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Abstract

Duplications and deletions are a major source of genomic variation. Duplications,

specifically,  have  a  significant  impact  on  gene  genesis  and  dosage,  and  the  malaria

parasite  P. falciparum has developed resistance to  a growing number of anti-malarial

drugs via gene duplication. It also contains highly duplicated families of antigenically

variable  allelic  genes.  While  specific  genes  and  families  have  been  studied,  a

comprehensive analysis of duplications and deletions within the reference genome and

population has not been performed. We analyzed the extent of segmental duplications

(SD)  in  the  reference  genome  for  P.  falciparum,  primarily  by  a  whole  genome  self

alignment. We discovered that while 5% of the genome identified as SD, the distribution

within  the  genome  was  partition  clustered,  with  the  vast  majority  localized  to  the

subtelomeres.  Within  the  SDs,  we  found  an  overrepresentation  of  genes  encoding

antigenically diverse proteins exposed to the extracellular membrane, specifically the var,

rifin, and stevor gene families. To examine variation of duplications and deletions within

the parasite  populations,  we designed a  novel  computational  methodology to identify

copy  number  variants  (CNVs)  from high  throughput  sequencing,  using  a  read  depth

based approach refined with discordant read pairs. After validating the program against in

vitro lab cultures, we analyzed isolates from Senegal for initial tests into clinical isolates.

We then expanded our search to a global sample of 610 strains from Africa and South

East  Asia,  identifying  68  CNV regions.  Geographically,  genic  CNV were  found  on
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average  in  less  than  10% of  the  population,  indicating  that  CNV are  rare.  However,

CNVs at high frequency were almost  exclusively duplications associated with known

drug resistant CNVs. We also identified the novel biallelic duplication of the crt gene –

containing both the chloroquine resistant and sensitive allele. The synthesis of our SD

and CNV analysis  indicates a CNV conservative  P. falciparum  genome except where

drug and human immune pressure select for gene duplication.
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CHAPTER I: Introduction
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1.1 Genomic Duplications and Deletions

Duplications and deletions are the gain and loss of nucleotide sequence in the

genome.  Genomic  duplications  are  a  significant  means  of  genetic  adaptation  found

through all organisms. The duplication and deletion of genic content is conducive to rapid

gene dosage control, genesis of new gene function, and diversification of function within

a gene family. However, the change in gene expression from duplications and deletions is

not without consequence, and can be subject to significant selective pressures for fixation

or removal from the population. This results in genetic copy changes that are transient

and highly  variable  within  the population  of  the organism,  resulting in  copy number

variation.

During evolution,  genes are often subject  to copy number changes,  whether a

duplication or deletion of the gene  [1]. The size of the region affected can range from

single genes to entire chromosomes  [1, 2]. A copy number change has immediate short

term ramifications, specifically on gene dosage, but over time, can result in new functions

arising as mutations occur  [3]. While deletions usually have deleterious effects and are

rarely propagated, duplications have a number of possible evolutionary end points  [4].

The evolutionary fate of duplications is dependent on the selective pressures on the gene.

In situations where increased protein production confers an advantage, gene duplication

is a simple means to provide increased protein production, as it doubles the available

transcribable  nucleotide  sequence.  It  is  also  a  more  rapid  means  to  control  gene

expression than through nucleotide substitution as  the gene duplication rate  has  been
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found to be significantly higher than the per nucleotide substitution rate  [5]. This has

been a  significant  area  of  investigation  due  the  effect  increased  gene  dosage  has  on

pathogen drug resistance.

A primary effect of gene duplication is increased gene dosage (Figure 1.1)  [6].

Given positive selection,  the duplication can become fixed in the population,  and the

copies will both remain highly conserved  [7]. Changes in gene dosage is an important

means of mutability and adaptability for organisms  [8]. Commonly,  it  is  a means for

pathogenic  resistance  to  chemotherapy,  such  as  the  duplication  of  blaSHV-11 gene  in

Klebsiella  pneumoniae for  increased  amoxicillin  resistance  [9].  The  increased  gene

dosage can also be present to compensate for another deleterious mutation. For example,

resistance  to  actinonin,  a  peptide  deformylase  inhibitor,  arises  via  mutations  to

methionyl-tRNA formyltransferase and incurs a large fitness disadvantage in the absence

of actinonin [10]. In the absence of actinonin pressure, duplications are rapidly removed

from the gene pool due to incurred fitness disadvantages. However, gene duplications to

metZ and metW genes have been shown to mitigate the fitness disadvantage of actinonin

resistance  [11]. Gene dosage change by duplication is a rapid, compared to nucleotide

substitution, and effective reaction to various selective pressures.

The balance of gene dosage is typically at an effective equilibrium, and so the

genome is resistant to many changes in gene regulation. Therefore, if the increased gene

dosage has overall a deleterious effect, it results in the rapid removal of the duplication

from  the  population  [3].  With  little  to  no  selective  pressure  to  maintain  the  gene

duplication, the fate of duplicated genes is loss from the population due to deleterious
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Figure 1.1 The effects of gene duplication. A) Gene duplication results in increased

gene dosage, as the duplication of a gene directly results in increased protein production

of the gene. B) Over time, one copy of a gene duplication may accrue enough mutations

to produce a protein with a new function. This results in a reversion to previous gene

dosage levels and an increase in potential functionality.
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selection  or  loss  through  random drift  [12].  If  a  gene  is  maintained,  often  silencing

mutations  occur  that  result  in  the pseudogenization  of  the gene.  More  rarely  relaxed

selective pressures on the gene dosage change can maintain the duplication for the gain of

advantageous mutations and new function [13–15].

A new function can evolve by one of two courses: subfunctionalization or neo-

functionalization (Figure 1.2)  [16]. In subfunctionalization, accumulation of mutations

results in the combination of both copies providing the original and necessary function

[16–18].  This  decouples  the  domains  or  the  original  gene,  resulting  in  dependent

evolutionary trajectories and further specialization of functions. Neofunctionalization is

the more common fate for duplicated genes that are not silenced  [15]. In the case of

neofunctionalization, one copy attains new functionality separate from the original copy

[15, 19]. This provides an important avenue for genetic adaptation [4]. Evidence indicates

that the new copy, if not silenced, will undergo rapid and asymmetric mutation [13, 15,

20]. Recent evidence supports neofunctionalization as the more common means of new

gene specialization and gain of function over subfunctionalization [13]. This indicates an

importance in the maintenance of original gene copy function. Neofunctionalization can

result in large duplicated gene families with diverse or redundant functionality  [1, 21].

This is especially evident in gene families undergoing diversifying selection, such as the

human olfactory receptor contingent  [22, 23]. It  is  also a common means to increase

antigen diversity in pathogens, including the malaria parasite Plasmodium falciparum. P.

falciparum's  ability  to  chronically  infect  the human is  thought  to  account  for  a large

repertoire of diverse antigens to counter the human immune response  [24].  Increased
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Figure 1.2 Subfunctionalization and neofunctionalization of gene duplication. A) The

equivalent  loss  of  function  rate  between  two  duplicated  genes  results

subfunctionalization. The two duplicate genes have specialized in various functions of the

ancestral gene. B) The asymmetric loss of function between two duplicate genes and the

gain  of  new  function  of  one  of  the  duplicates  is  the  typical  course  of  action  for

neofunctionalization.
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diversity and redundancy in function can provide a greater fitness advantage.

Numerous studies have investigated the extent of duplications and deletions to

better  understand  the  impact  of  the  subsequent  genetic  diversity  on  fitness  [25–29].

Genomic  duplications  are  an  avenue  of  genetic  adaptation  found  in  all  types  of

organisms. They provide a means for rapid gene dosage control, genesis of new gene

function, and diversification of function within a gene family. However, the genetic copy

changes are also very transient and so are affected strongly by purifying selection  [3].

This makes detection of these copy number changes difficult.

1.2 Detection of Duplications and Deletions

Duplications and deletions are difficult  phenomena to detect  and for which to

delineate lineage. However, current sequencing efforts have made it possible to detect

ancient  and recent  copy number changes  [30,  31].  With the advent  of  complete  high

quality  reference  genomes  [32,  33],  comparison  within  the  reference  genome  and

between species has made the delineation of duplications and deletions possible [34, 35].

Array comparative genomic hybridization (array CGH) and high throughput sequencing

technologies have also made it possible to detect genome wide copy number variation

[30]. Detection of these duplications and deletions aids in understanding past and current

evolutionary pressures [36].

Duplications and deletions leave behind evidence of their existence in the genome

– the sequence itself. Segmental duplications are blocks of normal genomic DNA that

occur  more  than  once  within  the  genome,  such as  the  tracts  of  duplicated  sequence
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composing  much  of  the  mammalian  repertoire  of  olfactory  genes  [37].  Segmental

duplications are identified by regions of high similarity sequence within the genome. We

can  infer  regions  of  duplication  and  fixation  from the  divergence  of  sequence,  with

greater divergence related to greater likelihood of fixation. Segmental duplications can

point to sequence in the genome that may still be undergoing variation in the greater

population. For example, mammalian genomes have shown a large expansion of olfactory

genes, but in primates the extent of duplication of olfactory genes has been decreasing

[36].  Segmental  duplications are  most  easily  via self-alignment  of sequence from the

reference genome, either with amino acid or nucleotide sequence [38–40]. However, only

duplications can be reliably detected. Without related species for comparison, deletions of

genomic  regions  leave  little  trace  of  their  occurrence.  Species  specific  duplication  is

difficult to determine from more ancient duplication without cross comparison between

genomes  [41].  High  similarity  sequence  between  species  can  identify  potential

orthologous  genes  between  the  species  and  paralogous  genes  within  the  species.

Examination of what genes are duplicated is important for understanding the evolutionary

pressures  upon  duplications  after  speciation  [42].  Using  sequence  data  from  related

species, we can also detect deletion events in our species of interest [36].

Genomes are not static, and the continual production of duplications and deletions

means that genomes are constantly in flux. The resultant variation caused by periodic

genomic  duplication  and deletion  is  referred  to  as  copy number  variation.  These  are

duplications and deletions that have not become fixed throughout the population, and so

vary between individual genomes. These genetic copy change events are in the midst of
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either fixation for gene dosage advantages, silencing, or neo- and subfunctionalization

[43]. Currently, the capabilities exist to rapidly detect copy number variations genome-

wide  between  individuals  [44].  This  can  be  done  either  with  array  CGH  or  high

throughput sequencing, making it possible to survey entire populations for copy number

variation. Surveying populations for copy number variation can identify variants between

individuals, potentially highlighting a fitness advantage to these copy number variations

[45].

Currently, there are methods for the detection of duplications and deletions, both

ancient and recent. These methods involve either self-alignment of the reference genome

or read depth analysis of multiply aligned sequences against the reference genome [31,

46, 47]. The analysis of these duplications and deletions provides important insight into

the evolutionary pressures at work. These insights are not only important to understand

evolutionary forces at work on the human genome [48], but also play an important role in

pathogenic genomes [49]. Of great interest is the pathogenic parasite P. falciparum. The

sheer scale and rapidity of population P. falciparum turnover results in duplications and

deletions  having  an  important  and  rapid  role  in  adaptation.  Genetic  duplications  are

extensively used by pathogenic agents for diversification of whole gene families for the

purpose of evasion of the human immune system, P. falciparum included. In addition, the

mounting selective pressure from chemotherapeutic therapies has increased the role of

gene dosage control by genetic copy number variation in P. falciparum [50, 51]. This has

spurred increased efforts to rapidly survey P. falciparum populations to 1) understand the

extent of known drug resistance-related CNVs and 2) identify previously unknown drug
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resistance-related CNVs.

1.3 Plasmodium falciparum

In P. falciparum, a human malaria parasite, the duplication and deletion of genes

is a major means of adaptation  [52]. Malaria is a global epidemic, responsible for an

estimated 219 million cases and 660,000 deaths a year [53]. It primarily affects tropical

areas and developing nations. Greater than 90% of malaria related mortalities are caused

by  Plasmodium falciparum [53].  In  addition  to  the  mortality  totals  it  inflicts,  it  also

significantly impacts local economies, both due to the health care burden and the loss of

work time at  all  ages from recurrent infection  [54]. This species is distributed in the

tropics worldwide, but the majority of cases occur in Sub-Saharan Africa. Children tend

to suffer disproportionately from the most serious clinical syndromes of  P. falciparum

[53].

The life cycle of P. falciparum involves two hosts, both the mosquito vector and

the human host (Figure 1.3). Both aspects of its life cycle involve points of significant

duplication of the genome,  indicating points  of  potential  recombination and therefore

duplication and deletion of parts of the genome. There are four points in the life cycle of

P.  falciparum where  asexual  duplication  of  the  genome occurs  to  produce  numerous

progeny, in addition to sexual reproduction between a male and female gametes. Upon

uptake of blood from a human host of P. falciparum, the sexual reproductive cycle occurs

between parasites. Male gametocytes undergo further duplication of the genome to 8N

ploidy,  before  subsequently  dividing  into  eight  haploid  gametes  [55].  Fertilization
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Figure 1.3 Life cycle of the malaria parasite P. falciparum.
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between  a  male  and  female  gamete  results  in  a  diploid  zygote,  which  will  undergo

genome duplication to become tetraploid ookinetes  [56]. Eventual differentiation of the

zygote  to  an  oocyst  and  then  the  sporogony of  thousands  of  sporozoites  [57].  From

gametocyte to sporozoite, the P. falciparum parasite traverses from the mosquito midgut

to the salivary glands [58]. The sporozoites infect the human host from the saliva of the

mosquito during a blood meal [59].

Upon infection by mosquito bite, the sporozoite infects hepatocytes, starting the

life cycle of the P. falciparum parasite in the human host [59]. Within the hepatocytes, the

sporozoite matures further until schizogony, resulting in serial duplications of the genome

and subsequent release of thousands of merozoites upon lysis of the hepatocyte [56]. The

merozoites infect  erythrocytes to enter  the erythrocyte stage of the  P. falciparum life

cycle. During this erythrocytic cycle, the parasite undergoes asexual reproduction during

schizogony to produce about  16 duplicated genomes  [60].  These schizonts eventually

divide into individual merozoites to reinfect a new erythrocyte and begin the cycle anew

[61].

Untreated,  the erythrocytic  stage  is  the longest  stage in  the  P. falciparum life

cycle.  Despite treatment being widely available and prescribed, asymptomatic malaria

still remains a major reservoir of long term P. falciparum infection [62]. The long term

infection of  P. falciparum in the erythrocytic cycle, which can exceed 3 years, requires

significant diversity of extracellularly exposed parasite proteins [63]. These proteins are

targeted by the human immune system and so are under significant selective pressure by

the human immune system for diversification. The proteins during the erythrocytic cycle
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that have the most time exposed extracellularly are found in large gene families with

significant nucleotide diversity, and therefore significant amino acid diversity [64]. This

may  be  a  prominent  reason  for  the  constant  recurrent  infections  –  the  high  antigen

diversity from the large and heavily duplicated gene families of under strong selective

pressure for diversity from evasion of the human immune system [64]. The life cycle of

the malaria parasite involved numerous points of genomic duplication and recombination,

each of which provides the necessary conditions establishment of duplication within the

haploid genome. 

1.4 Duplications and Deletions in Plasmodium falciparum

While  many  chemotherapeutic  solutions  have  been  developed  over  the  years,

developing drug resistance has materialized for current mainstream therapies, many via

duplication of particular alleles  [65–67].  Genetic  duplications have been shown to be

important in the arms race against human immune system and chemotherapeutic agents.

Large gene families undergo diversifying selection for antigenic evasion [68]. There have

been numerous studies on gene duplications for increased drug resistance  [50, 69, 70].

Large deletions of entire arms of chromosomes have been identified as adaptation to in

vitro culturing  of  the  parasites  [71].  However,  the  extent  of  duplication  fixation  and

variation between strains has not been systematically investigated.

