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ABSTRACT 

A comprehensive understanding about how genetic variants and mutations 

contribute to phenotypic variations and alterations entails experimental 

technologies and analytical methodologies that are able to detect genetic 

variants/mutations from various biological samples in a timely and accurate 

manner. High-throughput sequencing technology represents the latest 

achievement in a series of efforts to facilitate genetic variants discovery and 

genotyping and promises to transform the way we tackle healthcare and 

biomedical problems. The tremendous amount of data generated by this new 

technology, however, needs to be processed and analyzed in an accurate and 

efficient way in order to fully harness its potential. Structural variation (SV) 

encompasses a wide range of genetic variations with different sizes and 

generated by diverse mechanisms. Due to the technical difficulties of reliably 

detecting SVs, their characterization lags behind that of SNPs and indels. In this 

dissertation I presented two novel computational methods: one for detecting 

transposable element (TE) transpositions and the other for detecting SVs in 

general using a local assembly approach. Both methods are able to pinpoint 

breakpoint junctions at single-nucleotide resolution and estimate variant allele 

frequencies in the sample. I also applied those methods to study the impact of 

TE transpositions on the genomic stability, the inheritance patterns of TE 

insertions in the population and the molecular mechanisms and potential 

functional consequences of somatic SVs in cancer genomes. 
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PREFACE 

 

The Chapters II and III of this dissertation are adopted from two published works.  

These works are: 

 

Local sequence assembly reveals a high-resolution profile of somatic structural 

variations in 97 cancer genomes 

Jiali Zhuang and Zhiping Weng*,  

Nucl. Acids Res. (2015) doi: 10.1093/nar/gkv831 

First published online: August 17, 2015 

 

TEMP: a computational method for analyzing transposable element 

polymorphism in populations 

Jiali Zhuang, Jie Wang, William Theurkauf,* and Zhiping Weng,* 

Nucl. Acids Res. (17 June 2014) 42(11): 6826-6838. doi: 10.1093/nar/gku323 
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CHAPTER I   

 

INTRODUCTION 

 

Genetic variations and mutations are the main driving force behind population 

phenotypic polymorphism, adaptation, evolution and diseases. Better 

understanding of the molecular mechanisms underlying those events, their 

phenotypic consequences, and their inheritance patterns within the population is 

therefore crucial for unraveling many of the mysteries in biology. For example, 

associating genetic variants with a disease phenotype may yield clues about 

which genes are potentially responsible for the disease (known as Genome Wide 

Association Studies or GWAS); and mutations that alter protein-coding gene 

sequences often disrupt the normal functioning of the protein product and 

therefore lead to physiological changes in the cell. Accurate and reliable 

detection of variants/mutations from various biological samples provides a solid 

foundation upon which more in-depth characterizations of the system at hand 

can be carried out. The advent of next-generation sequencing technology makes 

it possible to survey variants/mutations across the entire genome with 

reasonable time and cost and therefore completely revolutionizes how genetic 

variants are studied. The technology itself undergoes a series of paradigmatic 

shifts and keeps improving in terms of speed, accuracy and cost-efficiency. The 

cost for sequencing the entire human genome has decreased dramatically since 
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the publication of the first human genome draft and will soon become affordable 

to individual patients and consumers. This technological breakthrough opens up 

new opportunities for studying the genetic variants and mutations at the 

population level and promises to transform the field of biomedicine. To fully 

capitalize the enormous power of next-generation sequencing technology, 

however, it is crucial to implement well-designed, carefully calibrated and 

rigorously tested computational algorithms.  

 

Diverse types of genetic variants have been identified so far: from single 

nucleotide polymorphisms (SNPs), to short insertion/deletions (indels) that are 

shorter than 50 bp, to structural variations that can span several megabases, to 

aneuploidy where the entire chromosome is duplicated or missing. In this chapter 

I provide an overview of the evolution of experimental techniques for genetic 

variant/mutation detection and discuss how they were used to study biological 

systems historically. 

 

Experimental techniques for genetic variation detection 

 

Traditionally genetic variants/mutations are identified and genotyped by Sanger 

sequencing technology (or some variations of the technology). This method takes 

advantage of the labeled di-deoxynucleotides (ddNTPs), which upon 

incorporation terminate the DNA synthesis reaction. The procedure starts with 
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mixing fluorescently labeled ddNTPs (ddATP, ddCTP, ddGTP and ddTTP are 

labeled with different fluorochromes) with normal deoxynucleotides (dNTPs) and 

initiating the DNA synthesis reaction using the sample DNA as the template. Next 

the newly synthesized DNAs are separated by size and the fluorescence of their 

terminal ddNTP read by the fluorescence detector. Finally the sequence of the 

sample DNA is determined by analyzing the resulting chromatograms. By 

comparing the sample DNA sequences with reference sequence or the sequence 

of control DNA, it is relatively straightforward to figure out the variants/mutations 

if the sequences are of high quality. Very large structural variations that change 

the karyotypes of the cell can also be detected by cytogenetics. These 

approaches, however, have very low throughput because they are labor-

intensive and time-consuming and therefore only a limited number of loci can be 

surveyed.  

 

Several array-based techniques were successfully developed that can achieve 

variants discovery or genotyping in a high-throughput manner. SNP arrays, for 

example, enable researchers to genotype millions of known SNP sites (Illumina 

Omni5 chip, for example, contains 5 million markers) across the entire genome in 

a single experiment. The fundamental principle behind this technique is the 

hybridization between complementary DNA fragments. DNA fragments 

representing all the possible genotypes of the SNP sites are prepared and 

planted on the microchips and then the fluorescence labeled sample DNA 
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fragments are allowed to hybridize with the fragments on the chip. Perfectly 

complementary fragments bind to each other with a higher affinity and therefore 

displays stronger signal, which form the basis for determining the sample 

genotypes at the measured loci. The drawback of this approach is that it only 

genotypes pre-determined SNP sites and cannot perform de novo single 

nucleotide variations/mutations discovery. A similar approach called array-based 

Comparative Genomic Hybridization (aCGH) uses hybridization to detect copy 

number changes (deletions and duplications) of large genomic regions. When a 

segment of the genome is deleted the signal from the hybridization will decrease 

accordingly. And vice versa, when a genomic segment is duplicated the signal 

will increase. In addition it is able to compare copy number changes of genomic 

segments between two biological samples by labeling the sample DNAs with two 

different dyes.   

 

High-throughput sequencing technology emerged in the late 2000s and has since 

become the major driving force behind the study of genetic variations (X. Zhou et 

al., 2010). It makes accurate, fast and genome-wide measurements of sample 

DNA sequences possible (Illumina Genome Analyzer, for instance, can finish a 

14Gb run in 7 days with error rate around 1%) and therefore tremendously 

accelerates the effort to discover and genotype genetic variations in various 

species. Since it directly sequences the sample DNA molecules it can be used 

for both the discovery and genotyping without being constrained to known 
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variation sites. Different commercial companies develop their own patented 

implementation for high-throughput sequencing (X. Zhou et al., 2010). Illumina 

for example employs procedures that involve DNA fragment immobilization, 

solid-phase bridge amplification and sequencing by synthesis through a number 

of reaction cycles. Different parts of the genome have been the subject of 

sequencing studies with different emphasis. Exome sequencing aims to identify 

genetic variations within known exon regions whereas whole genome 

sequencing has the potential to detect variations across the whole genome. It 

has the advantage of being cheaper, able to achieve very high coverage and 

easier to interpret the identified variations (Bamshad et al., 2011; Clark et al., 

2011). Targeted sequencing involves capturing DNA sequences from a region of 

interest (e.g., regions implicated by a GWAS to be associated with a certain 

disease) and then sequences them. Now with the cost of sequencing 

experiments rapidly decreasing and our understanding about the non-coding 

regions of the genome improving, whole genome sequencing has become more 

and more widely used and promises to reveal previously unknown insights from 

various biological systems.  

 

Applications of genetic variation discovery and genotyping 

 

Genetic variants discovery and genotyping is not the end itself, instead it serves 

as the foundation to better understand various biological systems, pathways and 
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phenotypes. The three most common applications of genetic variants/mutations 

discovery and genotyping are: Genome Wide Association Studies (GWASs), 

expression Quantitative Trait Locus (eQTL) and somatic mutation 

characterization in cancer genomes (Stranger, Stahl, & Raj, 2011; Vogelstein et 

al., 2013).  

 

GWAS tries to detect genetic variations (typically SNPs or CNVs) that are 

significantly associated with a trait of interest. It is widely employed to study the 

genetic underpinnings of complex diseases where a case-control approach is 

typically used. In this type of studies a large number of individuals from two 

groups (case: individuals with the disease; control: healthy individuals from 

similar ethnic background and geological locations) are genotyped for common 

SNPs genome wide (the number of total SNPs measured varies across studies, 

ranging from tens of thousands to millions) and rigorous statistical tests are 

performed to identify significant associations between SNPs and the disease 

phenotype. Since its inception numerous GWASs have been successfully carried 

out on various traits and have yielded tens of thousands of significant SNP-trait 

associations. For instance, multiple loci within the FGF12 gene have recently 

been found to strongly associate with Kashin-Beck disease (Zhang et al., 2015), 

suggesting that FGF12 is a novel candidate gene for causing the disease. 

Another recent study discovered significant associations between polymorphisms 

in GCKR, SLC17A1 and SLC22A12 genes and the gout phenotype in the Han 
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Chinese population (Z.-W. Zhou et al., 2015). A GWAS on mucinous ovarian 

carcinoma susceptibility identifies 3 novel risk associations, two of which have 

significant eQTL associations with HOXD9 and PAX8 genes, respectively 

(Ovarian Cancer Association Consortium, Australian Cancer Study, Australian 

Ovarian Cancer Study Group, 2015). The NHGRI-EBI GWAS catalog is a 

comprehensive and curated database for SNP-trait associations, which includes 

around 14,000 statistically significant (P-value < 1e-5) SNP-trait associations as 

of 2013 (Welter et al., 2014). It is worth noting that SNPs significantly associated 

with a certain trait are not necessarily the cause of the phenotypic difference. 

Indeed, vast majority of the significant SNPs in GWASs fall in intergenic or 

intronic regions and do not change the amino acid sequences of the protein 

product. It is possible that many of those SNPs are actually not causal 

themselves but in linkage disequilibrium with some other causal variants such as 

SVs.  

 

Expression Quantitative Trait Locus (eQTL) works in similar fashion only seeking 

significant associations between SNPs and gene expressions. Since gene 

expression level is a quantitative trait, eQTL follows the standard QTL mapping 

which uses t-test or ANOVA to detect significant SNP-trait associations. The 

identified significant associations may shed important light on the regulatory 

mechanisms controlling the gene expression profiles. For example, a recent 

study elucidates the genomic modulators of gene expression in human 
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neutrophils, reporting 450 novel cis-eQTLs in neutrophils (Naranbhai et al., 

2015). The Genotype-Tissue Expression (GTEx) consortium recently presented a 

pilot analysis on data collected from 1641 samples across 43 tissue types from 

175 individuals, describing thousands of tissue-specific and shared eQTLs that 

provide a global view of cellular expression regulatory mechanisms at an 

unprecedented scale (GTEx Consortium, 2015). eQTL analysis may also 

facilitate the functional annotation of the variants identified in the genome-wide 

association studies and the identification of causal or risk genes. For instance, a 

study illustrates the cell-type-specific regulation of the expression level of 

asthma-related genes by integrating GWAS-identified SNPs associated with 

asthma and eQTL information in bronchial epithelial cells and bronchial alveolar 

lavage (X. Li et al., 2015). 

 

Somatic mutations are genetic alterations that accumulated in the cells during an 

organism’s lifetime. They are the results of DNA lesions induced by mutagens or 

errors during DNA replication process. The rate of spontaneous DNA mutations 

is quite low under normal conditions, but when the organism is exposed to high 

dose of mutagens and/or the cellular DNA proofreading or repair mechanisms 

are compromised large amount of mutations could accumulate in a short period 

of time. Many cancer genomes are characterized by a large number of genetic 

mutations. By comparing the DNA from the cancer samples to the DNA from the 

healthy tissue of the same individual, researchers are able to identify somatic 
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mutations by focusing on variants that are only present in the cancer samples. By 

performing exome sequencing on large numbers of cancer genomes, previous 

studies have successfully identified genes that are recursively mutated in multiple 

tumor samples. This approach leads to the discovery of many well-known 

oncogenes and tumor suppressors such as TP53, PTEN, BRCA1 and SMAD4 

(Vogelstein et al., 2013). Catalog of Somatic Mutations In Cancers (COSMIC) is 

a comprehensive database that hosts compiled information about somatic 

mutations in human cancers. As of April 2014, COSMIC includes 2,002,811 

coding point mutations in over one million tumor samples across all major cancer 

types (Forbes et al., 2015).  

 

A history of structural variations and their phenotypic implications 

 

 All the aforementioned applications can in principle be achieved with any type of 

genetic variants/mutations but in practice most studies focus on SNPs/indels 

because reliable and efficient experimental methods and computational 

algorithms are available to detect and genotype them. In addition to SNPs/indels, 

another important class of genetic variants/mutations is structural variation that 

includes deletions, duplications, copy number variations, transposable element 

movements, inversions and translocations. The study of structural variations 

started with the observation that segmental duplications and copy number 

changes are common within the human genome when the first draft of the human 
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genome became available (Bailey et al., 2002; Bailey, Yavor, Massa, Trask, & 

Eichler, 2001) and is further motivated by the fact that many regions susceptible 

to copy number changes contain genes that are known to play crucial roles in 

various diseases (Ji, Eichler, Schwartz, & Nicholls, 2000).  

 

In the early days of the copy number variation study (before the advent of high 

throughput sequencing technology), the most widely used experimental 

techniques are bacterial artificial chromosome (BAC) microarray, array CGH and 

fluorescent in situ hybridization (FISH). For example, Sharp et al. examined 130 

potential rearrangement hotspots on 47 normal individuals with a targeted BAC 

microarray and identified 119 copy number polymorphisms (Sharp et al., 2005). 

In this type of studies regions of interest are cloned into BACs, which are then 

used in constructing the microarrays. The DNAs extracted from both the sample 

and the reference are then labeled with Cy3 and Cy5 dyes and the potential copy 

number changes are inferred from the fluorescence resulting from the 

hybridization (Sharp et al., 2005). Now with the better annotation of the reference 

genome and better manufacturing technologies, both standardized and custom 

aCGH arrays are available that allows the characterization of copy number 

polymorphisms genome wide. The working principle of aCGH is also based on 

hybridization and fluorescence signal strength and has been covered in earlier 

sections. On the computational side, Bailey et al. proposed algorithms that detect 

segmental duplications within the human reference genome by looking for 
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significant sequence similarities between different genomic regions (Bailey et al., 

2001; 2002). FISH is a laborious but reliable experimental technique often used 

to validate a selected set of predicted SVs.  

 

The continual advancement of sequencing technology enables more efficient and 

higher-resolution analysis of structural variations. In 2008 Kidd et al. presented 

arguably the first genome wide SV study with sequencing technology. They 

cloned the entire genomes of eight individuals from diverse ethnic background 

into fosmids and sequenced both ends of each clone insert with Sanger 

sequencing to generate the so-called end-sequence pairs (ESPs). Based on 

fosmids whose apparent insert size deviate from library mean insert size and 

several additional filtering and validation steps they reported a total of 1,695 SVs, 

encompassing more SV types and wider SV size spectrum than possible with 

array-based approaches (Kidd et al., 2008).  The advent of high throughput 

whole genome sequencing technology gave a further impetus to the 

characterization of SVs. In 2011, the 1000 Genome Projects consortium 

presented a comprehensive survey of SVs across 185 human genomes. 

Combining both whole genome sequencing technology and extensive 

experimental validation, they reported more than 28,000 SVs (53% of which are 

mapped with single-nucleotide resolution) and laid the foundation for 

understanding the population landscape of SVs (Mills et al., 2011).     
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Transposable elements (TEs) are DNA sequences able to replicate or mobilize 

themselves within the genome. They were first discovered in plants and later 

found to be present in most species and even make up of a considerable 

proportion of multiple genomes (Gogvadze & Buzdin, 2009; McCLINTOCK, 

1950). There are two classes of TEs: Class I TEs transpose by the so-called “cut-

and-paste” mechanism where the original copy is excised and then integrated at 

a novel site; Class II TEs transpose through RNA transcript intermediates in the 

so-called “copy-and-paste” mechanism which results in extra copies of the TE. 

