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Abstract 
 
 

While memory CD4 T cells are critical for effective immunity to pathogens, 

the mechanisms underlying their generation are poorly defined. Although 

extensive work has been done to examine the role of antigen (Ag) in shaping 

memory formation, most studies focus on the requirements during the first few 

days of the response known as the priming phase. Little is known about whether 

or not Ag re-encounter by effector T cells (late Ag) alters CD4 memory T cell 

formation. Since influenza infection produces a large, heterogeneous, protective 

CD4 memory T cell population, I used this model to examine the role of late Ag in 

promoting CD4 memory T cell formation. 

In the experiments presented in this thesis, I demonstrate that late Ag is 

required to rescue responding CD4 T cells from default apoptosis and to program 

the transition to long-lived memory. Responding cells that failed to re-encounter 

Ag had decreased memory marker expression and failed to produce multiple 

cytokines upon re-stimulation. Ag recognition is required at a defined stage, as 

short-term Ag presentation provided 6 days after infection is able to restore 

canonical memory formation even in the absence of viral infection. Finally, I find 

that memory CD4 T cell formation following cold-adapted influenza vaccination is 

boosted when Ag is administered at this stage. These findings imply that 

persistence of viral Ag presentation into the effector phase is the key factor that 

determines the efficiency of memory generation. They also suggest that 

administering Ag during the effector stage may improve vaccine efficacy.
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CHAPTER I: Introduction 
 
 

Overview 

 The mechanisms that govern the selection of a few of the many Ag-specific 

effector CD4 T cells present at the peak of the response to form memory are largely 

unclear. While many studies have suggested that memory fate determination 

occurs early in the response, others have demonstrated that signals received at 

later stages can alter memory T cell formation. Recent work from our lab has 

identified a checkpoint that occurs during the effector phase of the response during 

which autocrine IL-2 signals are required for CD4 memory T cell formation (1). 

Since a dominant driver of IL-2 production by CD4 T cells is cognate Ag 

recognition, I sought to test if Ag recognition at this checkpoint was required to 

induce IL-2 production and promote memory formation. 

The aim of my thesis work was to understand what role Ag presentation 

during the effector stage of the response plays in shaping CD4 memory T cell 

formation. To this end, I used a mouse-adapted influenza infection model that is 

known to induce potent CD4 memory T cell generation (2–4). Not only is a long-

lived heterogeneous memory CD4 T cell population formed following influenza 

infection, it is capable of mediating heterosubtypic protection (3, 5). While studying 

CD4 memory T cell formation in this model provides valuable insights to a basic 

mechanism of memory generation, it also has translational relevance. Given that 

memory CD4 T cells enhance antibody (Ab) responses (6, 7), CD8 T cell 

responses (8–11), innate responses (12), as well as mediate direct effector activity 
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(2, 4, 13, 14), understanding the requirements for their generation is critical to 

rational vaccine design. T cell responses are largely directed against highly 

conserved epitopes, this suggests that a vaccine that effectively enhances T cell 

memory might lead to a more broadly protective vaccine (15). In fact, many 

vaccination efforts are underway that focus on enhancing memory T cell formation 

(15). This thesis may help guide those efforts by establishing the Ag requirements 

for effective memory generation.  

 The following introduction will provide background on the influenza virus 

and its pathogenesis. Understanding its mode of infection provides insight into Ag 

presentation and the effectiveness of vaccination strategies. I will discuss T cell 

responses to influenza infection to orient readers to the specifics of viral and T cell 

kinetics as well as the phenotype and subset differentiation of T cells during 

influenza infection. I will then focus on T cell responses in general and introduce a 

few key molecules that arise in my thesis and discuss their relevance to contraction 

and memory T cell formation. I will end with a discussion of the role of Ag in shaping 

both effector and memory T cell responses. Overall this introduction will explain 

the relevant work in the field and illuminate the contributions presented in this 

thesis. It will also put the work into the greater context of how it may ultimately aid 

translational efforts in influenza vaccination. 

 

Influenza viruses 
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A. Influenza Viruses: An overview 

 Influenza viruses are part of the family Orthomyxoviridae. Influenza B and 

C viruses predominantly infect humans, while Influenza A viruses (IAV) infect a 

wide range of mammals and birds (16). Influenza C viruses are endemic and cause 

mild respiratory disease, while Influenza A and B are responsible for seasonal 

epidemics (17). Since Influenza A virus (IAV) can infect many different animals, 

gene segment rearrangement can occur resulting in novel strains which are 

responsible for pandemic outbreaks (16, 18). IAV are classified based on their 

hemagglutinin (HA) and neuraminidase (NA) subtypes with HA having 18 subtypes 

and NA having 11 subtypes (19–21). IAV HA phylogeny can be further classified 

into group 1 (H1,H2, H5, H6, H8, H9, H11, H12, H13, H16, H17, and H18) or group 

2 (H3, H4, H7, H10, H14, and H15) (22). The World Health Organization guidelines 

for influenza nomenclature are Type (A, B, C) / host (if non-human) / place of 

isolation / isolation number / year of isolation (17).  

 

B. Influenza Viruses: Structure and Genome 

Influenza viruses are enveloped, negative-sense, single-stranded RNA 

viruses containing seven (Influenza C) or eight (Influenza A and Influenza B) gene 

segments. The eight gene segments in Influenza A and Influenza B viruses are 

PB1, PB2, PA, HA, NP, NA, M, and NS (Figure 1.1). Polymerase basic 1 and 2 

(PB1 and PB2) and Polymerase acidic (PA) encode proteins that together form a 

viral RNA-dependent RNA polymerase complex (23). Influenza C viruses have a  
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Figure 1.1 Influenza Virus Structure and Genome   

A 

B  
vRNP 
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Figure 1.1. Influenza Virus Structure and Genome 
 

(A) Influenza A virus (IAV) structure. IAV is an enveloped, negative-sense, single-

stranded RNA virus. The viral envelope consists of a host cell-derived lipid bilayer 

along with viral hemagglutinin (HA) and neuraminidase (NA). The ion channel 

matrix (M2) is a transmembrane protein with a small, highly conserved ectodomain 

exposed at the viral surface. The inner surface envelope matrix 1 (M1) protein 

forms a protein layer under the lipid bilayer. The genome consists of eight gene 

segments including Polymerase basic 1 (PB1), Polymerase basic 2 (PB2), 

Polymerase acidic (PA), HA, nucleoprotein (NP), NA, matrix (M), and non-

structural (NS). (B) Viral gene segments are coated with many NP proteins and 

one RNA polymerase complex composed of PB1, PB2, and PA per gene segment. 

This structure is termed viral ribonucleoprotein (vRNP).  

Figure adapted from: Sridhar, S., K. Brokstad, and R. Cox. 2015. Influenza 

Vaccination Strategies: Comparing Inactivated and Live Attenuated Influenza 

Vaccines. Vaccines 3: 373–389. Creative Commons Attribution license. 
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subunit called polymerase 3 (P3) instead of PA (23). HA encodes hemagglutinin 

that forms a trimeric glycoprotein present in the viral envelope. HA binds sialic acid 

on the surface of host cells to mediate cell entry (24). NP encodes the 

nucleoprotein that encapsulates all gene segments in the virion and is essential 

for viral replication and transcription. NA encodes neuraminidase which is a 

tetrameric glycoprotein in the viral envelope that mediates the exit of newly formed 

virions from the host cell by cleaving sialic acid linkages (25). M encodes the inner 

surface envelope matrix 1 (M1) protein which forms a protein layer under the host 

cell-derived lipid bilayer. M also encodes the ion channel matrix (M2) that is 

present in the viral membrane. NS encodes the non-structural protein (NS1) which 

is an antagonist of Type I IFN (26). Through alternative splicing, NS also encodes 

nuclear export protein (NEP, also known as NS2) which mediates the export of 

viral ribonucleoprotein (vRNP) complexes from the nucleus to the cytoplasm (17, 

20, 27–29).  

 The viral envelope consists of a host cell-derived lipid bilayer which 

contains cholesterol rich lipid rafts (28, 30). The envelope contains the viral 

proteins HA, NA, and M2. HA is by far the most abundant protein, making up about 

80%, NA makes up about 17%, and M2 is only present at about 16 to 20 molecules 

per virion (29). Virions are pleiomorphic but are generally spheroid in shape and 

are around 100nm in diameter (31). Under this lipid bilayer is a protein layer that 

consists of M1 and small amounts of NEP. The viral core consists of helical vRNPs 

which are composed of gene segments encapsulated with many NP molecules 
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and associated with one viral RNA polymerase complex per gene segment (Figure 

1.1). 

 

C. Influenza Viruses: Viral entry 

 HA binds to sialic acid (SA) bound to the terminal end of glycoproteins found 

on host cell surfaces. HA molecules have varying affinities for different SA 

linkages. IAVs that have evolved to infect epithelial cells of the human respiratory 

tract have HA molecules with a high affinity for a2-6 SA, while those that have 

evolved to infect birds have a high affinity for a2-3 SA which is the most abundant 

linkage present in avian gut epithelial cells. a2-3 SA linkages are also present at a 

low frequency in the human lower respiratory tract which is why humans can be 

infected with avian-evolved IAV (32). Interestingly, swine tracheal epithelial cells 

have both SA linkages and are therefore thought to provide an important source 

of pandemic strain formation as a result of co-infection.  

 Prior to activation, the HA precursor (HA0) must be cleaved into the HA1 

and HA2 subunits. This requires a host cell serine protease. For human IAV, HA0 

contains a monobasic cleavage site that can only be cleaved by a few trypsin-like 

proteases thought to be primarily present in the lung epithelia. Cleavage can be 

mediated by secreted proteases or transmembrane proteases which may cleave 

the HA0 prior to viral budding (33–35). It is therefore possible for local cells lacking 

the required enzyme to become infected by virions coated with pre-cleaved HA but 

these cells are unlikely to propagate the virus due to their inability to cleave HA. 
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For highly pathogenic H5 and H7 strains, the HA0 contains a multibasic cleavage 

site which can be cleaved by the more ubiquitous furin-like proteases allowing 

productive infection of a broader range of cell types (35).  

The HA1 subunit contains the sialic acid binding domain. The HA2 subunit 

contains the fusion peptide. Cleavage is necessary for viral fusion because it 

mediates a conformational change in HA that releases the fusion peptide from the 

C-terminus of HA1, preparing it to function at low pH (35). Once HA binds sialic 

acid on the host cell surface, receptor-mediated endocytosis occurs and the virus 

enters an endosome within the cell cytoplasm. As the pH in the endosome 

becomes more acidic (pH 5-6), HA undergoes a conformational change exposing 

the fusion peptide. The fusion peptide is then inserted into the host cell membrane 

and through further conformational changes the viral and host membranes are 

brought in close proximity to each other and form a stalk that eventually collapses 

forming a pore. This process likely requires multiple HA interactions with SA on the 

cell surface. Low pH also allows vRNPs to dissociate from M1 via the M2 ion 

channel. Once the pore is formed the vRNPs are released into the host cell cytosol 

(24, 28, 36). 

 

D. Influenza Viruses: Transcription and Replication 

Unlike many RNA viruses, influenza viral replication occurs in the nucleus 

instead of the cytoplasm. Once the vRNPs are in the nucleus both transcription 

(the generation of mRNA for translation into viral protein products) and replication 
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(the generation of more negative-sense RNA for packaging into new virions) are 

carried out. Viral transcription of the negative-sense RNA is executed by the viral 

RNA polymerase complex associated with each vRNP. The PA and PB2 subunits 

cleave 5’ caps from host mRNA (termed “cap-snatching”), these serve as primers 

to initiate transcription. The PA C-terminal domain moves single-stranded RNA 

into the active site located on the “large domain” of the polymerase that consists 

of PB1 and PB2. Transcription is terminated with polyadenylation (Poly-A). 

Resulting mRNAs are then transported to the cytosol where they are transcribed 

into protein by host cell machinery (37, 38). Viral replication requires the generation 

of intermediate positive-sense complimentary RNPs (cRNP) that lack 5’ Caps and 

Poly-A tails. These cRNP then serve as efficient templates for the synthesis of 

many negative-sense RNPs that can be packaged into new virions. Translation of 

mRNA into more viral NP and viral RNA polymerase is required for replication to 

take place. (23, 37, 39).  

 

E. Influenza Viruses: Viral Budding 

 Viral budding is a complex process that is initiated by targeting of HA and 

NA to lipid rafts on the host cell surface. M1 then binds the cytoplasmic tails of HA 

and NA and forms a docking site for vRNPs. This is followed by recruitment of M2 

which is responsible for facilitating the curvature of the cell membrane at the 

budding site which leads to membrane scission and virion release (29, 40, 41). NA 

plays a critical role in this process in cleaving SA moieties to prevent HA binding 
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to the host cell membrane or causing aggregation with other new virions (20, 25). 

 

F. Influenza Viruses: Disease 

 Although influenza viral infections are generally self-limiting, they cause 

significant morbidity and mortality in the young, elderly, and immune-compromised 

(17, 22, 27). Seasonal influenza related deaths vary drastically from year to year, 

ranging from around 3,000-49,000 deaths in the United States per year (42). 

Pandemic influenza strains can be much more catastrophic, with the most extreme 

example being the 1918 Spanish Influenza pandemic which resulted in around 50 

million deaths worldwide (16). Fatal complications following influenza infection 

include pneumonia and secondary bacterial infections (16, 17). In fact, most of the 

deaths seen in the 1918 Spanish flu pandemic as well as those seen in seasonal 

epidemics were associated with a secondary bacterial infection (17). Additionally, 

mutations in viral genes can lead to increased virulence, most notably a mutation 

found in the HA0 cleavage site of H5 and H7 broadens the host protease 

requirements enabling the virus to infect cells other than bronchial epithelium (16, 

17). Therefore, influenza poses a significant health risk that warrants further 

examination of how effective vaccination can be achieved. 

 

Influenza vaccination 

 

A. Influenza vaccination: Challenges 
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 IAV is an extremely agile virus, rapidly acquiring mutations to respond to 

strong selection pressure by neutralizing HA-specific Ab as well as anti-viral drugs 

including those targeted against NA. These mutations are rapidly acquired due to 

the lack of proofreading function of the influenza RNA polymerase resulting in a 

mutation rate of about 1-8 X 10 3 substitutions per site per year (16). Mutations 

acquired in the HA or NA glycoproteins is termed “antigenic drift”. Additionally, 

“antigenic shift” occurs when a host is co-infected with two or more different 

influenza strains resulting in gene reassortment that includes the HA and NA 

genes. Wild aquatic birds are thought to be the dominant hosts in which this occurs, 

as IAV generally results in asymptomatic gastrointestinal infections and mixed co-

infections are quite common (43). Since most vaccine-induced immune responses 

target the HA glycoprotein, both antigenic shift and antigenic drift necessitate new 

vaccine development every season (22). Not only is this process onerous and 

expensive, the need to predict which circulating strains will dominate in any given 

season often leads to reduced vaccine efficacy in seasons where predictions were 

incorrect and when pandemic strains arise (44, 45).  

 

B. Influenza Vaccination: Inactivated Influenza Vaccines (IIV) and 

Recombinant Vaccines 

 IIV have been used since the 1940s and are the most commonly 

administered influenza vaccines. Traditionally these have been trivalent vaccines 

including Influenza A H1N1, H3N2 and an Influenza B strain. Recently, 
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quadrivalent vaccines have been approved that include both circulating Influenza 

B lineages (18, 46). IIV include whole, split (treated with ether/detergent), and 

subunit (semi-purified HA and NA) vaccines (47). Production of these vaccines is 

a lengthy process involving passage of viral stocks in embryonated eggs. Given 

this onerous development process, the emergence of pandemic strains is 

extremely problematic in that a novel IAV strain would be able to spread much 

more rapidly than our ability to respond and generate a specific vaccine. 

 In 2013, a trivalent (replaced in 2016 by a quadrivalent) cell-based, IIV 

(ccIIV3 and ccIIV4) was licensed for use in the US. Flucelvax is produced via the 

passage of virus through Madin-Darby Canine Kidney (MDCK) cells in culture (48). 

This platform has several benefits including being safe for those with egg allergies, 

not being limited by embryonated egg supply, and eliminating the potential for egg-

adapting mutations that may occur during passage through embryonated eggs 

(49). Although not an IIV, a recombinant HA vaccine (Flublok) has also been 

approved for use in the United States. In this system, purified HA is expressed in 

insect cells using a baculovirus expression system (50). Adaption of new platforms 

like these will be critical moving forward to increase or ability to rapidly generate a 

vaccine should an unexpected pandemic strain arise. 

  

C. Influenza vaccination: Live attenuated Influenza Vaccine (LAIV) 

 LAIV consists of a cold-adapted, attenuated live virus. Like IIV, seasonal 

predictions are made to select an H1N1, H3N2, and either one (trivalent) or two 
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(quadrivalent) Influenza B lineages. The HA and NA of each virus is then inserted 

into a cold-adapted, temperature sensitive backbone derived from A/Ann 

Arbor/6/60 and B/Ann Arbor/1/66 viruses (51). These viruses replicate in the upper 

respiratory tract but not in the lower respiratory tract providing a limited amount of 

virus replication to stimulate the innate immune system and allow for processing 

of Ag for T cell recognition (52, 53). 

LAIV was first licensed for use in the US in 2003 and since then has been 

very commonly used, particularly in children. However, in June 2016, the CDC’s 

Advisory Committee on Immunization Practices decided to not recommend 

vaccination with LAIV for the 2016-2017 flu season. Although it has been well 

established that these vaccines have limited efficacy in adults as pre-existing 

immunity prevents replication of the attenuated virus, there have been many 

studies showing increased effectiveness in children compared to IIV (18, 54–56). 

However, in the 2010-2011, 2013-2014, and 2015-2016 seasons, LAIV 

underperformed compared to IIV in protecting against circulating H1N1 in children 

ages 2-17 (48, 57). The reason for this unreliable efficacy is unclear, however 

disparities between the efficacy of different vaccine shipments within the same flu 

season suggest that vaccine handling may have been a cause (57).  

 

D. Influenza vaccination: Universal Influenza vaccine 

 All currently licensed influenza vaccines fail to generate broadly protective 

responses. Current methods for measuring the efficacy of vaccines rely heavily on 
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hemagglutination inhibition (HAI) assays that measure the concentration of serum 

Ab that blocks HA binding to sialic acid on red blood cells (RBC). Therefore, this 

assay will only detect Ab that interfere with sialic acid binding, presumably via 

binding the globular head (HA1 subunit) of the HA molecule. While these Ab are 

likely to neutralize the virus by preventing receptor binding and viral entry, they are 

also likely to only recognize the immunizing strain, as this region can undergo 

extensive mutation without affecting viral fitness (22). There are efforts to develop 

broadly reactive (within a given subtype) Ab against the receptor binding region of 

the HA. This involves the use of various methods of sequence analysis to develop 

a synthetic HA molecule with shared or “centralized” sequences among all the 

known viruses within a given subtype (58–60).  

 The stalk region, made up mostly of the HA2 subunit, is far less tolerant of 

mutations than the globular head due to its critical function during viral fusion. The 

stalk region is fairly conserved and therefore Ab that target this region have broad 

reactivity, generally among an entire phylogenetic group of HA molecules (61–64). 

Unfortunately, stalk reactive Ab are not as immunodominant as those generated 

against the globular head and are not generated by current IIV vaccination (65–

67). However, they are generated following infection with live virus (65, 68, 69) as 

well as following vaccination with pandemic H5, H7, and swine H1 strains (65, 70–

72). Presumably, when the immunizing Ag includes a globular head that has never 

been seen by the immune system (as is the case with pandemic strains) the low 

levels of pre-existing cross-reactive stalk specific Ab are favored over the primary 
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anti-globular head response which is likely to be delayed (47). This discovery has 

led to efforts to generate vaccines with chimeric HA constructs that include an 

exotic globular head (generally from avian IAV) attached to the H1 stalk region. 

Following serial immunizations with chimeras using different globular head 

constructs attached to the same H1 stalk region, stalk specific Ab can be 

continually boosted. So far, this immunization regimen has only been tested in 

mice and ferrets (73, 74). One important component of any vaccine aimed at 

boosting anti-HA stalk Ab is to ensure that the Ab being boosted has a similarly 

inhibitory function across different influenza subtypes. There have been instances 

were a stalk binding Ab actually aided viral fusion and exacerbated disease (75). 

 Another promising target for universal vaccine design is the highly 

conserved ectodomain of M2 (M2e). Although on its own it is a poor immunogen, 

several groups have had success generating constructs to increase the 

immunogenicity of this small 22-23 amino acid domain in rodent models of 

vaccination (76–80). 

 Influenza T cell epitopes are much more highly conserved than influenza 

Ab epitopes (81). This is due to the fact that many T cell epitopes are derived from 

highly conserved internal viral proteins (81–84). Given this, one would predict that 

some memory T cells generated following live infection would be cross-reactive 

against pandemic influenza strains. Indeed, many studies have shown that 

infection and/or vaccination with seasonal influenza strains generate memory T 

cell responses that cross-react against previously un-encountered pandemic 
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strains (82, 85–91). Studies testing PBMC of healthy donors find the highest 

frequency of cross-reactivity for both CD8 and CD4 T cells in the influenza M1 

protein, with significant responses also seen against NP and PB1 epitopes (15, 84, 

86).  

 Current efforts to develop a T cell based universal vaccine have made use 

of recombinant, replication-deficient Modified Vaccinia virus Ankara (MVA) which 

is a highly attenuated virus that has been used as the “boost” step in many prime-

boost regimens. Since most adults have been previously exposed to influenza, 

MVA (encoding influenza NP and M1) is administered in an effort to “boost” pre-

existing memory T cell populations (92–94). Thus far, this platform has had 

success in boosting cross-reactive T cell memory in clinical trials in both 18-45 

aged cohorts as well as in the elderly (92, 95–97). Additionally, a small, preliminary 

study has shown that the MVA-NP+M1 vaccine can reduce viral shedding and 

symptom prevalence after challenge with a virus against which volunteers had no 

pre-existing neutralizing Ab (as determined by HAI Ab titers) (98). Importantly, one 

dose of vaccine appears to be enough to boost pre-existing T cell populations 

therefore obviating the problem of vector-directed immunity (99). For infants 

lacking pre-existing T cell immunity, a strategy using both adenovirus and MVA 

vectors to perform a prime/boost regime has been tested in mice (100).  

A few other T cell based vaccines have had some success in phase I clinical 

trials. The Multimeric-100 vaccine comprised of conserved linear epitopes from 

HA, NP, and M1 has been shown to be safe and immunogenic (101). Another 
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vaccine comprised of several conserved polypeptides consisting of CD8 T cell 

epitopes was found to be somewhat immunogenic but did not appear to result in 

decreased symptoms or viral shedding following influenza challenge (102, 103). 

