to exhibit most other indications of systemic 

autoimmunity. However, in contrast to the speckled nuclear staining pattern characteristic 
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of the DKO mouse sera and the DKO!DKO chimeric sera, the ANA+ Het!DKO 

chimeric sera showed homogeneous nuclear staining patterns (Figure 3.4E). This 

homogeneous nuclear pattern most likely reflects the expression of functional DNase II 

by the Het-derived B cells, and therefore the ability of these B cells to degrade dsDNA 

and generate endogenous TLR9 ligands. The Het B cells in the ANA+ Het!DKO 

chimeras are presumably responding to the excessive DNA accrual that occurs in 

radioresistant DKO host cells, and becoming activated through a TLR9-dependent 

mechanism. One (out of 5) ANA+ DKO!Het chimera sera showed a modest speckled 

nuclear pattern, again indicative of the inability of DNase II-/- B cells to respond to 

endogenous DNA ligands. The limited number of ANA+ Het!DKO and DKO!Het 

mice represent one exception to the overall requirement for DNase II deficiency in both 

the recipient and host for clinical manifestations of disease. In all cases the B cells are 

presumably responding to an external source of nucleic acid-associated ligand. Overall 

the defects in B cell development (reduced number of B220+ cells) and increased 

numbers of GC B cells are only apparent in DKO!DKO chimeras. 

 

Expression of functional Unc93b1 in hematopoietic cells is sufficient for the 

development of Unc93b1-dependent clinical manifestations. One possible explanation 

for the failure of DKO!Het chimeras to develop Unc93b1-dependent clinical 

manifestations was a requirement for a TLR-expressing host component. To test this 

possibility, we used Unc93 TKO mice to generate DKO!Unc93 TKO and Unc93 

TKO!DKO chimeras and compared them to DKO!Het chimeras. Since synovial 
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inflammation is Unc93b1-independent, it was not surprising that both the DKO!Unc93 

TKO and Unc93 TKO!DKO chimeras developed arthritis as determined by clinical 

examination (Figure 3.5A) and joint histology (Figure 3.5B). Furthermore, as expected, 

the Unc93 TKO!DKO chimeras had less severe BM inflammation (Figure 3.5C), failed 

to develop splenomegaly (Figure 3.5D), and failed to make ANAs (Figure 3.5E). Thus, 

the Unc93b1-dependent clinical manifestations require Unc93b1 expression in 

hematopoietic cells. However, the DKO!Unc93 TKO chimeras were essentially 

indistinguishable from DKO!DKO chimeras by all criteria evaluated.  Thus, the 

hematopoietic expression of endosomal TLRs is necessary but not sufficient for SLE-like 

clinical manifestations, and there must be an additional TLR-independent host 

component(s) that promotes the onset of TLR-dependent autoimmunity.  
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Figure 3.1 Arthritis in DKO mice depends on DNase II deficiency in both donor-

derived hematopoietic and radioresistant host cells. Donor and recipient strains 

indicated by donor!recipient or by D (donor) and R (recipient). A) Representative 

images of arthritis in forepaws (top) and hindpaws (bottom) of chimeric mice and 

summary of clinical inflammation scores. B) Serum MMP-3 protein levels. C) 

Representative histologic images of inflammation in the ankle (upper panel) and midfoot 

(lower panel) and quantitation of histologic inflammation. Arrow designates synovium 

and asterisk marks bone marrow cavity. Final magnification 4x. D/E) Representative 

images of bone marrow cellularity in the distal tibiae and quantitation of degree of 

cellularity (4 sections/tibia were analyzed). Final magnification 4x. All analyses were 

performed on 10 month-old female chimeric mice (n=4-7 mice/genotype). F) Clinical 

inflammation scores of 6-12 month-old male and female mice (n=8-16 mice/genotype). 

Values are the mean ± SEM; *=p<0.05, **=p<0.01, ***=p<0.001 compared to Het!Het. 

G) Engraftment in bone marrow chimeras. Reconstituted mice were analyzed by flow 

cytometry 5 months after bone marrow transplant for the %GFP+ cells in total peripheral 

blood mononuclear cells or for the %IgD donor allotype in mature B cells. Representative 

data are shown (n=4-7 mice/genotype). Left: Het (GFP+)!Het (GFP-): blue line; Het 

(GFP+)!DKO (GFP-): green line; GFP positive control: dashed red line; GFP negative 

control: grey fill. Right: Representative image of DKO donors, including DKO 

(IgDa)!DKO (IgDb) and DKO (IgDa)!Het (IgDb).  
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Figure 3.2 Splenomegaly and disrupted splenic architecture depend on DNase II 

deficiency in both donor-derived hematopoietic and radioresistant host cells. A) 

Splenic weights (upper panel) and representative images of spleens (lower panel). B) 

Splenic histology in 10 month-old female chimeric mice (n=4-7 mice/genotype; H&E-

stained, final magnification 4x). Data is pooled from 3 individual experiments. Values are 

the mean ± SEM;  **=p<0.01 compared to Het!Het.  
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Figure 3.3 Extramedullary hematopoiesis and myeloid cell expansion depend on 

DNase II deficiency in both donor-derived hematopoietic and radioresistant host 

cells. A) Percentage of total bone marrow (BM) and spleen (Spl) cell suspensions 

expressing the erythroid lineage marker Ter119. B) Percentage of total bone marrow and 

spleen cell suspensions expressing the myeloid lineage marker CD11b. C) Percentage of 

CD11b+ cells expressing the granulocyte phenotype Ly6C+ Ly6Ghi. Representative FACS 

plots for Het!Het and DKO!DKO are shown to the right of the compiled data figures 

in A, B, and C. The experiment was repeated 3 times. Values are the mean ± SEM; 

*=p<0.05, **=p<0.01, ***=p<0.001 compared to Het!Het.  
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Figure 3.4 Defective B cell development and autoantibody production depend on 

DNase II deficiency in both donor-derived hematopoietic and radioresistant host 

cells. Percentage of B220+ cells in A) bone marrow (BM) and B) total spleen (Spl) by 

FACS analysis. C) Percentage of B220+ germinal center (GC) B cells in spleens. 

Representative FACS plots for Het!Het and DKO!DKO are shown to the right of the 
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compiled data figures in A, B, and C. D) Quantitation of anti-nuclear antibody (ANA) 

fluorescent intensity. The samples marked in green correspond to the ANA patterns 

shown in panel E. E) ANA staining patterns from sera by immunofluorescence (original 

magnification x 200). Het!Het chimeras: negative; DKO!DKO: speckled nuclear; 

Het!DKO: homogeneous nuclear; DKO!Het: speckled nuclear, 1/5 mice). All analyses 

performed on 10 month-old female chimeric mice (n=5-7 mice/genotype). Values are the 

mean ± SEM; **=p<0.01, ***=p<0.001 compared to Het!Het.  
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Figure 3.5 Expression of Unc93b1 in hematopoietic cells is required for the 

development of Unc93b1-dependent clinical manifestations. A) Clinical inflammation 

scores. B) Representative histologic images of inflammation in the ankle (upper panel) 

and midfoot (lower panel). Arrow designates synovium and arrowhead marks cellular 

infiltrate in the talus. Final magnification 4x. C) Quantitation of degree of bone marrow 

(BM) cellularity. D) Spleen weights. E) Representative ANA staining patterns of 

chimeric sera (original magnification x 200). All analyses performed on female chimeric 

mice. Values are the mean ± SEM; *=p<0.05, ***=p<0.001 compared to DKO!Het. 
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Discussion 

 The main message that emerges from the current study, together with previous 

reports, is that the accrual of excessive undegraded DNA in multiple cell types of DKO 

mice promotes the activation of both cytosolic and endosomal nucleic acid sensors, 

leading to a type I IFN-independent disease spectrum that incorporates features of both 

inflammatory arthritis and SLE. Cytosolic sensors are responding to DNA and the 

endosomal sensors are most likely responding to RNA-associated cell debris internalized 

by a cell surface receptor. Our Het/DKO chimera data further show that both 

hematopoietic and radioresistant host cells are required for all the various clinical 

manifestations.   

 The importance of radioresistant cells in autoinflammation has been previously 

reported by Stetson and colleagues in their analysis of mice lacking Trex-1, a model of 

STING-dependent autoinflammation. By using a Trex1-/- IFN-reporter line, they 

identified cardiac endothelial cells as the initial site of IFN-driven inflammation. As a 

result, these mice first develop myocarditis although additional tissues subsequently 

became inflamed. In contrast to the DKO mice described in the current report, Trex1 

deficiency in radioresistant host cells was sufficient to activate WT bone marrow derived 

cells and trigger a systemic response where organ damage depended on activated T and B 

lymphocytes. However, a role for hematopoietic cells in the DKO model is not surprising 

since DNase II is a lysosomal DNase required for the degradation of cell debris/DNA 

phagocytosed by myeloid lineage phagocytes.   

 Another difference between the Trex1-/- and DNase II-/- IFNaR-/- DKO models is the 
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dependency on type I IFNs. IFNaR-/- x Trex1-/- mice fail to develop clinical 

manifestations of disease (218), while both STING-dependent and Unc93-dependent 

aspects of our DKO mice are type I IFN independent due to the absence of a functional 

type I IFN receptor. The strong autoantibody response, presumably dependent on TLR7, 

is particularly unexpected, especially since we have previously shown that TLR7-

dependent B cell responses are highly type I IFN dependent (222). Exactly how cytokine 

production by DKO mice circumvents a need for type I IFNs as far as RNA-dependent B 

cell activation and other Unc93-dependent outcomes is not clear. Experiments are in 

progress to determine whether IFN-inducible genes downstream of RNA-sensing TLRs 

will exacerbate the Unc93-dependent SLE-like aspects of the DKO phenotype in IFNaR-

sufficient DNase II-/- STING-/- mice (203). 

The nature of the radioresistant cell(s) activated in DKO mice remains to be 

determined.  Previous studies have documented an important role for STING dependent 

pathways in fibroblast lineage cells (205, 212). Therefore it is possible that STING 

promotes arthritis through its capacity to activate synovial fibroblasts. These cells have 

long been known to play a key role in the pathogenesis of RA (101) and are a source of 

proinflammatory cytokines and other factors that promote and perpetuate chronic 

inflammation and joint damage. Studies in early RA have demonstrated changes in the 

stromal compartments of synovium as early as the first months of disease (223). With 

disease progression, there is expansion of the synovial fibroblast compartment and these 

cells secrete proteinases that destroy cartilage, as well as factors that promote chronicity 

of inflammation through recruitment and retention of inflammatory cells (110). 
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Therefore, it is likely that synovial fibroblasts play a critical role in the initiation and 

perpetuation of disease in our model. Although we assume that the radioresistant cell is a 

stromal component, we cannot at this stage rule out a role for embryonally-derived 

macrophages. These are radioresistant tissue resident macrophages that develop from 

precursors, which seed peripheral tissues during fetal development, and could reside in 

synovial tissues as well (224).  

 The distinct overall phenotype of the DKO!DKO chimera group compared to 

the Het!DKO and DKO!Het chimeras demonstrated an absolute requirement for DKO 

radioresistant cells in the development of all the Unc93b1 clinical manifestations.  