Most active TEs contain the sequences encoding the transposases needed for 

their transposition and therefore in a sense they can be viewed as semi-

independent parasites within their host genomes. Not surprisingly, most host 

genomes employ sophisticated defense mechanisms to contain the spread of 

TEs and preserve their genomic integrity as much as possible (Siomi, Sato, 

Pezic, & Aravin, 2011). The evolutionary arms race between the TE parasites 

and host genomes is a fascinating area for future research (Jacobs et al., 2014).  

 

The impacts of diverse types of structural variations on human health have been 

extensively studied since SVs were first discovered and numerous associations 

between SVs (copy number variations in particular) and various diseases have 

been reported. For instance, more than a dozen cancer-related genes including 

PIK3CA, MYC and EGFR are affected by copy number variations (CNVs) in 

multiple gastric cancer samples and may contribute to gastric oncogenesis 
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(Liang, Fang, & Xu, 2015). A large-scale survey of 715 grade II and III gliomas 

genomes conducted recently revealed that 37 focal regions and 19 chromosomal 

arms undergo recurrent copy number changes. Among the genes that are 

affected by the CNVs are well-known oncogenes and tumor suppressors like 

MDM4, EGFR, CCND2 and RB1 (Suzuki et al., 2015). With increased efficiency 

and decreased cost of whole genome sequencing experiments, genome-wide 

associations using CNVs has become popular lately and shed some light on the 

impact of SVs on diseases. A recent whole wide CNV scan performed on a large 

cohort of 249 patients and 232 matched controls, for example, identified a 

13q12.11 duplication that includes exportin-4 gene to be associated non-

alcoholic fatty liver disease (Zain et al., 2015). Genome wide CNV studies using 

SNP arrays also help identify potential causal genes for colorectal adenomatous 

polyposis (Horpaopan et al., 2015) and Type II diabetes (Dajani et al., 2015).  

 

Compared with CNVs, the phenotypic implications of other types of SVs are less 

well understood. That is changing rapidly, however, as in recent years great 

efforts have been made to catch up with their characterization. Somatic 

transposable element movements, for instance, have been observed to be 

prevalent in many cancer genomes and are likely to contribute to the initiation or 

progress of cancers (Carreira, Richardson, & Faulkner, 2014; Helman et al., 

2014). The retro-transpositions of a TE may disrupt protein-coding genes (the a 

new copy is inserted into one of the exons) or alter regulatory machinery by 
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either disrupting the regulatory elements or bring with it new regulatory elements 

to target genes near its new insertion sites. All those events could potentially 

breaking the proper regulation and homeostasis in the cell and lead to 

deleterious consequences and have been indeed observed in multiple types of 

cancers (Helman et al., 2014; Lee et al., 2012; Shukla et al., 2013; Solyom et al., 

2012; Tubio et al., 2014). Similar to SNPs/indels, it is challenging to distinguish 

between SVs that initiate the oncogenesis (driver mutations) and those that are 

the result of compromised DNA repair machinery (passenger mutations) and may 

require analysis across large number of cancer samples.  

 

Extensive structural variation polymorphisms have been reported on populations 

of multiple species (Mills et al., 2011; Mills, Bennett, Iskow, & Devine, 2007; 

Zichner et al., 2013). A study of SVs within 39 strains derived from a wild 

Drsophila Melanogaster population in North Carolina (the Drosophila Genetic 

Reference Panel, DGRP) reported 8,962 deletions and 916 duplications. 

Futhermore, an eQTL mapping with those SVs revealed functional impact at 

more than 100 loci (Zichner et al., 2013). Several studies examined the role of 

TE transpositions in shaping the expression regulatory machinery (González & 

Petrov, 2009) and suggested that TE movement plays a crucial part in the 

evolution of new species or phenotypes such as pregnancy in mammals (Lynch, 

Leclerc, May, & Wagner, 2011). 
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A brief summary of computational algorithms that detect SVs from paired-

end whole genome sequencing datasets 

 

Paired-end high throughput whole genome sequencing has become the most 

widely employed experimental approach for genome-wide scale discovery and 

genotyping of structural variations during the last several years. The complexity 

and scale of the SVs and the relatively short read length permitted by the 

mainstream high throughput sequencing technology presents a daunting 

computational challenge for accurate and efficient discovery of SVs.  

 

Many methods and algorithms that attempt to harness the power of pair-end high 

throughput sequencing for whole genome SV detection have been proposed 

during the course of past five or six years (K. Chen et al., 2009; Hormozdiari et 

al., 2010; Layer, Chiang, Quinlan, & Hall, 2014; Rausch et al., 2012; Sindi, Önal, 

Peng, Wu, & Raphael, 2012; J. Wang et al., 2011; Ye, Schulz, Long, Apweiler, & 

Ning, 2009). Almost all of them start with mapping the read-pairs to the reference 

genome and leverage on three types of discordant mapping information that 

indicate a difference between sample genome and the reference sequence 

(Figure 1.1):  

1) Discordant read-pairs: read-pairs whose distance or orientation between 

the two reads are inconsistent with the reference genome; 
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2) Split-read alignments: different parts of a read mapped to discontiguous 

genomic loci; 

3) Read-depth: a significant change in the read coverage of a particular 

genomic region indicating a copy number change of the region. 

These three types of information are useful under different circumstances. For 

example, the discordant read-pair information can potentially detect all types of 

SVs but nonetheless fails to pinpoint the exact location of the breakpoints; and 

read-depth information is unable to detect balanced (no change in copy number) 

SVs such as inversions and translocations. While each of the three types of 

information is relatively straightforward in itself, it is difficult to integrate these 

sources under a single computational framework. In addition, the sequencing 

technology is far from error-free and SV detection algorithms should be able to 

filter out false positive SV calls resulting from sequencing errors such as 

substitutions and indels in the sequencing reads, chimeric read-pairs and 

abnormal library insert sizes.   

 

The most popular computational framework for SV detection by far considers the 

three types of discordant mapping information in a sequential manner. It first 

selects all the discordant read-pairs following alignment to the reference genome 

and then uses various algorithms to cluster read-pairs that appear to support the 

same SV event. Split-read and read-depth information is then used to further 

validate or refine the breakpoints of the SVs predicted in the previous step. Only 
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SV calls that are supported by multiple read-pairs (the cutoff threshold differs 

from one method to another and is often a parameter tunable by the users) are 

retained. Breakdancer (K. Chen et al., 2009), VariationHunter (Hormozdiari et al., 

2010), Hydra (Quinlan et al., 2011) and DELLY (Rausch et al., 2012) are 

examples of methods built upon this framework. In other SV discovery tools such 

as CREST (J. Wang et al., 2011) and Pindel (Ye et al., 2009) the initial SV calling 

is triggered by soft-clipped reads (split-read mapping) and then further validated 

or refined by either a second round of alignment (in the case of Pindel) or the 

assembly of soft-clipped reads (in the case of CREST). TIGRA is an interesting 

tool that does not predict SVs by itself but try to pinpoint the breakpoints of SVs 

predicted by other methods through targeted iterative graph assembly (K. Chen 

et al., 2013). Some more recent algorithms such as GASVPro (Sindi et al., 2012), 

cnvHiTSeq (Bellos, Johnson, & M Coin, 2012) and LUMPY (Layer et al., 2014) 

attempt to integrate information from different sources into a statistical model that 

measures the confidence of each SV prediction and even the possible range of 

breakpoints (in the case of LUMPY). Due to both sequencing errors and mapping 

artifacts many SV discovery methods have relatively high false-positive rates, 

especially for samples with moderate coverage. Handsaker et al. proposed an 

algorithm that leverages on population data to increase both the sensitivity and 

specificity of genomic deletion detection. The proposed algorithm Genome 

STRiP, however, is only able to detect deletions and its performance on rare SVs 
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has not been rigorously evaluated (Handsaker, Korn, Nemesh, & McCarroll, 

2011).  

 

A unique feature that distinguishes the detection of TE insertions that are absent 

in the reference genome from the detection of other types of SVs is that the 

inserted TE sequences are highly repetitive. As a result, it is extremely difficult 

and in some cases even impossible to determine the exact genomic origin of a 

read deriving from a TE sequence since there are hundreds or even thousands 

of virtually identical copies of the same TE in the genome. Fortunately under 

most circumstances it suffices to know what element instead of which copy of 

that element is inserted and therefore nearly all TE detecting algorithms take 

advantage of the annotated TE consensus sequences to identify TE insertion 

events (Keane, Wong, & Adams, 2013; Kofler, Betancourt, & Schlötterer, 2012). 

When one of the reads in a discordant read-pair or the clipped part of a soft-

clipped read can be confidently mapped to a TE consensus sequence, the read-

pair or the read implies a TE insertion event. The genome-mapping read or part 

of the read can be used to estimate the genomic locations of the insertion (Keane 

et al., 2013; Kofler et al., 2012). The effectiveness of this approach is based on 

the premise that for a particular TE its consensus sequence is a reliable 

representation of all the sequences of its active copies within the genome. This 

assumption typically holds because considerable mutations within a TE copy 

often abolishes its capacity for transposition (by disrupting the catalytic activity of 
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the transposase for example) and therefore severely limits the number of 

mutated copies.  

 

Although the application of associating SNPs/indels with various phenotypes has 

proven fruitful, concentrating on just one or two types of variants/mutations risks 

missing the larger picture. Therefore developing novel techniques and algorithms 

that are able to accurately detect and genotype other types of genetic 

variants/mutations is of vital importance. As noted before structural variation (SV) 

discovery from paired-end sequencing datasets presents a significant challenge 

and no methods developed so far achieve superior performance for all tasks/SV 

types. In addition, using the number of reads supporting a predicted SV event as 

a metric for confidence can sometimes be misleading because the coverage is 

usually not uniform across the entire genome and using a fixed cutoff threshold 

for the whole genome is often counter-productive. Pinpointing the breakpoints of 

SVs at single-nucleotide resolution and accurately estimating the SV allele 

frequency in heterogeneous samples is extremely valuable for a deeper 

knowledge concerning the formation mechanisms, inheritance patterns and 

phenotypic significance of those SVs. In this dissertation, I described two novel 

algorithms I developed during my thesis research for detecting transposable 

elements (TEs) movement and structural variations from paired-end high-

throughput genomic sequencing datasets and the biological insights gleaned 

from applying them to real biological samples. TEMP (Transposable Element 
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Movement in Populations) is a method capable of accurately detecting TE 

transpositions from pooled sequencing datasets and estimating their frequencies 

within the pool. This method and its applications are discussed at length in 

Chapter II. laSV is a novel local assembly based algorithm for detecting SVs in 

general. I applied it to profile somatic SVs in 97 cancer genomes and the findings 

are described in Chapter III.  
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Figure 1.1 

 

Schemetic representation of major types of structural variations and how to detect them. Adopted from Alkan et al. with permission 
from Nature Publishing Group (permission ID number: 3718870525416). 
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CHAPTER II 

TEMP: a computational method for analyzing transposable 

element polymorphism in populations 

 

Summary 

 

Insertions and excisions of transposable elements (TEs) affect both the stability 

and variability of the genome. Studying the dynamics of transposition at the 

population level can provide crucial insights into the processes and mechanisms 

of genome evolution. Pooling genomic materials from multiple individuals 

followed by high-throughput sequencing is an efficient way of characterizing 

genomic polymorphisms in a population. Here we describe a novel method 

named TEMP, specifically designed to detect transposable element movements 

present with a wide range of frequencies in a population. By combining the 

information provided by pair-end reads and split reads, TEMP is able to identify 

both presence and absence of TE insertions in genomic DNA sequences derived 

from heterogeneous samples; accurately estimate the frequencies of 

transposition events in the population; and pinpoint junctions of high frequency 

transposition events at nucleotide resolution. Simulation data indicate that TEMP 

outperforms other algorithms such as PoPoolationTE, RetroSeq, 

VariationHunter, and GASVPro. TEMP also performs well on whole-genome 

human data derived from the 1000 Genomes Project. We applied TEMP to 
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characterize the TE frequencies in a wild Drosophila melanogaster population 

and study the inheritance patterns of TEs during hybrid dysgenesis. We identified 

sequence signatures of TE insertion and possible molecular effects of TE 

movements, such as altered gene expression and piRNA production. TEMP is 

freely available at github: https://github.com/JialiUMassWengLab/TEMP.git. 

 

 

Introduction 

 

Transposable element (TE) mobilization is one of the major sources of genomic 

variation and a potential driving force of evolution (Bennetzen, 2000; Britten, 

2010; Hedges & Belancio, 2011). Detecting transposition events within the 

genome is therefore crucial for understanding the mechanisms by which TEs are 

regulated and the phenotypic consequences that result from TE movements. The 

task of detecting TE insertions and excisions falls within the more general 

category of genomic structural variation detection (Alkan, Coe, & Eichler, 2011). 

Much progress has been made in discovering structural variations from high-

throughput genomic DNA sequencing data (Hormozdiari, Alkan, Eichler, & 

Sahinalp, 2009; Quinlan et al., 2010; Rausch et al., 2012). So far, most structural 

variation discovery tools are designed to handle isogenic samples-- i.e., they 

assume that the sequence reads originate from a single genome or at least the 

sample is dominated by a single genome (Alkan et al., 2011). However, just as 
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any other types of genomic variation, it would be extremely useful to estimate the 

population frequency of polymorphic transposition events. Sequencing a large 

number of individuals in a population separately is impossible under many 

circumstances because of the prohibitively high costs and the difficulty in 

obtaining enough experimental material. Pooled sequencing is a widely 

employed experimental practice whereby investigators pool tissues from multiple 

individuals (or organisms) and sequence the DNA (or RNA) without knowing 

which read originates from which individual (or organism) (Calvo et al., 2010; 

Futschik & Schlötterer, 2010; S. R. Wang et al., 2013a; Zhu, Bergland, González, 

& Petrov, 2012). In fact, for many species that cannot be individually cultured in 

laboratory conditions, pooled sequencing is the only means for obtaining 

sufficient experimental material as required by state-of-the-art sequencing 

technologies. When analyzed with an effective computational algorithm, this 

approach can accurately estimate the population frequency of transposition 

events.  

 

When applied to pooled sequencing data, methods designed to detect structural 

variations in largely isogenic samples can only detect variations that are shared 

by most genomes in the pool. Discovering TE transpositions and estimating their 

frequencies using a pooled sequencing dataset present some unique 

computational challenges. Detecting rare TE transposition events with high 

confidence, identifying reads that are likely to support the same transposition 
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event, and overcoming biases stemming from the non-uniformity of sequencing 

depth across the genome are some of the difficulties involved. Kofler et al. 

designed an algorithm named PoPoolationTE to detect novel TE insertions and 

estimate their population frequency from pooled sequencing data. They applied 

PoPoolationTE to a natural population of Drosophila to study transposon 

evolution. In this article we present an algorithm named TEMP that uses 

discordant mapping reads to detect TE polymorphisms relative to a reference 

genome, pinpoint the position of their junctions within genomic DNA, and 

estimate their population frequencies from the pooled sequencing data. We 

demonstrated TEMP’s performance by comparing it with PoPoolationTE, 

RetroSeq (an algorithm designed for detecting TE insertions in individual 

genomes), and two general-purpose structural variation discovery algorithms 

VariationHunter, and GASVPro using simulated data. We further used TEMP to 

analyze several biological datasets in Drosophila melanogaster to demonstrate 

the unique biological insights that can be obtained using our algorithm. TEMP 

requires a curated library of transposon consensus sequences, and cannot 

identify transposition events de novo. The TEMP software package is freely 

available at github: https://github.com/JialiUMassWengLab/TEMP.git, or the 

TEMP webpage: http://zlab.umassmed.edu/TEMP/. 

  

 

Material and Methods 
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Sequence mapping and the input files for TEMP 

TEMP takes input files in the BAM format obtained by mapping sequencing reads 

to a reference genome. Throughout this article we used BWA (v0.6.1-r104) (H. Li 

& Durbin, 2010) as the mapping software and Drosophila melanogaster dm3 as 

the reference genome for mapping. Mapping was done using the BWA aln 

algorithm with command line options -n 3 -l 100 -R 10000, which allows for 3 

mismatches. Other input files required by TEMP are transposon consensus 

sequences, which can be downloaded from Repbase (Version 17.07, 

http://www.girinst.org/repbase/), and RepeatMasker files containing the 

annotated TEs in the reference genome, which can be downloaded from the 

UCSC Genome Browser (http://genome.ucsc.edu/).  