Large  gene  families  within  the  P.  falciparum genome  are  borne  of  ancient

duplication events [64]. The consecutive duplications of an ancestral gene were generated

out of necessity for diversification or novelty of function. One of the major examples of



17

this  is  the  var gene  family  [72].  Proteins  coded  by  these  genes  are  inserted  in  the

erythrocyte membrane and are responsible for the subsequent binding to the endothelial

lining, thereby sequestering the infected erythrocyte in post-capillary venules  [73]. As

deformability of the erythrocyte decreases during maturation of the P. falciparum parasite

during infection of the erythrocyte, the sequestration of the parasite into post-capillary

venules by the var genes prevents splenic filtration of infected erythrocytes and parasite

destruction  [74]. There are a number of similar gene families, such as  rifin and  stevor

genes [75], which have functions in other aspects of the parasite life cycle. stevor genes

are implicated in the rosetting of erythrocytes and mediation of merozoite invasion [76].

While there are numerous studies analyzing the sequence similarity within these gene

families  [77, 78], little has been done to holistically examine the duplication profile of

these genes. Most work has excluded surrounding genes and sequence. All these gene

families exist within the same regions of the genome, primarily the subtelomeres [79]. As

gene duplications rarely occur for singular genes, multiple genes are often duplicated

[80]. The extent of duplication in P. falciparum has not been studied systematically. We

perform a systematic analysis of copy number variation and segmental duplications in the

fully  sequenced  genome of  P.  falciparum,  identifying  high  sequence  identity  regions

throughout the genome by a BLAST-like self-alignment.  Gene ontology trends,  GC%

bias, and the potential means of sequence diversification between the large gene families

are explored.

In  this  work,  segmental  duplications  identified  from a  high  quality  reference

genome denote duplications found within the reference genome. We performed a self-
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alignment based process of the  P. falciparum 3D7 reference genome to identify these

segmental  duplications.  From  this,  we  identified  regions  of  high  identity  and  likely

duplications. While many of these duplications may be fixed in the overall P. falciparum

population, many may not be fixed. Duplications and deletions are a continual process, so

there may be significant variation of gene duplication and deletion between strains of P.

falciparum [70,  80].  These  copy  number  variations  are  typically  short  term  gene

duplications as adaptations against selective pressure. The most prominent examples have

been in copy number variation linked to drug resistance.  PFE1150w, PFL1155w, and

PFD0830w are all gene whose amplification has been linked to drug resistance [50, 69,

70]. Multiple classes of drugs are affected by these gene amplifications including anti-

folates and 4-amino-quinolones. In addition, there are known copy number variations that

are side effects of adaptation to in vitro cell culture of parasites, having roles in growth

fitness [52, 71].

Many of the copy number variations identified were through select quantitative

PCR experiments on likely gene targets [69, 81, 82]. There have been attempts to provide

a  genome  wide  systematic  test  for  copy  number  variations  –  via  array  comparative

genomic hybridization (array CGH) and high throughput sequencing [83–86]. However,

the difficulty of working with a highly AT biased genome composition with significant

tracts  of  simple  sequence  has  made  surveying  the  extent  of  copy  number  variation

throughout the natural P. falciparum population a difficult endeavor. Most genome wide

analysis involves  in vitro cell cultured lab strains, both with array CGH and next gen

sequencing. Despite numerous methods to leverage high throughput sequencing for copy
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number  variation  detection  in  P.  falciparum [84–86],  there  have  been  no  published

experiments to identify copy number variation from a large cohort of field isolates of P.

falciparum. This is partly due to the significant AT bias of the genome, which mitigates

the  ability  to  specifically  identify  copy  number  variation  from  high  throughput

sequencing. To identify copy number variation in natural populations of  P. falciparum,

we  developed  a  custom  computational  methodology  to  leverage  high  throughput

sequencing data to sensitively and specifically identify copy number variations in the

genome. We tested this program on a publicly available sample of unique P. falciparum

strains from Senegal to test the validity of our method [87]. In addition, we investigate

the genome wide analysis of copy number variation from over 600 publicly available

high throughput sequencing datasets  from Africa and South East Asia:  Burkina Faso,

Cambodia, Gambia, Ghana, Guinea, Kenya, Mali,  Senegal, and Thailand  [87–91]. We

determine that copy number variation in P. falciparum is rare within the population, and

we also discovered  a  number  of  novel  copy number  variations  -  with  potential  drug

resistance implications or growth adaptations.
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2.1 Introduction

Duplication of genomic DNA is a long recognized route for the creation of novel

genes  [92].  Duplications can be categorized based on various metrics such as length,

location, gene content, or mechanism of transposition. A primary categorization is often

performed by length, ranging from duplication of the entire chromosomal complement

(whole genome duplication or polyploidy), through duplication of a single chromosome

(aneuploidy), to duplication of small portions of chromosomes (segmental duplication),

which  can range from hundreds to millions of bases in size. Segmental duplications are

also often described on the basis of their functional content (gene, partial gene, or exon)

or  in  terms  of  the  relative  location  (intrachromosomal  versus  intrachromosomal  and

tandem  versus  interspersed).  Segmental  duplications  can  occur  through  multiple

mechanisms, of which aberrant non-allelic homologous recombination, or breakage and

repair events through non-homologous end joining are the most common [93–95].

Initial studies of gene evolution through duplication have focused on the role of

large-scale  whole  genome  duplications  that  left  signatures  of  massive  gains  and

alterations in the total gene complement [92, 96, 97]. While further studies have shown

strong  evidence  in  both  yeast  and  vertebrates  for  ancient  rounds  of  whole  genome

duplication  [96,  98,  99],  the  advent  of  the  Human Genome Project  and high-quality

reference  genomes  [32] also  have  led  to  the  renewed  recognition  of  segmental

duplications as the most prevalent, recent, and continuous source of gene evolution [100,

101]. Segmental duplications can have differing biological consequences. An immediate
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impact  from any duplication  event  of  a  gene  or  other  functional  element  is  that  the

activity  or  dosage can be increased  [6].  Segmental  duplication followed by sequence

divergence  allows  for  the  evolution  of  new  and  diverse  functions  [15].  This  is  of

particular  importance  for  countering  the  breadth  of  environmental  and  pathogen

exposures. For example, human genes within segmental duplications are highly enriched

for histocompatability antigens [102].  Alternatively, duplications in pathogens are often

associated  with  virulence  or  diversification  of  extracellularly  exposed  proteins  for

immune evasion  [29, 98, 103]. In pathogens,  duplications also provide an avenue for

rapid  gene  dosage  response  to  drug  pressure  for  which  P.  falciparum has  multiple

examples (e.g. mdr1, gch)[70, 104]. Thus, duplications provide plasticity in an organism

allowing  for  the  evolution  of  new  or  diversified  responses  to  an  everchanging

environment. 

Segmental duplications also create dynamic regions within the genome due to

high  sequence  identity  that  can  promote  misalignment  and  non-allelic  homologous

recombination  (NAHR),  resulting  in  further  duplication,  deletion,  or  potentially  more

complex arrangements [105, 106]. Misalignment can equally lead to gene conversion, a

phenomenon implicated in increasing the diversity within segmental duplications  [107].

Thus, duplicated regions in the genome can rapidly evolve and diversify in response to

evolutionary pressure.

Duplicated regions have practical consequences for genome analysis as they are

more  difficult  to  assemble.  Even  with  high-quality  reference  genomes,  improper

alignment  of  reads  because of  duplicated  high  similarity  regions  have  effects  on  the
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downstream analysis  causing problems with correctly  identifying SNPs, copy number

variants,  etc.  In  addition,  graph  based  de  novo genome  assemblies  with  next  gene

sequencing  can  collapse  at  these  regions  of  high  similarity,  preventing  contiguous

assembly  of  these  regions  of  the  genome.  Knowing  what  regions  contain  segmental

duplications  and  the  scale  of  similarity  can  inform future  experiments  for  adjusting

downstream analysis to account for the segmental duplications. 

In malaria,  segmental  duplication plays an important  role  within the causative

pathogen, Plasmodium. Malaria is a disease with an estimated 219 million cases per year

and an estimated 660,000 deaths [53].  Similar to many other pathogens – Plasmodium

spp.,  piroplasms,  coccidians  and  Cryptosporidium spp. -  duplicated  gene  families  of

Apicomplexa are predominantly found in the subtelomeric and telomeric regions of the

chromosomes and have a predilection toward antigenic variation for immune evasion

[25].  There  have  been  extensive  studies  into  the  structure  of  the  subtelomeric  and

telomeric  regions  of the  P. falciparum genome resulting in a general  structure of the

subtelomeric regions [33, 108–110]. Of particular interest within these regions have been

the large gene families of extracellularly exposed proteins involved in cytoadherence –

rifins, stevors, and vars [75, 111, 112]. The var genes are singly expressed genes involved

in the endothelial sequestration of the parasite during blood stage [113]. These genes have

been studies extensively for their  antigenic variation  [78, 111]. They show significant

copy number variation between strains and within monoclonal cultures – both in vivo and

in vitro [111]. The molecular mechanism of variability and duplication of the var genes

has been attributed to gene conversion [31, 114].
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While many insights have been gained from such targeted analyses, a complete

picture of the pattern and nature of segmental duplications within P. falciparum can be of

great biological and practical use. Such an analysis will allow us to better understand the

genomic constraints and evolutionary forces at play. Here we apply established methods

for  genome-wide  detection  of  segmental  duplications  and  characterize  their  salient

properties and patterns.

2.2 Methods

Segmental duplication detection

We refined and  applied  two well-established  methods  for  detecting  segmental

duplications, whole-genome alignment comparison (WGAC) and whole-genome shotgun

sequence detection (WSSD), which have both been used extensively in larger eukaryotic

genomes [31, 47, 84, 102]. Both methods make use of a high quality reference genome.

For  both  WGAC  and  WSSD,  we  used  P.  falciparum 3D7  reference  genome  from

PlasmoDB  v9.3.  Our  WGAC  analysis  for  segmental  duplication  detection  employs

openly  available  alignment  software,  sequence  analysis  software,  and  custom  Perl

programs modified from previous work as outlined in Figure 2.1 and detailed in Bailey et

al.  [31]. The overall methodology for any genome consists of (1) removing high copy

repeats  that  represent  simple  tandem  repeats  and  transposable  elements,  (2)  local

alignment of the entire “repeat-free” genome to itself to detect similar regions above a

given  identity  and  length,  (3)  reinsertion  of  the  high  copy  repeats,  and  (4)  refining

(trimming/extending) the termini of alignments to locate the most accurate end point. If
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Figure  2.1  Overview  of  segmental  duplication  identification  by  self-alignment.

Tandem repeats and simple repeat sequence were identified with Tandem Repeat Finder

and RepeatMasker. The identified repeat sequences were spliced from the genome, and

LASTZ was used to identify high identity alignments with a custom substitution matrix

from this modified genome. Repeat sequences were spliced back into the genome. With

custom  scripts,  we  heuristically  extended  alignment  to  incorporate  spliced  repeat

sequences.  Finally,  a  global  alignment  of  the  pairwise  alignments  was  used  to  more

accurately delineate alignments.
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unrecognized  transposable  elements  are  not  a  contaminating  issue,  then  the  final

alignments represent a database of recent segmental duplications (Figure 2.1). For this

work,  WGAC  methods  were  specifically  updated  and  modified  to  improve  pipeline

speed,  robustness,  as  well  as  to  address  specific  characteristics  of  the  P.  falciparum

genome – smaller size, abundance of tandem repeats, and highly elevated AT content (GC

% 18%) [33]. Specifically for this analysis, the P. falciparum genome (version PlasmoDB

9.3) was analyzed for tandem repeats and low-complexity regions using Tandem Repeat

Finder (version 4.04) [115] and RepeatMasker version 3.2.9 [116], respectively.  The lack

of  known  transposable  elements  within  the  genome  abrogated  the  need  for  their

characterization with RepeatMasker. Large-tandem repeats (period 50-350 and copies ≥5

via Tandem Repeat Finder), and low-complexity sequence (100bp regions  ≥87% AT or

≥89% GC with  a  30bp stretch  of  29 AT or  GC nucleotides  via  RepeatMasker)  were

spliced out of the chromosomes and local alignments were generated within and between

all  chromosomes.  Improvements  to  the  previous  methods  included  replacing  slower

NCBI BLAST with LASTZ [117] and using a custom scoring matrix to account for the

GC bias during the alignment process (Table 2.1). This scoring matrix was calculated

using the described methods [118] from a representative subset of initial alignments >250

bp  and  >88%  identity  generated  using  a  3,8  match/mismatch  LASTZ  scoring.  The

optimized matrix  produced a  greater  median segmental  duplication  length (1,480 bp)

compared  to  non-custom  LASTZ  scoring  parameters  (222  bp).  The  custom  match

parameters also detected more alignments and with higher average identities (Figure 2.2).

Coordinates  of  LASTZ  alignments  lacking  repeats  were  translated  back  into
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Table 2.1 LASTZ custom substitution matrix. Self-alignments from LASTZ with flat

match/mis-match scoring between  >80% identity and >250 bp were used to create the

custom substitution matrix. Log-odds scores between the paralogs were calculated and

averaged to generate the custom LASTZ substitution matrix.
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  Match Base
A T C G

A 2 -9 -7 -13
Query T -9 13 -1 -5
Base C -7 -1 11 -8

G -12 -5 -10 4
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Figure 2.2 LASTZ custom substitution scoring outperforms flat match/mis-match

scoring. A)  The  custom  substitution  matrix  produces  significantly  more  pairwise

alignments  as  alignment  size  grows  as  compared  to  a  flat  match/mis-match  scoring

system. B) The custom substitution matrix identifies a significantly higher number of low

percent identity alignments than the flat match/mis-match scoring system, though both

are comparable at identifying high identity regions.
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normal genomic coordinates, effectively reinserting the previously removed tandem and

simple  sequence  repeats.  The  alignment  end  points  were  refined  to  more  accurately

determine the extent of segmental duplication which might terminate within an adjacent

tandem or simple sequence repeat. This was accomplished heuristically through iterative

extension of the global alignment up to 2 kbp and redetermination of the alignment end

point.  This  was  iterated  until  end  point  convergence.  After  refinement,  final  optimal

global alignments were kept if  ≥250bp and  ≥90% bp identity. Lastly, to yield our final

analysis  set,  pairwise  alignments  with  juxtaposed  and  properly  oriented  and  ordered

copies were merged across up to 2 kb gaps, in order to more completely capture likely

segmental  duplication  events  even  if  subsequent  large  insertions  or  deletions  have

occurred over time within the individual copies.

WSSD is a method exploiting whole-genome shotgun sequence reads as a random

sample of the genome such that increasing density of reads in a region relative to the

genome average directly correlates with increased number of copies.  Illumina whole-

genome shotgun sequence for the reference genome strain 3D7 [119] were mapped with

bowtie2 to the PlasmoDB 9.3 3D7 reference genome assembly [33, 120]. Sequence files

for PCR-free Illumina GAII 3D7 libraries can be accessed at SRA archive SRP056541. In

separate analyses, alignments were performed both with single best and multiple (up to

100) best placements within the genome. Samtools was used to determine read depth per

base  position  in  the  genome  [121].  To  remove  GC sequencing  biases,  we  applied  a

correction factor for each 100bp window baed on a LOESS correction of read depth

against GC% [122]. Regions of potential duplication were defined by tiling windows of
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1,000bp with a median read depth ≥2 and tandem repeat content <70%. Windows were

merged to generate contiguous regions of elevated read depth indicative of more than one

copy  within  the  genome.  These  regions  were  compared  to  detect  probable  assembly

errors, either the false positive or false negative identification of segmental duplications

from WGAC.