Because the DKO!Unc93 TKO mice completely recapitulated the phenotype of the 

DKO!DKO chimeras, the host component is most likely to be due to inflammation 

driven by one or more cytosolic sensors, and not an endosomal cytosolic sensor.  Both 

STING TKO and Unc93 TKO mice failed to develop the hypercellularity we observed in 

the long bone marrow, and therefore we propose that at a minimum, bone marrow 

hypocellularity depends on a STING triggered host cell, perhaps located in the 

hematopoietic niche of the marrow, and a TLR responsive hematopoietic cell. In both 

BM hypercellularity and splenomegaly, the relevant TLR is expected to be an RNA 

sensor (TLR7, TLR8, TLR3 or perhaps even TLR13), since endogenous DNA is not 

sufficiently degraded in DKO mice to activate TLR9 (61, 221). The BM infiltrate 

includes a high percentage of neutrophils and a similar accumulation of neutrophils in the 

BM of pristane-injected mice has been shown to be TLR7 dependent. These observations 
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may be related to the activated neutrophils recently identified in the marrow of SLE 

patients (225). 

 In summary, the combined data from the Het/DKO and Unc93 TKO/DKO chimeras 

demonstrate a critical interplay between cytosolic and endosomal sensors in the 

development of all the clinical manifestations of DKO mice and suggest that cytosolic 

sensors may play a more general role in promoting SLE and related autoimmune 

disorders. Cytosolic DNA sensors appear to be particularly responsive to inherent cell 

stress such as mitochondrial depolarization and the subsequent release of mitochondrial 

DNA into the cytosol (226, 227), or to the excessive accumulation of damaged DNA 

resulting from defective autophagosome formation (88). We previously demonstrated a 

role for the inflammasome-associated DNA sensor AIM2 in the development of arthritis 

in DKO mice. Whether RNA-sensing cytosolic sensors such as MDA-5 or RIG-I also 

play a role remains to be determined.  From a broader perspective, cytosolic sensors may 

play an active role in detecting environmental insults that can trigger the onset and/or 

perpetuation of systemic autoimmune or autoinflammatory conditions. A better 

understanding of the in vivo networks that promote the distinct features of systemic 

autoimmune diseases will provide a platform for the design of therapeutics that address 

the unmet needs of patient populations.  
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Chapter IV 
 
 
 
 
 
 

STING regulates bone formation induced by accrual of DNA 
 
 
 
 
 
 
 

The work presented in this chapter is contained within the manuscript: 
 
 

Baum R, Sharma S, Organ J, Jakobs C, Hornung V, Burr D, Rothstein A, Fitzgerald K, 

Gravallese E. STING regulates bone formation induced by accrual of DNA.  

Submitted to Arthritis & Rheumatology. 
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Summary 
 
 
Cytosolic DNA sensors detect microbial nucleic acids and induce production of type I 

IFNs and pro-inflammatory cytokines through the adaptor STING to resolve infection. 

Endogenous DNA also engages the STING pathway, contributing to autoimmune disease. 

We have identified a novel role for cytosolic DNA sensing pathways in bone by 

analyzing the DNase II/IFNaR double deficient (DKO) model of autoimmunity. In the 

absence of DNase II, self-DNA accumulates, leading to STING-dependent polyarthritis 

and articular bone erosion. Here we show that DKO mice paradoxically accumulate 

trabecular bone in long bones over time. CFU assays and bone histomorphometry 

demonstrate a predominant role for osteoblasts in this phenotype. Surprisingly, we also 

found that DNA accrual promotes ectopic bone formation in the spleen of these mice, a 

site of extramedullary erythropoiesis. Moreover, STING deficiency significantly inhibits 

bone accrual in this model. Collectively, our data demonstrate that DNA promotes 

trabecular bone formation, a process that requires an intact STING pathway. These data 

may be directly relevant to the innate immune mechanisms leading to heterotopic bone 

formation, in which viral infection or trauma result in ectopic bone in soft tissues. 

Furthermore, identification of pathways linking innate immunity and bone should reveal 

novel targets for treatment of dysregulated bone remodeling in autoimmune disease. 
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Introduction 

 

Innate immune PRRs, including cytosolic DNA sensors, detect nucleic acids from 

microbial organisms and orchestrate immune events and the production of cytokines to 

clear infection (77). Upon detection of DNA, cytosolic sensors including cGAS, 

IFI16/Ifi204 and others, signal through the adaptor STING, an endoplasmic reticulum-

associated molecule, leading to the nuclear translocation of IRF-3 and NF-κB, and 

production of type I IFNs and pro-inflammatory cytokines, respectively (78).   

Recent studies have demonstrated that endogenous host DNA derived from 

stressed or dying cells can also activate these same cytosolic DNA sensing pathways, 

contributing to the initiation and perpetuation of autoimmune disease (216, 217, 228). 

Inactivation of intracellular DNases in animal models leads to endogenous DNA accrual, 

resulting in autoinflammatory and autoimmune disease. For example, deficiency in the 

endonuclease DNase III (TREX1) in mice results in systemic inflammation and 

myocarditis due to accrual of DNA in the cytosol and STING-dependent production of 

type 1 IFNs and pro-inflammatory cytokines by non-hematopoietic cells (90, 218). In 

humans, loss-of-function mutations in TREX1 are associated with the autoimmune 

disorders Aicardi-Goutieres Syndrome, chilblain lupus, and SLE (91-96). Further 

evidence for a role for the STING pathway in autoimmunity is provided by the discovery 

of human gain of function mutations in Tmem173, leading to constitutive activation of 

STING in fibroblasts and endothelial cells. This activation is associated with enhanced 

production of type I IFNs and pro-inflammatory cytokines, resulting in the clinical 
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syndrome STING-associated vasculopathy with onset of infancy (SAVI), manifested by 

vasculopathy, skin lesions, pulmonary fibrosis, and arthritis (97). 

Finally, endogenous DNA accrual from inactivation of DNase II, a lysosomal 

nuclease that degrades double-stranded DNA, has also been associated with 

autoimmunity. In humans, SNPs in the promoter region of the DNase II gene that result 

in reduced DNase II activity are associated with the development of RA (99). In mice 

deficient in DNase II, DNA accumulates in phagolysosomes and secondarily in the 

cytosol of multiple cell types including macrophages, fibroblasts and dendritic cells (88). 

Macrophages also engulf nuclei from apoptotic cells, leading to DNA accrual and the 

production of pro-inflammatory cytokines including TNF, IL-1b, and IL-6, as well as 

type 1 IFNs. Excessive type I IFN production leads to anemia-driven embryonic lethality, 

from which these mice are rescued when the gene for the type I interferon receptor 

(IFNaR) is also deleted. DNase II-/- IFNaR-/- double deficient (DKO) mice survive, but 

develop a distal, erosive inflammatory arthritis by 3 months of age, which is absent in 

DNaseII+/- IFNaR-/- (Het) controls (100). This arthritis is entirely abrogated in the setting 

of STING deficiency (203, 217), and is significantly attenuated by loss of the 

inflammasome-promoting cytosolic DNA sensor, AIM2 (217, 228). These DKO mice 

also develop clinical manifestations of SLE through pathways that are independent of 

STING but rely on Unc93B1, an adaptor protein required for endosomal TLR activity (61, 

217). 

 In the setting of inflammatory arthritis, the production of pro-inflammatory 

cytokines contributes to both articular and systemic bone loss due to enhanced local and 
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systemic osteoclast-mediated bone resorption and inhibition of osteoblast-mediated bone 

formation (7, 121, 229, 230). In DKO mice, we therefore anticipated the development of 

osteoporosis due to the systemic production of TNF and IL-1b (100, 202), which should 

induce osteoclastogenesis and bone resorption (4, 5, 132, 231). In addition, type I IFNs 

inhibit osteoclast differentiation, and IFNaR deficient mice demonstrate enhanced 

osteoclastogenesis and lose bone systemically (232). However, in the setting of DNA 

accrual in the DKO model of arthritis, we found an unexpected and dramatic 

enhancement of bone formation in the long bones and spleens, two sites of erythropoiesis 

and local DNA accumulation in DKO mice (100). Furthermore, STING deficiency 

abrogated this bone accrual, revealing a role for cytosolic DNA sensor pathways in bone 

remodeling. Collectively, these data demonstrate that DNA accrual promotes aberrant 

bone remodeling and may provide insights into bone disorders occurring in the context of 

autoimmunity, or in the context of disorders associated with ectopic bone formation.  
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Materials and Methods 
 
 

Mouse Strains: C57BL/6 DNase II+/- embryos were provided by Dr. S. Nagata (Osaka 

Medical School) through the RIKEN Institute, and mice were crossed to Ifnar-/- C57BL/6 

mice to produce DNase II-/- Ifnar-/- double knockout (DKO) and DNase II+/- Ifnar-/- 

heterozygous (Het) mice. DKO mice were intercrossed with STING-deficient mice to 

yield STKO mice (217). All animals were maintained in accordance with the National 

Institutes of Health Guide for the Care and Use of Laboratory Animals and were handled 

according to protocols approved by the Institutional Animal Care and Use Committee at 

the University of Massachusetts Medical School.  

Histopathologic Analyses: Left hind limbs were fixed in 4% paraformaldehyde for 24h, 

decalcified in 15% EDTA, embedded in paraffin, and sectioned at 5µm. Sections were 

deparaffinized and stained with either H&E or TRAP (170). Spleens were fixed in 4% 

paraformaldehyde for 24h, embedded in methylmethacrylate, and sectioned at 5µm. The 

sections were then stained with H&E, TRAP, Von Kossa, or Goldner’s trichrome.  

Micro–computed Tomography (micro-CT): Femurs and vertebrae were fixed in 4% 

paraformaldehyde for 48 hours, transferred to 70% ethanol, then imaged at the 

Musculoskeletal Imaging Core at UMMS using a Scanco Medical µCT 40 at 70kVp and 

114µA with resolutions of 10µm and 6µm, respectively. Analyses included trabecular 

bone within the entire femur from the proximal to distal growth plates, a 0.5 mm section 

in the central diaphysis of cortical bone, and trabecular bone within the rostral to caudal 

growth plates of the L3 lumbar vertebrae. The segmentation parameters included the 
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values: 0.8 Gauss sigma, 1.0 Gauss support, and a threshold of 220-1000 Hounsfield 

units (density range of  >600mg of HA/cm3).   

Static histomorphometric analysis: Femurs from 10 month-old Het and DKO mice 

were fixed in 10% neutral buffered formalin for 72 hours and embedded in 

methylmethacrylate, as described previously (7). The proximal femoral metaphysis was 

sectioned longitudinally (5µm), mounted to slides with non-fluorescent medium, and 

stained with McNeal’s trichrome for osteoid assessment and TRAP for osteoclast 

assessment. A region of interest approximately 4mm2 within the secondary spongiosa 

(~0.5mm distal to the growth plate) was defined, and osteoid area (O.Ar/BV), bone area 

(B.Ar.), bone surface (BS), osteoblast surface (Ob.S/BS) and osteoclast surface 

(Oc.S/BS) were measured using a Nikon Optiphot 2 microscope interfaced to a 

semiautomatic analysis system (Bioquant OSTEO 7.20.10; Bioquant Image Analysis). 