 

The TEMP method for identifying TE insertions and absence 

In order to detect a TE insertion, TEMP first identifies all discordant read pairs 

(Figure 2.1), with one uniquely mapped read (the anchor read, or anchor) and a 

second read that is unmappable or maps to multiple distant locations. Those 

non-uniquely mapping reads are then compared to a library of consensus TE 

sequences. The TE to which the read maps with fewest mismatches determines 

the type of the TE insertion. For example, if the TE-mapping read maps to the P-

element sequence then it is likely that there is a P-element insertion in the vicinity 

the anchor. TEMP infers the orientation of the insertion by examining the 



27 

genomic strand of the anchor and the transposon strand of the TE-mapping read. 

(Figure SII-1). A single read pair is usually insufficient for inferring the precise 

junction. Therefore TEMP first attempts to identify a genomic interval that 

includes the junction, called the interval estimate. This estimate is based on the 

average insert size of the sequencing library. The junction must be located in the 

interval beginning at the end of the anchor and extending into the genome by the 

length of the average insert size. The reads that support the same insertion event 

(i.e., the same type of TE, in the same genomic strand and with interval 

estimates that overlap by at least one nucleotide) are clustered and their 

intersecting region provides a refined interval estimate (Figure SII-2). 

  

To detect TE insertions that are present in the reference genome but absent in 

the sample genomes, TEMP first identifies all read pairs for which the distances 

between the two genome-mapping reads are significantly longer than average 

insert size (but less than 10k bps to avoid mapping artifacts) and then examines 

whether the intervening genomic region spans one or more known TEs as 

annotated in the reference genome. In order to prevent false positives, we 

require that both reads are uniquely mapped to the reference genome and that 

the distance between the two reads (after subtraction of the excised TEs) is 

consistent with the average insert size of the library. Read pairs that support the 

same event are clustered (Figure 2.1b).  These structural alterations could 

reflect strain-specific excision of DNA elements, which move by a cut and paste 
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mechanism, or could reflect polymorphic DNA or RNA elements insertions that 

are specific to the reference genome. TEMP cannot distinguish between these 

alternatives unambiguously, but if the transposon is an RNA element transposing 

by the “copy and paste” mechanism and its frequency is close to zero in most of 

the sample genomes, it is most likely that the element is a polymorphic insertion 

in the reference genome.  

 

Estimation of new junctions and transposition frequencies in a population 

Based on the interval estimates obtained in the previous step, TEMP attempts to 

determine the new junctions created by transposition events up to base-pair 

resolution (base estimates) by taking advantage of reads that start in genomic 

sequence but are interrupted by transposon or non-contiguous genomic 

sequence (soft-clipped reads; Figure 2.1 c, d).  

 

For insertions, TEMP first extends the interval estimates obtained in the detection 

step by 20 bps in both directions. Soft-clipped reads that map within the 

extended interval are identified. For each such read, TEMP determines if the 

clipped portion of the read can be confidently explained by the insertion event 

(i.e., the clipped sequence corroborates the type and direction of the TE insertion 

determined by the previous step). We require the clipped portion to be at least 7 

nucleotides long and map perfectly to the appropriate TE sequence. When 

multiple junction estimates are identified, TEMP chooses the one supported by 
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the most reads. We use a similar approach to estimate the junctions of TEs that 

are absent in the reference genome. Soft-clipped reads that map near the 

annotated boundaries of the absent TE are identified and the clipped portion of 

each read is examined to ensure that it maps to the sequence on the other side 

of the transposon. We note that base estimates of the junctions are strand-

specific as the soft-clipped reads are mapped to only one strand of the genome. 

When the base estimates are not available, TEMP uses the midpoint of the 

interval estimates and the annotated TE boundaries as surrogates for insertion 

and absence, respectively. 

 

For each detected presence or absence of transposon insertion, TEMP first 

compiles all the read pairs that support the transposition event, which include the 

discordant read pairs that define the transposition event and the soft-clipped 

reads that delineate its junctions with genomic sequence. TEMP also keeps track 

of another set of read pairs that originate from the genomes where the 

transposition event does not happen; these read pairs span the estimated 

junctions of the transposition (Figure 2.1). TEMP computes the ratio T/(T+R) as 

an estimate of the population frequency of the transposon, where T stands for 

the total number of read pairs that support the presence and R stands for the 

total number of read pairs that are consistent with the absence of the transposon 

insertion.  
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The workflow of TEMP is represented in Figure SII-3 & SII-4 

 

Simulation analysis 

In each experiment, 50 insertions and 50 excisions were randomly placed across 

chromosome arm 2L of the Drosophila melanogaster reference genome. For 

each simulated insertion, the TE family and insertion site coordinate were 

selected randomly. The entire sequence of the chosen TE was then inserted at 

the selected coordinate. For each simulated excision, an annotated transposon 

(as annotated in the output of the RepeakMasker program) was randomly 

selected and the entire sequence was deleted. The insertion and deletion 

operations were carried out using a genomic structural variation simulation 

package named RSVSim (v1.1.1) (Bartenhagen & Dugas, 2013). Simulated read 

pairs with read length of 90 nucleotides (nt) following a normal distribution of 

insert sizes (500 ± 50 nt) were then generated from the simulated genome 

obtained in the previous step with four different sequencing depths (5X, 10X, 20X 

and 40X) using a profile-based Illumina paired-end reads simulator named pIRS 

(Hu et al., 2012). We used pIRS v1.1.0 with options -l 90 -m 500 -v 50 -e 0.0001 -

a 0 -g 0, which simulated 90-nt long reads, with mean insert size set at 500 nt, 

standard deviation of insert sizes at 50 nt, sequencing error rate at 0.0001, no 

insertions or deletions in the reads, and no GC bias. To simulate various 

population frequencies of transposition events, we mixed reads generated from 

the simulated genome with reads generated from the reference genome at 
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appropriate ratios. Finally we mapped all the reads to dm3 using BWA and fed 

the mapping results to TEMP and other algorithms to evaluate their performance. 

The above procedure was repeated 100 times to obtain 5,000 simulated 

insertions and 5,000 simulated excisions. 

 

To compare TEMP with other algorithms, we generated datasets by combining 

five independently simulated Drosophila chromosome 2L arms. Each simulated 

chromosome arm was generated as described above, and pair-end reads were 

simulated at 5X coverage. Each simulated dataset hence contained reads 

originating from the five simulated chromosome arms with an apparent coverage 

of 25X, and the process was repeated 20 times. We compared TEMP with 

PoPoolationTE (Kofler et al., 2012), RetroSeq (Keane et al., 2013), 

VariationHunter (Hormozdiari et al., 2010), and GASVPro (Sindi et al., 2012) on 

these datasets. The results are summarized in Table2.1. We evaluated 

PoPoolationTE (v1.02, https://code.google.com/p/popoolationte/), RetroSeq 

(https://github.com/tk2/RetroSeq), VariationHunter CommonLaw (v0.04, 

http://variationhunter.sourceforge.net/Home), and GASVPro-HQ (2013 Oct 

Release, http://code.google.com/p/gasv/). For PoPoolationTE we followed the 

typical workflow described at 

https://code.google.com/p/popoolationte/wiki/Workflow and used the parameters 

therein. For RetroSeq, we used the BAM format alignment file produced by the 

BWA aln algorithm as the input and chose the same parameters as described in 
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the tutorial https://github.com/tk2/RetroSeq/wiki/RetroSeq-Tutorial. For 

VariationHunter-CL, we first mapped paired-end reads to the reference genome 

(dm3) using mrfast (v2.6.0.1, http://mrfast.sourceforge.net/) with parameters -min 

400 –max 600 -e 3 (which allows for 3 mismatches and defines concordant insert 

sizes as between 400nt and 600nt), and then ran VH and multiInd_SetCover with 

default parameters. Structural variations supported by fewer than 8 reads were 

discarded. For GASVPro-HQ, we used the BAM format alignment file produced 

by the BWA aln program as the “high quality unique mapping BAM file” and 

default parameters. GASVPro produced a large number of predictions. We 

ranked the predictions by log-likelihood ratio and kept the top 250 predictions.  

 

A simulated insertion was correctly recovered if the interval estimate given by 

TEMP included its true junction with the genomic DNA, and if the transposon 

family and direction of the insertion were determined correctly. A simulated 

excision was correctly recovered if TEMP reported the absence of the 

corresponding transposon. For a simulated transposition event, we considered its 

junction correctly identified if the base estimate TEMP reported lay within 5 nt of 

the true junction.  

 

Testing TEMP on pair-end sequencing data from the 1000 genomes project 

BAM files containing alignments to the GRCh37 (hg19) human reference 

genome for four individuals (NA18517, NA19240, NA12156, NA12878) were 
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downloaded from the data portal of the 1000 genomes project and merged to 

mimic a pooled sequencing dataset. We then ran TEMP on this dataset and 

predicted presence and absence of TE insertions with frequency greater than or 

equal to 20% and covered by more than eight reads. TEMP predictions were 

compared with previously reported insertions and deletions involving these four 

individuals as deposited in structural variation database DGV (Database for 

Genomic Variants, http://dgv.tcag.ca/dgv/app/home). Note that the structural 

variations in DGV include all types of changes in genomic DNA regardless 

whether they are caused by TEs. 

 

Hybrid dysgenesis population analysis  

The small RNA sequencing and genomic deep sequencing datasets were 

downloaded from NCBI SRA database (SRP007937) and processed and 

analyzed as described in Khurana et al., 2011. We define parental transposons 

as TE insertions with population frequencies greater than 10% in at least one of 

the parental strains (w1 or Harwich). The frequency change of a parental 

transposon is defined by: FC = F–(H+W)/2, where F, W, H represent frequency 

of the transposon in the w1 x Har; 2-4 day F1 population, the w1 population, and 

the Harwich population, respectively. The junction spanning small RNA reads 

need to be at least 21 nt long and map perfectly across the genome-transposon 

junction. We use the piRNA cluster annotation by Brennecke et al. (Khurana et 

al., 2011), which includes 141 clusters in total (excluding the chrX_TAS cluster), 
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occupying 4,924,944 bp of the dm3 genome. piRNA clusters are the genomic loci 

from which precursor piRNA transcripts are produced. 

 

The Drosophila Genetic Reference Panel (DGRP) datasets 

We downloaded genomic deep sequencing data for 53 DGRP inbred lines 

(Mackay et al., 2012) from NCBI SRA (Table SII-1). Except for lines RAL-362, 

RAL-765 and RAL-517, the other 50 lines each had >20X sequencing coverage. 

We included those three lines with <20X coverage because they were the only 

lines with RNA-seq data.  We mapped the reads to dm3 with the BWA aln 

algorithm, allowing for 3 mismatches and then ran TEMP on the BWA output files 

in the BAM format.  

 

For TE insertion distribution analysis, 11,311 insertions that had frequencies 

greater than 80% in at least one of the inbred lines were chosen. We profiled the 

number of insertions in each of the 5 genomic features: promoters (2 kb 

upstream of an annotated TSS), exons (Flybase annotation), intron/UTR regions 

(regions within annotated genes but not in exons), intergenic regions (regions 

more than 2 kb from any annotated genes) and piRNA clusters for each TE 

family. A binomial test was performed to assess the statistical significance of 

enrichment or depletion for each TE family in each of the five genomic features 

and the Benjamini–Hochberg procedure (Benjamini & Hochberg, 1995) was used 

for multiple testing corrections. Only enrichments and depletions with q-values 
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lower than 0.15 are shown in Table SII-2. The annotation for genes and exons 

were obtained from FlyBase (Release 5.45) and the annotation for piRNA 

clusters was from Brennecke et al. (Khurana et al., 2011) as described above. 

 

For RNA-seq data, we downloaded seven datasets involving the three lines RAL-

362, RAL-765 and RAL-517 and four progeny populations (Table SII-1).  The 

samples involving two lines were F1 samples (i.e., the progeny of the two 

indicated lines separated by “x”).  We mapped the reads to the reference 

genome using Tophat (v2.0.8b with default parameters) and then used Cufflinks 

(v2.1.1 with default parameters) to compute the expression level for each gene 

(in FPKM). Thus for the three parental lines (RAL-362, RAL-765 and RAL-517), 

both genomic sequencing and RNA-seq data were available. To find the TE 

insertions that could potentially affect gene expression, we looked for genes that 

had 1) TE insertions with frequencies greater than 20% in their promoters, 

introns, exons or UTRs in only one of the three parental lines and 2) expression 

levels in that line were more than two fold higher or lower (with a pseudo count of 

0.5 FPKM) than the corresponding expression levels in the other two lines where 

the insertion was absent. The 48 genes obtained are listed in Table SII-3 along 

with their expression levels in all seven lines.  

 

Sequence signature of TE insertions 
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We ran TEMP on all Drosophila genomic sequencing data we had and obtained 

14,363 non-redundant insertion events with junctions on both strands detected. 

By calculating the difference between the coordinates of the junctions on two 

strands, we were able to estimate the length of target site duplications (TSD) for 

each such insertion. We investigated the nucleotide composition of the sequence 

around the junctions by extending 15 bp both upstream and downstream from 

the midpoint between the junctions of the two strands for each insertion. We then 

ran MEME on these 30-bp long sequences to report up to five most significant 

motifs with lengths of 4-15 nt. (MEM was ran with options -dna -mod zoops -

nmotifs 5 -minw 4 -maxw 15 -pal, where dna and zoops indicate that there is zero 

or one motif site per input DNA sequence and pal indicates that we were looking 

for palindromic motifs.) This procedure was performed for each TE family to 

identify any sequence motifs that were enriched in the sequences surrounding 

the junctions. In the mono- and dinucleotide composition analysis, the same 

length (i.e., 30 bps) of flanking sequences (100 bps upstream and downstream of 

the junction) was selected as background, and the enrichment for each mono or 

dinucleotide was measured by the ratio of its frequency in the junction 

surrounding sequence over its frequency in flanking sequences.  

 

 

Results 
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We first describe the general approach that TEMP takes for detecting TE 

polymorphisms and estimating their population frequencies. We then evaluate 

TEMP’s performance on both simulated datasets and pooled human genome 

sequencing data. We compare TEMP with four other algorithms (PoPoolationTE, 

RetroSeq, VariationHunter, and GASVPro) on the simulated data. To showcase 

how TEMP can be applied to studying biological problems, we use TEMP to 

investigate the inheritance patterns of polymorphic transpositions in Drosophila 

melanogaster hybrid dysgenic strains. Finally we analyze the genomic 

sequencing and RNA-seq data of 53 lines in a wild Drosophila melanogaster 

population to learn about the molecular signatures of TE integration sites and 

potential molecular consequences of TE insertions. 

 

Overview of the TEMP method 

 

TEMP detects the presence or absence of TE insertions in a population of 

sample genomes using read pairs that are mapped discordantly on a reference 

genome.  Discordant read pairs with one read mapped uniquely to the reference 

genome and the other read mapped to TE sequence indicate sample-specific TE 

insertions (Figure 2.1a). Sample-specific absence of TEs can be detected by 

looking for read pairs that are separated by a distance substantially longer than 

the average insert size of the library and span a TE presents in the reference 

genome (Figure 2.1b). As detailed in Materials and Methods, TEMP can identify 
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the presence and absence of TE insertions by identifying and sorting through 

discordant read pairs. TEMP then attempts to estimate the minimal genomic 

interval that includes the junction, called the interval estimate. For the insertions 

supported by sufficient numbers of reads, TEMP proceeds to refine the interval 

estimates to base-pair resolution by taking advantage of soft-clipped reads 

(Figure 2.1 c, d).  

 

In order to estimate the population frequency of transposition events, TEMP 

assumes that 1) the pool of sample genomes is a faithful representative of the 

population from which it is drawn and 2) the number of read pairs supporting a 

transposition event is proportional to the frequency of the event in the pool of 

sample genomes.  For each transposition event, TEMP keeps track of two sets of 

read pairs (including both discordant and soft clipped read pairs), one set 

originating from the genomes where the transposition is present (T pairs) and the 

other set from the genomes where the transposition is absent (R pairs). TEMP 

computes the ratio T/(T+R) as an estimate of the population frequency of the 

transposon (see Materials and Methods for more details).  

