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Abstract 
 
 Chronic exposure of humans or rodents to high calorie diets leads to 

hypertriglyceridemia and ectopic lipid deposition throughout the body, resulting in 

metabolic disease. Cellular lipids are stored in organelles termed lipid droplets 

(LDs) that are regulated by tissue-specific LD proteins. These proteins are critical 

for lipid homeostasis, as humans with LD protein mutations manifest metabolic 

dysfunction. Identification of novel components of the LD machinery could shed 

light on human disease mechanisms and suggest potential therapeutics for Type 

2 Diabetes. 

 Microarray analyses pinpointed the largely unstudied Hypoxia-Inducible 

Gene 2 (Hig2) as a gene that was highly expressed in obese human adipocytes. 

Imaging studies demonstrated that Hig2 localized to LDs in mouse hepatocytes 

and the human SGBS adipocyte cell line.  Thus, this work examined the role of 

Hig2 as a LD protein in liver and adipose tissue. 

 Hig2 deficiency reduced triglyceride deposition in hepatocytes; conversely, 

ectopic Hig2 expression promoted lipid deposition. Furthermore, liver-specific 

Hig2-deficient mice displayed improved glucose tolerance and reduced liver 

triglyceride content. Hig2 deficiency increased lipolysis and -oxidation, 

accounting for the reduced triglyceride accumulation.  

 Similarly, adipocyte-specific Hig2-deficient mice displayed improved 

glucose tolerance, reduced adipose tissue weight and brown adipose tissue that 
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was largely cleared of lipids. These improvements were abrogated when the 

animals were placed in thermoneutral housing and brown adipocyte-specific 

Hig2-deficient mice also displayed improved glucose tolerance, suggesting that 

active brown fat largely mediates the metabolic phenotype of Hig2 deletion. 

Thus, this work demonstrates that Hig2 localizes to LDs in liver and adipose 

tissue and promotes glucose intolerance. 
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Part1: Lipid Deposition in health and disease 

 Lipids act as a critical energy reservoir. Their formation, storage and 

breakdown are tightly controlled by signaling pathways that will be detailed 

below. Two organs that function as master regulators of lipid synthesis and 

storage are the liver and adipose tissue. In healthy animals, both liver and 

adipose tissue synthesize lipids to be stored largely in white adipose tissue. 

Thus, the first part of chapter 1 will focus on the roles of liver and adipose tissue 

in lipid deposition.     

Liver 

Structure 

 The liver is organized into lobes; hepatocytes, marked by the lineage 

marker albumin, make up 80% of the cell population (1). Most hepatocytes in 

mature liver are multinucleated and thus, tetraploid, and function in nutrient 

processing (2). The remainder of the liver cell population consists of resident 

immune cells, endothelial cells, and a variety of stem cells. Kupffer cells (KCs), 

the resident macrophages of the liver, are the most numerous tissue-resident 

macrophage in the body, and have distinct subpopulations (3). These cells often 

present the first line of defense for blood-borne infections and KC-depleted mice 

display 100% lethality when exposed to certain infections (4,5). Hepatic stellate 

cells (HSCs) store lipids and vitamin A in a healthy liver, but become highly 

proliferative and fibrinogenic in a chronically inflamed liver (3). The liver has a 
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remarkable capacity for regeneration and the role of pluripotent stem cells and 

multipotent oval cells in this process is still debated, as hepatocytes appear to 

divide and regenerate the majority of liver after partial hepatectomy (6).   

Function 

 The liver is a master regulator of immune surveillance, detoxification, 

serum protein synthesis, and whole body metabolism. The hepatic immune 

system differs from that of other organs because it must maintain a level of 

immunosuppression due to its exposure to LPS, a bacterially-derived 

polysaccharide, but it must be capable of being fully activated when exposed to 

blood-borne infections (3). The liver removes and breaks down circulating toxic 

compounds such as ammonia, bilirubin, and ethanol (7). The liver also functions 

in secretion of plasma proteins such as albumin and clotting factors (8). As 

discussed in detail below, the liver acts as a master regulator of whole body 

metabolism (Figure 1.1). During times of caloric excess, the liver synthesizes and 

exports or stores lipids and during fasting or starvation, it synthesizes and 

exports glucose. The liver also plays a key role in the synthesis and recycling of 

glycogen and bile acids (9,10).  
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Figure 1.1 Lipid metabolism in liver 

 

 

FIGURE 1.1 Lipid metabolism in liver. The liver is a master regulator of lipid 
metabolism. Fatty acids that are esterified into triglycerides (TG) in the liver can 
come from multiple sources, such as adipose tissue lipolysis, the diet, or 
synthesis directly from glucose via de novo lipogenesis. Triglycerides can be 
packaged and exported in very low-density (VLDL) lipoprotein particles or can be 
broken down to fatty acids and oxidized by the mitochondria. TG; triglyceride, 
VLDL; very low-density lipoprotein. 
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De Novo Lipogenesis 

 De novo (DNL) lipogenesis is the postprandial synthesis of lipids from 

protein or carbohydrate metabolites. Both liver and adipose tissue synthesize 

lipids via the de novo lipogenic pathway and the contribution of each tissue is 

often species-specific (11). Experiments suggest that in humans and rodents, 

DNL predominantly occurs in liver, while in ruminants, the adipose tissue 

synthesizes most of the lipids (11). DNL builds FAs from acetyl units, which 

usually come from glucose or acetate, and acetyl-CoA. Glucose enters the cell 

via the glucose transporter Glut2 (12). Glucose is converted to pyruvate by 

glycolysis and pyruvate is converted to citrate within the TCA cycle. ATP citrate 

lyase (ACLY) converts citrate and CoA to acetyl-CoA. Acetyl-CoA carboxylase 

(ACC) is the rate-limiting enzyme for FA synthesis and converts acetyl-CoA to 

malonyl-CoA. Fatty acid synthase (FAS) synthesizes the FA palmitate from 

malonyl-CoA and acetyl-CoA. Other FAs are synthesized by elongation and/or 

desaturation of palmitate.  Two FA molecules are esterified to a molecule of 

glycerol phosphate by the enzyme Glycerol-P Acyl-Transferase (GPAT) to form 

triglyceride (TG) (11). DNL is highly coupled to nutrient availability and the 

transcription factors that regulate the expression of most lipogenic enzymes are 

upstream stimulatory factors (USFs), Sterol regulatory-element binding protein 1 

(SREBP1), Carbohydrate regulatory-element binding protein (ChREBP), and 

Liver x receptor LXR (13). Transcription of lipogenic enzymes, such as FAS, is 
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increased by insulin and decreased by fasting, coupling them with nutrient 

availability (11,14). TGs synthesized de novo can either be stored in hepatic lipid 

droplets (LDs) or exported into circulation as very low density lipoprotein (vLDL) 

particles.   

Lipid uptake and secretion 

 The liver functions both in the secretion of lipid-containing lipoprotein 

particles and the uptake of lipoprotein remnants. The synthesis and secretion of 

vLDL occur in hepatocytes and are well-characterized. TGs and cholesterol are 

synthesized in the smooth ER and transferred to lipoprotein particles containing 

apolipoprotein B-100 (ApoB-100) by microsomal triglyceride transfer protein 

(Mttp). Lipid and ApoB-100-containing vesicles diffuse to the Golgi where they 

are glycosylated and bud off. The vesicles fuse with the hepatocyte sinusoidal 

membrane and are released into circulation (11).  

 Conversely, dietary FAs from chylomicrons, which are circulating 

cholesterol, phospholipid, and TG-containing lipoprotein particles from the 

intestine, are taken up by muscle and adipose tissue, leaving chylomicron 

remnants (CR) (15). Hepatocytes take up CR via the hepatic low density 

lipoprotein receptor (LDLR) or LDLR-related protein 1 (LRP1) (16-19). 

Delipidated vLDL remnants are similarly recycled (15). 

 Hepatic Glucose Production 
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 During prolonged fasting, the liver must synthesize and export glucose to 

maintain blood glucose concentrations. Initially, glucose is formed from 

glycogenolysis, the breakdown of stored hepatic glycogen (20). Upon depletion 

of glycogen stores, glucose is synthesized from glycerol, lactate, or amino acids 

(AAs) by gluconeogenesis. These substrates, which are often derived from 

muscle or adipose tissue, enter the cytoplasm via transporters, and are 

converted to pyruvate. Pyruvate is converted to oxaloacetate by pyruvate 

carboxylase (PC), then converted to phosphoenolpyruvate (PEP) by 

phosphoenolpyruvate carboxykinase (PEPCK). In a series of steps, PEP is 

converted to fructose 6-phosphate, then glucose 6-phosphate and finally to 

glucose by glucose-6-phosphatase (Glu-6-Pase), which can then be released 

into the bloodstream (21).   

 Gluconeogenic enzyme activity is increased by both glucagon and 

glucocorticoids and decreased by insulin, coupling gluconeogenesis with fed-

fasting state (21-23). The transcription factors that promote gluconeogenic 

enzyme expression are Forkhead box O1 (FOXO1), peroxisome proliferator-

activated receptor gamma coactivator 1 alpha (PGC1 cAMP-responsive 

element binding protein (CREB)/ CREB-regulated transcription coactivator 2 

(Crtc2), CCAAT enhancer-binding proteins (C/EBPs), and hepatocyte nuclear 

factors (HNFs). During fasting, these factors translocate to the nucleus and 

activate gluconeogenic genes (24-27). Although it has been established that 
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hormones control hepatic glucose production, the precise mechanisms whereby 

this happens are unclear. One hypothesis, which couples adipose tissue lipolysis 

to hepatic glucose production suggests that insulin suppresses adipose tissue 

lipolysis, which reduces the availability of the substrate acetyl-CoA for hepatic 

gluconeogenesis, thereby reducing gluconeogenic enzyme levels (particularly 

PC) and hepatic gluconeogenesis (28).  

Glycogen Synthesis 

 Glycogen consists of large branched polymers of glucose stored in 

cytoplasmic granules in hepatocytes and it functions as a ready glucose supply in 

liver. During fasting, glycogen is the first source of glucose released by the liver 

to maintain euglycemia (10). Glycogen stores can also be found in skeletal 

muscle. Glycogen is converted first to glucose 1-phospate then glucose 6-

phosphate by phosphoglucomutase and finally to glucose by Glu-6-Pase, which 

can then be released into the bloodstream (10). Glycogen synthesis and 

breakdown are hormonally regulated, coupling glucose availability to fed-fasting 

state (20). 

Adipose Tissue 

 The adipose tissue is a critical energy reservoir and an endocrine organ. 

What was once considered an inert fat storage organ has evolved into a key 

regulator of whole body metabolism. Adipose tissue is actively involved in lipid 

and glucose uptake, de novo lipid synthesis, lipolysis, and the secretion of 
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adipose-specific cytokines, termed adipokines. The necessity of adipose tissue is 

confirmed by the metabolic disease and related comorbidities of patients that 

lack functional adipose tissue. The role of adipose tissue in health and disease 

will be discussed in detail below. 

Structure  

 The adipose tissue is a heterogeneous organ comprised of fat cells, also 

known as adipocytes, which can number up to two-thirds of the cell population, 

and a range of other cells including stem cells, fibroblasts, endothelial cells, 

blood cells, and neuronal cells (29,30). These cells, when digested and 

fractionated from the adipocytes, are collectively called the stromal vascular 

fraction or the SVF (31). Experiments have established that multipotent cells 

capable of forming fat pads in vitro and in vivo reside in the SVF (32-34). 

Although the exact developmental origin of these adipose tissue stem cells is still 

unclear, numerous hypotheses exist. One hypothesis suggests that these stem 

cells arise from a vascular niche as a subset of perivascular mural cells (33), 

while another suggests that endothelial cells and/or hematopoietic cells can 

change cell fate to give rise to adipocyte stem cells (35-38). Adipose tissue 

resides in many different depots in mammals and these depots are formed and 

remodeled throughout the life of the organism. Three classifications of adipose 

tissue, which have differing structures and functions will be described below.  

White Adipose Tissue  
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 White adipose tissue (WAT) is the primary site of energy storage in 

animals. White adipocytes store energy in the form of neutral lipids in a large, 

unilocular organelle termed a lipid droplet (LD), which will be described in detail 

later in the chapter (39). The prominent WAT depots in humans are the visceral, 

consisting of the omental, mesenteric, and retroperitoneal depots and the 

subcutaneous, consisting of the abdominal and gluteofemoral depots (40). The 

prominent WAT depots in mice are the visceral, consisting of the perigonadal, the 

retroperitoneal, the perirenal, and the mesenteric depots and the subcutaneous, 

consisting of the inguinal, interscapular, subscapular, axillary and cervical depots 

(39,41). Experimental evidence suggests that the subcutaneous and visceral 

depots are phenotypically distinct by a number of measures. The subcutaneous 

depot is associated with insulin sensitivity, is resistant to lipolysis, and expands 

primarily via hypertrophy during obesity (42-44). In mice, transplanting 

subcutaneous adipose tissue but not visceral adipose tissue into a visceral depot 

improves metabolic health, thus, this depot is considered a beneficial adipose 

depot (45). The visceral fat depot, perhaps due to its proximity to other organs 

and the liver portal vein, is prone to inflammation during metabolic disease, is 

highly lipolytic and, expands by both hypertrophy and hyperplasia during obesity 

(42-44,46).  

Brown Adipose Tissue 
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 Brown adipose tissue (BAT) is characterized by multilocular adipocytes, a 

high vascular density, and large numbers of mitochondria, which contribute to its 

brown color (39). A primary function of BAT is to generate heat by nonshivering 

thermogenesis, which occurs by uncoupling of oxidative metabolism (47). BAT 

forms during embryonic development in mammals and has its own specific gene 

expression program, which will be discussed below (48). While adult mice have 

BAT depots, until recently it was thought that BAT was only present in neonatal 

humans to generate necessary heat, but it was determined through analysis of 

fluorodeoxyglucose positron emission tomography (FDG-PET) scans that 

humans retain some portion of BAT through adulthood (49-51). The primary BAT 

depots in humans are located in the supraclavicular and subscapular regions, 

while mice have interscapular, subscapular, cervical, periaortic, and perirenal 

BAT depots (40,47,52). Retrospective analysis of FDG-PET scans demonstrate 

that BAT is associated with insulin sensitivity in humans and inversely associated 

with BMI, age, and fasting glucose levels (53,54). 

Beige/Brite Adipose Tissue 

 Although WAT and BAT comprise the majority of adipose tissue in 

humans and rodents, beige (55) or brite (brown in white) (56) adipose tissue is 

being thoroughly investigated due to its inducible therapeutic potential. 

Interestingly, certain depots of adipose tissue have demonstrated plasticity 

depending on ambient temperature (57). For instance, cold temperatures 
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increase catecholamine levels thereby activating BAT to maintain body 

temperature. Conversely, it is less active at warm temperatures (39). Additionally, 

in colder temperatures, catecholamines activate certain populations of cells in 

WAT, particularly those in the subcutaneous depots. These beige/brite cells 

acquire more mitochondria and multilocular LDs, much like brown adipocytes 

(58). As these adipocytes possess characteristics of both white and brown 

adipocytes, they are termed beige/brite adipocytes. Although the source of these 

cells (conversion from mature white cells (59) vs de novo differentiation of 

precursors (42)) is controversial, the act of certain WAT cells expressing beige 

adipocytes markers is often called “browning” and, along with catecholamine-

stimulation in cold temperatures, many stimuli have been claimed to “brown” 

WAT (60). The browning of WAT is an active area of investigation because beige 

adipocytes increase energy expenditure and improve metabolic health in rodents 

(48). Additionally, studies have shown that humans contain cells with a beige 

gene signature and that these cells are correlated with reduced BMI and insulin 

sensitivity (53,54,61). As such, beige adipocytes may prove useful for weight loss 

therapy in humans.  

Function 

Adipose tissue as an endocrine organ 

 The adipose tissue secretes a number of factors termed adipokines that 

modulate whole body metabolism (62). Two of these potent signaling factors are 
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adiponectin and leptin. Adiponectin is considered a beneficial adipokine that 

promotes insulin sensitivity (63). Its overexpression in mice promotes healthy 

adipose tissue expansion (64). Adiponectin levels negatively correlate with BMI 

and insulin resistance (63). Leptin is largely produced by WAT and is a hormone 

that is required for satiety; it inhibits food intake, along with altering energy 

expenditure, angiogenesis and sexual maturity (62). Leptin levels are increased 

with BMI in humans and obesity is often associated with leptin resistance (65,66).  

Lipid Handling 

 WAT is a critical energy storage organ; thus, many of the signaling 

pathways of the adipocyte control storage and breakdown of lipids (Figure 1.2). 

Like liver, WAT converts protein or carbohydrate metabolites into stored lipids 

through the process of DNL (67). Additionally, adipocytes can directly uptake 

circulating lipids from chylomicrons for storage as TGs (68).  
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Figure 1.2 Lipid metabolism in adipose tissue 

 

 

 

FIGURE 1.2 Lipid metabolism in adipose tissue. Adipose tissue processes 
and stores fatty acids as triglyceride (TG) in lipid droplets. These fatty acids can 
come from a variety of sources, including the diet, very low-density lipoprotein 
(VLDL) particles released by the liver, or direct synthesis from glucose via de 
novo lipogenesis. Triglycerides can be broken down via lipolysis and released 
into circulation to be taken up by other tissues, such as muscle liver or pancreas. 
Additionally, fatty acids liberated by lipolysis can be re-esterified into triglyceride 
or oxidized by the mitochondria. TG; triglyceride, VLDL; very low-density 
lipoprotein. 
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De novo lipogenesis 

 DNL in the adipocyte is defined by a well-characterized metabolic pathway 

with identical enzymes to hepatic DNL (67). Although the pathways and enzymes 

of adipose tissue and liver DNL are identical, experimental evidence suggests 

adipose tissue and liver DNL may be differentially regulated and serve distinct 

functions. For instance, obesity increases hepatic DNL and decreases adipose 

tissue DNL in mice and humans (69-73). In humans, increased hepatic DNL is 

associated with insulin resistance, hepatic steatosis and increased adipocyte 

size, while increased adipose tissue DNL is negatively correlated with these 

measures (74-77). In adipocytes, glucose, a major substrate for DNL, is 

transported into the cell by the adipocyte-specific transporter, Glut4 (78). As in 

liver, SREBP1 and ChREBP are the two transcription factors that control 

expression of most genes required for DNL. They are activated by both glucose 

and insulin, coupling them to overall metabolic homeostasis (79). Although FA 

uptake and esterification of circulating dietary lipids account for most of stored 

TGs, DNL may be required for the synthesis of key signaling lipids (80-82). For 

instance, DNL in adipocytes may be involved in synthesizing endogenous ligands 

for PPAR (82,83), a master regulator of adipogenesis, and DNL in hepatocytes 

may be involved in synthesizing endogenous ligands for PPAR (80,81,84). 

While eicosanoids and poly unsaturated FAs activate PPAR in vitro (85-87), the 
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hypothesized endogenously synthesized ligands have yet to be specifically 

identified in vivo (84). 

Lipolysis  

 Conversely, lipolysis is the breakdown of triglycerides (TGs) into FAs and 

glycerol. Lipolysis usually occurs during fasting; it liberates FAs to fuel muscle 

and liver. Briefly, -adrenergic receptor stimulation, usually by catecholamines, 

activates GTP stimulatory (Gs) proteins, which in turn activate adenylyl cyclase 

(AC), increasing the concentration of cyclic AMP (cAMP). This activates Protein 

Kinase A (PKA), which phosphorylates lipases and other proteins, including lipid 

droplet proteins, some of which will be detailed below (88). A previous prevailing 

hypothesis suggested that one lipase, hormone sensitive lipase (HSL) was 

responsible for majority of TG hydrolysis; this hypothesis was challenged when 

HSL null animals did not display lipolytic defects or major alterations in obesity, 

but accumulated DGs in adipose tissue, muscle and testis (89-91). Animal 

studies identified an additional lipase termed adipose triglyceride lipase/desnutrin 

(ATGL) and suggest that it is the major TG lipase in adipocytes (92-94). These 

studies were later confirmed when human ATGL mutations were discovered and 

characterized (95-98); these will be discussed in detail later in the chapter. Thus, 

in adipocytes there are three identified lipases that coordinate the breakdown of 

a molecule of TG into three molecules of FA and one molecule of glycerol. 

Adipose triglyceride lipase (ATGL) catalyzes the primary reaction and hydrolyzes 
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TG to diacylglycerol (DG) (92-94). Hormone sensitive lipase (HSL) preferentially 

hydrolyzes DG to monoacylglycerol (MG). Finally, monoglyceride lipase (MGL) 

hydrolyzes MGs (99). FAs are then transported to other tissues, such as liver and 

muscle for fuel or re-esterified into TG at the LD. Synthesis of glycerol 3-

phosphate from glucose or pyruvate via glyceroneogenesis controls the rate of 

FA re-esterification (100). Lipase binding partners will be discussed later in the 

chapter.  

Thermogenesis 

 Although brown adipocytes also perform DNL and lipolysis to store lipids, 

their primary function is to generate heat through nonshivering thermogenesis. 

Thus, brown adipocytes have a specific gene expression signature in order to 

perform this task. PR Domain Containing 16 (Prdm16), C/ebp, Pgc1, Early B-

Cell Factor 2 (Ebf2), and peroxisome proliferator activated receptor alpha 

(PPAR are transcription factors that are required for brown adipocyte identity 

and the thermogenic gene program (48). Prdm16 activates the transcription of 

genes important for BAT function, including uncoupling protein-1 (UCP1), the 

protein responsible for thermogenesis through uncoupling of oxidative 

phosphorylation (101). UCP1 is located in the mitochondrial membrane and 

uncouples the electron transport chain by facilitating a proton leak, which 

generates energy in the form of heat (102). UCP1 protein steadily increases with 

the differentiation of brown adipocytes (103) and without it, mice become cold-
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sensitive when housed at room temperature (20-23°C) (104) and obese when 

housed at thermoneutrality (30°C) (105), a temperature that eliminates thermal 

stress. Although certain adult human BAT depots are more similar in appearance 

and gene expression signature to rodent beige cells (106), cold exposure in 

humans still promotes glucose and FA uptake in BAT (107); this uptake is 

correlated with leanness (108). Furthermore, cold exposure in humans leads to 

increases in insulin sensitivity and energy expenditure (61,109). Taken together, 

this evidence suggests that humans indeed have functional BAT and that 

activating this BAT can improve metabolic health.  

 Beige/brite adipose tissue function and gene expression overlaps with 

both WAT and BAT. Beige/brite cells also express the transcription factors 

Prdm16, C/ebp, and Pgc1 (101). UCP1 is also expressed, but not nearly to the 

extent of BAT (60). The markers that are uniquely beige/brite include Cd137, 

Tbx1, Tmem26, Cited1, and Shox2 (48). The current contributions of beige/brite 

cells to metabolism, particularly in humans, are unclear, but current knowledge 

suggests that they have therapeutic potential.  

The insulin/glucagon axis  

 Insulin is an anabolic hormone that is secreted by the -cells of the 

pancreatic islet in response to postprandial blood glucose and amino acid (AA) 

increases (110-112). Among its primary effects is to stimulate glucose clearance 

from circulation. Numerous tissues contain insulin receptors, including adipose 
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tissue, muscle, and liver. In liver, insulin binds to insulin receptors, which recruit 

and phosphorylate substrate adaptors, such as the insulin receptor substrates 1 

and 2 (IRS1/2) (113,114). IRS 1/2 bind Phosphoinositide 3-kinase (PI3K), which 

generates the lipid second messenger phosphatidylinositol-3,4,5-triphosphate 

(PIP3), thereby activating  3-phosphoinositide-dependent protein kinase 1 (PDK1) 

and, in turn, activating isoforms of Protein Kinase B (PKB/AKT) (115,116). This 

node of the insulin signaling pathway is critical for metabolic responses to insulin. 

The PI3K/Ras-mitogen-activated protein kinase (MAPK) signaling node controls 

insulin-responsive differentiation and growth and will not be discussed in detail 

here (117). AKT is a kinase with critical downstream functions, such as 

preventing hepatic gluconeogenesis through FOXO1 inhibition, activating 

glycogen synthesis through Glycogen synthase kinase 3 (GSK3), promoting 

glucose uptake via Akt substrate of 160 kDa (AS160), and enhancing protein 

synthesis via Mammalian target of rapamycin (mTOR) (118). Additionally, Insulin 

induces FA and TG synthesis by activating the key lipogenic transcription factors 

SREBP1, USF1 and LXR (117).   

 Conversely, glucagon is a catabolic hormone secreted by the -cells of 

the pancreatic islet in response to fasting, low blood glucose levels, and 

increases in circulating FAs and AAs (119). Glucagon binds to the Glucagon 

receptor (GCGR), a g-protein coupled receptor (120), which activates the 

stimulatory g protein alpha (Gs) subunit. Gs activates AC, increasing the 
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generation of the second messenger cAMP and activating PKA (121). PKA 

stimulates both hepatic glycogenolysis and gluconeogenesis. PKA also blocks 

DNL by direct inhibition of ACC phosphorylation and by reduction of pyruvate 

levels (20). Thus, insulin and glucagon exert opposing functions to maintain 

euglycemia. 