Histomorphometric measurements were performed on two sections/sample (separated by 

~25µm) and measurements were summed prior to normalization to obtain a single 

measure per sample. All parameters were measured and defined in accordance with 

ASBMR standards (233). 

ELISAs: Serum levels of Osteocalcin (Biomedical Technologies), TRAP-5b 

(Immunodiagnostic Systems), and CTX-1 (Immunodiagnostic Systems) were determined 

by ELISA according to the manufacturer’s instructions. 

Colony Forming Unit (CFU) Assays: Total bone marrow was flushed from femurs of 

2.5 month-old mice and RBCs were lysed. 2 x 10^6 cells/well were plated in 6-well 

plates in media containing α-minimum essential medium (α-MEM) without ascorbic acid, 
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20% FBS, and pen/strep. After 2 days in culture, cells were washed and exposed to 

osteoblast differentiation medium (50ug/ml ascorbic acid and 10mM β-glycerophosphate) 

for 14 days. Colony formation was assessed by staining for alkaline phosphatase (Sigma).  

Calvarial Osteoblast Cultures: Primary osteoblasts were isolated from calvariae of 

C57BL/6 pups (Charles River). 8x10^4 cells/well (6-well plate) were cultured in α-MEM 

supplemented with 10% FBS and treated with osteoblast differentiation factors (50mg/ml 

ascorbic acid and 10mM β-glycerophosphate). On day 4, the cells were transfected with 

1mg/ml of poly(dA:dT) using Lipofectamine 2000 (Invitrogen). RNA was isolated from 

the cells 5 days after transfection and subjected to quantitative polymerase chain reaction 

(qPCR).   

Quantitative RT-PCR: Total RNA was isolated and 500ng was amplified as previously 

described (7). Gene expression was normalized to expression of the housekeeping gene 

hydroxymethylbilane synthase (HMBS). All primers were obtained from Qiagen. Data 

are expressed as the fold increase in gene expression compared to normalized 

lipofectamine controls, using the 2-∆∆CT method.  

Osteoclast Differentiation and Resorption Assays: For osteoclast assays, cell culture 

experiments were performed in α-MEM containing 10% FBS, 100U penicillin and 

100µg/ml streptomycin. Cells were flushed from the bone marrow and differentiated in 

40ng/ml of M-CSF (R&D) for 4 days. For osteoclast differentiation, osteoclast precursors 

were seeded at a density of 6,000 cells/well on 96-well plates and differentiated in 

medium containing 20ng/ml of M-CSF and 10ng/ml of RANKL (R&D) for 5 days. Half 

of the medium was replaced with fresh medium/cytokines on day 3. On day 5 of 
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differentiation, the cells were fixed and stained for TRAP5 using a leukocyte acid 

phosphatase kit (Sigma). TRAP-stained osteoclasts with 3-10 nuclei were counted.  

For osteoclast resorption, osteoclast precursors were seeded at a density of 40,000 

cells/well on 24-well hydroxyapatite-coated Osteo Assay plates (Corning) and 

differentiated in α-MEM containing 40ng/ml of M-CSF and 20ng/ml of RANKL (R&D) 

for 10 days. Half of the medium was replaced with fresh medium/cytokines every two 

days. Cells were then removed with 10% bleach and wells were rinsed in water and air-

dried overnight. The wells were scanned on a flatbed scanner (Microtek 9800 XL) and 

the percentage of resorbed area was analyzed using NIH ImageJ software. 

Xrays: Organs were imaged for 1 second at 35kV using the Faxitron MX-20 machine. 

Nanostring: Total RNA was isolated using the RNeasy kit (Qiagen). Each RNA sample 

was quantitated via a Nanodrop ND-1000 spectrophotometer (Thermo Scientific), and 

volumes were adjusted to contain 100ng. RNA was hybridized and quantified with the 

NanoString nCounter analysis system (NanoString Technologies) per the manufacturer’s 

instructions. Gene-expression data were normalized to internal positive and negative 

control sets and to three housekeeping genes, i.e., GAPDH, β-glucuronidase (GUSB), and 

hypoxanthine phosphoribosyltransferase 1 (HPRT1). All values were scaled by a log2(X-

min(X)+1) function and a heatmap was generated using the open-source R-based 

software at UMMS.  

Gene Array: Total RNA was purified from spleens using the RNeasy kit (Qiagen). For 

gene array analysis, cDNA was generated from 200ng of total RNA using the 

SensationPlus FFPE Amplification and WT Labeling Kit from Affymetrix. The samples 
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were run on Affymetrix GeneChip Mouse Transcriptome Arrays 1.0 (MTA) (Affymetrix, 

Santa Clara, CA), and quality control was performed using Expression Console 

(Affymetrix, Santa Clara, CA). Expression values were RMA normalized and detection 

p-values for each probe set determined with the detectable above background (DABG) 

algorithm. Biological replicate average, fold change, and ANOVA p-value were 

calculated between groups using the transcriptome analysis console (TAC, Affymetrix). 

Differential expression of mRNAs was identified as those significantly changing at least 

1.5 fold with an ANOVA p-value <0.05. All values were scaled by a log2(X-min(X)+1) 

function and a heatmap was generated using the open-source R-based software at 

UMMS.  

Statistical analysis: Statistical significance was analyzed with the unpaired, two-tailed 

Student’s t test or ANOVA for multiple comparisons. Data are presented as the mean ± 

SE. Statistical significance is represented by the following notation in the figures: 

p<0.05=*, p<0.01=**, and p<0.001=***.  
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Results 
 
 

Deficiency of DNase II promotes trabecular bone formation.  

As reported previously, DNase II/IFNaR double deficient (DKO) mice develop a 

distal inflammatory polyarthritis accompanied by osteoclast-mediated articular bone 

erosion, resulting from the local expression of pro-inflammatory cytokines (100). We 

confirmed the presence of synovitis, pannus formation and osteoclast-mediated articular 

erosion in the distal joints of DKO mice and the absence of these findings in Het 

littermate controls (Figure 4.1A). However, despite local and systemic production of the 

pro-inflammatory cytokines TNF, IL-1β and IL-6 in these mice that promotes 

osteoclastogenesis, there is a surprising and significant accrual of trabecular bone in the 

tibiae adjacent to inflamed ankle joints, compared to Het controls (Figure 4.1B). This 

trabecular bone formation is preceded by the accumulation and persistence of a marrow 

infiltrate that we have previously shown to be dependent on the expression of both the 

STING and endosomal TLR pathways (234). 

To quantitate bone accrual in the long bones, we analyzed the femurs of female 

DKO mice from 2 to 16 months of age by micro-computed tomography (micro-CT). As 

expected, Het control mice lose trabecular bone over time due to aging, as well as to the 

absence of type I IFN signaling, which promotes osteoclastogenesis and bone loss (232). 

In contrast, arthritic DKO mice that are also deficient in type I IFN signaling 

paradoxically demonstrate a dramatic accrual of trabecular bone that appears by 5-6 

months of age and progresses over time, such that by 16 months of age the marrow cavity 

is largely replaced by bone (Figure 4.1C). Micro-CT analyses of femurs from female 
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mice confirmed a significant increase in trabecular bone volume/total volume (BV/TV), 

trabecular surface, and trabecular connectivity density in 10 month-old DKO mice 

compared to controls (Figure 4.1D). Further analysis of femurs by micro-CT in female 

mice revealed a trend toward a decrease in cortical bone volume/total volume and a 

significant decrease in cortical thickness in DKO compared to Het mice (Figure 4.2), 

demonstrating a loss of cortical bone over time in female DKO mice compared to Het 

controls. This loss may result from the accrual of trabecular bone, which provides 

mechanical support and reduces load on cortical bone. Micro-CT analyses of femurs from 

male DKO mice also revealed a trend toward increased trabecular bone surface and 

trabecular connectivity density compared to the Het controls as well as a significant loss 

of cortical bone compared to controls (Figure 4.3). Nevertheless, the trabecular bone 

phenotype was more dramatic in female mice. Thus, despite the expression of pro-

inflammatory cytokines in these mice, the effects of aging on bone, and the lack of type I 

IFN signaling, all of which would be predicted to result in bone loss, DNase II deficiency 

in fact results in the accrual of excessive trabecular bone in the long bones over time.    

Bone accrual results from an increase in osteoblast number and function  

To explore the mechanism of trabecular bone accrual in these mice, parameters of 

osteoblast and osteoclast number and function were determined. Static 

histomorphometric measurements of trabecular bone in femurs from 10-month old female 

mice showed a marked increase in the number of osteoblasts (i.e. osteoblast surface, 

Ob.S) and production of osteoid (osteoid area, O.Ar.) in DKO mice compared with 

controls (Figure 4.4A). The ratio of Ob.S/bone surface (BS) and O.Ar./B.Ar. was not 
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significantly increased, demonstrating that there are appropriate numbers of osteoblasts 

for the amount of bone produced (Figure 4.4A). A significant increase in bone surface 

covered by osteoclasts (osteoclast surface, OC.S) was also observed in DKO mice 

compared to controls, demonstrating a concomitant increase in osteoclast number 

(Figure 4.4B). Again, similar ratios of OC.S/BS exist between Het and DKO mice 

suggesting that the number of osteoclasts lining bone is the expected number for the 

amount of bone present. In this model, bone is laid down rapidly as woven bone, 

precluding measurement of bone formation rates.  

To determine whether this bone phenotype is a result of increased osteoblast 

number, colony forming unit (CFU) assays were performed. Cells from DKO bone 

marrow demonstrated an increase in CFUs compared with Het control mice, consistent 

with an increased number of mesenchymal precursors in the marrow of these mice 

(Figure 4.4C). Serum markers of bone remodeling including osteocalcin (bone 

formation), CTX-1 (bone resorption) and Trap5b (osteoclast number) in 10 month-old 

female mice demonstrated that serum levels of osteocalcin trended higher in DKO mice 

compared to controls (Figure 4.4D), consistent with an increase in osteoblast activity. 

Levels of CTX-1 and Trap5b were significantly elevated compared to controls (Figure 

4.4E), indicating increased osteoclast activity and number. To determine whether there is 

an intrinsic alteration in either differentiation or function of osteoclasts that could be 

contributing to trabecular bone accrual, osteoclast differentiation and resorption assays 

were performed. These studies showed a trend toward increased osteoclast differentiation 

in DKO compared to Het mice (Figure 4.4F) and no significant difference in resorption 
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on hydroxyapatite-coated plates (Figure 4.4G) between DKO mice and controls. Overall, 

these data demonstrate that the trabecular bone accrual in DKO mice results from an 

increase in osteoblast number, with a concomitant increase in osteoclast differentiation 

and activity. The balance between osteoblast and osteoclast activity over time thus 

appears to skew in favor of bone formation in the setting of DNA accrual, and does not 

result from a decrease in osteoclast number or function. 

Ectopic Bone Forms in DKO spleens with aging  

Imaging of 10 month-old female Het and DKO mice was performed to evaluate 

the entire skeleton. Unexpectedly, X-ray images revealed multiple radiopacities in the left 

upper abdomen of DKO mice, suggesting areas of splenic calcification. Splenic 

enlargement was present in DKO mice compared to Het controls, as previously reported, 

and calcified nodules in the spleen measured up to 3mm (Figures 4.5A and B). 