Descriptive statistics of pairwise alignments

All  identified  pairwise  alignments  ≥90% identity  and  ≥250 bp  were  analyzed

either  at  the  level  of  pairwise  alignment  or  based on non-redundant  coverage  of  the

genome. We determined a measure for the most recent duplication event by the highest

percent identity pairwise alignment present in each base in the genome. Due to the high

nucleotide diversity between some genes with segmental duplications, particularly the

var genes, a requirement for the complete intersection of a gene with an alignment did

not accurately capture the extent of genic content within segmental duplications. Many

genes  had  little  to  no  self-alignment  with  any  other  regions  of  the  genome,  yet  the

flanking regions of these genes show evidence of duplication. Therefore genes with any

portion of their coding regions or ±50 bp of the flanking regions of the gene having an

aligned pair were cataloged. Gene information was obtained from PlasmoDB gff files –

PlasmoDB 9.3. Genes included in the segmental duplications were analyzed in GOSTAT

to determine under and overrepresented gene ontology (GO) terms [123]. Visualization of

segmental duplications was performed using Parasight [124].
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Analysis of segmental duplications around var and rifin genes

Pairwise alignments often did not include the interior of the var genes, which is

due  to  the  gene-families  high  nucleotide  diversity  [64].  We  analyzed  the  pairwise

alignments on either side of the  var gene (up to 50 bp away from the gene itself) to

extend the  pairwise  alignment.  The  pairwise alignments  flanking the  var gene were

identified, and examined for whether the pairwise alignments paired with the same gene

elsewhere in the genome. This would identify the extent of whole gene duplication and

gene conversion within the vars. The same methods were also applied to the rifin gene

contingent.

2.3 Results

Detection of pairwise alignments representing segmental duplications

We further optimized the whole genome alignment comparison (WGAC) to detect

segmental duplications within the reference P. falciparum 3D7 genome. WGAC is a well-

established method which  initially  seeds  on putatively  unique  sequence  by removing

high-copy repeats from the sequence leaving putatively unique sequence.  Repeats are

then reinserted and alignment edges are then refined to capture the precise extent of any

pairwise alignments. Global alignments are then calculated to provide the most accurate

measures of pairwise identity. A total  of 2,579 pairwise alignments (median length of

2,005 bp) were found at an alignment threshold of  ≥90% identity and  ≥250  bp. These

alignments covered 5.93% (1,380,021bp / 23,292,622bp) of the genome (Figure 2.3).

The WSSD analysis is sensitive for highly-similar segmental duplications  [102,
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Figure  2.3  Overview  of  segmental  duplications  in  the  genome. We  identified

duplicated  sequence  as  alignments  ≥250 bp in  size  and ≥90% sequence  identity  and

aligned them to the genome. The map shows the overlay of segmental duplications on the

genome,  split  into  interchromosomal  and  intrachromosomal  segmental  duplications).

Interchromosomal  (red)  duplications  are  depicted  above  the  chromosome.

Intrachromosomal (blue) duplications are depicted below the chromosome. Gene content

is demarcated in black along the chromosome, with exceptions for var genes (green) and

rifin genes (purple). Tick marks are at every 500 kb interval.
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125] and was highly concordant with the WGAC alignments ≥95% identity.  There was

one  exception  greater  than  250  bp  (Figure  2.4)  where  WSSD  detected  a  known

duplication of gch1 (PFL1155w) related to anti-folate resistance  [70]. Overall,  WSSD

supports that the 3D7 genome is a high quality and accurate reference genome assembly

in respect to duplication.

Genomic distribution of segmental duplications

Segmental duplications localized predominantly to the telomeric and subtelomeric

regions  of  almost  every  chromosome  (Figure  2.4).  The  vast  majority  of  duplication

outside  of  the  subtelomeric  regions  were  associated  with  clusters  of  extracellularly

exposed  genes  under  human  immune  pressure.  Overall,  only  129  kb  (0.6%  of  the

genome) of the duplicated sequence were not associated with either the subtelomeres or

extracellularly located proteins. Thus, given this highly skewed distribution, the amount

of segmental duplications between chromosomes appeared to correlate with the size of

the  subtelomeric  regions  and  cytoadherence  complement  rather  than  the  overall

chromosomal  length.  This  can  be  seen  in  that  the  amount  of  segmental  duplication

content per chromosome remained relatively similar across chromosomes and was not

correlated with chromosome size (Figure 2.5).  However,  a  chi-squared test  showed a

statistically  significant  difference  in  the  goodness  of  fit  for  duplicated  space  per

chromosome (p-value = 8.79x10-70) indicating some variability. Chromosome 5 stands out

as  it  was  over  2 standard deviations  (σ  = 2.11)  from the  mean duplicated space per
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Figure 2.4 Comparison of WSSD to WGAC for segmental duplication identification.

A map of all high read depth regions in the genome >1,000 bp and <70% tandem repeat

content as determined by WSSD (above chromosome in red) is compared to our WGAC

method at >95% bp similarity (below chromosome in blue).
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Figure 2.5 Duplication content between chromosomes. A) The cumulative lengths of

the highest pairwise identity at all loci of duplication - i.e. reducing to the unique highest

identity  pairwise  alignments  –  also  indicates  small  variation  between  the  various

chromosomes. B) Duplicated fraction of the chromosome. Chromosome 4 and 13 stand

out for their relative enrichment of intrachromosomal duplication – caused by the high

identity  tandemly  duplicated  clusters  of  var genes  internal  to  the  chromosome.  The

duplicated fraction of the chromosome decreases with chromosome size, indicating the

duplicated space is unlinked with chromosome size.
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chromosome.  Most  other  chromosomes  (9  chromosomes)  were  within  1  standard

deviation of the mean, with all other chromosomes under 2 standard deviations.

We examined the relative rates of intra versus interchromosomal duplication to

determine  any  biases  for  intrachromosomal  duplications  versus  interchromosomal

duplications, as tandem duplication of genomic sequence is common. We performed a

binomial  test  assuming  the  probability  for  an  intrachromosomal  duplication  to  be

dependent  on  the  number  of  chromosomes  (expected  probability  =  7.14%),  as  the

duplicated space was approximately the same across chromosomes. The binomial test for

all  identified  segmental  duplications  showed  there  was  no  statistically  significant

difference  between  intrachromosomal  and  interchromosomal  duplications  (observed

probability  =  7.10%,  p-value  =  0.9694).  However,  a  binomial  test  for  high  identity

segmental  duplications  (≥98%)  showed  a  statistically  significant  difference  with  an

observed probability of 16.4% (p-value = 3.73x10-4), indicating that the majority of all

segmental duplications had no bias toward intra- or interchromosomal duplications but

the high identity duplications were enriched for tandem duplications.

Gene content of segmental duplications

There  were  466  genes  and  pseudogenes  out  of  5,772  in  the  genome  that

intersected regions of identified segmental duplications. 81 of those were  var genes or

pseudogenes and 164 were  rifins, comprising the majority of genes in their respective

families – 101 and 185 respectively. While often overlooked, rifins actually represent the

most abundant gene family [112] and contain many recent highly-identical duplications.
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In addition to the the vars and rifins, another gene family has been associated with the

subtelomeric  regions  –  stevors [75].  Previous  reports  with  unfixed  copy  number

variations  indicate  that  nucleotide  diversity  was  elevated  in  duplications  [83].  Our

analysis  verifies  this  claim  as  the  enrichment  of  these  antigenic  genes  in  segmental

duplications  resulted  in  increased  nucleotide  diversity  within  segmental  duplications.

From a collated list of nucleotide diversity of genes, we determined that genes located

within segmental duplications have elevated nucleotide diversity (two sided t-test, t-value

= 2.271, p = 0.0237) [126]. 

Outside of the sub-telomeric regions and internal  var clusters, we identified 17

genic intrachromosomal pairwise alignments and 10 genic interchromosomal pairwise

alignments (only one pair required to be outisde sub-teolmeric regions). Of these 27, 25

had pairwise alignments that completely spanned the gene(s). The largest group of genes

to be duplicated were 10 rRNAs. This is in accordance with the expansion of rRNAs and

subsequent divergence for life cycle specific expression and function [127]. Other genes

including reticulocyte binding proteins, falcipain 2, elongation factor 1-α, var trafficking,

SERA, CLAG, and ubiquitin. PFL0585w, did not have complete coverage of pairwise

alignment, but it showed a significant number of pairwise alignments all along its genic

content.  As  a  polyubiquitin,  it  was  successive  tandem  duplications  of  the  ubuquitin

domain in Pf13_0346.

Consistent with their localization to the subtelomeres, segmental duplications had

a lower mean GC% of 18.74% compared to the genomic mean of 19.4% (one sample

two-sided t-test against genome mean, p =7.97e-10). After a duplication event, mutations
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will have caused paralogs to diverge  [13]. If mutations rates were regular, the percent

identity could be used as a surrogate of relative age and could provide insight into the

tempo of segmental duplication over time. When alignments were categorized by percent

identity, there was an abundance of pairwise alignments at lower identity (Figure 2.6).

However,  when  only  the  highest  identity  pairwise  per  loci  were  examined,  which

provides a better correlate of events when accounting for repeated duplications of the

same loci, the quantity of duplicated sequence appeared more uniform across levels of

percent identity. This suggested that the drivers and processes of duplication has been

relatively continuous rather than punctuated process.

Extracellularly exposed genes overrepresented in segmental duplications

We  performed  ontological  analysis  of  the  genes  intersecting  with  segmental

duplications.  Of the overrepresented GO terms,  most  were related to  extraorganismal

interaction - i.e. extra-organismal space, interaction between organisms, extracellular, etc

- while GO terms related to normal cell function are underrepresented - i.e. metabolic

activity, cell signaling. Excluding vars, rifins, and stevors genes, segmentally duplicated

genes had no over or under representation of GO terms. 46 of these 100 genes were

hypothetical proteins with no known function, however 13 were rRNA associated. Of

those 100 genes, 70 of them overlapped high identity segmental duplications, indicating a

reduction  in  relaxed  selective  pressure  on  these  genes  as  compared  to  genes  in  the

subtelomeric regions.



45

Figure  2.6  Duplication  content  by  percent  similarity. The  cumulative  lengths  of

pairwise alignments per 1% ranges in identity were binned for A) all pairwise alignments

and B) the highest pairwise identity at all loci of duplication – i.e. the reducing to unique

highest identity pairwise alignments. The shape of the graphs indicate that the rate of

duplication is has likely been relatively consistent over time based on the fact that many

pairwise alignments represent repeated duplication of the same region. 
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The nature of var and rifin gene segmental duplications

The majority  of  var genes  lacked pairwise  alignments  that  spanned the  entire

gene.  This appeared to be a  consequence of high nucleotide diversity within exon 1,

which  could  be  a  consequence  of  rapid  divergence  through  positive  selection  or  a

consequence of an elevated rate of gene conversion. To examine these possibilities, we

focused on  the  highest  identity  alignments  across  each  var gene  (Figure  2.7).   This

revealed that most var genes have divergent pairwise alignments flanking the genes – i.e.

each side of the var gene best identifies with a different var gene. Of the 81 var genes,

only  29  (35%)  genes  had  flanking  pairwise  alignments  match  to  the  same  var gene

(Figure 2.7a), and only 5 (6%) genes had pairwise alignments that spanned the entire

gene (Figure 2.7c). The genes lacking matching alignments consisted of  39 (48%) genes

(Figure 2.7b) where flanking alignments mapped to different var genes in the genome,

and 12 genes where the other end did not have evidence of a matching gene.

The other large gene family,  rifins, were analyzed similarly. While rifins show

similar evidence of a high rate of duplication, with 90% of  rifin genes having pairwise

alignments  intersecting and 100% of  var genes.  However,  the  rifin genes were more

likely to have a spanning pairwise alignment, 33% of rifin genes had a spanning pairwise

alignment as opposed to 6% of var genes. When looking at the highest identity alignment

for the flanking of rifin genes, show similar levels of cross mapping of alignments with

106 (58%) of the rifin genes had the highest pairwise alignment on either end of the rifin

pair to different rifin genes, while only 55 (30%) genes had alignments on either side that

matched  to  same  rifin gene.  This  pattern  suggests  a  strong  role  for  non-duplicative
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Figure  2.7  Model  of  possible  duplication  patterns  for virulence  genes. Virulence

related genes,  vars and  rifins, display three distinct patterns of duplication across their

respective gene families. A) A spanning duplication of the virulence gene 1, but time and

high nucleotide variation of the genes themselves has prevented an spanning alignment of

the duplication. B) Gene conversion within virulence gene 1 has resulted in a hybrid of

both virulence gene 2 and virulence gene 3 ancestry. This results in the highest identity

location of pairwise alignments on either side of virulence gene 1 to point to different

virulence  genes.  C)  A complete  high  identity  pairwise  alignment  of  entire  an  entire

virulence gene.
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processes such as conversion or telomeric exchanges hybridizing in the genesis of these

duplications relative to strict duplication followed by rapid divergence.

2.4 Discussion

We analyzed the  P. falciparum reference 3D7 strain P.  falciparum genome for

segmental  duplications  via  whole  genome  alignment  comparison.  We  validated  the

sensitivity of the whole genome alignment comparison with a whole genome shotgun

sequence detection approach.  The analysis  with whole genome alignment comparison

highlighted that the vast majority of segmentally duplicated sequence was located within

the sub-telomeric regions of the genome or within var gene clusters. Consequently, genes

within  the  segmental  duplications  were  overrepresented  for  extracellularly  exposed

genes, particularly the var and rifin genes, which appeared based on our analysis, to be

evolving through duplicative mechanisms combined with partial exchange methods, such

as gene conversion, creating genes of chimeric origin. Overall, the segmental duplications

have been sequestered mainly in the sub-telomeric space of the genome leaving a core

genome that is relatively staid and lacking in significant standing duplication. 

Our systematic analysis of segmental duplications in the  P. falciparum genome

confirmed that the subtelomeric regions have been highly duplicated, and the region is

the major source of segmental duplications in the genome. The vast majority of genes in

the segmental duplications were related to antigen presenting proteins. Except for tandem

duplication in non-subtelomeric  var clusters, segmental duplications did not show any

significant preference for intrachromosomal duplication. This seemed to indicate a mostly
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random duplication of genes through relatively unbiased subtelomeric interaction.

Analysis of pairwise alignments can be challenging to interpret because they do

not correlate one to one, as the pairwise representation increase rapidly with repeated

duplication of a given sequence. Direct examination of the pairwise alignments shows a

prominent abundance below 95% identity. This abundance markedly decreases when only

the most recent segmental duplication in a region are examined. This suggests that there

vars and rifins are likely under constant amplification with genes being gained and lost.

These genes appear to be continually evolving based on the broad distribution of pairwise

identities and that antigenic diversification has likely been a more continuous, rather than

punctuated,  process  vis-a-vis host  immune evasion.  Additionally,  there  appears  to  be

significant  amounts  of  conversion  or  hybridization  taking  place,  in  addition  to

diversifying mutation.   

Conversely, segmental duplications are nearly absent from the rest of the genome.

There is little trace of duplication of genes outside the subtelomeric regions or genes

related to antigenic diversity and immune evasion. Many of these genes are of unknown

function and may represent unrecognized genes encoding extracelluarly exposed proteins.