 

Lipid deposition in disease 

 Two organs that function as master regulators of lipid synthesis and 

storage are the liver and adipose tissue. In healthy animals, both liver and 

adipose tissue synthesize lipids to be stored in largely in white adipose tissue. In 

times of caloric excess, these processes become dysregulated; one hypothesis 

suggests that adipose tissue reaches its storage capacity and lipids are 

ectopically deposited in other organs such as liver, muscle, and pancreas, which 

may result in metabolic disease. Thus, the second part of chapter 1 will focus on 

the roles of liver and adipose tissue in lipid deposition in disease.     

Liver Dysfunction 

 The liver is a master regulator of whole body glucose metabolism. It 

maintains blood glucose levels by alternating between catabolic and anabolic 

signaling pathways. Chronic exposure of humans or rodents to high calorie diets 

leads to obesity, which is often associated with steatosis, insulin resistance, and 

derangements in hepatic metabolic signaling. 
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Obesity/Insulin Resistance  

 Chronic caloric excess leads to obesity, which promotes derangements in 

liver metabolism, although the mechanisms for this are multifactorial, complex, 

and far from clear. Obesity is characterized by hyperglycemia, hyperinsulinemia, 

and dyslipidemia (122). Glucose, insulin, and FAs are critical for the regulation of 

liver metabolism. Thus, prolonged exposure of hepatocytes to these three 

signaling molecules has deleterious consequences.  

 Glucose activates hepatic DNL. As such, chronic exposure to high levels 

of circulating glucose strongly upregulates key lipogenic transcription factors 

SREBP1, ChREBP, and induces the expression of the adipogenic transcription 

factor, Peroxisome proliferator-activated receptor gamma (PPAR), further 

promoting hepatic lipid deposition (123). Hyperglycemia, by upregulating DNL, 

also indirectly promotes liver vLDL release, increasing plasma TG levels (124). 

High glucose levels also increase hepatic TG content by decreasing 

mitochondrial -oxidation (125).  

 Hyperinsulinemia is detrimental because when the liver is exposed to high 

insulin levels, insulin signaling components are downregulated, promoting 

hepatic insulin resistance (126). Additionally, hepatic insulin resistance promotes 

dysregulated hepatic gluconeogenesis as insulin no longer suppresses 

gluconeogenic genes, leading to uncontrolled glucose production by the liver, 

furthering hyperglycemia (126,127). The cause of this dysregulated hepatic 
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gluconeogenesis is unclear, but one hypothesis suggests that uncontrolled 

adipose tissue lipolysis raises hepatic acetyl-coA levels and promotes PC 

activation to facilitate hepatic glucose production (28). Circulating FAs, often 

stemming from uncontrolled adipose tissue lipolysis, can promote hepatic lipid 

deposition and general hepatocyte dysfunction (128). An excess of long-chain 

FAs can lead to formation of peroxidated lipids and reactive oxygen species 

(ROS) by peroxisomes in the hepatocyte (129). Fatty liver and its associated 

metabolic derangements often lead to T2D, although, in rare cases the two can 

be dissociated (130). 

The spectrum of NAFLD 

 Hepatocytes rarely store lipids except during fasting or obesity (11). Non-

alcoholic fatty liver disease (NAFLD) refers to a liver disease spectrum which 

begins with benign and reversible TG accumulation, often due to excess caloric 

intake (131). Prolonged exposure of hepatocytes to lipotoxic FAs leads to 

hepatocyte ballooning and death, activating KC and promoting inflammatory 

cascades, progressing to non-alcoholic steatohepatitis (NASH). Chronic 

inflammation activates HSCs, promoting fibrosis and transitioning the disease to 

cirrhosis. Prolonged cirrhosis can progress to hepatocellular carcinoma (132).  

Adipose tissue dysfunction 

Obesity  
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 Healthy adipose tissue expansion is critical for metabolic health. One 

hypothesis suggests that during chronic overfeeding, adipose expands until its 

capacity is reached; expanded adipose tissue is characterized by increased 

fibrosis, and inflammation (133,134). Inflamed adipocytes secrete 

chemoattractant proteins, such as monocyte chemoattractant protein 1 (MCP1), 

which recruit macrophages to clean up dying adipocytes (122). Chronically 

inflamed expanded adipose tissue is also characterized by dysregulated lipid 

signaling. For instance, obesity results in uncontrolled adipocyte lipolysis, which 

causes increases in circulating FAs and ectopic TG deposition in other tissues, 

such as liver and muscle (135,136). Increases in serum FAs induce insulin 

resistance in human subjects (137). Chronic inflammation has also been 

correlated with insulin resistance (133,138-140). Under conditions of chronic 

obesity, insulin fails to stimulate glucose uptake into tissues, leading to 

hyperinsulinemia and high glucose in the blood, which are associated with type 2 

diabetes (T2D) (122).  

Lipodystrophy 

 Metabolic disease can occur when an excess of adipose tissue is present. 

Interestingly, similar metabolic derangements develop with too little adipose 

tissue. Lipodystrophy is a rare, often monogenic disorder, characterized by 

partial or generalized adipose tissue deficiency (141). Humans and mice that lack 

adipose tissue develop fatty liver, hyperlipidemia, and severe insulin resistance 
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(142). These cases emphasize the importance of proper FA storage for the 

maintenance of metabolic health. Furthermore, lipodystrophic humans and mice 

are often lacking beneficial adipokines secreted by the adipose tissue, such as 

adiponectin and leptin, leading to insulin resistance and hyperphagia (141).  

 

Other Metabolic Tissues: Muscle and Pancreas 

 In addition to liver and adipose tissue, other tissues are critical for the 

maintenance of metabolic homeostasis. Skeletal muscle largely consumes 

postprandial glucose, provides a protein reservoir during starvation, and 

develops insulin resistance. The pancreas is a critical exocrine and endocrine 

organ that is dysregulated during obesity. The structure and function of skeletal 

muscle and pancreas are detailed below. 

Structure and Function 

Skeletal Muscle 

 Skeletal muscle is an organ that is critical for both locomotion and 

metabolism. Muscle consists of multi-nucleated, post mitotic myofibers that are 

synthesized from fused myocytes. Additionally, muscles contain satellite cells, 

which are stem cells (143). Skeletal muscle largely functions to generate force 

and provide structural stability. As these actions are energetically expensive, 

skeletal muscle consumes a substantial nutrients and is responsible for 75% of 

the body’s glucose clearance; skeletal muscle also stores glycogen and utilizes 
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FAs liberated from AT (144). Like liver and adipose tissue, skeletal muscle 

contains insulin receptors that promote insulin-stimulated glucose uptake via the 

glucose transporter Glut4 (145). Additionally, as muscle fibers contain 50-75% of 

the body’s total protein, they provide a protein reservoir during starvation (146). 

Muscles fibers can be divided into three classes based on their metabolism; 

class I is oxidative, class IIA is intermediate, and class IIx is glycolytic (146). 

Pancreas 

 The pancreas is divided into two distinctly functioning parts: the exocrine 

pancreas and the endocrine pancreas. The exocrine pancreas is a part of the GI 

system and contains the duct cells, acinar cells, and associated connective 

tissue. It largely synthesizes and secretes digestive enzymes into the intestine 

(147). The endocrine pancreas consists of the islets of Langerhans (islets), which 

contain glucagon-secreting  cells (15%), insulin-secreting  cells (80%), and 

somatostatin-secreting  cells (5%) (147,148). The islets comprise 1-2% of the 

adult pancreas in most mammals and hormones synthesized and secreted by 

islet cells modify whole body homeostasis (147). The roles of insulin and 

glucagon are detailed above. Somatostatin inhibits both glucagon and insulin 

release (149). 

Dysfunction 

Skeletal Muscle 
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 Typically, healthy skeletal muscle contains minimal TG (.5%) stored in 

cellular LDs, although endurance athletes demonstrate much larger lipid stores, 

known as the athlete’s paradox (150). However, during obesity, an excess of 

circulating FAs become deposited in skeletal muscle and lead to a substantial 

increase in TG content (3.5%) (151). Obesity promotes skeletal muscle insulin 

resistance and hyperlipidemia has been suggested to exacerbate this (152), 

although the mechanism for this is far from clear. Insulin resistance alters insulin-

stimulated glucose uptake in muscle, and as muscle is such a critical organ for 

glucose disposal, muscle insulin resistance is considered to be a substantial 

contributor to T2D (153). Lipodystrophy, as it is a disease of reduced TG storage 

capacity, leads to similar pathologies and comorbidities in muscle as obesity 

(141).  

Pancreas 

 As peripheral tissues develop obesity-related insulin resistance and the 

circulation becomes hyperglycemic, the pancreas increases insulin secretion, 

leading to hyperinsulinemia. In the short-term, elevated insulin production can 

lead to -cell hypertrophy (154). Both hyperglycemia and chronic augmentation 

of insulin production are correlated with increased ER stress and -cell death, 

which may then cause overt diabetes (155). Additionally, increases in circulating 

FAs can lead to ectopic lipid deposition in pancreas, further promoting pancreatic 

dysfunction (156).   
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Part 2: Lipid Droplets as Dynamic Organelles 

 Organs such as liver and adipose tissue are master regulators of lipid 

metabolism. Hepatocytes and adipocytes, as do all cells, store cytotoxic FAs as 

neutral lipids in organelles termed LDs. Although once considered inert lipid 

storage vesicles, research from the past 20 years suggests that LDs are dynamic 

organelles that possess a unique proteome and numerous related signaling 

pathways. LDs are also highly integrated into cellular metabolism and its 

associated signaling pathways. Furthermore, LD proteins are critical for lipid 

homeostasis, as humans or mice with LD protein mutations manifest severe 

metabolic dysfunction. The LD structure, function, and its proteome will be 

discussed in detail below. 

Structure, Formation and Prevalence 

 The LD is an organelle that functions in the storage of neutral lipids. It 

consists of a neutral lipid core, which typically contains a mixture of TGs and 

cholesterol esters (CE), surrounded by a phospholipid (PL) monolayer. 

Numerous identified proteins, some of which are cell-type specific, are 

associated with or embedded in this monolayer and are called LD proteins (157). 

Their functions will be described in detail below. LDs are very heterogeneous 

organelles, differing in their size, protein coat, and also their lipid composition 

(158).  
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 The exact mechanism by which LDs are formed is not known, but it is 

hypothesized that they form from a lipid lens in the ER bilayer (159). Numerous 

hypothetical LD biogenesis models have emerged from more recent 

experimental evidence. One hypothesis proposes a model based on the principle 

of oil dewetting (160). This model suggests that a lipid lens forms in the ER 

bilayer by the favorable reduction of the contact angle of the lipids with the 

bilayer surface. The LD then buds off due to thermodynamically favorable 

reduction of surface tension. Another hypothesis proposes a synchronized, step-

wise model (161) that suggests that FA synthesis in the ER promotes TG 

enrichment, PL synthesis, and “globule formation”. As the “globule” transitions to 

a nascent LD, the ER membrane bends and proteins are recruited to promote 

curvature until a nascent LD is formed. Whether or not LDs permanently retain 

their ER connection is still unclear. Additional experiments are needed to further 

elucidate the true mechanism of LD biogenesis.   

 Numerous proteins appear to coordinate LD formation at the ER by 

activating FAs, synthesizing neutral lipids, or synthesizing PLs for rapidly 

expanding nascent droplets (161). Two additional ER-resident proteins that  may 

play a more structural role in LD formation are Seipin and Fat storage-inducing 

transmembrane protein (FIT/FITM) (161). Seipin localizes to ER-LD junctions 

(162). Although the precise role of Seipin in this process is far from clear, Seipin-

deficient cells display aberrant LD size and number (162,163), while 3T3-L1 
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adipocytes deficient for FIT2 display reduced LD size and number (164). 

Interestingly, deletion mutants of all of the currently identified proteins alluded to 

above suggest redundancy in the system, as no single protein is required for LD 

biogenesis (161).  

 All cells store neutral lipids in LDs, but adipose tissue is specifically 

adapted to store large quantities of TGs. LDs in white adipocytes can reach up to 

100M in diameter, relegating other cellular components to the periphery of the 

cell, and each adipocyte in WAT is typically unilocular (165). Moreover, LDs in 

non-adipocyte cells are multilocular, much smaller (1-10M), and more distant 

from the cell surface, although they can increase in size in steatotic tissues, such 

as liver and muscle (166).  

Function 

 A primary function of LDs is to store cytotoxic FAs in the form of inert TGs. 

While LDs in the adipocyte provide long-term TG storage, other cells, such as 

hepatocytes and myocytes, form LDs much more transiently to facilitate their 

metabolism (166). Regardless, LDs are highly responsive to lipogenic and 

lipolytic signaling (167), which will be discussed in detail below. LDs also appear 

to play a critical role in immune cell function, synthesizing inflammatory signaling 

lipids and facilitating antigen cross-presentation (168). Furthermore, LDs are 

present in cancer cells and are associated with poor prognosis in human breast, 

prostate, and colon cancers (169). In addition to their metabolic functions, LDs 



30 
 

 

possess critical alternative functions. For instance, they sequester excess 

proteins (170), such as maternal histones in Drosophila embryos (171). They are 

also required for the replication cycle of certain viruses, such as the Hepatitis C 

Virus (172). Thus, research continually proves that LDs are not inert, fat storing 

organelles, but dynamic, multi-functional signaling bodies.  

The LD Proteome 

The PAT family 

 The PAT family, named for its three founding members Perilipin, 

Adipophilin, and Tail-interacting protein of 47 kDa (Tip47), is one of the most 

abundant families of LD proteins. The PAT family currently contains five 

members numbered chronologically based on their discovery and most share a 

common N-terminal PAT domain of yet unknown function (173). Perilipins are 

present in vertebrates and insects their expression promotes lipid deposition 

(174). Each member possesses unique functions and tissue-specific distribution, 

which will be detailed below. 

Perilipin 1 

 Perilipin 1 was first characterized as a highly phosphorylated protein in the 

adipocyte fat cake (lipid fraction of the adipocyte) (175). It is expressed in mature 

white and brown adipocytes (175-177) and to a lesser extent in steroidogenic 

cells (178). Alternative splicing of the Perilipin 1 transcript produces three 

isoforms, termed Perilipin A-C. Perilipin A is the most abundant isoform in 
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adipocytes and murine Perilipin A contains 517 AAs. Perilipin B is less abundant 

and contains 422 AA in mice, 405 of which are shared with Perilipin A (175,176). 

The shortest isoform, Perilipin C is solely expressed in steroidogenic cells 

(178,179). As Perilipin A is highly abundant and the most-characterized of the 

Perilipin isoforms, it will be the isoform referred to as Perilipin 1 and discussed in 

the remainder of this work. Its expression steadily increases with adipogenic 

differentiation and it promotes lipid deposition by inhibiting lipolysis (180-182). 

This function will be detailed below.  

Perilipin 2/Adipose differentiation-related protein (ADRP)/Adipophilin (ADFP)  

 Perilipin 2 demonstrates the most ubiquitous expression pattern of the 

PAT family members. As it is unstable in the cytoplasm, it is constitutively 

localized to LDs (183,184). Perilipin 2 was first characterized as an mRNA with 

100-fold induction upon adipogenic differentiation (185). It coats nascent LDs and 

is subsequently replaced by Perilipin 1 as these LDs mature (183,186). In 

addition to adipocytes, Perilipin 2 localizes to LDs in most other cell types (187). 

In the absence of Perilipin 1 or during lipolytic stimulation, Perilipin 2 coats 

mature LDs, but inhibits lipolysis less effectively (177,188). 

Perilipin 3/Tip47 

 Perilipin 3 was initially identified in a yeast two hybrid screen as a 

mannose 6-phosphate receptor binding protein (189). Similar to Perilipin 2, it is 

ubiquitously expressed and localizes to LDs in most tissues. Unlike Perilipin 2, 
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Perilipin 3 has cytoplasmic stability (190,191). Its partial crystal structure 

suggests this stems from a C-terminal bundle of 4 amphipathic helices that are 

structurally similar to Apopliprotein E (ApoE). These helices can remain closed 

and soluble in solution or open and embed in PLs (192). As the two most similar 

PAT members, Perilipin 2 and Perilipin 3 share 43% sequence similarity (173). 

Perilipin 4/S3-12 

 Perilipin 4, like other PAT members, was identified as a protein highly 

induced during adipocyte differentiation (193). It largely coats nascent LDs in 

white adipocytes, but is also expressed to a lesser extent in muscle and heart 

(186,194). At 160 kDa, Perilipin 4 is the largest of the PAT proteins and the only 

member that lacks the N-terminal PAT domain (191). Perilipin 4 and Perilipin 1 

are least similar to other PAT family proteins (173). 

Perilipin 5/PAT family member expressed in oxidative tissues 

(OxPAT)/Myocardial LD Protein (MLDP)/LD Storage Protein 5 (LSDP5) 

 Perilipin 5 is most highly expressed in oxidative tissues, such as heart and 

skeletal muscle, while lower levels are expressed in liver, WAT and BAT, testis, 

and adrenal gland (195-197). Like Perilipin 3, Perilipin 5 is stable both on LDs 

and in the cytoplasm (195).  

 The CIDE family 

 The cell death-inducing DNA fragmentation factor 45-like effector (CIDE) 

family of LD proteins shares sequence homology with the DNA fragmentation 
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factor 45, a factor cleaved by caspase 3 during apoptosis (198,199). There are 

currently three identified CIDE family proteins and all share a common CIDE 

domain at their N-terminus (200). Although originally thought to promote cell 

death (198,199,201), these proteins dually localize to LDs and the ER and 

promote lipid deposition with their expression (200,202). Their tissue distribution 

and functions will be detailed below. 

Cidea 

 Murine Cidea is highly expressed in brown adipocytes, to a lesser extent 

in white adipocytes, and expressed at much lower levels in heart, brain, skeletal 

muscle, lymph nodes, thymus, appendix, and bone marrow (198,203).  It is highly 

induced upon adipogenic differentiation (203) and its expression in human WAT 

is correlated with insulin sensitivity in obese humans (204,205). Although 

originally found to be localized to mitochondria (201,203), Cidea also localizes to 

LDs (204). In addition to its other tissue specificity, Cidea coats LDs in steatotic 

liver (206) and in the lactating mammary gland (207).  

Cideb 

 Cideb is expressed in liver, kidney, and the small intestine (198). It 

localizes to the ER and LDs and is necessary for hepatocyte vLDL lipidation and 

cholesterol homeostasis (208-210). Cideb interacts with ApoB-100 to facilitate 

the TG-enrichment of vLDL particles (209). Cideb may also play a role in foam 

cell formation, as it is highly upregulated in lipid-laden macrophages (211).  



34 
 

 

Cidec/Fsp27 

 Fsp27 was identified as an mRNA whose expression is highly induced 

during adipogenic differentiation (212). It is specific to brown and white 

adipocytes (203,213), although its expression is massively induced in steatotic 

liver and lipid-filled macrophages (211,214). Similar to Cidea and Perilipin 1, its 

expression in WAT is also correlated with insulin sensitivity in obese humans 

(204).  Fsp27 promotes the formation of unilocular adipocytes and Fsp27-

deficient 3T3-L1 adipocytes display reduced TG content and LD number (215). 

Both Cidea and Fsp27 localize to LD-LD contact sites (LDCS), suggesting that 

they function in LD fusion (216,217). Interestingly, Fsp27 physically interacts with 

Perilipin 1 to promote LD fusion (218).  

 

LD Proteins and Signaling 

 LD proteins are variable in their tissue-specificity and function and play 

integral parts in the dynamic signaling of the LD. Their diverse functions are still 

an active area of investigation and known functions range from inhibiting lipases 

to localizing LDs to microtubules. Some roles of specific LD proteins in LD 

signaling are detailed below.  

Lipolysis 

 ATGL, HSL, and MGL are the three lipases that are demonstrated to be 

critical for TG breakdown at the adipocyte LD. Mouse knock out models 
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demonstrate the importance of LD proteins in regulation of lipolysis. Animals 

deficient in Perilipin 1 (177), Perilipin 5 (219), Cidea (203), and Fsp27 (220) all 

display increased lipolysis. Additionally, two LD-bound ATGL cofactors, 

Comparative gene identification 58 (Cgi-58)/α/β hydrolase domain-containing 

protein 5 (ABHD5) (an activator) (221) and G(0)/G(1) switch gene 2 (G0S2) (an 

inhibitor) (222) have been identified. Animals deficient in these proteins also 

demonstrate altered lipolysis (223-225). Although the mechanisms whereby 

these proteins inhibit lipolysis are often unclear, some mechanisms have been 

established by experimental evidence and will be detailed below.  

 Perilipin 1 was originally identified as a highly phosphorylated protein in 

the fat cake of isoproterenol (-adrenergic agonist) -treated adipocytes (175) 

Rodent Perilipin A contains six PKA phosphorylation sites, which are 

phosphorylated during -adrenergic stimulation (175,182,226,227). In 

unstimulated adipocytes, Perilipin 1 localizes to LDs and binds Cgi-58, 

sequestering it away from ATGL (228). Upon lipolytic stimulation, PKA 

phosphorylates both Perilipin 1 and HSL (229-231). HSL then translocates to the 

LD (232-234), where Perilipin 1 dissociates from Cgi-58 and docks and binds 

phosphorylated HSL to facilitate stimulated lipolysis (235-237) (Figure 4.1). 

 Perilipin 5 is the currently the sole PAT family member that inhibits 

lipolysis by directly interacting with both Cgi-58 and ATGL at the LD (238,239). 

This interaction is dependent upon the 64 C-terminal AAs of Perilipin 5 (238). 
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PKA also phosphorylates Perilipin 5 upon lipolytic stimulation, suggesting that it 

may function similarly to Perilipin 1, but in oxidative tissues (239). In human 

adipocytes, AA 120-220 of Fsp27 interact with ATGL, suggesting that Fsp27 may 

promote TG deposition by inhibiting lipase activity (240).   

 In an additional layer of lipolytic regulation, LD Proteins also function as 

substrates for chaperone-mediated autophagy (CMA), which is the lysosomal 

degradation of certain cellular protein components. CMA often takes place during 

nutrient deprivation. During starvation, both Perilipin 2 and 3 bind heat shock 

cognate protein of 70 kDa (Hsc70) and are degraded by CMA to facilitate the 

activation of lipolysis in mouse hepatocytes (241). 
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Figure 1.3 Lipolysis in the adipocyte 

 

FIGURE 1.3 Lipolysis in the adipocyte. Catecholamines activate the 3 adrenergic 
receptor (3AR), causing the stimulatory G protein (Gs) to dissociate from the inhibitory G 
protein (Gi). Gs activates adenylyl cyclase, which increases cAMP levels and activates 
protein kinase A (PKA). PKA phosphorylates Perilipin 1 (Plin1) and Hormone sensitive 
lipase (HSL), causing Plin1 to dissociate from Comparative gene identification 58 
(Cgi58) and interact with HSL at the lipid droplet. Cgi58 binds and activates Adipose 
triglyceride lipase (ATGL), which breaks down triglyceride (TG) to diglyceride (DG). HSL 
breaks down DG to monoglyceride (MG) and Monoglyceride lipase (MGL) breaks down 
MG to fatty acid (FA) and glycerol.  
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LD Trafficking 

 The cellular trafficking of LDs is not well-understood, but recent data 

suggests that aqueous vesicle transportation machinery localizes to the LD 

during FA stimulation. Both Rab and SNARE proteins localize to LDs during 

oleate stimulation (167). Upon oleate loading in a cardiomyocyte cell line, 

SNARE complex proteins localized to LDs and physically interacted with Perilipin 

2 (242). Additionally, microtubules are necessary for LD movement, as 

nocodozole treatment prevents LD fusion (243). In flies, dynein, a microtubule 

minus end motor, localizes to LDs and physically interacts with Perilipin 2 (243). 

Inhibiting dynein reduced LD formation, suggesting that it is necessary for LD 

formation and potentially LD fusion.  

LDs and Human Disease 

Insight from animal models 

 Animal models with PAT and CIDE protein deficiencies have been 

extensively characterized. These animals point toward critical functions for LD 

proteins in metabolic disease pathology. A brief summary of some of the 

published animal work is presented below and summarized in Table 1.1. 

Perilipin 1 

 A Perilipin 1 null mouse was derived by targeted deletion of exons 4-6 

(177). As Perilipin 1 is critical for LD deposition in adipocytes, Perilipin 1 null 

animals had greatly reduced adipose tissue weight and adipocyte size due to 
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increases in basal lipolysis. Interestingly, levels of stimulated lipolysis were vastly 

decreased in mutant adipocytes, suggesting that Perilipin 1 is required for 

stimulated-lipolysis. Knockouts were glucose intolerant and were resistant to diet-

induced obesity, but not diet-induced glucose intolerance.   

Perilipin 2 

 Perilipin 2 null mice were generated by two separate groups (244,245). 

Chang et al. generated Perilipin 2 null mice by targeted removal of exons 2 and 

3, which was later shown to produce truncated, but functional Perilipin 2 in the 

murine mammary gland (246). To circumvent this problem, McManaman et al. 

generated new Perilipin 2 null mice by targeted removal of exon 5 (245). Perilipin 

2 null animals from both groups demonstrated reduced hepatic steatosis. 