 

 

Assessment of TEMP performance on simulated and biological datasets 
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As there are no pooled sequencing datasets for which the population frequencies 

of polymorphic transposition events are known, we first evaluated the 

performance of TEMP on a simulated dataset. We randomly inserted and deleted 

TE sequences in chromosome arm 2L of the Drosophila reference genome with 

the RSVSim (Bartenhagen & Dugas, 2013) program and generated simulated 

reads from the simulated genomes using the pIRS (Hu et al., 2012) program. The 

simulated reads were mapped back to chr2L and TEMP was used to detect 

presence and absence of insertions, resolve the junctions, and estimate the 

population frequencies of the transposons.  

 

The performance of TEMP depends on the sequencing depth as well as the 

frequency of the transposition (Figure 2.2). TEMP performs better at higher 

sequencing depth, in terms of higher detection rates (Figure 2.2 a, b solid lines), 

more accurate estimates of population frequency (Figure 2.2 a, b dashed lines), 

higher probability of discovering the junctions (Figure 2.2 c, d solid lines) and 

more correctly recovered junctions (Figure 2.2 c, d dashed lines). Frequency of 

the target transpositions has similar effects. Those instances of presence and 

absence of insertions with very low frequencies are often undetected and it is 

difficult to determine their precise junctions because there are only a few reads. 

False discovery rate (FDR) for TE insertion detection rises slowly with increasing 

sequencing depth and insertion frequency (Figure 2.2 e). On the other hand, for 
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TE absence detection the FDR remains low and flat across the range of 

sequencing depth and transposon frequency (Figure 2.2f).  

 

At 20-fold genome coverage, which is easily achievable with current technology 

even for large mammalian genomes, TEMP is able to detect more than 95% of 

the presence and absence of insertions with population frequencies exceeding 

20%. The average error of frequency estimation is <10% for presence and <9% 

for absence across the entire frequency range. Among the base estimates of the 

junctions reported by TEMP, more than 95% of them are correct. These results 

demonstrate that TEMP is effective in detecting sample specific TE insertion and 

absence, estimating their population frequency with high accuracy, and 

pinpointing the precise junctions for some of the transposition instances across a 

wide range of sequencing depths and transposition frequencies.   

 

We compared TEMP with four other algorithms on a simulated dataset that 

mimics a pooled sequencing library: PoPoolationTE (Kofler et al., 2012), an 

algorithm designed for detecting transposon insertions in pooled sequences; 

RetroSeq (Keane et al., 2013), designed for detecting transposon insertions in 

individual genomes; and two commonly used general-purpose structural variation 

discovery tools VariationHunter (Hormozdiari et al., 2010; Hormozdiari, 

Hajirasouliha, McPherson, Eichler, & Sahinalp, 2011), and GASVPro (Sindi et al., 

2012). The results are presented in Table 2.1. TEMP achieved better 
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performance in detecting both presence and absence of TE insertion than the 

other four methods.  

 

As a method designed for pooled sequencing data, PoPoolationTE performed 

worse than TEMP in terms of sensitivity (88.50% vs. 98.80%), precision (92.45% 

vs. 99.50%) and average error of estimating insertion frequency (8.77% vs. 

7.27%). RetroSeq is specifically designed for detecting TE insertions, but since it 

is not intended for handling pooled sequencing data, it does not estimate 

insertion frequency. RetroSeq achieved a low sensitivity (71.82%) and a high 

precision (93.95%). Neither PoPoolationTE nor RetroSeq is designed for 

detecting sample-specific absence of TEs in the reference genome. In 

comparison, TEMP can detect transposon absence with high sensitivity 

(93.09%), precision (98.64%) and low error in frequency estimate (7.25%). The 

two general-purpose structural variation detection algorithms VariationHunter and 

GASVPro could detect transposon absence, although with lower sensitivity and 

precision than TEMP (Table 2.1). Neither algorithm could detect TE insertion, nor 

are they designed to estimate transposon frequency. GASVPro produced many 

false positives in detecting TE absence.     

 

We also assessed TEMP’s ability in detecting polymorphic TE transpositions in 

human genomes using whole-genome datasets generated by the 1000 Genomes 

Project (Consortium et al., 2012). We pooled the reads from four individuals and 
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ran TEMP to detect TE insertion and absence relative to the reference genome 

(GRCh37, see Table SII-4 for details of TEMP predictions). Since there is little 

information on experimentally validated TE presence and absence genome-wide, 

we used structural variations deposited in the Database of Genomic Variants 

(DGV) for evaluating TEMP (J. R. Macdonald, Ziman, Yuen, Feuk, & Scherer, 

2013). Overall, 363 out of the 536 (67.7%) of insertions predicted by TEMP 

overlapped with insertions for these individuals in DGV and 423 out of the 1593 

instances (26.5%) of absence predicted by TEMP overlapped with the deletions 

in DGV. The percentage of predictions that overlapped insertions and deletions 

in DGV went up to 81.5% and 95.5% respectively if we considered all individuals 

deposited in the DGV. Table SII-4 also lists which DGV insertions or deletions 

that TEMP predictions matched. Thus TEMP works effectively in detecting 

transposition events in human genomes.  

 

We evaluated the time complexity of TEMP on the same human whole-genome 

sequencing dataset. The combined dataset is equivalent to ~12X coverage of the 

human genome and the insertion analysis took 1,382 minutes on a Dell M605 

node with 2 quad core AMD Opterons. The absence analysis took 721 minutes 

on the same machine.  

 

Identifying potentially selected TE insertions from pooled sequencing of 

hybrid-dysgenic population 
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We used TEMP to analyze the pooled genomic sequencing data of a wild type 

strain of Drosophila melanogaster (Harwich or Har in short), a lab strain (w1), and 

the offspring populations from crossing Har males with w1 females. When Har 

females are mated with w1 males, the first-generation offspring (F1) are normal; 

however, when Har males are mated with w1 females, the offspring suffer from 

widespread TE transpositions, genomic instability and are initially sterile, a 

phenomenon known as hybrid dysgenesis (Bucheton, 1973; 1979; Hiraizumi, 

1971; Kidwell, 1985) (Figure 2.6). As the surviving female dysgenic flies age, 

they partially recover from the dysgenic phenotypes and begin to produce viable 

offspring, a change thought to be the result of de novo piRNA production in the 

ovaries (Khurana et al., 2011).  

 

We used TEMP to detect TE insertions relative to the reference genome and 

estimate their frequencies in each of the parental and progeny populations 

(Table SII-5). This enables us to find insertions that show inheritance patterns 

potentially under adaptive selection. For a neutral insertion polymorphism, its 

population frequency in the progeny population should be close to the arithmetic 

mean of the frequencies in the two parental populations if the inheritance obeys 

Mendelian segregation. We therefore defined frequency change using a simple 

formula FC = F–(H+W)/2, where F, H, W denote the population frequency of a 

TE insertion in the dysgenic F1 population, the Harwich population, and the w1 
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population, respectively. A large positive value of frequency change suggests 

positive (adaptive) selection whereas a large negative value suggests negative 

(purifying) selection.  

 

We computed the frequency change for each parental TE insertion (defined as 

the insertions whose frequencies exceed 10% in at least one of the parental 

populations) (Figure 2.3a). As expected, the vast majority of parental insertions 

have negative but close to zero frequency changes in the F1 population (Figure 

2.3a), suggesting that they were under weak purifying selection. The most critical 

challenge facing the hybrid dysgenic flies was coping with hyperactive 

transpositions and any trait that helped suppress TE mobilization could be 

potentially selected for. Insertion of a TE into piRNA clusters can lead to 

production of piRNAs whose sequences are complementary to the TE, and these 

piRNAs can in turn silence the corresponding transposon genome-wide (Aravin, 

Hannon, & Brennecke, 2007; Ghildiyal & Zamore, 2009; Khurana & Theurkauf, 

2010). Indeed, among insertions whose frequencies increased by 30% or more in 

the F1 population (FC ≥ 0.3), there were more insertions residing within piRNA 

clusters than expected (p-value = 5.38E-4, hypergeometric test). In contrast, 

among insertions with FC ≤ -0.3, there were fewer of them than expected in 

piRNA clusters (p-value = 8.02E-5, hypergeometric test) (Figure 2.3a). We also 

analyzed the germline DNA isolated from the ovaries of the second-generation 

progenies (F2) produced by backcrossing F1 dysgenic females to w1 males. 
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Again, we computed the FC for each parental TE insertion, i.e., those insertions 

whose frequency exceeded 10% in either F1 or w1. These F2 females did not 

suffer from hyperactive TE movement; accordingly, our data support that there 

were fewer insertions under negative selection than their parents (14.05% with 

FC ≤ -0.3 in F2 vs. 19.09% in F1; p-value = 4.90E-5, Χ2-test). Moreover, there 

was no enrichment for TE insertions in piRNA clusters (p-value = 0.53, 

hypergeometric test), consistent with the notion that such insertions would not 

confer significant selective advantages in non-dysgenic individuals (Figure 2.3b). 

We note that according to the Wright-Fisher model with a population size of 100 

(200 chromosomes), the probability of FC ≤ -0.3 or ≥ 0.3 or more extreme is 

smaller than 1E-15 (Table SII-6). Therefore the sites with FC ≤ -0.3 or ≥ 0.3 are 

likely under selective pressure. Moreover, at 20X sequencing depth TEMP’s false 

discovery rate is 1.17% for sites with frequency at 0.3 (Figure 2.2e). Therefore 

most of the sites with FC ≤ -0.3 or ≥ 0.3 represent actual change, not detection 

error.  

 

We were able to resolve the junctions for one of the insertions that were both 

strongly selected for and lie within a piRNA cluster. A pogo insertion at position 

2,378,892-2,378,894 of chromosome arm 2R (within the piRNA cluster 42AB) 

had a frequency of 96.77% in the Har population and was absent in the w1 

population. In the F1 hybrid dysgenic population the frequency of the same 

insertion is 88.24%, which far exceeded what would be expected from Mendelian 



46 

inheritance-- suggesting that it was under strong positive selection. Evidently, in 

addition to the F1 embryos that lacked a pogo insertion in both alleles, some of 

the F1 embryos that were heterozygous for this pogo insertion did not mature to 

adulthood. As shown by the large number of piRNA reads that mapped across 

the unique junctions produced by the insertion, this insertion led to de novo 

production of piRNAs and probably helped repress transposition of the pogo 

element, giving the individuals a selective advantage (Figure 2.3c). Interestingly, 

the same insertion also exhibited higher than expected frequency in the F2 

backcross progeny, suggesting a persisted adaptive selection at this locus even 

though the backcross did not induce hybrid dysgenesis (Figure 2.3c, bar plots).  

 

Sequence signatures and potential effects on gene expression of TE 

insertions 

 

The Drosophila melanogaster Genetic Reference Panel (DGRP) is a community 

resource of inbred lines of fruit flies derived from a wild population (Mackay et al., 

2012). In freeze 1.0, the genomes of 168 inbred lines have been sequenced and 

the sequencing data are publicly available. Moreover the RNA-seq data for three 

of these lines are also available, as well as the RNA-seq data on four progeny 

populations of these three lines. We selected 53 lines with the highest genome 

sequencing coverage and applied TEMP to detect presence and absence of TE 

insertions. TEMP detected in total 11,316 instances of presence and 1,378 
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instances of absence of transposons that had frequency greater than 80% in at 

least one line (Tables SII-7). The distribution of TE insertions across the genome 

showed that most TEs insertions are enriched in intronic and intergenic regions 

and depleted in exonic regions (Table SII-2). This is consistent with a recent 

report on a related dataset (Cridland, Macdonald, Long, & Thornton, 2013).  

  

We also used TEMP to pinpoint the junctions in both the DGRP datasets and the 

hybrid dysgenic datasets. TEMP reported the positions for 14,363 non-redundant 

junctions at base pair resolution, which enabled us to investigate the sequence 

signatures near the TE insertion sites including the length of target site 

duplications (TSDs), the dinucleotide composition of target site sequences, and 

potential sequence motifs at target sites that may reveal the sequence 

preferences of the integrases (Figure SII-5).  

 

There were 44 TE families for which we detected more than 50 non-redundant 

target sites. Most of these TE families exhibited narrow TSD length distributions 

(Figure SII-6). Strikingly, TEs in the same super-family showed very similar TSD 

length distributions (Figure 2.4a) except for DNA elements. TEs in most 

LTR/Gypsy super-families showed 4-nt-long TSDs and nearly all TEs in the 

LTR/Copia and LTR/Pao super-family produced 5-nt-long TSDs. This interesting 

pattern probably reflects the evolutionary relationship among TEs, as integrases 

encoded by the TEs within the same super-family are more likely to share similar 
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sequences and functional features (Linheiro & Bergman, 2012; Nefedova, 

Mannanova, & Kim, 2011). LINE elements had much longer TSDs and much 

broader TSD distributions compared with other retro-transposon super-families 

(Figure 2.4a), which is consistent with previous findings about the L1 element in 

the human genome (Lee et al., 2012; Szak et al., 2002). 

 

We also discovered that the genomic sequences around predicted insertion 

junctions (±15 nt) of many TEs are AT rich, with the AT and TA dinucleotides 

being most prevalent (Figure 2.4b). The enriched sequence motif around the 

junctions is a simple dinucleotide repeat for many TEs (Table SII-8), which is 

consistent with the mono- and dinucleotide composition analysis. As exceptions, 

we detected high-information-content motifs around the insertion sites of the 

hopper, 1360, Tirant and Transpac elements, suggesting that their integrases or 

transposases may possess sequence specificity (Figure 2.4c). 

  

TE transposition is one of the main sources of genomic variability. Relating 

transposition polymorphisms to variations at phenotypic and molecular levels is 

crucial for understanding how transposition shapes the genomic landscape and 

contributes to evolution (Daborn et al., 2002; Tsuchiya & Eulgem, 2013; X. 

Wang, Weigel, & Smith, 2013b). By integrating RNA-seq data for 3 DGRP lines 

with their respective genomic sequencing data, we searched for TE insertions 

that are likely to affect gene expression. More specifically, we looked for 
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insertions that were in the promoter region or the gene body for which expression 

level of the affected gene changed by more than two fold. We identified 48 

insertions that were associated with changes in gene expression.  For example, 

nrm encodes a protein important for synaptic target recognition, and a P-element 

insertion at the promoter of nrm that is unique to strain RAL-517 is associated 

with a more than 3-fold increase in nrm expression (Figure 2.5 a, b). Crosses 

with a strain showing lower expression produced progeny with intermediate 

expression levels, strongly suggesting that increased expression is inherited in 

the F1 generation (Figure 2.5b). The correlation between TE insertion and 

altered gene expression suggests a causal relationship, although other 

background variants can also contribute to the change in expression. Using 

TEMP to detect TE insertions and estimate their frequencies genome-wide, users 

will be able to correlate transposition polymorphisms with phenotypes and 

biological processes and identify candidate sites for experimental validation.  

 

 

Discussion 

 

Transposition of TEs is a widespread phenomenon that destabilizes the genome, 

but may also produce beneficial genetic diversity. The rapid development of high-

throughput sequencing techniques offers unprecedented opportunities for 

detecting TE transpositions in a variety of samples. We described TEMP, an 
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algorithm that can detect TE insertion and absence, pinpoint their junctions with 

genomic DNA at base pair resolution, and estimate their frequencies in the 

population. Our analysis on both simulated and biological datasets demonstrates 

that TEMP is a reliable and useful tool for studying TE transpositions at both 

population and molecular levels and can be applied to a wide variety of datasets 

to accomplish quantitative analysis and generate testable hypotheses.  