Duplication  of  biochemical  and  cellular  process  genes  appears  minimal  nor  does

evidence of non-functional duplication. Given active duplication elsewhere and evidence

that  drug resistance  can  form through duplication,  this  suggests  that  duplications  are

poorly  tolerated  within  the  genome  and  rapidly  lost  compared  to  organisms  where

genomic duplications can be maintained despite loss of function.  The few duplications

that  do  occur  unrelated  to  cytoadherence  and  extracellular  exposure  are  limited  to
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intrachromosomal tandem duplications, whether singly genic or non-genic tandem repeat

elements. The rRNA related genes benefit from duplication because of increased gene

dosage and life cycle specific expression and function. The SERA family of genes, where

the individual genes have evolved specialized function during various life stages, have

expanded for diversification of function. The identification of the duplication of these

genes can aid in understanding the biochemical and functional roles these proteins have

and the selective pressures placed on them. However,  the staid nature of the genome

suggests that a duplication is likely of functional consequence – particularly for a recent

duplication that is still unfixed and copy number variant (CNV) within the population.
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3.1 Introduction

Copy  number  variation  represents  duplications  and  deletions  ranging  from

hundreds of bases to megabases in size that are unfixed in the population  [43]. Copy

number variation can be a means of rapid gene dosage adjustment for organisms and

novel gene genesis [4, 5]. In the human genome, copy number variants (CNVs) represent

a  significant  source  of  genomic  variation  resulting  in  wide  range  effects  underlying

normal phenotypes as well as disease  [128]. While the previous segmental duplication

analysis  often identifies  ancient  and fixed duplications,  copy number variation in  the

population of Plasmodium falciparum may represent the latest avenues of adaptation to

recent or current selective pressures. Aspects of parasite physiology impacted by copy

number  variation  can  include  parasite  growth  rate  modifications,  increased  antigenic

diversity,  and increased metabolic  rates  [25].  Significant  interest  in  the  field  of  copy

number variation in P. falciparum has been engendered by the discovery of multiple gene

amplifications directly related to drug resistance, particularly duplications of  mdr1  and

gch [50,  70].  In  addition  to  drug resistance,  copy number  variants  offer  avenues  for

changes to parasite fitness by adapting gene dosage to alter growth rate, differentiation

rate,  nutrient  metabolism,  etc.  These  changes  can  all  be  in  response  to  geographic

selective pressures,  whether  by human genetic  adaptation,  government  regulation and

protocol, changes in drug regime, or seasonal weather changes.

Copy number variation has yet to be fully explored in  P. falciparum despite its

known importance in drug resistance and antigen diversity  [129]. Since then, multiple
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studies have investigated the extent of copy number variation within the parasite genome.

The first  genome wide studies utilized array comparative genomic hybridization  [83].

The advent of next generations sequencing has rapidly decreased the cost, increased the

amount of data, and improved the ease of preparation for genome wide sequencing of P.

falciparum [88, 130]. There are now numerous methods for the analysis of copy number

variation leveraging whole genome sequencing [85, 86]. All employ combinations of read

depth, discordant read or read pair mapping to a reference genome or de novo assembly.

These methods are not always easily applied to P. falciparum given its low GC content

which can lead to extremely biased sequencing and read mapping  [119].  Given these

specific challenges, there has been additional effort to develop and tune algorithms to

detect  copy  number  specifically  in  P.  falciparum [84–86].  However,  to  date  these

methods have only been applied to laboratory strains and the true extent of copy number

variation is  unclear  due to the fact  that  (1)  there is  concern that  many copy number

variants may be driven by culture adaptation  [131] and (2) the copy number detection

often has had low specificity and so a relatively high false discovery rate. Given this, we

have implemented a computational methodology written in Python to utilize read depth to

identify copy number variation combined with confirmatory discordant  read pairs.  In

combination,  this  provides  reasonable  sensitivity  and specificity.  We then apply  it  to

publicly available Illumina libraries of natural isolates consisting of 33 unique isolates of

P. falciparum from three sites in Senegal over the time period of 2004-2009 [87].
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3.2 Methods

Data collection

DNA from in vitro cultures  of  3D7, FCB and 106/1 were sequenced by non-

amplified paired end Illumina GAII sequencing utilizing PCR free library construction

(SRA: PRJNA279397) [119]. We also used 33 publicly available paired end sequencing

libraries from Senegal demographics study by H. Chang et al. [87] Samples represented

isolates from three different villages - Pikine, Velingara and Thiès - between the years

2004-2009 with either GAII or HiSEQ2000 sequencing technology (sequence data can be

accessed at SRA: SRP018047).

Overview of CNV detection

We developed  a  custom suite  of  Python  and  Java  programs  to  identify  copy

number variants (Figure 3.1) and optimized it for use within the  P. falciparum genome

with the goal of having sensitivity and specificity down to the gene and exon level. The

methodology combined two well-described  metrics. First, initial regions were identified

based on either greater than or less than expected read depth after correction for GC-

biases  in  the  sequencing.  Second,  putative  regions  of  high  or  low  read  depth  were

confirmed based on the presence of discordant read pairs. Combining these two methods

in succession provided the improved specificity. Given the highly divergent nature of the

subtelomeric  regions  and  particularly  the  var  genes,  where  read  placement  on  the

reference genome often fails due to high levels of divergence, we excluded these regions

from our analysis.  Accurate delineation of copy number variants within these regions
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Figure 3.1 Overview of CNV detection pipeline. GC-biased read depth is normalized

on a per read basis. A mean shift algorithm is used to identify signals of variant read

depth by local mean minima and maxima. Mean shift identified variants in read depth are

verified by discordant reads near mean shift identified breakpoints (spanning reads for

deletions; inverted reads for duplications).
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will likely require better assembly techniques as well as longer reads. 

At the cores of our read depth analysis, we employed the mean shift algorithm

from CNVnator by Abyzov et al. [84] which we reimplemented and modified. As input

for sequencing depth, we also developed a per read pair read correction method to correct

GC biases in the next-generation sequencing at the level of the read pair.  Read-based

rather than window-based correction allowed us to more accurately compensate for the

sharp  transitions  in  GC  content  between  coding  and  non-coding  sequence  in  P.

falciparum. To normalize the depth by a per read basis, we assigned a normalized depth

value to individual reads based on that read product GC%, by a ratio of observed versus

expected reads at each 2% interval of GC%. Read pairs within an over-represented GC%

bin were  down-weighted,  while  under-represented  pairs  received  proportionally  more

weight. Modification involved reversing the order of bandwidth search -  large (512,000

bp) to small (400 bp) windows. An iterative t-test, with a p-value of 0.05, was used for

each test of bandwidth for potential read depth variants. After identification of variant

regions, we used a Bonferroni correction for all iterative tests for each bandwidth tests

during the mean shift segmentation. Regions passing cutoffs for copy number variation

were  than  examined  for  supporting  discordant  reads  indicative  of  true  copy  number

variants. A minimum of two discordant read pairs that correlated with the defined copy

number variant region were required – inverted reads for duplications (minimum distance

between pairs of 300 bp) and paired reads with insert lengths greater than 1000 bp for

deletions.  In  order  to  detect  copy  number  variants  that  might  transition  into  the

subtelomeric  regions,  we  included  detected  copy  number  variants  proximal  to  the
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subtelomeric regions – as defined by non-syntenic regions and var genes in the middle of

the chromosome – that passed a stricter threshold for deletions, i.e. a mean read depth

value of less than 0.05.

GC normalization of read depth

We  aligned  paired  end  read  libraries  with  Bowtie  2  using  default  alignment

settings [120]. Sequence alignment/map (SAM) files from Bowtie 2 were converted to a

binary  sequence  alignment/map  (BAM)  file  and  sorted  by  coordinate  with  samtools

[121]. To determine the expected values for read depth on GC bias, we determined the

GC% for all possible read products (i.e. the sequence fragment) from 50 bp to 1,000 bp

and their  frequency within the genome. We notated the number of read products (by

product size and then GC%), simulating an expected rate of read product GC% and size. 

We input coordinate sorted BAM files into a custom python program to determine

the normalization factor to apply to each read. Aligned reads were assigned to deciles of

product size. Expected read product sizes and their GC% counts were similarly assigned

to the same deciles. Within deciles of read product size, we counted reads by GC% for

every 2% GC window for both expected and observed read products. For every 2% GC

window at each product size decile, we normalized the read product counts by the total

number of read products at that product size decile. This was performed on both observed

and expected read counts. We calculated the correction factor for reads at each 2% GC

window within its product size decile as the normalized expected count divided by the

normalized observed count.
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Based on this, we assigned each read the appropriate correction factor for its read

product  GC%  and  read  product  size.  Given  these  corrected  reads,  we  summed  the

correction factors of all reads aligned to a given loci for all base pair positions in the

genome (the pileup file).

Mean shift analysis of normalized read depth

We ran GC bias corrected read depth pileup file through a modified mean shift

algorithm based. By chromosome, we iterated over the entire genome from bandwidths

512,000 bp to 400 bp, halving bandwidth per iteration. We then iterate over the new array

of  mean  read  depth,  given  current  bandwidth,  until  finding  a  segment  that  passes

minimum requirement  change  in  the  read  depth  of  the  mean  relative  to  the  overall

average (≤0.4 read depth or ≥1.4 read depth). Regions with local significant by t-test (p-

value = 0.05) given the variance of the read depth across the chromosome are kept. After

determining  mean  shifts  across  the  genome,  p-values  were  subjected  to  Bonferroni

correction given all possible bandwidths across the chromosome. Segments meeting all

statistical criteria representing putative copy number variant regions were outputted to a

browser extensible data (BED) file.

Discordant read pair intersection analysis and breakpoint trimming

We searched through the coordinate sorted BAM file for discordant reads. We

denoted read pairs with a product size greater than 400 bp into a bed file to compare

mean shift identified deletions (Figure 3.1). We also denoted everted read pairs of product

size greater than 300 bp to compare mean shift consistent identified duplications (Figure
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3.1). We then intersected the mean shift identified copy number variation calls with the

discordant reads. For valid intersection, we required all read placements to be within a

specified  distance  from either  side  of  the  estimated  boundaries  –  20% of  total  copy

number variation  size for  all  variants  less  than  2,000 bp and 100 bp for  all  variants

greater than or equal to 2,000 bp. We then required every mean shift  identified copy

number variation calls to have a minimum of two discordant reads pairs – everted reads

for duplications and spanning reads for deletions – to validly intersect.

To refine the breakpoints for copy number variant regions, we used the innermost

reads from discordant pairs as inference of the maximal true breakpoint. We adjusted the

estimated copy number variation breakpoint to be within 50 bp of the minimum and

maximum positions of all intersected discordant reads for that copy number variation,

which essentially defines the maximal size of the breakpoint of the copy number variant

region.

3.3 Results

Copy number detection within well-characterized laboratory strains

Initial  mean  shift  identification  of  3D7,  at  the  p-value  of  0.05  (subsequently

adjusted by Bonferroni correction) for testing for variance within mean shift bandwidths,

resulted  in  the  identification  of  one  copy  number  variant  region  compared  to  the

reference genome: gch (PF3D7_1224000). The mean shift identified duplicated region of

gch coincided with two pairs of inverted reads. This singular genic copy number variation

is  a  known duplication  in  the  3D7 strain  of  P.  falciparum from which  the  reference
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genome is based, but was not assembled [132]. From further testing of the mean shift

copy number variation identification on both the FCB and 106/1 laboratory strains, we

identified from the mean shift on read depth 108 copy number variants outside the sub-

telomeric regions at a testing threshold bandwidth p-value < 0.05 and segment size  ≥

400bp. As these were well-characterized laboratory strains, the 108 identified mean shift

variants represented numerous false positives. With more stringent p-value thresholds, the

number  of  identified  copy  number  variants  significantly  decreased.  When  taken

separately, the discordant read analysis displayed lower specificity, identifying over 2,000

regions with discordant read pairs per library. Additionally, there was great variability

between library preparations for both GC bias (Figure 3.2) and the number of mean shift

calls (Figure 3.3). The high rate of false positives with either method alone suggested the

need to combine these metrics to improve specificity. The best combination was simply

to use the discordant read placements as confirmation of read depth based CNV calls.

Doing this,  we identified only 11 copy number variants in  the 3D7, FCB, and 106/1

strains –  representing 5 copy number variation regions (Table 3.1).

Four of the five copy number variant regions had been established in laboratory

strains and were genic. There were no known CNVs within these strains that were not

detected suggesting the algorithm has good sensitivity to detect typical genic CNVs. We

determined  that  3  instances  of  genic  copy number  duplications  were  related  to  drug

resistant alleles – gch, mdr1, dhfr. The duplications had significant support from inverted

read pairs (Figure 3.4). These genes have been well documented as copy number variant

[87]. The two deleted regions on chromosome 9 for both FCB and 106/1 are known
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Figure 3.2 High variability of GC bias between sequencing libraries. Histograms of

GC% between sequencing library  replicates  display  the  extent  of  variability  between

sequencing library preparations. Orange and blue lines represent two technical replicates

of Illumina GAII sequencing libraries from a in vitro 3D7 lab culture DNA isolate.
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Figure 3.3 High variability read depth based mean shift CNV identification between

sequencing libraries. We detected orders of magnitude difference in the CNV calls by

our read depth mean shift method in three in vitro cultured laboratory strains: 3D7, 106/1,

and FCB. While more stringent p-values reduced the number of false positive CNV calls,

FCB and 106/1 still maintained high numbers of false positive CNV calls.
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Table 3.1 Identified CNV from  in vitro cultured lab strains. We identified 5 CNVs

from in vitro cultured lab strains 3D7, 106/1, and FCB. Two were well-studied CNVs of

drug resistance associated alleles:  gch and  mdr1. We also identified another novel drug

resistance associated CNV in dhfr. In addition, the chromosome 9 CNV is well-known as

an in vitro culture adaptation.
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Strain Chrom Position Length

106/1 4 732101 - 783400 51299 pfdhfr1 1.91

FCB 5 868901 - 964600 95699 pfmdr1 2.09
106/1 5 869001 - 952700 83699 pfmdr1 1.65

FCB 7 1293001 - 1295500 2499 - 0

106/1 9 1374001 - 1396100 22099 pfgdv1 0
FCB 9 1374401 - 1396000 21599 pfgdv1 0
FCB 9 1459502 – 1541735 82233 - 0
106/1 9 1459502 – 1541735 82233 - 0

106/1 12 946301 - 980600 34299 pfgch1 4.24
FCB 12 961501 - 980600 19099 pfgch1 2.90
3D7 12 974301 - 975900 1599 pfgch1 3.67

Presumed 
relevant 
gene

Copy 
Number
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Figure  3.4  Intersection  of  read  depth  and  discordant  reads  identifies  CNV  of

PFE1150w  and  PFI1710w. A)  Read  depth  of  the  FCB  copy  number  variation  on

chromosome 5 over the PFE1150w (mdr) locus was verified with the presence of 20

inverted reads. Above, the read depth is displayed centered around a normalized read

depth for both 3D7 and FCB. Below are the alignment of inverted read pairs that overlap

the duplicated region. B) Read depth of the FCB copy number variation on chromosome

9 of the PFI1710w (gdv) locus was verified with the presence of spanning reads. Above,

the read depth is displayed centered around a normalized read depth for both 3D7 and

FCB. Below are the alignment of appropriate orientation read pairs with a read product

length greater than 400 bp.
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deletions that are common occurrences within in vitro cultured strains [84]. This deletion

has been shown to be stable in two isoforms as either a single large deletion or a two part

deletion with a single genic deletion of gdv (PFI1710w) and the rest of the subtelomeric

region after some variable amount of intervening sequence – of which both 106/1 and

FCB were the latter  (Figure 3.4)  [71,  133].  Our read depth based copy number calls

accurately estimated the copy number of duplications. We compared of our read depth

copy number estimations against our own qPCR results and those in the literature (Figure

3.5)  [71].  We found  that  our  estimated  copy  number  calls  for  read  depth  correlated

strongly with the qPCR results (R2 = 0.902).

Copy number detection within Senegal strains

To examine the extent of copy number variation in a natural popuation, 33 paired

end P. falciparum samples from Senegal were analyzed for copy number variation with

our  computation  methodology.  Ignoring  copy  number  variants  located  within  the

subtelomeric regions or internal  var clusters where reads poorly map to the reference

genome,  we identified 1445 potential  copy number variant  calls  from the read depth

based mean shift at a testing threshold with a p-value of 0.05. A small random sample of

potential copy number variation targets outside the subtelomeric regions were queried by

qPCR, but were proven to be false positive (data not shown) confirming a high false

positive rate in a purely read depth based method. Inspection of the read depth at these

copy  number  variation  regions  indicated  the  potential  for  regional  biases  between

libraries. This further highlighted the need for a secondary metric as unaccounted for
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Figure 3.5 Accurate estimation of copy number via read depth based CNV detection.