While DNA vaccines have had more success in mouse models than in larger 

animals (104), a phase I clinical trial has demonstrated safety and some 

immunogenicity in humans (105). Phase I clinical trials have also been completed 

using a simian adenoviral vector expressing NP + M1 as well as using a 

recombinant virus-like particle (VLP) including HA, NA, and M1 (106, 107). Finally, 

single-cycle infectious influenza viruses (sciIV) have demonstrated T cell-

dependent heterosubtypic protection in both mice and ferrets (108–110). Peptide 

vaccination has also had some success in providing heterosubtypic protection in 

mice. It however remains to be seen how effective they will be in clinical trials. 

 

E. Influenza Vaccination: Mediators of protection: Sterilizing Immunity 

Sterilizing immunity is defined as an immune response that completely 

eliminates infection. This can be achieved through preventing viral receptor 

binding, fusion, replication, or budding. While HAI titers are used as the main 

correlate of sterilizing immunity, other Ab specificities can also provide sterilizing 

immunity. For example, Ab specific for the HA stalk can neutralize virus by 

preventing the cleavage of HA0 into the HA1 and HA2 subunits. They can also 

inhibit the conformation change of HA that is required for successful fusion thereby 

preventing the virus from successfully infecting the host cell. Additionally, stalk-
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specific Ab may interfere with viral budding, preventing cell to cell transmission and 

viral propagation. 

Additionally, it should not be overlooked that Tfh are required for the 

generation of long-lived plasmablast and memory B cell formation. Indeed, studies 

have found that induction of influenza-specific CD4 T cells with a Tfh signature 

strongly correlate with neutralizing Ab titer as well as protection (111, 112). Studies 

suggest that the sterilizing Ab produced by seasonal vaccination may only last for 

about 6 months (70). While this is acceptable for our current seasonal vaccination 

system, if the goal is to move toward more broadly neutralizing and long-lasting 

vaccines, a focus on inducing sufficient Tfh formation should be a top priority.  

 

F. Influenza Vaccination: Mediators of protection: Limiting disease severity 

 Given that often the morbidity and mortality associated with influenza 

viruses is correlated with the extent of disease pathology, the potential for inducing 

immune responses that limit disease severity is an important protection 

mechanism that deserves serious consideration. Both cell-mediated and non-

neutralizing Ab responses can provide protection by limiting viral propagation and 

overall disease severity.  

 One main mechanism by which non-neutralizing Ab provides protection is 

via antibody-dependent cell-mediated cytotoxicity (ADCC) (78, 113–115). This is 

a process in which viral Ag on the surface of an infected cell is bound by Ab. 

Natural killer (NK) cells recognize the Fc region of the Ab and kill the infected cell 
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through the release of lytic enzymes (116). Other mechanisms that are especially 

important for protection mediated by anti-M2e Ab are antibody-dependent cell-

mediated phagocytosis and complement dependent cytotoxicity (78, 80, 115). 

Although these mechanisms do not block initial infection, they do limit viral 

propagation and can therefore have  a dramatic effect on protection (78, 113–115).  

 While T cell responses cannot neutralize the virus, there is substantial 

evidence that T cells can provide heterosubtypic protection by limiting the severity 

of disease. Many mouse studies have shown that both CD8 and CD4 T cells can 

mediate heterosubtypic protection (2, 3, 83, 117, 118). Additionally, various human 

studies have shown that cross-reactive T cell responses correlate with decreased 

disease severity (119–122). One study in particular found that cross-reactive CD4 

T cells with cytotoxic function correlated with decreased disease severity following 

influenza challenge in humans (120).  

Although current seasonal LAIV has fallen short of expectations likely due 

to manufacturing problems as well as adult pre-existing immunity preventing viral 

propagation as evidenced by decreased viral shedding and low immunogenicity 

(44, 56, 123), it’s success in boosting broadly reactive protection can be attributed 

to its superior induction of T cell responses (52, 53, 124–127). The similarity to 

viral infection of LAIV may be what drives its success in initiating T cell responses. 

One study demonstrates that viral infection is best at generating multiple cytokine 

producing CD4 T cells, a characteristic shown to mark functional superiority (128), 

suggesting that a vaccination scheme that mimics live viral infection may be the 
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best way to generate potent memory CD4 T cells (129). Although vaccine delivery 

may need to be re-worked, it is clear that inducing T cell responses is a worthwhile 

effort in that they can prevent severe disease in the absence of neutralizing Ab.  

 

T cell Response to Influenza 

 

A. T cell Response to Influenza: Antigen Presentation 

 Activation of the T cell response is initiated largely by migratory 

CD11c+CD103+ and CD11c+CD11b+ respiratory dendritic cell (RDC) populations. 

RDC are resident in the lung and upon uptake of Ag (either by endocytosis of viral 

particles and/or dead cellular debris, or direct infection) migrate to the SLO and 

present Ag to naïve T cells. The extent to which direct viral infection of dendritic 

cells (DC) is required for T cell responses is unclear. CD4 T cells recognize 

epitopes bound to MHC-II which are loaded in endosomal compartments (130). It 

is therefore traditionally thought that CD4 T cell epitopes are derived from 

endocytosis of viral particles or cellular debris from infected cells. However, a 

recent study found that processing of endogenous Ag rather than exogenous Ag 

mediated CD4 T cell responses following influenza infection (131). This study 

suggests that rather than originating from the endosomal compartment, presented 

Ag likely originates from the cytosol indicating a critical role for direct viral infection 

of antigen presenting cells (APC).  

However, determining if an APC population is infected in vivo is somewhat 
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difficult, many studies rely on IAV-GFP reporters to identify virally infected cells. 

Unfortunately, these reporters cannot distinguish between infected cells and cells 

carrying endocytosed viral material (132, 133). A few studies have employed 

methods to address this, including staining for surface HA (one of the first proteins 

to be expressed on the surface of virally infected cells) and use of a hematopoietic 

miRNA targeted against viral NP that specifically limits viral replication in APC. The 

study using surface HA staining to mark virally infected cells demonstrated that 

CD103+ and CD11b+ RDCs present in the DLN 48 hours post infection were NS1-

GFP+, indicating a significant amount of intracellular NS1, but were surface HA 

negative, suggesting that they were not infected (134). They went on to suggest 

that these DCs were protected from infection via a Type I IFN-dependent 

mechanism (134). A study using hematopoietic specific miRNA found that CD8 T 

cell responses were not altered when viral replication was inhibited in APC, 

suggesting that presentation of exogenous Ag via cross-priming of CD8 T cells 

was sufficient (135). However, endogenous Ag processes may play a role in Ag 

encounter of effector T cells in the lung because lung macrophage populations can 

be infected (134) and MHC-II is upregulated on lung epithelia following infection 

(14). While the mode of Ag uptake by migratory DC is still up for debate, studies 

comparing CD4 T cell activation following inactivated versus live virus have clearly 

demonstrated that infectious virus is required to initiate an effective CD4 T cell 

response (131). 

Once migratory DC enter the DLN, they can transfer Ag to LN resident DC 
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populations although the extent to which this is required for the generation of the 

T cell response is unclear (136). While both CD103+ and CD11b+ DC present Ag 

early to initiate priming in the DLN, CD11b+ DC peak at 5 days post infection (dpi) 

in the DLN and 7 dpi in the lung suggesting that Ag encounters at the effector stage 

of the response are likely mediated by this subset (137). It was shown that CD11b+ 

DC effectively endocytose viral Ag and are able to present to CD8 T cell via cross-

priming (137–139), given that the classical MHC-II Ag presentation pathway 

includes processing of exogenous Ag, it is likely that these cells are able to present 

Ag to CD4 T cells as well. 

 

B. T cell Response to Influenza: Kinetics of the T cell Response 

 Migratory DC arrive in the lung about 24 hours after infection and by day 3 

of infection virtually all Ag-specific T cells have been stimulated with Ag in the 

secondary lymphoid organs (SLO) but have not yet begun to proliferate. At 4 dpi, 

T cells have undergone several rounds of division and a few cells begin to migrate 

to the lung around 5-6 dpi (140). Both CD4 and CD8 T cells peak in the lung around 

8-9 dpi (14, 141). Following the peak of infection, CD4 T cells sharply contract and 

form a stable memory population by 20 dpi (1) (Figure 1.2). The contraction of CD8 

T cells is a bit more delayed particularly in the lung and BAL (141). Viral titer peaks 

around 4 dpi and is cleared by 10-12 dpi (141) (Figure 1.2). 

 The primary effector CD4 T cell response is heterogeneous, and is   
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Figure 1.2. Kinetics of the CD4 T cell response to influenza. 
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Figure 1.2 Kinetics of the CD4 T cell response to influenza. 
 
 
5x104 naïve OT-II.Thy1.1+/  were transferred to B6 mice followed by infection with 

a sublethal dose of PR8-OVAII. OT-II cell numbers are enumerated on the left y-

axis over the course of the response. IAV PA copy number per lung is enumerated 

on the right y-axis over the course of the response. The limit of detection refers to 

the PA copy number reading of uninfected B6. OT-II cell numbers peak at day 9 of 

infection. Virus is cleared by day 13 of infection.  
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composed of Th1, SLO-restricted T follicular helper cells (Tfh), and lung-restricted 

cytotoxic CD4 T cells (ThCTL). A Th1 phenotype predominates in all organs with 

T-bet expression and IFNg production being present in the lung, spleen, and DLN. 

Lung cells largely produce IFNg with little IL-2 and TNF, whereas CD4 T cells in 

the SLO produce IFNg, IL-2, and TNF (4, 14, 140). The IAV Ab response is highly 

dependent on CD4 T cells (6), and the generation of long-lived plasma cell 

formation requires CD4 T cell expression of SAP (7). In addition to the Tfh-

mediated germinal center reactions, CD4 T cells promote an early IgA response 

(6).  CD4 T cell “licensing” of DC via CD40-CD40L interactions helps CD8 T cells 

overcome Treg suppression (8). CD4 T cells also promote CD8 T cell memory 

formation and recall responses (9, 10). Additionally, CD8 T cell resident memory 

localization and function requires IFNg production by CD4 T cells during IAV 

infection (11). Finally, lung restricted ThCTL can mediate direct killing of infected 

cells resulting in reduced weight loss and protection in the absence of Ab (4, 13, 

14). 

 

C. T cell Response to Influenza: Memory T cells 

 A heterogeneous population of memory CD4 T cells is generated following 

influenza infection (4, 142). Memory CD4 T cells enhance innate immune 

responses in the lung (12). They provide enhanced B cell help compared to naïve 

CD4 T cells. They provide CD8 T cell help and, via IFNg, provide direct protection 

against lethal IAV (3). Upon activation, memory CD4 T cells accumulate in the lung 
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to a greater extent than do primary CD4 T cells and have greater multi-cytokine 

producing potential (2). Additionally, whereas Tfh are restricted to the SLO during 

the primary response, during a secondary response, Tfh can be found in the lung 

(2). 

 Recent work has demonstrated the increased protective ability of tissue 

resident memory T cells (Trm) (5, 53, 143). Teijario et al. found that memory CD4 

T cells isolated from the lung provided superior protection when compared to 

memory CD4 T cells isolated from the spleen (5). CD8 Trm can be identified by 

CD103 and CD69 expression, CD4 Trm are identified by high CD69 expression  

and a slight upregulation of CD11a (LFA-1) (5, 143). While it has been shown that 

CD8 Trm require Ag presentation in the lung (144) as well as CD4 T cell help (11), 

little is known about what regulates CD4 Trm formation following influenza 

infection.  

Tfh memory has been identified in several infections and circulating 

influenza-specific Tfh-like memory cells can be found in the human population 

(111, 112, 145–147). Interestingly, memory CXCR5+ CD4 T cells retain some 

plasticity upon secondary infection. Instead of being restricted to Tfh differentiation, 

they are able to differentiate into multiple different subsets (147–149). It is likely 

that the heterogeneity of memory CD4 T cells is critical to protection and more 

work is needed to fully elucidate the requirements for the generation of each 

subset. 
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Factors that Govern T cell Responses 

 

A. Factors that Govern T cell Responses: Contraction 

Overview 

 The T cell response terminates with the apoptosis of around 90% of 

responding T cells leaving a small population of memory T cells. Therefore, 

surviving this stage of the response is critical for memory formation. There are 

several processes that have been proposed to regulate the cell death that occurs 

during this stage. The major proposals involve extrinsic or death receptor-mediated 

cell death and intrinsic or Bcl-2 family member mediated cell death (150, 151). The 

following subsections will examine the proposed role for both of these pathways in 

contributing to cell death during the termination of the T cell response. A 

mechanism involving the death receptor pathway is activation induced cell death 

(AICD) in which activated T cells undergo apoptosis when re-encountering Ag. 

Although some reports have shown this can occur in a death receptor-independent 

fashion (152, 153), the majority of studies demonstrate this is a death receptor 

(Fas or CD95 in particular)-driven mechanism (154–161). The intrinsic cell death 

model involves programmed or passive cell death in which activated T cells die at 

the end of the immune response due to the withdrawal of critical survival factors 

(162, 163).  

 

Activation-induced cell death (AICD) 
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AICD describes the phenomenon of activated T cells undergoing cell death 

when re-stimulated. With the exception of a few studies suggesting a role for 

granzyme B or hematopoietic progenitor kinase 1 (HPK1) (152, 153), the term 

AICD is used to describe a Fas (CD95)-mediated mechanism of cell death (154–

161). Most of these studies examine in vitro-generated effector T cells cultured in 

the presence of exogenous IL-2. Since IL-2 has been shown to sensitize T cells to 

AICD (157, 164), these conditions may cause in vitro-generated effector T cells to 

be more susceptible to AICD than in vivo-generated effector T cells.  

The role of AICD in vivo is unclear. Fas-mediated AICD seems to play a role 

in maintaining peripheral tolerance, limiting autoimmunity, and superantigen-

mediated deletion (165–167). Some reports find AICD of human activated T cells 

during HIV infection (168). Additionally, some have found a role in Fas-mediated 

cell death in regulating T cell contraction during persistent lymphocytic 

choriomeningitis virus (LCMV) infection (169). However, Fas-mediated AICD 

appears to have limited to no role in regulating T cell contraction following acute 

viral infection (165, 166, 170, 171). Given that the models in which AICD appears 

to be important are those in which Ag stimulation is very strong (superantigen) 

and/or continuous (autoimmunity and persistent infections) or in the presence of 

unphysiological levels of IL-2 (in vitro generation of effectors), it is likely that an 

acute viral infection does not generate effectors that are as susceptible to AICD. It 

is also unclear how extensive Ag re-encounter is during the effector phase of the 

response, an issue that is addressed in this thesis. 
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Programmed or Passive Cell Death 

 Programmed or passive cell death involves intrinsic cell death mediated by 

the Bcl-2 family members discussed in the following subsection. It is also often 

referred to as cytokine or survival factor withdrawal. The rationale for this model is 

that T cell activation induces many pathways involved in cell death (172), and 

cytokines are needed to counterbalance these effects by providing survival signals. 

Studies demonstrating that responding T cells required cytokines in addition to 

TCR stimulation and co-stimulation for survival (173–176) led to the hypothesis 

that as pathogen decreases and T cell numbers expand, survival inducing 

cytokines may become limiting, leading to the default death of effector T cells (150, 

162, 163). While one study found that Ag can promote the survival of effectors late 

in the response (177), it is generally believed that inflammation induced cytokines 

promote the survival of effector T cells even in the absence of Ag (178, 179).  Some 

of the key factors in this process including Bcl-2-interacting mediator of cell death 

(Bim), IL-7, and IL-2 are discussed further below.  

 

The role of Bim during contraction. 

 Bim is a member of the B cell lymphoma 2 (Bcl-2) family of proteins that 

mediate intrinsic cell death. Intrinsic cell death is initiated by growth factor 

deprivation, stress, UV, or viral infection. It is a mechanism that leads to pore 

formation in the outer mitochondrial membrane leading to release of cytochrome c 

and Second Mitochondria-derived Activator of Caspase (SMAC, also known as 
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DIABLO) resulting in caspase 9 activation, ultimately leading to caspase 3 

activation and cell death.  

 The Bcl-2 family of proteins can be further differentiated into three classes 

based on their expression of Bcl-2 homology domains 1-4 (BH1-4). The first 

includes the anti-apoptotic proteins including Bcl-2, Bcl-XL, Bcl-w, A1, and myeloid 

leukemia cell differentiation protein 1 (Mcl-1) which include BH1-4. The second 

class includes pro-apoptotic molecules that contain BH1-3, including Bcl-2-

associated X protein (Bax) and Bcl-2 homologous antagonist killer (Bak) which are 

the two proteins directly involved in pore formation in the outer mitochondrial 

membrane (180, 181). The final class is the BH3-only proteins, including Bim, Bcl-

2 antagonist of cell death (Bad), and Bcl-2-interacting killer (Bik), Bcl-2 interacting 

domain death agonist (Bid), Bcl-2 modifying factor (Bmf), Bcl-2/adenovirus E1B 

19KD protein-interacting protein 3 (pNIP3), Harakiri (Hrk), Noxa, and p53-

upregulated modulator of apoptosis (Puma) (182–184). These proteins are thought 

to act by binding class I anti-apoptotic Bcl-2 proteins and blocking their inhibition 

of Bax and Bak (184, 185). However, Bim and Bid have also been shown to directly 

activate Bax and Bak (180, 185, 186). 

 The pro-apoptotic protein Bim and anti-apoptotic Bcl-2 have been shown to 

play a dominant role in T cell survival with the ratio of these two determining the 

level of  naïve T cell survival (187, 188). Additionally, the overexpression of Bim 

promotes effector T cell death and contraction is significantly reduced in Bim 

knockout T cells (171, 189–191). Importantly, although some studies have 
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suggested a requirement for Bim in activation of autoreactive T cells (192), Bim 

knockout cells are able to proliferate and are functional following pathogen 

challenge (189, 191). The regulation of Bim expression during T cell activation is 

fairly complex. Studies have demonstrated that it is increased following TCR 

stimulation (193). Others have shown that Foxo3a promotes the expression of Bim. 

Since phosphorylated AKT (pAKT) [downstream of, among other things, the TCR 

(194)] leads to phosphorylation of Foxo3a, resulting in its exit from the nucleus and 

sequestration in the cytoplasm preventing the transcription of its targets, it is 

possible that TCR signaling can directly lead to decreased Bim expression as seen 

in memory CD4 T cells (195). Additionally, Id2 is thought to inhibit Bim expression 

(196), since Id2 expression is regulated by STAT4 and STAT5 (197), there is a 

potential mechanism by which cytokines can inhibit Bim expression in addition to 

promoting Bcl-2 expression (198). Although Bim is an important mediator of cell 

death during contraction, more work must be done to elucidate what the key 

signals are that regulate its expression during a T cell response. 

 

IL-7 and its receptor CD127 during contraction and memory formation. 

  CD127 is the alpha subunit of the IL-7 receptor. IL-7 is critical for the long 

term survival of memory T cells (189, 199, 200). The role of IL-7 in regulating the 

generation of memory CD4 T cells is unclear. Studies have shown that blocking 

IL-7 prior to memory formation had no effect on contraction during Vaccinia or 

LCMV infection (201, 202), it did however, limit memory formation of secondary 
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effectors during influenza infection particularly in the SLO (1). Given the near 

uniform upregulation of CD127 on memory CD4 T cells it is clear that it is an 

essential marker of memory formation (203). 

 Although CD127 marks memory precursor effector CD8 T cells (204), it is 

unclear to what extent it predicts memory formation of CD4 effector T cells. 

Although a study of secondary effectors found that CD127 expression at the 

effector stage correlated with cells that would form memory (1), since secondary 

effectors express more CD127 than do primary cells (2), it is unclear whether or 

not this is the case in the primary response. In fact, a study in which CD127h  and 

CD127 o CD4 T cells were sorted at the effector stage and transferred to infection-

matched hosts showed no difference in their ability to become memory (205). This 

was due to the ability of CD127 o cells to upregulate CD127 during the termination 

of the response. While the role of CD127 expression in selecting which effector 

CD4 T cells become memory is unclear, it is clear that memory CD4 T cells 

upregulate CD127 expression (203, 205) and are dependent on IL-7 for their 

maintenance (189, 199, 200).  

 

The role of IL-2 in memory T cell formation. 

 IL-2 signaling during priming is critical for CD4 and CD8 memory T cell 

formation (206, 207). Conversely, IL-2 signaling during priming can also lead to 

terminal differentiation and increased susceptibility to AICD (157, 164, 208). 

Similarly, increased CD25 expression on early CD8 effectors is thought to mediate 
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increased IL-2 signaling leading to terminal differentiation (208). In CD4 T cells, 

early CD25h  effector cells are thought to be driven toward Th1 differentiation as 

opposed to Tfh differentiation (149). Although there is some similarity in that Tfh-

like cells are thought to give rise to central memory cells (148, 149), Th1 cells are 

also capable of becoming memory (148, 209) and therefore are not terminally 

differentiated. 

 Timing is likely critical in determining the outcome of IL-2 signaling. Studies 

that examine late IL-2 signaling largely conflict those that examine early IL-2 

signaling. For example, in CD8 T cells, studies suggest that IL-2 signaling late 

during the response promotes memory formation of CD8 T cells (210, 211). When 

CD25h  and CD25 o CD8 T cells are sorted at day 8 of LCMV infection and 

transferred to infection-matched hosts, CD25h  cells formed memory to a greater 

extent than did CD25 o cells (210). Additionally, addition of exogenous IL-2 late 

during LCMV infection boosts CD8 memory T cell formation (211). Studies from 

our lab have shown that effector CD4 T cells could be rescued from programmed 

apoptosis with the addition of IL-2 and TGFb in vitro (212). Additionally, McKinstry 

et al. showed that IL-2 was required from day 5-7 of influenza infection for CD4 

memory T cell formation (1). 

 

B. Factors that Govern T cell Responses: CXCR3 and memory T cells 

 CXCR3 is a chemokine receptor that is expressed on effector and memory 

T cells. It is upregulated on CD4 effector and memory cells following Th1-inducing 
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inflammation, and is regulated by the Th1 transcription factor T-bet (213, 214). Its 

ligands include CXCL9, CXCL10, and CXCL11 that can be induced by IFNg. 

CXCL10 can also be upregulated by IFNa/b as well as NF-kB induction (215, 216). 

Therefore, CXCL10 is preferentially expressed following TLR ligation. During 

priming, CXCR3 is critical for effective Th1 differentiation and for migration of Ag-

specific T cells out of the T cell zone into the interfollicular (site of T cell and DC 

interactions) and medulla (site of drainage of soluble Ag) regions (217). It is also 

critical for directing activated T cells to peripheral sites of inflammation (218–220). 