Histologic staining demonstrated woven bone within splenic white pulp (Figure 4.5C), 

with osteoblasts (Figure 4.5D) and osteoclasts (Figure 4.5E) lining the surface of the 

bone. Additional stains showed that the bone is mineralized (Figure 4.5F) and robust 

osteoid production by osteoblasts is present at bone surfaces (Figure 4.5G). Analysis of 

spleens from younger mice revealed that ectopic bone formation in the spleen begins at 

approximately 9 months of age in female mice and accrues over time (data not shown). 

Bone was not identified in lymph nodes, liver, kidney, heart, intestine or brain (Figure 

4.5H), revealing that ectopic bone formation is unique to the spleen. While many mouse 

models of autoimmunity do show splenic enlargement, the presence of ectopic bone is 
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extremely rare (235), and suggests that osteoblasts are generated from mesenchymal 

precursor cells recruited to the spleen or present locally within the spleens of DKO mice.  

 To further explore mechanism, we utilized a customized Nanostring code set 

containing 150 genes involved in innate immune and bone pathways to identify 

differences in gene expression in the spleens of DKO and Het control mice. This analysis 

revealed significant upregulation of genes associated with bone remodeling in DKO mice 

compared to controls, and confirmed the spleen as a site of active bone formation (Figure 

4.5I). The Col1A1 gene that produces a component of type 1 collagen, a major 

constituent of bone, was highly upregulated in DKO mice compared to controls as were 

the Bglap and Spp1 genes encoding osteocalcin and osteopontin, respectively, both 

noncollagenous proteins found in bone. Moreover, the genes encoding alkaline 

phosphatase, as well as DMP1, a critical factor for bone mineralization produced by 

osteocytes, were also upregulated in DKO compared to Het controls. Upregulation of the 

matrix metalloproteinase (MMP) genes MMP-9 and MMP-13 in DKO compared with 

Het spleens reflect remodeling of bone extracellular matrix. Additionally, the CTSK and 

ACP5 genes, encoding cathepsin K and Trap5b, were also significantly upregulated in 

DKO compared to Het spleens, demonstrating enhanced osteoclast numbers, consistent 

with bone remodeling.  

Histologic analysis strongly suggests that the process of bone formation in DKO 

mice is similar in the long bones and spleen (Figure 4.5J), with complete lack of 

evidence for endochondral ossification at either site; rather, the production of organic 

bone matrix, with subsequent mineralization of that matrix, is noted at both sites (Figure 
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4.5J). In DKO mice, the long bones and spleen are sites of erythropoiesis (100, 202). To 

determine whether bone accrual was present in bones in which erythropoiesis typically 

does not occur in mice, such as the vertebrae (236), vertebral bodies were subjected to 

micro-CT analysis, revealing a significant decrease in BV/TV, trabecular surface, and 

trabecular connectivity density in DKO mice compared to Het controls (Figure 4.6). 

These data suggest that local factors that promote the differentiation of mesenchymal 

precursor cells to osteoblasts may be released at sites of erythropoiesis (long bones and 

spleen) (98, 100).  

DNA accrual promotes enhanced osteoblast differentiation and function in the spleen 

The finding of bone in the spleen of DKO mice provides additional evidence that 

bone accrual in this model is driven by the excessive differentiation and activity of 

osteoblasts, leading to the production and mineralization of bone matrix. This could result 

from an increase in mesenchymal osteoblast precursors due to factors produced during 

the process of erythropoiesis that promote osteoblast differentiation, or from enhanced 

osteoblast differentiation due to DNA accumulation within the cytosol of mesenchymal 

precursor cells themselves. To test the effect of DNA on differentiation, calvarial 

osteoblasts were transfected with the dsDNA mimetic poly(dA:dT) and differentiation 

was determined by expression of alkaline phosphatase. Interestingly, transfection with 

DNA upregulated the expression of p204 in calvarial osteoblasts, a cytosolic DNA sensor 

previously shown to also act as a transcriptional coactivator for bone formation (237-239). 

However, alkaline phosphatase levels were significantly reduced in cells transfected with 

dsDNA (Figure 4.7), suggesting that accumulation of dsDNA in osteoblast precursors 
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inhibits, rather than promotes, differentiation. These results support the alternative 

hypothesis that there is an increase in osteoblast precursor cells and/or that extrinsic 

factors expressed by other cell types drive the differentiation of mesenchymal precursors 

to the osteoblast lineage in this model. 

To identify factors promoting osteoblast differentiation and bone formation, gene 

expression in 10 month-old DKO spleens was examined by array analysis. This analysis 

revealed upregulated expression of numerous genes regulating osteoblast differentiation 

and bone formation (Figure 4.8). Among the most highly upregulated osteoblast-related 

genes in whole spleen were two genes in the transforming growth factor beta (TGFβ) 

family, Tgfbi and Tgfbr1. TGF-β signaling promotes the expansion of osteoblast 

progenitors and contributes to the early differentiation of osteoblasts (177). Moreover, the 

gene encoding the BMP-signaling transducer Smad1, which regulates expression of the 

osteoblast-specific transcription factors Runx2 and Osterix, as well as the Runx2 gene 

itself, were upregulated in DKO mice compared to controls. The Bmp1 gene that encodes 

a type I collagen C-propeptidase required for mature collagen maturation in bone was 

also upregulated in DKO mice compared to Het controls. We did not detect upregulation 

of other BMP receptor ligands known to promote osteoblast differentiation, including 

BMP2, 4, 6 or 7. In addition, we found an upregulation of the Gdf3 gene, a member of 

the TGF-β superfamily and an inhibitor of BMP signaling, which would be expected to 

inhibit bone formation and may represent a compensatory mechanism to inhibit local 

osteoblast differentiation.  
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          Regulation of several other genes supports the interpretation of splenic tissue as a 

site at which mesenchymal precursor cells are differentiating to osteoblasts. The Vdr 

gene, encoding the vitamin D receptor, is upregulated in DKO compared to Het mice. 

The vitamin D receptor has been shown to induce expression of factors that enhance 

osteoblast differentiation and inhibit apoptosis of osteoblasts. Recently, transgenic 

overexpression of Vdr in mature osteoblasts was shown to increase trabecular bone 

volume (240). The Serpinf1 gene, encoding pigment epithelium-derived factor (PEDF), 

was also upregulated in DKO compared to Het spleens. PEDF modulates human and 

murine mesenchymal stem cell (MSC) differentiation by promoting osteogenesis and 

inhibiting adipogenesis (241). In addition, the Serpinh1 gene, encoding heat shock 

protein 47 (HSP47), is upregulated in DKO spleens compared to controls. Hsp47 is 

localized in the endoplasmic reticulum and acts as a molecular chaperone for the 

maturation of collagen (242). Finally, expression of the Pth1r gene encoding the PTHR 

was upregulated, which would promote osteoblast differentiation in the presence of PTH 

(243).  

The STING pathway is required for bone formation 

              In order to further define mechanism, we examined the role of the STING 

pathway in bone formation in DKO mice. In this model, cytosolic sensors detect host 

DNA and signal through STING to induce production of pro-inflammatory cytokines 

including TNF, IL-6, and IL1β. We and others have previously shown that arthritis in 

DKO mice is abrogated by deletion of STING in STING-/-DNase II-/-IFNaR-/- triple 

knockout (STKO) and in STING-/-DNase II-/- mice (203, 217). In order to determine 
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whether the osteogenic factors identified in DKO mice were upregulated in a STING-

dependent fashion, we performed gene array analysis in STING deficient DKO mouse 

(STKO) spleens. Expression of pro-osteogenic genes including Tgfbi, Tgfbr1, Smad1, 

Runx2, Vdr, Serpinf1, and Pth1r is not induced in the setting of STING deficiency 

(Figure 4.8). 

               Importantly, in vivo, STING deficiency in DKO mice ameliorates not only 

arthritis, but also bone accrual in both the long bones (Figure 4.9A) and spleens (Figure 

4.9B). Trabecular BV/TV and trabecular bone surface are dramatically decreased in 

STKO compared to DKO mice. Moreover, the expression of genes associated with 

osteoblast activity (Col1A1, Spp1, Col1A2, Bglap, Omd, Alpl, Ibsp, Phex, Dmp1), matrix 

bone remodeling (MMP13), and osteoclasts (CTSK, ACP5) are significantly decreased in 

STKO compared to DKO spleens (Figure 4.9C). These data demonstrate that local bone 

formation in the setting of DNA accrual is dependent upon an intact STING pathway, and 

reveal a novel mechanism for aberrant bone remodeling. 
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Figure 4.1 Trabecular bone accrual occurs over time in long bones of DKO mice.   

A) Midfoot, 10 month-old mice (female, n=4 mice/genotype): Representative H&E 

(upper panels) and TRAP (lower panels) stained images of inflammation and articular 

bone erosions (arrows). Magnification 4x and 20x, respectively. B) Tibiae, 10 month-old 

mice (female, n=6 mice/genotype). Representative images of H&E stained sections. 

Arrows indicate trabecular bone. Magnification 4x. C) Micro-CT images of femurs at 2, 

6, 10, and 16 months (female, n=3-7 mice/genotype/age). Left images: cortical and 

trabecular bone. Right images: 3D reconstruction of trabecular bone. D) Quantitation of 

micro-CT data from 10 month-old mice (female, n=6-7 mice/genotype) for trabecular 

bone volume per total volume (BV/TV), trabecular bone surface, and trabecular 

connectivity (con.) density. Data are representative of 3 individual experiments. Values 

are the mean ± SEM compared to Het:  **=p<0.01, ***=p<0.001.   
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Figure 4.2 Cortical bone loss in DKO femurs. Transverse micro-CT images of femurs 

and quantitation of cortical bone volume/total volume (BV/TV) and cortical thickness for 

10 month-old mice (female, n=6-7 mice/genotype). Data are representative of 2 

individual experiments. Values are the mean ± SEM compared to Het: **=p<0.01. 
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Figure 4.3 Trabecular bone accrual and cortical bone loss in male DKO femurs.  

Representative micro-CT images of trabecular and cortical bone in femurs, and 

quantitation of trabecular bone surface, trabecular connectivity density, cortical bone 

volume/total volume (BV/TV), and cortical thickness (10.5-11.5 month-old mice, male, 

n=4-6 mice/genotype). Data are representative of 2 individual experiments. Values are 

the mean ± SEM compared to Het: **=p<0.01. 
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Figure 4.4 Osteoblast and osteoclast parameters in DKO mice. A and B) Static 

histomorphometry, femurs, 10 months (female, n=4-5 mice/genotype). Abbreviations: 

osteoblast surface (Ob. S), bone surface (BS), osteoid area (O. Ar.), bone area (B.Ar.), 

and osteoclast surface (OC. S). C) Representative images from osteoblast colony forming 

unit (CFU) assays, 2.5 month-old mice (male, n=5 mice/genotype). Colonies are stained 

for alkaline phosphatase (pink). D and E) Serum bone turnover markers: Osteocalcin, C-

terminal peptides of type I collagen (CTX-1), and Trap5b. 10 month-old mice (female, 
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n=6-12 mice/genotype). F) Number of Trap+ cells in osteoclast differentiation cultures. 