Additionally, the Perilipin 2 null mice generated by McManaman et al. (245) 

showed resistance to diet-induced obesity and improved glucose tolerance. 

Perilipin 2 null animals had reduced adipose tissue inflammation and increased 

Ucp1-positive beige/brite adipocytes in their iWAT. They also had increased 

activity and food consumption.  

Perilipin 5 

 A Perilipin 5 null mouse was generated by targeted deletion of exons 1-4 

(219). Although Perilipin 5 null animals displayed a beneficial reduction in 

myocardial lipids and an increase in oxidation, they also showed damaging 

increases in myocardial ROS. Despite this, streptozotocin-treated diabetic 
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Perilipin 5 null animals were protected from diabetes-induced heart malfunction 

(247).    

Cidea 

 A Cidea null mouse was derived by targeted deletion of the part of the first 

intron and the second exon of the Cidea gene (203). Cidea null mice 

demonstrated reduced adipose tissue weight and increased BAT lipolysis. During 

cold exposure, null animals had increased metabolic rate and body temperature, 

which may stem from a physical interaction between Cidea and the mitochondrial 

uncoupler Ucp1 (203). 

Cideb 

 A Cideb null mouse was generated by targeted removal of exons 3-5 

(208). Cideb null animals were resistant to diet-induced obesity, glucose 

intolerance, and hepatic steatosis. They had reduced serum TGs, FFAs, 

concomitant with increased hepatic FA oxidation and increased serum 

adiponectin. Their overall metabolism was increased and lipogenic genes in the 

liver were decreased. Interestingly, Cideb mice had increased liver TGs in the 

chow-fed condition due to reduced hepatic secretion of vLDL particles (209). 

vLDL particles secreted by the livers of the Cideb null mice  had normal levels of 

ApoB-100, but reduced TG levels, suggesting that Cideb is necessary for vLDL 

particle lipidation (209). 

Cidec/Fsp27  
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 Groups have generated global and tissue-specific Fsp27 null animals. 

Global Fsp27 null animals were created by targeted deletion of exons 1 and 2 

(220). Fsp27 null animals demonstrated a very significant reduction in WAT 

weight. Adipocytes from these animals had multilocular LDs and had increased 

basal and stimulated lipolysis. Fsp27 null animals were resistant to diet-induced 

obesity and demonstrated improved glucose tolerance at 23°C. When Zhou et al. 

housed Fsp27 null animals at 30°C to remove thermogenic stress, they more 

closely phenocopied lipodystrophic humans and had both reduced weight gain, 

increased hepatic TG, and reduced glucose and insulin tolerance (248).  

 Animals with an adipose tissue-specific Fsp27 deficiency (Fsp27AtKO) 

were generated using Cre/loxP technology. Fsp27 fl/fl mice were crossed to an 

adipose tissue-specific AP2-cre (249). Similar to Fsp27 null animals, Fsp27AtKO 

animals also had reduced adipose tissue weight and multilocular adipocytes, with 

concomitant increases adipocyte lipolysis and hepatic steatosis. These animals 

were more glucose intolerant compared with controls in high fat-fed conditions. 

Additionally, liver-specific knockdown of Fsp27 in db/db mice reduced liver TGs, 

further cementing the idea that Fsp27 expression promotes lipid deposition (214).  
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Table 1.1 LD proteins of the PAT and CIDE families. Tissue specificity and 
some knock out animal models of the PAT and CIDE family LD proteins are 
briefly described below. Tissues listed in bold text are those with highest gene 
expression. Abbreviations: N/A, not applicable; BAT, brown adipose tissue; WAT, 
white adipose tissue; ROS, reactive oxygen species; ↑, increased; ↓, decreased. 
Numbers correspond to primary references of the animal model work. 
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Human Mutations 

 Rare human mutations in LD proteins are associated with metabolic 

disease, thus promoting the idea that LD protein dysfunction can underlie 

metabolic disease pathology (142). Some of these mutations are detailed below 

and can be separated into a few different classes: 1) neutral lipid storage disease 

(NLSD), which results in lipid storage in locations other than adipose tissue, 2) 

familial partial lipodystrophy (FPL), which is a rare, inherited partial loss or 

redistribution of adipose tissue, or 3) congenital generalized lipodystrophy (CGL), 

which is a rare, inherited full loss of adipose tissue (142). 

Perilipin 1 

 Perilipin 1 is the prominent LD protein in mature white adipocytes and 

functions to prevent unstimulated lipolysis and facilitate stimulated lipolysis 

(175,177,181). Thus, humans with reduced Perilipin 1 function manifested 

lipodystrophy, fatty liver, and metabolic syndrome. Two heterozygous frameshift 

mutations in the C-terminus of Perilipin 1 were identified in three separate 

families. These mutations resulted in autosomal dominant FPL, dyslipidemia, and 

diabetes, most likely due to Perilipin 1 haploinsufficiency (251). In all cases, 

mutated Perilipin 1 failed to sequester to Cgi-58/ABHD5, resulting in 

constitutively active ATGL and uncontrolled lipolysis (251).    

 Cidec 
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 Cidec promotes unilocular LD formation and inhibit lipolysis in adipocytes. 

A patient with a homozygous nonsense mutation in Cidec has been metabolically 

characterized. This mutation resulted in a truncation of the C-terminus of Cidec 

and FPL with insulin-resistant diabetes (252). Strikingly, white adipocytes from 

the patient were characterized by small, multilocular LDs, much like adipocytes 

from Fsp27-deficient animals, and the mutated Cidec failed to localize to LDs 

(220,252).  

Cgi-58/ABHD5 and ATGL 

 Cgi-58 is a LD-localized co-activator protein of the major TG-specific 

lipase ATGL (221). Mutations in Cgi-58 have been characterized and result in 

Chanarin-Dorfman Syndrome (CDS), an autosomal recessive NLSD 

characterized by TG deposition in non-adipose tissue and ichthyosis (253). Eight 

different mutations in Cgi-58 were characterized from nine different families with 

CDS (254). Mutated Cgi-58 was variable and contained insertions, deletions, 

splice and point mutations. Some mutants failed to localized to LDs and interact 

with Perilipin 1 (255), while other mutants were unable to activate ATGL (221).  

 Eight ATGL gene mutations have also been reported and they all resulted 

in premature stop codons (253). Patients with these mutations manifested NSLD 

with severe myopathy (NSLDM) and, although they did not have ichthyosis, they 

presented with muscle weakness and cardiomyopathy (95-97,256,257).  Most 
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ATGL mutants were truncated in the C-terminal patatin domain and many failed 

to localize to LDs or were enzymatically inactive (95,98). 

HSL 

 A mutation in the DG-specific lipase HSL also caused a milder form of 

NLSD characterized by fatty liver, dyslipidemia, and insulin-resistant diabetes 

(258). This was a frameshift mutation that added 86 AA to the C-terminus of the 

HSL, reducing its abundance and decreasing its lipase activity.   

Seipin 

 Seipin has been suggested to function in LD biogenesis at the ER and 

Seipin mutations cause the autosomal recessive CGL Berardinelli-Seip 

congenital lipodystrophy type 2 (BSCL2) (259). This syndrome is characterized 

by an absence of adipose tissue, hypertriglyceridemia, hepatic steatosis, 

cardiomyopathy, T2D, and often intellectual impairment (260). Most 

characterized mutations resulted in severely truncated and non-functional Seipin 

protein (259,261). Further mutational analysis demonstrated that these mutants 

were mislocalized and mutant cells displayed reduced adipogenic and lipogenic 

gene expression, although the exact mechanism whereby Seipin mutation 

causes BSCL2 is still unknown (262).  

 Research has clarified the roles of certain members of the LD proteome in 

the pathology of human disease. Nonetheless, as the LD proteome is highly 

diverse, further characterization is necessary to pinpoint additional proteins that 
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are critical for proper lipid sequestration in humans. Thus, I strove to uncover 

additional uncharacterized candidate LD proteins in the literature. Hypoxia-

inducible gene 2 (Hig2)/Hypoxia-inducible lipid droplet-associated protein 

(Hilpda) presented a promising target.    

Hypoxia-inducible Gene 2 

Overview 

 Hypoxia-Inducible Gene 2 (Hig2/Hilpda) is a little-studied 7kDa, 63 AA 

protein. It is a direct target of Hypoxia-Inducible Factor 1 alpha (Hif1), but not 

Hif2 (263). Hig2 is induced in hypoxic and glucose-deprived conditions (264). 

As such, its expression is upregulated in cancers with dysregulated hypoxia 

signaling, such as renal clear cell carcinoma (RCC), and it was posed as a 

potential RCC biomarker (265). Early studies suggested that the protein was both 

secreted and activated by Wnt signaling (266), but these claims were later 

refuted (263). 

 In addition to its potential role in cancer, Hig2 may also play a role in lipid 

metabolism and LD dynamics. Ectopically expressed Hig2 localized to LDs in 

cancer cell lines and promoted LD deposition in vitro (263). It also localized to 

LDs in human liver histology sections (263). Work published while this thesis was 

in progress demonstrated that Hig2 is also a target of Ppar (267), similar to the 

LD proteins Perilipin 5, Cidea and Fsp27 (195-197,268,269). Additionally, 

microarray experiments from forskolin-treated primary mouse visceral adipocytes 
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demonstrate that its expression is highly induced upon lipolytic stimulation (270). 

Thus, we strove to explore the role of Hig2 as a potential LD protein in two 

metabolically critical tissues, liver and adipose tissue. 

Project Goals 

Proper adipose tissue lipid sequestration is critical for the prevention of 

lipotoxicity, dyslipidemia, and ectopic lipid deposition. Thus, our lab is particularly 

interested in novel regulators of lipid storage in adipocytes. Furthermore, 

elucidating hepatocyte-specific mechanisms that promote liver steatosis could 

provide therapeutic targets to prevent the initial and reversible stage of NAFLD. 

Therefore, experiments in this thesis are aimed at dissecting the role of Hig2 in 

lipid deposition in liver and adipose tissue, determining the downstream 

signaling pathways by which Hig2 alters lipid deposition, and defining how 

the actions of Hig2 in these signaling pathways affect whole body 

metabolism.   

Two main questions are addressed in this thesis: 

1) What is the role of Hig2 in lipid deposition hepatocytes and adipocytes? 

Does it function as a canonical LD protein and promote TG deposition by 

inhibition of lipolysis? 

2) What is the contribution of hepatocyte and adipocyte-specific Hig2 to 

whole body metabolism? Does the expression of Hig2 promote tissue-

specific lipid sequestration? 
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To answer these questions, experiments in this thesis use both in vitro and in 

vivo methods to elucidate the role of Hig2. In primary hepatocytes, I found that 

ectopically expressed Hig2 localized to LDs and promoted TG deposition and LD 

formation. Conversely, I found that Hig2-deficient hepatocytes had reduced TG 

content, LD size, and LD number. Animals with a hepatocyte-specific Hig2 

deficiency demonstrated improved glucose tolerance and reduced liver weight 

and TG content in the chow-fed condition (Chapter 2). Although expression of 

many genes involved in lipid regulation was unchanged in Hig2-deficient 

hepatocytes, lipid flux was significantly altered. I found that Hig2-deficient 

hepatocytes had increased -oxidation, lipolysis, and TG turnover (Chapter 2). 

As LD proteins in adipose tissue are critical for proper lipid storage and Hig2 is 

ubiquitously expressed, I sought to investigate the role of Hig2 in adipocytes. I 

found that Hig2 expression significantly increased with adipogenic differentiation 

in a human adipocyte cell line and was highly expressed in adipocytes in human 

tissue. Additionally, I found that Hig2 localized to LDs in human and mouse 

adipocyte cell lines (Chapter 3). Mice with an adipocyte-specific Hig2 deletion 

had reduced adipose tissue weight and improved glucose tolerance, but 

unchanged lipolysis measurements, excepting increased HSL phosphorylation. I 

found that these differences in fat pad weight, glucose tolerance, and HSL 

phosphorylation were all abrogated at thermoneutrality, a housing condition 

which poses no thermal stress. As thermoneutrality reduces catecholamine 
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levels and thus deactivates BAT, I hypothesized that BAT was the tissue 

responsible for the beneficial phenotypes in the adipocyte-specific Hig2 animals. 

Accordingly, animals with a brown adipocyte-specific deletion of Hig2 

demonstrated improved glucose tolerance, suggesting that brown adipocytes do 

largely mediate the beneficial metabolic effects in adipocyte-deficient Hig2 

animals (Chapter 3). Therefore, Hig2 acts as a LD protein in both hepatocytes 

and adipocytes and promotes lipid deposition and glucose intolerance. Thus, 

Hig2 presents a promising target for the treatment of NAFLD and T2D.  
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CHAPTER II: The Lipid Droplet Protein Hypoxia-inducible Gene 2 

Promotes Hepatic Triglyceride Deposition by Inhibiting 

Lipolysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is derived from the article with the same name published in the 

Journal of Biological Chemistry: 

DiStefano, M. T., Danai, L. V., Roth Flach, R. J., Chawla, A., Pedersen, D. J., 
Guilherme, A., and Czech, M. P. (2015) J Biol Chem 290, 15175-15184. 
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Summary: 

The liver is a major site of glucose, fatty acid (FA), and triglyceride (TG) 

synthesis and serves as a major regulator of whole body nutrient homeostasis. 

Chronic exposure of humans or rodents to high-calorie diets promotes non-

alcoholic fatty liver disease (NAFLD), characterized by neutral lipid accumulation 

in lipid droplets (LD) of hepatocytes. In this chapter, it is shown that the LD 

protein Hypoxia-inducible gene 2 (Hig2/Hilpda) functions to enhance lipid 

accumulation in hepatocytes by attenuating TG hydrolysis. Hig2 expression 

increased in livers of mice on a high fat diet (HFD) and during fasting, two states 

associated with enhanced hepatic TG content. Hig2 expressed in primary mouse 

hepatocytes localized to LDs and promoted LD TG deposition in the presence of 

oleate. Conversely, tamoxifen-inducible Hig2 deletion reduced both TG content 

and LD size in primary hepatocytes from mice harboring floxed alleles of Hig2 

and a cre/ERT2 transgene controlled by the ubiquitin C promoter. Hepatic TG 

was also decreased by liver-specific deletion of Hig2 in mice with floxed Hig2 

alleles expressing cre controlled by the albumin promoter. Importantly, this 

chapter demonstrates that Hig2-deficient hepatocytes exhibit increased TG 

lipolysis, TG turnover, and fatty acid oxidation compared with controls. 

Interestingly, mice with liver-specific Hig2 deletion also display improved glucose 

tolerance. Taken together, these data indicate that Hig2 plays a major role in 
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promoting lipid sequestration within LDs in mouse hepatocytes through a 

mechanism that impairs TG degradation. 

Introduction: 

The liver is a major site of glucose, TG, and FA synthesis and serves as a 

master regulator of whole body nutrient homeostasis (271). Chronic exposure of 

humans or rodents to high-calorie diets can lead to a disease spectrum known as 

NAFLD (272). This syndrome begins with simple neutral lipid accumulation in 

liver, progresses to liver inflammation, and can culminate in irreversible cirrhosis 

and hepatocellular carcinoma (273). Overabundance of liver lipids has also been 

associated with insulin resistance both in humans and rodents (274), although 

these conditions can also appear independently (130). Thus, understanding the 

molecular pathways that contribute to hepatic lipid accumulation is important in 

addressing therapeutic strategies for NAFLD and in understanding how it relates 

to metabolic disease. 

 In all cells including hepatocytes, neutral lipids are stored in organelles 

termed LDs (275). These LDs are highly dynamic and are regulated by the 

nutritional status of the organism (173). Two main families of LD-associated 

proteins are the PAT family (173), named for its three founding members 

Perilipin, Adipophilin, and Tip47 that have PAT domains, and the CIDE family 

(200). The PAT family has five members (Perilipin 1-5), while the CIDE family 

has three members (Cidea, Cideb, and Cidec/Fsp27). LDs are heterogeneous in 
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their coats and LD proteins generally demonstrate tissue-specific distribution 

patterns (276). In healthy murine liver, Perilipin 2 and Perilipin 3 promote LD 

formation (277), while Cideb promotes VLDL lipidation (209). Although deletion of 

Perilipin 3 has not yet been performed, genetic deletion of Perilipin 2 or Cideb 

ameliorates hepatic steatosis (208,245). However, in the context of diet-induced 

obesity and fatty liver, Fsp27 (Cidec in humans) and Cidea are critical for LD 

formation (200). Both are highly upregulated in murine liver upon diet-induced 

obesity and genetic deletion of either results in clearance of obesity-associated 

hepatic steatosis (200,206,214). Fsp27 is also relevant to human disease, as a 

patient with a homozygous nonsense mutation in CIDEC displays partial 

lipodystrophy, fatty liver, and metabolic syndrome (248,252). As the LD proteome 

may be quite extensive (278), identifying additional members will shed new light 

on the mechanisms for TG deposition and potentially the basis of human 

disease.  

Hig2 was initially identified in a screen for genes induced by oxygen 

deprivation in human cervical cancer cells and encodes a 7 kDa protein with little 

apparent homology to known proteins (264). Its expression is also increased in 

many cancers, particularly RCC and it is a target gene of both Hif1 and PPAR 

(263-265,267,279). Gimm et al. demonstrated that Hig2 localized to LDs and 

promoted TG deposition in cancer cells in vitro (263). These authors also showed 

that Hig2 co-localized with Perilipins 2 and 3, two LD proteins that are essential 
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for neutral lipid deposition in healthy liver. Due to the importance of hepatic lipid 

homeostasis and deposition, the role of Hig2 in these processes was examined.   

 In this chapter, it is demonstrated that Hig2 localizes to LDs in primary 

mouse hepatocytes. Importantly, its deletion in hepatocytes in vivo causes 

depletion of hepatic TG, indicating that it plays a physiological role in regulating 

liver lipid abundance in mice. Furthermore, it is shown that the basis for its ability 

to promote LD formation and TG deposition in liver is through the inhibition of TG 

lipolysis. 

Materials and Methods:  

Animal Studies: All of the studies performed were approved by the Institutional 

Animal Care and Use Committee (IACUC) of the University of Massachusetts 

Medical School. Animals were maintained in a 12 hour light/dark cycle.  Hig2fl/fl 

animals were purchased from Jackson Laboratories (Hilpdatm1.1Nat/J). For 

metabolic studies, the animals were backcrossed onto C57Bl/6J animals for at 

least 6 generations. Genomic DNA was extracted from the obtained mice and 

subjected to PCR for genotyping using Qiagen Fast Cycling PCR Kit (Hig2fl/fl 

primer 5’-CCGGCAGGGCCTCCTCTTGCTCCTG-3’, 5’ 

GTGTGTTGGCTAGCTGACCCCTCGTG-3’). Hig2fl/fl animals were crossed to a 

tamoxifen-inducible ubiquitous cre mouse line (B6.Cg-Tg(UBC-cre/ERT2)1Ejb/J, 

Jackson Laboratories). Hig2fl/fl animals were also crossed to an albumin cre 
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mouse line (C57BL/6-Tg(Alb-cre)21Mgn/J, Jackson). Cre genotyping was 

performed according to the method of Jackson Laboratories.    

At 5-6 weeks of age, male C57Bl/6J, Hig2fl/fl, or Hig2fl/fl albumin cre+ littermates 

animals were placed on a high fat diet (60% fat, D12492i Research Diets) or fed 

chow (Lab Diet 5P76) for 12 or 16 weeks.  

Mice were fasted 16 hours for glucose tolerance tests and 4 hours for insulin 

tolerance tests. Mice were injected IP with 1g/kg of glucose or 1IU/kg of insulin, 

blood was drawn from the tail vein at the indicated times, and blood glucose 

levels were measured with a Breeze-2-glucose meter (Bayer). Mice were 

euthanized by CO2 inhalation followed by bilateral thoracotomy.  

 

Plasma and lipid analysis: Mice were fasted for 3 hours for plasma lipid 

analysis. Blood was taken via cardiac puncture, and EDTA-containing plasma 

was collected. Total serum cholesterol levels (ab65359, Abcam), serum 

triglyceride levels (Triglyceride Determination Kit, Sigma), serum NEFAs (Wako 

Diagnostics), and -hydroxybutyrate (Sigma) were measured using calorimetric 

assays according to the manufacturer’s instructions. Insulin levels were 

measured with an Insulin ELISA Kit (Millipore) according to the manufacturer’s 

instructions.  
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Triglyceride and Cholesterol Extraction: Whole livers were isolated and flash 

frozen in liquid nitrogen. Lipids were extracted from livers or pelleted hepatocytes 

via the Folch method (280). Lipids were dissolved in isopropanol with 1% Triton-

X100. Triglyceride (Triglyceride Determination Kit, Sigma) and cholesteryl ester 

(ab65359, Abcam) levels were measured using calorimetric assays according to 

the manufacturer’s instructions and normalized to liver weight or hepatocyte 

protein content. 

 

Hepatocyte isolation: Male or female 8-10 week old chow-fed animals were 

anesthetized with an IP injection of 1:1 ketamine:xylazine and perfused with 

HBSS supplemented with 0.5M EGTA. Livers were digested with a perfusion of 

50mg/ml collagenase (Sigma, C6885) in HBSS supplemented with 1mM CaCl2, 

physically dissociated, and filtered through a 100m filter. Hepatocytes were 

washed, centrifuged at low speed, filtered through a 70m filter, and plated at a 

density of 1 million cells/ml.  

 

RNA Isolation and RT-qPCR: Total RNA was isolated from cells or tissues 

using TriPure isolation reagent (Roche) according to the manufacturer’s protocol. 

The isolated RNA was DNase treated (DNA-free, Life Technologies), and cDNA 

was synthesized using iScript cDNA synthesis kit (BioRad). RT-qPCR was 

performed on the BioRad CFX96 using iQ SybrGreen supermix, and 36B4 
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served as the reference gene. Primer sequences are as follows: 36B4 (5’- 

TCCAGGCTTTGGGCATCA-3’, 5’-CTTTATCAGCTGCACATCACTCAGA-3’); 

Hig2 (5’-CATGTTGACCCTGCTTTCCAT-3’, 5’- GCTCTCCAGTAAGCCTCCCA-

3’); Tnf (5’-CCCTCACACTCAGATCATCTTCT-3’, 5’-

GCTACGACGTGGGCTACAG-3’); IL6 (5’-TAGTCCTTCCTACCCCAATTTCC-3’, 

5’-TTGGTCCTTAGCCACTCCTTC-3’); IL1 (5’-

GCAACTGTTCCTGAACTCAACT-3’, 5’-ATCTTTTGGGGTCCGTCAACT-3’); 

F4/80 (5’-CCCCAGTGTCCTTACAGAGTG-3’, 5’-GTGCCCAGAGTGGATGTCT-

3’); CD36 (5’-GAACCACTGCTTTCAAAAACTGG-3’, 5’-

TGCTGTTCTTTGCCACGTCA-3’); Cpt1a (5’-GCTGCTTCCCCTCACAAGTTCC-

3’, 5’-GCTTTGGCTGCCTGTGTCAGTATGC-3’); Mttfa (5’-

AGTTCCCACGCTGGTAGTGT-3’, 5’-GCGCACATCTCGACCC-3’); Ppar (5’-

GACTACCCTTTACTGAAATTACC-3’, 5’-GTGGTCTTCCATCACGGAGA-3’); 

Srebp1c (5’-GGAGCCATGGATTGCACA-3’, 5’-GGCCCGGGAAGTCACTGT-3’); 

Srebp2 (5’-GCAGCAACGGGACCATTCT-3’, 5’-

CCCCATGACTAAGTCCTTCAACT-3’); ApoB (5’-

TGGCTCTGATCCCAAATCCCT-3’, 5’-CCGTGCATTCATTGTCGATCTG-3’); 

Atgl (5’-CAGCACATTTATCCCGGTGTAC-3’, 5’-AAATGCCGCCATCCACATAG-

3’); Perilipin 2 (5’-GACCTTGTGTCCTCCGCTTAT-3’, 5’-

CAACCGCAATTTGTGGCTC-3’); Cidea (5’-TGACATTCATGGGATTGCAGAC-3’ 
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5’-GGCCAGTTGTGATGACTAAGAC-3’); Fsp27 (5’-

ATCAGAACAGCGCAAGAAGA-3’, 5’-CAGCTTGTACAGGTCGAAGG-3’) 

 

Immunoblotting: Tissues and cells were lysed in a high-salt, high-SDS buffer 

(2% SDS, 150mM NaCl, 2mM EDTA) with 1x Halt protease and phosphatase 

inhibitors (Thermo Scientific). Lysates were resolved by 15% SDS-PAGE gel run 

in a 1x Tris-Tricine Buffer (National Diagnostics) and transferred to nitrocellulose 

membranes. Membranes were blotted with the following antibodies: -Actin 

(A2228, Sigma), HA-Tag (2367, Cell Signaling Technology). The Hig2 antibody 

was directed against a 15 amino acid peptide (PPKGLPDHPSRGVGV) at the C 

terminus of murine Hig2 (Rockland Immunochemicals).  