We compared our copy number estimates for duplications to qPCR results from both our

lab and the literature (R2 = 0.902). Denoted points were qPCR results from: *Kidgel et

al., 2006 [132]; ** Kiwuwa et al., 2012 [134].
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biases apart from read depth cause library variability. After filtering for the mean shift

calls with discordant read pairings, eight copy number variant regions were discovered

across the isolates in non-subtelomeric regions. Only two of the copy number variants

were duplications, and six of the eight involved at least partial genic content (Appendix

Table 1). Only one of the duplicated copy number variants were genic.

Five of  the  copy number  variants  were  recurrent,  with four  of  the five being

deletions and three of the five having genic content. The chromosome 2 and 9 deletions

of the telomeric arms are known adaptations to in vitro cultures. Considering this, these

copy number variants, along with the telomeric arm deletion copy number variation on

chromosome  1,  may  be  predominantly  a  result  of  the  short  term  in  vitro culture

adaptation prior to library preparation. All three were recurrent deletions.

Antigenic genes were the largest contributor in the genic copy number variants.

Excluding the three copy number variants suspected of in vitro culture adaptation, we

identified a total of 20 genes in all other copy number variants. Nine of these genes had

unknown  function.  Another  nine  were  antigen  associated,  with  six  being  merozoite

protein  in  the  chromosome  10  copy  number  variation.  Additionally,  there  was  little

evidence for any bias in GC% for copy number variants. The mean GC% for the copy

number variants was 20.0%, whereas the genomic mean is 19.34% GC  [71]. Only the

non-genic duplication on chromosome six had a significant difference in GC% at 10%

GC. However, the copy number variants showed a small but statistically significant bias

(two-sided t-test, p-value = 8.3x10-3) for increased tandem repeat content, with the mean

tandem repeat content of the copy number variants being 25.02% of the copy number
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variation as opposed to the total tandem repeat content of the genome at 14.93%. This

implies that significant tandem repeat content is not a factor in creating copy number

variants.

3.4 Discussion

We  created  an  improved  computational  method  for  identifying  copy  number

variation from next gen sequencing technology that combined both a read depth based

metric  and a  discordant  read pair  metric.  A single metric  alone fails  given the high-

sensitivity  needed  within  a  genome  with  a  paucity  of  copy  number.  Testing  it  on

laboratory strains with known copy number variants, we were able to accurately identify

those known copy number variations. The read depth of the natural strains of 33 paired

end  sequenced  P.  falciparum strains  from  Senegal  showed  systemic,  variable,  and

regional  biases,  resulting  in  false  positive  copy  number  variation.  Our  process  of

improved  mean  shift  depth  analysis  combined  with  discordant  read  pairs,  greatly

improved specificity,  removing many of  these false  positives.  Overall,  we discovered

significant evidence for only 26 copy number variants, of which only nine were genic,

suggesting natural populations of  P. falciparum are relatively conserved, excusing the

subtelomeric regions.

The systemic biases discovered in the Senegalese samples show that a purely read

depth based approach to copy number variation discovery may be highly fraught with

false positives. These biases also showed little relation to the overall variability of read

depth in the sample. As we did not see the phenomenon in the in vitro lab samples, there
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is some variable between source DNA quality, library preparation or sequencing that can

cause these systemic biases. Guarding against such biases will be important for all future

investigations. Using a secondary metric independent of read depth effectively mitigated

the effect of the systemic bias dramatically increasing our specificity. This alleviates the

need to investigate the cause for the systemic bias and further normalization of the data.

Our method can be applied to current sequencing efforts without additional sequencing or

laboratory testing.

Our analysis of the Senegal population of P. falciparum indicates a very quiescent

population, as concerns copy number variation. Discounting the large chromosomal arm

deletions, there were only three copy number variants with genic content. Of those genes

affected, antigenic genes were the common element. We found no amplification of genes

with potential known effects on drug resistance. While gene amplifications for known

drug resistance  alleles  have  been shown to  be  uncommon,  the  relative  lack  of  copy

number variation is unsurprising  [132, 134]. This may be a regional effect due to sudden

bottlenecking or from a vast effective population – to the random exclusion or dilution of

copy number variation propagation respectively. The majority of samples sequenced and

analyzed  for  copy  number  variation  analysis  were  from 2008-2010,  after  significant

inroads  were  made  by  Senegalese  government  for  malaria  control  –  reporting  an

estimated 41% drop in confirmed malaria cases between 2008 and 2009 [33]. R. Daniels

et al. (2013) further supports this idea from their determination that over this time frame

there  had  been  a  significant  increase  in  propagation  of  clonal  populations  of  P.

falciparum in Senegal [135], which was shown to not be occurring in neighboring regions



78

[136]. This evidence points to a limited pool of genetic diversity of  P. falciparum in

Senegal. Alternatively, the changing landscape of drug use in the region may be at cause

for the lack of copy number variation variety.

In  addition,  recent  drug  efforts  within  Senegal  may  have  produced  differing

selective pressures on copy number variation propagation, as they have with particular

resistance associated allele frequencies [137]. Without analysis of other populations of P.

falciparum, we cannot be certain that relative paucity of copy number variation results

are not a peculiarity of this population or if it is truly indicative of extent of variation

throughout  the  global  P.  falciparum population.  However,  our  analysis  of  a  few

laboratory strains suggests that it is most likely a global phenomenon, consistent with our

duplication analysis and comparative analyses, that central regions of the chromosome

are very staid. With our methods for highly specific copy number variation identification

from next gen sequencing technology, an investigation of the global population of  P.

falciparum for copy number variation is the next logical step.
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CHAPTER IV: Global Analysis of Copy

Number Variation in P. falciparum
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4.1 Introduction

Little is known of the extent of copy number variation in Plasmodium falciparum.

Many studies have investigated the impact and significance of previously identified copy

number variants. These copy number variants were identified via qPCR and genetic cross

screens for identification of drug resistance factors  [91].  These specific copy number

variants were further investigated to determine the various isoforms and copy number of

copy number variants within populations of P. falciparum [136–138]. Until recently, the

study of copy number variation has been performed after determination of its role in drug

resistance. However, a few studies have attempted to capture genome-wide copy number

variants  by array CGH or  through next  gen sequencing  [69,  81,  82].  Most  work has

focused on lab strains and little has been done to gain a comprehensive study of copy

number variation globally.

The investigation of copy number variants in P. falciparum to date has not been

sufficient to understanding either the extent of coverage or the extent of its effects. Lab

strains are not representative of the P. falciparum population as a whole. In particular, the

bias for study of drug resistance, both in strains and copy number variants, ignores large

regions of the potential adaptive benefit of copy number variants for the parasites. A more

comprehensive study of copy number variants in a natural population can identify gene

targets under selective pressure other than drug resistance, such as adaptations to human

immune pressure or external factors like bed netting and insect repellent. In addition, in

vitro culture  introduces  its  own  biases  for  adaptation,  as  evidenced  by  recurrent
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independent deletions of large regions of the genome in lab strains  [70, 80]. Therefore,

we  have  potentially  only  studied  a  microcosm  of  the  copy  number  variation  in  P.

falciparum.

Our  previous  work  has  been  shown to  rapidly  and  specifically  identify  copy

number  variants,  both  in  vitro and  in  a  natural  population.  The  nature  of  next  gen

sequencing  provides  a  rapid  and  cost-effective  means  to  broadly  identify  genomic

variation, i.e. sing nucleotide polymorphism, structural variation, and now copy number

variation [83–86]. The natural progression would be to extend our technology to a global

data set. Large scale sequencing studies of  P. falciparum are becoming common and a

wealth of sequencing data is accumulating around the globe. We use our methodology for

copy number variation detection from high throughput sequencing to investigate copy

number variants across these publicly available sequencing datasets from a large global

sample of P. falciparum.

4.2 Methods

Sample acquisition and quality control

The  set  of  whole  genome  shotgun  sequences  of  P.  falciparum isolates  was

gathered from multiple published papers and publicly available sequence data: Burkina

Faso, Gambia, Ghana, Mali, Cambodia, Thailand [71]; Guinea [44]; Gambia [88]; Kenya

[139]; Senegal [90] (Figure 4.1). All samples had been pair end Illumina sequenced. We

merged  samples  with  multiple  sequencing  libraries  prior  to  normalization.  We  had

previously  determined  that  of  the  samples  with  multiple  libraries  there  was  minimal
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Figure 4.1 Map of P. falciparum sample origin.
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difference in read depth variation between GC normalization on individual libraries and

merged  libraries.  We  filtered  any  sequencing  libraries  with  less  than  70%  genomic

coverage or less than 10x coverage, as both criteria are required for initial read depth

analysis. We tested the remaining sequencing libraries for multiplicity of infection with

estMOI  [89].  No sampled showed greater  than  a  cumulative  5% secondary  infection

insuring  that  multiple  strain  infections  would  not  confound  our  analysis.  The  final

cleaned data set had 610 unique samples. From this, we can refer to each sample as being

a unique strain as concerns copy number variation and major allele identification.

Copy number variation identification

We analyzed all  sequencing libraries  for  copy number  variation  as  previously

established. We normalized read depth for GC bias on a per read basis. Then we analyzed

the normalized read depth for copy number variation with a mean shift algorithm. We

removed any copy number calls  that intersected with the subtelomeric regions or var

clusters  due  to  an  inability  to  adequately  account  for  significant  sequence  diversity

between paralogs. These regions were effectively removed with the secondary metric of

read  discordant  reads:  inverted  read  pairs  for  duplications  and  spanning  reads  for

deletions.

Principal component analysis for CNV subgroup analysis

To look for population structure associated with particular CNVs, we partitioned

the isolates to those having or lacking a particular copy number variant and assessed the

SNPs by principal  components.  Specficially,  we examined all  SNPs  from PlasmoDB
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version 9.3. SNPs were called by GATK version 2.8.1 with local indel realignment and

verified against the PlasmoDB SNP database  [140]. For each chromosome, an array of

GATK-called SNPs limited to the sites in PlasmoDB version 9.3 per sample was built for

principal component analysis in R with prcomp. Analyzed samples included only regions

positive for the copy number variants:  Cambodia for plasmepsin duplication; Burkina

Faso, Ghana and Guinea for crt duplication; Thailand and Cambodia for both mdr1 and

gch duplications.

4.3 Results

Identified copy number variants

From 610 samples, we identified 68 copy number variant regions – 54 of which

were duplications and 61 of which were genic (Appendix Table 1). We determined that 61

of the copy number variants intersected a gene, however only 33 fully encompassed a

gene (for at least one isoform). In addition, we determined that 22 of the 68 copy number

variants were recurrent between strains. Within these 22 copy number variants, 16 fully

encompassed a  gene.  When considering the individual  copy number variants  in  each

strain,  only  17  instances  of  unique  genic  copy  number  variants  were  present.

Alternatively,  the  recurrent  deletions  accounted  for  144 individual  instances  of  genic

copy number variants.  Of the 22 recurrent copy number variants,  we determined that

copy number variants were not necessarily confined to a particular country or region.

Nearly half of the recurrent copy number variants were restricted to a single region (West

Africa, East Africa, South East Asia) with 10 of the 22 recurrent deletions spread between
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multiple regions. It was even rarer to find a recurrent copy number variant confined to a

single country, with only 6 copy number variants remaining confined to a single location.

However,  copy  number  variants  between  continents  were  more  limited.  This  may

highlight differences in selective pressures between continents.

The frequency of strains with genic copy number variants was highly variable

both between copy number variants and geographic regions, ranging from 2% to 54%

(Figure 4.2). Strains averaged 0.50 copy number variants, with a range between 0 and 5

copies per strain and a standard deviation of 0.82. However, Cambodia and Thailand both

had significant percentages of their population with genic copy number variants, with

40% and 55% respectively. African samples had a much lower frequency of copy number

variation.  All  African  samples  were  under  10%  frequency,  except  Ghana  at  16%.

However, the high frequency of copy number variants in South East Asia is mostly due to

two recurrent copy number variants of mdr1 and gch. In Cambodia, 42 out of 62 strains

with copy number variants were due to  mdr1 or  gch,  while Thailand had all  samples

containing  a  copy  number  variant  with  either  a  mdr1 or  gch duplication.  The  gch

duplication accounted for 6 of the 12 strains in Ghana with copy number variants.

Across  the  genome,  copy  number  variants  showed  no  bias  for  particular

chromosomes, nor any pattern to location of the copy number variation (Figure 4.3). We

found that the copy number variants also did not show biases toward GC%, with a mean

of 18.8% GC in all copy number variants as compared to the genomic mean of 19.4%.

While  we noticed an increase in  tandem repeat  content of the copy number variants,

however the difference in mean tandem repeat content of 18.4% for copy number variants



87

Figure 4.2 Frequency plot of genic CNVs. The frequency plot of genic CNVs indicates

that  most  genic  CNVs  are  present  at  a  low  level  in  the  population.  However,  we

discovered  a  number  of  genic  CNVs  that  are  highly  prevalent  in  the  population  –

particularly gch and mdr1 duplications.
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Figure  4.3 Overview of CNV loci throughout the genome. The distribution of CNV

loci indicates that there is likely no bias for particular regions or loci in the genome (not

considering the subtelomeres).
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against the genomic mean of 14.9% was not statistically significant (double sided t-test,

p-value = 0.081).  We determined that  there were likely no biases between GC% and

tandem repeat content related to copy number variation size as there was little difference

between  the  unweighted  means  and  the  copy  number  variation  size  weighted  means

(weighted GC% mean = 20.1%, weighted tandem repeat percentage = 19.5%).

The  distribution  of  copy  number  from  the  various  isoforms  of  all  detected

duplications indicated that most have a copy number of between 2 to 3, with the number

of  duplications  with  high  copy  number  rapidly  dropping  past  3  copies  (Figure  4.4).

However, the copy number did reach as high as 14 for gch. The recurrence frequency of

copy number variants indicated that the majority recurred between less than five strains.

However, the range of frequency was wide, ranging up to 73 strains for a deletion and 28

strains for a duplication (Figure 4.2).

Copy number variation size was skewed toward smaller sizes (Figure 4.5). The

majority of copy number variants were under 30 kbp, and the vast majority under 60 kbp.

The small selection of copy number variants greater than 60 kbp were all large deletions

of the subtelomeric arms of chromosomes. These deletions are considered in vitro culture

adaptations, so  in vivo there is strong pressure to limit large copy number variants  [71,

133].

Genes within copy number variants

We discovered 201 genes full encapsulated within a copy number variant regions,

of  which  79  (39%)  were  of  unknown  function.  Between  recurrent  and  single  copy

number variants, the majority of genic copy number variants were recurrent, with 132
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Figure  4.4  Copy  number  of  genic  duplications  indicate  preference  for  minimal

duplication. The frequency of higher copy numbers drops drastically after 4 copies, with

most duplications found at two copies. However, there are a few high copy duplications,

with a notable example being gch at 11 copies.
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Figure  4.5 Majority of CNVs are under 40 kbp. The histogram of genic CNV size

indicates that most CNVs prefer smaller sizes – under 40 kbp. There are few CNVs larger

than 60 kbp, and those are deletions of entire subtelomeres of chromosomes.
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genes  in  duplications  (from  16  CNVs)  and  69  genes  in  deletions  (from  6  CNVs).