 CXCR3 has been shown in CD8 and human CD4 T cells to mark memory 

cells that have a heightened ability to participate in recall responses (221, 222). 

Additionally, CD8 T cell studies have shown that CXCR3+ memory cells are 

preferentially localized in the cortical ridge area near the interfollicular regions 

where they rapidly migrate upon activation (223, 224). Memory CD4 T cells also 

seem to preferentially localize to the cortical ridge (225), although while it is likely, 

it has not been shown that CXCR3 mediates this localization. CXCR3 expression 

in memory CD8 T cells is also critical for lung surveillance and protection following 

influenza infection (226). While this role has not yet been examined in CD4 T cells, 

given that memory CD4 T cells also express CXCR3, it is likely that they migrate 

toward its ligands in a similar fashion. 

 

C. Factors that Govern T cell Responses: Bcl-6 and memory T cells 
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 Bcl-6 is a transcriptional repressor most prominently known for its role in 

promoting Tfh formation (227–229). However, it has been shown to interact with 

T-bet in Th1 cells to modulate Th1 genetic programs (230, 231). For example, 

Oestreich et al. found that during Th1 differentiation T-bet bound Bcl-6 at the 

Socs1, Socs2, Tcf7, and Ifng loci to inhibit gene expression (230). Interestingly, 

the inhibition of IFNg expression by T-bet bound to Bcl-6 was only present late 

during Th1 differentiation, suggesting that the association of T-bet with Bcl-6 may 

play a role in limiting effector differentiation. However, this study was done 

following in vitro Th1 polarization so it is unclear to what extent these interactions 

occur in vivo. 

 Bcl-6 is also important for both CD8 and CD4 memory T cell formation (232–

234). Ichii et al. found that although effector expansion was not affected, Bcl-6 

deficient CD4 T cells were unable to form a long-lived memory population following 

immunization with OVA and LPS (232). They found that Bcl-6 was important for 

cell survival during the late stages of the response. This finding is interesting given 

that Bcl-6 was recently found to play a role in repressing glycolysis which is a 

critical step in transitioning to a resting memory cell that relies primarily on 

oxidative phosphorylation mediated by fatty acid oxidation (235–237). Additionally, 

Bcl-6 knockouts appear to have a decrease in molecules required for fatty acid 

oxidation in adipose tissue (238). Although the role of Bcl-6 in inhibiting glycolysis 

during the transition to memory has not been thoroughly examined in vivo these 

findings are consistent with the fact that Tfh (which express very high levels of Bcl-
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6) utilize glycolysis much less than Th1 cells (239). Thus, although it is clear that 

Bcl-6 plays a critical role in memory T cell formation, more work must be done to 

elucidate what role it plays in mediating the metabolic transition of memory T cells. 

 

D. Factors that Govern T cell Responses: The role of Ag in effector 

generation. 

 In vitro studies have found a very minimal requirement for Ag to program T 

cells to undergo proliferation and gain effector function. The consensus being 

around 24-40 hours of strong TCR stimulation for CD8 T cells (240–244) and 48 

hours of strong TCR stimulation for CD4 T cells (243, 245–248). One recent study 

found that 2 days of aCD3 and aCD28 in vitro was not sufficient for continued 

proliferation of CD4 T cells transferred to mice without Ag (249). The potential 

difference in this study may have been the absence of exogenous IL-2 in the in 

vitro cultures, since IL-2 has been found to be necessary for the survival of cells 

undergoing Ag-independent proliferation in vitro (242, 245, 248, 250). However, 

although cells may continue to proliferate without Ag, some have found that 

proliferation is increased if Ag is present for up to 60-96 hours of culture (247, 251, 

252). 

 Studies in which priming occurred in vivo had more conflicting results. 

Studies using the Listeria monocytogenes (L.monocytogenes) infection model in 

which Ampicillin (Amp) was used to truncate infection at 24 hours resulted in 

conflicting reports from two different groups. In studies from the Harty lab and 
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others, both responding CD8 and CD4 T cells peaked a day earlier than the no 

Amp control and never reached the peak cell number seen in the control (253–

256). However, Bevan and colleagues found that CD8 effector T cell numbers were 

similar, while CD4 T cell numbers were reduced following Amp treatment after 24 

or 48 hours compared to untreated controls (257). Despite these differences, at 7 

dpi (the peak when infection was truncated) both studies found similar numbers of 

CD8 T cells when Amp was used at 24 hours and similar number of CD4 T cells 

when Amp was used at 48 hours compared to untreated control mice, suggesting 

that cells did undergo some Ag-independent proliferation in vivo (253, 257).  

 The use of antibiotics to truncate infection results in a decrease in Ag 

presentation as well as inflammation which has been shown to promote continued 

proliferation of CD8 T cells during L.monocytogenes infection (258). To address 

this caveat, a few studies have examined the role of Ag while leaving inflammation 

intact. One such study found that deleting APC via a diphtheria toxin (DT) system 

at 48 hours had no effect on the numbers of CD8 effector T cells. However, this 

study used the transfer of peptide-pulsed CD11c-DTR APC to initiate a response 

which is unlikely to adequately replicate Ag presentation during pathogen infection 

(259). Using an elegant transgenic mouse strain termed TIM (tet-inducible 

invariant chain with MCC) that expresses MCC93 103-bound MHC-II in an inducible 

manner, Obst et al. found that CD4 T cells do not undergo full autopilot proliferation 

after 2 days of stimulation (249, 260). A caveat that is not fully addressed in these 

studies is that the APC are likely not as activated as those present during pathogen 
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infection. 

 A couple of studies have made use of the Y-Ae Ab that is specific for the 

Ea peptide bound to I-Ab (261) to specifically block Ag recognition to transgenic 

TEa CD4 T cells specific for this epitope. One study used a model with peptide-

pulsed APC, while the other used a VSV recombinant that expressed the Ea 

peptide. The peptide-pulsed APC model showed that Ag was needed beyond 36 

hours for full expansion (262). The VSV model showed that full effector CD4 T cell 

expansion was reached after 4 days of infection (263). It should be noted that 

although the peak of the CD4 T cell response in the VSV model is not shown, it 

appears to be no later than 5 dpi (263). This indicates that Ag was required for 

almost the entire duration of the expansion phase of the response. 

 A few CD8 T cell studies have been done in influenza with mixed results. A 

couple of groups have found that CD8 T cells required Ag stimulation beyond 7 dpi 

for full effector expansion (263, 264). However, although both studies used the 

influenza model WSN-OVAI and measured OT-I recovery at 10 dpi, their results 

differed in the magnitude of the effect. Blair et al. found that blocking OVA-Kb 

resulted in similarly low numbers of effector cells regardless of whether they 

blocked on day 0 or day 7 of infection (263). Dolfi et al. found a very modest 

decrease in CD8 T cells following deletion of CD11c on 6 dpi. They went on to 

show that OT-I effectors isolated at 8 dpi were present at much higher numbers at 

5 days post transfer (dpt) if transferred to WSN-OVAI-infected hosts compared to 

uninfected or PR8-infected hosts. However, 8 dpi OT-I effectors were transferred 
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into 5 dpi infected hosts, this mismatched timing may not accurately replicate what 

occurs during an endogenous T cell response (264). Others suggest there are 

epitope specific differences in the length of the Ag requirement for CD8 T cells 

(138, 139). These studies suggest that CD8 T cells directed against certain 

epitopes are dependent on prolonged Ag presentation that requires cross-

presentation mediated by virus-specific Ab binding FcgR on DC (138, 139). Given 

the differences in MHC-I and MHC-II peptide loading pathways, it is unclear if CD4 

T cells are regulated in a similar way. 

 The fact that, in some in vivo models, T cells require more than 2 days of 

Ag stimulation for full effector expansion appears to contradict findings in vitro that 

suggest that sustained Ag stimulation for more than 2 days is detrimental to 

effector survival (246). However, these differences may be explained by the fact 

that Ag contacts after 24 hours in vivo may be more transient than those in vitro. 

Microscopy studies have illuminated the timing of priming of both CD8 and CD4 T 

cells in the draining lymph node following administration of peptide/APC (265–

269). The initial phase is characterized by multiple transient interactions between 

T cells and DC expressing cognate Ag. During this phase T cells integrate 

successive signals and if they reach a certain signaling threshold they progress to 

the next phase of more stable contacts with Ag/DC which are required to induce 

activation over tolerance (270, 271). After about 24 hours, T cells separate from 

DC and undergo cytokine-driven proliferation (266–268). At this time, occasional 

contacts with DC may be made but they are rare with most T cells regaining their 
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full mobility (267–269). Interestingly, in a study that added a second wave of DC, 

investigators found that CD4 T cells could form stable contacts during this third 

phase (269, 272), however these additional contacts did not result in increased 

proliferation suggesting that proliferation at this time is likely Ag-independent (269). 

For clarity, most of these studies add labeled Ag bearing DCs and Ag-specific T 

cells in a controlled manner and block LN trafficking to synchronize the response. 

It is therefore unclear what the kinetics are during a live viral infection when both 

T cell and Ag-bearing DC migration and numbers are dynamic. 

 Overall, it is likely that initial priming is followed by a phase of Ag-

independent proliferation as in vitro studies found (245) and in vivo microscopy 

studies appear to confirm (266–268). However, this programmed proliferation may 

be for a limited duration and subsequent Ag stimulation may be required for the 

sustained proliferation seen during a pathogen infection. Of course given the 

largely conflicting literature, this is not certain and is likely infection specific. The 

ability for Ag to continue to have a positive influence on effector T cell generation 

is likely dependent on the breaks from Ag stimulation that are likely to occur in vivo 

(266, 273). 

 

E. Factors that Govern T cell Responses: The role of Ag in memory T cell 

formation.  

 The time frame during which memory fate determination is made has been 

a controversial topic. Rather than identifying a point at which fate decisions are set 
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in stone, many studies have revealed steps that inform fate determination, leaving 

open the possibility that future interactions may affect the ultimate fate of a cell. 

There has been some debate about the extent to which naïve T cells are 

predestined for certain effector or memory fates. Studies in both CD4 and CD8 T 

cells have shown that single naïve clones undergo different differentiation patterns 

upon activation likely due to, among other things, TCR avidity (274–278). Work 

from the Allen lab has shown that even cells with similar avidity for cognate Ag 

may undergo different effector and memory differentiation due to their affinity for 

self-ligand (279, 280). However, given that a single cell can differentiate into both 

effector and memory cells (275), and that IFNg-producing effector cells can give 

rise to memory (209, 281), fate determination is likely not solidified at the naïve T 

cell stage. 

 Many of the studies that examined the Ag requirements for T cell 

proliferation also tested the Ag requirements for memory formation. A few studies 

demonstrated that although limiting infection may inhibit effector cell numbers 

generated at the peak of the response, it either had no effect on or increased 

memory cell numbers (138, 139, 253–255, 263). These findings along with others 

led to a model of memory differentiation in which the bifurcation of effector and 

memory cells occurs very early in a response. This early bifurcation model led to 

the belief that molecules that promote effector expansion and differentiation are 

often in opposition to memory cell formation (282). 

 One prominent finding critical to the formation of this model is the 
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observation that when T cells form stable interactions with DC during priming, they 

undergo an asymmetric division. During these stable interactions a supramolecular 

activation cluster (SMAC) is formed between the T cell and DC in which many 

signaling molecules are clustered. The result is that when the T cell divides, the 

daughter closest to the DC will retain more of the signaling molecules that have 

coalesced at the synapse, in addition to T-bet (283) and CD25 (284), both factors 

that when present at higher levels in cells early during the response lead to terminal 

differentiation of effectors (208, 285, 286).  

While this phenomenon is well documented in CD8 T cells, less has been 

done to study the effect of this early bifurcation in CD4 T cells (287). While studies 

suggest that segregation of LFA-1, CD4, IFNgR, STAT1 and in some cells CRTAM 

(284, 288–290) concentrate in the immunological synapse, it is suggested this first 

asymmetric division may mediate Th1 versus Tfh cell fate (291). This is an 

intriguing hypothesis since others have found an early bifurcation of those effector 

destinies (149, 292). Since both these subsets can further differentiate into 

memory cells (149, 293), it is unlikely that this first division is solely responsible for 

memory fate determination in CD4 T cells.  

One prominent feature in CD8 T cell literature is the ability to differentiate 

between short-lived effector cells (SLECs) and memory precursor effector cells or 

(MPECs) that can be defined by their expression of KLRG1 and CD127 fairly early 

on during the T cell response. It was found that when sorted at the effector stage, 

CD127h  CD8 T cells were far more likely to form memory than CD127 o cells (204). 
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Using these markers as a surrogate for memory versus effector differentiation, 

studies of CXCR3 /  CD8 T cells demonstrated less KLRG1 expression due to 

limited migration to sites of greater Ag density (294–296). These observations 

suggested that increased encounters with Ag lead to terminal differentiation of 

effectors (294–296). Although, these studies don’t adequately separate Ag 

recognition from inflammation which can also cause terminal differentiation (285, 

297), so their interpretation is unclear. However, recent findings have underscored 

the fact that these markers do not cleanly define terminally differentiated effectors 

and memory cells. For instance, KLRG1h  cells are present at memory time points 

and have been shown to mediate optimal protection in models of Vaccinia and 

L.monocytogenes (298). It is therefore misleading to assume that factors that 

promote KLRG1 expression are antagonistic to memory formation. 

Unfortunately, CD127 expression at the effector stage is not a reliable 

marker for effector CD4 T cells destined to become memory (205). A study by 

Marshall et al. suggested that Ly6C marked terminally differentiated effector cells, 

however their results were not as dramatic as those seen with CD127 expression 

in CD8 T cells (205). Additionally, Ly6Ch  cells are also present at significant 

numbers at the memory stage and seem to identify a Th1-like memory population 

(148). In fact, many studies have used Ly6C as a memory CD4 T cell marker (299, 

300). It would therefore be similarly misleading to assume that factors that result 

in Ly6C upregulation were antagonistic to memory formation. 

Moreover, there is growing evidence in CD8 T cell studies that Ag 
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recognition during the effector phase, while not affecting memory cell numbers, 

enhances the function of memory cells (137–139, 144, 301). During influenza 

infection, if Ag was blocked after 7 dpi, certain CD8 T cell specificities were unable 

to optimally proliferate, produce cytokines, and protect following secondary 

infection (138, 139). This is despite forming similar numbers of memory cells with 

a similar CD127 and KLRG1 phenotype (138, 139), further suggesting that these 

markers are of limited utility.  Others have shown in a vaccination model that 

adding additional Ag 5 days after immunization results in efficient memory CD8 T 

cell generation (302, 303). 

Although no CD4 T cell studies examine the role of Ag beyond the priming 

phase, there are studies that suggest that stronger TCR stimulation favors memory 

CD4 T cell formation (304, 305). Williams et al. found that SMARTA transgenic T 

cells specific for the gp61 epitope were able to form memory during LCMV infection 

but not during Listeria Monocytogenes-gp61 (LM-gp61) infection despite 

substantial effector expansion. They found this correlated with a reduced functional 

avidity of SMARTA cells compared to endogenous cells in LM-gp61 infected mice 

(304). While this is a largely correlative study, it does explain the observation that 

polyclonal memory populations have increased functional avidity compared to 

effector cells (304). This suggests that there is some selection pressure on TCR 

avidity in determining which clones survive and become memory, an obvious 

candidate being a role for late Ag presentation in selecting which cells become 

memory. Conversely, Blair et al. found that blocking Ag at 4 dpi following VSV 
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infection resulted in more memory CD4 T cell formation (263). However, there 

were very few memory CD4 T cells in the control and no phenotype or functional 

analysis was done. Thus, the role of Ag at the effector phase of the response in 

promoting or inhibiting CD4 memory T cell generation is a largely unexplored area. 

 

Thesis Objectives 

 Memory CD4 T cells provide protection during influenza infection via several 

mechanisms. Through their helper activity they enhance Ab responses (6, 7), CD8 

T cell responses (8–11), and innate responses (12), additionally they are able to 

mediate direct effector function (2, 4, 13, 14). The ability of memory CD4 T cells to 

orchestrate an effective immune response combined with the fact that many T cell 

epitopes are derived from highly conserved IAV proteins make them ideal targets 

for vaccination. However, vaccination strategies are stunted by our lack of 

understanding of the mechanisms that govern the formation of a large, functional 

CD4 memory T cell population. Efforts to illuminate the mechanisms involved in 

this process could have great implications in rational vaccine design. 

 Current vaccines are generated under the assumption that the Ag 

recognition that occurs during priming is sufficient for CD4 memory T cell 

formation. However, recent studies suggest that Ag recognition during the effector 

phase of the response results in a more functional CD8 memory T cell population 

(138, 139, 144). While the role of Ag recognition at the effector stage in promoting 

CD4 memory T cell formation is unclear, work from our lab demonstrate that 
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autocrine IL-2 signals are required at this time for efficient memory formation (1).  

 I sought to examine the role of Ag recognition at the effector phase of the 

response, termed “late Ag” in shaping the ongoing CD4 T cell response and 

promoting CD4 memory T cell formation. I found that Ag recognition was required 

for full expansion of CD4 effector T cells. Late Ag promoted the survival of 

responding CD4 T cells in a Bim-dependent manner. This pro-survival effect of late 

Ag recognition was significantly decreased in the absence of IL-2 and co-

stimulation. Unlike CD8 T cells (138, 139), the number of CD4 memory T cells was 

significantly decreased in the absence of late Ag. Late Ag promoted the immediate 

expression of CD25, a marker that when expressed late during a response 

correlates with increased ability to form memory (210). It also promoted memory 

associated factors CD27 and Bcl-6. The memory T cells that form in the absence 

of late Ag have reduced memory cell markers CD127 and CXCR3 and have a 

reduced ability to secrete multiple cytokines upon re-stimulation.  

 Importantly, I have established that the signals required late in the response 

can be fulfilled by a short-term Ag/APC population in the absence of virus-induced 

inflammation. The late addition of Ag/APC that are only capable of presenting Ag 

for up to 2 days in vivo was sufficient to restore CD4 memory T cell numbers, 

function, and phenotype in both the lung and SLO. Additionally, when provided at 

6 dpi, this short lived Ag/APC was sufficient to generate a protective CD4 memory 

T cell population. Finally, I demonstrate that adding Ag/APC at 6 dpi can boost 

CD4 memory T cell formation in a cold-adapted immunization model.  
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This late Ag dependent model of CD4 memory T cell formation suggests 

that persisting Ag, indicative of a continuing threat, is required for the commitment 

of resources to memory T cell formation. Additionally, the work presented in this 

thesis establishes the importance in developing vaccines that can provide enough 

Ag to enable Ag re-encounter at later stages of the response.  
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CHAPTER II: Materials and Methods 

Mice 

Naïve CD4 T cells were isolated from OT-II.Thy1.1+/ , OT-II.Nr4a1eGFP.Thy1.1+/ , 

OT-II.Bcl2l11+/ , or OT-II.Osb.eGFP mice bred at the UMMS breeding facility. 

CD11c Tg.H2-Ab1 /  and OT-II.Bcl2l11+/  bred at the UMMS breeding facility were 

used. Hosts were B6 male mice ordered from Jackson Laboratories (JAX). 

Nr4a1eGFP mice originally obtained from JAX were bred at the UMMS breeding 

facility were also used. Mice used in experiments were 8-12 weeks of age. The 

Institutional Animal Care and Use Committee of the University of Massachusetts 

Medical School approved all animal procedures. 

 

Viral Stocks, Infections, and Immunizations 

For all influenza viral infections described, mice were lightly anesthetized with 

isoflurane (Piramal Healthcare) before intranasal infection with 50µL of virus 

diluted in PBS. Influenza A PR8-OVAII and PR8 (H1N1) viruses were produced in 

the allantoic cavity of embryonated hen eggs from stock obtained from Dr. Peter 

Doherty of St. Jude Children’s Hospital. A sublethal dose of 0.3LD50 was used. 

Protection experiments were performed using a lethal dose of 2LD50. Cold-

adapted, attenuated ca.A/Alaska/72/CR9 (H3N2) was originally supplied by S. 

Epstein (NIH, Bethesda, MD) then grown at the Trudeau Institute (83). Mice were 

immunized with 2500 TCID50 ca.Alaska, a dose shown to elicit T cell mediated 
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protection (83). Influenza A/Philippines/2/82/x-79 (H3N2) was supplied by S. 

Epstein (NIH, Bethesda, MD). Mice infected with 100 PFU.   

 

Naïve CD4 T cell Isolation and Effector Generation in Primary Hosts 

Spleens and peripheral LNs were harvested from 6-10 week old TCR transgenic 

or WT mice. Resting cells were enriched using a percoll gradient. CD4 T cells were 

then isolated using CD4 MACS beads (Miltenyi). Naive CD4 T cells were washed 

twice, re-suspended in PBS, and a total of 3x105-5x105 cells were transferred by 

i.v. injection into hosts. Hosts were infected with PR8-OVAII on the same day. 

 

Isolation of 6 dpi Effector CD4 T cells 

Spleen and DLN (Lung Draining Lymph Nodes) were harvested from B6 mice on 

6d after PR8-OVAII infection. Cell suspensions were pooled and donor cells were 

isolated by either Thy1.1 or CD4 MACS isolation (Miltenyi). Cells were 

resuspended in PBS and 1-4x106 effector cells were transferred by i.v. injection to 

hosts. All steps were conducted at RT (except for one 15 minute incubation at 4ºC) 

to maintain effector phenotype. This minimal protocol ensures that effector cells 

are only out of mice for 2.5 hours. 

 

Bone Marrow Dendritic Cell Preparation 

Bone marrow was harvested from B6 mice and washed with RPMI including 1% 

FBS. Cells were plated at 7-8x106 cells/mL in RPMI with 7.5% FBS including 
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10ng/ml GMCSF. After 7 days, cells were harvested and CD11c+ cells were 

isolated by MACS. Purified cells were then re-plated at 2x106 cells/ml and 

stimulated with Poly I:C at 10µg/ml for 1 day in culture and used as DC. DC were 

harvested, pulsed with 10µM OVAII or NP311 325-peptide at 37ºC for 1 hour with 

shaking. Cells were resuspended in PBS and 3-5x105 cells per mouse were 

injected i.v. 