 

Cell Culture: Hepatocytes were isolated from male or female 8-10 week old 

Hig2fl/fl Ubc ERT2 Cre+ animals, plated in M199 adherence media (Life 

Technologies, 11150, supplemented with 2% FBS, 10% BSA, 1%Pen/Strep, 

100nM Insulin, and 100nM Dexamethasone) for 3 hours, changed to M199 

maintenance media (M199 supplemented with 1% Pen/Strep, 100nM Insulin, and 

100nM Dexamethasone) and treated with ethanol vehicle or 2.5M (Z)4-

Hydroxytamoxifen (Sigma H7904) dissolved in filtered ethanol (5mg/ml) for 48 

hours before experiments.  
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For imaging experiments, hepatocytes were plated on collagen-coated Millicell 4 

chambered slides (Millipore) and transfected with GFP control, GFP-Hig2, or 

GFP-Hig2 truncated (missing residues 1-28) constructs using 1.5g DNA, 

Optimem and Lipofectamine 2000 (Life Technologies) according to 

manufacturer’s instructions 48 hours prior to experiments. GFP constructs were 

made using two unique restriction sites Not1 and BamH1 in a pShuttle plasmid 

(Clontech, Mountain View, CA).  cDNA of full-length Hig2 or the PCR product of 

truncated Hig2 was inserted in frame at these two restriction sites. Hepatocytes 

were also infected with HA-tagged adenoviruses 48 hours prior to experiments. 

Adenoviruses were made as follows: The cDNA of the transgene of interest was 

first cloned into a pShuttle plasmid (Clontech, Mountain View, CA) and then 

subcloned into a molecular clone of E1-and E3-deleted human adenovirus 

serotype 5. This adenovirus plasmid backbone was modified from pAdX system 

(Clontech, Mountain View, CA) by introducing a green-white selection 

mechanism (281). The recombinant clones of adenovirus vector with the 

transgene of interest were selected through this green-white screening, 

confirmed by restriction enzyme analyses and rescued in 293 cells after 

restriction enzyme linearization and transfection. The recombinant virus is 

expanded and purified by standard CsCl gradient sedimentation followed by 

dialysis for desalting (282). The HA control construct was made by inserting 3HA 

at Not1 and BamH1 sites of the 4124 base pair plasmid pShuttle Adeno vector. 
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3HA Hig2 adenovirus plasmid DNA was made by inserting a full-length gene of 

Hig2 at restriction sites Blp1 (5’) and BamH1 (3’) of 3HA adeno viral plasmid 

DNA. Cells were loaded with the indicated concentration of oleic acid (Sigma) 

dissolved in ethanol and conjugated to 10% fatty acid-free BSA dissolved in 0.1M 

Tris pH 8. For radiation experiments, hepatocytes were plated on collagen-

coated plates in William’s E Medium Adherence Media (Life Technologies 12551, 

supplemented with 2% Fetal Bovine Serum, 10% BSA (Sigma A4503), 1% 

Pen/Strep, 100nM Insulin, and 100nM Dexamethasone). After three hours, media 

was changed to maintenance media (William’s E Medium supplemented with 1% 

Pen/Strep, 100nM Insulin, and 100nM Dexamethasone). 

 

Cell Imaging: Cells were fixed in 10% buffered formalin in PBS for 15 minutes, 

stained with Oil-Red-O, and mounted with Prolong Gold with DAPI (Life 

Technologies). Cells were imaged at room temperature with a Solamere 

Technology Group modified Yokogawa CSU10 Spinning Disk Confocal with a 

Nikon TE-2000E2 inverted microscope at 20x, 60x, and 100x. Images were 

acquired with MetaMorph Software, version 6.1 (Universal Imaging, Downington 

PA). 

Lipid droplet analysis was performed on fixed, Oil-Red-O- and DAPI- stained 

cells with BioPix iQ Imaging Software (BioPix AB, Sweden). At least 90 cells 

were analyzed per condition. 
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Oleate Tracer Studies: Hepatocytes were isolated from male 8-10 week old 

Hig2fl/fl or Hig2fl/fl albumin cre+ animals. 24 hours after isolation, cells were loaded 

with 1Ci/ml [3H] oleic acid mixed with 100M oleic acid conjugated to 0.5% fatty 

acid-free BSA in William’s E Medium. Assays were performed as previously 

described (214,283).  

Oleate Uptake: Cells were loaded with 100M [3H] oleic acid overnight. The 

following day, media was removed, cells were washed, and lysed in 0.5ml of lysis 

buffer (1% Triton-X100 in PBS), and lysates were placed in vials with scintillation 

fluid and counted using a Beckman LS 6500 scintillation counter. Counts were 

normalized to length of incubation time and protein content. 

Total -Oxidation: Cells were loaded with 100M [3H] oleic acid overnight. The 

following day, media was collected, precipitated twice with perchloric acid and 

BSA, spun to pellet insoluble products, and the soluble fraction was removed, 

placed in vials with scintillation fluid, and counted. Counts were normalized to 

length of incubation time and protein content. Empty media was loaded with [3H] 

oleic acid, precipitated, counted, and subtracted as a background reading. 

Triglyceride Turnover: Cells were loaded with 100M [3H] Oleic Acid overnight. 

The following day, cells were washed 2x, and media was replaced with William’s 

E Media with 0.6mM Triacsin C (Sigma). Cells were collected at indicated times, 

washed, and lysed in 0.5ml lysis buffer (1% Triton-X100 in PBS), placed in vials 
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with scintillation fluid, and counted. Counts are normalized to protein content and 

graphed as a percentage of time 0.  

Lipolysis: Cells were loaded with 100M [3H] oleic acid overnight. The following 

day, cells were washed 2x and media was replaced with William’s E Media with 

0.6 mM Triacsin C (Sigma) and 100M Etomoxir (Sigma). Media was collected at 

the indicated times, placed in vials with scintillation fluid, and counted. Counts 

are normalized to protein content.    

 

Statistical Analysis: Data were analyzed in GraphPad Prism 6 (GraphPad 

Software, Inc.). A two-tailed student’s t test with Welch’s Correction was used to 

compare two groups of data. Where indicated, data were analyzed using a two-

way ANOVA with repeated measures or a linear regression model.  P<.05 was 

considered to be significant. The Grubb’s test was used to determine if there 

were statistical outliers and if an outlier was determined, it was removed from the 

statistical analysis. Variance was estimated using standard error of the mean. 

 

Results: 

Hig2 is localized to LDs and its expression is modified by nutritional status. 

To characterize Hig2 as a potential hepatic LD protein, its localization was 

first determined in primary mouse hepatocytes. Primary hepatocytes were 

isolated from C57Bl/6J animals and transfected with either GFP control or GFP-
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tagged Hig2 constructs and incubated with oleic acid to induce LD formation. 

While the GFP control construct displayed a diffuse, cytoplasmic distribution in 

the cells, GFP-Hig2 clearly localized around the perimeter of Oil-Red-O positive 

LDs (Figure 2.1B). Gimm et al. used deletion analysis to determine that the 37 N- 

terminal amino acids of Hig2 are required for LD targeting in cancer cell lines 

(263), which was termed here as the “Putative Lipid Droplet Binding Domain” 

(Figure 2.1A). To confirm that this was also the targeting domain in hepatocytes, 

a Hig2 truncation mutant with a loss of amino acids 1-28 of this putative binding 

domain was created. When the Hig2 truncation mutant was transfected into 

primary hepatocytes, it also localized diffusely, similar to the GFP control, 

demonstrating that Hig2 localizes to LDs in hepatocytes through this putative LD 

binding domain (Figure 2.1B). As Gimm et al. determined by sequence analysis 

that an amphipathic helix is located in this domain (263), it is possible that Hig2 

may interact with the lipid droplet directly via surface interaction (160). 

 Hepatic LD protein expression is highly sensitive to nutritional status. As 

both Fsp27 and Cidea, two bona fide liver LD proteins, are highly upregulated 

upon high fat diet (HFD) feeding in mice (200), Hig2 expression was measured in 

two situations of hepatic steatosis. Fasting, which liberates lipids from adipose 

tissue via lipolysis, causes a temporary increase in liver lipids (128). Indeed, a 

24-hour fast caused a 2-fold increase in Hig2 mRNA expression in C57Bl/6J 

mouse livers (Figure 2.1C). Obesity-induced hepatic steatosis in C57Bl/6J mice 
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also caused a significant 2.7-fold increase in Hig2 mRNA expression in liver 

(Figure 2.1D), consistent with the concept that Hig2 expression is highly 

correlated with liver lipid levels. 
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Figure 2.1 Hig2 is localized to LDs and its expression is modified by 
nutritional status. 
 

 

FIGURE 2.1 Hig2 is localized to LDs and its expression is modified by 
nutritional status. A, amino acid sequence of murine Hig2 with putative lipid 
droplet binding domain residues 1-37 indicated. B, hepatocytes were transfected 
with GFP-tagged constructs (green), loaded with 500M oleic acid for 4 h, fixed, 
and stained with Oil Red O (red) and DAPI (blue). Truncated Hig2-GFP is 
missing residues 1-28. C and D, whole livers were isolated from C57Bl/6J 
animals, RNA was extracted, and qRT-PCR was performed for Hig2 and 
normalized to 36B4. C, animals were fasted for 24 h or fed. Data are represented 
as the mean + S.E. (*, p<0.05, n=6). D, animals were fed ND or HFD for 12 
weeks. (*, p<0.05, n=5-6). Data are represented as the mean + S.E.  
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Ectopic expression of Hig2 promotes hepatocyte lipid deposition. 

LD protein overexpression can also promote lipid deposition (173). For 

example, experimentally enhancing Fsp27 expression promotes TG 

accumulation in a variety of cell types, while Fsp27 deficiency reduces LD 

formation (215,220). Thus, it was tested whether Hig2 expression modifies TG 

accumulation in liver by manipulating Hig2 expression in primary mouse 

hepatocytes. First, primary hepatocytes were isolated from Hig2fl/fl animals and 

infected with either control adenovirus (AV) or an AV expressing HA-tagged 

Hig2. As expected, Hig2-HA AV- infected cells demonstrated increased Hig2-HA 

levels compared with controls as determined by Western blot (Figure 2.2B). The 

cells were incubated with 250M oleic acid for 24 hours to induce LD formation, 

fixed, and then stained with Oil-Red-O to image LDs. Imaging revealed that Hig2-

HA AV- infected hepatocytes had significantly more LDs compared with controls 

(Figure 2.2A). Though there was no significant difference in TG levels in BSA 

vehicle-treated hepatocytes, Hig2-infected cells demonstrated a 1.5-fold increase 

in TG content compared with control cells after oleate loading (Figure 2.2C). 

Taken together, these results demonstrate that high Hig2 expression is sufficient 

to promote lipid deposition in hepatocytes. These results confirmed those of a 

report published while these studies were in progress showing that 

overexpression of Hig2 in liver via adeno-associated virus (AAV) vector injection 

in mice resulted in increased hepatic lipid deposition in vivo (267). 
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Figure 2.2 Ectopic expression of Hig2 promotes hepatocyte lipid 
deposition. 

 

 

FIGURE 2.2 Ectopic expression of Hig2 promotes hepatocyte lipid 
deposition. Hepatocytes were isolated from Hig2fl/fl animals and infected with 
HA (control) or Hig2-HA (Hig2) adenovirus. A and C, hepatocytes were loaded 
with 250M oleic acid for 24 h. A, cells were fixed and stained with Oil red O 
(red) and DAPI (blue). B, representative immunoblots (IB) of Hig2 (light and dark 
exposure), HA-Tag, and -actin. Ctrl, control. C, triglyceride content from control 
and Hig2-HA infected cells. (*, p<0.05, n=6). Data are represented as the mean + 
S.E. 
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Inducible Hig2 deficiency reduces LD triglyceride in hepatocytes. 

Conversely, to determine whether Hig2 expression is necessary for lipid 

deposition in hepatocytes, Hig2 was genetically deleted in primary hepatocytes 

using a tamoxifen-inducible mouse model (Hig2iKO). Hig2fl/fl mice were crossed 

to Ubc ERT2 cre+ mice (Figure 2.3A), hepatocytes were isolated from these 

Hig2iKO animals, plated for 3 hours, and treated with either 2.5M 4-OH-

tamoxifen to induce deletion or ethanol vehicle as a control for 48 hours before 

analysis (Figure 2.3B). Tamoxifen treatment resulted in a 90% reduction in Hig2 

mRNA and protein expression compared with ethanol vehicle- treated controls as 

assessed by qRT-PCR and Western blot, respectively (Figure 2.3C-D). When TG 

was extracted and quantified, it was found that ethanol vehicle-treated cells had 

1.7-fold more TG after BSA treatment and 1.4-fold more TG after oleic acid 

loading compared with tamoxifen-treated cells (Figure 2.3E). These results 

demonstrate that Hig2 deficiency greatly reduced TG deposition in hepatocytes. 
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Figure 2.3 Inducible Hig2 deficiency reduces LD triglyceride in hepatocytes. 
 
 

 
 
 
FIGURE 2.3 Inducible Hig2 deficiency reduces LD triglyceride in 
hepatocytes. A, schematic of Hig2 deletion with tamoxifen-inducible UbcERT2-
cre. B, schematic of experimental design. Hepatocytes were isolated from 
Hig2iKO mice, plated for 3 h, and treated with ethanol vehicle or 2.5M tamoxifen 
in ethanol for 48 h. C, qRT-PCR was performed for Hig2 and normalized to 36B4. 
(**, p<0.01, n=8). D, representative immunoblots (IB) of Hig2 and -actin. Veh, 
vehicle; Tam, tamoxifen. E, triglyceride content from cells treated with 500M 
oleic acid or BSA vehicle for 4h. (*, p<0.05, n=5). 
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Inducible Hig2 deficiency reduces LD size and number in hepatocytes. 

 Cells were fixed and stained with Oil-Red-O, and LDs were 

quantified. Strikingly, tamoxifen-treated hepatocytes had less Oil-Red-O-positive 

LD compared with ethanol vehicle-treated controls (Figure 2.4A). To confirm that 

this was not a side effect of tamoxifen treatment or the Ubc ERT2 cre transgene, 

Ubc ERT2 cre+ hepatocytes on a wild type background were treated with vehicle 

or tamoxifen and no alterations in lipid accumulation were observed (Figure 

2.4D). The ethanol vehicle-treated hepatocytes demonstrated an average of 63 + 

8 LD per cell, while tamoxifen-treated hepatocytes displayed over a 67% 

reduction in LD content and had an average of only 18 + 3 LD per cell (Figure 

2.4B). Furthermore, the LDs in Hig2iKO hepatocytes were approximately 50% 

smaller than ethanol vehicle-treated controls and displayed an average size of 

2.3 + 0.6 m2 compared with 4.3 + 0.6 m2 for ethanol vehicle-treated controls 

(Figure 2.4C). Interestingly, Hig2-deficient hepatocytes had significantly more 

LDs than controls after loading with 500M oleic acid for 24 hours (41 + 6 

compared with 75 + 11); however, these LDs were over 50% smaller than control 

LDs (4.0 + .8 m2  vs. 9.3 + 1.8 m2) (Figure 2.4B,C). This phenomenon is 

similar to the smaller LDs found in Fsp27-deficient adipocytes (220). These 

results demonstrate that Hig2 deficiency greatly reduced LD abundance 

deposition in hepatocytes. Taken together, these experiments in primary 
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hepatocytes suggest Hig2 expression is required for hepatocyte lipid deposition 

and LD growth in vitro.  
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Figure 2.4 Inducible Hig2 deficiency reduces LD size and number in 
hepatocytes. 
 

 
FIGURE 2.4 Inducible Hig2 deficiency reduces LD size and number in 

hepatocytes. A, hepatocytes were treated with BSA vehicle or 500M oleic acid 
for 24 h, fixed, and stained with Oil-red-O (red) and DAPI (blue). B and C, 
hepatocytes were treated with 500M oleic acid or BSA vehicle for 24 h. B, the 
number of lipid droplets per cell. C, total lipid droplet area per cell. (*, p<0.05, **, 
p<0.01, n=5-6). Data are represented as the mean + S.E. D, C57Bl/6J Ubc ERT2 
cre+ hepatocytes were isolated  and treated as in Figure 2.3, treated with 500M 
oleic acid for 24h, fixed, and stained with Oil-red-O (red) and DAPI (blue). 
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Liver-specific Hig2-deficient mice display hepatocyte-specific Hig2 deletion. 

 Excess accumulation of liver lipids is often associated with insulin 

resistance in obese mice and humans (274). Therefore, mice with liver-specific 

deletion of Hig2 were generated to address whether Hig2 deficiency could 

reduce hepatic steatosis and preserve glucose tolerance in a model of diet-

induced obesity. The Hig2fl/fl mouse was crossed with mice expressing albumin 

cre to generate a mouse with liver-specific Hig2 deletion (Hig2LKO, Figure 2.5A). 

Hig2LKO mice demonstrated a significant, 89% reduction of Hig2 mRNA 

specifically in hepatocytes compared with fl/fl controls (Figure 2.5B) and a 

concomitant reduction in Hig2 protein levels as determined by Western blot 

(Figure 2.5C). Other tissues such as white adipose tissue (WAT), spleen, and 

kidney did not show significant reductions in Hig2 mRNA (Figure 2.5D), 

demonstrating that the deletion was specific for hepatocytes. 
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Figure 2.5 Liver-specific Hig2-deficient mice display hepatocyte-specific 
Hig2 deletion. 
 

 

FIGURE 2.5 Liver-specific Hig2-deficient mice display hepatocyte-specific 
Hig2 deletion. A, schematic of albumin-cre-mediated Hig2 deletion. B and C, 
hepatocytes were isolated from fl/fl and Hig2LKO mice. B, qRT-PCR was 
performed for Hig2 and normalized to 36B4. (#, p<.005, n=5). Data are 
represented as the mean + S.E. C, representative immunoblots (IB) of Hig2 and 
-actin. D, white adipose tissue (WAT), kidney, and spleen were isolated from fl/fl 
and Hig2LKO mice. qRT-PCR was performed for Hig2 and normalized to 36B4. 
(n=8-9).Data are represented as the mean + S.E. 

 

 

 

 

 

 



77 
 

 

Liver-specific Hig2-deficient mice display decreased liver triglyceride in normal 

diet conditions and improved glucose tolerance. 

Fl/fl and Hig2LKO animals were placed on HFD or normal diet (ND) for 16 

weeks and their body weight was measured weekly. Although there was no 

significant difference in the body weights of the Hig2LKO animals versus the fl/fl 

controls (Figure 2.6A), the Hig2LKO animals demonstrated significantly improved 

glucose tolerance as measured by a glucose tolerance test (GTT) in both the ND 

group and at early time points following glucose injection in the HFD-fed group 

(Figure 2.6B). However, no significant difference between genotypes was 

observed in an insulin tolerance test (ITT, Figure 2.6C).  

Fasting circulating insulin levels, serum TGs, serum cholesterol, serum 

non-esterified fatty acids (NEFA), -hydroxybutyrate and liver cholesterol were 

measured, but all were unchanged among the groups in both ND and HFD-fed 

conditions (Table 2.1). Because Hig2 deletion reduces TG content in vitro, the 

livers of the Hig2LKO animals fed ND or HFD for 16 weeks were examined. The 

gross liver weights were not significantly different in either diet condition, but in 

the ND condition, the Hig2LKO animals had lighter livers than the fl/fl controls 

(1.14 + .04 vs. 1.23 + .03g, p=.08) (Figure 2.6D). Though differences in H&E 

stained histology sections from fl/fl and Hig2LKO animals were unremarkable 

(Figure 2.6F), ND-fed Hig2LKO animals had 30% less liver TGs than fl/fl controls 



78 
 

 

(p=.08); however, this difference was abrogated in HFD-fed animals (Figure 

2.6E).  
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Figure 2.6 Liver-specific Hig2-deficient mice display decreased liver 
triglyceride in normal diet conditions and improved glucose tolerance. 
 

 
 
FIGURE 2.6 Liver-specific Hig2-deficient mice display decreased liver 
triglyceride in normal diet conditions and improved glucose tolerance. A-F, 
fl/fl or Hig2LKO animals were fed ND or HFD for 16 weeks. A, body weight 
curves. (n=10-13). B, glucose tolerance test. (+, p=0.08, *, p<0.05, **, p<0.01; $, 
p<0.05, two-way analysis of variance, n=7-11). C, insulin tolerance test. (n=9-17). 
Data are represented as the mean + S.E. D, liver weights. (+, p=0.08, n=8-11). 
Data are represented as individual values + S.E. E, lipids were extracted from 
livers, and triglyceride content was assessed. (+, p=0.08, n=8-11). Data are 
represented as individual values + S.E. F, livers were sectioned and stained with 
H&E. 
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Table 2.1 
Liver cholesterol and serum metabolites were assessed from fl/fl or Hig2LKO 
animals fed ND or HFD for 16 weeks. (n=5-13). Data are the mean + S.E. 
BD, below detection; NEFA, non-esterified fatty acids. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters
Hig2 fl/fl Hig2LKO Hig2 fl/fl Hig2LKO

Insulin (ng/ml) BD BD 2.831 + 0.477 2.640 + 0.268
Serum triglycerides (mg/dL) 64.283 + 4.302 51.456 + 5.113 107.384 + 6.634 102.954 + 10.707
Serum cholesterol (mg/dL) 64.401 + 5.782 70.218 + 5.929 127.834 + 6.993 137.622 + 6.255
Liver cholesterol (g/mg) 1.745 + 0.106 1.717 + 0.071 1.804 + 0.226 2.181 + 0.082
NEFA (mmol/liter) 0.416 + 0.028 0.348 + 0.038 0.536 + 0.068 0.476 + 0.058
-Hydroxybutyrate (mmol/liter) 0.469 + 0.042 0.569 + 0.078 0.373 + 0.038 0.274 + 0.017

Normal Diet 16wks HFD
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Gene expression in inflammatory, lipid, and energy metabolism pathways is 

unchanged in liver-specific Hig2-deficient mice. 

To assess liver inflammation, RNA was isolated from mice fed HFD for 16 

weeks and qRT-PCR was performed to assess the expression of genes involved 

in inflammatory pathways. No changes in gene expression were observed in 

Hig2LKO mouse livers compared with fl/fl controls for TNF, IL6, IL1, and the 

macrophage marker F4/80 (Figure 2.7A). 

It was critical to examine potential mechanisms by which Hig2 controls TG 

accumulation in hepatocytes. Hepatic TG accumulation is controlled by FA 

uptake and hepatic lipogenesis versus hepatic lipolysis (TG turnover) (11). First, 

qRT-PCR on RNA isolated from livers isolated from fl/fl and Hig2LKO mice on 

ND was performed and the expression was assessed of several genes that are 

critically involved in the aforementioned pathways. However, no changes in gene 

expression were observed in Hig2LKO mouse livers compared with fl/fl controls 

for CD36 (FA uptake), Cpt1a, Mttfa (mitochondrial oxidation), Ppar, Fasn, 

Srebp1c (lipogenesis), Srebp2 (cholesterol synthesis), ApoB (lipid export), or Atgl 

(lipolysis) (Figure 2.7B). Hig2 deficiency could potentially reduce the expression 

of other LD proteins in liver to reduce the lipid content, thus the expression of 

Perilipin 2, Cidea, and Fsp27 by qRT-PCR was measured and the expression of 

these genes was also unchanged in Hig2LKO mouse livers compared with fl/fl 

livers (Figure 2.7C). 
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Figure 2.7 Gene expression in inflammatory, lipid, and energy metabolism 

pathways is unchanged in liver-specific Hig2-deficient mice.  

 

 
 
FIGURE 2.7 Gene expression in inflammatory, lipid, and energy metabolism 
pathways is unchanged in liver-specific Hig2-deficient mice. A-C, whole 
livers were isolated from fl/fl or Hig2LKO animals, RNA was extracted, and qRT-
PCR was performed for the indicated genes and normalized to 36B4. A, animals 
were fed HFD for 16 weeks. Data are represented as the mean + S.E. (n=4-9). B, 
C animals were fed ND for 16 weeks. (n=3-4). Data are represented as the mean 
+ S.E.  
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Hig2 deficiency increases hepatocyte lipolysis, -oxidation, and triglyceride 

turnover. 

 Because there were no transcriptional changes in the targets examined, it 

was hypothesized that Hig2 was promoting hepatic lipid deposition in a post-

transcriptional manner. Thus, lipid flux in Hig2LKO hepatocytes was assessed to 

determine whether they demonstrated a difference in lipid handling. Hepatocytes 

were isolated from ND-fed fl/fl and Hig2LKO hepatocytes, the cells were 

incubated with [3H] oleic acid and then the total amount of radiation was 

measured in Hig2LKO and fl/fl controls after overnight [3H] oleic acid loading. As 

expected, the Hig2LKO hepatocytes displayed a 45% reduction in lipid uptake 

compared with controls (p=.07; Figure 2.8A), confirming results obtained in 

Figure 2.3 with the Hig2iKO hepatocytes.  

Genetic deletion of LD proteins such as Fsp27, Perilipin1, and Cidea in 

mice, has demonstrated a role for LD proteins in TG turnover and -oxidation 

(177,203,220,284). Hepatic TG turnover has been experimentally determined to 

be on the timescale of 10-30 hours in vivo (285). Thus, parameters were 

assessed by loading the ND-fed Hig2LKO or fl/fl hepatocytes with [3H] oleic acid 

overnight and then TG turnover, lipolysis, and -oxidation were measured. 