2.5 month-old mice (male, n=3 mice/genotype). G) Percentage of hydroxyapatite area 

resorbed by osteoclasts. 2.5 month-old mice (female and male, n=6-7 mice/genotype). 

Data are representative of 2 individual experiments. Values are the mean ± SEM 

compared to Het; *=p<0.05, **=p<0.01, ***=p<0.001.   
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Figure 4.5 Ectopic bone forms in DKO spleens. A) Representative images and X-rays 

of spleens from 10 month-old mice (female, n=6 mice/genotype). B) Islands of bone 

removed from 10 month-old female DKO spleens. C-G) Representative images of 

histologic stains performed on DKO spleen sections. 10 month-old mice (female, n=3 

mice). C and D) H&E stained sections showing bone formation in white pulp 

(Magnification 4x & 20x, respectively). Arrows identify osteoblasts lining the surface of 

bone. E) TRAP stain, osteoclasts (arrows). F) Von Kossa/Fast Green stain shows 

mineralized bone (black, arrow). G) Goldner’s trichrome stain demonstrates osteoid 
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production (dark pink, arrows). H) Representative X-rays of organs, 22 month-old mice 

(female, n=3 mice/genotype).  I) Heatmap: Nanostring mRNA profiling of key bone 

remodeling genes, 10 month-old spleens (female, n=3 mice/genotype). Mean intensities 

of gene expression were transformed by a log2 function. Table lists fold change in DKO 

vs. Het gene expression and the corresponding p values. J) Representative H&E images 

of bone in DKO spleen and tibia. Arrows indicate fibrous tissue representing early bone 

matrix that may become mineralized.  
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Figure 4.6 Loss of bone in vertebral bodies in DKO mice. Micro-CT images of 

trabecular vertebral bone and quantitation of trabecular bone volume/total volume 

(BV/TV), trabecular bone surface, and trabecular connectivity density. Data are 

representative of 2 individual experiments. Values are the mean ± SEM compared to Het; 

*=p<0.05, **=p<0.01, ***=p<0.001. 
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Figure 4.7 Transfection of DNA in osteoblasts induces p204, but inhibits 

differentiation. Fold change in p204 and alkaline phosphatase gene expression in 

calvarial osteoblasts stimulated with the DNA ligand poly(dA:dT), lipofectamine, or 

medium control (cntrl).   
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Figure 4.8 STING-dependent induction of factors regulating osteoblast 

differentiation in DKO mice. Heatmap: Mean intensities of expression in gene arrays, 

spleen, 10 month-old mice (n=3-4 mice/genotype). Signals were transformed by a log2 

function. Table lists fold change in DKO vs. Het and STKO vs. Het gene expression and 

the corresponding p values.  
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Figure 4.9 Bone accrual in DKO mice requires the STING pathway. A) Sagittal and 

transverse micro-CT images of femurs and quantitation of micro-CT data for trabecular 

bone volume/total volume (BV/TV) and trabecular bone surface. The Het and DKO 

values are the same as those shown in Figure 1D. 10 month-old mice (female, n=4-7 

mice/genotype). Values are the mean ± SEM compared to Het; *=p<0.05, **=p<0.01, 

***=p<0.001. B) Representative images and X-rays of spleens. All analyses performed 

on 10 month-old mice (female, n=4-6 mice/genotype). C) Heatmap: Mean intensities of 

expression in gene arrays, spleen, 10 month-old mice (n=3-4 mice/genotype). Signals 

were transformed by a log2 function. Table lists fold change in DKO vs. Het and STKO 

vs. Het gene expression and the corresponding p values. 
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Discussion 

 

In this study we demonstrate a novel pathway regulating bone homeostasis and show 

that accrual of undegraded DNA in cytosolic cellular compartments promotes the 

activation of cytosolic nucleic acid sensors, leading to trabecular bone accrual in the long 

bones and spleen. This occurs despite the presence of arthritis and osteoclast-mediated 

articular bone erosion, and the production of pro-inflammatory cytokines that promote 

bone loss. Bone formation results from an increase in osteoblast number and function and 

the bone phenotype manifests late, beginning at approximately 5-6 months of age in long 

bones, while bone formation in the spleen appears by 9-10 months. This late 

manifestation is likely due to the requirement for accrual of DNA over time, as well as to 

the time required for the enhancement of bone formation over bone resorption to 

ultimately favor bone accrual.  

  One innate immune pathway that is essential for the manifestation of this bone 

phenotype is the STING pathway as bone accrual in long bones and spleen is 

significantly inhibited in the absence of STING. Macrophages in the bone marrow and 

spleen in DKO mice have previously been shown to carry undigested DNA due to 

engulfment of extruded erythroid nuclei released during the late stages of erythropoiesis, 

and their inability to break down this DNA. In contrast, macrophages within joint 

synovium fail to engulf apoptotic cells (202), and osteoclast-mediated bone loss occurs 

locally within joints. This difference may be due to lack of expression by joint-based 

macrophages of the required receptors for recognition of apoptotic cells, including Tim4 
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(244). The failure to degrade DNA leads to entrance of DNA into cytosolic compartments 

and activation of downstream pathways. STING regulates critical aspects of these 

processes.  

We have shown that other sensors are also activated by nucleic acids in this model, 

including the DNA-sensing PYHIN protein AIM2 and the RNA-sensing endosomal 

TLRs (61, 217, 228). DKO mice demonstrate a constellation of systemic autoimmune 

symptoms including the early onset of splenomegaly and associated extramedullary 

erythropoiesis. Extramedullary erythropoiesis is associated with markedly decreased 

numbers of erythroid lineage Ter119+ cells in the BM and increased numbers of Ter119+ 

cells in the spleen (61). It has been proposed that disrupted erythropoiesis is triggered by 

the failure of DNase II-deficient erythroid island macrophages in the BM to degrade the 

reticulocyte nuclei extruded from erythrocyte precursors during late phase erythropoiesis 

(98). Intriguingly, both splenomegaly and extramedullary erythropoiesis appear to be 

TLR dependent, as they are absent in Unc93B1-deficient DKO mice (61), and persist in 

STING-deficient TKO mice (217). Since bone accrual in DKO mice occurs at sites of 

erythropoiesis, it is likely that Unc93B1-dependent TLR pathways also contribute to bone 

formation in this model.   

Affymetrix data from spleen samples demonstrated a major drive towards 

osteogenesis and identified a number of osteogenic factors that are upregulated at this site 

of extramedullary erythropoiesis. Among the most highly regulated of the osteogenic 

factors in whole spleen were those genes in the transforming growth factor beta (TGF-β) 

family. Although the role of TGF-β signaling in bone is complex, TGF-β isoforms and 
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their receptors (including type I receptor (TGFβRI)) are known to expand the pool of 

mesenchymal osteoblast progenitor cells and promote early differentiation and 

commitment to the osteoblast lineage (158). Moreover, mice with tissue-specific removal 

of TGFβRI show reduced trabecular bone in the long bones and decreased proliferation 

and differentiation of osteoblasts (245). Additionally, the genes encoding the osteogenic 

BMP-signaling transducer Smad1 and the osteoblast-specific transcription factor Runx2 

were upregulated in DKO mice compared to controls.  

    Bone formation in the long bones and spleen appears to occur by similar 

mechanisms, given the gene expression profiles and histologic features at these sites. 

However, bone formation in the spleen requires the presence of a population of 

mesenchymal osteoblast precursor cells that are either recruited to splenic tissue, or are 

resident within this site. One possible mesenchymal precursor with osteogenic potential is 

the pericyte. Microvascular pericytes have long been known to serve as a reservoir for 

multiple cellular lineages in joints, including osteoblasts (246). It has been shown that 

vascular pericytes implanted into athymic mice reproducibly form cartilage and bone. 

Furthermore, these cells can secrete components of bone matrix including bone 

sialoprotein, which is associated with initiation of bone mineralization and assists in the 

nucleation of hydroxyapatite (246). Bone forms in DKO spleens in a process similar to 

what is seen in implanted vascular pericyte cultures. Pericytes may arise from a CD34-

expressing progenitor cell within vessel walls (247), and it is of interest that bone in the 

spleen forms in regions of white pulp, areas rich in vasculature. 
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   These findings are likely related to the dysregulated bone remodeling occurring in 

autoimmune disease, as well as to several human diseases in which abnormal bone 

formation occurs in soft tissues. Heterotopic ossification (HO) is a debilitating condition 

associated with formation of lamellar bone in extra-skeletal sites. Acquired HO occurs in 

cases of soft tissue trauma including amputation, joint replacement surgery, and traumatic 

brain and spinal cord injuries (185). The etiology and pathogenesis of acquired HO is 

unknown and treatments aim to limit the associated inflammation. Hereditary HO is seen 

in the rare genetic disorder fibrodysplasia ossificans progressiva (FOP). In the case of 

FOP, gain-of-function mutations in the ACVR1 gene contribute to this disorder, leading 

to enhanced BMP signaling (248). Despite the presence of ACVR1 mutations, FOP 

patients exhibit variability in the severity and progression of their disease, and form bone 

episodically, rather than continuously, following viral infections, immunizations, or 

tissue trauma (184, 193, 249). These triggers often precede ectopic bone formation and 

strongly implicate inflammatory innate immune pathways in the pathogenesis of HO. It is 

likely that viral DNA or DNA released from trauma/damaged cells may overwhelm the 

activity of DNase II, triggering the activation of innate immune DNA sensors. Further 

investigation into these mechanisms should provide novel pathways for the prevention 

and treatment of bone remodeling in autoimmune disease and in heterotopic bone 

formation. 
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There is increasing evidence for a role of TLR and cytosolic sensing of 

endogenous DNA in autoinflammatory conditions (250). While these innate immune 

PRRs were first recognized to detect microbial DNA and orchestrate inflammatory 

responses to resolve infection, several sources of endogenous DNA have now been 

shown to inappropriately trigger these sensors, leading to the development of multiple 

examples of systemic inflammation (90, 97, 100, 251). The objective of this dissertation 

is to examine the contribution of three separate DNA-sensing pathways, the STING, 

AIM2, and endosomal TLR pathways, to the initiation and perpetuation of 

autoinflammatory arthritis and bone remodeling. 

Although RA is classically thought of as a disease driven by adaptive immunity, 

macrophages, dendritic cells, and neutrophils are abundant in arthritic joints, suggesting 

that innate immune pathways play central roles in the pathogenesis of this disease	(252). 

Interestingly, DNase II deficiency was recently shown to result in DNA accrual in 

macrophages and neutrophils and result in a phenotype that resembles RA	(100). Erosive 

inflammatory arthritis, autoantibody production, and splenomegaly are present in DNase 

II/IFNaR deficient (DKO) mice, but not in the Het (DNase+/- IFNaR-/-) littermate 

controls. In Chapter II, we examined the role of innate immune PRRs in driving the 

autoimmune phenotype of DKO mice. To evaluate whether cytosolic or Unc93-

dependent endosomal DNA sensors contribute to the clinical manifestations of DKO 

mice, genes involved in DNA sensor signaling were deleted on the DKO background. 

Genetically altered mice include STING/DNase II/IFNaR TKO (STING TKO), 
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AIM2/DNase II/IFNaR TKO (AIM TKO), and Unc93b/DNase II/IFNaR TKO (Unc93 

TKO) mice.   