 

PR8-infected Splenic APC Preparation and In Vitro Culture 

Spleens from PR8-infected B6 mice were harvested 6 dpi. Cell suspensions were 

pooled and washed with RPMI containing 1% FBS. Cells were depleted of Thy1.2+ 

cells using MACS beads. Cells were irradiated with 3000 Rads. This APC 

population was then co-cultured with isolated 6 dpi effectors at a ratio of 5:1 APC 

: OT-II. OVAII peptide was added to culture at 0.5µM. IL-7 was added to cultures 

at 0.1ng/ml (a concentration that does not promote proliferation). All blocking 

antibodies were used at 10µg/ml. 

 

APC for the Protection Experiment 

Spleen cells were harvested from uninfected B6 mice. Thy1.2+ cells were depleted 

using MACS beads. The Thy1.2-depleted fraction was then plated at 3x106 cells/ml 

in RPMI containing 7.5% FBS and 10ng/ml LPS and 10ng/ml dextran sulfate. After 

2 days in culture, these activated APC enriched cells were harvested and pulsed 
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with 10µM OVAII peptide at 37ºC with shaking for 1 hour. APC were transferred to 

hosts with 6 dpi effectors at a ratio of 1:1.   

 

Histology 

B6 mice were infected with 0.3LD50 PR8 or PR8-OVAII. Lungs were harvested at 

6 dpi and fixed in 10% buffered formalin. 10µm sections were taken and stained 

with hematoxylin and eosin (H&E) stain. Lungs were scored as follows: (1) Healthy 

looking bronchioles with consolidation and mononuclear infiltrates comprising 

under 5% of the lung. (2) Mild bronchiolitis with consolidation and mononuclear 

infiltrates comprising over 5% of the lung. (3) Moderate bronchiolitis with 

consolidation and mononuclear infiltrates comprising equal to or greater than 15% 

of the lung. (4) Moderate bronchiolitis with consolidation and mononuclear 

infiltrates comprising equal to or greater than 25% of the lung. (5) Severe 

bronchiolitis with consolidation and mononuclear infiltrates comprising over 50% 

of the lung. Scoring was done blind and four sections of each lung were scored 

and the average is presented. 

 

Viral Titers 

Viral titers of PR8 or PR8-OVAII-infected lungs were determined by quantification 

of viral RNA.  Whole lungs were homogenized in TRIsol/Chloroform (Sigma-

Aldrich) and RNA was extracted using the VWR E.Z.N.A kit and Turbo DNA-free 

kit (Thermo Fisher Scientific). 2.0 µg of RNA was reverse transcribed into cDNA 
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using the High capacity cDNA reverse transcription kit (Thermo Fisher Scientific). 

Quantitative PCR was performed to amplify the acidic polymerase (PA) gene using 

the Bio-Rad CFX96 Realtime PCR system with 50ng of cDNA per reaction. The 

following primers and probe were used: forward primer: 5’CGGTCCA 

AATTCCTGCTGA-3’; reverse primer: 5’-CATTGGGTTCCTTCCATCCA-3’; probe: 

5’-6-FAM-CCAAGTCATGAAGGA GAGGGAATACCGCT-3’. Data were analyzed 

using the CFX Manager Software Version 20 (Bio-Rad). A standard curve 

generated using a PA-containing plasmid obtained from Dr. Rob Webster at St. 

Jude’s Children’s Research Hospital was used to calculate the PA gene copy 

number per 50 ng of cDNA. This was used to calculate the total PA copy number 

per lung.  

 

Flow Cytometry: Cytokine and Other Intracellular Staining 

For cytokine staining, total splenoyctes were stimulated with PMA and Ionomycin 

for 4 hours at 37ºC. Brefeldin A (10µg/ml) was added after 2 hours of stimulation. 

Following a surface stain, cells were fixed in 4% paraformaldehyde and 

permeabilized in 0.1% saponin for 30 min at 4ºC. Cytokines were then stained for 

30 minutes at 4ºC. Bim, Bcl-2, Ki67, Bcl-6, and T-bet were stained using the 

eBioscience Foxp3 staining buffer kit following manufacturer’s recommendations. 

Bim Ab was stained with a fluorescent Goat α-Rabbit Ab from Invitrogen. Host IAb-

NP311 325-specific CD4 T cells were stained with the IAb-NP311 325-APC tetramer 

obtained from the NIH Tetramer Core Facility. All antibodies were obtained from 
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eBioscience except anti-Bim (Cell Signaling) and anti-Bcl-6-PE (BD biosciences). 

Samples were run on LSRII instruments (BD biosciences) and analysis was done 

using Flowjo (Tree Star) analysis software.   

 

Flow Cytometry: Phospho-STAT3 Staining 

After 4 hours of culture, cells were washed with PBS and stained for 20 minutes 

on ice with Invitrogen Live/Dead yellow. Cells were then incubated in BD Fix/Perm 

Buffer for 10 minutes at 37°C. Cells were then incubated in BD Perm Buffer III for 

30 minutes on ice. Finally, cells were stained with fluorescently labeled pY705 

STAT3 Ab (BD Biosciences) for 1 hour at RT protected from light. Samples were 

run immediately after staining. 

 

Microarray Analysis 

RNA was isolated from sorted 6 dpi effector OT-II cells, 6 dpi OT-II cultured in 

media for 2 days, and 6 dpi OT-II cultured with aCD3 and aCD28 for 2 days using 

the same protocol as was used for viral titers. Then a microarray was performed 

using Affymetrix Mouse Gene 2.0 ST arrays by the UMMS Genomics Core Facility. 

The Affymetrix Expression Console was then used for RMA normalization and the 

Affymetrix Transcriptome Console was used to identify genes that were 

differentially expressed by over 2-fold. The NIAID DAVID platform was then used 

to classify genes into functional categories. 
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Statistical Analysis 

 

Groups of at least 3 mice were used for all experiments to ensure sufficient power. 

MFI in all graphs is median fluorescence intensity. For analysis comparing more 

than 2 samples, a one-way ANOVA analysis was conducted with GraphPad prism 

software. To compare 2 samples an unpaired, two-tailed student’s t-test was 

conducted with GraphPad prism software. All data was included unless found to 

be a significant outlier using the Grubb’s test (ESD method) available through 

GraphPad prism software. Welch’s correction was applied when the standard 

deviations were unequal. Significance is indicated by * = P<0.05, ** = P<0.01, *** 

= P<0.001, **** = P<0.0001. 
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CHAPTER III: Late Ag is Required for CD4 Memory T cell Generation during 
Influenza Infection 

 
 

Introduction 
 

While much progress has been made in defining the early activation events 

required for the generation of effector CD4 T cell subsets, the pathways that drive 

a cohort of effector T cells to successfully transition to a memory state remain 

poorly defined. It is unclear to what extent programming during initial cognate 

interaction of T cells with APC determines the fate of effector T cells and if later 

signals affect memory generation.  

Various models defining the role of Ag in effector and memory differentiation 

have been proposed. Some suggest that the initial interaction with Ag/APC is 

sufficient to program a cohort of T cells to become memory and further exposure 

to Ag and inflammation drive terminal differentiation of effector T cells (242, 245, 

251, 253, 282). In contrast, other studies suggest that late Ag enhances the 

function but not the number of memory CD8 T cells (138, 139). It has been shown 

that CD4 T cells require more Ag stimulation for effector and memory generation 

than do CD8 T cells, but most of these analyses have been limited to the priming 

phase of the response (249, 260, 269, 305). Other studies have concluded that 

while prolonged Ag stimulation can enhance effector CD4 T cell proliferation, it is 

deleterious to memory formation (263), and continuous Ag stimulation may drive 

CD4 T cells to a state of reduced responsiveness (246, 300). In vivo, responding 

T cells disengage from APC 24 hours after initial interaction, engaging in few APC 
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contacts during the last phase of priming (266, 269). Thus, it remains unclear how 

often responding CD4 T cells encounter Ag after the initial priming phase of the 

response and if later Ag exposure impacts memory generation.  

During a response to a live pathogen, it would be advantageous for the 

quality and quantity of the effector and memory response to be determined at the 

effector stage when the immune system could sense whether there is still a threat. 

In an in vivo model of IAV infection, our lab recently found that autocrine IL-2 

production by effector CD4 T cells during a defined checkpoint (5-7 dpi) was 

essential to promote survival and memory formation (1). Similarly, addition of IL-2 

complexes late in the response promoted memory formation during LCMV 

infection (211). Since IL-2 production is typically induced by cognate Ag 

recognition, I investigated whether the interaction of effector CD4 T cells with APC 

during this checkpoint is the key event that drives them to make IL-2, to survive, 

and to differentiate into long-lasting memory cells. A defined stage of effector CD4 

T cell development, where CD4 effector fate is determined by cognate Ag 

interaction, would suggest a new paradigm in which the formation of memory 

depends on a cohort of cells being selected by persisting Ag to become memory 

cells.  

In most in vivo studies heretofore, it has not been possible to define the 

necessary timing and duration of the signals needed for the rescue of effectors 

from apoptosis and exessive contraction. Additionally, as T cells reach the effector 

stage, the roles that ongoing infection play in promoting memory have not been 
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definitively examined in an in vivo model of infection. Defining these elements is 

critical for rational vaccine design. 

To address these gaps in our understanding, I use a well-defined model of 

IAV infection to determine the role that Ag presentation and ongoing infection, 

during the effector phase, play in shaping memory CD4 T cell formation. IAV 

induces a highly protective memory CD4 T cell population that synergizes with B 

cells and CD8 T cells to provide protection from challenge with supralethal viral 

doses (2, 3, 14, 120). The response thus epitomizes successful memory CD4 T 

cell generation in response to infection and is therefore well-suited to reveal the 

mechanisms involved in effective memory generation.   

I find that effector CD4 T cells, induced by IAV infection, require cognate Ag 

recognition at 6 dpi for continued expansion, survival, and all but a minor fraction 

of memory generation. In well-controlled adoptive transfer models, I find that 

Ag/APC encounter at the effector stage (6 dpi) enhances the recovery of memory 

cells in SLO and in the lung at least 10 to 100-fold. Notably, other infection-induced 

effects, such as inflammation, are not required for this increased memory 

generation. Effector T cells, exposed to Ag/APC for as little as 2 days, expressed 

higher levels of memory-associated molecules CD25, Bcl-6, CD127, and CXCR3. 

The memory cells generated by Ag encounter between 6-8 dpi had enhanced 

ability to make cytokines and provided better protection against a lethal dose of 

IAV than those that were not exposed to checkpoint Ag. Moreover, in a cold-

adapted vaccine model, I found very little Ag presentation during this late 
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checkpoint, but when additional Ag/APC were introduced at this time, memory CD4 

T cell formation was enhanced. This suggests that low levels of Ag presentation 

from 6-8 dpi may limit efficacy of vaccines that do not provide high levels of 

persisting Ag. These findings imply that whether pathogen infection persists into 

the effector stage determines effector fate by supplying late Ag/APC that are 

needed to program memory formation and that interventions to achieve this need 

not involve long-lived infection and its potentially deleterious effects. 

 

Antigen Recognition at the Effector Phase of Influenza Infection is Limited. 

Previously, it has been difficult to assess exactly when responding CD4 T 

cells encounter Ag in vivo. Transfer of naïve CD4 T cells at various times following 

IAV infection demonstrates that Ag presentation occurs up to 3 weeks post 

infection (306). However, naïve and effector CD4 T cells may have different 

patterns of trafficking. Additionally, in situ effectors may localize to specific niches 

and may not be able to access the same Ag depots that intravenously administered 

naïve cells can. It is therefore unclear if responding CD4 T cells recognize Ag for 

3 weeks post infection. Microscopy studies have suggested that only about ~35% 

of IAV-specific effector CD4 T cells undergo arrest and produce IFNg directly ex 

vivo suggesting recent Ag encounter in the lung at 7 dpi (307). Although this study 

was conducted by transferring in vitro generated Th1 effectors into infected mice 

and was therefore not necessarily representative of Ag recognition by endogenous 

CD4 T cells. To more directly test when responding CD4 T cells recognize Ag in 
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situ, I utilized the Nr4a1eGFP (Nur77GFP) mice that transiently express GFP following 

TCR stimulation (243, 308).  

To determine when responding CD4 T cells encounter Ag in vivo following 

IAV infection, I crossed OT-II.Thy1.1+/  (Ovalbumin323 339 (OVAII)-specific TCR 

transgenic mice) to Nur77GFP mice. To evaluate the feasibility of using Nur77GFP as 

an indicator of recent Ag-induced TCR stimulation in effector T cells, I isolated CD4 

T cells from Nur77GFP mice and stimulated them in vitro. GFP expression was 

rapidly induced and remained high with continued TCR stimulation (Figure 3.1A), 

but was significantly reduced within 24 hours following removal of stimulation 

(Figure 3.1B). Additionally, GFP was rapidly re-expressed following secondary 

exposure to Ag (Figure 3.1C) and did not decrease with division (Figure 3.1D) 

(243).  

To determine the kinetics of IAV Ag recognition in vivo, I transferred naïve 

OT-II.Nur77GFP.Thy1.1+/  cells to C57BL/6J (B6) mice and infected with a sublethal 

dose of A/Puerto Rico/8/34-Ovalbumin323 339 (PR8-OVAII) (Figure 3.2A-3.2D). As 

expected, during priming (3 dpi) most cells were GFP+ indicating recent Ag 

exposure. However, by 5 dpi, only a fraction of effector CD4 T cells had recently 

encountered Ag and by 9 dpi (the peak of the lung effector T cell response) a very 

low percentage of cells express GFP (Figure 3.2C). An examination of the kinetics 

of GFP+ cell numbers demonstrates that the Ag recognition occurs in both the lung 

and SLO and peaks around 7 dpi (Figure 3.2D). The low percentage of GFP 

expressing cells was not due to the transfer of a non-physiological number of OT- 
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 Figure 3.1. Nur77GFP is a reliable reporter of TCR signaling in mature 
effector CD4 T cells. 
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Figure 3.1. Nur77
GFP

 is a reliable reporter of TCR signaling in mature 
effector CD4 T cells. 
  

(A, B) CD4 T cells were isolated from Nur77GFP mice and cultured with anti-CD3 + 

anti-CD28 either continuously for 4 days (A) or removed from stimulation at 48 

hours and re-plated (B). GFP expression was determined by flow cytometry. (C) 

OT-II.Nur77GFP.Thy1.1+/  cells were stimulated in vitro with irradiated OVAII-pulsed 

APCs for 2 days with 5ng/mL of IL-2, then rested for 3 days in culture. Cells were 

then re-stimulated in culture with OVAII-pulsed APC for 2 days. (D) Nur77GFP CD4 

T cells were labelled with cell trace violet (CTV) and stimulated with anti-CD3 + 

anti-CD28 for 3 days in culture. (A-D) Representative data, n=6, 2 experiments.  
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II cells, as a similar GFP kinetics was seen in polyclonal host responses following 

IAV infection of Nur77GFP mice (Figure 3.2E). Thus, effector CD4 T cells only 

intermittently respond to cognate antigen in vivo and the Ag recognition that does 

occur, is mostly limited to just before the peak of the effector T cell response. These 

findings suggest that Ag recognition at the effector stage could act to select a 

limited number of effectors to become memory. 

 Although the GFP median fluorescence intensity (MFI) is lower in the SLO 

than in the lung, it is higher than at the memory time point (31 dpi) (Figure 3.2B). 

Additionally, when OT-II.Nur77GFP cells are isolated at 6 dpi and transferred to 

hosts without Ag (PR8-infected hosts) they do not express GFP (Figure 3.3A). This 

suggests that although it may not be strong TCR stimulation, the GFP signal in the 

SLO at later time points may reflect continuing Ag presentation. Since follicular 

helper CD4 T cells (Tfh) are thought to recognize residual Ag in germinal centers 

(309–311) it is likely that the population that expresses GFP at these later time 

points are Tfh. Indeed, when GFP+ cells are compared to GFP  cells in the spleen 

and DLN, GFP+ cells have higher expression of the Tfh markers CXCR5 and Bcl-

6 at 9 dpi (Figure 3.3B, 3.3C).  

 

Late Ag is Required for Memory CD4 T cell Formation. 

 Since several previous studies have looked at the role of Ag using 

antibiotics to truncate infection resulting in a reduction in both Ag and general 

pathogen-induced inflammation, I sought to examine the role of late Ag using a  
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Figure 3.2. Ag recognition at the effector phase of influenza infection is 
limited.  
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Figure 3.2 Antigen recognition at the effector phase of influenza infection is 
limited. 
 

(A-D) 5x105 naïve OT-II.Nur77GFP were transferred to B6 mice.  Mice were infected 

with PR8-OVAII. Lung, spleen, and DLN were harvested at various time points and 

GFP expression of donor cells was analyzed. (A) Experimental schematic. (B) 

Representative flow cytometry plots of Nur77GFP expression at various time points 

following infection. (C) Kinetics of GFP expression by OT-II.Nur77GFP cells during 

PR8-OVAII infection in B6 mice. (D) Kinetics of OT-II GFP+ cell number. (E)  GFP 

expression kinetics of NP311 325 tetramer+ cells during PR8-OVAII infection of 

Nur77GFP mice. (B, D) Representative data, 4 experiments, n=3-4 each. (C, E) 

Pooled data, n=12-16, 3-4 experiments, mean ± SD. 
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Figure 3.3. Low level Ag presentation late in the SLO marks Tfh. 
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Figure 3.3. Low level Ag presentation late in SLO marks Tfh. 

 

(A) OT-II.Nur77GFP.Thy1.1+/  naïve cells were transferred to B6 mice followed by 

infection with PR8-OVAII. Donor cells were isolated at 6 dpi and transferred to 

either infection matched PR8-OVAII-infected or PR8-infected hosts. Lung cells 

were harvested 18 hours after transfer. GFP expression in the lung is shown. (B-

C) OT-II.Nur77GFP.Thy1.1+/  naïve cells were transferred to B6 mice followed by 

infection with PR8-OVAII. Spleen and DLN were harvested at 5,7, and 9 dpi. (B) 

Representative flow plots of Tfh in GFP+ and GFP  populations at 9 dpi in the 

spleen and DLN. (C) Tfh kinetics between GFP+ and GFP  cells. Representative 

data, 3-4 experiments, n=3-4 each. 
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model that could distinguish between the effects of Ag versus those of the pro-

inflammatory cytokine milieu. To this end, I used the PR8 and PR8-OVAII viruses 

to generate hosts with inflammation alone and inflammation with cognate OT-II Ag. 

To ensure that these infections were similar in aspects other than OT-II peptide 

presentation, I used the IAb-NP311 325 tetramer to measure the NP311 325 specific 

endogenous CD4 T cell response during the course of PR8 and PR8-OVAII 

infection. I found that the CD4 T cell response followed a similar kinetics in both 

viruses (Figure 3.4A). This indicates that with respect to factors that govern the 

CD4 T cell response, these viruses are very similar. Additionally, both PR8 and 

PR8-OVAII infections generated a similar amount of lung pathology at 6 dpi (Figure 

3.4B, 3.4C). Finally, both viruses had similar viral titers at 6 dpi and had cleared 

infection by 14 dpi (Figure 3.4D). 

I next tested if Ag recognition during the effector phase had any effect on 

memory generation. For this, I performed a sequential adoptive transfer 

experiment outlined in Figure 3.5A. I first transferred naïve OT-II.Thy1.1+/  cells to 

B6 mice and infected with a sublethal dose of PR8-OVAII.  At 6 dpi donor OT-

II.Thy1.1+/  effector cells were isolated from the SLO of IAV infected hosts. These 

6 dpi effectors were fully activated, having undergone extensive division as 

evidenced by CFSE dilution, upregulation of CD44, CXCR3, and PD-1 and 

downregulation of CD62L (Figure 3.5B). Donor cells were transferred into 3 groups 

of recipients, also infected 6 days previously with PR8-OVAII (Ag and virus), PR8  
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Figure 3.4. PR8 and PR8-OVAII infections are similar. 
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Figure 3.4 PR8 and PR8-OVAII infections are similar. 

 

(A) B6 mice were infected with 0.3LD50 PR8-OVAII or PR8. The endogenous CD4 

T cell response in the lung was measured at 3, 7, and 14 dpt by staining with the 

IAb-NP311 325 tetramer. Data is representative, n=9, 3 experiments, mean ± SD. (B) 

B6 mice were infected with PR8-OVAII, PR8, or not infected as in (A). On 6 dpi, 

lungs were harvested and fixed in 10% buffered formalin. Pictures are shown of 

H&E stained lung sections at 10X magnification. (C) Pathology scoring of lung 

sections. (D) Viral titer of PR8-OVAII or PR8-infected lungs harvested at 6 dpi and 

14 dpi. Limit of detection determined by uninfected lung results. (A, B) Data is 

representative of 2 experiments, n=3 each, mean ± SD. (C, D) Data is pooled from 

2 experiments, n=3 each, mean ± SD. 
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(virus without Ag), or no virus (Figure 3.5A). I did not include lung effector T cells, 

since they are more likely to have recently encountered Ag (Figure 3.2).  

I enumerated donor cells in the lung, spleen, and draining lymph nodes 

(DLN) at 3, 7, and 14 days post-transfer (dpt). At 7 dpt, there were 60-200x more 

donor OT-II cells in the lung, 15-30X more in the spleen, and 80-400X more in the 

DLN of PR8-OVAII-infected hosts compared to PR8-infected or uninfected hosts 

which were equally poor in supporting donor cell recovery (Figure 3.5C, 3.5D). In 

PR8-OVAII hosts, donor OT-II numbers peaked at 3 dpt (9 dpi) and then contracted 

slowly over the subsequent 12 days (Figure 3.5E) mimicking the endogenous CD4 

T cell response (140) (Figure 1.2). However, in PR8-infected and uninfected hosts 

donor cells underwent a sharp, immediate contraction and by 14 dpt (20 dpi) were 

reduced to close to the limit of detection (Figure 3.5E). A highly significant 

difference in memory recovery was still seen at 53 dpt (Figure 3.5F). These results 

imply that re-exposure to Ag at or after 6 dpi is necessary to maximize the effector 

CD4 T cell response, prevent excessive contraction, and generate a long-lived 

memory population, and that infection without Ag has little if any impact on memory 

formation.  

To test if the ability of Ag recognition to promote memory is transient or 

instead persists to later time-points, I isolated donor OT-II effectors at 14 dpi 

instead of 6 dpi and transferred them to kinetically-matched PR8-OVAII, PR8, or 

uninfected hosts (Figure 3.6A). The presence of Ag in the hosts had little or no 

impact on recovery of these 14 dpi donor cells (Figure 3.6B) indicating that, at 14  
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Figure 3.5. Late Ag is required for memory CD4 T cell formation. 
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Figure 3.5. Late Ag is required for memory CD4 T cell formation. 
 