Alternatively, 122 genes were found in single strain duplications (from 39 CNVs) and

only 13 genes in single strain deletions (from 6 CNVs). However, of those 6 recurrent

deletions, 3 were previously identified as copy number variants in the Senegal strains that

are potentially in vitro culture adaptations – the loss of chromosome 9 subtelomere, the

loss  of  chromosome  2  subtelomere,  and  potentially  the  loss  of  chromosome  1

subtelomere. These are deletion events that have not been seen directly  in vivo, but are

frequently  produced  over  long  term in  vitro culture  of  an  isolate  [71,  133].  These

deletions often result in loss of gametocytogenesis, loss of cytoadherence, and increased

growth rate in vitro [71, 131, 141, 142].

We found multiple recurrences of two well-known and characterized copy number

variants of mdr1 and gch. Overlay of the copy number variants of mdr1 and gch (Figure

4.6 and 4.7) compare similarly to previous studies on break points and copy number of

those specific genes in a natural population of P. falciparum [87]. We identified the mdr1

gene solely in South East Asia, however the gch duplication was identified in Ghana in

addition to South East Asia. Both copy number variants had a high frequency, with the

mdr1 duplication found in 32 strains and the  gch duplication recurring in  57 strains.

Without  information  on the  sampling  protocols  or  timeline  of  sample  collection,  we

cannot ascertain whether the disparity in geographic location of the two copy number

variants was due to a bias in sample collection timing between studies or an effect of

differing  drug regimes  between  regions.  Previous  studies  have  shown that  the  mdr1

duplication exists at a low frequency in West Africa [143].
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Figure  4.6  Multiple  isoforms  of  mdr1 duplication  identified. We  conservatively

identified 5 separate isoforms of the mdr1 duplication by breakpoint, with each isoform

having variable copy number. Copy number ranged from 2-3 copies.
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Figure  4.7  Multiple  isoforms  of  gch duplication  identified. We  conservatively

identified 6 separate isoforms of the  gch duplication by breakpoint, with each isoform

having variable copy number. The copy number ranged from 2-11 copies.
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In addition, we discovered many novel copy number variants. Of particular note

was the novel copy number variation of another drug resistance associated allele –  crt

(Figure 4.8). This copy number variation was identified in West Africa, spanning multiple

countries. The crt copy number variation was a duplication with a copy number of two

and identified six times between Burkina Faso, Ghana, and Guinea.

Of the 201 genes identified to be copy number variant, 79 had unknown function.

Gene ontological testing of the other 122 identified genes with GOstat found no over- or

underrepresentation  of  gene  ontology  terms  [123].  Between  different  isoforms  of  a

recurrent copy number variation, a set of intersecting genes could potentially highlight

the gene under selection in the copy number variation. While this reduced set did not

elucidate the causative allele under selection for all copy number variants, a literature

search of potential targets informed us of possible hypotheses for select copy number

variants. Duplication of plasmepsins II and III (PF3D7_1408100 and PF3D7_1408000)

on chromosome 14 was present in 17 strains, all in Cambodia. These plasmepsins form a

complex that is involved in the hemoglobin-to-hemozoin process in the parasite's food

vacuole  [144,  145].  Chloroquine's  mechanism  of  action  is  via  interruption  of  the

hemoglobin-to-hemozoin process to allow free heme to form, which is highly toxic for

the parasite  [146, 147]. The duplication of topoisomerase I (PF3D7_0510500) also had

implications with chloroquine resistance in the literature.  Chloroquine has been shown to

be a catalytic inhibitor of human topoisomerase I  [148].  While topoisomerase I  in  P.

falciparum has significant sequence divergence from human topoisomerase I, there is still

the  potential  for  similar  chloroquine  interaction  considering  there  is  likely  high
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Figure  4.8 Identification of single isoform of  crt duplication. We identified a novel

CNV of the crt gene. Only one isoform was discovered, all at a copy number of 2.
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conservation of the catalytic site. However, most genes involved in copy number variants

had little literature on their importance or the functional implications of copy number

variation.

Biallelic crt duplication

Upon closer inspection of the crt duplication, we discovered that the duplication

was biallelic in that we identified both the chloroquine sensitive and chloroquine resistant

alleles in the duplication (Figure 4.9). This phenomenon was not seen in any other copy

number  variation.  We  found  that  all  SNPs  within  the  copy  number  variation  of  crt

approached 50% frequency in the read depth. From paired read linkage, we could verify

that  neighboring  SNPs  were  in  linkage  within  individual  copies  of  crt.  This  lends

credence to the idea that two separate alleles were present in the copy number variation. 

SNP analysis identified nine non-synonymous mutations in exonic regions of crt.

Included in the mutations is the K76T mutation considered a cornerstone for chloroquine

resistance [70, 80]. However the K76T mutation alone is insufficient  [149]. In total, all

the identified biallelic SNPs in the crt duplication correspond to SNPs in the crt allele in

the chloroquine resistant lab strain Dd2, except for one position at 405,600 bp that did not

have a Dd2 linked SNP or were the chloroquine sensitive wild type allele [150, 151].

We determined that recombination had occurred within the copy number variation

itself, creating divergence between strains sharing the copy number variation. Breakpoint

analysis  of  the  crt copy  number  variation  with  Pindel  (version  0.2.5)  found  exact

breakpoints of 398,871 to 421,765 bp on chromosome 7 in sample 43 from Burkina Faso
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Figure 4.9 Biallelic duplication of crt gene. We discovered that SNPs within the the crt

gene were biallelic, with the alternative allele ranging from 30-70% of the read depth.

SNPs corresponded with a chloroquine sensitive allele and a chloroquine resistant allele.

Aligned reads are visualized along  crt, with non-reference bases highlighted along the

gene. Zooming in on a particular SNP loci displays identification of biallelic SNPs.
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[152, 153]. These Pindel defined breakpoints correlated well  with our mean shift and

discordant read identified maximal-span breakpoints of 398,679 to 421,905. Both Pindel

identified  breakpoints  located  to  a  long  poly-A stretch  (>10 bp).  We analyzed  SNPs

within the copy number variation and flanking regions to identify divergence between the

six  recurrences  of  the  copy  number  variation  (Figure  4.10).  We  determined  that  the

shared  haplotype  diverges  upstream at  378,904  bp  –  about  20  kbp  upstream of  the

breakpoint.  However,  the  shared  haplotype  ends 3'  within the  copy number variation

itself at 414,615 bp.

Principal component analysis of SNPs located on chromosome 7 for strains in

Burkina Faso, Ghana, and Guinea indicated that there was no subgrouping of strains with

the crt duplication (Figure 4.11), consistent with their observance in multiple countries.

Principal  components  1  and 2  were  still  affected  by  geographic  effects.  However,  at

principal components 3 and 4, where geography had much less impact, variation within

the  crt duplicated strains was in line with the rest of the West African population. The

lack of a separate subgroup of crt duplicated strains reinforces the identification of only a

~40 kbp region of non-divergence around the copy number variant. We can conclude that

the duplication has been in the population for some time, and has undergone significant

recombination around the locus, occurring over time as this duplication spread within

West Africa.

4.4 Discussion

This study is the first comprehensive analysis of copy number variation across the
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Figure  4.10  Consensus  sequence  diverges  within  the  crt CNV. By  tracking  the

consensus SNP around the crt locus, we determined the boundary of divergence between

the isolates' CNVs. The breakpoints of the crt CNV are 398,679 bp and 421,905 bp. The

divergence boundaries were at 386,728 bp and 414,614 bp.
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Figure 4.11 PCA of SNPs across chromosome 7 between geographic regions with crt

duplication. Plots of principal components identify significant effect from geographic

distribution on SNPs for chromosome 7. crt duplication positive strains are shown to be

not unique enough a subpopulation to separate, indicating significant recombination has

occurred around the duplication.
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global  population  of  P.  falciparum.  We have established a  baseline  for  copy number

variation in the core genome as compared to the 3D7 reference genome. Our analysis

indicates minimal copy number variation in the non-subtelomeric regions of the genome.

We found that copy number variation is a rare occurrence in  P. falciparum. Individual

strains averaged 0.5 copy number variants. However, the dearth of copy number variation

was most pronounced in Africa. Strains from South East Asia have a high rate of copy

number variation, with up to 50% of strains being positive for a copy number variation.

The contributing factor to this was the high frequency of either gch or mdr1 duplications.

Outside of those two copy number variants, South East Asia had similar rates of copy

number variation as Africa. From this, we can conclude that copy number variation in the

non-subtelomeric regions of the genome is rare, unless strong selective pressures elevate

the frequency of the copy number variant in the population. In this case, significant drug

pressure may be increasing the frequency of copy number variation in South East Asia.

From  our  analysis,  we  identified  numerous  novel  copy  number  variants.  By

literature  research,  a  number  of  these  copy  number  variant  genes  are  impacted  by

chloroquine in some manner – topoisomerase I and the plasmepsins being among those

genes. In addition, we identified a novel copy number variant of  crt, which has known

function regarding chloroquine resistance. We discovered a single isoform of the crt copy

number  variant  present  in  six  strains  between  Burkina  Faso,  Guinea  and  Ghana.

Additionally,  we  determined  that  the  duplication  was  biallelic,  containing  both

chloroquine resistant and chloroquine sensitive alleles. This potentially has significant

importance in future drug design and discovery. Strategies for combination therapy of
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drugs  that  target  both  chloroquine  resistant  alleles  and  chloroquine  sensitive  alleles,

taking  advantage  of  the  functional  constraint  on  crt mutations,  could  be  seriously

compromised  by  this  biallelic  copy  number  variation.  The  biallelic  duplication  also

potentially provides an adaptation to the fitness disadvantage that chloroquine resistance

typically  confers  in  the  absence  of  drug  [154,  155].  This  might  have  effects  on  the

improved retention of chloroquine resistance  or resistance to other antimalarials in the

population by reducing the disadvantageous effects of the chloroquine resistant allele.

From bacteria  to  fruit  flies  and humans,  P. falciparum has  comparatively low

frequency  of  copy  number  variation  [5].  Given  the  low  frequency  of  copy  number

variation in P. falciparum, it stands to reason that there is significant purifying selection

against the retention of copy number variation into the genome. The only cases of high

frequency  genic  copy  number  variants  in  the  population  are  due  to  drug  resistance-

associated alleles, such as mdr1 and gch. Given this, the observed existing copy number

variants likely confer some functional benefit providing an adaptive benefit. Our study

has  provided multiple  novel  targets  to  investigate  for  the functional  consequences  of

these duplications. As drug resistance played a prominent role in a number of identified

copy  number  variants,  study  into  these  other  copy  number  variants  may  provide

additional avenues for the evolution of drug resistance.
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CHAPTER V: Discussion
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5.1 Systematic analysis of duplications and deletions in P. falciparum

Duplications and deletions are an important avenue of adaptation and evolution.

They are a significant route for the diversification of genes, creation of new genes, and

the regulation of gene dosage. In  P. falciparum, these avenues are extensively used for

adaptation. Large gene families of genes encoding  extracellularly exposed proteins have

undergone significant duplication and divergence to improve amino acid diversity for

immune evasion. In addition, copy number variation (duplication) of the particular drug

resistance-related genes has provided increased expression and resultant increased drug

resistance in P. falciparum.

In our studies, we have attempted to systematically identify and analyze these

duplication and deletions in the genome. From our analysis of segmental duplications, we

have observed the compartmentalization of the genome with respect to the presence of

duplication. We determined the rarity of duplications in the core of the genome, where

few genes showed evidence of past  duplication.  From this,  we can infer that there is

strong selective pressure to conserve the core genomic genes and function leading to

removal  of  duplications  barring  strong  selective  advantage.  However,  we  identified

significant duplication of genes in the subtelomeres. The majority of genes duplicated

were genes under strong selective pressure for human immune evasion. This fits with the

inference that the parasite uses the subtelomeres to duplicate and recombine its repertoire

of extracellularly exposed genes,  thereby diversifying these genes for human immune

evasion.
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To  rapidly  and  specifically  identify  these  variable  duplications  and  deletions

between strains from high throughput sequencing data, we created a novel computational

method to identify copy number variants in the non-subtelomeric regions of the genome

from high throughput sequencing. This method increased the specificity of copy number

variation identification from high throughput sequencing libraries of clinical isolates. The

method involved GC bias normalization of read depth followed by detection combining

mean shift detection of regions and validation of these identified copy number variants by

discordant read pairs in the sequencing library. We applied this computational method to

publicly  available  high  throughput  sequencing  libraries  of  610 clinical  isolates  of  P.

falciparum from Africa  and  South  East  Asia.  We observed  a  rarity  of  copy  number

variation, with only high frequency for copy number variants correlating to known drug

resistance. Additionally, these high frequency duplications occurred mostly in South East

Asia,  indicating  that  regional  selective  pressures  have  a  significant  impact  on  the

retention of copy number variants. We identified numerous novel genic copy number

variants, one of which was a biallelic duplication of crt. This duplication is intriguing as

it  contains  both  a  chloroquine  resistant  and  a  chloroquine  sensitive  allele.  However,

overall, this global analysis indicates that copy number variation in the non-subtelomeric

regions is a rare event, however drug resistance is a major factor in the frequency and

genesis of these copy number variants.

5.2 Genes of extracellularly exposed proteins are highly duplicated in P. falciparum

Our segmental duplication analysis highlighted the extent of gene duplication for
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genes  encoding  extracellularly  exposed  proteins.  The  overrepresentation  of  antigenic

genes under human immune pressure to the exclusion of other factors has resulted in a

highly  segregated  genome,  with  segmental  duplications  and the  subsequent  antigenic

factor  primarily  isolated  to  the  subtelomeric  regions,  with  the  rest  of  the  genome

containing  few segmental  duplications.  Meanwhile,  significant  selective  pressures  for

neogenesis and diversification of protein coding sequence is manifested in the significant

duplication and high nucleotide diversity of the subtelomeric genes.

This is not a circumstance unique to  Plasmodium falciparum, but is common in

multiple species in the  Plasmodium clade  [156, 157]. However, the exact repertoire of

genes encoding extracellularly exposed proteins under human immune pressure that are

duplicated differs between species  [158]. We can infer that the specific genes are not

responsible for the genesis of new duplications, but rather that the subtelomeric regions

are  regions  suitable  for  promotion  of  duplication  and  diversification  –  allowing  for

telomeric exchange without disrupting meiotic stability. Selective pressures for increased

antigenic  diversity  have  promoted  the  co-opting  of  these  regions  as  engines  of

diversification  for  particular  gene  families  unique  to  the  selective  pressures  of  each

plasmodium species [159–162].

Significant resources and study has been invested into the var gene family due to

its  relation  to  severe  symptoms  of  malaria  [160,  162].  However,  our  analysis  of

segmental  duplications  indicate  that  other  gene  families  may  have  equally  important

impact on the P. falciparum antigenic diversity and cytoadherence capabilities. The rifin

gene family has a larger contingent of genes than the var gene family, and shows similar
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rates of recombination. Neither gene family showed strong evidence for recent whole

gene duplications that has not already undergone significant nucleotide divergence.

In addition, the relative lack of segmental duplications outside the subtelomeric

regions  provides  insight  into  the  purpose  of  copy  number  variants  outside  the

subtelomeric regions and the reason for the bias toward a heavily duplicated subtelomere.

The lack of duplication of the core genome indicates a strong purifying selection against

duplication of genes not encoding extracellularly exposed proteins under human immune

pressure, as few have become fixed, resulting in maintenance of gene dosage balance.

This  indicates  that  future  copy number  variants  in  the  core  genome are  likely  to  be

present as adaptations for gene dosage. In particular, the gene dosage plays a pivotal role

in adaptation to drug resistance or metabolic necessity. However, the pressure to maintain

high  diversity  in  antigen  presenting  proteins  requires  significant  recombination  and

duplication of genes. This has resulted in the parasite co-opting a duplication favorable

region, the subtelomeres, to continually duplicate and recombine its large genes familes

of genes encoding extracellularly exposed proteins under human immune pressure while

preserving the conserved state of the rest of the genome.