 Thorough examination of inflammation in these mouse lines revealed important 

roles for both the STING and AIM2 pathways in the pathogenesis of arthritis. Clinical 

joint scoring, histologic evaluation, and cytokine analysis demonstrated a significant 

attenuation of arthritis in STING TKO and AIM TKO mice compared to DKO mice; 

however, joint inflammation persisted in Unc93 TKO mice. DKO mice not only develop 

arthritis, but they also exhibit markedly enlarged spleens as a result of extramedullary 

hematopoiesis. We and others have shown that splenomegaly is greatly reduced in Unc93 

TKO and AIM TKO mice	 (61). Whereas, STING TKO mice still develop massively 

enlarged spleens. We also demonstrate that DKO mice produce autoantibodies against an 

extensive panel of autoantigens, including RNA and histones, as detected by autoantigen 

arrays. Remarkably, autoantibody production was almost entirely dependent on 

endosomal TLR nucleic acid sensing receptors, and not on the STING or AIM2 

pathways. This evidence strongly suggests that the innate immune system plays a 

prominent role in the pathophysiology of inflammatory arthritis. Moreover, these data 

demonstrate that STING-dependent cytosolic sensors, AIM2, and endosomal TLRs 

dependent on Unc93b play distinct roles in the manifestations of autoimmunity, as each 

pathway contributes differently to arthritis, autoantibody production, and splenomegaly.  

 This study was the first to reveal a role for AIM2 as a sensor of endogenous 

nucleic acids in the pathogenesis of joint inflammation. Upon detection of DNA, AIM2 

forms a caspase-1 activating inflammasome that cleaves pro-IL1β and pro-IL18 into their 
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active forms	(84, 253). Although our study showed that AIM2 deficiency decreased joint 

inflammation in DKO mice, we did not definitely determine whether this attenuation of 

inflammation was due to decreased levels of IL-1β, IL-18 or both. Administration of IL-

1β and/or IL-18 blocking antibodies in DKO mice would reveal whether one or both 

cytokines contribute to the joint inflammation. Importantly, IL-1 blockade has already 

been evaluated in patients with RA (254). Treatment with anakinra, a recombinant IL-1 

receptor antagonist, is well tolerated and more effective than placebo; however, anti-TNF 

and anti-IL6 therapies have proven to be superior in the treatment of RA	 (255, 256). 

Today anakinra is typically used to treat autoinflammatory diseases including Still’s 

disease and rare hereditary fever syndromes (257-259). 

 This study also demonstrates that the STING and Unc93b pathways contribute to 

inflammatory arthritis and autoantibody production, respectively. However, we did not 

identify the exact cytosolic sensors and endosomal TLRs that detect the nucleic acid in 

DKO mice, leading to these phenotypes. A number of DNA sensors trigger the STING 

pathway including cGAS, IFI204, DAI, and DDX41 (79-83). Recently, deletion of cGAS 

in DNase II-/- mice was shown to rescue the mice from embryonic lethality as well as 

ameliorate the erosive polyarthritis (260). However, the contribution of other STING-

dependent cytosolic sensors to the autoimmune phenotype of DKO mice has yet to be 

determined. The TLR(s) that detects the nucleic acid in DKO mice and leads to a robust 

autoantibody response is also unknown. Unc93b is involved in the translocation of 

TLR3/7/8/9 from the ER to endosomal compartments	 (261). Thus, any or all of these 

endosomal TLRs may be contributing to the autoantibody production in this model.  
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 Our data strongly suggest that inhibition of STING and/or AIM2 pathways may 

be beneficial for the treatment of inflammatory joint diseases. Importantly, certain DNA 

sequences of TTAGGG repeats, known as suppressive oligodeoxynucleotides (ODN), 

have been shown to abrogate activation of cytosolic and endosomal nucleic acid receptors 

(262). These suppressive ODNs function as competitive inhibitors by binding DNA 

sensors and competing with immune-stimulatory DNA. Additionally, suppressive ODNs 

have been shown to bind AIM2 and prevent the recruitment of ASC and assembly of the 

inflammasome (263). It is of interest to determine whether these ODNs would ameliorate 

joint inflammation in DKO mice. Additionally, systemic administration of suppressive 

ODNs in other murine models of arthritis would further determine whether this strategy 

would be of therapeutic value in the treatment of RA.  

Although suppressing the STING pathway may be a beneficial therapeutic 

approach for the treatment inflammatory arthritis, this approach may also exacerbate 

tumor growth	(264). Recent studies have shown that CD8+ T cell priming against tumors 

was defective in STING-deficient and IRF3-deficient mice (265). Importantly, tumor-

derived DNA was found to stimulate the STING pathway in dendritic cells and drive the 

production of type I interferons, leading to subsequent T cell priming against tumor-

associated antigens. Moreover, in a glioma mouse model, tumors were shown to grow 

more aggressively in STING-deficient mice, while administration of the STING agonist 

c-di-CMP prolonged the survival of glioma-bearing mice (266). Furthermore, intra-tumor 

injection of STING agonists have been shown to generate an anti-tumor T cell response 

and induce profound regression of established tumors (267). Thus, a tenuous balance 
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between the activation and inhibition of the STING pathway exists. If inappropriately 

activated, the STING pathway can lead to autoinflammatory disease, and if continuously 

inhibited this pathway may result in promoting tumor growth.  

Chapter III of this dissertation delineates the contribution of hematopoietic and 

non-hematopoietic cells to the various autoimmune manifestations in DKO mice. The 

persistence of inflammation within arthritic joints likely results from a complex 

interaction between leukocytes and stromal cells. Synovial hyperplasia is a hallmark of 

RA, and synovial fibroblasts from RA patients have been shown to recruit and prolong 

the survival of leukocytes	(268). Although macrophages were identified as a key player 

in the generation of arthritis in DKO mice, we questioned whether stromal cells also 

contributed to the arthritic and autoimmune phenotypes. Therefore, we generated a series 

of adoptive transfer experiments designed to clarify the role of radioresistant stromal cells 

and bone marrow derived donor cells in sensing DNA and contributing to autoimmunity.  

Bone marrow chimeras were made in which neither donor nor recipient cells 

expressed IFNaR, and we found that the absence of DNase in both recipient and donor 

cells is needed for inflammation in the joints, splenomegaly and extramedullary 

hematopoiesis in the spleen, granulocytosis in the bone marrow and spleen, altered B cell 

development, and autoantibody production. The relative contributions of radioresistant 

stromal cells and sensitive hematopoietic cells to these phenotypes were previously 

unknown. Through the use of Unc93 TKO bone marrow chimeras, we further showed 

that endosomal TLR signaling in hematologic donor cells is required for splenomegaly, 

ANA production, and bone marrow infiltration of inflammatory cells. Nevertheless, 
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DNase II-/- stromal cells are absolutely required for the expression of these TLR-

dependent disorders. These studies add new insights into the cells responsible for DNA 

sensor signaling during disease and suggest that both hematopoietic and stromal host 

cells play significant roles in DNA-driven autoimmunity. Moreover, these results suggest 

that therapeutics should target not only hematopoietic but also stromal elements in the 

setting of inflammatory arthritis. The design of therapeutics that target stromal 

compartments may address the unmet needs of RA patient populations. 

Radioresistant stromal cells have previously been reported to initiate 

inflammation in another model of DNA-driven autoimmunity. Stetson and colleagues 

reported that in Trex1-deficient mice, endogenous retroelements accumulate and trigger 

STING-dependent cytosolic sensors, resulting in autoimmune myocarditis	(90, 216, 269). 

By using a Trex1-/- IFN-reporter line, they also identified that autoimmunity initiates in 

non-hematopoietic cells, specifically in cardiac endothelial cells (218). Trex1 deficiency 

in stromal cells was sufficient to activate Wt T and B lymphocytes and trigger a systemic 

response. In contrast, our data show that DKO mice require both stromal and 

hematopoietic cells to drive joint inflammation. Another difference between these two 

models is that the Trex1-deficient phenotype is dependent on type I IFNs; whereas, both 

the STING-dependent and Unc93-dependent aspects of our DKO mice are type I IFN 

independent due to the absence of a functional IFNaR. The chimera data presented in 

Chapter III were thus created in a system where type I IFN signaling is absent. The 

immune system can be significantly affected by IFNaR signaling and type I IFNs are 

critical factors induced in response to DNA sensing	 (270, 271). Thus, it may be of 



	

 
	

127	 	

interest to generate DKO->WT bone marrow chimeras. In this situation, the radioresistant 

host cells can respond to the IFN produced by the DKO hematopoietic cells, and the 

potential contribution of type I IFNs can be explored in this scenario. 

The activated hematopoietic cell that contributes to inflammation in this model is 

likely the macrophage since DNase II is required for the degradation of DNA 

phagocytosed by myeloid lineage cells	(98,	100). However, the radioresistant cell(s) that 

contributes to inflammation in DKO mice remains to be determined. Synovial fibroblasts 

play a key role in the pathogenesis of RA. They are a source of pro-inflammatory 

cytokines and promote the survival and retention of leukocytes in the inflamed joint	

(101). Therefore, it is likely that synovial fibroblasts play a critical role in the initiation 

and perpetuation of disease in our model. The generation of DKO->STING TKO and 

STING TKO->DKO bone marrow chimeras would determine whether or not STING-

dependent cytosolic sensors detect DNA and initiate inflammation in radioresistant cells, 

hematopoietic cells, or both. Although we assume that the radioresistant cell is a stromal 

component, we cannot rule out a role for embryonally-derived macrophages. These are 

radioresistant tissue resident macrophages that home to peripheral tissues during fetal 

development, and could reside in synovial tissues (224). 

Lastly, the research in chapter IV demonstrates a novel role for cytosolic DNA 

sensing pathways in bone. Innate immune PRRs have largely been studied in 

macrophages and dendritic cells in the context of inflammation	 (272); however, the 

impact of these pathways on bone remodeling had not been previously evaluated. Using 

the DNase II/IFNaR DKO model of inflammatory arthritis, we demonstrate that DNA 



	

 
	

128	 	

accumulation in cytosolic compartments promotes the activation of STING-dependent 

cytosolic sensors, leading to trabecular bone accrual in the long bones over time and 

ectopic bone formation in the spleens. This occurs despite the production of pro-

inflammatory cytokines in this model, which would induce bone loss. CFU assays and 

bone histomorphometry demonstrate a predominant role for osteoblasts in this phenotype. 

Moreover, deficiency of the STING pathway significantly inhibits this bone 

accumulation. These findings are the first to demonstrate that DNA accrual can promote 

ectopic bone formation, a novel and likely significant finding. This work also reveals a 

role for the STING pathway in bone and may unveil new targets for the treatment of bone 

disorders. 

The STING pathway is essential for the manifestation of the bone phenotype in 

the long bones and spleen of DKO mice. Assuming that there is a DNA trigger, it would 

be of interest to identify the relevant receptor that is leading to this bone accrual. 