 

One limitation of TEMP is that it requires a curated library of transposon 

consensus sequences, namely the RepBase (Jurka et al., 2005), and cannot 

identify transposition events de novo. Thus for a newly sequenced genome, one 

first needs to apply de novo repeat identification algorithms such as RECON 

(Bao & Eddy, 2002) or RepeatScout (Price, Jones, & Pevzner, 2005) to build a 

library of transposon consensus sequences, before one can use TEMP to identify 

the presence and absence of these transposons in populations of the same 

species. One idea that may aid such an analysis is to perform de novo assembly 

of the reads of the test population that do not map to the reference genome. This 

may yield longer sequences which, once aligned back to the reference genome, 

can reveal insertion or deletion junctions. Instead of transposon consensus 

sequences, the PoPoolationTE algorithm uses a database of many diverged 

sequences for each TE family. PoPoolationTE therefore may have a higher 

sensitivity than TEMP with detecting highly diverged TE copies. 
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The ability of TEMP to detect insertions genome wide and identify junctions at 

base pair resolution for thousands of sites enabled us to better understand the 

molecular mechanisms of TE integration. Linheiro and Bergman examined TSD 

lengths and target site motifs on 166 DGRP datasets (Linheiro & Bergman, 

2012). Among the 25 TEs whose TSD lengths were reported in both studies, 19 

of them had exactly the same TSD length (Table SII-9). Linheiro and Bergman 

treated paired-end sequencing data as independent reads and used only 

junction-spanning reads to identify TE insertion target sites, possibly restricting 

the sensitivity of their method. Indeed, for each of the 6 TEs that the two studies 

disagreed, Linheiro and Bergman identified fewer than 20 non-redundant 

insertion sites, while we identified 50 or more sites. We also compared the target 

site motifs identified in the two studies and they mostly agree.  

 

Transposition is proposed to produce both beneficial and deleterious changes in 

genome organization.  To determine the utility of TEMP in defining the molecular 

consequences of transposon insertion, we applied TEMP to analyze dysgenic 

hybrids as well as 53 strains derived from independent wild populations of 

Drosophila and identified over 14,000 high frequency insertions at base pair 

resolution.  Analysis of RNA-seq data from three of these strains, and the F1 

progeny of inter-strain crosses, showed that many of these insertions were linked 

to heritable changes in gene expression (Figure 2.5b).  These findings raise the 

possibility that strain specific transposon insertions that modify gene expression 
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can sweep though populations, perhaps because they provide a reproductive 

benefit.  This can be directly tested by crossing strains and following the 

inheritance patterns of specific insertions using TEMP and measuring gene 

expression using RNA sequencing.  

 

Our analysis of hybrid dysgenesis shows that transposition can also alter 

expression of small non-coding RNAs.  Transposons are silenced by piRNAs that 

are deposited in the oocyte.  In the early embryo, the piRNA pool is therefore 

derived exclusively from the maternal genome.   Hybrid dysgenesis is triggered 

during crosses in which the sperm carry a transposon that is not represented in 

the maternal genome. Transposon activation in the hybrid germline leads to adult 

female sterility.  We previously showed that paternal introduction of P-element 

transposons activated both the invading P-element and resident transposons that 

were shared by the maternal and paternal genomes.  Remarkably, the dysgenic 

F1 females regained fertility with age, as they silenced P-element and resident 

elements.  Furthermore we demonstrated that this was linked to accumulation of 

new transposon insertions (i.e., not in either of the parental genomes) in the 

heterochromatic clusters that produced piRNAs, and that these insertions were 

the source of novel piRNAs that appeared to enhance silencing. Here, we used 

TEMP to estimate the frequencies of existing TE insertions in parental and 

progeny populations, and found that TE insertions within piRNA clusters were 

under positive selection in F1 dysgenic females. This finding, along with our 
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earlier study, indicates that both de novo and inherited transposon insertions into 

piRNA clusters are under positive selection in dysgenic hybrids, where they 

appear to enhance silencing by promoting piRNA production.  

 

Our studies thus show that transposition can alter both coding and non-coding 

RNA expression, and suggest that these modifications can generate beneficial 

genetic variation.  The paradigm of sequencing parental and progeny 

populations, estimating the population frequencies of the transposition 

polymorphisms with TEMP, and then identifying potentially selected 

polymorphisms can be applied to a wide range of systems to study the 

inheritance of transposition polymorphisms and their biological consequences.  
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Figure 2.1 

 

 

Diagrams depicting how TEMP detects presence (a) and absence (b) of insertion events and estimates junctions at baseGpair

resolution for presence (c) and absence (d) of insertion events.  
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Figure 2.2 

 

Evaluation of TEMP performance on a simulated dataset and the effects of sequencing depth and the population frequencies of
the transposition events on the performance. The sequencing depth is color coded, with blue, red, green and orange denoting
coverage 40X, 20X, 10X and 5X, respectively. Detection recall rates (solid lines) and average errors of frequency estimates
(dashed lines) are plotted against population frequencies for presence (a) and absence (b) of insertion events. Percentage of
transposition events for which TEMP identified junctions (solid lines) and for which TEMP correctly identified junctions
(dashed lines) are plotted against population frequencies for presence (c) and absence (d) of insertion events. FDRs for
detecting presence (e) and absence (f) of insertion events are plotted against population frequencies.  
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Figure 2.3 

(a) Distribution of selection strength acted on parental TEs. Positively selected TEs (blue shaded region) shows enrichment for
piRNA cluster residing TEs whereas negatively selected TEs (red shaded region) shows depletion for piRNA cluster residing
TEs. The pie charts represent the percentages of piRNA cluster insertions (labeled) among the positively (or negatively)
selected TEs. (b) Same as (a) except for F2 backcross progeny. (c) A pogo insertion within the 42AB piRNA cluster is under
strong positive selection. It led to the de novo production of piRNAs as demonstrated by piRNA reads that span the insertion
junctions in two F1 populations, w1 X Har 2–4 days (red) and w1 X Har 21 days (orange). The bar plots on the left show the
frequency of the pogo insertion in the parental, F1 and F2 populations.  
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Figure 2.4 

 

 

 

(a) Length distribution of TSDs (depletions) for TEs. The TEs are grouped according to families. Negative values on the xGaxis
denote the length of target site depletions. (b) Dinucleotide composition around target sites. Each row is normalized and the ZG
score for each entry is color coded with red represents enrichment and blue represents depletion. (c) Sequence motifs for TE
elements 1360, Tirant, Transpac and hopper.  
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Figure 2.5 

 

 

 

(a) Distribution of unique TE insertions of three DGRP strains in a region of chromosome arm 3L. The heights of the bars are
proportional to the estimated population frequencies. The red bar in strain RALG517 near 23Mb is a P;element insertion at the
promoter of the nrm gene and its detailed view is presented in (b). (b) A P;element insertion at the promoter regions of the
nrm gene in strain RALG517 is correlated with a 3.65Gfold increase in its expression level. The bar plot shows the expression
level of nrm in the three lines as well as the four F1 progeny samples. The expression of nrm is higher for the progeny
populations of RALG517 (purple bars) than the progeny produced by crossing the other two strains.  
 

 

 

 

 

 

a

b

22 23 24 

(Mb) 

40% 
Frequency 

chr3L 

RAL-362 

RAL-765 

RAL-517 

P-element 
Freq: 0.8333 

Scale
chr3L

_P-element
nrm
nrm

5 kb dm3
22,991,000 22,992,000 22,993,000 22,994,000 22,995,000 22,996,000 22,997,000 22,998,000 22,999,000 23,000,000 23,001,000

DGRP transposon insertions around genes
RefSeq Genes

E
xp

re
ss

io
n 

(F
P

K
M

) 

�



	�

	


�




��

�

��

������
 ������ ����	� ��
��� �����
 	���� ���	�



59 

Figure 2.6 

 

A schematic representation of hydrid dysgenic cross. Reproduced from Siomi et al. with permission from Nature Publishing
Group (Permission ID number: 3720901452157).
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Table 2.1 
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Table SII-2

 

 

 

 

Supplementary Material II 

Supplementary material for Chapter II is too large to be included fully here. The 

whole file can be downloaded from link: 

http://nar.oxfordjournals.org/content/42/11/6826/suppl/DC1 

 

         

TE Genomic feature #insertions 
in the feature

#insertions 
genome wide

p-value Benjamini–Hochberg
 q-value

log p-value

FBgn0003055_P-element Promoter 437 652 1.96E-177 5.07E-175 176.71

FBgn0000638_FB Intron/UTR 284 327 2.04E-94 2.65E-92 93.69

FBgn0000155_roo Intron/UTR 1011 2016 4.23E-64 3.66E-62 63.37

FBgn0001210_hobo Intron/UTR 288 531 3.25E-26 2.10E-24 25.49

FBgn0014967_hopper Intron/UTR 175 321 6.95E-17 3.60E-15 16.16

FBgn0002698_mdg3 Intron/UTR 105 191 4.71E-11 2.03E-09 10.33

FBgn0003519_Stalker Intergenic 72 101 2.10E-10 7.75E-09 9.68

FBgn0003122_pogo Intron/UTR 139 278 3.54E-10 1.15E-08 9.45

FBgn0010302_Burdock Intron/UTR 121 241 3.38E-09 9.73E-08 8.47

FBgn0063897_Stalker4 Intergenic 76 116 2.75E-08 7.12E-07 7.56

FBgn0000199_blood Intron/UTR 155 340 1.13E-07 2.66E-06 6.95

FBgn0005673_1360 Promoter 60 189 4.19E-07 9.04E-06 6.38

FBgn0004082_Tirant Intron/UTR 99 203 4.92E-07 9.80E-06 6.31

FBgn0003007_opus Intron/UTR 174 403 1.62E-06 3.00E-05 5.79

FBgn0001283_jockey Intron/UTR 165 382 2.86E-06 4.94E-05 5.54

FBgn0069343_TAHRE piRNA Cluster 7 27 9.60E-06 1.55E-04 5.02

FBgn0040267_Transpac Intron/UTR 122 275 1.17E-05 1.78E-04 4.93

FBgn0003055_P-element Intron/UTR 260 652 1.29E-05 1.86E-04 4.89

FBgn0000349_copia Intron/UTR 166 394 1.49E-05 2.03E-04 4.83

FBgn0000005_297 Intron/UTR 137 317 1.80E-05 2.33E-04 4.75

FBgn0063429_invader2 Intergenic 23 29 1.91E-05 2.36E-04 4.72

FBgn0001283_jockey Promoter 96 382 2.89E-05 3.40E-04 4.54

FBgn0000006_412 Intron/UTR 188 461 4.31E-05 4.86E-04 4.37

FBgn0014947_flea Intron/UTR 98 221 8.02E-05 8.66E-04 4.10

FBgn0003122_pogo Promoter 72 278 9.82E-05 1.02E-03 4.01

FBgn0000652_F-element Intron/UTR 189 470 1.03E-04 1.03E-03 3.99

FBgn0069343_TAHRE Intergenic 20 27 3.55E-04 3.41E-03 3.45

FBgn0005673_1360 Intron/UTR 83 189 3.89E-04 3.60E-03 3.41

FBgn0000481_Doc Intron/UTR 137 336 4.25E-04 3.80E-03 3.37

FBgn0042682_Rt1b Intron/UTR 42 84 4.52E-04 3.90E-03 3.34

FBgn0043969_diver Promoter 25 79 9.49E-04 7.92E-03 3.02

FBgn0000481_Doc piRNA Cluster 21 336 1.05E-03 8.50E-03 2.98

FBgn0005384_3S18 Intron/UTR 54 118 1.21E-03 9.50E-03 2.92

FBgn0004904_TART-A Intergenic 16 22 1.96E-03 1.49E-02 2.71

FBgn0046110_Juan Intron/UTR 35 73 3.22E-03 2.39E-02 2.49

FBgn0000349_copia piRNA Cluster 22 394 0.00328686 2.36E-02 2.48

         

FBgn0003908_R1A1-element Intergenic 28 46 0.00348536 2.44E-02 2.46

FBgn0004904_TART-A piRNA Cluster 4 22 0.00348814 2.38E-02 2.46

FBgn0040267_Transpac Promoter 64 275 0.00407263 2.70E-02 2.39

FBgn0002698_mdg3 Promoter 46 191 0.0069734 4.52E-02 2.16

FBgn0000006_412 Promoter 98 461 0.00864213 5.46E-02 2.06

FBgn0063429_invader2 piRNA Cluster 4 29 0.00963394 5.94E-02 2.02

FBgn0063455_Stalker2 Intron/UTR 46 107 0.01090051 6.57E-02 1.96

FBgn0001167_gypsy piRNA Cluster 4 31 0.01218934 7.18E-02 1.91

FBgn0003490_springer Promoter 12 38 0.01926688 1.11E-01 1.72

FBgn0041728_Rt1a Intron/UTR 13 24 0.0200765 1.13E-01 1.70

FBgn0043055_Ivk Promoter 11 34 0.02045411 1.13E-01 1.69

FBgn0004082_Tirant Promoter 46 203 0.02066483 1.12E-01 1.68

FBgn0063507_G2 Intron/UTR 38 90 0.02627614 1.39E-01 1.58

FBgn0044355_Quasimodo Intron/UTR 72 185 0.02730409 1.41E-01 1.56
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CHAPTER III 

Local sequence assembly reveals a high-resolution profile of 

somatic structural variations in 97 cancer genomes 

 

 

Summary 

 

Genomic structural variations (SVs) are pervasive in many types of cancers. 

Characterizing their underlying mechanisms and potential molecular 

consequences is crucial for understanding the basic biology of tumorigenesis. 

Here, we engineered a local assembly-based algorithm (laSV) to detect SVs with 

high accuracy from paired-end high-throughput genomic sequencing data and to 

pinpoint their breakpoints at single base-pair resolution. By applying laSV to 97 

tumor-normal paired genomic sequencing datasets across six cancer types 

produced by The Cancer Genome Atlas Research Network, we discovered that 

non-allelic homologous recombination is the primary mechanism for generating 

somatic SVs in acute myeloid leukemia. This finding contrasts with results for the 

other five types of solid tumors, in which non-homologous end joining and 

microhomology end joining are the predominant mechanisms. We also found that 

genes recursively mutated by single nucleotide alterations differed from genes 

recursively mutated by SVs, suggesting that these two types of genetic 

alterations play different roles during cancer progression. We further 
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characterized how the gene structures of the oncogene JAK1 and the tumor 

suppressors KDM6A and RB1 are affected by somatic SVs and discussed the 

potential functional implications of intergenic SVs.  

 

 

Introduction 

  

Genomic structural variations (SVs) such as deletions, insertions, inversions, 

translocations and tandem duplications are an important class of genetic 

variations that underlies genomic diversity in a population (Alkan et al., 2011). A 

deep and comprehensive understanding of the formation mechanism, genomic 

distribution and functional impacts of SVs is crucial for studying complex 

diseases such as cancer.  