Strikingly, despite the absence of changes in gene expression, Hig2LKO 

hepatocytes had significantly increased TG turnover compared with fl/fl controls 

as determined by linear regression analysis (Figure 2.8C). Hig2LKO hepatocytes 
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also exhibited double the amount of lipolysis at two hours as compared with 

controls (Figure 2.8D). Similar to Fsp27-deficient animals, Hig2LKO hepatocytes 

also displayed 3.3-fold higher degree of FA oxidation compared with control fl/fl 

hepatocytes as detected by accumulation of soluble [3H] oleic acid oxidation 

products  (Figure 2.8B). Taken together, these results suggest that Hig2 

promotes lipid deposition in a healthy liver, at least in part, by localizing to LDs in 

hepatocytes and inhibiting TG lipolysis. 
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Figure 2.8 Hig2 deficiency increases hepatocyte lipolysis, -oxidation, and 
triglyceride turnover. 
 

 

FIGURE 2.8 Hig2 deficiency increases hepatocyte lipolysis, -oxidation, 
and triglyceride turnover. A-D, hepatocytes were isolated from fl/fl or Hig2LKO 
animals, plated, and loaded with 100M [3H]oleic acid overnight. A, oleate 
uptake. (+, p=0.07, n=8). B, total -oxidation. (*, p<0.05, n=6). C, triglyceride 
turnover. (*, p<0.05 via linear regression analysis of the slope, n=8-10). D, 
lipolysis. (*, p<0.05, n=3) Data are represented as the mean + S.E. 
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Discussion: 

The findings presented in this chapter define Hig2 as a physiologically 

important LD-associated protein that functions to promote TG accumulation in 

liver in vivo. It is demonstrated that GFP-tagged Hig2 localizes specifically to 

hepatocyte LDs in a manner that was dependent on its putative lipid binding 

domain (Figure 2.1). While ectopic expression of Hig2 promoted LD abundance 

and TG deposition (Figure 2.2), Hig2 deletion in hepatocytes in vitro reduced TG 

accumulation (Figure 2.3) and LD number (Figure 2.4). Liver-specific Hig2 

deletion (Figure 2.5) reduced hepatic TGs in ND-fed mice and improved glucose 

tolerance in both ND and HFD-fed conditions (Figure 2.6). Hepatocytes isolated 

from these animals, despite showing no discernable gene expression changes 

(Figure 2.7), showed increased TG turnover and FA oxidation, suggesting that 

Hig2 promotes TG deposition by inhibiting lipolysis (Figure 2.8). Indeed, direct 

measurement of TG hydrolysis in hepatocytes deficient in Hig2 revealed 

increased lipolytic rates over controls, analogous to what has been reported for 

other LD proteins, such as Fsp27 (214).  

 As the data in Figure 2.5 indicate, Hig2 may not be nearly as crucial for 

hepatic lipid deposition in HFD-fed liver as it is in the ND-fed condition. No 

decrease was found in total liver TG in the Hig2LKO mice compared with fl/fl 

controls when both groups of mice were on a HFD. This contrasts with a 

decrease in liver TG observed in these Hig2LKO mice on ND (Figure 2.5). One 
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likely possibility to explain this result is other proteins that are redundant in 

function to Hig2. 

Many LD proteins in the PAT family and the CIDE family alter lipid 

deposition by inhibiting lipolysis (173,180,200). Some of these are upregulated 

under HFD conditions and could replace Hig2 action on lipolysis. For example, 

the expression of the LD protein Fsp27 is highly upregulated by the fatty liver 

conditions we have examined here (286). Fsp27 inhibits lipolysis in adipocytes 

(215), similar to the present findings on Hig2 and hepatocytes. Taken together, it 

seems likely that compensation by other upregulated LD proteins explains the 

failure of Hig2 depletion to lower liver TG under HFD conditions.  

 These findings complement the recent findings of Mattijssen et al. (267) 

which were published while these studies were in progress. The authors 

demonstrated that overexpression of Hig2 in mouse livers driven by AAV results 

in hepatic steatosis, similar to our results using AV as an expression vector for 

Hig2 (Figure 2.2). Consistent with their findings, increased lipid product export 

was also observed in hepatocytes from Hig2LKO mice compared with controls 

(Figure 2.8), but this export consists almost entirely of FA oxidation products 

rather than lipoproteins. It has been shown that increases in lipolysis can shunt 

FAs to the mitochondria, leading to increases in -oxidation (287). It was also 

observed that Hig2LKO hepatocytes had increased lipolysis and TG turnover, 

which is phenotypically similar to what is observed after loss of LD proteins and 
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further suggests that Hig2 acts similarly to other proteins in this class. Thus, the 

increased -oxidation products observed in Hig2-deficient hepatocytes most 

likely reflect the higher levels of lipolysis and free FA availability for oxidation 

observed in the Hig2-deficient hepatocytes.  

The increased lipolysis in Hig2LKO hepatocytes does not appear to be the 

result of altered expression of Atgl (Figure 2.7B), the rate-limiting TG lipase in 

adipose tissue. However, Atgl activity is inhibited by G0/G1 Switch Protein 2 

(G0S2) (222,288). Hig2 could function similarly to negatively regulate lipolysis by 

interacting with and inhibiting Atgl or other lipases in liver. The lipolysis pathway 

in liver is not well studied, but liver-specific Atgl depletion in mice increases liver 

TG, while overexpression reduces liver TGs and increases -oxidation 

independent of changes in hepatic gene expression or serum TGs, much like we 

observe in the Hig2LKO mouse (289-291). Sequence alignments of Hig2 and 

G0S2 show 13.5% sequence identity, mostly located in the area where G0S2 is 

known to bind and inhibit Atgl (Figure 2.9) (222,292,293). Another target of Hig2 

regulation could be Adiponutrin, a lipase from the patatin-like phospholipase 

domain containing (PNPLA) family that contains the most sequence similarity to 

Atgl (287). If Hig2 physically interacts with a lipase, it could either inhibit its 

activity or restrict its access to LDs. The exact mechanism by which Hig2 inhibits 

lipolysis will be assessed in future studies. 



89 
 

 

A remarkable finding in this study was the significant improvement in 

glucose tolerance observed in liver-specific Hig2 deficiency, even under HFD 

conditions in which liver TG was unchanged (Figure 2.6). Although in obese 

animals and humans liver TG accumulation generally correlates with insulin 

resistance, many experimental models show dissociation of liver lipid 

accumulation from glucose tolerance, and the precise mechanistic connections 

between liver fat and metabolism and insulin sensitivity are far from clear (294). 

The mechanism by which Hig2 improves glucose tolerance in HFD animals, 

primarily in early time points following glucose injection is also unclear at this 

point. Hig2LKO animals trend toward enhanced insulin sensitivity in an ITT (Fig. 

2.6), although the differences did not reach statistical significance, and the basis 

of improved glucose clearance in these animals is under further investigation. 

Although this work on Hig2 has been performed in murine cells and 

tissues, mutations in other LD proteins such as Fsp27 and Perilipin 1 are 

associated with human disease (251,252). It will therefore be of interest to 

investigate whether Hig2 plays an important role in human biology. Tissue 

expression analysis of Hig2 shows that it is ubiquitously expressed (Figure 2.10). 

This expression pattern parallels that of Perilipin 2, which can be found coating 

LDs in most tissues. This raises the question of whether Hig2 is required for lipid 

deposition in other tissues, particularly metabolically active tissues such as 

adipose tissue and muscle or for macrophage foam cell formation. The full range 
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of Hig2 functions in diverse cell types in human biology is a key question for 

future research. 
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Figure 2.9 Hig2 and G0S2 share sequence homology. 

 

 

FIGURE 2.9 Hig2 and G0S2 share sequence homology. Protein sequences for 
mouse G0S2 and Hig2 were aligned, and sequence identity was calculated using 
the uniProt KB database with the default parameters of the program Clustal 
Omega (292,293).  Amino acid color coding is as follows: red=identical, 
blue=very similar, green=similar. Residues 27-42 of G0S2 are sufficient for ATGL 
binding and are highlighted in yellow. 
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CHAPTER III: Adipocyte-specific Hig2 promotes fat deposition and diet- 

induced glucose intolerance 
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Summary: 

 Adipose tissue is a dynamic organ with inputs into whole body 

metabolism. Proper lipid storage in adipocyte-specific lipid droplets (LDs) is 

critical for metabolic health; one hypothesis suggests that in chronic states of 

over nutrition, adipocytes can no longer buffer the influx of calories, resulting in 

dyslipidemia, which is often associated with metabolic disease. In this chapter, it 

is shown that the LD protein Hypoxia-inducible Gene 2 (Hig2/Hilpda) functions to 

enhance lipid accumulation in adipose tissue. Hig2 expression increased in 

epididymal white adipose tissue (eWAT) of obese mice and differentiating human 

SGBS adipocytes, two states associated with increasing adipocyte TG content. 

Hig2 localized to LDs in mature human SGBS and 3T3-L1 adipocytes. eWAT 

weight and brown adipose tissue (BAT) lipid content were decreased by 

adipocyte-specific deletion of Hig2 in mice with floxed Hig2 alleles expressing cre 

controlled by the adiponectin promoter. Ex vivo lipolysis measurements and 

circulating NEFAs were unchanged in Hig2-deficient animals, suggesting that 

adipocyte-specific Hig2 deficiency may not reduce eWAT weight by increasing 

lipolysis. Interestingly, HFD-fed mice with adipocyte-specific Hig2 deletion also 

displayed improved glucose tolerance. These improvements were abrogated by 

thermoneutrality (30°C), a temperature with no thermal stress and little BAT 

activation, suggesting that active BAT may play a role. Consistent with this idea, 

brown adipocyte-specific deletion of Hig2 in mice with floxed Hig2 alleles 
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expressing cre controlled by the ucp1 promoter also resulted in improved glucose 

tolerance in obesity. Taken together, these data indicate that Hig2 plays a role in 

promoting lipid sequestration within LDs in mouse adipocytes and in promoting 

obesity-induced glucose intolerance. 

Introduction: 

 Once considered an inert storage organ, adipose tissue is a dynamic 

tissue with inputs into whole body metabolism (122). Adipose tissue contains fat 

cells, termed adipocytes, and preadipocytes, immune cells, and endothelial cells 

(295). When digested and separated from the adipocytes, these cells are 

collectively known as the SVF (31). Adipose tissue stores the majority of caloric 

energy in the form of neutral lipids in organelles termed LDs in adipocytes (296). 

LDs are highly dynamic organelles and are regulated by tissue-specific proteins 

embedded in or associated with the droplet termed LD proteins. These proteins 

can regulate the size of the LD by inhibiting or facilitating lipolysis, the breakdown 

of TGs into glycerol and FFAs (297). LD proteins are relevant to human disease, 

as humans with mutations in these proteins manifest lipodystrophy, fatty liver, 

and metabolic syndrome (142). 

 Two main families of LD-associated proteins are the PAT family (173), 

named for its three founding members Perilipin, Adipophilin, and Tip47 that have 

PAT domains, and the CIDE family (200). The PAT family has five members 

(Perilipin 1-5), while the CIDE family has three members (Cidea, Cideb, and 
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Cidec/Fsp27). LDs are heterogeneous in their coats and LD proteins generally 

demonstrate tissue-specific distribution patterns (276). Perilipins 1, 2, 3, and 4, 

Cidea, and Fsp27 are expressed in adipose tissue and localize to LDs in 

adipocytes (Table 1.1). In vitro and in vivo studies suggest that Perilipin 1 and 

Fsp27 are two LD proteins that are critical for lipid storage in adipocytes 

(175,177,180,215,220); these experiments were confirmed by the discovery of 

lipodystrophic humans with Perilipin 1 and Fsp27 mutations (252,298).   

 Proper lipid storage in WAT is critical for metabolic health (295). In a lean 

individual, calories are stored as lipid in adipocytes. One hypothesis suggests 

that in chronic states of over nutrition, adipocytes can no longer buffer the influx 

of calories, resulting in dyslipidemia and ectopic fat deposition in other organs, 

such as liver and muscle, which can lead to insulin resistance, cardiovascular 

disease, inflammation, and cancer (136). Increasing the storage capacity of the 

adipose tissue poses a unique solution to this problem. Thus, further 

investigating the LD proteome for key players in lipid storage could be beneficial 

for human health.  

 Brown adipose tissue (BAT) generates heat through nonshivering 

thermogenesis, an uncoupling of the proton gradient of the electron transport 

chain mediated by UCP1. This differs from shivering thermogenesis, a temporary 

involuntary muscle movement that generates heat (299). Thus, brown adipocytes 

are characterized by high mitochondrial number, high UCP1 expression, and 
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small, numerous (multilocular) LDs (295). Until recently, BAT was thought to be 

present solely for warmth in human infants and hibernating mammals, but 2FDG-

PET scans have revealed that adult humans retain some functional BAT (50).

 As BAT metabolism is energetically expensive, human BAT activation 

presents a unique anti-obesity therapeutic potential. BAT thermogenesis can be 

activated by many means, but one of the most prominent stimuli is increased 

beta-adrenergic activation in response to cold temperatures (47). For example, 

when rodents are housed at room temperature (23°C), a mild cold stress, their 

metabolic rate can increase up to 50% due to BAT energy consumption (60). As 

housing mice at room temperature (23°C) poses such a thermal stress, it can be 

informative to subject mouse models to thermoneutrality, the temperature at 

which they are not subject to any external cold stress, (30°C for mice) to 

eliminate the contribution of nonshivering thermogenesis to whole body 

metabolism (300).  

   Hypoxia-inducible gene 2 (Hig2) is a little-studied 63 amino acid 

protein that was found in microarray analyses to be highly expressed in the 

adipocyte fraction of adipose tissue samples collected from bariatric surgery 

patients (Figure 3.1B). As Hig2 is ubiquitously expressed, promotes lipid 

deposition, and was highly expressed in adipocytes in human patients, its role in 

adipose tissue was examined. 
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 In this chapter, it is demonstrated that Hig2 localizes to LDs in adipocytes. 

Its expression is increased with both adipogenic differentiation and fat deposition. 

Mice harboring an adipocyte-specific deletion of Hig2 demonstrate reduced 

epididymal fat pad weight and improved glucose tolerance on HFD. These 

effects are abrogated by thermoneutral housing, suggesting that BAT may play a 

role in the improvements. This is supported by the fact that mice harboring a 

brown adipocyte-specific deletion of Hig2 also display improved glucose 

tolerance. Interestingly, ex vivo glycerol release, serum NEFAs and 

phosphorylation of PKA substrates are unchanged in adipocyte-specific Hig2-

deficient animals compared with fl/fl controls, suggesting that Hig2 may not inhibit 

lipolysis to promote lipid deposition in adipocytes. Taken together, these results 

suggest that adipocyte-specific Hig2 promotes lipid deposition and glucose 

intolerance, which may be entirely due to its expression in brown adipocytes.  

Materials and Methods:  

Animal Studies: All of the studies performed were approved by the Institutional 

Animal Care and Use Committee (IACUC) of the University of Massachusetts 

Medical School. Animals were maintained in a 12 hour light/dark cycle.  Hig2fl/fl 

animals were purchased from Jackson Laboratories (Hilpdatm1.1Nat/J). For 

metabolic studies, the animals were backcrossed onto C57Bl/6J animals for at 

least 6 generations. Genomic DNA was extracted from the obtained mice and 

subjected to PCR for genotyping using Qiagen Fast Cycling PCR Kit (Hig2fl/fl 
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primer 5’-CCGGCAGGGCCTCCTCTTGCTCCTG-3’, 5’ 

GTGTGTTGGCTAGCTGACCCCTCGTG-3’). Hig2fl/fl animals were crossed to an 

adiponectin cre mouse line (B6;FVB-Tg(Adipoq-cre)1Evdr/J, Jackson 

Laboratories). Hig2fl/fl animals were also crossed to a ucp1 cre mouse line 

(B6.FVB-Tg(Ucp1-cre)1Evdr/J, Jackson Laboratories). Cre genotyping was 

performed according to the method of Jackson Laboratories.    

At 4-6 weeks of age, male C57Bl/6J, Hig2fl/fl, Hig2fl/fl adiponectin cre+, or Hig2fl/fl 

ucp1 cre+ littermates animals were placed on a high fat diet (60% fat, D12492i or 

45% fat, D12451 (Fig 3.1 only), Research Diets) or fed chow (Lab Diet 5P76) for 

8,12,16 or 20 weeks. Animals were switched to thermoneutral housing (30°C, 12 

hour light/dark cycle) for 4 weeks and retained on the same diet they were 

previously fed. 

Mice were fasted 16 hours for glucose tolerance tests and 4 hours for insulin 

tolerance tests. Mice were injected IP with 1g/kg of glucose or 1IU/kg of insulin, 

blood was drawn from the tail vein at the indicated times, and blood glucose 

levels were measured with a Breeze-2-glucose meter (Bayer). Mice were 

euthanized by CO2 inhalation followed by bilateral thoracotomy.  

The metabolic cage studies were performed at the UMass Mouse Metabolic 

Phenotyping Center. Mice were fed HFD for 16 weeks and the metabolic cages 

were used to measure food intake, RER, VO2 consumption, CO2 production, 



101 
 

 

energy expenditure and physical activity over a 3-day period, and an average for 

each parameter was calculated (TSE Systems). 

 

Ex Vivo Lipolysis: Mice were fasted for 16 hours and euthanized by CO2 

inhalation followed by bilateral thoracotomy. Epididymal adipose tissue was 

removed and cut into 80-100mg pieces, placed in 0.5ml Krebs-Ringer-Hepes 

Buffer pH 7.4, supplemented with 2.5% fatty acid-free BSA and 1mM sodium 

pyruvate. Samples were incubated in a 37°C shaking water bath with or without 

10M isoproterenol (Sigma, I5627) for 2 hours and glycerol release into KRH 

was measured using a calorimetric assay (Sigma) according to the 

manufacturer’s instructions and normalized to the fat pad weight. 

 

Adipose tissue fractionation: Whole fat pads were isolated, minced, and 

placed in 5 ml Hanks Balanced Salt Solution (ThermoFisher, 14170120), pH 7.4, 

supplemented with 5% fatty acid-free BSA and 1mg/ml collagenase. Samples 

were incubated in a 37°C shaking water bath for 45 minutes, and the digestion 

reaction was terminated with 5 ml of HBSS and BSA. Tissue was filtered through 

a 200M filter, spun at 200 g for 5 minutes, and adipocyte and stromal vascular 

fractions (SVF) were separated. Both were washed with HBSS 2x and then 

placed in TriPure for RNA isolation. 
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Plasma and lipid analysis: Mice were fasted for 16 hours for plasma lipid 

analysis. Blood was taken via cardiac puncture, and EDTA-containing plasma 

was collected. Total serum cholesterol levels (ab65359 Abcam), serum 

triglyceride levels (Triglyceride Determination Kit, Sigma), serum NEFAs (Wako 

Diagnostics), and serum Glycerol (Free Glycerol Determination Kit, Sigma) were 

measured using calorimetric assays according to the manufacturer’s instructions. 

Insulin and adiponectin levels (Millipore) were measured by ELISA according to 

manufacturer’s instructions.  

 

Triglyceride and Cholesterol Extraction: Whole livers were isolated and flash 

frozen in liquid nitrogen. Lipids were extracted from livers via the Folch method 

(280). Lipids were dissolved in isopropanol with 1% Triton-X100. Triglyceride 

(Triglyceride Determination Kit, Sigma) and cholesteryl ester (ab65359 Abcam) 

levels were measured using calorimetric assays according to the manufacturer’s 

instructions and normalized to liver weight. 

 

 Human samples: Human adipose tissue samples were collected from morbidly 

 obese patients who underwent gastric bypass surgery between 2005 and  2009 

 at the  University of Massachusetts Medical School (301). Samples used for 

 microarray analysis were from BMI-matched female patients, whereas qRT-PCR 

 validations were performed in samples from both males and females. Adipose 
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 tissue samples were obtained from lower abdominal wall (for subcutaneous) and 

 omentum (for visceral) during the surgery. Informed consent was given by the 

 patients and the study was approved by University of Massachusetts Medical 

 School Institutional Review Board. 

RNA Isolation and RT-qPCR: Total RNA was isolated from cells or tissues 

using TriPure isolation reagent (Roche) according to the manufacturer’s protocol. 

The isolated RNA was DNase treated (DNA-free, Life Technologies), and cDNA 

was synthesized using iScript cDNA synthesis kit (BioRad). RT-qPCR was 

performed on the BioRad CFX96 using iQ SybrGreen supermix and 36B4 served 

as the reference gene. Primer sequences are as follows: 36B4 (5’- 

TCCAGGCTTTGGGCATCA-3’, 5’-CTTTATCAGCTGCACATCACTCAGA-3’); 

Hig2 (5’-CATGTTGACCCTGCTTTCCAT-3’, 5’- GCTCTCCAGTAAGCCTCCCA-

3’); Atgl (5’-CAGCACATTTATCCCGGTGTAC-3’, 5’-

AAATGCCGCCATCCACATAG-3’); Hsl (5’-GATTTACGCACGATGACACAGT-3’, 

5’-GCCATATTGTCTTCTGCGAGTG-3’); Cgi-58 (5’-GGTTAAGTCTAGTGCAGC-

3’, 5’- AAGCTGTCTCACCACTTG-3’, 5’-AAGCTGTCTCACCACTTG-3’); G0S2 

(5’- GTGAAGCTATACGTGCTGGG-3’, 5’-CCGTCTCAACTAGGCCGAG-3’); 

Perilipin1 (5’- CTGTGTGCAATGCCTATGAGA-3’, 5’- 

CTGGAGGGTATTGAAGAGCCG-3’); Fsp27 (5’-ATCAGAACAGCGCAAGAAGA-

3’, 5’-CAGCTTGTACAGGTCGAAGG-3’); Ucp1 (5’-
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ACTGCCACACCTCCAGTCATT-3’, 5’-CTTTGCCTCACTCAGGATTGG-3’); 

Prdm16 (5’-CAGCACGGTGAAGCCATTC-3’, 5’-GCGTGCATCCGCTTGTG-3’) 

Human Primers: RPLP0 (5’-CAGATTGGCTACCCAACTGTT-3’, 5’-

GGGAAGGTGTAATCCGTCTCC-3’); HIG2 (5’-

AAGCATGTGTTGAACCTCTACC-3’, 5’-GATGGAGAGTAGGGTCAGTACC-3’) 

 

Immunoblotting: Tissues and cells were lysed in a high-salt, Tris-HCl buffer 

(50mM Tris, pH 8, 150mM NaCl, 1mM EDTA, 1% Triton X-100) with 1x Halt 

protease and phosphatase inhibitors (Thermo Scientific). Lysates were resolved 

by SDS-PAGE gel and transferred to nitrocellulose membranes. Membranes 

were blotted with the following antibodies: -Tubulin (T5168, Sigma), -Actin 

(A5136, Sigma), HSL (4107, Cell Signaling), pHSL(ser563) (4139, Cell 

Signaling), ATGL (2138, Cell Signaling).  

 

Cell Culture: 3T3-L1 fibroblasts were grown and differentiated into adipocytes as 

previously described (302). Briefly, 3T3-L1 fibroblasts were grown to confluence 

in complete medium (high glucose (25mM) DMEM containing 10% fetal bovine 

serum, 50units/ml penicillin, and 50μg/ml of streptomycin). Two days after 

confluence, differentiation medium (0.25μM dexamethasone, 0.5mM 1-methyl-3-

isobutylxanthine, and 10−7M insulin) was added. Cells were considered fully 

mature 7 days post-differentiation.  
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Simpson Golabi Behmel Syndrome (SGBS) cells were obtained from Dr. Martin 

Wabitsch’s laboratory. SGBS fibroblasts were grown and differentiated into 

adipocytes as previously described with modifications (303). Briefly, SGBS 

fibroblasts were grown to confluence in DMEM/F12 containing 10% fetal bovine 

serum, 33M biotin, 17M pantothenic acid, 50units/ml penicillin, and 50g/ml 

streptomycin. Two days after confluence, serum-free differentiation medium 

(25nM dexamethasone, 250M 1-methyl-3-isobutylxanthine, 0.01mg/ml 

transferrin, 0.2nM triiodothyronine, 20nM human insulin, 2M rosiglitazone, and 

100nM cortisol) was added. Four days later, the differentiation cocktail was 

replaced with maintenance medium (DMEM/F12, biotin, pantothenic acid, 

transferrin, insulin and cortisol). Cells were considered fully mature 14 days post-

differentiation. Adenoviruses were made as follows: The cDNA of the transgene 

of interest was first cloned into a pShuttle plasmid (Clontech, Mountain View, CA) 

and then subcloned into a molecular clone of E1-and E3-deleted human 

adenovirus serotype 5. This adenovirus plasmid backbone was modified from 

pAdX system (Clontech, Mountain View, CA) by introducing a green-white 

selection mechanism (281). The recombinant clones of adenovirus vector with 

the transgene of interest were selected through this green-white screening, 

confirmed by restriction enzyme analyses and rescued in 293 cells after 

restriction enzyme linearization and transfection. The recombinant virus is 

expanded and purified by standard CsCl gradient sedimentation followed by 
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dialysis for desalting (282). The HA control construct was made by inserting 3HA 

at Not1 and BamH1 sites of the 4124 base pair plasmid pShuttle Adeno vector. 