Cytosolic sensors that activate STING include cGAS, IFI16 (or its mouse orthologue 

p204), DDX41, and DAI	 (79-83). Evaluating the bone phenotype of DKO mice 

intercrossed to mice deficient in one of these receptors would therefore be of interest. Of 

these receptors, p204 is the only DNA sensor that has been linked to bone. Interestingly, 

apart from its role as a DNA sensor, p204 has also been shown to act as a transcriptional 

coactivator for runt-related transcription factor 2 (Runx2), an essential transcription 

factor for osteoblast differentiation	 (237, 238). Additionally, p204 has been shown to 

release Runx2 from inhibitor of differentiation (Id) proteins	 (239). Specifically, p204 

binds Id proteins and transports them from the nucleus to the cytosol. By removing Id 
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proteins from the nucleus, p204 allows Runx2 to bind its target genes. Thus, p204 is a 

likely sensor that may be leading to the bone accumulation in the DKO model. Given the 

in vitro studies mentioned above, p204 may also play a role in normal bone homeostasis. 

In this regard, it would be interesting to evaluate the bone phenotype in p204-deficient 

mice. cGAS is another DNA sensor that may contribute to the DKO bone phenotype. 

Inhibition of cGAS in DNase II-deficient mice has been recently shown to prevent the 

inflammatory arthritis associated with this model	 (260). Thus, cGAS detects DNA in 

DKO mice, triggering inflammatory pathways and potentially bone formation. This work 

suggests that innate immune pathways regulate bone remodeling in autoimmune settings 

on the DKO background. These same pathways may also play a role in normal bone 

homeostasis. It would thus be of interest to analyze the bone phenotypes in STING-

deficient, p204-deficient, and cGAS-deficient mice.   

The bone phenotype in DKO mice manifests late, beginning at approximately 5-6 

months in the long bones, and not appearing in the spleens until nearly 10 months. By 20 

months of age, the marrow space in the long bones is almost completely replaced by bone 

and large islands of bone have formed in nearly every area of the spleen. This late 

manifestation is likely due to the requirement for accrual of DNA over time. With aging, 

there are more stressed, damaged, and dying cells that release DNA, which then can be 

displayed on the surface of apoptotic cells and subsequently endocytosed, triggering 

PRRs (273). In addition, the replication of endogenous retroelements could provide a 

source of DNA that accrues with aging	(57, 216). Another source of endogenous DNA in 

DKO mice is from extruded erythroid nuclei. During erythropoiesis, nuclei are expelled 
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from late-stage erythroid precursor cells	 (98). These nuclei are then engulfed by 

phagocytic cells, including macrophages and dendritic cells, and digested by DNase II. In 

DKO mice, erythropoiesis occurs in both the bone marrow and spleen. In fact, the 

splenomegaly in these mice is largely due to the expansion of Ter119+ erythroid 

precursor cells. Interestingly, macrophages in DKO mice in the bone marrow and spleen, 

two sites of erythropoiesis and bone accrual, have previously been shown to carry 

undigested DNA from engulfment of extruded erythroid nuclei or apoptotic bodies	(202). 

However, macrophages in the joint synovium did not carry the apoptotic cells and 

osteoclast-mediated bone loss occurs locally within joints. This difference may be due to 

lack of expression by joint-based macrophages of the required receptors for recognition 

of apoptotic cells, including Tim4 (244). Thus, aberrant bone formation may occur 

specifically in the long bones and spleen due to the accrual of DNA over time at sites of 

erythropoiesis.  

The ectopic bone formation in the spleen of DKO mice requires the presence of 

mesenchymal osteoblast precursor cells that either reside in splenic tissue or are recruited 

to this site. The local production of osteogenic factors in DKO spleens likely induces the 

differentiation of the mesenchymal precursors into osteoblasts. One possible 

mesenchymal precursor within the spleen is the pericyte. Pericytes wrap around 

endothelial cells of capillaries and have impressive progenitor cell-like features. It has 

been shown that pericytes are capable of giving rise to multiple cellular lineages 

including osteoblasts	 (246). Furthermore, these cells can secrete components of bone 

matrix including bone sialoprotein, osteocalcin, osteonectin, and osteopontin, all of which 
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are highly upregulated in the spleens of DKO mice compared to controls. Since pericytes 

may be isolated from tissue using CD146+ CD34- CD45- CD56- markers	(274), it may be 

of interest to isolate and culture pericytes in supernants from DKO spleens to determine 

whether these cells are driven toward the osteoblast lineage. In any case, future studies 

investigating the mesenchymal precursor cell in DKO spleens are warranted. 

Our study suggests that DNA accrual drives bone formation through STING-

dependent cytosolic sensors. It would be valuable to evaluate other models of DNA 

accrual or models of STING activation for similar bone phenotypes. The Trex1-deficient 

mouse is a model of DNA accrual induced by deficiency of the cytosolic endonuclease 

DNase III (i.e. Trex1). In this mouse, DNA activates cGAS and the STING pathway 

leading to robust type I IFN production and inflammatory myocarditis (90, 260, 269). 

The bone phenotype of these mice has yet to be evaluated. Since Trex1-deficient mice 

exhibit reduced postnatal survival, it may be difficult to identify a bone phenotype, if the 

phenotype manifests late as it does in DKO mice, since Trex1-deficient mice rarely 

survive past 4 months of age. Recently, gain-of-function mutations in Tmem173, the gene 

encoding STING, were shown to cause the dimerization and constitutive activation of 

STING, leading to vasculopathy and pulmonary inflammation in a syndrome now called 

SAVI	(97). Since activation of the STING pathway in DKO mice leads to bone accrual, it 

may be worthwhile to examine the bones of SAVI patients by micro-CT scanning. It is 

likely, however, that patients with SAVI are being treated with prednisone or other anti-

inflammatory therapies that may affect bone remodeling in these subjects. A major 

difference between the DKO model of autoimmunity and the SAVI and Trex1-/- 
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syndromes is the dependency on type I IFN signaling. The DKO mice used in our studies, 

and their Het controls, both lack type I IFN signaling due to the absence of IFNaR. Type 

1 IFNs, which signal through the IFNaR, inhibit osteoclastogenesis by reducing the 

expression of c-Fos, a transcription factor involved in the formation of osteoclasts (232). 

Accordingly, IFNaR-deficient mice show enhanced osteoclastogenesis and reduced 

trabeculae in the long bones (with no significant differences in osteoblast activity or 

number). Thus, the bone phenotype in other models of DNA accrual, in which type I IFN 

signaling is intact, may differ from the phenotype seen in DKO mice.  

The bone phenotype in DKO mice is likely related to human diseases in which 

abnormal bone formation occurs in soft tissues. Heterotopic ossification (HO) is a 

debilitating condition associated with formation of lamellar bone in extra-skeletal sites. 

Acquired HO occurs in cases of soft tissue trauma including amputation, joint 

replacement surgery, and traumatic brain and spinal cord injuries (185). The etiology and 

pathogenesis of acquired HO is unknown and treatments aim to limit the associated 

inflammation. Hereditary HO is seen in the rare genetic disorder fibrodysplasia ossificans 

progressiva (FOP). In the case of FOP, gain-of-function mutations in the ACVR1 gene 

contribute to this disorder, leading to enhanced BMP signaling (248). Despite the 

presence of ACVR1 mutations, FOP patients exhibit variability in the severity and 

progression of their disease, and form bone episodically, rather than continuously, 

following viral infections, immunizations, or tissue trauma (184, 193, 249). These 

triggers often precede ectopic bone formation and strongly implicate a role for 

inflammatory innate immune pathways in the pathogenesis of HO. Our data suggest that 
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it is likely that viral DNA or DNA released from trauma/damaged cells may overwhelm 

the activity of DNase II, triggering the activation of innate immune DNA sensors. In this 

context, the activation of these receptors may lead to the release of mediators that induce 

the differentiation of mesenchymal precursors to bone-forming osteoblasts. It would be of 

interest to analyze models of HO for activation of the STING pathway. If this pathway is 

indeed activated, the administration of suppressive oligonucleotides, that block cytosolic 

sensor signaling, should alleviate inflammation and inhibit the formation of new 

heterotopic lesions. Further investigation into these mechanisms may provide novel 

pathways for the prevention and treatment of bone remodeling in autoimmune disease 

and in heterotopic bone formation. 

In conclusion, this dissertation demonstrates that the inappropriate activation of 

cytosolic and endosomal receptors by endogenous DNA contributes to a wide variety of 

autoimmune manifestations and dysregulated bone remodeling (Figure 5). Our findings 

reveal an important role for the STING and AIM2 pathways in arthritis and for 

endosomal TLRs in autoantibody production. Furthermore, these data establish that both 

stromal and hematopoietic cells are required for all aspects of DNA-driven 

autoimmunity. Lastly, our data reveal a role for the STING pathway in bone and 

demonstrate that DNA accrual promotes ectopic bone formation through cytosolic DNA 

sensors, a novel and likely significant finding. The discovery of new pathways relevant to 

inflammatory arthritis and bone disorders will provide critical insights that may expand 

the potential targets available for the treatment of these diseases.  
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Figure 5. Cytosolic and endosomal DNA-sensing pathways differentially regulate 

inflammatory arthritis, ANA production, and aberrant bone remodeling in DKO 

mice. Endogenous DNA is detected by a number of sensors that signal through the 

adaptor STING including cGAS, leading to the production of type 1 IFNs and pro-

inflammatory cytokines. Alternatively, DNA detection by AIM2 leads to the formation of 

a caspase-1 activating inflammasome that cleaves pro-IL-1β and pro-IL-18 into their 

active forms. Another pathway for DNA detection is through endosomal TLRs, including 

TLR7 and 9, which traffic from the endoplasmic reticulum (ER) to endosomes via 
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Unc93b. In the DKO model of DNA accrual, activation of the STING and AIM2 

pathways leads to the production of pro-inflammatory cytokines and an erosive 

inflammatory arthritis. Alternatively, DNA detection by endosomal TLRs results in 

production of anti-nuclear antibodies. The STING pathway also leads to the production 

of osteoblast differentiation factors that promote bone accrual in the long bones and 

ectopic bone formation in spleens. 
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APPENDIX  

 
 
 

AIM2 and STING pathways differentially regulate bone homeostasis 
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Introduction 
 

 
Innate immune PRRs are known to sense nucleic acid from microbial organisms 

and trigger the production of type 1 IFNs and pro-inflammatory cytokines IL-1, IL-6, and 

TNF to resolve infection. Various cytosolic DNA receptors signal through an ER-

associated protein, STING. Cytosolic sensors that activate STING include IFI16/p204, 

cGAS, and DDX41	(79, 81-83). Also relevant are STING-independent cytosolic sensors 

such as AIM2. Upon detection of DNA, AIM2 orchestrates the assembly of an 

inflammasome complex, resulting in the cleavage of pro-IL-1β and pro-IL-18 (84, 253). 

Inappropriate activation of cytosolic DNA sensor pathways by endogenous DNA has 

recently been associated with autoimmune disease	(57,	97). Possible endogenous sources 

of nucleic acid include DNA from stressed, damaged or dying cells, DNA derived from 

the replication of endogenous retroelements, mitochondrial DNA, and oxidized DNA that 

is resistant to degradation by cellular DNases	 (275). Importantly, these sources of 

endogenous DNA are known to accrue with aging. Despite the emerging importance of 

cytosolic DNA sensor pathways in autoimmunity, little is known about their role in cell 

types other than macrophages and dendritic cells. Data from our laboratory was the first 

to demonstrate an important role for STING-dependent cytosolic sensor pathways in 

bone in the context of autoimmunity. We now show that the STING and AIM2 pathways 

differentially regulate bone under normal homeostatic conditions.   