 

Performing a comprehensive survey of different SV formation mechanisms and 

their relative contributions across different cancer types is challenging because it 

entails precise characterization of the sequence across the breakpoints. Despite 

extensive efforts, accurately detecting SVs with a high resolution remains a 

challenge. Most existing SV discovery methods take advantage of three types of 

signals that are indicative of SVs between the reference genome and the sample 

genome: changes in the coverage of read pile-up, suggesting copy number 

alterations (read depth); discordant read pairs with a distance or orientation 
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between the two reads that is inconsistent with the reference genome (read pair); 

and reads that can be split into parts that align to discontiguous loci in the 

reference genome (split reads) (K. Chen et al., 2009; Escaramís et al., 2013; 

Layer et al., 2014; Quinlan et al., 2010; Rausch et al., 2012; J. Wang et al., 2011; 

Ye et al., 2009). It is algorithmically challenging to integrate information from 

these sources; furthermore, reads (or parts of a read) that can be aligned to 

multiple loci in the reference genome may result in spurious SV calls. Some 

methods such as TIGRA (K. Chen et al., 2013) try to pinpoint the breakpoints of 

predicted SVs by assembling reads mapped to the locus. This approach does not 

avoid the mapping ambiguities since both the SV predictions and the read 

selection for assembly are based on aligning short reads to the reference 

genome. A potential alternative is to perform a reference-free de novo assembly 

of the sequencing reads first and then compare the contigs with the reference 

genome. However, conventional de novo assembly methods are not designed for 

the purpose of SV discovery, especially for samples with a high degree of 

heterogeneity such as tumor samples. These tools assume that all the reads 

originate from a single underlying genome and therefore only detect homozygous 

SVs (Y. Li et al., 2011). In this report, we described a de novo local assembly-

based SV discovery algorithm, designated laSV, which is able to pinpoint SV 

breakpoints at a single-nucleotide resolution and estimate the allele frequencies 

of the detected SVs in the sample.  
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Double-stranded breaks (DSB) in genomic DNA are detrimental to the cell, and 

several DSB repair pathways have therefore evolved to protect the cell from such 

catastrophic events. These pathways do not repair DSBs perfectly, and 

erroneous repairs are believed to be an important source of SVs (Hastings, 

Lupski, Rosenberg, & Ira, 2009b), especially in cancers. Homologous 

recombination (HR) is the method that is most widely used by cells to repair 

DSBs, and it requires long stretches of homologous sequences at the 

breakpoints. When HR occurs between non-allelic regions with high sequence 

similarity, termed non-allelic homologous recombination (NAHR), structural 

alterations may ensue (Jasin & Rothstein, 2013; Krejci, Altmannova, Spirek, & 

Zhao, 2012; Mehta & Haber, 2014). Mutations in genes that are key components 

of the HR pathway, such as BRCA1 and BRCA2, are observed in many types of 

cancers and deemed the major driving force of genomic instability in these 

cancers. Nonhomologous end joining (NHEJ), however, does not require 

sequence homology and often generates very short deletions or insertions at the 

breakpoint. Key players in this pathway include XRCC5/6 and TP53 (Aparicio, 

Baer, & Gautier, 2014; Weterings & Chen, 2008). An alternative pathway, known 

as microhomology-mediated end joining (MMEJ), plays an active role in some 

cancers (Decottignies, 2013; Ottaviani, Lecain, & Sheer, 2014). MMEJ relies on 

relatively short stretches of homologous sequence (≤ 25 bp) at the breakpoint 

(Truong et al., 2013). The molecular details of this pathway are much less well 

understood compared with NAHR and NHEJ, although it is known to share the 
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initial end resection step with NAHR (Truong et al., 2013). In another DNA 

replication-associated repair mechanism, known as fork stalling and template 

switching (FoSTeS), it has been proposed that when a replication fork is stalled 

during replication, the polymerase is able to switch to a nearby locus and use it 

as the template to continue replicating, which often results in complex 

rearrangements (Hastings, Ira, & Lupski, 2009a; Ottaviani et al., 2014). Mobile 

element movements (MEs) are deletions that overlap with annotated 

transposable elements or novel insertions of TEs. Non-template insertions (NIs) 

are insertions whose sequences do not match any sequence in the reference 

genome.  

 

Applying laSV to six cancer types, we discovered that in acute myeloid leukemia, 

NAHR is the major mechanism for generating somatic SVs, while in the other five 

types of solid tumor, NHEJ and MMEJ are the predominant forces underlying 

somatic SVs. We further observed that such a preference for DSB repair 

pathway utilization could be ascribed to the differential expression of several key 

genes in the HR pathway among the evaluated cancer types. Moreover, we 

analyzed genes that were affected by somatic SVs and to our surprise we found 

that genes that were frequently mutated by SVs tended to differ from the genes 

that were frequently mutated by single nucleotide alterations, which suggests 

different roles of the two types of mutations during cancer development. We also 

described in detail examples of complex genomic rearrangements and intragenic 



67 

SVs disrupting known oncogenes and tumor suppressors. Finally we 

characterized the somatic SVs in the intergenic regions and discussed the 

potential functional implications of SVs the overlap with genomic regulatory 

elements. The laSV package is freely available at 

https://github.com/JialiUMassWengLab/laSV/tree/master. 

 

 

Material and Methods 

 

Detection of putative SVs via de novo local assembly 

 

laSV uses the de Bruijn graph as the backbone data structure for assembly. 

Briefly, a de Bruijn graph contains nodes that represent k-mer sequences and 

edges that represent the overlap between nodes (k-mers) and encode 

contiguous sequences as paths within the graph. The construction and storage of 

a de Bruijn graph is adopted from the CORTEX algorithm (Iqbal, Caccamo, 

Turner, Flicek, & McVean, 2012). After the construction of the de Bruijn graph 

from raw reads, laSV maps the reads to the branch sequences using the BWA 

MEM algorithm and identifies “connected” branches as those covered by the 

same read or the same read pair (Figure SIII-1). The connections of branches 

are stored as a hash table in the RAM and used for extending contigs during 

traversing. Next, the de Bruijn graph is traversed in a breadth-first manner to 
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output the “maximal unambiguous contigs” (MUCs). MUCs are defined as the 

longest contigs that contain only the connected branches (Figure SIII-2). These 

MUCs are then mapped to the reference genome using BWA MEM, which 

performs a local alignment. Contig segments that can be mapped to multiple loci 

in the reference genome are discarded because laSV cannot determine their 

origin unequivocally. Contigs that can be split-mapped to discontiguous loci of 

the reference genome are classified as discordant. Discordant contigs are 

indicative of putative SVs and are retained for further analysis.  

 

Genotyping and estimation of SV allele frequencies 

 

laSV further validates the putative SVs by mapping the raw reads to sequences 

that represent both the putative SV alleles derived from the assembled contigs 

and the corresponding alleles in the reference genome using the BWA aln 

algorithm. SV and reference alleles are prepared by extending 500 bp from the 

breakpoints in both directions. SV calls with fewer than four read pairs mapping 

to the variant allele are most likely false positives and are discarded. Based on 

the number of reads mapped to the variant allele and the corresponding 

reference allele, laSV estimates the frequency of the variant allele using the 

formula 

 

F =
CV

CV +CR

, with effective coverages 

 

CV =
V
lV

 and 

 

CR =
R1 + R2
2lR

, where V, 

R1 and R2 represent the number of SV-supporting reads, the number of reads 

supporting reference locus 1 and the number of reads supporting reference locus 
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2, respectively (Figure SIII-3). Effective lengths 

 

lV  and 

 

lR  are given by 

 

lV = λ(i)(i − h)
i=h

1000

∑  and 

 

lR = λ(i)
i=0

1000

∑ i , where 

 

h  is the homologous sequence length   

and 

 

λ(i) is the proportion of reads with fragment size 

 

i  in the library (Trapnell et 

al., 2012).  

 

After performing de novo SV discovery in the cancer genomes, we genotyped all 

of the putative SVs in the matched normal genomes. The SVs present in the 

cancer genomes with a ≥ 10% allele frequency that were supported by ≥ 4 read 

pairs and were absent from the matched normal genomes were considered 

somatic SVs.  

 

Validation of NA12878 SVs using long-read sequencing datasets 

 

We validated the SV calls in an individual with European ancestry using the long-

read sequencing datasets for the same individual provided by Moleculo and 

PacBio. The datasets were downloaded from the 1000 Genomes Project FTP 

site:  

ftp://ftp-

trace.ncbi.nih.gov/1000genomes/ftp/phase3/integrated sv map/supporting/NA12

878/moleculo/, and  
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ftp://ftp-

trace.ncbi.nih.gov/1000genomes/ftp/phase3/integrated sv map/supporting/NA12

878/pacbio/.  

An SV was considered validated if there are 2 PacBio reads or 1 Moleculo read 

that supported the same type of SV with a breakpoint within 6 nt of that identified 

by laSV.  

 

Simulated datasets for comparing SV detection algorithms 

 

To compare the performance of laSV with several other methods, we generated 

simulated datasets each with 100 deletions, inversions and tandem duplications 

randomly inserted across human chromosome 9 using the SV simulation tool 

RSVSim (Bartenhagen & Dugas, 2013). Paired-end Illumina sequencing reads at 

30X coverage with the mean and variance of the fragment size 400 bp and 50 bp 

respectively were then simulated using the pIRS software (Hu et al., 2012). The 

process was repeated for 100 times to produce 10,000 deletions, inversions and 

tandem duplications in total.  

 

Classification of SV mechanisms 

 

Our inference regarding the SV formation mechanism is based on the homology 

length, defined as the length of the homologous sequence between the two 
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breakpoint loci (Figure SIII-4). We define breakpoints with a homology length ≤ 2 

and ≥ –10 (a negative homology length indicates insertion at the breakpoint) as 

being generated by NHEJ, those with a homology length > 2 and ≤ 25 as being 

generated by MMEJ, and those with a homology length > 25 as being generated 

by NAHR. Breakpoints with a more than 10 nt insertion at the breakpoint are 

classified as non-template insertions.  

 

Detection of complex rearrangements 

 

We used breakpoint graphs, as described by Pevzner (Pevzner, 2000), for the 

detection of complex rearrangement. Briefly, each node in the graph represents a 

genomic position, and two nodes are connected by a “breakpoint edge” if there is 

an SV bringing the two genomic positions together. Two nodes are connected by 

an “adjacency edge” if the distance between the two genomic positions is shorter 

than 100 Kb, and the weight of the edge is defined as the genomic distance 

between the two positions. An alternating path in the graph is defined as a path 

consisting of adjacency edges and breakpoint edges in an alternating fashion. A 

shortest alternating path in the graph that contains at least two breakpoint edges 

represents a potential complex rearrangement. The shortest alternating path 

between all pairs of nodes can be computed using a variant of the Dijkstra 

algorithm, as described by Brown (Brown, 1974).  
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Whole-genome sequencing and RNA-seq datasets 

 

All of the whole-genome sequencing and RNA-seq datasets used in this study 

were produced by The Cancer Genome Atlas (TCGA) Research Network. The 

full list of samples used is listed in Supplementary Table SIII-1. The FASTQ raw 

sequence reads of genomic DNA were downloaded from CGHub 

(https://cghub.ucsc.edu/), and transcriptome RNA-seq data were obtained from 

the Data Portal of TCGA (https://tcga-data.nci.nih.gov/tcga/).  

 

Analysis of intergenic SVs 

 

Intergenic SVs (SVs that do not overlap with any genes) in BRCA, CESC, GBM, 

AML and UCEC were overlapped with the ENCODE DNaseI Hypersensitivity 

Uniform Peaks from the cell lines MCF-7, Helas3, Gliobla, K562 and Ishikawa, 

respectively. For enrichment simulation analysis, 20,000 random SV sets were 

generated for each of the five types of cancer, with each random set exhibiting 

exactly the same number of SVs and same SV length distribution as the real set. 

Each random SV set was overlapped with the DNase HS peaks in the 

corresponding cell type, and empirical p-values were computed as the fraction of 

random sets showing more overlap than the observed SV set.  
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Results 

 

Detection of SVs 

 

The overall workflow of laSV is depicted in Figure 3.1. It first uses raw sequence 

reads in FASTQ format as input and performs reference-free local assembly 

using de Bruijn graphs to generate contigs. Next, it aligns those contigs to the 

reference genome and detects all discordant alignments, i.e., different parts of 

the same contig mapped to discontiguous loci of the reference genome, which 

are indicative of putative SVs. Finally it maps the raw sequence reads to both the 

variant allele sequence (obtained from the assembled contigs) and the 

corresponding reference allele and estimates the variant allele frequencies of the 

putative SVs based on the ratio of variant-supporting reads over reference-

supporting reads. This approach naturally integrates read-pair and split-read 

information, and by producing contigs that are much longer than raw sequence 

reads, it avoids some mapping ambiguities and, hence, achieves higher 

accuracy. We use a local assembly approach to avoid aggressively pruning the 

de Bruijn graphs, preserving true SVs present at low allele frequencies in the 

sample. Moreover, the reference-free assembly makes it possible to capture 

novel sequences that are not present in the reference genome.  
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To evaluate the accuracy of our method, we ran laSV on a high-coverage whole-

genome DNA sequencing dataset from an individual of European descent 

(NA12878) produced by the 1000 Genomes Project and validated its results by 

comparing the calls with Moleculo and PacBio long-read sequencing datasets for 

the same individual. Among the SVs predicted by laSV with allele frequencies 

above 10%, 91.54% (1,687 out of 1,843) of the deletions and 94.93% (262 out of 

276) of the non-template insertions were supported by the long-read sequencing 

datasets, suggesting that most of the laSV predictions were correct.  

 

We also compared laSV and other SV detection methods CREST (J. Wang et al., 

2011), pindel (Ye et al., 2009), delly (Rausch et al., 2012) and lumpy (Layer et 

al., 2014) on both simulated datasets (see Methods) and the NA12878 

sequencing dataset. On simulated datasets, laSV achieved 99.20%, 99.46%, 

99.51% precision rates and 83.18%, 85.98%, 81.34% recall rates for deletions, 

inversions and tandem duplications, respectively. Compared with the other 

methods, laSV has high specificity while maintaining good sensitivity (Figure SIII-

5). On the NA12878 dataset, laSV outperforms the other methods in specificity 

(Figure SIII-6). These results show that laSV is able to make reliable predictions 

for various SV types. 

 

We applied laSV to 97 cancer-normal paired high-coverage whole-genome 

sequencing datasets across six cancer types: uterine corpus endometrial 
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carcinoma (UCEC), glioblastoma multiforme (GBM) (Brennan et al., 2013; 

Cancer Genome Atlas Research Network, 2008), sarcoma (SARC), cervical 

squamous cell carcinoma and endocervical adenocarcinoma (CESC), breast 

invasive carcinoma (BRCA) (Cancer Genome Atlas Network, 2012) and acute 

myeloid leukemia (AML) (The Cancer Genome Atlas Research Network, 2013), 

produced by The Cancer Genome Atlas (TCGA) Research Network 

(Supplementary Table SIII-1). We identified somatic SVs as those that were 

present in the cancer sample but absent in the normal tissue of the 

corresponding individual. A total of 35,396 somatic SVs were detected, and we 

observed a high degree of heterogeneity in terms of the total number of somatic 

SVs, the composition of different SV types and the possible contributions of 

different SV mechanisms across samples, even within the same cancer type 

(Figure 3.2). An analysis of the SV length distribution reveals that most of the 

somatic SVs are very short (a few hundred base pairs) deletions and inversions 

(Figure SIII-7), which are possibly the product of error-prone DNA repairs and 

may have limited phenotypic impact.  

 

We asked whether the SVs in CESC were due to human papillomavirus (HPV), 

which is a major cause for CESC. We aligned all the contigs assembled from 

CESC samples to the genomes of all 175 HPV strains downloaded from PaVE 

(http://pave.niaid.nih.gov/) using the BLAT algorithm (Kent, 2002). None of the 
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contigs indicative of SVs could be aligned to the HPV genomes, suggesting that 

the SVs we identified were not caused by HPV.  

 

 

A survey of molecular mechanisms underlying somatic SVs 

 

Because laSV has the capability to pinpoint breakpoints with a single-nucleotide 

resolution, we were able to infer the molecular mechanisms underlying the 

somatic SVs that we detected based on sequence homology at breakpoints (for 

more details about sequence homology please see the methods and materials 

section and Figure SIII-4) (Figure 3.2b). In all five of the solid tumor types we 

analyzed, NHEJ and MMEJ appear to be the predominant forces driving somatic 

SVs, which is consistent with previous reports (Malhotra et al., 2013; Yang et al., 

2013). Surprisingly, in acute myeloid leukemia (AML), most somatic SVs show 

long stretches of homologous sequences across breakpoints and are probably 

the result of NAHR. To ensure that this difference is not an artifact due to the 

choice of homology length cutoffs for classifying the three mechanisms, we 

plotted the distributions of sequence homology lengths at SV breakpoints across 

all of the samples we analyzed (Figure 3.2c). Despite substantial heterogeneity 

among samples within the same cancer type, AML samples generally exhibit 

longer sequence homology at breakpoints than the other cancer types (p-values 
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are 1.46e-4, 1.20e-3, 8.69e-3, 2.36e-5 and 0.0153 versus BRCA, CESC, GBM, 

SARC and UCEC, respectively; Wilcoxon rank sum test).  

 

What might be the reasons for such a differential preference for DSB repair 

pathways among cancer types? We found that for a third of the known genes in 

the HR pathway (6/18), the expression level is significantly higher in AML than in 

all the other cancer types (q-value < 0.01; Figure SIII-9). The genes that are 

more abundantly expressed in AML include BRCA2, FAM175A and BRIP1, 

which encode proteins known as RAD51 mediators, known to be crucial for 

recruiting RAD51 to damaged sites and initiating the HR pathway upon DNA 

damage (Krejci et al., 2012). Perhaps these more highly expressed HR genes 

increase the activity of the HR pathway in AML and lead to a higher proportion of 

SVs produced by NAHR than in the other cancers. An alternative explanation is 

that some unknown mechanism generates extensive DNA damages that require 

HR pathway for repairing and as an emergency response the expression levels 

of those genes are up-regulated.  