3HA Hig2 adenovirus plasmid DNA was made by inserting a full-length gene of 

Hig2 at restriction sites Blp1 (5’) and BamH1 (3’) of 3HA adeno viral plasmid 

DNA. 

 

Cell Imaging: Cells were fixed in 10% buffered formalin in PBS for 1 hour, 

blocked in 1% normal goat serum in PBS for 1hour at room temperature, 

incubated with Hig2 (1:100, Rockland Immunochemicals, (304)) for 2 hours at 

room temperature, incubated with fluorescent secondary 1:1000 for 1 hour, 

treated with Bodipy 493/503 (ThermoFisher, D-3922) at 1:10,000 for 15 minutes, 

and mounted with Prolong Gold with DAPI (Life Technologies). Cells were 

imaged at room temperature with a Solamere Technology Group modified 

Yokogawa CSU10 Spinning Disk Confocal with a Nikon TE-2000E2 inverted 

microscope at 60x.  

 

Histology: Tissues were isolated and fixed in 10% formalin, embedded in 

paraffin, sectioned, and stained with hematoxylin and eosin (H&E). The UMass 

Morphology Core performed the embedding and sectioning.  
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Statistical Analysis: Data were analyzed in GraphPad Prism 6 (GraphPad 

Software, Inc.). A two-tailed student’s t test with Welch’s Correction was used to 

compare two groups of data. Where indicated, data were analyzed using a one-

way ANOVA or a two-way ANOVA with repeated measures.  P<.05 was 

considered to be significant. The Grubb’s test was used to determine if there 

were statistical outliers and if an outlier was determined, it was removed from the 

statistical analysis. Variance was estimated using standard error of the mean. 

 

Results: 

Hig2 expression increases with adipogenesis and obesity. 

 To elucidate critical genes for human adipocyte biology, microarray 

analyses were performed on omental adipose tissue from human patients 

undergoing bariatric surgery after fractionation into adipocytes and SVF (301) 

and genes were sorted by adipocyte specificity. One of the top gene hits that 

displayed 10-fold enrichment in signal in the adipocyte fraction compared with 

SVF was Hig2 (Figure 3.1B). To validate this result, qRT-PCR was performed, 

and Hig2 expression 28-fold higher in human epididymal adipocytes (Figure 

3.1C) and 12-fold higher in human subcutaneous adipocytes (Figure 3.1D) 

compared with respective SVFs. Hig2 expression increased with lipid deposition 

in liver (304). To investigate whether this was also the case in adipose tissue, 

wild type animals were placed on a HFD for 20 weeks, and Hig2 expression in 
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epididymal white adipose tissue (eWAT) was measured by qRT-PCR. Hig2 

expression in eWAT of wild type animals doubled with high-fat-feeding (Figure 

3.1A).  

 As LD proteins often display increases in expression with adipogenic 

differentiation (176,183,185,193,212), Hig2 expression was also measured by 

qRT-PCR in two adipocyte cell lines upon adipogenic stimulation. In the murine 

3T3-L1 adipocyte cell line, Hig2 expression was unchanged with differentiation 

(Figure 3.1E); however, its expression was increased by 10-fold after 14 days of 

adipogenic differentiation in the human Simpson-Golabi-Behmel syndrome 

(SGBS) adipocyte cell line (Figure 3.1F). 
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Figure 3.1 Hig2 expression increases with adipogenesis and obesity. 

 
 

FIGURE 3.1 Hig2 expression increases with adipogenesis and obesity. A, 
C57BL/6J animals were fed HFD for 20 weeks, eWAT was isolated, RNA was 
extracted, and qRT-PCR was performed for Hig2 and normalized to 36B4. (***, 
p<.005, n=7-8). Data are represented as the mean + S.E. B-D Adipose tissue 
was isolated from patients undergoing bariatric surgery. B, microarray from 
omental adipose tissue. (#, p<.0001, n=6). C, D qRT-PCR was performed on 
indicated tissues for Hig2 and normalized to Rplp0. C, fractionated omental 
adipose tissue. (*, p<0.05, n=6-7). D, fractionated subcutaneous adipose tissue. 
(*, p<0.05, n=7-8). Data are represented as the mean + S.E. E, 3T3-L1 cells 
were differentiated, RNA was extracted on the indicated day, and qRT-PCR was 
performed for Hig2 and normalized to 36B4. (n=3-7). Data are represented as the 
mean + S.E. F, SGBS cells were differentiated, RNA was extracted on the 
indicated day, and qRT-PCR was performed for Hig2 and normalized to Rplp0. 
(*, p<0.05, one-way analysis of variance, n=3-7). Data are represented as the 
mean + S.E.  
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Hig2 localizes to LDs in human and mouse cultured adipocytes. 

 As Hig2 expression significantly increased with differentiation in SGBS 

cells, immunofluorescence for endogenous Hig2 was performed in SGBS cells 

on day 10, post-differentiation. Interestingly, Hig2 (green) localized around 

cellular structures (Figure 3.2A); staining confirmed that these structures were 

indeed LDs and that Hig2 (red) localized to Bodipy-positive (green) LDs, much 

like it did in primary hepatocytes, demonstrating that Hig2 is also a LD protein in 

human adipocytes (Figure 3.2B). To investigate whether this was the case in 

mouse adipocytes, mature 3T3-L1 adipocytes were infected with either HA 

control or HA-tagged Hig2 adenovirus and imaged. While the HA control 

adenovirus displayed a diffuse localization pattern, ectopically expressed Hig2 

appeared to localize to LDs in cultured mouse adipocytes (Figure 3.2C), 

demonstrating that Hig2 is a LD protein in mouse adipocytes.   
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FIGURE 3.2 Hig2 localizes to LDs in human and mouse cultured 
adipocytes. A-B, SGBS cells were fixed Day 10 post-differentiation. A, Cells 
were stained with Hig2 (green) and DAPI (blue). The two panels are two different 
representative fields. B, Cells were stained with Hig2 (red), Bodipy (green), and 
DAPI (blue). Left, merge of Hig2 and DAPI, right, merge of Hig2, Bodipy, and 
DAPI. C, Mature 3T3-L1 adipocytes were infected with HA control or HIG2-HA 
adenovirus, stimulated with 500M oleic acid complexed to fatty acid-free BSA 
for 30 minutes, fixed, and stained with HA (green) and DAPI (blue).  Left, HA 
control-infected cells; right, HIG2-HA infected cells. 
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Figure 3.2 Hig2 localizes to LDs in human and mouse cultured adipocytes. 

 

 



113 
 

 

Adipocyte-specific Hig2-deficient mice display adipocyte-specific deletion. 

 To further investigate the role of adipocyte-specific Hig2, mice with an 

adipocyte-specific Hig2 deficiency (Hig2AdKO) were generated by crossing a 

Hig2fl/fl mouse with an Adiponectin Cre+ mouse (Figure 3.3A). To determine 

whether the deletion was adipocyte-specific, eWAT and inguinal WAT (iWAT) 

were fractionated, adipocytes were isolated, and qRT-PCR was performed for 

Hig2. As expected, there was a significant 60% reduction in Hig2 mRNA 

expression in eWAT and 70% reduction in iWAT in Hig2AdKO animals compared 

with fl/fl littermate controls (Figure 3.3B). There was also a significant 50% 

reduction in Hig2 expression in whole BAT but no change in non-adipose tissues 

such as kidney and spleen, demonstrating that the deletion is specific to 

adipocytes (Figure 3.3C,D).  
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Figure 3.3 Adipocyte-specific Hig2-deficient mice display adipocyte-
specific Hig2 deletion. 
 
 

 
 
 
FIGURE 3.3 Adipocyte-specific Hig2-deficient mice display adipocyte-
specific deletion. A, schematic of adiponectin-cre-mediated Hig2 deletion. B-D, 
indicated tissues were isolated from fl/fl and Hig2AdKO mice, RNA was 
extracted, and qRT-PCR was performed for Hig2 and normalized to 36B4. B, 
isolated epididymal and inguinal adipocytes. (*, p=0.05, n=3-9). C, brown adipose 
tissue. (*, p<0.05, n=5-8). D, kidney and spleen. (**, p<.01, n=4-10). Data are 
represented as the mean + S.E.  
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Adipocyte-specific Hig2-deficient mice display improved glucose tolerance after 

HFD at 23°C. 

 To determine the role of adipocyte-specific Hig2 deficiency on whole body 

metabolism, Hig2AdKO and fl/fl animals were subjected to normal diet (ND) or 

high fat diet (HFD) for 16 weeks. There were no significant differences in body 

weight or insulin tolerance as measured by an insulin tolerance test (ITT) 

between genotypes in either feeding condition (Figure 3.4A,C), but Hig2AdKO 

animals had significantly improved glucose tolerance in the high-fat-fed condition 

as measured by a glucose tolerance test (GTT) (Figure 3.4B), suggesting that 

adipocyte Hig2 promotes glucose intolerance in diet-induced obesity. 

 Serum metabolites and liver triglyceride levels were measured in both ND 

and HFD conditions and, although there was a significant increase in fasted 

insulin in Hig2AdKO animals compared with fl/fl controls (2.7 + 0.4 ng/ml vs 1.4 + 

0.3 ng/ml) in the HFD-fed condition, there were no changes in serum adiponectin 

levels, serum TGs, serum NEFAs, serum glycerol or liver TGs (Table 3.4). 

Differences in the ND condition were also unremarkable, except for an increase 

in liver TGs in Hig2AdKO animals compared with controls (9.02 + 2.65g/ml vs 

17.9 + 2.05g/ml), (Table 3.1). It is unlikely that the increased fasting insulin in 

the 16 week HFD Hig2AdKO animals accounts for the improvements in glucose 

tolerance, as Hig2AdKO animals that were high-fat fed for 8 weeks display 
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improved glucose tolerance compared to fl/fl controls (Figure 3.4D), but no 

change in insulin levels during a GTT (Figure 3.4E). 
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Figure 3.4 Adipocyte-specific Hig2-deficient mice display improved glucose 
tolerance after HFD at 23°C. 
 

 

FIGURE 3.4 Adipocyte-specific Hig2-deficient mice display improved 
glucose tolerance after HFD at 23°C. A-C, fl/fl or Hig2AdKO animals were fed 
ND or HFD for 16 weeks. A, body weight curves. (n=8-20). B, glucose tolerance 
test. (*, p<0.05, **, p<.01, ***, p<.001, $, p<.005, two-way analysis of variance, 
n=5-13). C, insulin tolerance test. (n=4-13). Data are represented as the mean + 
S.E. D-E, fl/fl or Hig2AdKO animals were fed HFD for 8 weeks. D, glucose 
tolerance test. (*, p<0.05, **, p<.01, ***, p<.001, $, p<.005, two-way analysis of 
variance, n=8-13). E, insulin was measured 0 and 30 minutes-post glucose 
injection. (n=3-6). Data are represented as the mean + the S.E. 
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Table 3.1  

Liver cholesterol and serum metabolites were assessed from fl/fl or Hig2AdKO 
animals fed ND or HFD for 16 weeks at 23°C. (*, p<0.05, n=5-13). Data are the 
mean + S.E. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Parameters
Hig2 fl/fl Hig2AdKO Hig2 fl/fl Hig2AdKO

Insulin (ng/ml) 1.441 + 0.486 0.794 + 0.271 1.436 + 0.258 2.743 + 0.395*

Adiponectin (g/ml) 7.209 + 0.225 7.456 + 0.263 8.315 + 0.708 9.052 + 0.684
Serum triglycerides (mg/dL) 77.05 + 4.176 75.94 + 5.418 92.42 + 8.409 88.64 + 5.818
Serum cholesterol (mg/dL) 303.1 + 21.11 314.7 + 29.15 401.1 + 34.42 330.9 + 53.42
NEFA (mmol/liter) 0.690 + 0.074 0.690 + 0.048 0.553 + 0.032 0.622 + 0.037
Serum glycerol (mg/ml) 0.056 + 0.003  0.053 + 0.03 0.054 + 0.004 0.056 + 0.004
Liver  triglycerides (g/mg) 9.018 + 2.652 17.89 + 2.054* 42.43 + 5.831 41.20 + 6.384

Normal Diet 16wks HFD
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Metabolic Cage parameters are unchanged in adipocyte-specific Hig2-deficient 

animals at 23°C. 

 As high fat-fed Hig2AdKO animals displayed improved glucose tolerance 

compared with fl/fl controls at 23°C, individually-housed obese animals were 

subjected to three days of metabolic cage analysis. Food intake was measured 

and found to be unchanged between the genotypes (Figure 3.5A). Furthermore, 

there were no differences between genotypes in daytime or nighttime physical 

activity (Figure 3.5B), oxygen consumption (Figure 3.5C), or carbon dioxide 

production (Figure 3.5D). Finally, respiratory exchange ratio (RER) and energy 

expenditure were calculated and found to be unchanged (Figure 3.5E, F).   
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Figure 3.5 Metabolic cage parameters are unchanged in adipocyte-specific 
Hig2-deficient animals at 23°C. 
 

 
 
FIGURE 3.5 Metabolic cage parameters are unchanged in adipocyte-
specific Hig2-deficient animals at 23°C. A-D, Metabolic cage analysis was 
performed over 3 days in fl/fl and Hig2AdKO mice that had been fed with HFD for 
16 weeks. A, food intake. B, physical activity. C, average VO2 consumption. D, 
average CO2 production. E, respiratory exchange ratio (RER). F, energy 
expenditure normalized to lean body mass. Data are represented as the mean + 
S.E. (n=4-6). Day (7am-7pm); Night, (7pm-7am).   
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Adipocyte-specific Hig2 deficiency alters adipose tissue distribution in HFD-fed 

mice at 23°C. 

 LD protein deficiencies alter lipid deposition in vivo 

(177,203,219,220,223,245). Thus, fat pad and liver weights of fl/fl and Hig2AdKO 

animals were examined. In chow-fed mice, eWAT and iWAT fat pad weights 

were unchanged between genotypes (Figure 3.6 A,B). However, upon HFD-

feeding, Hig2AdKO animals had significantly less eWAT weight compared with 

fl/fl controls (3.9 + .42% vs 5.7 + .24%), while iWAT weight was unchanged 

(Figure 3.6A,B). This reduction corresponded to a concomitant increase in liver 

weight from 2.7 + .07% of body weight in controls to 3.1 + .11% in Hig2AdKO 

animals (Figure 3.6D). Chow-fed Hig2AdKO animals also had significantly 

increased liver weight compared with fl/fl littermates (Figure 3.6C). 

 The reduction in eWAT weight suggests that Hig2 deficiency reduces 

adipocyte-specific fat deposition. Thus, H&E-stained histology from HFD animals 

was examined to determine whether there were visible alterations in AT and liver 

to complement the weight differences. While eWAT, iWAT, and liver histology 

appeared unchanged between the genotypes (Figure 3.6E,F,H), there was a 

striking visible reduction in lipids in BAT of Hig2AdKO animals compared with fl/fl 

controls (Figure 3.6G). There were no differences in BAT weight between 

genotypes in the ND or HFD- fed mice (Figure 3.6D). Taken together, these 
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results suggest that adipocyte-specific Hig2 deficiency alters adipose tissue 

distribution in obesity. 
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Figure 3.6 Adipocyte-specific Hig2 deficiency alters adipose tissue 
distribution in HFD-fed mice at 23°C. 

 
 
FIGURE 3.6 Adipocyte-specific Hig2 deficiency alters adipose tissue 
distribution in HFD-fed mice at 23°. A-H, fl/fl or Hig2AdKO animals were fed 
ND or HFD for 16 weeks. A-D, Tissues were weighed and normalized to body 
weight. A, eWAT. (**, p<0.01, n=5-13). B, iWAT. (n=5-14). C, BAT. (n=5-10). D, 
liver. (**, p<0.01, n=5-12). Data are represented as individual values + S.E. E-H, 
HFD tissues were sectioned and stained with H&E. E, eWAT. F, iWAT. G, BAT. 
H, Liver. 
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Thermoneutrality abrogates the improved glucose tolerance in adipocyte-specific 

Hig2-deficient mice. 

 Mice are often housed at 23°C, which presents a cold stress and 

persistent activation of thermogenic pathways. Cold stress increases 

catecholamine levels, thereby activating nonshivering thermogenesis in BAT and 

substantially increasing food intake and metabolic rate (60). Thus, it is critical to 

characterize mice at thermoneutrality (30°C), a temperature which poses no 

thermal stress and little BAT activation (105,300,305). Recently, it has been 

demonstrated that mice with LD protein deficiencies placed at thermoneutrality 

more closely phenocopy lipodystrophic syndromes in humans with mutations in 

LD protein genes (248). For these reasons, Hig2AdKO animals were fed chow or 

HFD for 8 weeks at 23°C, then moved to 30°C for four weeks, and metabolic 

parameters were assessed.   

 While there were no differences in body weight or ITTs between 

genotypes when placed in thermoneutrality (Figure 3.7A,C), Hig2AdKO animals 

surprisingly had a significantly worsened glucose tolerance compared with fl/fl 

controls on a HFD (Figure 3.7B). This represented a marked reversal in glucose 

tolerance that was dependent on housing temperature, which is similar to the 

phenotype of Fsp27-deficient animals (248).  
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Figure 3.7 Thermoneutrality abrogates the improved glucose tolerance in 
adipocyte-specific Hig2-deficient mice. 
 

 
FIGURE 3.7 Thermoneutrality abrogates the improved glucose tolerance in 
adipocyte-specific Hig2-deficient mice. A-C, fl/fl or Hig2AdKO animals were 
fed ND or HFD for 8 weeks, then moved to 30°C for 4 weeks. A, body weight 
curves at 30°C. (n=3-9). B, glucose tolerance test. (*, p<0.05, $, p<0.05, two-way 
analysis of variance, n=3-10). C, insulin tolerance test. (n=3-5). Data are 
represented as the mean + S.E.  
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Thermoneutrality abrogates the altered fat distribution in Adipocyte-specific Hig2-

deficient mice. 

 As glucose tolerance on HFD was worsened with thermoneutral housing, 

alterations in fat distribution were also assessed. Indeed, the reduction in eWAT 

weight that was observed in Hig2AdKO animals at 23°C was abrogated when the 

animals were placed at thermoneutrality (Figure 3.8A). Furthermore, the increase 

in liver weight that was observed in Hig2AdKO animals at 23°C was also 

suppressed (Figure 3.8D); however, there continued to be no difference in iWAT 

or BAT weight between genotypes (3.8B,C). Additionally, H&E-stained histology 

sections of eWAT, iWAT, BAT, and liver were examined and no visual 

differences were observed between fl/fl and Hig2AdKO animals (Figure 3.8E-H), 

a striking contrast from 23°C, at which temperature the Hig2AdKO mouse BAT 

was cleared of lipids (Figure 3.8G). Serum and liver biochemical analyses were 

additionally examined in thermoneutrality and no differences were found between 

genotypes for all measured parameters (Table 3.2).Thus, all phenotypic 

differences in fl/fl vs. Hig2AdKO mice were abrogated at thermoneutrality 

(glucose tolerance, eWAT weight, liver weight, BAT lipid content), which 

suggests that these parameters may be mediated by BAT function that is 

dependent on activation of BAT by cold stress.  

  

 



127 
 

 

Figure 3.8 Thermoneutrality abrogates the altered fat distribution in 
Adipocyte-specific Hig2-deficient mice. 
 

 
 
FIGURE 3.8 Thermoneutrality abrogates the altered fat distribution in 
Adipocyte-specific Hig2-deficient mice. A-H, fl/fl or Hig2AdKO animals were 
fed ND or HFD for 8 weeks, then moved to 30°C for 4 weeks. A-D, Tissues were 
weighed and normalized to body weight. A, eWAT. (n=3-10). B, iWAT. (n=3-10). 
C, BAT. (n=3-10). D, Liver. (n=3-10). Data are represented as individual values + 
S.E. E-H, the indicated tissues were sectioned and stained with H&E. E, eWAT. 
F, iWAT. G, BAT. H, Liver. 
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Table 3.2 
 
Liver cholesterol and serum metabolites were assessed from fl/fl or Hig2AdKO 
animals fed ND or HFD for 8 weeks then moved to 30°C for 4 weeks. (n=3-11). 
Data are the mean + S.E. ND, not determined. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Parameters
Hig2 fl/fl Hig2AdKO Hig2 fl/fl Hig2AdKO

Insulin (ng/ml) ND ND 2.956 + 0.577 3.607 + 0.304
Serum triglycerides (mg/dL) 101.1 + 42.67 128.3 + 23.05 89.03 + 10.72 89.99 + 8.815
Serum cholesterol (mg/dL) 678.3 + 68.31 685.9 + 75.38 1059 + 57.95 1152 + 22.41
NEFA (mmol/liter) 0.2132 + 0.071 0.211 + 0.032 0.312 + 0.046 0.309 + 0.051
Serum Glycerol (mg/ml) 0.021 + 0.001 0.032 + 0.006 0.054 + 0.005 0.056 + 0.006
Liver triglycerides (g/mg) 7.277 + 0.4573 8.222 + 1.544 97.23 + 8.578 88.36 + 4.505
Liver cholesterol (g/mg) 0.899 + 0.191 0.868 + 0.087 0.820 + 0.093 0.720 + 0.078

Normal Diet 12wks HFD
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Adipocyte-specific Hig2 deficiency increases phosphorylated HSL, but does not 

alter ex vivo glycerol release at 23°C. 

 Hig2 deficiency was shown in Chapter II to increase lipolysis and -

oxidation in hepatocytes (304); thus, the role of Hig2 deficiency in adipocytes to 

control these parameters was investigated. Ex vivo glycerol release was 

measured from eWAT explants of fl/fl and Hig2AdKO animals in basal and 

isoproterenol-stimulated conditions, and no difference was found between 

genotypes (Figure 3.9A). Although there was no change in ex vivo basal or 

isoproterenol-stimulated glycerol release (Figure 3.9A), lipolytic gene expression 

was measured in eWAT to determine whether adipocyte-specific Hig2 deficiency 

altered lipolytic gene expression in vivo. There were significant approximately 2-

fold expression increases in the lipase ATGL, as well as the LD protein Fsp27, 

both of which are responsive to increases in lipolysis (Figure 3.9B) (93,306,307). 

Furthermore, the LD protein Perilipin 1 was increased by 2-fold (Figure 3.9B), 

there was a non-significant trend to increased expression of the lipase HSL, and 

the two modulators of ATGL activity, Cgi58 and G0s2 were unchanged (Figure 

3.8B). When immunoblots were performed on eWAT lysates from fl/fl and 

Hig2AdKO animals, phosphorylated HSL (pHsl) exhibited an approximately 5-fold 

increase in the Hig2AdKO mice compared with controls. This phosphorylation 

increase was specific to HSL, as the phosphorylation of other PKA substrates 

was unchanged between genotypes (Figure 3.9E). ATGL and total HSL (tHsl) 
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protein levels were also unchanged (Figure 3.9E,F), suggesting that adipocyte-

specific Hig2 enhances some aspects of lipolytic signaling in vivo, independent of 

increases in glycerol release ex vivo.  

 To further probe these gene expression changes and because of the 

striking BAT lipid clearance observed in Hig2AdKO animals at 23°C, Ucp1, a 

gene critical for BAT function and Prdm16, a transcription factor essential for 

BAT identity (48), were measured in BAT by qRT-PCR; however, their 

expression was unchanged between genotypes (Figure 3.9D). Furthermore, the 

same genes, as indication of a BAT-like gene expression program (48), were 

assessed in iWAT but were also unchanged (Figure 3.9C).  

 These data suggest that adipocyte-specific Hig2 deficiency selectively 

increased phosphorylated HSL in eWAT in vivo, thus, it was assessed whether 

thermoneutrality, which abrogates the improvement in glucose tolerance in the 

Hig2AdKO animals (Figure 3.7) would also abrogate this increase. 
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Figure 3.9 Adipocyte-specific Hig2 deficiency increases phosphorylated 
HSL, but does not alter ex vivo glycerol release at 23°C. 

 
FIGURE 3.9 Adipocyte-specific Hig2 deficiency increases phosphorylated 
HSL, but does not alter ex vivo glycerol release at 23°C. A-G, fl/fl or 
Hig2AdKO animals were fed ND or HFD for 16 weeks. A, ex vivo lipolysis of 
eWAT. (n=3-5). Data are represented as the mean + S.E. B-D, indicated tissues 
were isolated, RNA was extracted, and qRT-PCR was performed for the 
indicated genes and normalized to 36B4. B, HFD eWAT. (+, p<0.09, n=5-8). C, 
HFD iWAT. (n=4-10). D, HFD BAT. (n=4-8). Data are represented as the mean + 
S.E. E, representative immunoblots from eWAT of phospho Hsl, total Hsl, Atgl, 
Tubulin, and phospho PKA substrate. IB, immunoblot; pHsl, phospho Hsl; tHsl, 
total Hsl. F, quantification of immunoblots from E, normalized to total HSL or 
Tubulin and fl/fl controls. ($, p=0.08, n=5). Data are represented as the mean + 
S.E. 
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Thermoneutrality abrogates the increase in phosphorylated HSL in adipocyte-

specific Hig2-deficient mice. 