5.3 Segmental duplications and high throughput sequencing

Currently,  the detection of copy number variation in the population requires a

high quality reference genome. However, our analysis of segmental duplications in the

genome highlight problematic regions for current means of analysis. It affects  de novo

graph-based  assemblies  due  to  collapse  of  high  identity  regions  into  single  contigs.
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Additionally, high identity duplicated regions are problematic for read alignment because

current alignment technologies cannot discern accurate placement of sequence-identical

regions,  resulting  in  misplacement  of  reads  during  alignment.  In  addition,  high

recombination rates within the subtelomeric regions create a unique subtelomeric genome

between  strains,  thereby  mitigating  the  relational  accuracy  of  the  reference  genome

subtelomeric regions to other strains in the species.

Both  the  effects  on  de  novo assembly  and  accurate  read  placement  have

significant  consequences  for  current  copy  number  variation  detection.  High  identity

regions prevent complete genome reproduction of de novo genome assemblies, reducing

the likelihood of detecting deletions and high identity duplications via de novo assembly.

In addition, the effects on read placement accuracy have effects on copy number variation

detection methods that require accurate read placement. Improper read placement due to

duplication and recombination will hamper methods involving both discordant reads and

read  depth.  For  this  reason,  our  analysis  of  copy number  variation  in  P.  falciparum

ignored nearly all regions we identified through our segmental duplication analysis. The

high rate of recombination and copy number variation in these regions prevents simply

adjusting  for  nucleotide  diversity  and  will  require  accurate  assembly.  Future

improvements  to  sequencing  technology  and  de  novo assembly  will  be  required  for

accurate copy number variation assessment in these regions.

5.4 Rapid and efficient copy number variation detection

Our novel computational method for copy number variation detection from next
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gen sequencing is the first study of copy number variation in a large natural population.

Considering our work with segmental duplications and the limitations of the methods

being applied, we could not investigate copy number variation in the regions identified as

segmental  duplications.  The long tracts  of  simple,  high  AT repeat  sequence  between

genes  and the  high nucleotide  diversity  of  genes  in  the  segmental  duplications  make

accurate  read  placement  and  de  novo assembly  of  the  region difficult.  However,  the

majority  of  the  genome is  still  available  to  investigate.  The  ability  to  identify  copy

number variants in a natural population is a major step forward in understanding the role

of copy number variation in P. falciparum.

The method we designed is rapid and specific. It also has a simple requirement of

a  single  next  gene  sequencing library.  Though  it  has  only  been tested  with  Illumina

sequencing at various read sizes, theoretically it should work with a number of next gen

sequencing platforms. Additionally, the program has modest read depth requirements –

working  at  10x  coverage.  The  low  read  depth  requirement  allows  multiplexing  of

multiple samples, further reducing the cost of surveying copy number variation across a

population.  The  rapidly  plunging  cost  of  next  gen  sequencing  and  the  modest

requirements of our copy number detection methodology bodes well  for the future of

copy number variation surveillance around the globe. We now have the capability to take

census  of  current  copy  number  variation  in  P.  falciparum and  identify  potential

adaptations via copy number variation from genome-wide scans, reducing the necessity

of targeted copy number variation detection methods.
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5.5 Extent of copy number variation in P. falciparum

From our study of lab strains alone, we found a significant fraction of the copy

number variants were correlated with drug resistance –  mdr1,  gch, and  dhfr. However,

our investigation into a global population of P. falciparum identified that drug resistance

still plays an important role in copy number variation. While our our initial foray into a

natural  population produced results  that  hinted at  a  staid and relatively copy number

invariant  genome compared to  many other  organisms  [5],  the  expansion  of  scope to

multiple other countries and geographic regions reinforced the idea that copy number

variation may be rare. From 610 samples across the globe, only 68 copy number variants

were identified.  When filtering  for  solely  genic  copy number  variants,  only  33  copy

number variants incorporated the entirety of a gene. However, the frequency of individual

instances  of  copy  number  variation  was  dominated  by  mdr1  and  gch duplications.

Furthermore, the frequency of these two copy number variants are regionally specific,

with nearly all identified in strains from South East Asia. Potentially, this could highlight

major differences in drug pressure between the two regions, in that South East Asia has

much higher drug pressure to have such high representation of drug resistance related

copy number variants.

The extent of copy number variation in P. falciparum is significantly impacted by

drug pressure.  The frequency of copy number variation remained low (<10%) unless

confronted with strong drug pressure. Nearly 50% of samples in South East Asia had at

least  one copy number  variation,  and that  copy number  variation  was  predominantly



122

mdr1 or gch. However, there was little overlap between the two copy number variants.

This indicates that there is strong selective pressure to maintain the gene dosage balance

of the majority of the core genome, i.e. the genomic regions aside from the telomeres and

subtelomeres.  S. cerevisiae display a lack of compensation for increased protein levels

from gene duplication [163]. Comparatively, P. falciparum's lack of duplication indicate

that nutrient scarcity may be a strong driving force for selection against gene duplication.

Exacerbating  this  selection  against  increased  protein  levels  is  the  relative  lack  of

epigenetic  regulation.  Except  for  the  subtelomeric  regions,  most  of  the  genome  is

euchromatin [164–166]. This results in a lack of specific regulation of gene expression by

epigenetic factors. This lack of epigenetic control and low tolerance for protein level

increases results in a strong purifying selection against genic duplication.

5.6 Future direction for the investigation of duplications in P. falciparum

The  stark  contrast  between  the  prolific  duplication  and  deletion  of  the

subtelomeric regions of the genome and the paucity of duplications and deletions in the

rest of the genome indicates a strong purifying selection on the non-subtelomeric regions

of the genome. It  highlights that the observed copy number variation within the core

genome likely has significant functional consequence important to the parasite fitness.

This study identifies numerous such genes whose copy number variation has potential

functional consequence. Future research will hopefully identify the specific gene within

any copy number variant as the gene under selection. From there, studies to understand

the  potential  functional  significance  will  provide  insight  to  the  effects  of  these  copy
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number  variants  –  affecting  competitive  growth  advantages  over  other  parasites,

adaptation to human genetics, or drug resistance.

One copy number variant in particular will require significant research into its

effects  –  the  duplication  of  crt.  This  duplication  was  bialleic  for  both  chloroquine

resistant  and  chloroquine  sensitive  alleles  of  crt.  The  duplication  potentially  confers

significant  compensatory  adaptation  to  drug  resistance.  While  chloroquine  resistant

alleles confer significant growth disadvantages to the parasite, a duplication with both

sensitive and resistant alleles should have both the advantage of chloroquine resistance

and mitigated growth inhibition from said chloroquine resistant allele. The independent

verification of its existence in the population would prove the sensitivity and power of

our  computational  methods.  Also,  testing  the  hypothetical  benefits  of  the  biallelic

duplication  in  vitro for  IC50  drug  assays  and  growth  rate  assays  would  verify  the

potential advantages of the duplication. This has effects on future anti-malarial protocols,

potentially eliminating the viability of re-introduction of chloroquine as this duplication

could rapidly sweep across the population. It also has serious ramification in current and

future drug design strategies, as relying on the functional constraints for mutation of the

crt gene may be a strategic dead end.

With the high throughput sequence data and our identification of copy number

variants, future studies can identify the genesis of copy number variants. Multiple copy

number variants showed great variability in breakpoint and copy number. Study of the

haplotype and tracing historical recombination could illuminate the origin of these copy

number  variants.  Currently,  it  is  uncertain  whether  many  copy  number  variants  had
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multiple independent genesis events or whether the multiple isoforms of a copy number

variation  resulted  from  a  single  progenitor.  A comprehensive  analysis  of  haplotype

between copy number variant  isoforms,  both in  break  point  and copy number,  could

elucidate the genesis of various copy number variant isoforms. In addition, our method

can be used as a survey tool to rapidly and efficiently detect copy number variation in a

population of P. falciparum. This allows study of demographic evolution of copy number

variation in the population and the identification of novel copy number variants as they

arise. Both the understanding of the genesis of copy number variants, their proliferation,

and consistent  survey of populations for copy number variation can help monitor for

emerging drug resistance and inform best practices for anti-malarial regimens.
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Appendix Table 1 Identified Copy Number Variants

Chrom Position Length Sampling site Sample ID
chr01 238445 - 248349 9,905 2.16 Gambia 374

chr01 549500 - 640851 91,352 0.00 Senegal SenP27.02
chr01 563800 - 640851 77,052 0.00 Senegal SenT10.04D10

chr01 551800 - 554000 2,201 0.00 Senegal SenT32.09

chr02 220981 - 238374 17,394 2.02 Cambodia (Ratanakiri) 286

chr02 355068 - 356081 1,014 2.02 Thailand 796

chr02 555458 - 662357 106,900 1.66 Gambia 403

chr02 671115 - 672530 1,416 2.01 Thailand 766

chr02 835300 - 947102 111,803 0.00 Senegal SenT090.09
chr02 863500 - 947102 83,603 0.00 Senegal SenT135.09

chr03 128244 - 134634 6,391 0.13 Ghana 477

chr03 251527 - 252914 1,388 3.84 Thailand 766

chr03 663859 - 664651 793 2.21 Gambia 374

chr03 984410 - 985091 682 2.61 Cambodia (Pursat) 136

chr04 250530 - 349000 98,471 1.95 Gambia 407

chr05 388213 - 390121 1,909 0.41 Ghana 477

chr05 441610 - 461650 20,041 1.48 Cambodia (Pursat) 218
chr05 446993 - 462053 15,061 1.56 Ghana 574
chr05 448740 - 460238 11,499 1.70 Cambodia (Ratanakiri) 248

chr05 505687 - 506365 679 2.28 Ghana 477

chr05 670907 - 770083 99,177 1.83 Gambia 407

chr05 870787 - 978366 107,580 3.58 Cambodia (Pursat) 122

Copy 
number



127

chr05 943270 - 970993 27,724 2.03 Cambodia (Pursat) 126
chr05 943344 - 964658 21,315 2.11 Cambodia (Pursat) 168
chr05 944490 - 973296 28,807 2.07 Cambodia (Pursat) 178
chr05 944894 - 964526 19,633 3.15 Thailand 811
chr05 945099 - 964624 19,526 2.00 Cambodia (Pursat) 114
chr05 946149 - 973288 27,140 1.91 Cambodia (Pursat) 150
chr05 946483 - 967340 20,858 3.08 Cambodia (Pursat) 127
chr05 946485 - 964658 18,174 3.11 Cambodia (Pailin) 56
chr05 946487 - 964647 18,161 2.94 Cambodia (Pailin) 63
chr05 946488 - 964640 18,153 3.09 Cambodia (Pailin) 79
chr05 946488 - 964652 18,165 3.07 Cambodia (Pursat) 207
chr05 946558 - 964629 18,072 2.03 Cambodia (Pursat) 101
chr05 947121 - 963187 16,067 2.10 Thailand 778
chr05 947579 - 962565 14,987 2.02 Thailand 774
chr05 947636 - 962557 14,922 2.82 Thailand 721
chr05 947773 - 969928 22,156 3.23 Cambodia (Pursat) 153
chr05 947774 - 969926 22,153 2.09 Cambodia (Pursat) 131
chr05 947781 - 969907 22,127 1.91 Cambodia (Tasanh) 313
chr05 947785 - 969917 22,133 2.01 Cambodia (Tasanh) 337
chr05 948114 - 970296 22,183 1.47 Cambodia (Tasanh) 315
chr05 950684 - 972006 21,323 3.12 Thailand 759
chr05 952701 - 970350 17,650 2.13 Cambodia (Pursat) 118
chr05 953745 - 970361 16,617 3.04 Thailand 769
chr05 953747 - 970349 16,603 2.12 Thailand 764
chr05 953794 - 972127 18,334 3.82 Thailand 756
chr05 953827 - 970299 16,473 2.94 Cambodia (Pursat) 116
chr05 953828 - 970293 16,466 3.14 Cambodia (Pursat) 112
chr05 953843 - 970259 16,417 2.33 Cambodia (Pursat) 109
chr05 953870 - 970299 16,430 3.04 Cambodia (Pursat) 102
chr05 953871 - 970285 16,415 2.62 Cambodia (Pursat) 103
chr05 953894 - 970289 16,396 2.69 Thailand 812

chr05 962655 - 963279 625 2.41 Kenya ERS010407

chr06 485029 - 485675 647 2.06 Gambia PA0068-C
chr06 492315 - 503056 10,742 1.62 Thailand 778

chr06 849764 - 850377 614 2.40 Mali 677

chr06 1117358 - 1119225 1,868 2.04 Senegal SenT033.09



128

chr06 1117364 - 1119201 1,838 2.11 Guinea PA0186-C
chr06 1117368 - 1119193 1,826 2.03 Senegal SenT086.09
chr06 1117369 - 1119203 1,835 2.40 Guinea PA0245-C
chr06 1117371 - 1119206 1,836 2.89 Guinea PA0208-C
chr06 1117373 - 1119156 1,784 1.94 Guinea PA0140-C
chr06 1117376 - 1119225 1,850 2.13 Senegal SenT148.09
chr06 1117379 - 1119205 1,827 3.07 Guinea PA0180-C
chr06 1117380 - 1119204 1,825 2.02 Guinea PA0234-C
chr06 1117381 - 1119204 1,824 1.97 Senegal SenT142.09
chr06 1117385 - 1119187 1,803 2.23 Guinea PA0157-C
chr06 1117385 - 1119193 1,809 2.20 Guinea PA0169-C
chr06 1117397 - 1119202 1,806 2.44 Thailand 730
chr06 1117399 - 1119209 1,811 2.35 Cambodia (Ratanakiri) 290
chr06 1117399 - 1119202 1,804 2.83 Gambia 367
chr06 1117399 - 1119211 1,813 1.98 Mali 679
chr06 1117399 - 1119204 1,806 2.09 Cambodia (Pailin) 73
chr06 1117399 - 1119202 1,804 2.06 Thailand 769
chr06 1117399 - 1119186 1,788 3.24 Thailand 765
chr06 1117400 - 1119206 1,807 2.94 Cambodia (Pursat) 202
chr06 1117400 - 1119200 1,801 2.38 Thailand 772
chr06 1117400 - 1119207 1,808 2.19 Cambodia (Ratanakiri) 269
chr06 1117400 - 1119199 1,800 1.92 Thailand 764
chr06 1117400 - 1119016 1,617 2.24 Cambodia (Pursat) 150
chr06 1117400 - 1119198 1,799 2.12 Thailand 767
chr06 1117400 - 1119185 1,786 2.60 Ghana 590
chr06 1117401 - 1119202 1,802 1.95 Cambodia (Pursat) 163
chr06 1117401 - 1119195 1,795 2.27 Cambodia (Pursat) 199
chr06 1117401 - 1119201 1,801 2.05 Cambodia (Pursat) 166
chr06 1117401 - 1119191 1,791 2.00 Cambodia (Tasanh) 315
chr06 1117401 - 1119199 1,799 2.13 Thailand 760
chr06 1117402 - 1119206 1,805 2.02 Cambodia (Pursat) 227
chr06 1117402 - 1119202 1,801 2.01 Cambodia (Pailin) 56
chr06 1117402 - 1119204 1,803 2.60 Cambodia (Pursat) 178
chr06 1117402 - 1119200 1,799 2.09 Cambodia (Pursat) 225
chr06 1117402 - 1119202 1,801 2.25 Thailand 775
chr06 1117403 - 1119187 1,785 2.04 Cambodia (Tasanh) 318
chr06 1117403 - 1119195 1,793 1.99 Thailand 759
chr06 1117403 - 1119204 1,802 2.01 Thailand 768
chr06 1117403 - 1119188 1,786 2.02 Cambodia (Tasanh) 316
chr06 1117404 - 1119201 1,798 2.30 Thailand 763
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chr06 1117404 - 1119191 1,788 2.09 Cambodia (Tasanh) 328
chr06 1117404 - 1119200 1,797 2.24 Cambodia (Pursat) 204
chr06 1117404 - 1119203 1,800 2.37 Cambodia (Pursat) 203
chr06 1117404 - 1119187 1,784 2.01 Cambodia (Tasanh) 335
chr06 1117404 - 1119201 1,798 2.27 Cambodia (Tasanh) 331
chr06 1117405 - 1119200 1,796 1.97 Cambodia (Pursat) 180
chr06 1117405 - 1119198 1,794 1.97 Thailand 753
chr06 1117405 - 1119204 1,800 2.14 Cambodia (Pursat) 169
chr06 1117406 - 1119174 1,769 2.26 Cambodia (Pursat) 205
chr06 1117406 - 1119186 1,781 4.02 Cambodia (Tasanh) 325
chr06 1117407 - 1119199 1,793 2.28 Cambodia (Tasanh) 336
chr06 1117407 - 1119206 1,800 2.21 Cambodia (Pursat) 164
chr06 1117407 - 1119175 1,769 2.36 Cambodia (Tasanh) 314
chr06 1117408 - 1119197 1,790 2.01 Cambodia (Tasanh) 312
chr06 1117412 - 1119128 1,717 2.17 Cambodia (Tasanh) 327
chr06 1117413 - 1119198 1,786 1.99 Thailand 762
chr06 1117418 - 1119019 1,602 2.30 Thailand 778
chr06 1117418 - 1119131 1,714 1.91 Senegal SenP51.02
chr06 1117424 - 1119151 1,728 2.51 Cambodia (Tasanh) 326
chr06 1117434 - 1119149 1,716 2.26 Guinea PA0214-C
chr06 1117438 - 1119192 1,755 2.87 Cambodia (Pailin) 76
chr06 1117484 - 1119158 1,675 2.16 Cambodia (Pursat) 105
chr06 1117485 - 1119195 1,711 2.26 Guinea PA0225-C
chr06 1117486 - 1119130 1,645 2.17 Cambodia (Pursat) 104
chr06 1117487 - 1119162 1,676 3.04 Cambodia (Pursat) 115
chr06 1117488 - 1119162 1,675 3.13 Cambodia (Pursat) 108
chr06 1117489 - 1119152 1,664 2.22 Cambodia (Pursat) 110
chr06 1117598 - 1119095 1,498 2.09 Cambodia (Tasanh) 333
chr06 1117624 - 1119095 1,472 2.12 Ghana 565
chr06 1117746 - 1119167 1,422 2.34 Ghana 525
chr06 1117766 - 1119181 1,416 2.11 Guinea PA0219-C
chr06 1117827 - 1119194 1,368 2.36 Cambodia (Ratanakiri) 262