(A-F) 5x105 naïve OT-II.Nur77GFP.Thy1.1+/  were transferred to B6 hosts. Hosts 

were infected with PR8-OVAII. On the same day, groups of B6 mice were either 

infected with PR8-OVAII or PR8. On 6 dpi, donor OT-II cells were isolated from the 

spleen and DLN of infected mice. 2x106 6 dpi effectors were transferred to the 

PR8-OVAII, PR8, or uninfected hosts. (A) Experimental schematic. (B) 

Representative flow cytometry plots showing the phenotype of isolated 6 dpi OT-II 

effectors compared to naïve OT-II cells. (C) Representative flow cytometry plot 

gated on live cells at 7 dpt. (D) Quantification of donor cell recovery at 7 dpt. (E) 

Kinetics of donor cell recovery in the spleen, lung, and DLN. (F) Quantification of 

cells harvested 53 dpt. Data is representative, n=3-5 each, 3 experiments, mean 

± SD. 
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dpi, CD4 T cells are no longer require Ag recognition for memory formation. 

Interestingly, while 6 dpi effectors underwent extensive proliferation when 

transferred to PR8-OVAII infection matched hosts, 14 dpi effectors failed to 

proliferate in any host (Figure 3.6C). This is despite the presence of Ag 

presentation evidenced by the proliferation of naïve cells (306). I therefore 

postulate that late Ag recognition must occur within a limited time frame in order to 

promote sustained proliferation and survival into memory.  

 

Late Ag is Required for Effector and Memory Formation In Situ. 

To determine if this late requirement for Ag was seen during an intact 

response without the isolation and transfer of effectors, I tested if blocking MHC-

II, during the effector phase of the response, with the anti-IAb Ab (M5114) resulted 

in reduced effector and memory cell numbers. Initial attempts to block MHC-II in 

WT hosts were unsuccessful likely due to the abundance of MHC-II expression 

during IAV infection (data not shown). I therefore sought to establish a model with 

limited MHC-II expression that still promoted normal memory CD4 T cell formation. 

To this end, I compared CD4 memory T cell formation in B6 mice to CD11cTg.H2-

Ab1 /  (CD11cTg) mice. CD11cTg mice are MHC-II knockout mice with a transgene 

that expresses MHC-II under the CD11c promoter. Therefore, these mice only 

express MHC-II on CD11c+ cells (Figure 3.7A).  

To test if memory formation occurred normally in these mice, I transferred 

naïve OT-II cells into B6 or CD11cTg mice and infected with PR8-OVAII. Similar  
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Figure 3.6. 14 dpi effectors no longer require Ag to form memory. 
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Figure 3.6. 14 dpi effectors no longer require Ag to form memory. 

 

(A-B) 5x105 naïve OT-II.Nur77GFP.Thy1.1+/  were transferred to B6 hosts. Hosts 

were infected with PR8-OVAII. On the same day, groups of B6 mice were either 

infected with PR8-OVAII or PR8. On 14 dpi, donor OT-II cells were isolated from 

the spleen and DLN of infected mice. 2x106 14 dpi effectors were transferred to 

the PR8-OVAII, PR8, or uninfected hosts. (A) Experimental schematic. (B) Cell 

recovery at 7 dpt. (C) Comparison of CFSE dilution between 6 dpi effectors and 

14 dpi effectors 3 dpt into PR8-OVAII-infected, PR8-uninfected, or uninfected 

second hosts. Data is representative, n=3-4 each, 3 experiments, mean ± SD. 
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numbers of effectors were generated at 9 dpi and similar numbers of memory cells 

were generated in all organs at 28 dpi (Figure 3.7B). Memory cells generated in 

CD11cTg mice appeared to be functional, as a similar percentage produced IFNg 

and IL-2 following peptide re-stimulation ex vivo (Figure 3.7C). This finding 

indicates that MHC-II on the CD11c+ compartment is sufficient for memory 

formation. 

 Given that memory formation occurred normally in the CD11cTg mice, I 

used them as hosts for a MHC-II blocking experiment. I transferred naïve OT-II 

cells into CD11cTg hosts and infected with PR8-OVAII. Then I treated the mice 

with anti-MHC-II Ab (clone M5114) on day 4-7 of infection (Figure 3.8A). At 7 dpi, 

most MHC-II expression was significantly blocked especially in the SLO (Figure 

3.8B). Only a modest reduction was seen in the lung (Figure 3.8B). At 7 dpi, the 

number of donor cells was significantly reduced in all organs when MHC-II was 

blocked during the effector phase (Figure 3.8C). This is consistent with the 

immediate contraction seen in 6 dpi effectors transferred to hosts without Ag 

(Figure 3.5E). Importantly, priming did not appear to be affected as the donor cells 

in both mice produced similar levels of IFNg upon ex vivo re-stimulation (Figure 

3.8D). These findings suggest that responding CD4 effector T cells require Ag 

recognition during the effector phase for their full expansion. 

 At a memory time point (27-28 dpi), there was a significant reduction in 

memory cell formation in the lung and the spleen, however no reduction was seen 

in the DLN (Figure 3.8E). Interestingly, the memory cells formed in the DLN in the  
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Figure 3.7. MHC-II on CD11c+ cells is sufficient for CD4 memory T cell 
formation. 
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Figure 3.7. MHC-II on CD11c+ cells is sufficient for CD4 memory T cell 
formation. 
 

(A) Representative flow cytometry plot of MHC-II expression on CD11c+ and 

CD11c  cells in either WT B6 or CD11cTg mice in the spleen. (B-C) OT-II.Thy1.1+/  

naïve cells were transferred to WT or CD11cTg mice followed by infection with a 

sublethal dose of PR8-OVAII. (B) Donor cell recovery at 9 and 28 dpi in WT or 

CD11cTg mice in the lung, spleen, and DLN. (C) Representative flow cytometry 

plots showing IFNg and IL-2 production of donor cells in the spleen following 4 

hours of re-stimulation with aCD3 and aCD28 Ab at 28 dpi. Data is representative 

of 2 independent experiments, n=3-5 each, mean ± SEM. 
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Figure 3.8. Late MHC-II is required for CD4 memory T cell formation. 
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Figure 3.8. Late MHC-II is required for CD4 memory T cell formation. 

 

(A-F) 5x104 naïve OT-II.Thy1.1+/  cells were transferred to CD11cTg mice followed 

by sublethal PR8-OVAII infection. Mice were then treated with aMHC-II Ab (M5114) 

at 1mg/mouse/day administered via i.v. injection. (A) Experimental schematic. (B) 

Representative flow cytometry plots showing MHC-II staining in the lung, spleen, 

and DLN of CD11c+ cells in treated and untreated mice compared to CD11c  cells. 

(C) Donor cell recovery at 7 dpi. (D) IFNg production of donor cells at 7 dpi following 

4 hours of re-stimulation with aCD3 and aCD28 Ab. (E) Donor cell recovery at 27-

28 dpi. (F) CD127 expression of donor cells in the DLN of treated and untreated 

mice at 28 dpi. (B, D, F) Representative data of 2 independent experiments, n=3-

5 each, mean ± SD. (C, E) Pooled data, 2 experiments, n=3-5 each, mean ± SD. 
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absence of late Ag had reduced CD127 expression. This suggests that they may 

not be as fit to receive the IL-7 signals required for long term survival. The fact that 

no impact was seen in the DLN is surprising given that large effects were seen in 

all three organs in the transfer model. It is possible that MHC-II blocking was not 

complete enough to effect memory formation in the DLN. Alternatively, since 

CD11cTg mice have a deficiency in endogenous CD4 T cells, survival niches may 

be more available to donor CD4 T cells resulting in less competition and therefore 

less stringency in the requirements for memory formation.  However, the fact that 

blocking MHC-II during the effector phase largely mimicked the results of the 

transfer experiments provides evidence that the transfer model largely replicates 

what occurs during the course of the endogenous CD4 T cell response to IAV. 

 

Late Ag is Required for Full Expansion. 

Some studies suggest that effector CD4 T cell division is programmed by 

initial Ag encounter (247, 248), while others suggest that CD4 T cells do not 

undergo such “autopilot” proliferation after 2 days of stimulation during priming 

(249), but it remains unclear if they acquire this ability later during infection. To 

determine if division past 6 dpi depends on Ag recognition, I labeled isolated 6 dpi 

effectors with CFSE, transferred to infection-matched PR8-OVAII-infected, PR8-

infected or uninfected hosts (as in Figure 3.5A) and assayed dilution of CFSE at 3 

dpt. Only donor cells in hosts with Ag divided more than once (Figure 3.9A). To 

determine if this proliferation was an artifact of the transfer system, I used Ki67 
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staining to compare the proliferation of donor OT-II cells to that of endogenous IAb-

NP311 325-specific host cells in PR8-OVAII-infected hosts. I found that at 2 dpt there 

was a similar percentage of proliferating donor and hosts cells, and by 8 dpt neither 

were undergoing division, a pattern seen in the lung, spleen, and DLN (Figure 

3.9B, 3.9C).  Thus, division after 6 dpi is Ag-dependent, short-lived, and followed 

by the transition to non-dividing cells within a week. This also illustrates that the 

kinetics of proliferation of the transferred donor cells mimics that of the 

endogenous host CD4 T cell response to live IAV. 

Some have reported that late Ag promotes increased effector expansion but 

leads to exacerbated contraction, resulting in fewer or similar numbers of long-

lived memory cells (139, 263). To determine if the increased number of donor cells 

in the PR8-OVAII-infected hosts was the result of an extended expansion of short-

lived effectors, I assayed the size and phenotype of donor cells 2 and 8 dpt (Figure 

3.9D, 3.9E). At 2 dpt, the donor cells where large in size (Figure 3.5D), with a high 

level expression of effector markers ICOS and PD-1 (Figure 3.5E), but by 8 dpt 

they were small (Figure 3.9D) and had downregulated ICOS and PD-1 (Figure 

3.9E). Thus, by 8 dpt donor cells no longer had an effector phenotype and had 

mostly transitioned to resting cells. 

 

Short-term Ag Presentation at 6-8 dpi is Sufficient to Restore CD4 T cell 

Responses to IAV.  

Given that re-encounter with Ag was required at 6 dpi but not 14 dpi, I tested  
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Figure 3.9. Late Ag is required for full proliferation.  
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Figure 3.9. Late antigen is required for full proliferation.  

 

(A) 6 dpi effectors were isolated, stained with CFSE, and transferred to kinetically 

matched PR8-OVAII or PR8-infected or uninfected hosts as in Figure 3.5A. CFSE 

dilution was determined 3 dpt in the spleen, similar results seen in the lung. (B-E) 

Same experimental approach as in Figure 3.5A. Ki67 expression of donor OT-II 

and NP311 325 tetramer positive host cells was determined at indicated time points 

following donor cell transfer. (B) Representative flow cytometry plot shown of the 

spleen. (C) Quantification of Ki67 staining in the lung, spleen, and DLN at 2 dpt (8 

dpi) and 8 dpt (13 dpi). (D) Forward scatter and (E) ICOS and PD-1 expression of 

donor OT-II transferred to PR8-OVAII infected hosts either 2 or 8 dpt. 

Representative data, n=3-5 each, 2 independent experiments, mean ± SD. 
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whether a short exposure of donor cells to Ag was sufficient to induce memory 

formation. I transferred 6 dpi OT-II donor cells to PR8-infected mice and tested if 

intravenously injected bone marrow-derived dendritic cells pulsed with OVAII-

peptide (DC-OVAII) would be sufficient to restore memory formation. I found that 

these DC present Ag for no longer than 2 days after transfer in vivo by tracking 

their ability to induce proliferation of naïve OT-II cells (Figure 3.10A, 3.10B). 

Strikingly, the donor cells transferred to PR8-infected hosts that received DC-OVAII 

were recovered at similar levels as those transferred to PR8-OVAII-infected hosts 

out to 14 dpt (Figure 3.11A-3.11C). The kinetics of the donor cell response was 

very similar in the spleen and lung, with a slight reduction in the DLN of donor cells 

transferred to PR8-infected mice with DC-OVAII (Figure 3.11C).  

To examine if memory phenotype was altered when late Ag was provided 

by DC-OVAII compared to virally produced Ag, I measured CD127, CXCR3 and 

TCF-1 expression. In the lung and spleen, both CD127 and CXCR3 expression 

were similar between cells in the PR8-OVAII host and those in the PR8 host with 

DC-OVAII (Figure 3.11D, 3.11E). However, both markers were increased in the 

memory cells formed in the DLN of the PR8-infected host with DC-OVAII. Since 

fewer memory cells formed in these mice, it could be that the only cells that were 

able to survive were those with much higher memory cell markers. TCF-1, a 

transcription factor that has been shown to be required for memory cell formation 

in CD8 T cells (312), was similar between the two groups in all organs (Figure 

3.11F). This indicates that encounter with cognate Ag for 48 hours or less, starting  
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Figure 3.10. Transferred OVAII-DC only present Ag for 2 days in vivo. 
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Figure 3.10. Transferred OVAII-DC only present Ag for 2 days in vivo. 

 

(A) Experimental schematic. 0.5x105 OVAII-pulsed BMDC were transferred to 

uninfected hosts.  To determine how long BMDC present the OVAII-peptide, naïve 

OT-II cells were CFSE labelled and transferred either at the same time as OVAII-

pulsed BMDC (time 0), 2 days after OVAII-pulsed BMDC, or in the absence of 

OVAII-pulsed BMDC. (B) Activation and proliferation were determined by analyzing 

CD44 expression and CFSE dilution by flow cytometry. Data is representative of 

an experiment with n=5.  
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Figure 3.11. Short-term Ag is sufficient to restore the CD4 T cell response. 
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Figure 3.11. Short-term Ag is sufficient to restore the CD4 T cell response. 

 

(A-F) 5x105 naïve OT-II.Nur77GFP.Thy1.1+/  were transferred to B6 mice. Mice were 

infected with PR8-OVAII. At 6 dpi, donor OT-II cells were isolated as described in 

Figure 3.5A, and transferred to kinetically-matched PR8-OVAII or PR8 infected 

hosts along with 0.5x106 BMDCs either pulsed with 10µM OVAII-peptide or not. (A) 

Experimental schematic. (B) Donor cell recovery at 7 dpt. (C) Kinetics of cell 

recovery in the lung, spleen, and DLN. (D) CD127 (E) CXCR3 and (F) TCF-1 

expression at 14 dpt (20 dpi). Data is representative of 2 individual experiments, 

n=3-5 each. Mean ± SD. 
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at 6 dpi, was sufficient to prevent excessive contraction and promote memory 

formation. 

 

Short-term Ag Presentation at 6-8 dpi in the Absence of Viral Infection is 

Sufficient to Restore CD4 T cell Responses to IAV. 

To determine if viral infection itself is important in promoting memory 

formation, I tested whether adding DC-OVAII would similarly increase memory 

formation in uninfected hosts. 6 dpi effectors were transferred to PR8-infected 

hosts with DC-OVAII, uninfected hosts with DC-OVAII, or uninfected hosts with 

unpulsed DC (Figure 3.12A). Strikingly, DC-OVAII strongly promoted donor 

recovery to a similar extent in PR8-infected and uninfected hosts (Figure 3.12B). 

Since Ag presentation only lasts for 2 days in vivo, donor cells appeared to have 

a resting phenotype by 7 dpt, having downregulated effector molecules PD-1 and 

ICOS compared to 6 dpi effectors (Figure 3.12C). Additionally, CD127 and CXCR3 

expression was similar between donor cells in PR8-infected or uninfected hosts 

that received DC-OVAII (Figure 3.12D). TCF-1 was also similar between donor 

cells formed with and without viral infection (Figure 3.12E). Since the TCF-1 

expression appeared to be lower in the lung than the SLO, I included a comparison 

of host CD4+CD44h CD62Lh  memory cells to see if this level of TCF-1 expression 

was normal in lung memory cells. I found that host memory cells expressed similar 

levels of TCF-1 expression in both the lung and the spleen as did the donor OT-II 

cells (Figure 3.12E). This suggests that donor cells are phenotypically memory- 
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Figure 3.12. Short-term Ag can restore the CD4 T cell response in the 
absence of viral infection. 
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Figure 3.12. Short-term Ag can restore the CD4 T cell response in the 
absence of viral infection. 
 

(A-E) 6 dpi OT-II effectors were isolated from PR8-OVAII-infected mice and 

transferred to second hosts that were either infected with PR8 (6 dpi) or uninfected, 

along with BMDC that were pulsed with OVAII-peptide or not. (A) Experimental 

schematic. (B) Cell recovery was assayed 7 dpt. (C) PD-1 and ICOS expression 

of donor cells at 7 dpt in the spleen compared to 6 dpi OT-II effectors. (D) CD127 

and CXCR3 expression of donor cells in the spleen at 7 dpt. (E) TCF-1 expression 

of donor cells compared to host memory cells (CD44h CD62Lh ) and 6 dpi OT-II 

effectors. All data is representative, n=3-5 each, 2-3 experiments, mean ± SD. 
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like by 7 dpt. Since it is unclear to what extent TCF-1 is required for tissue resident 

memory formation, it may be that memory cells in the lung do not express as much 

TCF-1 as those in the SLO. These data, combined with Figure 3.5, in which there 

was no difference in memory formation following transfer of 6 dpi effectors into 

PR8-infected and uninfected hosts, suggests that at this time Ag-independent 

aspects of infection, such as induction of lung inflammatory cytokines, have no 

discernable impact on memory formation. However, the DC I used were activated, 

so infection-induced viral-sensing pathways may be needed to activate in situ 

APC.  

Although the use of DC-OVAII to mimic the late Ag presentation of a viral 

infection appeared to replicate the CD4 T cell response well, it is possible that 

providing activated DC pulsed with cognate peptide might provide a non-

physiological level of stimulation. To test this, I transferred 6 dpi effectors into 

infection matched PR8-OVAII-infected hosts, PR8-infected hosts with DC-OVAII, or 

uninfected hosts with DC-OVAII and measured cell recovery at 2 dpt. If the DC-

OVAII provided a much larger boost of Ag than did viral infection, one would expect 

that the donor cells in the hosts with DC-OVAII would be present at much greater 

numbers than the PR8-OVAII host. However, I found that there were similar 

numbers of donor cells present in all three hosts in the lung, spleen, and DLN 

indicating that DC-OVAII reliably replicate Ag presentation during viral infection 

(Figure 3.13). 
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Figure 3.13. DC-OVAII induces similar effector expansion as PR8-OVAII 
infection. 
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Figure 3.13. DC-OVAII induces similar effector expansion as PR8-OVAII 
infection. 
 

6 dpi effectors were transferred to PR8-OVAII-infected, PR8-infected hosts + DC-

OVAII, or uninfected hosts + DC-OVAII. Lung, spleen, and DLN were harvested at 

2 dpt. OT-II cell numbers are shown. Data is pooled from 2 independent 

experiments, n=7-8. Mean ± SD. 
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Short-term Ag is Sufficient to Restore Canonical Memory Formation. 

I further examined if memory formation occurred normally when late Ag was 

provided by short-lived DC-OVAII. I directly compared OT-II memory generated 

when naïve cells were transferred on day 0 and left in the same initial host (No Eff. 

Trans.) or when 6 dpi OT-II effectors were isolated and transferred (Eff. Trans.) to 

kinetically-matched PR8-OVAII-infected, PR8-infected with DC-OVAII, or 

uninfected hosts with DC-OVAII. To highlight the changes that distinguish memory 

cells from effectors, I included 6 dpi OT-II effectors for comparison.  

One functionally important characteristic of memory cells is their ability to 

produce multiple cytokines upon re-stimulation (2). I found that the memory cells 

generated following transfer (either to hosts with virally produced Ag or with short-

lived Ag provided by DC-OVAII) had regained the ability to produce multiple 

cytokines to a similar extent as those generated without transfer (Figure 3.14A, 

3.13B). Additionally, memory cells generated both with and without transfer had 

upregulated the critical memory marker CD127 that is necessary for their 

persistence (Figure 3.14C). Interestingly, when comparing memory cells 

generated in PR8-infected or uninfected hosts with late transfer of DC-OVAII, there 

was a decrease in CD127 expression in the uninfected hosts (Figure 3.14C). This 

suggests that although systemic virus-induced inflammatory cytokines may not be 

needed for memory cell numbers, function, or subset differentiation, it may be that 

virus-induced inflammatory cytokines are required for full CD127 upregulation.  
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Figure 3.14. Short-term Ag is sufficient to restore canonical memory 
formation. 
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Figure 3.14. Short-term Ag is sufficient to restore canonical memory 
formation. 
 

(A-C) Comparison of memory cells generated following transfer of naïve OT-II at 

day 0, or transfer of 6 dpi OT-II effectors into PR8-OVAII-infected, PR8-infected 

with DC-OVAII, or uninfected hosts with DC-OVAII. Memory cells harvested 14 dpt 

(20 dpi) were compared to 6 dpi effectors generated in vivo. (A) Representative 

flow cytometry plots showing intracellular cytokine staining of IFNg and TNFa 

following 4 hours of PMA + Ionomycin stimulation in memory or 6 dpi effector OT-

II cells. (B) Percentage of IFNg+TNFa+, IFNg+TNFa+IL-2+ producing cells in 

memory or effector OT-II populations in the spleen. (C) CD127 MFI of effectors 

and all memory groups in the lung, spleen, and DLN. Data is pooled, n=6-8, 2 

experiments, mean ± SD. 

  



	 99	

However, the equivalent recovery of memory cells argues that DC-OVAII exposure 

induced sufficient levels of CD127 for persistence.  

I next examined CD4 memory subset differentiation. The tissue resident 

memory (Trm) population identified by CD69 expression (5, 143) in the lung was 

similar with and without transfer (Figure 3.15A). IFNg production, an indicator of 

Th1 differentiation (313, 314), was also produced to a similar extent in all memory 

groups (Figure 3.15A). CXCR5 has been shown to mark a memory subset that is 

thought to be T follicular helper (Tfh) or central memory (Tcm)-like (148, 149). 

CXCR5 expression was also similar among all memory groups (Figure 3.15B). 

Although there appeared to be a slight increase in CXCR5 expression in groups 

receiving DC-OVAII in the spleen, this pattern was not found in the DLN. Therefore, 

the limited Ag provided by DC-OVAII at 6 dpi appears to be sufficient to generate 

canonical memory formation. 

 

Late Ag Promotes Survival of Responding CD4 T cells. 

After viral clearance, most effector T cells undergo apoptosis leading to 

contraction, while a cohort survives to become memory. This suggests that 

avoiding apoptosis is a key step in the transition to memory. I therefore propose 

that a cohort of effector CD4 T cells recognize Ag/APC which drives them to make 

and respond to IL-2, which drives their survival and supports their transition to 

memory (1). I evaluated several components of this hypothesis. 
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Figure 3.15. Short-term Ag is sufficient to restore memory differentiation. 
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Figure 3.15. Short-term Ag is sufficient to restore memory differentiation. 
 