 To determine whether thermoneutrality abrogated the differences that 

were observed in Hig2AdKO eWAT (Figure 3.9), an ex vivo lipolysis assay, qRT-

PCR and immunoblots of lipolytic signaling genes were performed on eWAT from 

fl/fl and Hig2AdKO HFD animals housed at 30°C for 4 weeks. Similar to 23°C, 

there were no differences between genotypes in ex vivo glycerol release of 

eWAT explants (Figure 3.10A).  The increases in ATGL, Perilipin1, and Fsp27 

gene expression that were observed in Hig2AdKO eWAT at 23°C were all 

blunted at thermoneutrality, and expression levels of HSL, Cgi58, and G0s2 also 

remained unchanged (Figure 3.10B). Strikingly, the increase in pHSL that was 

observed at 23°C in Hig2AdKO mice was also suppressed in eWAT after 

thermoneutrality (Figure 3.10C,D), and tHSL, ATGL, and pPKA substrate protein 

levels remained unchanged (Figure 3.10B,C). These data suggest that 

thermoneutrality abrogates the increase in phosphorylated HSL in Hig2AdKO 

animals, which may partially explain the worsened glucose tolerance of these 

animals at thermoneutrality (Figure 3.7B).  
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Figure 3.10 Thermoneutrality abrogates the increase in phosphorylated 
HSL in adipocyte-specific Hig2-deficient mice. 
 

 
FIGURE 3.10 Thermoneutrality abrogates the increase in phosphorylated 
HSL in adipocyte-specific Hig2-deficient mice. A-G, fl/fl or Hig2AdKO animals 
were fed ND or HFD for 8 weeks, and then moved to 30°C for 4 weeks. A, ex 
vivo lipolysis of eWAT. (n=3-10). Data are represented as the mean + S.E. B, 
eWAT was isolated from HFD animals, RNA was extracted, and qRT-PCR was 
performed for the indicated genes and normalized to 36B4. (n=4). Data are 
represented as the mean + S.E. C, representative immunoblots (IB) from eWAT 
of phospho Hsl (pHsl), total Hsl (tHsl), Atgl, Tubulin, and phospho PKA substrate. 
IB, immunoblot; Ctl, control; KO, Hig2AdKO. D, quantification of immunoblots 
from E, normalized to total HSL or Tubulin and fl/fl controls. (n=4-5). Data are 
represented as the mean + S.E. 
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Brown adipocyte-specific Hig2-deficient mice display brown adipocyte-specific 
deletion. 
 
 Thermoneutrality abrogated the improvement in glucose tolerance 

mediated by adipocyte-specific Hig2 deficiency and thermoneutrality reduces 

both lipolysis and brown fat activity (48). Furthermore, thermoneutrality 

abrogated the increase in phosphorylated HSL mediated by Hig2 deficiency 

(Figure 3.10). Thus, to elucidate the role of Hig2 specifically in the brown 

adipocyte, Hig2fl/fl animals were crossed to brown and beige/brite adipocyte-

specific Ucp1 Cre+ animals to generate Hig2 brown adipocyte-specific knockout 

animals (Hig2BATKO) (Figure 3.11A). 

 Tissues were isolated from fl/fl and Hig2BATKO animals to assess 

deletion specificity. There was a significant reduction in Hig2 mRNA in whole 

BAT as measured by qRT-PCR (Figure 3.11B), but no reduction in other tissues 

such as white adipocytes, spleen, or kidney (Figure 3.11C,D), demonstrating that 

the deletion is specific. Interestingly, Hig2 expression was upregulated by 

approximately 7-fold in eWAT adipocytes of Hig2BATKO animals compared with 

floxed controls (3.11C). 
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Figure 3.11 Brown adipocyte-specific Hig2 deficient mice display brown 
adipocyte-specific deletion. 
 

 

 

FIGURE 3.11 Brown adipocyte-specific Hig2-deficient mice display brown 
adipocyte-specific deletion. A, schematic of ucp1-cre-mediated Hig2 deletion. 
B-D indicated tissues were isolated from fl/fl and Hig2BATKO mice, RNA was 
extracted, and qRT-PCR was performed for Hig2 and normalized to 36B4. B, 
brown adipose tissue. (#, p<.001, n=7). C, isolated epididymal and inguinal 
adipocytes. (**, p<.01, n=3-7). D, kidney and spleen. (n=3-8). Data are 
represented as the mean + S.E.  
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Brown adipocyte-specific Hig2 deficiency improves glucose tolerance under high 

fat-fed conditions at 23°C. 

 To evaluate the role of brown adipocyte-specific Hig2 deficiency on whole 

body metabolism at 23°C, fl/fl and Hig2BATKO animals were placed on HFD for 

8 weeks and metabolic parameters were assessed. There were no differences in 

body weight or insulin tolerance between the genotypes (Figure 3.12A,C). 

However, when challenged with a GTT, Hig2BATKO animals were significantly 

more glucose tolerant compared to their fl/fl control littermates (Figure 3.12B), 

similar to the Hig2AdKO animals (Figure 3.4). Finally, no changes in ex vivo 

glycerol release from eWAT explants of fl/fl and Hig2BATKO animals were 

observed (Figure 3.12D). Taken together, these data suggest that the 

improvement in glucose tolerance in Hig2AdKO animals can be attributed to 

brown adipocyte-specific Hig2 deficiency.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



137 
 

 

Figure 3.12 Brown adipocyte-specific Hig2 deficiency improves glucose 
tolerance under high fat-fed conditions at 23°C. 
 

 

FIGURE 3.12 Brown adipocyte-specific Hig2 deficiency improves glucose 
tolerance under high-fat-fed conditions. A-D, fl/fl or Hig2BATKO animals were 
fed HFD for 8 weeks. A, body weight curves. (n=8-10). B, glucose tolerance test. 
(*, p<0.05, **, p<.01, $, p<.05, two-way analysis of variance, n=8-10). C, insulin 
tolerance test. (n=8-10). D, ex vivo lipolysis of eWAT. (n=3-8).  Data are 
represented as the mean + S.E.  
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Brown adipocyte-specific Hig2 deficiency does not alter adipose tissue 

distribution at 23°C. 

 To determine if Hig2 deficiency in brown adipocytes was responsible for 

the reduced eWAT weight and increased liver weight in Hig2AdKO animals, liver 

and fat pads were weighed from fl/fl and Hig2BATKO animals after 8 weeks of 

HFD at 23°C. eWAT, iWAT, BAT and liver weights were unchanged between 

genotypes (Figure 3.13A-D). 

 In accordance with these results, H&E-stained histological sections of 

eWAT, iWAT, BAT, and liver appeared to be unchanged between Hig2BATKO 

animals and fl/fl controls (Figure 3.13E-H). Serum biochemical analyses were 

also measured and displayed no remarkable differences between genotypes 

(Table 3.3). Taken together, these results demonstrate that brown adipocyte-

specific Hig2 deficiency alone is not sufficient to redistribute fat deposition in 

WAT as observed in the Hig2AdKO animals. 
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Figure 3.13 Brown adipocyte-specific Hig2 deficiency does not alter 
adipose tissue weight after HFD at 23°C. 
 

 
 
FIGURE 3.13 Brown adipocyte-specific Hig2 deficiency does not alter 
adipose tissue weight after HFD at 23°C. A-H, fl/fl or Hig2BATKO animals 
were fed HFD for 8 weeks. A-D, Tissues were weighed and normalized to body 
weight. A, eWAT. (n=8-10). B, iWAT. (n=8-10). C, BAT. (n=8-10). D, liver. (n=8-
10). Data are represented as individual values + S.E. E-H, the indicated tissues 
were sectioned and stained with H&E. E, eWAT. F, iWAT. G, BAT. H, Liver. 
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Table 3.3 

Liver cholesterol and serum metabolites were assessed from fl/fl or Hig2BATKO 
animals fed HFD for 8 weeks at 23°C. (n=3-8). Data are the mean + S.E.  
 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters
Hig2 fl/fl Hig2BATKO

Serum triglycerides (mg/dL) 114.7 + 17.81 83.83 + 8.038
NEFA (mmol/liter) 0.688 + 0.054 0.599 + 0.064
Serum Glycerol (mg/ml) 0.044 + 0.003 0.050 + 0.004
Liver triglycerides (g/mg) 31.97 + 4.869 31.40 + 2.539

8wks HFD
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Discussion: 

 The results in this chapter show that Hig2 localized to LDs (Figure 3.2) 

and its expression increased with adipogenic differentiation in the human SGBS 

adipocyte cell line, and that it is a highly expressed gene in isolated adipocytes 

from human patients (Figure 3.1). Hig2 deficiency in adipocytes (Figure 3.3) of 

mice reduced eWAT mass, largely cleared BAT of lipids, and improved HFD-

mediated glucose intolerance in vivo (Figure 3.4, 3.6, Table 3.1). Interestingly, 

these improvements were abrogated when the animals were placed at 

thermoneutrality for 4 weeks (Figure 3.7, 3.8, Table 3.2), suggesting that brown 

fat activity or other physiological responses to cold stress mediated these effects. 

 To test that hypothesis, lipolytic signaling and ex vivo glycerol release 

were measured in eWAT from animals housed at room temperature and 

thermoneutrality. Although glycerol release was unchanged between genotypes, 

strikingly, phosphorylation of HSL was significantly increased in eWAT of 

Hig2AdKO animals compared with controls (Figure 3.9). This increase in pHSL 

was abolished at thermoneutrality (Figure 3.10); thus, the increase in pHSL in 

Hig2AdKO animals is associated with fat redistribution (Figure 3.6) and 

improvement in glucose tolerance (Figure 3.4) at room temperature, but a 

causative connection is not clear. Although insulin levels are significantly 

increased in Hig2AdKO animals with 16 week high-fat feeding (Table 3.1), they 

are likely not the cause of the improved glucose tolerance in these animals, as 
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glucose tolerance is also improved in Hig2AdKO animals fed HFD for 8 weeks, a 

time point when insulin levels are unchanged (Figure 3.4).  

 Finally, to examine the role of brown-adipocyte-specific Hig2, Hig2BATKO 

animals were generated and metabolically characterized. These animals 

displayed no improvements in serum parameters, histology, or adipose tissue 

distribution, but had significantly improved glucose tolerance, suggesting that 

brown adipocytes alone have little role to regulate the altered lipid deposition in 

eWAT or clearing of BAT lipids in Hig2AdKO animals, but play a significant role 

in the metabolic improvements that were observed (Figure 3.12, 3.13, Table 3.3). 

The mechanism whereby brown adipocyte-specific Hig2-deficiency prevents 

obesity-associated glucose intolerance is currently unclear. Unchanged food 

intake, oxygen consumption, energy expenditure, and RER in the Hig2AdKO 

animals (Figure 3.5) suggest that improvements may be mediated independent 

of BAT thermogenesis. One possibility points to the putative endocrine function 

of BAT. Recent experiments suggest that, in addition to its thermogenic 

properties, activated BAT may function as an endocrine organ and can secrete 

beneficial molecules that improve overall metabolic health (308-312). For 

instance, transplanting BAT into WAT of diabetic mice promoted adipogenesis 

and restored euglycemia (313). Taken together, these data suggest that Hig2 

localizes to LD in human and mouse adipocytes that adipocyte-specific Hig2 

promotes glucose intolerance in mice. 
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 Although some of these data point towards inhibition of adipose tissue 

lipolysis as a potential mechanism for Hig2-mediated lipid deposition, much like 

the hepatocyte-specific mechanism, the exact mechanistic details need to be 

discerned and are still an area of active investigation. As the most striking 

change is the induction of pHSL, Hig2 could somehow be acting directly on HSL 

to prevent that activation. Interestingly, although pHSL is significantly increased 

in the eWAT of Hig2AdKO animals, other readouts of lipolytic stimulation, such 

as pPKA substrate proteins, ex vivo glycerol release, serum NEFAs, and serum 

glycerol are all unchanged (Figure 3.9, Table 3.1). These perplexing results raise 

several possibilities. First, the unchanged ex vivo glycerol release suggests that 

there may be crosstalk between multiple tissues in vivo and that this crosstalk is 

necessary for increased lipolysis in the eWAT as manifested by a reduction in its 

pad weight. This is underscored by the fact that adipocyte-specific Hig2 

deficiency increases liver weight and clears lipids in BAT and thus redistributes 

lipids throughout tissues in vivo. Second, the lack of change in lipolysis readouts 

in serum suggests that Hig2 may regulate lipolysis locally; thus, these alterations 

are not substantial enough to be detected systemically. Third, Hig2 could be 

promoting lipid deposition by an entirely different mechanism than lipolytic 

inhibition.  

 Metabolic characterization of the Hig2BATKO animals suggests that 

brown adipocyte-specific deficiency of Hig2 is not sufficient to alter fat distribution 
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of WAT, but improves diet-mediated glucose intolerance. Future experiments 

targeting Hig2 specifically in white adipocytes would be useful to determine its 

true contribution to the phenotype of Hig2AdKO animals. As crosstalk has 

already been suggested, it might be true that Hig2 deletion in both brown and 

white adipocytes is necessary to mediate the fat redistribution, but the 

improvements observed in glucose tolerance are solely mediated by brown 

adipocytes. 

 Thermoneutrality experiments, which more accurately represent human 

clothing conditions, demonstrate that adipocyte-specific Hig2 deletion is 

detrimental to metabolic health (Figure 3.7). As Hig2 is localized to LDs in human 

adipocytes and is highly expressed in adipocytes of human patients (Figure 

3.1,3.2), it will be interesting to investigate whether there are human mutations in 

Hig2, much like the canonical LD proteins Perilipin 1, and Fsp27/Cidec 

(251,252,298), and if these mutations cause partial lipodystrophy and metabolic 

dysregulation. Future experiments to challenge the Hig2AdKO animals with cold 

exposure to evaluate glucose tolerance would be insightful due to hyper-

activation of lipolysis and BAT at these temperatures (48).  

 In summary, Chapters II and III demonstrated that Hig2 is a ubiquitously 

expressed gene and its expression promotes lipid deposition and diet-induced 

glucose intolerance in adipose tissue and liver. Thus, it will be of interest to 

investigate the role of Hig2 in other tissues. LDs are relevant in a large variety of 
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cells; thus, the role of Hig2 in lipid deposition in other tissues is still largely 

unanswered and is an active area of investigation. 
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CHAPTER IV: Final summary, conclusions, and future directions 
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 Proper adipose tissue lipid sequestration is critical for the prevention of 

lipotoxicity, dyslipidemia, and ectopic lipid deposition. Thus, our lab is particularly 

interested in novel regulators of lipid storage in adipocytes (204,215). 

Furthermore, elucidating hepatocyte-specific mechanisms that promote liver 

steatosis could provide therapeutic targets to prevent the initial and reversible 

stage of NAFLD. One potential regulator of adipocyte lipid storage and hepatic 

steatosis is the LD protein Hig2. Work presented here was aimed at answering 

the following two questions: 

1) Does Hig2 function as a canonical LD protein in adipose tissue or 

liver and promote TG deposition by inhibition of lipolysis?  

2) What is the contribution of hepatocyte and adipocyte-specific Hig2 to 

whole body metabolism?  

 To answer those questions in liver, I first ectopically expressed a GFP-

tagged Hig2 in primary hepatocytes and determined that GFP-Hig2 localized to 

Oil Red-O positive LDs (Figure 2.1). This localization was dependent upon its 

previously identified “LD-targeting domain” (Figure 2.1) (263), as a truncated 

mutant no longer localized to LDs when ectopically expressed in hepatocytes 

(Figure 2.1). To determine if Hig2 expression promoted lipid deposition, I 

overexpressed Hig2 in primary murine hepatocytes, extracted TGs, and 

determined that Hig2 overexpression increased TG levels (Figure 2.2). 

Conversely, using a tamoxifen-inducible cre model, I inducibly deleted Hig2 from 
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hepatocytes in culture and determined that Hig2-deficient hepatocytes displayed 

reduced LD size, LD number, and TG content (Figure 2.3,2.4). To elucidate the 

role of hepatocyte-specific Hig2 in whole body metabolism, I used an albumin 

promoter-driven cre recombinase to delete Hig2 specifically in hepatocytes 

(Figure 2.5). By the standard measures of metabolic characterization (insulin 

tolerance test, glucose tolerance test, plasma and liver biochemistry, organ 

weights, histology), I determined that hepatocyte-specific Hig2 deletion improved 

glucose tolerance in chow-fed and HFD-fed mice and reduced liver weight and 

liver TGs in chow-fed mice (Figure 2.6). Furthermore, to elucidate the 

mechanism whereby Hig2 promoted lipid deposition, I measured expression of 

lipid handling genes in chow-fed control and Hig2-deficient livers and found to 

them be unchanged (Figure 2.7). This suggested that Hig2 deficiency may alter 

lipid flux, independent of gene expression changes. To investigate lipid flux, I 

performed tracer experiments with [3H] oleic acid and found that Hig2-deficient 

hepatocytes had decreased uptake of tracer lipids, increased production of acid-

soluble oxidation products and increased turnover of tracer lipids, suggesting that 

Hig2 deficiency increases lipolysis and -oxidation (Figure 2.8). Thus, my data 

suggest the answers to the two questions above in liver are: First, Hig2 does 

function as a canonical LD protein in hepatocytes and promotes TG deposition 

by inhibiting lipolysis. Second, hepatocyte-specific Hig2 promotes hepatic lipid 

deposition and glucose intolerance.   
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 To answer the two questions in adipose tissue, I first imaged endogenous 

Hig2 in the human SGBS adipocyte cell line and determined that Hig2 localized 

to Bodipy-positive LDs (Figure 3.2). Its expression in SGBS also increased with 

adipogenic differentiation, similar to other canonical LD proteins (Figure 3.1). To 

elucidate the role of adipocyte-specific Hig2 and determine if adipocyte-specific 

Hig2 deficiency altered lipolysis, I used an adiponectin promoter-driven cre to 

delete Hig2 specifically in adipocytes (Figure 3.3).  By the standard measures of 

metabolic characterization (insulin tolerance test, glucose tolerance test, plasma 

and liver biochemistry, organ weights, histology), I determined that adipocyte-

specific Hig2 deficient animals had improved glucose tolerance, reduced eWAT 

weight, and BAT that was largely cleared of lipids upon HFD feeding (Figure 3.4, 

3.6). An increase in phosphorylated HSL was present in the adipocyte-specific 

Hig2-deficient animals (Figure 3.9), although serum NEFAs and ex vivo glycerol 

release were unchanged (Table 3.1, Figure 3.9), suggesting that adipocyte-

specific Hig2 deficiency may not alter lipolysis. Metabolic improvements and the 

increase in pHSL were largely abrogated when adipocyte-specific Hig2-deficient 

animals were moved to 30°C thermoneutrality, a temperature with minimal 

thermal stress and little BAT activation (Figure 3.7, 3.8, 3.10). To assess the role 

of brown adipocyte-specific Hig2 in whole body metabolism, I used a UCP1 

promoter-driven cre to delete Hig2 specifically in brown adipocytes (Figure 3.11). 

I determined that brown adipocyte-specific Hig2 deficient animals had improved 
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glucose tolerance, but no changes in fat pad distribution, suggesting that brown 

adipocyte-specific Hig2 deficiency may specifically mediate the glucose tolerance 

improvements in adipocyte-specific Hig2-deficient animals (Figure 3.12, 3.13). 

Thus, my data suggest the answers to the two questions above in adipose tissue 

are: First, Hig2 does function as a LD protein in adipocytes, but may not promote 

TG deposition by inhibiting lipolysis. Second, adipocyte-specific Hig2 promotes 

adipose tissue lipid deposition and glucose intolerance.   

 In summary, the data in this thesis confirm that Hig2 is indeed a LD-

localized protein in adipocytes and hepatocytes. Furthermore, the studies 

advance our understanding of the role of Hig2 as a LD protein that promotes lipid 

deposition and diet-induced glucose intolerance in two highly metabolically active 

tissues, liver and adipose tissue (Table 4.1), suggesting that Hig2 is a promising 

therapeutic target for the prevention of obesity and hepatic steatosis in NAFLD.  
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Table 4.1  

 

The phenotypes for all metabolically characterized Hig2 knockout animal models 
are summarized above. N/A; not applicable, HFD; high fat diet, GTT; glucose 
tolerance test, TG; triglyceride, eWAT; epididymal white adipose tissue, BAT; 
brown adipose tissue, RER; respiratory exchange ratio. 
 

 

 

 

 

 

 

 

 

 

Hig2LKO Hig2AdKO Hig2BATKO

Cre Promoter Albumin Adiponectin Ucp1

Tissue Deleted Hepatocytes Adipocytes Brown and Beige/Brite Adipocytes

23°C

Chow Fed Improved GTT Increased liver weight No change

Reduced liver weight

Reduced liver TG

HFD-Fed Improved GTT Improved GTT Improved GTT

No change liver weight Increased liver weight No change liver weight

No change liver TG Decreased eWAT weight No change eWAT weight

BAT cleared of lipids No change BAT lipids

No change RER, energy expenditure

30°C

Chow Fed N/A No change N/A

HFD-Fed N/A Worsened GTT N/A

No change liver weight

No change eWAT weight

No change BAT
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A role for Hig2 as a LD protein in hepatocytes 

 This section will discuss my interpretations, potential pitfalls, and future 

directions for the studies presented in Chapter II. Hig2 localized to LDs in the 

HeLa and Huh7 human cancer cell lines (263); thus, I hypothesized that Hig2 

could act as a LD protein in metabolically active tissues if it were expressed 

there. I performed expression profiling of murine Hig2 and found that Hig2 was 

indeed expressed in a variety of mouse tissues (Figure 2.10), including liver, thus 

I decided to evaluate the role of Hig2 in hepatic lipid deposition as a potential 

therapeutic target for NAFLD. One caveat of this experiment is that I profiled the 

mRNA expression of Hig2, which could differ from Hig2 protein levels. To more 

accurately characterize tissue-specific Hig2 levels, western blots should be 

performed in the future. As Hig2 was expressed in liver, I hypothesized that Hig2 

may act as a LD protein in hepatocytes and promote lipid deposition. 

 To begin to address my hypothesis, I ectopically expressed a GFP-tagged 

Hig2 in primary mouse hepatocytes and determined that Hig2 localized to Oil-

Red-O positive LDs (Figure 2.1B). The concerns with this experiment are one, 

the ectopic expression of Hig2 and two, that a 7kDa protein (Hig2) is tagged with 

a 27kDa protein (GFP), both of which may alter its localization. To begin to 

address these concerns, I GFP tagged Hig2 on its N and C terminus and 

expressed both GFP-Hig2 (Figure 2.1B) and Hig2-GFP (not shown) in primary 

hepatocytes and found that they both localize to LDs, while GFP alone did not 
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(Figure 2.1B). The ideal experiment would be to image endogenous Hig2 in 

primary mouse hepatocytes, but both commercial antibodies and the antibody we 

synthesized in conjunction with Rockland Immunochemicals are not sufficiently 

sensitive for immunofluorescence in hepatocytes. Additionally, biochemical 

analyses, such as cell fractionation and western blotting should be performed to 

confirm the LD localization of Hig2. I was able to confirm that the 28 N-terminal 

AA are required for LD localization of Hig2 (Figure 2.1A) (263), as when I 

ectopically expressed a truncated Hig2-GFP mutant and imaged by microscopy, 

it no longer localized to LDs (Figure 2.1B). As I determined that Hig2 localized to 

LDs in hepatocytes dependent upon its N terminal LD-targeting domain, I 

proceeded to characterize it as a LD protein in hepatocytes.  

 Expression of liver-specific LD proteins, such as Fsp27 and Cidea are 

highly  induced upon lipid deposition in liver (200). Thus, I measured the 

expression of Hig2 in fasting and diet-induced obesity, two models of increased 

liver lipid content, and found its expression to be significantly increased in both 

conditions (Figure 2.1C,D). As fasting increases hepatic PPARα expression (314) 

and Hig2 has been shown to be regulated by PPARα (267), PPARα likely 

mediates the increase in Hig2 expression in fasted mouse liver. The upstream 

regulator of hepatic Hig2 expression in obesity is currently unknown. I then 

hypothesized that modifying Hig2 expression would alter lipid deposition in 

hepatocytes. To answer this question, I infected primary mouse hepatocytes with 
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an HA-tagged Hig2 adenovirus and found that Hig2 was indeed overexpressed 

(Figure 2.2B) and that this overexpression increased TG content (Figure 2.2C). 