 

Identification of complex genomic rearrangements 

 

Complex genomic rearrangements are defined as SVs that are formed in a single 

event and involve multiple breakpoints. One class of replication-based 

mechanisms capable of generating such complex rearrangements is replication 
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fork stalling and template switching (FoSTes) and more generally 

microhomology-mediated break-induced replication (MMBIR) (Hastings et al., 

2009a). Another mechanism is chromothripsis, massive chromosomal 

rearrangements that occur during a single catastrophic event within a localized 

genomic region (Stephens et al., 2011). To identify potential complex 

rearrangements, we developed a graph-based algorithm to connect breakpoints 

that are proximal to each other (see methods and materials section for details).   

 

Figure 3.3a shows an example of complex rearrangement likely due to MMBIR. 

In the gene body of MEGF8, there is a 749 bp deletion and in its place is a 

segment of 5,584 bp that includes the 3´ portion of PPR19 and the 5´ portion of 

TMEM145, two genes upstream of MEGF8. The two breakpoints exhibit 3-bp and 

1-bp homology, respectively. This rearrangement effectively creates two fused 

genes, MEGF8–PPR19 with exons 1-19 of MEGF8 and TMEM145–MEGF8 with 

exons 20-42 of MEGF8. RNA-seq data from the same individual indicates that 

the expression level of exons 1-19 of MEGF8 is 1.24-fold higher than exons 20-

42 of MEGF8 (Figure 3.3a). The TMEM145–MEGF8 chimeric transcript likely 

undergoes nonsense-mediated decay due to a premature stop codon caused by 

the fusion and the reads mapping to exons 20-42 of MEGF8 are from the wild 

type copy of the MEGF8 gene in the sister chromosome.  
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In addition, we noticed that in some of the samples, there are a large number of 

breakpoints concentrated within localized genomic regions. For instance, in one 

SARC sample, the vast majority of breakpoints fall within four narrow genomic 

regions in chromosomes 1, 5, 12 and 14 (Figure 3.3b; left). There are also many 

novel adjacencies connecting fragments of these four regions, suggesting 

extensive rearrangements possibly as a result of faulty DNA repairs in response 

to chromothripsis. Another SARC sample shows similar patterns with different 

genomic loci being affected (Figure 3.3b; right).  

 

Somatic SVs that overlap protein-coding genes 

 

In the samples we studied, there were a total of 17,184 protein-coding genes 

overlapping at least one SV in at least one sample (Supplementary Table SIII-2). 

Most of those SVs probably do not confer a growth advantage to the tumor cells 

carrying them and, hence, are so-called “passenger mutations”. However, there 

was a significant enrichment of known oncogenes and tumor suppressors 

(Vogelstein et al., 2013) (p-value=0.013; hypergeometric test) among the genes 

affected by somatic SVs. Furthermore, when we restricted our analysis to 

somatic SVs present with a 20% or higher allele frequencies, the enrichment was 

more significant (p-value=6.5e-3; hypergeometric test), suggesting that SVs 

having phenotypic consequences are more likely to cause a cancer subclone to 

be selected and increase in frequency. 



80 

  

When we performed gene ontology analysis on genes that are affected by SVs in 

multiple samples for each of the six cancer types (Figure SIII-10), we observed 

enrichment for processes such as immune responses, keratinization, 

metallopeptidase-related processes and cell-cell adhesion. Mutations in genes 

belonging to these biological processes and pathways are unlikely to cause 

tumorigenesis. Instead, they might confer a growth advantage on tumor cells and 

allow them to evade the immune system and metastasize.  

 

Three of the cancer types we analyzed (BRCA, GBM and AML) have been 

extensively studied before by the TCGA consortium (Brennan et al., 2013; 

Cancer Genome Atlas Network, 2012; The Cancer Genome Atlas Research 

Network, 2013). Whole-exome sequencing was performed on hundreds of 

samples for each of these three cancer types to identify recurrently mutated 

genes. We compared the lists of genes showing recurrent single-nucleotide 

alterations (SNAs) and indels with the genes that we found to be affected by SVs 

and asked whether the same genes tended to harbor both SNAs/indels and SVs. 

In BRCA, the overlap between genes showing recurrent point mutations and 

genes affected by SVs was statistically significant (p-value=0.0184, 

hypergeometric test). In GBM and AML, however, there was no significant 

overlap between recurrently point-mutated and SV-mutated genes (p-
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value=0.378 and 0.093 for GBM and AML, respectively), suggesting that 

SNAs/indels and SVs may play different roles during cancer development.  

 

For all of the genes harboring SVs or SNAs in a given cancer type (point-

mutation data are not available for SARC), we correlated the number of samples 

where SV-induced mutations occurred with the number of samples where point 

mutations occurred. We observed negative correlations for all five cancer types, 

with Pearson correlation coefficients r=–0.537, –0.785, –0.713, –0.293 and –

0.697 (all p-values < 1e-100) for UCEC, GBM, CESC, BRCA and AML, 

respectively, further indicating that genes show recurrent point mutations are less 

likely to harbor SV mutations (Figure 3.4a).  

 

To test whether this negative correlation was due to decreased power of 

detecting SNAs in deleted regions, we assessed the relative impact of deletions 

in each cancer type. Since all SNAs are in coding regions (CDS), we compared 

the total deleted length of CDS with the duplicated length of CDS in each cancer 

type (Supplementary Table SIII-3). Our results revealed no strong bias towards 

deletion over duplication and therefore the aforementioned negative correlations 

are unlikely to be the result of compromised SNA detection power due to 

deletions. Furthermore, since the breakpoints of the SVs fall predominantly in 

intergenic and intronic regions far away from CDS, it is also unlikely that the 

negative correlations are caused by the effect of SNAs on SV detection power.  
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The tumor suppressor KDM6A encodes a lysine-specific demethylase that 

catalyzes the demethylation of tri- and di-methylated H3K27. Missense and 

nonsense mutations in this gene have been reported in multiple cancer types 

(Sengoku & Yokoyama, 2011). In one of the CESC samples, laSV detected a 

148,495 bp deletion that eliminates exons 3-28 of KDM6A (Figure 3.4b). This 

deletion leads to a much shortened transcript, which if translated, encodes a 

nonfunctional protein because the JmjC catalytic domain is deleted. Based on 

RNA-seq data from the same individual, we observed 48 reads that map across 

the exon 2–exon 29 junction, indicating that the mutated version of the KDM6A 

gene was indeed transcribed.  

 

The oncogene JAK1 encodes a non-receptor tyrosine kinase whose hyperactivity 

has been implicated in multiple cancer types, including breast cancer, colorectal 

cancer and lung cancer (Ren et al., 2013; Song, Rawal, Nemeth, & Haura, 2011). 

We observed a 22,471 bp tandem duplication that includes exons 6-12 in one of 

the BRCA samples (Figure 3.4c). At the protein level, this duplication leads to an 

extra copy of a portion of the FERM domain, the entire SH2 domain, and the 

SH2-pseudokinase linker. Recent biochemical studies have shown that the 

FERM domain and the SH2 domain of JAK family proteins are crucial for binding 

to the cytoplasmic region of the cytokine receptors (Babon, Lucet, Murphy, 

Nicola, & Varghese, 2014; Wallweber, Tam, Franke, Starovasnik, & Lupardus, 
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2014). Perhaps the duplication increases the affinity with which JAK1 binds to the 

cytokine receptor or shifts the relative position of the kinase domain with respect 

to the cytokine receptor, disrupting proper regulation.  

 

In both of the above examples, the mutated genes are still translated in-frame. In 

other cases, structural variations may also cause a frameshift and, thus, grossly 

alter the amino acid sequences of the protein product. RB1 is a negative 

regulator of the cell cycle and was the first discovered tumor suppressor 

(Benavente & Dyer, 2015). In one of the BRCA samples, we observed a tandem 

duplication that included exons 7-12 of the RB1 gene. This results in a frameshift 

that leads to a premature stop codon (Figure 3.4d). In the same individual, we 

observed a 6-fold decrease in RB1 expression in the tumor tissue compared with 

the nearby normal tissue. The premature stop codon is located 2,077 nt 

upstream of the last exon-exon junction and may have triggered nonsense-

mediated decay, leading to the decreased RB1 level.  

 

Some intergenic SVs may impact genomic regulation 

 

SVs that do not overlap any gene are usually ignored due to the difficulty of 

evaluating their possible effects. For five of the six cancer types we analyzed 

(except SARC) we were able to find DNaseI sequencing data produced by 

ENCODE on cell types corresponding to the same tissue. We then intersected 
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the intergenic SVs with DNase hypersensitive sites (DHSs) in the corresponding 

cell type. Overall, a background level of 1.10% (356/32455) intergenic SVs 

overlapped with DNase hypersensitive regions. Nevertheless, DHS-overlapping 

SVs have higher allele frequencies than the non-overlapping SVs (p-

value=3.73e-4, Wilcoxon Rank Sum test, Figure SIII-11), indicating that DHS-

overlapping SVs are more likely to confer a growth advantage.   

 

BCL9 is an oncogene that encodes an important component of the Wnt pathway. 

BCL9 interacts with β-catenin to enhance its transcriptional activity and is 

implicated in several types of cancer (la Roche, Worm, & Bienz, 2008; Sampietro 

et al., 2006). In one of the BRCA samples, we observed a 22,847-bp duplication 

upstream of the BCL9 gene that overlaps with two DHSs in MCF-7 cells (Figure 

3.5). One of the DHSs is bound by the transcription factors E2F1, CTCF, RAD21 

and MAX. Moreover, the Pol II ChIA-PET data indicate that there is a chromatin 

interaction between the DHS and the promoter of the BCL9 gene, which 

suggests that the DHS may regulate BCL9 transcription. Indeed, we observed a 

63.52% increase in BCL9 expression in the tumor sample compared with the 

matched normal sample. It is likely that the duplication of the regulatory DHS 

leads to an elevated expression level of BCL9. 

 

 

Discussion 
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Cancer is a group of complex diseases driven by various genetic and epigenetic 

alterations. Previous surveys on genetic alterations in cancer have mostly 

focused on single-nucleotide mutations in protein-coding sequences, fusion 

transcripts and copy number alterations of large genomic segments (Vogelstein 

et al., 2013). In this article, we reported a novel algorithm, laSV, that is capable of 

detecting genomic SVs across a wide spectrum of sizes from highly 

heterogeneous tumor samples and pinpointing their breakpoints at a single-

nucleotide resolution. Applying this algorithm to 97 high-coverage whole-genome 

sequencing datasets across six cancer types, we observed several interesting 

phenomena.  

 

Because laSV supports nucleotide-resolution delineation of SV breakpoints, we 

examined the prevalence of different breakpoint formation mechanisms across all 

of the samples that we analyzed. To our knowledge, there have been two studies 

conducted thus far that have comprehensively surveyed breakpoint formation 

mechanisms across multiple cancer types (Malhotra et al., 2013; Yang et al., 

2013). Both studies included only solid tumors and concluded that most 

breakpoints exhibit little or no homology and were therefore probably formed via 

NHEJ or MMEJ. We observed similar patterns in the five types of solid tumors 

that we analyzed. In AML, however, most of the breakpoints showed homologous 

sequences much longer than those needed for NHEJ and MMEJ, suggesting that 
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NAHR is the predominant mechanism of breakpoint formation. Such a preference 

for different breakpoint formation mechanisms might provide important insight 

into the course of evolution taken by different cancer types and have implications 

for the development of cancer type-specific treatments.  

 

At present laSV employs BWA to align assembled contigs to the reference and 

predict SV breakpoints. There are other methods, such as YAHA (Faust & Hall, 

2012) and AGE (Abyzov & Gerstein, 2011), that specialize in aligning long 

sequences and detecting potential breakpoints. In the future it would be 

interesting to explore how laSV performs using these software for contigs 

alignment. In addition to reflecting the confidence level of the SV calls, the SV 

allele frequency computed by laSV could also be useful in some other 

applications, such as distinguishing driver mutations from passenger mutations 

since driver mutations tend to occur early on during the tumor development and 

therefore be present in most of the cells in the tissue. Furthermore, when 

samples from different stages of the tumor development or from different 

metastasized sites are available, it would be informative to compare the SV allele 

frequencies across those samples as they may reveal how the cancer 

progressed and adapted to new metastasized locations. 

 

The fact that genes that show recurrent SNAs do not appear to be preferentially 

mutated by SVs is noteworthy. Considering that the spontaneous mutation rate 
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for point mutations is much higher than for SVs (Itsara et al., 2010), we 

hypothesize that tumorigenesis is often initiated by point mutations and that most 

SVs occur later during cancer development, when DNA repair mechanisms are 

compromised. Because additional SV mutations in a gene already disrupted by 

cancer-causing point mutations rarely enhance the cancer phenotype, they are 

unlikely to be selected for in tumor tissues. The observation that genes that are 

recurrently affected by SVs are enriched for pathways such as cytoskeleton 

metabolism, immune response and cell-cell adhesion, which are unlikely to 

cause uncontrolled cell proliferation but may contribute to the migration, immune 

defense evasion and metastasis of cancer cells, further supports our hypothesis. 

The characterization of SVs in cancer lags behind that of SNAs/indels because 

whole-genome sequencing is more costly than exome sequencing. More cancer 

genomes need to be sequenced to more accurately identify genes recurrently 

affected by SV mutations for various cancer types. Our results indicated that in 

addition to point mutations, gains/losses of large genomic segments and 

transcript fusions, intragenic SVs can also have a significant impact on the 

expression levels and products of protein-coding genes, as demonstrated by the 

examples of KDM6A, JAK1 and RB1. Therefore, laSV, with its ability to 

accurately detect more subtle SVs, will be a valuable tool for future surveys of 

genetic alterations in cancers.  
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Previous reports on cancer research have mostly focused on genetic alterations 

within or including coding regions. A recent study suggests that a large fraction of 

the non-coding portion of the human genome may contain regulatory elements 

(ENCODE Project Consortium, 2012). We found that some of the SVs in non-

coding regions overlap with DNase hypersensitive sites and might have some 

regulatory impacts. The example of BCL9 that we described demonstrates how 

SV discovery in the non-coding region can, when considered in conjunction with 

the rich information accumulated by the ENCODE consortium, shed new light on 

regulatory alterations in cancer. With our rapidly expanding knowledge regarding 

the various regulatory elements in the human genome, further studies will be 

carried out to interrogate the roles of non-coding regulatory regions in cancer. 

The accurate identification of more subtle structural variations and the precise 

determination of their breakpoints will be crucial for the success of such 

investigations. 
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Figure 3.1 

 

 

A schematic representation of the workflow of laSV.  
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Figure 3.2 

 

An overview of the SVs across all of the samples we analyzed. The distribution of (A) different types of SVs, (B) different
breakpoint mechanisms and (C) breakpoint homology sequence lengths across all 97 samples. The evaluated cancer types are
indicated at the bottom of each panel. For CESC, two different scales are used because three of the samples contain many more
SVs than the remaining samples. (D) Expression levels of three key genes of the HR pathway across different cancer types.
Samples within the same cancer type are ranked by the total number of somatic SVs in descending order in (A) and (B) and are
ranked by the median homology sequence length in descending order in (C). TPM is transcripts per million, a means of gene
expression quantification used by the RSEM algorithm, in which the total number of transcripts in a cell is normalized to one
million. RNAGseq data were not available for the GBM samples. ME: mobile element; NI: nonGtemplate insertion; NAHR: nonG
allelic homologous recombination; MMEJ: microGhomology mediated endGjoining; NHEJ: nonGhomologous end joining. 