 

(A, B) Comparison of memory cells generated following transfer of naïve OT-II at 

day 0, or transfer of 6 dpi OT-II effectors into PR8-OVAII-infected, PR8-infected 

with DC-OVAII, or uninfected hosts with DC-OVAII. Memory cells harvested 14 dpt 

(20 dpi) were compared to 6 dpi effectors generated in vivo. (A) Quantification of 

Trm via CD69 expression (Lung), Th1 via IFNg production (Spleen). (B) 

Quantification of Tfh/Tcm via CXCR5 expression of memory or effector OT-II cells 

in the lung, spleen, and DLN. Data is pooled, n=6-8, 2 experiments, mean ± SD.  
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To test if Ag recognition at the checkpoint promoted enhanced survival of 

effector CD4 T cells, I transferred naive OT-II.Nur77GFP cells to hosts and infected 

with PR8-OVAII. At 7 dpi, donors that had seen Ag during the first 1-2 days of the 

checkpoint are GFP+ while those that did not, are GFP . I analyzed donor CD4 T 

cells from the lung, spleen, and DLN directly ex vivo, gating on GFP+ and GFP  

cells. To detect cell death directly ex vivo I measured 7-Aminoactinomycin D (7-

AAD) staining (Figure 3.16). In each organ, 7-AAD staining was significantly 

greater in GFP  cells than in GFP+ cells, indicating that more effector cells that 

recognized Ag between 5-6 dpi survived than those that did not recently encounter 

Ag.  

To further dissect the mechanisms involved in this survival, I developed an 

in vivo to in vitro model to better control the signals that the effectors receive. I 

isolated 6 dpi OT-II effectors and co-cultured them with T-depleted splenocytes 

isolated from PR8-infected mice, a physiologically relevant APC, either with or 

without OVAII peptide. To mimic the short-term Ag presentation that occurs in vivo, 

I irradiated the APC, ensuring Ag presentation was restricted to the first 2 days of 

culture (Figure 3.17A) (245). As I found in vivo, in this in vitro model when I 

measured 7-AAD staining after 2 days in culture, I found that the cells that did not 

receive late Ag stimulation had significantly increased 7-AAD staining compared 

to the cells that received late Ag stimulation (Figure 3.17B).  

To test if this was true of polyclonal 6 dpi IAV-specific CD4 T cells, I modified 

the in vivo to in vitro model by isolating total CD4 T cells at 6 dpi and culturing with  
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Figure 3.16. Recent Ag encounter correlates with reduced cell death in vivo. 
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Figure 3.16. Recent Ag encounter correlates with reduced cell death in vivo. 
 

OT-II.Nur77GFP.Thy1.1+/  naïve T cells were transferred to B6 mice followed by 

infection with PR8-OVAII. Lung, spleen, and DLN were harvested 7 dpi. Left: 

Representative plot of GFP+ vs. GFP  OT-II.Nur77GFP cells.  Right: Quantification 

of 7-AAD+ of GFP+ vs. GFP  OT-II Nur77GFP cells on 7 dpi. Representative data, 2 

experiments, n=3-5 each, mean ± SD. 
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Figure 3.17. Short-term Ag at 6 dpi promotes cell survival. 
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Figure 3.17. Short-term Ag at 6 dpi promotes cell survival. 

 

(A,B) 5x105 naïve OT-II.Thy1.1+/  were transferred to B6 mice followed by infection 

with PR8-OVAII. At 6 dpi, OT-II effectors were isolated and co-cultured with 

irradiated Thy-depleted splenocytes from infection-matched PR8-infected mice 

either with or without OVAII-peptide. (A) Experimental schematic. (B) 7-AAD 

staining of OT-II cells after 2 days in culture. Left: Representative staining. Right: 

Quantification of 7-AAD+ cells. All data is representative, n=3-4 each, 3 

experiments, mean ± SD. 
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or without NP311 325 peptide using in vitro-activated Thy-depleted splenocytes as 

APC (Figure 3.18A). After 6 days of culture, I found that polyclonal effectors that 

were exposed to late Ag were present at much higher levels than those that were 

not (Figure 3.18B, 3.18C). Similar to OT-II cells, when I measured 7-AAD staining, 

I found that cells that were cultured in the absence of late Ag had much greater 

cell death compared to those that were cultured with late Ag (Figure 3.18D). 

Interestingly, the MFI of the tetramer bound to cells that received late Ag was much 

higher than that of the cells that did not receive late Ag (Figure 3.18E). Since 

tetramer binding can be used to measure TCR affinity (315), this suggests that the 

presence of late Ag may have introduced some selection pressure favoring clones 

that recognized IAb-NP311 325 with greater avidity for enhanced survival (Figure 

3.18E). However, I did not measure TCR expression which could also explain the 

differences in tetramer MFI. Although, after 6 days of culture, all cells are quiescent 

and are unlikely to have large differences in their TCR expression. Given that 

memory cells have increased functional avidity compared to effectors (304), it is 

an intriguing hypothesis that this late Ag might promote memory formation of 

effectors with high affinities. 

To determine how Ag dose during this late time point impacted survival, I 

titrated the concentration of OVAII peptide used to pulse in vitro-activated Thy-

depleted splenocytes and measured cell recovery after 6 days of culture. Cell 

recovery appeared to plateau around 0.01µM of peptide (Figure 3.19). Given that 

naïve cells are generally stimulated with 10µM, 6 dpi effectors are more sensitive  
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Figure 3.18. Late Ag promotes survival of polyclonal CD4 T cells. 
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Figure 3.18. Late Ag promotes survival of polyclonal CD4 T cells. 

 

(A-E) B6 were infected with a sublethal dose of PR8. At 6 dpi total CD4 T cells 

were isolated and co-cultured with irradiated APC (activated with LPS and dextran 

sulfate) with or without NP311 325 peptide and cultured for 6 days. (A) Experimental 

schematic. (B) Representative flow cytometry plots of IAb-NP311 325 tetramer 

staining of CD4+CD44h  cells. (C) Cell recovery of IAb-NP311 325 tetramer positive 

cells. (D) Percentage 7-AAD+ of NP311 325-specific cells. (E) Tetramer MFI of IAb-

NP311 325 tetramer positive cells with and without late Ag. Data is representative of 

2 experiments, n=3 each, mean ± SD. 
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Figure 3.19. Increased cell recovery with increased Ag concentration.  
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Figure 3.19. Increased cell recovery with increased Ag concentration.  

 

6 dpi OT-II.Thy1.1+/  effectors were isolated as in (Figure 3.17A) and cultured with 

irradiated, activated APC that were previously pulsed with varying concentrations 

of OVAII peptide for 1 hour at 37 degrees Celsius. Cell recovery was measured by 

flow cytometry after 6 days of culture. Data is from an experiment with n=3, mean 

± SD. 
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to lower doses of Ag. Additionally, it did not seem that higher concentrations of Ag 

were deleterious at this late time point (Figure 3.19). 

Next I tested if the pro-survival effects of late Ag were sustained in vitro. 

The differences in cell recovery between cells that received late Ag for just the first 

2 days of culture and those that had not were maintained out to 14 days of culture 

in both OT-II and polyclonal cells (Figure 3.20A, 3.20C). Additionally, although 

CD127 expression started out fairly similar between the two populations, the cells 

that received late Ag, for just the first 2 days of culture, gradually upregulated 

CD127, while those that did not receive late Ag failed to do so (Figure 3.20B, 

3.20D). The differences in CD127 expression were most apparent after 14 days of 

culture, consistent with the idea that unlike CD8 T cells, primary CD4 T cells 

upregulate CD127 as they transition to memory (205). Thus, instead of re-

encounter with Ag inducing widespread cell death, it promoted survival of in vivo-

generated 6 dpi effector T cells. 

 

Late Ag Promotes Survival of Responding CD4 T cells by Reducing Bim 

Expression. 

To determine what might be responsible for the survival of cells exposed to 

late Ag, I performed a microarray experiment on 6 dpi effectors cultured for 2 days 

either with aCD3 and aCD28 or without and compared the gene expression of 

those two groups with that of the population of 6 dpi effectors I plated. A few 

apoptosis-related genes were upregulated above the 2-fold cutoff in the media  
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Figure 3.20. Short-term Ag promotes long term survival and upregulation of 
CD127 in OT-II and polyclonal CD4 T cells. 
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Figure 3.20. Short-term Ag promotes long term survival and upregulation of 
CD127 in OT-II and polyclonal CD4 T cells. 
 

(A-B) 6 dpi OT-II.Thy1.1+/  effectors were isolated and co-cultured with irradiated 

APC with or without OVAII peptide as in (Figure 3.17A). Cell recovery (A) and 

CD127 expression (B) were measured after 1, 6, and 14 days of culture. (C-D) 

Total CD4 T cells were isolated at 6 dpi and co-cultured with irradiated APC with 

or without NP311 325 peptide as in (Figure 3.18A). Cell recovery (C) and CD127 

expression (D) were measured after 2, 6, and 14 days of culture. Data is 

representative of 2-3 experiments, n=3 each, mean ± SD. 
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alone group (Figure 3.21A). One of the genes that came up was Bcl2l11 (which 

encodes Bim), a pro-apoptotic protein known to mediate cell death during T cell 

contraction (171, 190). When I measured Bim protein expression following 2 days 

of culture with or without late Ag/APC, I found that cells cultured without Ag had 

significantly increased Bim expression (Figure 3.21B). 

I next tested if the reduced level of Bim seen in the Ag-exposed effectors 

was responsible for their increased survival. I co-transferred WT GFP Bcl2l11+/+ or 

Bcl2l11+/  [which express half the WT levels of Bim (187)] OT-II cells mixed at a 1:1 

ratio into B6.Thy1.1+/  mice and infected with PR8-OVAII. I harvested total effector 

CD4 T cells at 6 dpi and stimulated them ex vivo with APC with or without OVAII-

peptide (Figure 3.21C). Bcl2l11+/  OT-II and WT OT-II were still present at similar 

ratios at 6 dpi, indicating that Bcl2l11+/  OT-II were expanded normally (Figure 

3.21D). Additionally, both WT OT-II and Bcl2l11+/  OT-II produced similar levels of 

IFNg upon ex vivo re-stimulation at 6 dpi, suggesting that Bcl2l11+/  OT-II were 

activated and functional (Figure 3.21E).  

Next I measured cell recovery after 14 days of culture. I found that when no 

Ag was present in vitro, the Bcl2l11+/  OT-II cells survived much better than WT 

OT-II cells (Figure 3.21F), implicating high levels of Bim in the death and 

contraction of 6 dpi effectors in the absence of Ag. In contrast, in the presence of 

Ag, the Bcl2l11+/  OT-II and WT OT-II cells survived comparably (Figure 3.21F), 

consistent with the hypothesis that Ag acts to counteract apoptosis by causing Bim 

reduction. Indeed, in the absence of Ag, the Bcl2l11+/  OT-II cells expressed less  
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Figure 3.21. Survival following late Ag stimulation is mediated by Bim 
reduction.  
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Figure 3.21. Survival following late Ag stimulation is mediated by Bim 
reduction.  
 

(A) 6 dpi OT-II.Thy1.1+/  effectors were isolated as in (Figure 3.17A), and cultured 

with 1µg/ml aCD3 and 5µg/ml aCD28 or in media alone for 2 days. Live OT-

II.Thy1.1+/  cells were then sorted and RNA was isolated from the media alone 

group, the TCR stimulated group, and sorted 6 dpi effectors. Microarray analysis 

was then performed on each sample. Shown are the apoptosis-related genes that 

were increased over 2-fold in the media alone group over both the TCR and 6 dpi 

effector groups. (B) 6 dpi OT-II.Thy1.1+/  effectors were isolated and co-cultured 

with irradiated APC with or without OVAII peptide as in (Figure 3.17A). After 2 days 

in culture, Bim protein expression was measured by flow cytometry. (C-G) WT GFP 

or Bcl2l11+/  OT-II cells were mixed at a 1:1 ratio and co-transferred into 

B6.Thy1.1+/  mice followed by infection with PR8-OVAII. 6 dpi effectors were 

isolated and cultured with APC with and without OVAII peptide. (C) Experimental 

schematic. (D) Representative flow cytometry plot showing the percentage of WT 

and Bcl2l11+/  OT-II cells at 6 dpi, gated on donor cells. (E) IFNg production of 

donor WT and Bcl2l11+/  OT-II in the spleen at 6 dpi after 4 hours of aCD3 and 

aCD28 stimulation. (F) Relative recovery of WT or Bcl2l11+/  OT-II cells after 14 

days of culture. (G) Bim expression of WT and Bcl2l11+/  OT-II after 2 days of 

culture. (A) Data is pooled from 2 independent experiments. (B-G) Data is 

representative of 3 experiments, n=3 each, mean ± SD.  
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Bim than WT, but with Ag, Bim levels were similar (Figure 3.21G). This supports 

the hypothesis that Ag recognition by effectors at the checkpoint acts in part 

through reduction of Bim expression, which prevents apoptosis and promotes 

survival. 

 

IL-2 is Required for the Pro-survival Effects of Late Ag. 

Since our previous studies found that autocrine IL-2 was required for CD4 

effector survival (1), I tested whether Ag stimulation of 6 dpi effectors ex vivo would 

promote IL-2 production and if that IL-2 was necessary for enhanced survival. 

Indeed, the ex vivo effector CD4 T cells produced IL-2 only when cultured with 

Ag/APC (Figure 3.22A). I cultured 6 dpi effectors with APC, Ag/APC, or Ag/APC 

plus Ab specific for both CD25 (IL-2Ra) and CD122 (IL-2Rb) to block IL-2 function. 

The exposure to Ag/APC enhanced donor cell recovery after 6 days, and blocking 

IL-2 signaling reduced that recovery (Figure 3.22B). Notably, blocking IL-2 only 

slightly inhibited Ag/APC-induced proliferation (Figure 3.22C), but dramatically 

increased cell death as measured by 7-AAD staining (Figure 3.22D).    

Next, I stained Bim after 2 days of culture to see if IL-2 aided in the Bim 

reduction seen in groups receiving late Ag. I found that blocking IL-2 did 

significantly increase Bim expression (Figure 3.22E). Finally, given the role of IL-2 

signaling in promoting CD127 expression (1, 206), I measured CD127 expression 

after 14 days of culture. As expected, blocking IL-2 significantly reduced CD127 

expression following late Ag recognition (Figure 3.22F). Thus, in vitro Ag/APC 
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stimulation of 6 dpi effectors induces IL-2 production that prevents apoptosis and 

enhances the survival necessary for memory formation. Partial effects seen on cell 

recovery (Figure 3.22B), cell proliferation (Figure 3.22C), and upregulation of 

CD127 (Figure 3.22F) imply that factors beyond IL-2 also play a role in the effects 

of Ag seen at the late checkpoint. 

To determine if polyclonal cells are also dependent on IL-2 signaling for 

survival, I used the same experimental setup as in Figure 3.22 using total CD4 T 

cells isolated at 6 dpi. I found significantly reduced cell recovery after 6 days of 

culture in cells receiving late Ag where IL-2 signaling was blocked (Figure 3.23A, 

3.23B). As I saw with OT-II cells, cell recovery was not completely inhibited when 

IL-2 was blocked suggesting that other factors likely have a role in promoting 

survival at this late time point. Proliferation of polyclonal cells did seem to be a bit 

more impacted when IL-2 was blocked than I saw with OT-II cells (Figure 3.23C). 

Interestingly, in the absence of late Ag, polyclonal cells underwent significantly 

more proliferation than do OT-II cells in the absence of late Ag. Given that the 

polyclonal cells identified by tetramer are composed of clones of varying affinities 

they are likely not as synced as transgenic cells. Therefore, it is possible that some 

clones may be still undergoing some “autopilot” proliferation. Additionally, blocking 

IL-2 led to increased cell death, though not as robust as in OT-II cells (Figure 

3.23D).  

When I stained for Bim after 2 days of culture, I found that while late Ag 

stimulation did result in a reduction in Bim, the level of Bim expression was not  
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Figure 3.22. IL-2 is required for the pro-survival effects of late Ag.  

 

(A) 6 dpi OT-II.Thy1.1+/  effectors were isolated and co-cultured with irradiated 

APC with or without OVAII peptide as in (Figure 3.17A). (A) After 4 hours of culture 

IL-2 production was assayed by intracellular staining. (B-F) 6 dpi effectors were 

co-cultured with APC without Ag, with Ag, or with Ag plus aCD25 + aCD122. Cells 

were stained with CTV. (B) Cell recovery was determined after 6 days of culture. 

(C) Dilution of CTV after 2 days of culture. (D) 7-AAD+ after 14 days of culture. (E) 

Bim expression after 2 days of culture. (F) CD127 expression after 14 days of 

culture. All data is representative, n=3-4 each, 3 experiments, mean ± SD. 
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affected by blocking IL-2 (Figure 3.23E). Blocking IL-2, however, did substantially 

reduce CD127 expression after 14 days of culture (Figure 3.23F). This was in 

contrast to the OT-II results (Figure 3.22E) suggesting that in the more 

heterogeneous polyclonal population IL-2 may have less of a dominant role. The 

fact that blocking IL-2 did not completely diminish the increased cell survival 

following late Ag also suggests that other factors may play a role. 

 

Co-stimulation is Required for the Pro-survival Effects of Late Ag. 

Although naïve T cells require co-stimulation for effective stimulation, it was 

unclear if effector CD4 T cells had a similar requirement. To test this, I isolated 6 

dpi OT-II effectors and co-cultured with irradiated Thy1-depleted splenocytes from 

PR8-infected mice in the presence or absence of OVAII. I included conditions with 

OVAII and blocking Ab against CD80, CD86, CD70, 41BBL, OX40, CD40, or 

isotype controls. I found that after 6 days of culture, cell recovery was significantly 

reduced in groups where CD86 was blocked (Figure 3.24A). Blocking CD40 led to 

a consistent decrease in cell recovery across experiments but it did not reach 

statistical significance. Additionally, cell death indicated by 7-AAD staining was 

increased most substantially in the groups where CD86 was blocked, but it was 

also increased in groups where OX40L and CD40 were blocked (Figure 3.24B).  

 To further examine the role of co-stimulation during this late checkpoint, I 

isolated 6 dpi effectors and co-cultured with irradiated splenocytes from PR8-

infected mice in vitro with or without Ag, or with Ag plus CD80 and CD86 blocking  
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Figure 3.23. IL-2 is required for the pro-survival effects of late Ag in 
polyclonal cells.  
 

(A-F) Total CD4 T cells were isolated at 6 dpi and co-cultured with irradiated APC 

with or without NP311 325 peptide as in (Figure 3.18A) including a condition with Ag 

plus aCD25 + aCD122. Cells were stained with CFSE. (A) Representative flow 

cytometry plots of IAb- NP311 325 tetramer staining after 6 days of culture. (B) Cell 

recovery after 6 days of culture. (C) CFSE dilution of NP311 325-specific cells after 

6 days in culture. (D) Percentage of NP311 325-specific cells that were 7-AAD+ after 

6 days of culture. (E) Bim expression of NP311 325-specific cells after 6 days of 

culture. (F) CD127 expression of NP311 325-specific cells after 14 days of culture. 

Data is representative of 2 experiments, n=3 each, mean ± SD.  
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Figure 3.24. CD86 co-stimulation promotes survival during late Ag 
stimulation. 
 

(A, B) 6 dpi OT-II.Thy1.1+/  effectors were isolated and co-cultured with irradiated 

APC with or without OVAII peptide as in (Figure 3.17A), including conditions in 

which OVAII peptide was provided in addition to blocking Ab against CD80, CD86, 

CD70, 41BBL, OX40L, CD40 or isotype controls. Cells were cultured for 6 days. 

(A) Cell recovery is shown. (B) Cell death as measured by 7-AAD staining is 

shown. Data is representative of 2 experiments, n=3 each, mean ± SD.   
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Ab. I chose to block both CD80 and CD86 since both are ligands for CD28 co-

stimulation. Again, after 6 days of culture there was a significant reduction in cell 

recovery when CD28 co-stimulation was blocked (Figure 3.25A). This did not 

appear to be due to proliferation, as cells stimulated with Ag proliferated to a similar 

extent whether or not they received CD28 co-stimulation after 2 days of culture 

(Figure 3.25B). However, when CD28 co-stimulation was blocked, cell death was 

significantly increased as measured by 7-AAD staining (Figure 3.25C). Given that 

CD28 stimulation can promote IL-2 production, I stained for IL-2 after 4 hours of 

culture and found that blocking CD28 co-stimulation did result in a decrease in the 

amount of IL-2 produced (Figure 3.25D). Since blocking CD28 co-stimulation did 

not result in a complete abrogation of IL-2 production, it is likely that it has IL-2 

independent effects on survival. These findings suggest that co-stimulation at this 

late time has minimal if any impact on proliferation of effectors, but has a large 

impact on cell survival following late Ag stimulation.  

 

Ag Recognition at the Effector Phase Promotes the Immediate Expression of 

Molecules Linked to Memory Formation. 

Since Ag/APC exposure of 6 dpi effectors at the effector phase promotes 

the formation of a larger cohort of memory cells, as opposed to driving terminal 

differentiation, I tested if it also promoted expression of known memory-associated 

markers. I transferred OT-II.Nur77GFP.Thy1.1+/  naive cells to hosts, infected with 

PR8-OVAII, and harvested lung, spleen, and DLN at 5,7, and 9 dpi. I analyzed  
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Figure 3.25. CD86 co-stimulation promotes survival during late Ag 
stimulation and reduces IL-2 production. 
 

(A-D) 6 dpi OT-II.Thy1.1+/  effectors were isolated and co-cultured with irradiated 

APC with or without OVAII peptide as in (Figure 3.17A). A condition was included 

with OVAII peptide and aCD80 and aCD86 blocking Ab. Cells were stained with 

cell trace violet (CTV) (A) Cell recovery after 6 days of culture. (B) Dilution of CTV 

after 2 days of culture. (C) Cell death as measure by 7-AAD staining after 2 days 

of culture. (D) IL-2 production after 4 hours of culture. Data is representative of 3 

experiments, n=3 each, mean ± SD. 
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donor GFP+ cells (recent Ag exposure) vs. GFP  cells (no recent Ag exposure). I 

found that GFP+ cells expressed higher levels of CD25 at 5-7 dpi in the lung 

compared to GFP  cells (Figure 3.26A). The timing of this CD25 expression 

matches when IL-2 signals are required for CD4 memory formation (1). 