One can argue that overexpression experiments are highly artificial, although the 

result was additionally confirmed by another group that found that AAV-mediated 

hepatic Hig2 overexpression promoted steatosis in mice (267). To address 

overexpression concerns, I also wanted to delete Hig2 in isolated hepatocytes 

and evaluate TG levels and LDs. Thus, I deleted Hig2 using a tamoxifen-

inducible ubiquitously expressed cre recombinase (Figure 2.3A) and confirmed 

that Hig2 was successfully deleted (Figure 2.3C,D). Using imaging analysis and 

TG extraction, I found that Hig2-deficient hepatocytes had less TGs (Figure 

2.3E), fewer LDs (Figure 2.4A,B) and that the remaining LDs were smaller 

(Figure 2.4 C). These results were opposite of the overexpression results, further 

validating the hypothesis that hepatocyte-specific Hig2 expression promotes lipid 

deposition. As tamoxifen treatment can have side effects, I treated control 

hepatocytes with tamoxifen and imaged them to determine that tamoxifen 

treatment alone does not reduce TG content (Figure 2.4D). Additionally, I 

obtained the same results by using a hepatocyte-specific constitutively-

expressed albumin cre recombinase to delete Hig2 (Figure 2.8A).   

 As Hig2 localized to LDs in hepatocytes and promoted lipid deposition, I 

strove to assess if Hig2 inhibited lipolysis and the role of hepatocyte-specific Hig2 

deficiency on whole body metabolism. Considering Hig2-deficient hepatocytes 
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displayed reduced TG levels and LD number, I hypothesized that liver-specific 

Hig2 deficient animals would have reduced liver lipids and improved metabolic 

parameters when challenged with HFD, as hepatic steatosis is often correlated 

with insulin resistance and metabolic disease (274). To address this hypothesis, I 

derived hepatocyte-specific Hig2-deficient (Hig2LKO) mice using a hepatocyte 

specific albumin cre recombinase (Figure 2.5A) and confirmed that these animals 

displayed hepatocyte-specific Hig2 deletion (Figure 2.5 B,C,D). I challenged 

these mice with HFD and assessed their metabolic parameters (glucose 

tolerance test, insulin tolerance test, serum and liver biochemistry) and found that 

Hig2LKO animals displayed improved glucose tolerance when fed normal chow 

and HFD (Figure 2.6B), as I had hypothesized. I was surprised to find that this 

improvement in glucose tolerance was only associated with reduced liver weight 

and liver TGs in chow-fed animals (Figure 2.6D,E,F), while HFD-fed Hig2LKO 

animals displayed no alterations in liver TGs, liver weight, serum TGs, serum 

cholesterol, or serum NEFAs (Figure 2.6D,E,F, Table 2.1). One possible 

explanation for this is that other proteins may compensate for Hig2-deficiency in 

obesity-induced steatosis. For example, LD proteins such as Cidea and Fsp27 

are not expressed in healthy liver, but are highly induced with development of 

hepatic steatosis (200). It is likely that their expression promotes obesity-induced 

steatosis independent of Hig2 deletion. To test this hypothesis, Hig2LKO animals 

could be injected with a lentivirus containing shCidea and shFsp27 constructs to 
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silence Cidea and FSP27 gene expression in liver and then liver biochemistry 

could be analyzed.  Additionally, the mechanism by which Hig2 deficiency 

improves glucose tolerance in chow-fed animals and prevents obesity-associated 

glucose intolerance in HFD-fed animals is currently unknown. Chow-fed 

Hig2LKO animals displayed reduced liver lipids, a condition that has been 

correlated with improvements in insulin sensitivity (274), although this is not 

always the case (130). As HFD-fed Hig2LKO do not display reductions in liver 

lipids, the glucose tolerance improvement must be mediated by another means. 

For example, Hig2 deficiency could be altering the composition of liver lipids; the 

deficiency could increase the ratio of mono unsaturated FAs (MUFAs), the 

“benign FAs”, to harmful saturated FAs (SFAs) to improve metabolic health 

(315), although this is highly speculative and expression of inflammatory markers 

such as TNF, IL1, IL6, and F4/80 is unchanged (Figure 2.7A). Lipidomic 

analysis of fl/fl and Hig2LKO livers will have to be completed in the future to 

determine if Hig2 deficiency alters hepatic lipid composition; currently, the 

mechanism for the Hig2 deficiency-mediated improvement in glucose tolerance is 

still under investigation. 

 To probe the mechanism of the reduced liver lipids in Hig2LKO chow-fed 

animals, I assessed gene expression of a range of genes known to control lipid 

handling and found them to be unchanged in Hig2LKO livers as compared with 

controls (Figure 2.7B,C). I interpreted this result to mean that Hig2 deficiency 
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reduced lipid deposition independent of gene expression changes. The caveat 

with this conclusion is that this gene expression analysis is specifically targeted; 

thus, changes in genes I did not measure could be responsible for the reduction 

in liver lipids. To form a broader picture of gene expression changes in Hig2LKO 

animals, whole-genome microarray or RNA-seq analysis should be performed on 

control and Hig2LKO chow-fed livers. As I could not discern any expression 

differences in lipid handling genes in Hig2LKO livers, I hypothesized that Hig2 

deficiency may be altering lipid flux (enzyme activity, protein localization) 

independent of gene expression changes. To address this hypothesis, I 

performed tracer experiments with radioactive FAs, specifically [3H] oleic acid, in 

Hig2-deficient hepatocytes. I determined that Hig2-deficient hepatocytes 

contained less radioactive lipid (Figure 2.8A). Next, I determined that Hig2-

deficient hepatocytes had increased oxidation by measuring acid-soluble 

metabolites in the media of Hig2-deficient hepatocytes after overnight [3H] oleic 

acid loading (Figure 2.8B). As this method merely measures oxidation products, 

it would be valuable to confirm the results by directly measuring oxidation in 

Hig2-deficient hepatocytes. This could be done either by measuring the oxygen 

consumption rate (OCR) on a Seahorse flux analyzer during a mitochondrial 

stress test or by loading cells with [14C] oleic acid and quantifying the radioactive 

CO2 directly formed from respiration. I hypothesize that both of these assays 

would demonstrate that Hig2 deficiency directly increases oxidation. 
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 LD protein deficiencies often increase lipolysis; hence, I measured 

lipolysis via two different assays. As hepatocytes contain glycerol kinase, glycerol 

release cannot be used as readout of lipolysis (316). Thus, I demonstrated that 

Hig2-deficient hepatocytes have increased TG turnover (Figure 2.8C) and 

increased lipolysis (Figure 2.8D).  

The studies in this chapter support the hypothesis that Hig2 is a LD 

protein in hepatocytes that promotes both glucose intolerance and lipid 

deposition. Although the mechanism whereby Hig2 promotes lipid deposition is 

currently unclear, the lipid tracer experiments (Figure 2.8) suggest that Hig2 may 

inhibit lipolysis, -oxidation or both. Lipolytic inhibition is a well-characterized 

mechanism whereby LD proteins promote lipid deposition. For example, Perilipin 

1 potently inhibits adipocyte lipolysis (180) and Fsp27 interacts directly with 

ATGL to inhibit lipolysis (240). Additionally, although some LD proteins may 

directly interact with mitochondrial proteins, -oxidation can often be a 

consequence of increased lipid fuel being shunted to mitochondria, as in Fsp27 

and Cidea-deficient cells (203,220), although this is only speculation in the case 

of Hig2 deficiency. Furthermore, Hig2 has sequence similarity with G0S2, a 

known inhibitor of the lipase ATGL, in the region where it is known to bind with 

ATGL (Figure 2.9); thus, Hig2 could act similarly by physically inhibiting ATGL. 

This could be tested via a combination of biochemical and imaging experiments. 

Imaging of ATGL and Hig2 in hepatocytes could be done and colocalization 
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calculated. Additionally, co-immunoprecipitation experiments could be performed 

to determine if Hig2 and ATGL physically interact. Finally, ATGL imaging in Hig2-

deficient cells could be completed to determine if ATGL is mislocalized by Hig2 

deficiency.  There are still many unanswered questions about the role of Hig2 as 

a LD protein in hepatocytes, but the studies presented herein have laid the 

groundwork for future experiments by determining that Hig2 is a LD protein in 

hepatocytes that promotes lipid deposition likely by inhibiting lipolysis.                

A role for Hig2 as a LD protein in adipocytes 

 This section will discuss my interpretations, potential pitfalls, and future 

directions for the studies presented in Chapter III. In the studies detailed in 

chapter II, I found that Hig2 is indeed a LD protein in hepatocytes and that its 

expression promotes glucose intolerance and lipid deposition likely by inhibition 

of lipolysis. Through my expression profile analysis, I had determined that Hig2 

was also expressed in WAT and BAT (Figure 2.10B). Although I am currently 

unable to detect Hig2 protein in adipose tissue via western blot, new antibodies 

should be developed for protein level verification in future studies. Additionally, 

Hig2 was highly expressed in the adipocyte fraction of omental and 

subcutaneous adipose tissue from bariatric surgery patients (Figure 3.1B-D) and 

increased with obesity in murine eWAT (Figure 3.1A), suggesting that its 

expression may promote obesity-associated lipid deposition. Furthermore, Hig2 

expression significantly increased with adipogenic differentiation in the human 
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SGBS adipocyte cell line (Figure 3.1F). Interestingly, this was not the case for the 

murine 3T3-L1 adipocyte cell line (Figure 3.1E) or primary murine iWAT 

preadipocytes differentiated in culture (data not shown), suggesting a differential 

transcriptional regulation in mouse vs human. To fully confirm this, Hig2 

expression should be measured in isolated human preadipocytes differentiated in 

culture. Additionally, Hig2 protein levels should be measured upon adipogenic 

differentiation in mouse and human adipocytes, as these may differ entirely from 

Hig2 mRNA expression. These aforementioned results raise the question of how 

human and murine Hig2 transcripts differ in their regulation. One key difference 

between the human Hig2 gene and the mouse Hig2 gene is that the mouse Hig2 

gene is suggested to have two mRNA transcript variants; according to NCBI 

gene database, Hig2 transcript variant 1 is 288 nucleotides long and encodes a 

longer Hig2 isoform. Hig2 transcript variant 2 is 195 nucleotides long, contains an 

alternate 5' exon, and uses a downstream start codon, compared to variant 1; as 

such, it potentially codes a Hig2 protein with a shorter N-terminus. I have aligned 

these sequences with my Hig2 qPCR primers and have found that my primers 

detect both variants. In the future, non-overlapping primers should be designed 

and expression profiling should be done for each variant. Perhaps one variant is 

highly induced upon adipogenic differentiation, while the other is reduced. 

Although murine Hig2 transcript variation warrants further investigation, I did not 
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pursue it in this work because human Hig2 does not contain this transcript 

variation. 

       I strove to answer the same two questions in adipose tissue as I had 

in liver. One, is Hig2 a LD protein that promotes lipid deposition in adipocytes by 

inhibiting lipolysis and two, what is the role of adipocyte-specific Hig2 on whole 

body metabolism? 

To begin to answer these questions, I imaged endogenous Hig2 in mature 

SGBS adipocytes and found that Hig2 localized to Bodipy-positive LDs in these 

cells (Figure 3.2A,B). One particular caveat of this experiment is that I imaged 

with the antibody we made in conjunction with Rockland Immunochemicals and 

what I considered endogenous staining could merely be non-specific staining. 

Considering it is difficult to knockdown genes in human adipocytes and Hig2 is 

particularly difficult to knock down (data not shown), I confirmed that this staining 

was specific using a blocking peptide (data not shown). Additionally, I observed 

that undifferentiated SGBS cells had little to no Hig2 staining (data not shown), 

which aligned with Hig2 mRNA expression (Figure 3.1F), suggesting that the 

staining is indeed specific. I was able to confirm that ectopically expressed HA-

tagged Hig2 localizes to LDs in 3T3-L1 adipocytes (Figure 3.2C), but need better 

antibodies to determine the localization of endogenous Hig2 in murine cells. 

Interestingly, the LD localization pattern of Hig2 in culture adipocytes, particularly 

SGBS cells, is unique. Canonical LD proteins often form uniform rings around 
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LDs, much like GFP-Hig2 does in hepatocytes (Figure 2.1B), but in SGBS 

adipocytes, Hig2 does not localize to all LDs and coats certain LDs in a 

discontinuous pattern. This localization pattern warrants further investigation and 

suggests that Hig2 may be localized to certain contact sites on LDs, such as LD-

mitochondrial contact sites, LD-ER contact sites, or LD-LD contact sites. Further 

imaging and biochemical fractionation experiments will need to be done to 

answer this question.  

As I had determined that Hig2 was a LD protein in adipocytes, I proceeded 

to investigate whether its expression promoted lipid deposition by lipolytic 

inhibition and the role of adipocyte-specific Hig2 in whole body metabolism. To 

this end, I derived an adipocyte-specific Hig2-deficient mouse (Hig2AdKO) by 

using an adipocyte-specific adiponectin promoter-driven cre recombinase (Figure 

3.3A) and confirmed that Hig2AdKO animals had adipocyte-specific deletion 

(Figure 3.3B-D), although this should be further confirmed with immunoblots 

using newly developed antibodies in the future. I challenged Hig2AdKO animals 

with HFD, evaluated metabolic parameters (insulin tolerance test, glucose 

tolerance test, serum and liver biochemical analyses, histology, tissue weights) 

and determined that Hig2AdKO animals displayed improved glucose tolerance 

(Figure 3.4B), concomitant with a redistribution of ectopic lipids. Hig2AdKO 

animals had significantly reduced eWAT weight (Figure 3.6A), increased liver 

weight (Figure 3.6D), and, although there was no significant pad weight change, 
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BAT that was largely cleared of lipids (Figure 3.6G). These data suggest that, as 

in liver, adipocyte-specific Hig2 expression promotes both lipid deposition and 

obesity-associated glucose intolerance. Interestingly, the data also suggest inter-

organ communication, as the liver, an organ without Hig2 deletion, is affected. 

This will be discussed further later on in this chapter. 

As Hig2 is deleted in both WAT and BAT, I wanted to try and determine 

which tissue was responsible for the phenotype in the Hig2AdKO animals. As the 

BAT of Hig2AdKO animals was strikingly cleared of lipids, I focused on 

specifically targeting brown adipocytes. There are multiple ways to modulate BAT 

activity, such as temperature, BAT denervation and genetic deletion. I started by 

using temperature. Room temperature (23°C) presents a cold stress for mice, 

thereby promoting beta adrenergic stimulation, activating BAT, and increasing 

both food consumption and metabolism (60). By moving the Hig2AdKO mice to 

thermoneutrality (30°C), I removed this thermal stress, greatly reducing BAT 

activity and minimizing its contribution to whole body metabolism. When I moved 

HFD-fed Hig2AdKO animals to 30°C for four weeks and metabolically 

characterized them (insulin tolerance test, glucose tolerance test, serum and liver 

biochemical analyses, histology, tissue weights), I determined that all differences 

present in Hig2AdKO animals at 23°C were abrogated by thermoneutral housing. 

At 30°C, the Hig2AdKO animals had no improvement in obesity-induced glucose 

intolerance and were actually more glucose intolerant than fl/fl controls (Figure 
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3.7B). Furthermore, Hig2AdKO animals had no alterations in ectopic lipid 

deposition at 30°C; there were no differences in eWAT weight (Figure 3.8A), liver 

weight (Figure 3.8D), or, most strikingly, BAT lipid deposition (Figure 3.8G). 

These data suggest that the metabolic improvements in Hig2AdKO animals 

require functionally active BAT.  To further test this hypothesis, I proceeded to 

delete Hig2 specifically in brown adipocytes and compare the whole body 

metabolism to that of the Hig2AdKO mice. I derived a brown adipocyte-specific 

Hig2-deficient animal (Hig2BATKO) by using a brown adipocyte-specific Ucp1 

promoter-driven cre recombinase (Figure 3.11A) and confirmed that the deletion 

was specific (Figure 3.11B,C,D). I challenged these animals with HFD and 

evaluated their metabolic parameters (insulin tolerance test, glucose tolerance 

test, serum and liver biochemistry, histology, and organ weights) and found that 

Hig2BATKO animals displayed improved glucose tolerance (Figure 3.12B). This 

result suggested that Hig2 deletion in brown adipocytes may be wholly 

responsible for the glucose tolerance improvements in Hig2AdKO animals 

(Figure 3.4B). Surprisingly, Hig2BATKO animals did not demonstrate the 

alteration in organ-specific lipid deposition, as they did not differ from fl/fl controls 

in eWAT weight (Figure 3.13A), liver weight (Figure 3.13D), or BAT lipid 

deposition (Figure 3.13G). These results suggest that either white adipocyte-

specific Hig2 deletion is responsible for alterations in organ weights or that both 

white and brown adipocyte-specific Hig2 deletion are necessary to alter organ-
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specific lipid deposition. Future experiments genetically targeting Hig2 

specifically in white adipocytes are necessary to answer this question. 

The mechanism whereby brown adipocyte-specific Hig2 deficiency 

improves glucose tolerance is currently unknown, but recent experiments 

suggest that, in addition to its thermogenic properties, activated BAT may 

function as an endocrine organ and can secrete beneficial molecules that 

improve overall metabolic health (308-312). For instance, transplanting BAT into 

WAT of diabetic mice promoted adipogenesis and restored euglycemia 

potentially through increases in circulating insulin-like growth factor 1 (IGF1) 

(313). Thus, it would be of value to measure circulating IGF1 levels in both 

adipocyte-specific and brown adipocyte-specific Hig2-deficient animals. 

Furthermore, BAT secretes a pool of the active thyroid hormone triiodothyronine 

(T3) and although its contribution to systemic T3 is currently unknown, T3 has 

potent effects on metabolic rate, gluconeogenesis, and lipolysis (317). Fibroblast 

growth factor 21 (FGF21) has also recently been demonstrated to be synthesized 

in thermogenic BAT; it is a powerful promoter of glucose oxidation in a variety of 

tissues, such as liver and WAT (312). Thus, both T3 and FGF21 should also be 

measured in adipocyte-specific and brown adipocyte-specific Hig2-deficient 

animals. To take an unbiased approach in addition to measuring the candidates 

listed above, proteomic analysis should be performed on serum from fl/fl and 

Hig2BATKO animals. As all of these products are thought to be secreted by 
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stimulated BAT, it will also be useful to measure them in thermoneutrally housed 

Hig2AdKO animals.    

To elucidate the mechanism whereby Hig2 deficiency alters organ-specific 

lipid deposition in Hig2AdKO animals (Figure 3.6), I measured lipolysis and 

assessed gene and protein expression in adipose tissues of Hig2AdKO animals 

as compared with fl/fl controls. I hypothesized that Hig2 deficiency may increase 

eWAT lipolysis, thus reducing its weight. To test this hypothesis, I measured ex 

vivo glycerol release of basal and isoproterenol-stimulated eWAT explants 

(Figure 3.9A). I found no differences in basal or stimulated glycerol release 

(Figure 3.9A), or more systemic measures of lipolysis, such as serum NEFAs or 

serum glycerol (Table 3.1). Nonetheless, I assessed lipase and LD protein 

expression in eWAT from Hig2AdKO and fl/fl control mice. I was surprised to find 

that certain lipolysis-responsive genes such as ATGL and Fsp27 were increased 

in Hig2AdKO eWAT as compared with fl/fl controls (Figure 3.9B). Even more 

surprising was the highly significant increase in induction of phosphorylated HSL 

in the knockouts, independent of increases in other PKA substrates (Figure 

3.9E,F). These results suggest that Hig2 deficiency may specifically increase 

HSL phosphorylation independent of other lipolysis measures. I hypothesized 

that if this selective increase in lipolytic signaling, particularly pHSL, may be 

associated with the improvements in Hig2AdKO animals, that the changes would 

be abrogated in a condition where the improvements were abrogated: 
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thermoneutrality. To test this hypothesis, I measured all of the same parameters 

at 30°C and found that gene expression increases were abrogated (Figure 

3.10B) and that the induction of pHSL was also abrogated (Figure 3.10C,D). 

Taken together, these data suggest that although adipocyte-specific Hig2 

deficiency increases phosphorylated HSL, it may not alter lipid deposition by 

increasing lipolysis.  

These results pose two questions; one, how does Hig2 deficiency alter 

lipid deposition without altering canonical measures of lipolysis? Two, why is 

phosphorylated HSL induced at 23°C in Hig2-deficient animals independently of 

other PKA substrates? At this point, the mechanism whereby Hig2 alters lipid 

deposition in adipocytes is still unknown. Metabolic cage measurements of HFD-

fed Hig2 animals suggest that these changes are not due to increases in energy 

expenditure, physical activity or changes in food intake in Hig2AdKO animals 

(Figure 3.5). To fully explore the gene changes in Hig2-deficient animals that 

could be responsible for altering lipid deposition, microarray analyses should be 

completed with fl/fl and Hig2AdKO BAT and WAT. Because Hig2AdKO animals 

display changes in multiple tissue weights, including liver, a tissue in which Hig2 

is not deleted, I hypothesize that there might be inter-organ communication 

between these tissues. Adipose tissue secretes a variety of adipokines that are 

known to alter whole body insulin sensitivity and potentially lipid deposition (318). 

Adiponectin is one known beneficial adipokine that was unchanged between 
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genotypes (Table 3.1). Another beneficial adipokine that was not measured was 

the satiety factor Leptin. Conversely, detrimental adipokines, such as Adipsin, 

Resistin, and Lipocalin are known to promote insulin resistance and their 

secretion from Hig2-deficient adipose tissue could be reduced (319). It would be 

valuable to check the circulating levels of a variety of adipokines to determine if 

their altered levels are altering metabolism in the adipocyte-specific Hig2-

deficient animals. 

Additionally, it is currently unknown why Hig2 deficiency selectively 

increases pHSL independent of other PKA substrates. One explanation for this 

could be that, in addition to Perilipin 1, Hig2 provides a LD scaffold for HSL upon 

its activation. Perhaps HSL is highly activated, but partially mislocalized. I could 

test this hypothesis by isolating preadipocytes from Hig2AdKO animals, 

differentiating them in culture, and imaging for HSL to determine its localization. If 

Hig2 does act as a scaffold, I hypothesize that pHSL would be localized to the 

cytoplasm instead of the LD. Additional biochemical experiments, such as co-

immunoprecipitation and mutagenesis would also need to be done to confirm that 

Hig2 physically interacts with pHSL and that a certain Hig2 sequence is required 

for binding. The results of the ex vivo glycerol assays suggest that, unlike 

Perilipin 1, Hig2 is not fully required for stimulated lipolysis, as isoproterenol-

stimulated glycerol release was not blunted in Hig2-deficient cells.     
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Finally, the role of Hig2 as a hypoxia-inducible LD protein cannot be ruled 

out as a mechanism for the changes in the Hig2AdKO animal. Although 

controversial, it is thought that obese adipose tissue becomes more hypoxic due 

to enlarged adipocytes and increased tissue mass (140,320). I have shown that 

obesity increases Hig2 expression in murine eWAT (Figure 3.1A) and have not 

ruled out that this may be due to increased hypoxia.  Furthermore, adipocyte-

specific genetic deletion of upstream hypoxia-responsive factors Hif1 and Hif1 

also suggests that they are required for obesity-associated glucose intolerance 

and lipid deposition, as these animals displayed improved glucose tolerance and 

reduced fat mass and eWAT adipocyte size (321). This may be through a 

reduction in signal transducer and activator of transcription 3 (STAT3) activation 

by suppressor of cytokine signaling 3 (SOCS3), as hypoxia increases SOCS3 

and SOCS3 inhibits insulin signaling by binding to the insulin receptor and 

inhibiting autophosphorylation (321). Hig2 deficiency could function similarly and 

SOCS3 and STAT3 should be examined in Hig2-deficient adipose tissue, 

although other independent hypoxia-regulated pathways could also be involved. 

Although there are still many unanswered questions regarding the role of Hig2 as 

a LD protein in adipocytes, these studies have laid the groundwork for future 

experiments by establishing that Hig2 is a LD protein in human and mouse 

adipocytes and that adipocyte-specific Hig2 promotes lipid deposition.  



170 
 

 

The work in this thesis has established a role for Hig2 as a LD protein in 

liver and adipocytes. I have shown that Hig2 localizes to LDs in both tissues 

(Figure 2.1, 3.2) and that its deficiency reduces both obesity-associated glucose 

intolerance (Figure 2.6, 3.4, 3.12) and lipid deposition (Figure 2.4, 2.6, 3.6), likely 

through lipolytic inhibition in hepatocytes (Figure 2.8), but not through lipolytic 

inhibition in adipocytes (Figure 3.9, Table 3.1). As Hig2 is ubiquitously expressed 

(Figure 2.10), future experiments should be done to examine the role of Hig2 as 

a potential LD protein in other tissues. For instance, foam cells are critical for the 

development of atherosclerosis (322). Although I have not measured Hig2 

expression in isolated foam cells, Hig2 could be critical for lipid deposition in 

macrophages. Hig2 could also play a role in myocellular or cardiac lipid 

deposition. As hypoxia is dysregulated in cancer and human breast, prostate and 

colon cancer tumors with upregulated lipogenesis are associated with poor 

prognosis (169), Hig2 could also function as a LD protein that promotes lipid 

deposition in cancer cells. It will be of interest to determine whether the 

mechanism whereby Hig2 promotes lipid deposition is conserved in each tissue. 

Lipolysis readouts from Hig2-deficient liver (increased) and Hig2-deficient 

adipose tissue (unchanged) suggest that this may not be the case, but 

experiments pinpointing the exact mechanism still need to be done. Additionally, 

the role of human Hig2 needs to be further investigated and it would be of great 
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therapeutic value to detect, characterize, and validate Hig2 mutations in human 

patients.     
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