chr07 394657 - 421919 27,263 1.91 Burkina Faso 43
chr07 398667 - 421914 23,248 1.91 Guinea PA0193-C
chr07 398674 - 421912 23,239 1.83 Ghana 590
chr07 398676 - 421917 23,242 2.06 Ghana 520
chr07 398678 - 421912 23,235 1.98 Ghana 489
chr07 398679 - 421905 23,227 2.21 Burkina Faso 47
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chr07 779132 - 796453 17,322 1.42 Cambodia (Pursat) 227

chr07 838352 - 888689 50,338 1.83 Gambia 403

chr07 1071568 - 1072232 665 2.21 Kenya ERS010453

chr08 1314610 - 1315703 1,094 2.01 Gambia PA0092-C

chr09 321465 - 322688 1,224 2.00 Gambia 372

chr09 1095691 - 1096396 706 2.91 Mali 661

chr09 1196177 - 1272137 75,961 1.43 Gambia PA0100-C
chr09 1226756 - 1251976 25,221 1.44 Cambodia (Pursat) 226
chr09 1240368 - 1251255 10,888 1.49 Cambodia (Pursat) 218

chr09 1377600 - 1541735 164,136 0.00 Senegal SenT10.04D10
chr09 1379800 - 1541735 161,936 0.00 Senegal SenT137.09
chr09 1385500 - 1541735 156,236 0.00 Senegal SenT002.09
chr09 1387200 - 1541735 154,536 0.00 Senegal SenT113.09
chr09 1387700 - 1541735 154,036 0.00 Senegal SenT021.09
chr09 1469100 - 1541735 72,636 0.00 Senegal SenT15.04

chr09 1384812 - 1385890 1,079 0.22 Cambodia (Pursat) 168
chr09 1397601 - 1399000 1,400 0.18 Senegal SenP27.02
chr09 1397755 - 1399113 1,359 0.07 Cambodia (Pursat) 101
chr09 1397756 - 1399122 1,367 0.23 Cambodia (Pursat) 105
chr09 1397758 - 1399124 1,367 0.24 Cambodia (Pursat) 104
chr09 1397762 - 1399109 1,348 0.31 Cambodia (Pursat) 110
chr09 1397763 - 1399115 1,353 0.16 Cambodia (Pursat) 117
chr09 1397764 - 1399111 1,348 0.13 Cambodia (Pursat) 113
chr09 1397764 - 1399114 1,351 0.19 Cambodia (Pursat) 116
chr09 1397768 - 1399118 1,351 0.25 Cambodia (Pursat) 115
chr09 1397790 - 1399132 1,343 0.02 Thailand 807
chr09 1397792 - 1399116 1,325 0.12 Cambodia (Pursat) 108
chr09 1397796 - 1399114 1,319 0.21 Cambodia (Pursat) 111
chr09 1397801 - 1399100 1,300 0.22 Senegal SenT15.04
chr09 1397812 - 1399134 1,323 0.15 Thailand 796
chr09 1397824 - 1399117 1,294 0.14 Cambodia (Pursat) 109
chr09 1397839 - 1399122 1,284 0.18 Cambodia (Pursat) 107
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chr09 1397843 - 1399125 1,283 0.23 Thailand 803
chr09 1397901 - 1399000 1,100 0.11 Senegal SenT127.09
chr09 1397901 - 1399000 1,100 0.17 Senegal SenT231.08
chr09 1397901 - 1399000 1,100 0.13 Senegal SenT74.08
chr09 1397901 - 1399000 1,100 0.09 Senegal SenT135.09
chr09 1397901 - 1399200 1,300 0.13 Senegal SenT123.09
chr09 1397901 - 1399200 1,300 0.18 Senegal SenT130.09
chr09 1397901 - 1399200 1,300 0.20 Senegal SenT032.09
chr09 1397901 - 1399300 1,400 0.20 Senegal SenT230.08
chr09 1397901 - 1399300 1,400 0.22 Senegal SenV42.05
chr09 1407201 - 1408300 1,100 0.40 Senegal SenT128.09

chr10 903354 - 904074 721 2.52 Cambodia (Pursat) 159

chr10 1170378 - 1174324 3,947 2.43 Gambia 374

chr10 1376686 - 1440190 63,505 3.04 Senegal SenT151.09
chr10 1424265 - 1425505 1,241 2.07 Gambia PA0071-C

chr11 461088 - 493610 32,523 0.16 Gambia 403

chr11 687757 - 688583 827 2.08 Mali 678

chr11 814857 - 868533 53,677 1.41 Gambia PA0101-C
chr11 821011 - 845503 24,493 1.60 Mali 677

chr11 1054820 - 1059223 4,404 0.16 Burkina Faso 44
chr11 1054851 - 1059280 4,430 0.43 Mali 666
chr11 1054935 - 1059247 4,313 0.44 Mali 676

chr12 461869 - 462612 744 2.37 Kenya ERS010455

chr12 822219 - 830842 8,624 3.04 Cambodia (Ratanakiri) 290

chr12 903997 - 1023825 119,829 1.81 Cambodia (Pursat) 239
chr12 934736 - 975016 40,281 1.59 Cambodia (Pursat) 121
chr12 936352 - 936993 642 7.90 Kenya ERS017455
chr12 941097 - 980769 39,673 4.29 Cambodia (Pailin) 80
chr12 967737 - 978066 10,330 1.91 Cambodia (Pursat) 171
chr12 968639 - 978077 9,439 2.69 Thailand 763
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chr12 968640 - 978085 9,446 10.50 Thailand 711
chr12 968643 - 980646 12,004 2.91 Cambodia (Pursat) 168
chr12 968643 - 978084 9,442 5.80 Thailand 757
chr12 968646 - 978080 9,435 1.91 Thailand 767
chr12 968647 - 978079 9,433 1.93 Cambodia (Pursat) 167
chr12 968649 - 978078 9,430 1.73 Thailand 755
chr12 968649 - 978073 9,425 3.48 Thailand 766
chr12 968650 - 978077 9,428 1.81 Cambodia (Pursat) 231
chr12 968651 - 978079 9,429 1.67 Cambodia (Pursat) 208
chr12 968656 - 978087 9,432 2.20 Thailand 710
chr12 968659 - 978078 9,420 1.69 Cambodia (Pursat) 159
chr12 968661 - 978072 9,412 1.94 Cambodia (Pursat) 211
chr12 968672 - 976316 7,645 6.09 Thailand 762
chr12 968676 - 976313 7,638 2.89 Thailand 760
chr12 968677 - 978083 9,407 1.69 Cambodia (Pursat) 216
chr12 968678 - 976310 7,633 1.95 Thailand 753
chr12 968678 - 978079 9,402 1.98 Cambodia (Pursat) 165
chr12 968693 - 978077 9,385 1.85 Cambodia (Pursat) 244
chr12 968696 - 978076 9,381 2.91 Thailand 730
chr12 968698 - 976310 7,613 2.97 Ghana 478
chr12 968699 - 978077 9,379 4.58 Thailand 716
chr12 968701 - 976319 7,619 6.18 Thailand 761
chr12 968702 - 978079 9,378 1.95 Cambodia (Pursat) 169
chr12 968704 - 978076 9,373 1.82 Cambodia (Pursat) 197
chr12 968709 - 978076 9,368 2.52 Cambodia (Pailin) 76
chr12 968711 - 978073 9,363 2.03 Thailand 733
chr12 968720 - 976305 7,586 2.22 Thailand 714
chr12 968729 - 978068 9,340 2.14 Cambodia (Pursat) 120
chr12 968730 - 976273 7,544 1.98 Ghana 525
chr12 968773 - 978045 9,273 3.00 Thailand 805
chr12 968777 - 978045 9,269 2.69 Cambodia (Pursat) 111
chr12 968779 - 978041 9,263 2.77 Thailand 809
chr12 968779 - 976281 7,503 3.91 Thailand 803
chr12 968780 - 978042 9,263 3.26 Cambodia (Pursat) 104
chr12 968794 - 978040 9,247 2.85 Thailand 810
chr12 968884 - 978063 9,180 3.16 Thailand 720
chr12 973602 - 974374 773 2.24 Guinea PA0177-C
chr12 973608 - 976162 2,555 2.23 Cambodia (Pursat) 152
chr12 973609 - 976160 2,552 2.77 Thailand 769
chr12 973611 - 976157 2,547 2.05 Ghana 541
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chr12 973612 - 976139 2,528 8.84 Thailand 778
chr12 973612 - 976162 2,551 3.01 Thailand 764
chr12 973613 - 976144 2,532 9.25 Thailand 774
chr12 973613 - 975920 2,308 2.23 Ghana 543
chr12 973615 - 974272 658 2.21 Kenya ERS010641
chr12 973615 - 976154 2,540 2.02 Ghana 540
chr12 973621 - 976147 2,527 1.97 Ghana 565
chr12 973625 - 974362 738 1.94 Guinea PA0201-C
chr12 973628 - 976117 2,490 2.45 Thailand 759
chr12 973639 - 974364 726 2.07 Guinea PA0158-C
chr12 973645 - 976138 2,494 2.52 Thailand 775

chr12 1073984 - 1075014 1,031 1.99 Cambodia (Pailin) 55

chr12 1267185 - 1309576 42,392 1.57 Gambia PA0100-C
chr12 1268398 - 1296032 27,635 1.47 Gambia PA0101-C
chr12 1274036 - 1293832 19,797 1.66 Cambodia (Pursat) 121

chr12 1542242 - 1542923 682 2.06 Kenya ERS010452

chr12 1657036 - 1680085 23,050 1.59 Ghana 477

chr12 1767965 - 1769423 1,459 2.26 Ghana 477

chr13 452231 - 453006 776 4.03 Kenya ERS017455

chr13 965987 - 969833 3,847 0.24 Ghana 459

chr13 1068874 - 1084103 15,230 1.45 Cambodia (Pursat) 221

chr13 1154958 - 1183794 28,837 1.46 Cambodia (Pursat) 221
chr13 1162411 - 1181184 18,774 1.62 Cambodia (Pursat) 159

chr13 1200973 - 1201602 630 5.92 Kenya ERS017455
chr13 1212379 - 1264030 51,652 1.90 Gambia 407

chr13 1423943 - 1449811 25,869 2.06 Kenya ERS010454
chr13 1430177 - 1449822 19,646 2.23 Kenya ERS010455

chr13 1428865 - 1429987 1,123 0.34 Gambia PA0068-C



134

chr13 1428908 - 1429972 1,065 0.32 Mali 688
chr13 1428953 - 1429975 1,023 0.31 Ghana 515
chr13 1429053 - 1429993 941 0.27 Ghana 575
chr13 1429079 - 1429975 897 0.34 Burkina Faso 13

chr13 2623768 - 2624384 617 13.80 Kenya ERS017455

chr14 95794 - 109934 14,141 2.12 Cambodia (Pursat) 150

chr14 282835 - 300646 17,812 1.86 Cambodia (Pursat) 165
chr14 282842 - 300646 17,805 1.88 Cambodia (Pursat) 169
chr14 289091 - 298886 9,796 3.12 Cambodia (Pursat) 198
chr14 289396 - 298896 9,501 2.32 Cambodia (Pursat) 129
chr14 289401 - 298894 9,494 3.58 Cambodia (Pursat) 194
chr14 289401 - 298889 9,489 1.99 Cambodia (Pursat) 199
chr14 289402 - 298900 9,499 1.68 Cambodia (Pursat) 180
chr14 289402 - 298898 9,497 1.68 Cambodia (Pursat) 218
chr14 289405 - 298895 9,491 1.74 Cambodia (Pursat) 227
chr14 289407 - 298885 9,479 2.62 Cambodia (Tasanh) 320
chr14 289407 - 298894 9,488 1.74 Cambodia (Pursat) 215
chr14 289408 - 298875 9,468 2.06 Cambodia (Tasanh) 318
chr14 289409 - 298886 9,478 1.71 Cambodia (Pursat) 173
chr14 289409 - 298869 9,461 2.01 Cambodia (Tasanh) 336
chr14 289411 - 298888 9,478 1.83 Cambodia (Pursat) 163
chr14 289417 - 298882 9,466 1.83 Cambodia (Tasanh) 317
chr14 289421 - 298893 9,473 1.81 Cambodia (Tasanh) 325

chr14 367404 - 368300 897 1.94 Kenya ERS017458

chr14 589978 - 592404 2,427 2.61 Guinea PA0200-C

chr14 695480 - 704797 9,318 1.55 Thailand 775

chr14 1099777 - 1101133 1,357 0.45 Mali 677

chr14 1152175 - 1259839 107,665 1.73 Gambia 403

chr14 1185390 - 1186146 757 2.37 Gambia 382
chr14 1185425 - 1186197 773 2.94 Burkina Faso 7
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chr14 1733015 - 1748645 15,631 1.99 Gambia 374

chr14 1734101 - 1735000 900 0.24 Senegal SenT021.09

chr14 2020371 - 2021382 1,012 2.74 Kenya ERS010454

chr14 2257914 - 2259309 1,396 2.78 Cambodia (Pursat) 125

chr14 2620036 - 2620833 798 2.14 Gambia 374
chr14 2698050 - 2699156 1,107 2.44 Thailand 766
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