The first indication of a role for cytosolic DNA sensors in bone came from our 

observations in DNase II/IFNaR DKO mice. In this model, DNase II deficiency results in 

endogenous DNA accrual that activates cytosolic DNA sensors, resulting in the 
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continuous production of type 1 IFNs and pro-inflammatory cytokines. Because 

production of type 1 IFNs in these mice leads to anemia-driven embryonic lethality, the 

gene for the type I interferon receptor (IFNaR) was deleted in this model. DKO mice 

develop a distal and erosive polyarthritis, resulting from constant production of pro-

inflammatory cytokines. We anticipated that these arthritic mice would lose bone 

systemically since osteopenia/osteoporosis typically accompanies inflammatory arthritis. 

Surprisingly, we found a striking accrual of bone in the long bones of DKO mice with 

aging. Trabecular bone accrual was first identified around 5-6 months and by 16 months 

of age the bone accrual almost completely replaced the marrow space. Interestingly, by 

10 months of age, we identified ectopic bone in DKO spleens that continued to accrue by 

24 months. Moreover, STING-deficiency abrogated the bone accrual in DKO mice. This 

study was the first to reveal a role for STING in bone remodeling and to demonstrate that 

endogenous DNA accrual promotes bone formation over time. Based on this work, we 

questioned whether innate immune pathways regulate bone remodeling not only in 

autoimmune settings, but also during normal bone homeostasis. We now demonstrate that 

the STING and AIM2 pathways are involved in the homeostatic regulation of bone.  
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Materials and Methods 
 

 

Micro–computed Tomography (micro-CT): Femurs were fixed in 4% 

paraformaldehyde for 48 hours, transferred to 70% ethanol, then imaged at the 

Musculoskeletal Imaging Core at UMMS using a Scanco Medical µCT 40 at 70kVp and 

114µA with resolutions of 10µm. Analyses include trabecular bone within the entire 

femur from the proximal to distal growth plates and a 0.5 mm section in the central 

diaphysis of cortical bone. The segmentation parameters include the values: 0.8 Gauss 

sigma, 1.0 Gauss support, and a threshold of 220-1000 Hounsfield units (density range of  

>600mg of HA/cm3).   

 

Osteoclast Differentiation and Resorption Assays: For osteoclast assays, cell culture 

experiments were performed in α-MEM containing 10% FBS, 100U penicillin and 

100µg/ml streptomycin. Cells were flushed from the bone marrow and differentiated in 

40ng/ml of M-CSF (R&D) for 4 days. For osteoclast differentiation, osteoclast precursors 

were seeded at a density of 6,000 cells/well on 96-well plates and differentiated in 

medium containing 20ng/ml of M-CSF and 10ng/ml of RANKL (R&D) for 5 days. Half 

of the medium was replaced with fresh medium/cytokines on day 3. On day 5 of 

differentiation, the cells were fixed and stained for TRAP5 using a leukocyte acid 

phosphatase kit (Sigma). TRAP-stained osteoclasts with 3-10 nuclei were counted. For 

osteoclast resorption, osteoclast precursors were seeded at a density of 15,000 cells/well 

on 24-well hydroxyapatite-coated Osteo Assay plates (Corning) and differentiated in α-
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MEM containing 40ng/ml of M-CSF and 20ng/ml of RANKL (R&D) for 10 days. Half 

of the medium was replaced with fresh medium/cytokines every two days. Cells were 

then removed with 10% bleach and wells were rinsed in water and air-dried overnight. 

The wells were scanned on a flatbed scanner (Microtek 9800 XL) and the percentage of 

resorbed area was analyzed using NIH ImageJ software. 

 

Statistical analysis: Statistical significance was analyzed with the unpaired, two-tailed 

Student’s t test. Data are presented as the mean ± SEM. Statistical significance is 

represented by the following notation in the figures: p<0.05=*, p<0.01=**, and 

p<0.001=***. 
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Results 
 
 

To investigate the individual roles of STING and AIM2 in bone homeostasis, we 

analyzed the femurs in STING-/- and AIM2-/- mice by micro-CT scanning. We found 

that female STING-/- mice show osteopenia at 6 months of age compared with matched 

controls (Figure A.1). This is of considerable significance, as no other phenotype has 

been identified in STING-/- mice, apart from an abnormal response to viral challenge and 

treatment with dsDNA. In contrast, femurs from female AIM2-/- mice at 6 months of age 

demonstrate significant bone accrual (Figure A.2A). Quantitation of micro-CT 

parameters confirms this phenotype, showing a significant increase in trabecular bone 

volume/total volume (BV/TV), trabecular surface, and cortical thickness in AIM2-/- mice 

compared to controls (Figure A.2B).  

Interestingly, this bone phenotype appears earlier in female mice compared to 

male mice. Femurs from male AIM2-/- mice at 6 months of age show no difference in 

trabecular or cortical parameters compared to controls (Figure A.2C&D). However, over 

time by 13.5 months of age, the male AIM2-/- mice demonstrate increased trabecular and 

cortical bone compared to Wt controls (Figure A.2E&F). Thus, the bone phenotype is 

more dramatic in female mice and becomes more apparent with aging. Our preliminary 

data suggest that the bone phenotype in AIM2-/- mice is due to decreased osteoclast 

resorption, as shown by a significant difference in resorption on hydroxyapatite-coated 

plates between AIM2-/- and Wt osteoclasts (Figure A.3A). No difference in osteoclast 

differentiation was detected in AIM2-/- and Wt mice (Figure A.3B). 
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Figure A.1. STING-deficiency leads to trabecular bone loss. Micro-CT images of 

trabecular bone in femurs from female mice at 6 months of age (n=2 mice/genotype). 
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Figure A.2. AIM2-deficiency promotes trabecular and cortical bone accrual with 

aging. Micro-CT images of trabecular bone in femurs and quantitation of micro-CT data 

for trabecular bone volume per total volume (BV/TV), trabecular bone surface, and 

cortical thickness from A&B) 6 month-old female mice (n=6 mice/genotype), C&D) 6 

month-old male mice (n=6-7 mice/genotype), and E&F) 13.5 month-old male mice (n=4-

8 mice/genotype). Values are the mean ± SEM compared to Wt: *=p<0.05, **=p<0.01, 

***=p<0.001.   

 
 

 
 
 



	

 
	

144	 	

 
 
 
 
 

 
  

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
Figure A.3. Decreased osteoclast resorption in AIM2-deficient mice. A) 

Representative image of resorption well (hydroxyapatite in white) and percentage of 

hydroxyapatite area resorbed by osteoclasts. B) Representative image of multinucleated 

osteoclasts and number of differentiated Trap+ osteoclasts. 2 month-old female mice 

(n=2 mice/genotype).  
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Discussion 
 
 

These results demonstrate that the STING and AIM2 pathways differentially 

modulate bone remodeling under homeostatic conditions. This data supports our previous 

research in which we show that loss of the STING pathway abrogates bone accrual in a 

model of DNA-driven autoimmune disease. While our preliminary data demonstrate that 

STING and AIM2 clearly have opposite effects on bone, the cell types and mechanisms 

involved are unknown. Under homeostatic conditions, it is likely that endogenous DNA 

accumulates with time and activates innate immune cytosolic receptors. This concept 

could be highly relevant to bone loss in aging, where DNA from apoptotic cells, oxidized 

DNA that is resistant to nucleases, and endogenous retroelements accumulate over time	

(275). It would thus be important to evaluate the bone phenotype of STING-/- mice, 

AIM2-/- mice, and their littermate controls at 2 months, 6 months, 8 months, and 13 

months of age to confirm whether the bone phenotype becomes more prominent with 

time. It would also be valuable to identify whether apoptotic cells and/or retroelements 

increase over time in these mice.  

Our preliminary data in AIM2-/- mice suggest that the bone phenotype is a 

reflection of decreased osteoclast resorption. Since STING and AIM2 seem to have 

differential effects on bone, it is likely that STING-deficiency results in increased 

osteoclast function. Further studies are needed to determine if osteoclast resorption is 

indeed affected in these mice and whether osteoblast function is at all disrupted. If the 

osteoclast is the key cell type involved, it would be important to determine whether 

cytosolic sensors are expressed in osteoclasts and whether endogenous DNA accrues over 
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time in these cell types. It is likely that cytosolic sensors are expressed in osteoclasts 

since these pathways have been extensively studied in their monocyte/macrophage 

precursors	(78). 

Since IL-1β is a pro-osteoclastogenic cytokine	 (132), activation of AIM2 may 

promote bone resorption through inflammasome-mediated IL-1β production, whereas 

AIM2 deficiency would limit bone resorption. To demonstrate an inflammasome-

dependent role for AIM2, it would be important to perform osteoclast differentiation and 

functional assays in the presence or absence of an IL-1β blocking antibody. Caspase-1-/- 

cells can be used as controls, which will abrogate inflammasome function. These studies 

form a rationale for the generation of AIM2/IL-1 double knockout mice to study the 

impact of AIM2 on bone homeostasis via IL-1β. To further determine whether osteoclasts 

are the cells responsible for this bone phenotype, it may be valuable to generate mice in 

which AIM2 is deleted solely in osteoclasts, using a Cre-Cathepsin K promoter.  

Osteoclast precursors derived from STING-/- mice will likely be more active in 

resorption, and this difference may be augmented upon exposure of the osteoclast 

precursors to DNA ligands/apoptotic DNA. The STING pathway is known to be a potent 

producer of type 1 IFNs. Loss of type 1 IFN, a negative regulator of osteoclastogenesis, 

could explain the osteopenic phenotype in STING-/- mice	 (232). Generation of 

STING/IFNaR and/or STING/IRF3 double knockout mice would be valuable for 

studying the impact of STING on bone homeostasis via type 1 IFNs. It will also be 

important to evaluate the bone phenotype of cGAS-/- and p204-/- mice, as these cytosolic 

receptors may be responsible for sensing the endogenous DNA upstream of STING.  
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For all animal models suggested, micro-CT scanning of aging mice should be 

performed, followed by static histomorphometry analyses for osteoclast and osteoblast 

numbers, and analysis of bone turnover markers including Trap5b (osteoclast number), 

CTX-1 (osteoclast function), and osteocalcin (osteoblast function). It is possible that the 

phenotypes seen in STING-/- and AIM2-/- mice result from changes in osteoblast 

differentiation or function. To explore this possibility, calvarial osteoblasts can be 

isolated from STING-/-, AIM2-/-, and control mice and cultured in osteogenic medium 

containing ascorbic acid and β-glycerophosphate for 28 days. Changes in osteoblast 

differentiation can be monitored by protein and mRNA expression for alkaline 

phosphatase and von Kossa.  

Conceptually, this preliminary data explores the novel hypothesis that cytosolic 

DNA sensing pathways play a role in the homeostatic regulation of bone. We hypothesize 

that the AIM2 and STING pathways are activated during aging as a result of 

accumulation of endogenous DNA in cells. We further hypothesize that these pathways 

differentially regulate osteoclast function. These studies explore an entirely new link 

between the immune system and bone, and may reveal new anabolic pathways to build 

bone and novel targets for the treatment of bone loss in aging.  
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