Additionally, CD27, a costimulatory molecule thought to be important for memory 

formation (1), was increased in GFP+ cells in the lung at 7 dpi (Figure 3.26B). Other 

effector markers such as PD-1 were not different between GFP+ and GFP  cells in 

the lung at any time point (Figure 3.26C). This confirms that both GFP+ and GFP  

effectors are all fully activated at these time points. Both CD25 and CD27 were 

also upregulated in GFP+ polyclonal NP311 325
+ cells in the lung at 7 dpi in Nur77GFP 

mice (Figure 3.26D). Although the CD25 upregulation was no longer apparent in 

OT-II cells by 7 dpi, there was still a difference in NP311 325
+ cells. By harvesting at 

7 dpi, I may have missed the peak of CD25 expression in the polyclonal population. 

However, at earlier time points tetramer detection of polyclonal IAV cells in the lung 

is very difficult. Further, I found that following 2 days of culture using the in vivo to 

in vitro system described in Figure 3.17 and Figure 3.18, CD25 expression was 

increased in both OT-II and polyclonal NP311 325
+ cells (Figure 3.26E). 

At 7 dpi, both GFP+ OT-II and polyclonal NP311 325
+ cells in lung, spleen and 

DLN also expressed higher levels of Bcl-6, a transcription factor implicated in 

memory formation (232, 235) (Figure 3.27A, 3.27C). In contrast, expression of T-

bet, a transcription factor thought to promote terminal differentiation (205, 285, 

286), was equivalently expressed between GFP+ and GFP  cells in both OT-II and  
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Figure 3.26. CD25 and CD27 upregulated in following late Ag encounter in 
the lung. 
 

(A-C) 5x105 naïve OT-II.Nur77GFP were transferred to B6 mice.  Mice were infected 

with PR8-OVAII. Lung cells were harvested at 5, 7, and 9 dpi. GFP+ and GFP  

donor cells were analyzed for CD25 expression (A), CD27 expression (B), and PD-

1 expression (C). (D) Nur77GFP mice were infected with PR8-OVAII. At 7 dpi, GFP+ 

and GFP  NP311 325-specific cells were analyzed for CD25 and CD27 expression in 

the lung. (E) 6 dpi OT-II.Thy1.1+/  effectors or total CD4 T cells were isolated and 

co-cultured with irradiated APC with or without OVAII or NP311 325 peptide 

respectively as in (Figure 3.17A, 3.18A). After 2 days of culture, CD25 expression 

was measured in OT-II (left) and NP311 325-specific cells (right). Data is 

representative of 3-4 experiments, n=3-5 each, mean ± SD. Data is representative 

of 3 experiments, n=3 each, mean ± SD. 
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polyclonal cells (Figure 3.27B, 3.27D). I confirmed the upregulation of Bcl-6 

following short-term late Ag presentation using the in vivo to in vitro model 

described in Figure 3.17 and Figure 3.18. After 2 days of culture, Ag/APC had 

induced both OT-II and NP311
+ cells to upregulate Bcl-6 compared to culture with 

APC alone (Figure 3.28A).  

Although, Bcl-6 expression is promoted by phosphorylated STAT3 

(pSTAT3) (316) and IL-2 is not generally thought of as a STAT3 activating 

cytokine, it has been shown to promote phosphorylation of STAT3 (317, 318). I 

therefore tested if blocking IL-2 effected Bcl-6 expression after 2 days of culture. I 

found that blocking IL-2 had no effect on Bcl-6 expression (Figure 3.28B). This 

finding is not surprising given their largely antagonistic nature (227, 235). In 

addition to promoting Bcl-6 expression, pSTAT3 also promotes CD8 memory T cell 

formation (316, 319). I tested if late Ag promoted STAT3 phosphorylation and 

found pSTAT3 was indeed substantially increased following Ag stimulation of 6 dpi 

effectors after 4 hours of culture (Figure 3.28C). IAV-specific CD4 T cells are 

known to produce high levels of IL-10 during the effector stage (4).  

Additionally, IL-10 is known to induce STAT3 phosphorylation (319, 320). 

Therefore, I tested if blocking IL-10 would have an effect on cell survival following 

late Ag. I found that while polyclonal CD4 T cells had reduced cell survival after 6 

days of culture when IL-10 was blocked, OT-II cells did not (Figure 3.28D, 3.28E). 

Since the polyclonal culture contained all CD4 T cells isolated at 6 dpi, while the 

OT-II culture contained only donor OT-II cells, it is likely that the polyclonal  
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Figure 3.27. Bcl-6 is upregulated following late Ag encounter in all organs in 
both OT-II and polyclonal cells. 
 

(A,B) 5x105 naïve OT-II.Nur77GFP were transferred to B6 mice.  Mice were infected 

with PR8-OVAII. Lung, spleen, and DLN were harvsted at 7 dpi. GFP+ and GFP  

donor OT-II cells were analyzed for Bcl-6 (A) and T-bet (B) expression. (C-D) 

Nur77GFP mice were infected with PR8-OVAII. At 7 dpi, GFP+ and GFP  NP311 325-

specific cells were analyzed for Bcl-6 (C) and T-bet (D) expression. Data is 

representative of 3-4 experiments, n=3-5 each, mean ± SD. 
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Figure 3.28. A Stat3 inducing cytokine may play a role in survival following 
late Ag stimulation. 
 

(A-E) 6 dpi OT-II.Thy1.1+/  effectors or total CD4 T cells were isolated and co-

cultured with irradiated APC with or without OVAII or NP311 325 peptide respectively 

as in (Figure 3.17A, 3.18A). (A) Bcl-6 expression was measured in OT-II (left) and 

NP311 325-specific cells (right) after 6 days of culture. (B) Bcl-6 expression was 

measured in NP311 325-specific cells after 2 days of culture without Ag, with Ag, and 

with Ag plus aCD25 and aCD122 blocking Ab. (C) Phosphorylated STAT3 staining 

of OT-II cells after 4 hours of culture. (D, E) Cell recovery of NP311 325-specific (D) 

or OT-II (E) cells after 6 days of culture without Ag, with Ag, and with Ag plus aIL-

10 blocking Ab. Data is representative of 3 experiments, n=3 each, mean ± SD. 
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population included more IL-10 producing cells, possibly including regulatory T 

cells (Treg). Therefore, more work is needed to fully elucidate the role of STAT3 

inducing cytokines on promoting the transition to memory following Ag recognition 

at the effector phase of the CD4 T cell response. These findings demonstrate that 

when Ag is recognized by fully activated effector cells, even in the presence of 

activated APC, the cells do not upregulate molecules associated with further 

terminal differentiation (T-bet or PD-1) but instead upregulate molecules that 

promote the transition to memory. 

To further investigate what genes are upregulated by 6 dpi effectors that re-

encounter Ag, I isolated 6 dpi OT-II effectors and cultured them either in media 

alone or in the presence of plate bound aCD3 and soluble aCD28 for 2 days. I 

then sorted live donor cells and isolated RNA from the group cultured in media 

alone (Media), the group cultured with aCD3 and aCD28 (TCR) and cells isolated 

at 6 dpi (6 dpi effectors) and performed a microarray experiment. I then identified 

genes that were upregulated by 2 fold or more in the TCR group compared to both 

the media group and 6 dpi effectors group. Since, in this case, the media alone 

group is not a true “control” group, I thought it was important to identify the changes 

as compared to the “time 0”, which in this experiment, is the freshly isolated 6 dpi 

effectors. This comparison ensured that the genes I identified were induced 

following late Ag stimulation and did not include genes that remained the same as 

6 dpi effectors but had decreased in the media group.  
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I then sorted genes meeting these criteria into various functional groups as 

defined using The Database for Annotation, Visualization and Integrated Discovery 

(DAVID), a tool provided by the National Institute of Allergy and Infectious 

Diseases (NIAID). To provide perspective on the gene induction following TCR 

stimulation of activated effectors compared to that of naïve cells, I included the fold 

induction seen when naïve T cells are stimulated with aCD3 and aCD28 for 2 days 

in culture, this data was generated by Rabenstein et al. and I obtained it from the 

GEO database (Table 3.1-3.4).  

Table 3.1 includes a list of mostly cytokines, chemokines, and various cell 

surface receptors. Many of these that were induced by 6 dpi effectors were also 

induced by naïve cells following TCR stimulation, including Ccl3, Ccl4, Socs2, Ifng, 

Il2ra, among others. However, there were a few genes uniquely upregulated in 6 

dpi effectors, including Il13, Il10, Il4, and Tnfrsf8. IL-13, although largely thought 

to be a Th2 cytokine, can be produced during Th1 and Th17 driven responses 

(321). In these settings, it was shown to have an anti-inflammatory effect on 

responding T cells (321). As mentioned previously, IL-10 induces STAT3 

phosphorylation and has recently been shown to act late during LCMV infection to 

promote memory CD8 T cell formation (322).  

IL-4 is a Tfh-associated cytokine, its induction following TCR stimulation of 

effectors is consistent with findings that show a skewing in the CD4 T cell response 

to a more Tfh phenotype following persistent Ag (311). Although this study used a 

model of chronic infection, the fact that Tfh express many markers of central 
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memory cells [including Bcl-6, TCF-1, and a greater reliance on oxidative 

phosphorylation (149, 239, 323)] leads to the intriguing possibility that late Ag 

recognition results in a skewing away from the Th1 effector path to a more 

memory-like Tfh path. Tnfrsf8 encodes CD30 which is a co-stimulatory molecule 

that binds a ligand expressed by lymphoid tissue inducer cells which are thought 

to be critical for CD4 T cell memory maintenance (324, 325).  

Many of the transcription factors and signaling molecules were upregulated 

similarly in 6 dpi effectors and naïve CD4 T cells (Table 3.2). However, Nedd4 and 

Pparg were uniquely upregulated in 6 dpi effectors. Nedd4 encodes a E3 ubiquitin 

ligase which has been shown to promote proliferation and IL-2 production in CD4 

T cells (326). Pparg is a fatty acid metabolite driven transcription factor which has 

been shown to suppress effector functions in T cells (327). Rbpj was upregulated 

to a greater extent in 6 dpi effectors than in naïve T cells. Rbpj is a Notch signaling 

protein that has been shown to be required for memory CD4 T cell survival (328). 

Of interest are the transcription factors that are largely upregulated in naïve T cells 

but not upregulated following TCR stimulation of 6 dpi effectors, these include 

Tbx21 (encodes T-bet) and Irf8, two genes implicated in effector differentiation 

(285, 286, 329). Surprisingly, Bcl6 did not reach the 2-fold cutoff. It may be that the 

microarray was not sensitive enough to detect the upregulation of Bcl-6 or that Bcl-

6 protein expression is regulated post-translationally in 6 dpi effectors receiving 

TCR stimulation. 
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6 dpi effectors upregulated a variety of adhesion molecules that were not 

similarly upregulated in naïve T cells (Table 3.3). Additionally, many regulators of 

metabolism were upregulated in 6 dpi effectors and not upregulated in naïve T 

cells (Table 3.4). One of which, Olr1, is upregulated by PPARg and is a receptor 

that mediates increased fatty acid uptake in adipocytes (330). Since memory cells 

transition to fatty acid oxidation as their primary energy source, it is possible that 

increased fatty acid uptake would be advantageous (331). 

Next, I identified genes that were upregulated following culture in media 

compared to the TCR group and 6 dpi effectors group (Table 3.5-3.8). These were 

also separated into functional groups. For consistency, the fold change column in 

these tables still indicates the fold change in TCR/media, therefore values in these 

tables are negative. Table 3.5 includes a list of cell cycle arrest and apoptosis 

genes that are upregulated in the media alone condition. None of these genes 

were similarly upregulated in the media alone condition of naïve cells. This is not 

surprising given that the 6 dpi effector media alone condition is composed of highly 

activated cells that had recently undergone several rounds of proliferation. 

Interestingly, quite a few cell cycle arrest genes were upregulated which is 

consistent with my findings and others that responding CD4 T cells need 

continuous TCR stimulation for continued proliferation (Figure 3.6C, 3.9A) (262). 

Additionally, many metabolism genes were upregulated in the media alone 

condition of 6 dpi effectors that were not similarly upregulated in the media 

condition of naïve T cells (Table 3.6). 
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Tables 3.1-3.4 Genes upregulated in TCR vs. Media and 6 dpi effectors  
 
 
6 dpi OT-II.Thy1.1+/  effectors were isolated as in (Figure 3.17A), and cultured with 

1µg/ml aCD3 and 5µg/ml aCD28 or in media alone for 2 days. Live OT-II.Thy1.1+/  

cells were then sorted and RNA was isolated from the media alone group, the TCR 

stimulated group, and sorted 6 dpi effectors. Microarray analysis was then 

performed on each sample. Genes that were upregulated in the TCR group by 

greater than 2-fold over both the media group and the 6 dpi effector group were 

identified. Genes were then categorized into different functional groups using the 

NIAID DAVID platform. The third column in every table reflects the fold change 

between the TCR group over the media group. The last column of every table 

includes the fold change seen when naïve CD4 T cells are cultured with aCD3 and 

aCD28 or in media alone for 2 days. This data was obtained from GEO database 

deposit of Rabenstein et al. (249). Data is pooled from 2 independent experiments. 
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Table 3.1 Genes upregulated in TCR vs. Media and 6 dpi effectors: 
Cytokines and Chemokines 
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Table 3.2 Genes upregulated in TCR vs. Media and 6 dpi effectors: 
Transcription factors / Signaling 
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Table 3.3 Genes upregulated in TCR vs. Media and 6 dpi effectors: 
Adhesion 
  

Table 3.4 Genes upregulated in TCR vs. Media and 6 dpi effectors:  
Metabolism 



	 146	

Many cytokines and cell surface receptors were similarly regulated in the 6 

dpi media condition and the naïve T cell media condition (Table 3.7). However, a 

few genes were uniquely upregulated in the media condition of 6 dpi effectors 

including CD96. CD96 encodes the T cell-activated increased late expression 

protein (Tactile), a protein found to inhibit IFNg production of NK cells (332). Among 

the transcription factors uniquely upregulated in the media condition of 6 dpi 

effectors is Zbtb20 a transcription factor shown to inhibit Foxo1 expression in lung 

cancer cells (333) (Table 3.8). Given the role of Foxo1 in promoting the transition 

to memory in CD8 T cells (334, 335), this may be a mechanism by which these 

cells fail to form memory. While this microarray provides some promising leads 

into which genes may play a role in promoting memory formation following late Ag 

recognition, more work is needed to fully expand upon these potential 

mechanisms. However, it is clear that Ag recognition at the effector stage differs 

from Ag recognition at the naïve stage. Instead of driving terminal differentiation, it 

may promote genes with a slightly suppressive effect, limiting T cell activation and 

driving a memory phenotype. 

 

Memory cells Receiving Short-term Late Ag have an Enhanced Memory 

Phenotype, Function, and Protective ability. 

In the transfer model (Figure 3.5), 6 dpi effector cells transferred to hosts 

without Ag underwent extensive contraction and were often at or below the limit of 

detection within 7 dpt. This low number of memory cells in hosts without Ag  
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Tables 3.5-3.8 Genes upregulated in Media vs. TCR and 6 dpi effectors  
 

6 dpi OT-II.Thy1.1+/  effectors were isolated as in (Figure 3.17A), and cultured with 

1µg/ml aCD3 and 5µg/ml aCD28 or in media alone for 2 days. Live OT-II.Thy1.1+/  

cells were then sorted and RNA was isolated from the media alone group, the TCR 

stimulated group, and sorted 6 dpi effectors. Microarray analysis was then 

performed on each sample. Genes that were upregulated in the media group by 

greater than 2-fold over both the TCR group and the 6 dpi effector group were 

identified. Genes were then categorized into different functional groups using the 

NIAID DAVID platform. The third column in every table reflects the fold change of 

the TCR group over the media group. The last column of every table includes the 

fold change seen when naïve CD4 T cells are cultured with aCD3 and aCD28 or 

in media alone for 2 days. This data was obtained from GEO database deposit of 

Rabenstein et al. (249). Data is pooled from 2 independent experiments. 
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Table 3.5 Genes upregulated in Media vs. TCR and 6 dpi effectors:   
Cell Cycle Arrest / Apoptosis 

Table 3.6 Genes upregulated in Media vs. TCR and 6 dpi effectors:  
Metabolism 
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Table 3.7 Genes upregulated in Media vs. TCR and 6 dpi effectors:   
Cytokines, Chemokines, Surface Receptors 

Table 3.8 Genes upregulated in Media vs. TCR and 6 dpi effectors:  
Transcription / Signaling 
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hampered my ability to determine the long-term phenotypic and functional 

differences between memory cells generated with or without Ag at the checkpoint. 

To increase the recovery of memory cells that develop without Ag at the 

checkpoint, I cultured in vivo-generated effector CD4 T cells with or without Ag for 

2 days in vitro (as in Figure 3.17), transferred equal numbers of each to uninfected 

mice, and allowed the cells to transition to memory for 7 days (Figure 3.29A). In 

vivo, 3 days without Ag is sufficient for effector CD4 T cells to become virtually 

identical to memory (203). I then assayed cell recovery, phenotype, and cytokine 

production.  

As expected, the donor cells that had been exposed to Ag/APC in vitro, 

formed a significantly larger memory population after transfer to uninfected hosts 

even though their numbers were equivalent at the time of transfer, with 18-fold 

more in lung and 5-fold more in spleen (Figure 3.29B). This indicates that the 2 

days of exposure to Ag was sufficient to confer significantly greater survival. 

Compared to APC without Ag, the donor effector cells exposed to Ag/APC in vitro, 

expressed increased levels of CD127 and CXCR3, a memory marker needed for 

homing and protective function (216, 226) (Figure 3.29C). Moreover, they secreted 

more IFNg and had a higher frequency of IFNg/TNFa double producers after re-

stimulation (Figure 3.29D, 3.29E). These results indicate that even short-term Ag 

recognition at 6 dpi results in both a much larger, and a functionally superior 

memory population.  
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Figure 3.29. Short-term late Ag promotes enhanced memory phenotype and 
function. 
 

(A-E) 6 dpt OT-II in vivo-generated effectors and PR8-activated APC were co-

cultured ex vivo as described in (Figure 3.17A). After 2 days of culture, live cells 

were isolated using Lympholyte and 2x106 cells were transferred to uninfected B6 

mice. (A) Experimental schematic. (B) Cell recovery was determined 7 dpt in the 

lung and the spleen of host mice. (C) CD127 and CXCR3 expression was assayed 

in the spleen at 7 dpt. (D) Representative flow cytometry plots of intracellular 

cytokine staining of cells harvested from the spleen 7 dpt and re-stimulated for 4 

hours with PMA + Ionomycin. (E) Percentage of IFNg+ and IFNg+TNFa+ donor cells. 

Representative data, n=3-4 each, 3 experiments, mean ± SD. 
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To evaluate if the differences in memory formation with or without Ag at the 

checkpoint would lead to differences in protection against a lethal challenge of IAV, 

I transferred 6 dpi OT-II effectors into uninfected B6 mice along with OVAII-pulsed 

or un-pulsed APC. To account for a potential host naïve CD4 T cell response, I 

included a group of mice that received OVAII-pulsed APC without transfer of 6 dpi 

effectors. I also included a group that received naïve OT-II cells to control for the 

possibility that a similar number of naïve donor OT-II could provide enhanced 

protection. Hosts were rested for 2-3 weeks to ensure memory generation, and 

then challenged with a lethal dose of PR8-OVAII (Figure 3.30A). 

Despite the fact that the only memory cells in the hosts were the donor 6 

dpi effectors, the hosts that received effectors plus APC-OVAII were mostly 

protected against lethal infection (12/15), whereas those that received naïve OT-

II, OT-II 6 dpi effectors without Ag, or APC-OVAII alone were largely unprotected 

(Figure 3.30B, 3.30C). Thus, providing effectors with only short-term in vivo Ag 

stimulation at the checkpoint drove the formation of protective memory cells. Since 

the hosts were not previously infected, I conclude that short-term Ag stimulation 

by activated APC, without any viral infection, is sufficient to promote the transition 

of 6 dpi effectors to become protective memory. 

 

Late Ag Enhances Memory Formation in a Cold-adapted Vaccination Model. 

My findings establish a checkpoint that occurs at 6-8 dpi following IAV 

infection where Ag recognition drives functional memory CD4 T cell formation.  
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Figure 3.30. Short-term late Ag is required for the formation of a protective 
memory CD4 T cell response. 
 

(A-C) 6 dpi OT-II effector cells were generated in vivo as described in (Figure 3.5A) 

and transferred to uninfected mice along with either OVAII-pulsed APC (APC-

OVAII) or unpulsed APC. One group of mice received OVAII-pulsed APC alone (no 

effectors). Another group received 5x105 naïve OT-II cells. After 2-3 weeks, hosts 

were challenged with 2LD50 PR8-OVAII. (A) Experimental schematic. (B) Weight 

loss curves. (C) The survival of mice was plotted. Pooled data, n=14-15, 3 

experiments. Significance for Figure 3.30C was determined using the Log-rank 

(Mantel-Cox) test. 

  



	 156	

Since many standard vaccinations likely do not induce the persistent levels of Ag 

that live virus does, I postulate that memory CD4 T cell formation following 

vaccination is normally constrained by a lack of Ag at the checkpoint. Therefore, 

the addition of Ag/APC at this time may enhance vaccine-induced memory. To test 

this premise, I immunized with a live attenuated, cold-adapted (ca) influenza 

vaccine (ca.IAV). Replication of ca.IAV is limited to the upper respiratory tract, 

potentially limiting the duration of Ag presentation. The ca.IAV vaccine LAIV has 

been shown to induce enhanced T cell responses when compared to inactivated 

vaccines suggesting that it had the greatest potential for persisting Ag (18). To 

determine if Ag persisted into the effector phase following ca.IAV inoculation, I 

immunized Nur77GFP mice with ca.A/Alaska/6/77CR29 (ca.Alaska) and measured 

GFP expression in immunization-induced effector T cells. Previous work in our lab 

showed that ca.Alaska induces a strong heterosubtypic response to PR8 and that 

the NP311 325 is a dominant CD4 epitope shared between these two viruses (83). At 

7 dpi, effector NP311 325-specific cells expressed no GFP after ca.Alaska 

immunization indicating no recent Ag recognition (Figure 3.31), while in mice 

infected with PR8, or a non-ca H3N2 strain (A/Philippines/2/82/x-79), a cohort of 

NP311 325
+ cells were GFP+, indicating recent Ag recognition in the live infections. 

 To determine if the addition of Ag during the checkpoint could boost memory 

following ca.Alaska immunization, I added NP311 325-pulsed APC at 6 dpi to 

ca.Alaska-immunized mice and assayed memory CD4 T cell formation by 

enumerating NP311 325 tetramer positive cells after 33-44 dpi (Figure 3.32A). I found  
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Figure 3.31. Cold-adapted virus fails to present Ag during the effector phase 
of the response. 
 