813 112 424 16106 1312 158 

50 

813 112 424 16106 1312 158 

50 

a 

b 

UCEC GBM SARC CESC BRCA AML 

Inversion
Translocation
Insertion
Tandem Duplication
Deletion

ME
NI
NAHR
MMEJ
NHEJ

UCEC GBM SARC CESC BRCA AML 

UCEC GBM SARC CESC BRCA AML 1 22 4 38 50 66 86

0
50

10
0

15
0

20
0

25
0

H
om

ol
og

y 
le

ng
th

 (b
p)

BRCA2 BRIP1 FAM175A 

UCEC SARC CESC BRCA AML

0
2

4
6

8
10

12
14

0 3 172 88 e�
1 4 0 89 e

Ex
pr

es
si

on
 L

ev
el

 (T
PM

)

UCEC SARC CESC BRCA AML

0
5

10
15

20
25

7 5 0 73 0 e
8 3 61 6

 
 

UCEC SARC CESC BRCA AML

0
5

10
15

20
25

30

6 9 9 e 6
3 53 3 8 2 � 9

 
 

c

d



91 

Figure 3.3 

 

Examples of complex SVs. (A) An example of an MMBIR. Boxes (I) and (II) show the two breakpoint sequences. The characters
in bold indicate homologous sequences. (B) Two examples of chromothripsis.  
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Figure 3.4 

 

 

The impact of somatic SVs on proteinGcoding genes. (A) Comparison of genes frequently affected by point mutations with
those frequently affected by SVs. Purple bars indicate the percentage of samples in which the gene carries SNAs while orange
bars indicate the percentage of samples in which the gene carries SVs. The purple genes are the ones most frequently affected
by SNAs within each cancer type; orange genes are the ones mostly frequently affected by SVs. (B) A deletion within the tumor
suppressor KSDM6A. The black dashed line indicates the exon–exon junction. The orange sequences are representative RNAG
seq reads that map across the junction. (C) A tandem duplication within the oncogene JAK1. (D) Amino acid sequences of the
wildGtype and duplicated versions of RB1. The red asterisks indicate stop codons.  
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Figure 3.5 

 

 

An example of somatic SV affecting intergenic gene regulatory elements. In one of the BRCA samples a tandem duplication
spans a DNase hypersensitive site containing regulatory elements of oncogene BCL9.  
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Figure SIII-4 
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Figure SIII-6 

Comparison of the performance of SV detection methods on a highGcoverage wholeGgenome sequencing dataset on NA12878
cells.
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Figure SIII-10 
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Gene Ontology enrichment of genes mutated by SVs in multiple samples. The enrichment analysis was carried out with DAVID
Functional Annotation Tools (http://david.abcc.ncifcrf.gov) including terms in GO biological process, GO molecular function
and KEGG pathway categories. The pGvalues were corrected for multiple testing using the BenjaminiGHochberg method. AML
is not included here because there is no significant enrichment for any term.  
 

 

 

 

 

 

Supplementary Material III 

Supplementary material for Chapter III is too large to be included here. The 

whole file can be downloaded from link: 

http://nar.oxfordjournals.org/content/early/2015/08/16/nar.gkv831/suppl/DC1 
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CHAPTER IV 

DISCUSSIONS 

 

The advent and advancement of high-throughput sequencing technology is a 

tremendous boost to the quest for better understanding the relationship between 

genotypes and phenotypes. The availability of high quality reference genomes for 

multiple species, combined with genome-wide high-throughput technologies for 

variants discovery and genotyping enables researchers to survey a large number 

of genomes in a time and cost efficient manner. The two methods described in 

this dissertation represent the latest efforts of harnessing the power of high-

throughput sequencing for genetic variants/mutations discovery and genotyping. 

By providing a computational framework that selects and integrates reads 

incompatible with the reference and reconstructs the sample genome at the loci 

where it differs from the reference genome, TEMP and laSV are able to detect 

TE transpositions and SVs accurately, define the breakpoints at single nucleotide 

resolution and estimate the allele frequencies of the variants/mutations within the 

samples. The allele frequencies can also serve as confidence indicators for the 

predicted SVs. Since they are normalized for the local sequencing depth the 

allele frequencies are a more robust benchmark for measuring confidence level 

than simply the number of supporting reads. Validation on both simulated 

datasets and real biological datasets showed that the predictions made by the 
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two methods are reliable and they outperform other state-of-the-art tools in some 

important aspects.  

 

Although there could be potential overlap between the applications between 

TEMP and laSV, these two methods are intended for different purposes. laSV 

employs a de novo assembly approach and compares the assembled contigs 

with the reference genome to predict putative SVs. This makes it quite versatile 

and able to detect all types of SVs including TE insertions at least in theory. In 

practice, however, two factors limit laSV’s power for detecting novel TE insertion 

events. First of all, the inserted TE sequences are highly repetitive (there are 

usually hundreds or even thousands of almost identical copies in the genome) 

and the effort for de novo sequence assembly is usually severely hindered by the 

presence of repetitive sequences. Secondly, the success of the assembly 

approach depends heavily on sufficient sequencing depth because it requires 

enough overlap between neighboring reads in the region. For those TE insertion 

events present in the sample with relatively low allele frequencies, the small 

number of reads derived from the insertion allele makes it impossible to 

assemble across the insertion breakpoints and therefore severely limits the 

sensitivity of laSV in terms of detecting low-frequency TE insertion events.  
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TEMP, on the other hand, is specifically designed for detecting TE insertions and 

absences present with both high and low allele frequencies within the samples. 

Since it detects transposition events based on discordantly paired reads, is has 

no problem picking up TE insertions that are supported by only a few reads and 

therefore achieves higher sensitivity. TEMP takes advantage of the known 

consensus sequences of the active transposable elements to accomplish both 

high sensitivity and high specificity. But this approach also limits its utility, making 

it far less versatile than laSV and can only be used for detecting TE transposition 

events.  

 

As I mentioned in the previous chapters, genomic structural variations is a class 

of highly complex and heterogeneous genetic variants and hence it is almost 

impossible to have a method or algorithm that can have superb performance on 

all types of SVs. That is our main motivation for developing these two different 

methods presented in this dissertation with laSV aiming at discovering SVs in 

general with relatively high allele frequency; and TEMP focusing specifically on 

TE transposition events across the entire allele frequency spectrum. Deploying a 

combination of different complementing methods is essential for obtaining a 

comprehensive picture about the global genetic variants/mutations landscape 

and crucial for the success of many projects.  
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In the following sections I will summarize the new innovation trends in the high 

throughput sequencing technology and discuss their potential repercussions on 

the evolution of the SV discovery algorithms.  

     

Limitations of current high-throughput sequencing technology 

 

Short read length and fragment size 

 

Despite its enormous power and tremendous success in recent years, current 

popular high-throughput sequencing technology has its own limitations, most 

notably the relatively short read length and fragment size. As a consequence of 

this technical limitation the analysis that involves highly repetitive sequences 

longer than the fragment size (e.g., active transposons, segmental duplicated 

regions) is very challenging and some are even impossible. Here I discuss a few 

scenarios where interesting and important analysis are hampered due to the 

short read length and fragment size of current high-throughput sequencing 

technology. 

 

1. In the genomes of many species multiple highly similar copies of the same 

transposon element are present. It would be informative to know which of 

the copies are active and responsible for the newly discovered 



104 

transposition events in the sample genomes because it will enable 

researchers to study the potential factors controlling the activeness of 

transposons such as genomic context (close to or far away from genes), 

DNA methylation at the promoter, chromatin state (open versus closed), 

and so on. Such information is almost unavailable, however, when both 

the read length and the fragment size of the sequencing library is 

substantially shorter than the transposon length. This is because in such 

situation we can only resolve the two ends of the inserted transposon 

sequence, which in most cases is insufficient to uniquely identify the 

original copy.  

2. When the breakpoints of an SV fall within highly repetitive sequences 

longer than the fragment size of the sequencing library the SV will most 

likely eludes detection since the reads are too short to uniquely resolve 

either of the breakpoints and the read pairs cannot span the repetitive 

sequence due to the short fragment size. Because it is possible that a 

non-allelic homologous recombination happens between two highly similar 

sequences and thus causes an SV, this limitation might sometimes lead to 

false negatives in SV detection from high-throughput sequencing datasets. 

  

3. The short read length and fragment size also put constraints on the effort 

for haplotype phasing in diploid genomes. For multiple variants loci, it is 

very useful to know their exact genotypes on each of the parental 
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chromosomes (i.e., resolving haplotypes). Such information is necessary 

for linkage disequilibria detection among multiple loci and greatly 

facilitates the imputation of low-frequency variants. When the distance 

between two variant loci is greater than the fragment size, they will never 

appear on the same fragment and it is therefore impossible to accomplish 

phasing based on high-throughput sequencing alone. There are 

computational software developed that use population/pedigree data and 

statistical models to accomplish haploid phasing from high-throughput 

sequencing datasets. But in cases where such population information is 

not available (which is true for nearly all non-model organisms) this 

approach will not work.  

 

Requirement for relatively large quantity of samples 

 

A typical Illumina paired-end sequencing library requires 2-5µg double-stranded 

DNA, which have to be harvested from a large number of cells. This requirement 

precludes the possibility of surveying individual genomes separately in 

heterogeneous samples such as tumor tissues. In the context of genetic variants 

analysis in samples containing multiple heterogeneous genomes, it is informative 

to know if two variants/mutations happen in the same genome and how often do 

they reside in the same genome. Such information allows us to investigate the 

relationship between pairs of genetic variants/mutations, for example, does one 
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mutation precedes another; is any mutation causing a higher mutation rate 

genome wide; is there any epistatic interactions among variants/mutations, etc. 

With sample DNA coming from a mixed pool of different genomes and relatively 

short fragment size, it is extremely difficult and in most cases impossible to figure 

out such co-occurrence information between any pair of variants/mutations on 

mainstream short-read sequencing platforms.  

 

New development in high-throughput sequencing technology 

 

Several commercial companies are developing novel technologies that can 

overcome the aforementioned limitations of current popular high-throughput 

sequencing technology. Pacific Biosciences RS II platform for example is able to 

sequence long stretches of DNA (10-15kb) in a single-molecule manner 

(Eisenstein, 2015). The downside of this platform at the current stage is that it is 

relatively expensive and the sequencing error rate is quite high. An alternative 

strategy that has shown some promise is to use biochemical tricks to assign 

short reads to genomic addresses, instead of producing ‘true’ long reads. The 

GemCode platform developed by 10X Genomics, for instance, partitions long 

DNA fragments (on average 50 kb) in to oil-encased droplets with each uniquely 

labeled by a 14-base barcode sequence and then the barcoded products are 

directly transferred to standard Illumina sequencing. Once the sequencing is 

finished, a software reconstruct the original long DNA fragments based on the 
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barcode information. This approach is compatible with widely used Illumina 

platforms and therefore requires minimum extra expenses on instruments. But as 

a consequence it is also subject to the biases and limitations of the Illumina 

platforms (Eisenstein, 2015).  

 

There is also progress in the area of single-cell sequencing, which will allow 

researchers to study the genomes of single cells (Baslan & Hicks, 2014; Y. Wang 

& Navin, 2015). The major technical obstacle in sequencing extremely low 

amount of DNA lies in pre-sequencing DNA amplification. Since the standard 

sequencing technology requires much larger amount of sample DNAs than a 

single cell can offer, whole genome amplification (WGA) is an essential step for 

any attempt to sequence the genomes from a single cell. At present, the most 

widely used WGA methods are degenerative-oligonucleotide-PCR (DOP-PCR) 

and multiple-displacement-amplification (MDA), both of which have its own 

defects. DOP-PCR generally faithfully retains copy number levels during WGA 

but its low physical coverage makes it ill suited for detecting SNPs/indels or 

mutations in the sample genome. On the other hand although MDA is able to 

achieve high physical coverage, it often causes non-uniformity coverage and 

distorts the copy number of genomic segments (Y. Wang & Navin, 2015). 

Another method called multiple annealing- and looping-based amplification 

(MALBAC) is able to obtain both copy number information and single nucleotide 

variations but tends to generate high false positive rates (Zong, Lu, Chapman, & 
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Xie, 2012). All current approaches tend to introduce extensive technical errors 

and as a result any potential biological signals detected from such procedures 

need to be carefully validated by more reliable molecular biology techniques such 

as single-cell qPCR (Y. Wang & Navin, 2015).   

 

The potential impacts of these new developments on SV discovery and 

genotyping efforts 

 

As mentioned in the previous section, the efforts in sequencing technology 

innovation is directed largely at preserving the information contained within the 

sample molecules as much as possible. In the future, the sequencing depth of a 

library will be derived more from the length of the reads instead of the number of 

reads while extensive PCR amplifications will be avoided as much as possible. 

This means that the next generation of SV discovery algorithms will likely be 

handling libraries with fewer sequencing reads and longer read lengths.  

 

In principle at least, longer reads will make it easier to detect SVs algorithmically 

because the problem essentially regresses back to the canonical local sequence 

alignment problem, which has been extensively studied and highly reliable and 

efficient algorithms such as Smith-Waterman algorithm and its variations have 

been proposed and implemented.  The need for complicated heuristics that seek 

to cluster sequencing read-pairs and predict the potential SV events that 



109 

generate them based on convoluted rules will gradually disappear. The detection 

of complex genomic rearrangements will also likely to benefit enormously from 

the movement towards longer sequencing reads. This is because complex 

genomic rearrangements often lead to read-pairs that cannot be explained by 

simple SV events and even reads that cannot be mapped to the reference 

genome and hence eludes conventional SV discovery algorithms. Long 

sequencing reads may potentially cover the entire region and reveal all the 

rearrangements at once. The decreasing number of reads, however, may 

present a challenge for putative SV validation and SV allele frequency estimation 

because a smaller sample size (number of reads) compromises the powers of 

statistical models. As a consequence, the focus of future SV detection algorithms 

may shift away from inferring putative SVs towards validating putative SVs 

presented in the long reads with sound and rigorous statistical models to avoid 

false positives introduced by sequencing errors while preserving valid 

predictions.   A potential alternative is to perform short-read targeted sequencing 

in regions around the SVs predicted by long-reads sequencing experiment. This 

approach allows one to detect potential SV alleles with long-read sequencing and 

then validate the predictions (and/or estimate their allele frequencies) with a large 

number of short reads. With the long-read library providing sequence information 

at and around the potential SV alleles and the short-read library offering sufficient 

statistical power for validation and frequency estimation, this combination might 

yield the best performance.     
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Concluding remarks 

 

Despite continual progress and improvements in the long-read sequencing and 

single-cell sequencing technologies, substantial time and efforts are still needed 

before either technology can mature into accurate, fast and affordable 

sequencing platforms. At the same time, new datasets are being produced from 

short-read sequencing platforms at an unprecedented pace thanks to the 

decreasing cost and improved accessibility for such experiments. For instance, 

The Cancer Genome Atlas (TCGA) and International Cancer Genome 

Consortium (ICGC) alone hosted thousands of whole genome sequencing 

datasets that have yet to be adequately analyzed. Despite all the shortcomings of 

current short-read sequencing technology, these data if analyzed properly still 

hold great potential for shedding new light onto various biological mysteries. This 

is the reason why it is still necessary to focus on analysis that are possible under 

short-read sequencing technology and continue to design and improve 

algorithms based on this technology.  

 

Another area that requires extensive efforts in the near future is the functional 

elucidation and annotation of genetic variants and mutations especially those 

only affecting intergenic regions. It is well known that the majority of genetic 

variants/mutations are in intergenic regions but ascertaining whether or how they 
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alter any physiological processes still remain elusive due to our limited 

knowledge about the non-coding regions of the genome. That limitation, 

however, is being shaken by the multiple consortium efforts to interrogate 

genomic regulatory elements such as ENCODE and Epigenetic Roadmap. The 

epistatic interaction among variants/mutations is also attracting attentions lately. 

Phenotypic traits are usually determined by complicated biological pathways and 

different variants/mutations affecting different components of the pathway may 

exert synergistic effects on the manifested phenotypic traits. The elucidation of 

such complex phenomena entails more sophisticated statistical models such as 

Bayesian Network and much larger sample sizes to ensure sufficient statistical 

power.  

 

The possibility of obtaining high-quality sequencing result from small amount of 

DNA samples may eventually allow the detection of mutations from cell-free 

tumor DNAs (ctDNAs). ctDNAs are DNA fragments released by tumor cells into 

the blood circulation that may carry cancer specific mutations. The ability to 

reliably detecting or genotyping ctDNAs holds great promise for developing 

biopsy-free biomarkers for early cancer diagnosis. 

 

The field of biomedical research is experiencing an exciting transition. With the 

rapid development of high-throughput technologies researchers are now 

examining biological systems and disease associated problems in an 
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increasingly holistic and population-centered manner. This trend promises to 

fundamentally change the way we understand biological systems and diseases 

and dramatically improve the efficacy of medicine. Accurate, efficient and well-

designed computational algorithms will prove instrumental in making this 

transition a reality.   
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