Nur77GFP expression of CD4+CD44h  NP311 325 tetramer+ cells or CD4+CD44 o naïve 

cells in the lung on day 7 following PR8 (H1N1) infection, Philippines (H3N2) 

infection, or ca.Alaska (H3N2) immunization. Representative data, 2-3 

experiments, n=3-4 mean ± SD. 
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significantly more NP311 325
+ CD4 T cells in the lung and spleen, although there was 

no difference in the number of donors found in the DLN (Figure 3.32B). This finding 

suggests that the memory checkpoint exists for effectors generated by attenuated 

as well as live WT influenza infection. Additionally, it shows that the introduction of 

Ag/APC at the checkpoint can promote effector CD4 T cells induced by attenuated 

virus immunization to form more memory without the need for persisting live virus. 
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Figure 3.32. Memory CD4 T cell formation is enhanced following cold-
adapted IAV vaccination with the addition of short-term Ag at 6 dpi.  
 

(A, B) B6 mice were immunized with 2500 TCID50 ca.Alaska intranasally. 6 days 

later, 2x106 NP311 325-pulsed APC were added via intravenous injection. (A) 

Experimental schematic. (B) Quantification of NP311 325 tetramer+ memory 

CD4+CD44h  T cells in the lung, spleen, and DLN 33-44 days following 

immunization. Representative FACS plots shown, 2-4 independent experiments. 

Pooled cell recovery data, 3 independent experiments, n=4-5 each, mean ± SD. 
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CHAPTER IV: DISCUSSION 
 
 
Overview 
 

The mechanisms that govern the selection of memory cells from the effector 

population remain unclear. Some have proposed that the initial interaction with 

cognate Ag during priming programs cells toward either effector or memory 

differentiation (283, 284, 288–290). While these models certainly inform the 

heterogeneity seen at the effector stage of the T cell response, they do not exclude 

the possibility that events occurring at later stages may influence memory T cell 

formation.  

Studies from our laboratory and others suggest that signals occurring at the 

effector stage can enhance memory T cell formation (1, 138, 139, 211). McKinstry 

et al. demonstrated that CD4 T cells required autocrine IL-2 signals between 5-7 

dpi to form memory (1). Given that Ag recognition is a main driver of IL-2 production 

in CD4 T cells, the aim of my thesis project was to determine if Ag at this time point 

was also required for memory formation. While much work has been done 

examining the role of Ag in memory CD4 T cell formation, virtually all studies have 

focused on the priming phase of the response (260, 305). This was likely a result 

of the pervasive concept of AICD (151, 159, 160) and a few findings that 

demonstrated that prolonged Ag presentation can be deleterious to memory 

formation (246, 263).     

This thesis work demonstrates that CD4 T cells require Ag recognition 

during the effector phase of the response to continue undergoing proliferation and 
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to form a functional and protective memory population. These findings suggest that 

CD4 memory T cell population size and function is not predetermined at the 

priming stage. In fact, it requires additional signals including TCR stimulation, IL-2 

signaling, and co-stimulation during the effector phase immediately preceding the 

onset of contraction. I found that, at this time, these signals promoted a 

transcriptional program of memory-associated genes including CD25 and Bcl-6. 

The long-term effects of Ag recognition at this time point included upregulation of 

the memory markers CD127 and CXCR3, as well as the formation of more multiple 

cytokine producing and protective memory CD4 T cells (Figure 4.1). Further, I 

found that short-term Ag stimulation without systemic inflammatory cytokines at 

this late time point were sufficient to fulfill the requirements of memory formation 

which may have important implications for vaccine design. 

 

Ag Recognition during the Course of an Immune Response. 

The finding that Ag recognition during the course of the effector response 

was limited provides great insight into how Ag may shape the ongoing immune 

response. The Nur77GFP experiments clearly demonstrate that at 3 dpi virtually all 

the cells in the DLN and spleen had recently encountered Ag and were therefore 

GFP+ following isolation (Figure 3.2B). Just 2 days later, the vast majority of T cells 

in the SLO were GFP  indicating that they likely did not receive additional TCR 

stimulation after that initial signal at 3 dpi. These GFP  cells were all CD44h  

indicating that they were not “late comers” and were sufficiently primed. In  
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Figure 4.1. Late Ag Checkpoint model for memory formation. 

 

Model summarizing the central findings presented in this thesis. I find that 

responding CD4 T cells require Ag, IL-2, and co-stimulation during the effector 

stage of the response to become memory. Late Ag increases Bcl-6, CD25, and 

phosphorylated STAT3, and decreases Bim expression. Memory cells generated 

with late Ag recognition have increased CD127 and CXCR3 expression, increased 

multiple cytokine producing ability, and protective function. 
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fact, studies have demonstrated that the recruitment of Ag-specific cells during 

priming is quite efficient (336). This pattern of GFP expression is consistent with 

the model of priming in which T cells engage in prolonged contact with Ag/APC, 

followed by a phase of Ag-independent proliferation (245, 266–268). However, 

studies suggest that CD4 T cells were capable of and even required additional Ag 

contacts during this phase of proliferation (269, 272). Given that some cells do 

express GFP at 5 dpi, these additional contacts are likely to occur but they do not 

appear to be the norm. A caveat of these early time points is that since polyclonal 

cells are present a such low numbers early during infection, I was unable to confirm 

a similar pattern of GFP expression in endogenous cells at this time. However, the 

microscopy studies detailing the phases of T cell priming, including the studies 

demonstrating a CD4 T cell requirement for additional contacts were also 

conducted with transgenic T cells (266–269, 337).  

Another interesting finding of the Nur77GFP studies was that many of the 

responding CD4 T cells in the lung of infected mice do not re-encounter Ag 

between 5-9 dpi. This is despite the continued presence of Ag at these time points 

(306). Additionally, there is still a significant amount of virus present in the lung 

between 5-9 dpi (Figure 1.2). These findings are in agreement with a two-photon 

microscopy study in which in vitro-generated rested effectors were transferred into 

PR8-OVAII-infected mice at 7 dpi and 24 hours later, around 35% of transferred 

cells were arrested indicating Ag recognition (307). It is likely that the immune 

system generates a CD4 T cell response far bigger than what is needed and since 
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CD4 T cell cytokine production appears to be focused around sites of significant 

Ag burden (307), the immunopathology costs of doing so are limited.   

Additionally, the phenomenon of CD4 T cells not recognizing Ag despite its 

presence has been observed with microscopy studies. These studies found that 

PD-1 interactions promoted T cell mobility which may limit their ability to receive 

strong TCR signals (338, 339). Effector CD4 T cells in the lung express high levels 

of PD-1, so this may be a relevant mechanism by which effectors receive limited 

TCR signals. Others have found that activated CD4 T cells undergo a programmed 

downregulation of TCR beginning at the peak of the T cell response (340) which 

may explain why there is so little Ag recognition between 9-14 dpi. This may be a 

mechanism to limit immunopathology and shut down the response even in the 

presence of continuing Ag presentation (306). 

The Nur77GFP kinetics experiment in Figure 3.2 also demonstrates that a 

few responding CD4 T cells still recognize Ag at 14 dpi. Despite this, 14 dpi 

effectors do not proliferate either following transfer (Figure 3.6C) or in situ (140). 

In Brdu labelling studies, Roman et al. demonstrated that proliferation in CD4 T 

cells during IAV infection ceases around 12 dpi (findings I have confirmed in my 

experiments) especially in the SLO which is where the most Ag recognition is 

occurring at this time (Figure 3.2). It may be interesting to determine the context of 

this Ag presentation, if it is occurring in germinal centers it may be that T follicular 

regulatory cells inhibit proliferation of these cells (341, 342).  Microscopy studies 

identifying where effectors cells localize late in the response compared to 
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transferred naïve cells might be informative in discovering any potential niche or 

migration-dependent regulation of Ag recognition of responding T cells during 

contraction. 

 

Short-term Ag Requirement. 

 Previous work from our lab has demonstrated that responding CD4 T cells 

require IL-2 signals between 5-7 dpi to form memory. Similarly, the transfer 

experiments using short-term Ag/APC at 6 dpi have demonstrated that Ag 

presentation during this limited window is sufficient for optimal memory formation 

(Figure 3.11, 3.12, and 3.14). Additionally, if 6 dpi effectors do not receive TCR 

signals at this time they undergo a sharp contraction (Figure 3.5E) and the memory 

cells that do form have limited functional ability (Figure 3.29D, 3.29E). Ag 

recognition at the effector phase appears to be critical for many aspects of memory 

T cell formation. It downregulates Bim expression promoting cell survival (Figure 

3.21). It induces CD25 expression which enhances the ability of cells to receive IL-

2 signals (Figure 3.26). It induces memory-associated molecules CD27 (Figure 

3.26B) and Bcl-6 (Figure 3.27A, 3.27C) which may play a critical role in the 

necessary metabolic switch for a successful transition to memory (235). It 

programs the gradual upregulation of memory markers CD127 and CXCR3 (Figure 

3.20B, 3.20D, 3.29C). Finally, it programs their ability to become memory with 

multi-cytokine producing potential (Figure 3.29D, 3.29E). Therefore, 6-8 dpi is 



	 169	

certainly a critical time in the formation of the heterogeneous, multi-functional 

memory population that is formed following influenza infection. 

 Future work may address whether or not this time point is similarly important 

during other viral infections. It is likely that acute infections that exhibit a similar T 

cell kinetics may be governed by the same principles as influenza infection. 

Alternatively, different inflammatory environments present during priming may alter 

how effectors interpret subsequent Ag encounter. The findings in this thesis 

demonstrate that PR8 infection generates CD4 effectors that are highly activated 

and will undergo apoptosis if they do not receive Ag stimulation at the effector 

phase. It may be that priming conditions that do not drive such extensive 

differentiation may not generate effectors that have such a requirement. However, 

the fact that effectors generated with cold-adapted virus also formed an enhanced 

memory population with the addition of Ag at 6 dpi suggests that this phenomenon 

is not restricted to the highly differentiated effectors generated by live viral 

infection. However, the results seen in the cold-adapted model were not as 

impressive as those seen with effectors generated by live viral infection, 

suggesting that either these cells were less dependent on the late Ag checkpoint 

or the administration of Ag was not as efficient at reaching effector cells as it is in 

the transfer models. Given that the numbers of memory cells generated was fairly 

low in the cold-adapted model (Figure 3.32B), it is likely that the Ag/APC were not 

able to reach enough NP311 325-specific effector cells to generate a robust memory 

population.  
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 This thesis does not examine at what point Ag recognition becomes 

deleterious. CD4 T cells are critical for controlling chronic viral infections (343, 344) 

and studies suggest that CD4 T cell exhaustion is quite different from CD8 T cell 

exhaustion including both the loss and gain of effector function (345). During 

chronic viral infection, CD4 T cells appear to skew away from a Th1 phenotype to 

a Tfh phenotype (311, 346). However, in a mouse model with induced Ag 

presentation on DC, continuous Ag stimulation for 10 days resulted in permanent 

loss of IL-2 and TNFa production (300). Interestingly, in this study survival was not 

affected by continuous Ag signaling again contradicting a potential role for AICD 

in regulating the contraction of CD4 T cells (300). It is therefore unclear to what 

extent prolonged TCR stimulation drives CD4 T cell dysfunction. 

 There is a precedent for late Ag having opposing effects at different times 

during an immune response. A CD8 T cell study found that following immunization 

with peptide and adjuvant, addition of Ag at 4 dpi prevented apoptosis, whereas 

addition of Ag at 7 dpi increased apoptosis. In this study, the peak of the response 

occurred at 5 dpi (3-4 days earlier than in the IAV model) (177) (Figure 1.2). 

Therefore, it is possible that Ag recognition during the contraction phase may have 

a negative impact on responding T cells. Whether or not this is the case would 

depend on several factors. For instance, if the Ag stimulation is continuous or 

includes intermittent breaks, if the Ag is provided exogenously or from an 

endogenous persisting source, if the Ag is administered in the context of 
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inflammatory cytokines or not are all likely to play a role on how long Ag is 

beneficial to responding T cells.  

 Another question is where is this critical Ag recognition occurring. As the 

Nur77GFP studies demonstrate, a substantial number of GFP+ cells are present at 

this time in both the lung and the SLO (Figure 3.2E). However, since the GFP 

signal lasts for about 24 hours, it cannot be ruled out that cells see Ag in one 

location and quickly migrate to another. Ballesteros-Tato et al. found that CD11bh  

DC peak around 5-7 dpi in the DLN, they suggest the DLN is the dominant site for 

late Ag recognition (137). On the other hand, microscopy studies have shown CD4 

T cell migration arrest around sites of high Ag density in the lungs of PR8-infected 

mice (307). It is likely that Ag recognition occurs in both the lung and the SLO 

during the effector phase of the response and each contribute to the memory 

population as a whole. An intriguing hypothesis is that Ag recognition in the SLO 

promotes a central memory or Tfh-like memory population, while Ag recognition in 

the lung promotes Trm and Th1-like memory. 

 

Memory cell Selection 

A requirement of Ag recognition at the effector stage to generate CD4 T cell 

memory makes teleological sense. First, it would ensure that a substantial memory 

population is only formed when Ag, indicating a continuing threat, persists. If the 

pathogen were rapidly cleared, the generation of T cell memory would be a waste 

of resources. Second, a late Ag-dependent checkpoint may serve to select T cells 
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with high affinity to epitopes that continue to be presented late in the response. 

Studies have shown that memory CD4 T cells have greater functional avidity than 

do the CD4 effectors present at the peak of the response (304), suggesting that 

the cells that become memory include effector cells with the highest TCR avidity. 

Finally, the additional round of Ag-dependent selection may help select a memory 

pool with greater multi-functionality. Many recent studies have demonstrated that 

memory CD4 T cells retain a significant level of the differentiation acquired during 

the effector phase (146, 148, 149, 209). An intriguing hypothesis is that, via the 

memory checkpoint described here, this late Ag interaction may be responsible for 

the selection and formation of more specialized subsets of effectors that become 

memory cells particularly tailored to combat the given pathogen upon re-

encounter. 

The memory cell population only consists of only about ~10% of the effector 

cell population. Therefore, any model proposing a mechanism for selecting 

memory cells must describe how that model could account for such a narrow 

selection of cells to become memory. I believe the proposed model provides a 

mechanism for the selection of a limited number of effector cells to become 

memory (Figure 4.2). First, the Nur77GFP studies demonstrated that Ag recognition 

by effectors is limited (Figure 3.2). Second, experiments presented in this thesis 

(Figure 3.22, 3.23) as well as in a previous publication (1), demonstrate that 

autocrine IL-2 signals are required for the pro-survival effects of late Ag and the 

upregulation of CD127. Given that as effector cells differentiate they can lose the 
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ability to produce IL-2 (4, 347), this may only allow a percentage of the cells that 

re-encounter Ag to go on to form memory. The role of T cell intrinsic factors like 

this are where some of the influences of priming may come into play. While the 

ability to make IL-2 is likely one limiting factor, there may be others that would 

prohibit cells that have undergone extensive differentiation from receiving the pro-

survival, memory programming benefit of late Ag recognition. Finally, the 

requirement for co-stimulation, CD28 in the current work (Figure 3.24, 3.25) and 

CD27 found in our previous study (1), suggests that in order for late Ag recognition 

to promote memory formation it likely must be presented by a professional 

activated APC. Since lung epithelial cells upregulate MHC-II following IAV infection 

(14), it is unclear whether or not all Ag recognition is presented by a professional, 

activated APC. Therefore, it is feasible that via the mechanism described here, late 

Ag recognition could act to select high affinity clones against dominant pathogen 

epitopes that have retained their functional capacity (Figure 4.2).  

 

Memory-associated Genes 

 The experiments in this thesis demonstrate that Ag recognition at the 

memory checkpoint initiates a program of memory-associated changes that results 

in a larger, long-lived memory population with increased CD127 and CXCR3 

expression as well as increased cytokine production. Our Nur77GFP experiments 

highlight that the early signaling events that occur following Ag recognition at the 

checkpoint include an upregulation of CD25, Bcl-6, and pSTAT3. CD25 expression  
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Figure 4.2. Model for selective memory formation of CD4 effector T cells. 

 

This model describes how a late Ag checkpoint may result in the selection of only 

a few effector CD4 T cells to become memory. First, only a small percentage of 

cells will re-encounter Ag at the effector stage. Second, of those that recognize 

Ag, some may be extensively differentiated and therefore unable to produce IL-2, 

or otherwise unable to respond positively to Ag. Finally, out of the cells that 

recognize Ag, and are not terminally differentiated, only a limited number may have 

received co-stimulation in addition to TCR stimulation. This model provides at least 

three levels of selection, and therefore may severely limit the number of effector 

cells that can become memory.  
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is generally heterogeneous at the effector time point and one recent study found 

that CD25h  effector T cells present late in the response preferentially form memory 

(210). Increased expression of the IL-2 receptor late in the response may ensure 

the cells that encountered late Ag would effectively use the autocrine IL-2 required 

for memory formation (1). Bcl-6 was recently shown to promote the metabolic 

switch required for memory formation (235). Ag at the memory checkpoint may 

therefore serve to selectively upregulate Bcl-6 late in the response as cells 

destined to become memory must transition to a self-renewing, resting population. 

The regulatory effect of Bcl-6 in Th1 cells has been shown to reflect the relative 

levels of Bcl-6 and T-bet (230). Since no significant increase in T-bet occurred 

following late Ag stimulation, even a modest increase in Bcl-6 expression may tip 

the balance in favor of a Bcl-6 mediated gene expression program. The main 

known promoter of Bcl-6 expression is pSTAT3, which was also induced following 

late Ag recognition. Future work will determine whether TCR stimulation alone 

promotes Bcl-6 transcription or if a STAT3-inducing cytokine either produced by 

the responding T cell or the APC is responsible for increased Bcl-6 expression.   

 Another interesting avenue of study will be to fully elucidate the differences 

in downstream signaling in naïve versus effector T cells following Ag stimulation. I 

chose to assay changes in gene expression after 2 days of culture for several 

reasons. First, an extensive amount of cell death occurs in the first 2 days of culture 

without Ag (Figure 3.17B). I reasoned that eliminating many cells that were close 

to death from analysis might provide insight into the transcription factors and 
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cytokines responsible for the phenotypic and functional differences seen between 

memory populations formed with or without late Ag. Second, I did not want to 

perform the microarray too long after TCR stimulation because I wanted to catch 

early mediators that initiate memory formation. However, I believe that a 

microarray conducted 12-24 hours after stimulation might be very informative in 

highlighting the differences between effector and naïve TCR stimulation. 

 With the caveat that it certainly does not provide the complete picture, the 

microarray analysis presented in this thesis does identify some differentially 

regulated genes that could be promising targets for further study. A couple of 

cytokines that were uniquely upregulated in 6 dpi effectors receiving Ag stimulation 

included IL-10 and IL-13, both encoding cytokines that can have anti-inflammatory 

functions (321, 348). Inhibitory cytokines at this late effector stage may prevent 

terminal differentiation and aid in the transition to a resting state required for 

memory formation. Also, IL-10 may promote STAT3 phosphorylation and aid in 

memory formation as it has been shown to do in CD8 T cells (322). Although, I 

didn’t see an effect when blocking IL-10 in the OT-II cell culture (Figure 3.28E), 

there was a significant effect in the polyclonal cell culture (Figure 3.28D). The 

microarray data suggest that OT-II cells are capable of producing IL-10 (Table 3.1) 

so more work is needed to determine if they in fact secrete IL-10 and if it promotes 

memory formation of CD4 T cells. Additionally, the TNF receptor family member 

CD30 was upregulated specifically in effector T cells following Ag stimulation. The 

ligand for this receptor CD30L is expressed by lymphoid tissue inducer cells which 
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have been shown to be essential for CD4 memory T cell maintenance (324, 325). 

The literature on this receptor is not extensive so further work is needed to 

determine if it potentially plays a role in CD4 memory T cell formation during 

influenza infection. 

 

Potential Implications for Vaccine Design 

It is well established that live infections (and vaccines mimicking them) 

generate the best immunity (small pox and others) while newer vaccines 

containing purified proteins with little or no adjuvant induce weak T cell immunity 

(18, 293). My results suggest that one key reason such vaccines may generate 

poor memory is because they do not induce sufficient Ag presentation at the 

effector stage. I tested this using ca.IAV because it is an attenuated virus that is 

capable of replication in the cooler upper respiratory tract making it the best 

vaccine candidate for prolonged Ag presentation. However, by 7 dpi with ca.IAV, 

there was no evidence of Ag presentation and when I introduced Ag/APC 6 days 

after ca.IAV vaccination it significantly improved memory CD4 T cell generation. 

This suggests that strategies to provide Ag/APC at a relevant checkpoint for each 

vaccine may often enhance memory CD4 T cell formation. Indeed in another 

scenario, an early “boost” strategy efficiently promoted CD8 T cell memory (302). 

Importantly since I find no need for live virus at the checkpoint, it is possible that 

an optimal vaccine response could be achieved without the destructive 

inflammatory milieu generated by replicating live virus or systemic adjuvants. 
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Although the exact timing and optimum approach for providing Ag at the 

checkpoint may need to be tailored to the specific vaccine, I anticipate such an 

approach could be developed to improve vaccines in humans (301) (Figure 4.3). 

A potential “early boost” model for vaccination would include the use of 

either an infectious agent or protein with pattern recognition receptor agonists as 

the primary immunization. Infectious agents such as LAIV or MVA are most likely 

to provide pattern recognition receptor ligands to ensure full activation of APC 

required for the generation of adequate T cell responses (53, 301). The secondary 

boost could be attained either by targeting Ag to DC populations (349) or providing 

a large bolus of recombinant Ag with adjuvant to ensure activation of APC (Figure 

4.3). Future work in our lab is seeking to determine the efficacy of these vaccination 

strategies. 
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Figure 4.3. Model for a Two-Step Vaccine Approach. 

 

Model outlining a potential two-step vaccine approach. Step one would ideally 

include immunization with an infectious, attenuated agent that sufficiently activates 

APC and leads to substantial T cell activation. Step two would include a second 

immunization about 5-7 days later, specific timing would have to be empirically 

tested.  

 

Figure adapted from: Devarajan, P., B. Bautista, A. M. Vong, K. K. McKinstry, T. 

M. Strutt, and S. L. Swain. 2016. New Insights into the Generation of CD4 Memory 

May Shape Future Vaccine Strategies for Influenza. Front. Immunol. 7: 136. 

Creative Commons Attribution license. 
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