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Abstract 

 Aspergillus fumigatus is an opportunistic fungal pathogen that causes lethal invasive 

pulmonary disease in immunocompromised hosts and allergic asthma in sensitized 

individuals. This dissertation explores how eosinophils may protect hosts from acute 

infection while driving asthma pathogenesis by co-producing IL-23 and IL-17 in both 

contexts. In an acute model of pulmonary aspergillosis, eosinophils were observed to 

associate with and kill A. fumigatus spores in vivo. In addition, eosinopenia was 

correlated with higher mortality rates, decreased recruitment of inflammatory monocytes 

to the lungs, and decreased expansion of lung macrophages. As IL-17 signaling must 

occur on a local level to elicit its stereotypical response, such as the up-regulation of 

antimicrobial peptides and specific chemokines from stromal cells, eosinophils were 

discovered to be a significant source of pulmonary IL-17 as well as one of its upstream 

inducers, IL-23. In the context of asthma, this discovery opens a new paradigm whereby 

eosinophils might be driving asthma pathogenesis.  
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Aspergillus is a genus of highly successful saprophytic fungi found worldwide (1) 

at densities often reaching 12 – 17 spores per cubic meter of air (2,3). Aspergillus spp. 

begin their lifecycle as conidia (i.e., spores) that are produced asexually by 

conidiophores, and range from 2 to 10 µm in diameter depending on the species (4-6). 

The conidia are covered by a layer of hydrophobic proteins that enhance their buoyancy 

in air and ability to be dispersed (1,7,8). Once resting conidia find adequate sources of 

water, carbon and nitrogen, they swell and germinate into multinucleated hyphal 

structures (9). Germination triggers the release of hydrolytic enzymes that digest organic 

polymers into units for import into the cell (1,5,7). Air interfaces allow hyphae to sprout 

conidiophores, thus completing their lifecycle (9) (Figure 1.1).   

 

Aspergillus and human health. The same qualities that make Aspergillus conidia so 

easily dispersible in air also give them access to the human airway. Conidia can be small 

enough to reach the alveolar space, where they frequently interact with epithelial and 

innate immune cells. Despite their ubiquity and abundance, very few people suffer from 

this interaction because the mucociliary apparatus in conducting airways and professional 

phagocytes in alveolar spaces efficiently clear conidia. However, when a defect in the 

epithelial barrier, immune regulation, or phagocytic capacity is present, hosts become 

susceptible to colonization or invasion by Aspergillus spp. (10). 

 Out of the 40 species of Aspergillus that can cause disease in humans (11), A. 

fumigatus is the most prevalent (5). It is still unclear why this species outnumber other 

Aspergillus spp. in cases of invasive aspergillosis (12), allergic bronchopulmonary 
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aspergillosis (ABPA) (13), and aspergilloma (5). Instead of harboring virulence factors 

that are specialized to the human host, a convergence of attributes make A. fumigatus 

successful in both its natural habitats (e.g., compost heaps) and in predisposed hosts 

(5,7,14). Some of these attributes include: their relative abundance in air, small spore size 

(2.5 – 3 µm in diameter), preference for germinating at body temperature (37oC), ability 

to grow at a wide pH range (2.1 – 8.8), resistance to oxidative stress, and production of 

toxic secondary metabolites (7). 

Protection from A. fumigatus is conferred from all arms of the immune system 

including the epithelial barrier, and innate and adaptive immune cells. For example, 

disruption of the pulmonary epithelial barrier (e.g., cavitary lesions caused by 

tuberculosis) become potential spaces for conidia to germinate, proliferate and form 

aspergillomas (5).  

The most severe illness caused by A. fumigatus occurs when the fungus invades 

pulmonary tissue sometimes disseminating to other organs, including the brain. This type 

of infection, called invasive aspergillosis is most prevalent when there is a breach in the 

innate immune system. This is exemplified by chronic granulomatous disease (CGD), 

one of the few primary immunodeficiencies where Aspergillus spp. acts as a pathogen. 

CGD is characterized by mutations in the NADPH oxidase (PHOX) complex, the enzyme 

responsible for the respiratory burst in phagocytes (15,16). Invasive aspergillosis can 

occur anywhere along the respiratory tract affecting alveolar spaces, bronchial tree, and 

nasal passages (5).  
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Other risk factors for invasive aspergillosis include iatrogenic immunosuppression 

following the transplant of hematopoietic stem cells or solid organs. Patients with 

hematologic malignancies are also susceptible to infection, as well as those who suffer 

from natural or acquired immunodeficiencies such as various types of aplastic anemias 

and advanced AIDS. Severe and prolonged neutropenia is the most common risk factor 

for incidence and mortality with invasive aspergillosis in this heterogeneous group of 

patients (5,12,17).  

Molds such as A. fumigatus can also elicit an allergic response from atopic 

patients that can lead to either mild or severe asthma. Mild allergic asthma is typically 

controlled with standard treatments such as corticosteroids and β2-adrenergic receptor 

agonists (18). In contrast, severe asthma with fungal sensitization (SAFS) is often poorly 

controlled with standard therapies leading to higher mortality rates (19). Sensitization to 

A. fumigatus can be determined by challenge with fungal antigens using a skin prick test, 

where the development of a 3 mm wheal reveals an atopic individual, or by assessment of 

specific antibodies. Sensitized individuals with high levels of IgE specific to A. fumigatus 

have been reported to have higher incidences of colonization by the fungus and worse 

respiratory function (20). Some of these patients respond well to antifungal treatment, 

suggesting that colonization plays a significant role in the pathogenesis of this disease 

(13).  

A subset of A. fumigatus sensitized individuals suffers from a level of symptom 

severity exceeding that of SAFS patients. In such cases individuals are evaluated for 

ABPA. Criteria for ABPA diagnosis includes a history of asthma or cystic fibrosis (CF), 
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very high levels of serum IgE, specific antibodies against A. fumigatus, and marked 

leukocyte infiltration into the lungs observed by chest radiography (13). ABPA patients 

produce copious amounts of mucus, and often develop bronchial outpouchings called 

bronchiectasis, respectively providing A. fumigatus with a rich medium and potential 

space to grow. Therefore, ABPA patients are chronically or intermittently colonized with 

A. fumigatus and often benefit from antifungal treatment (13).  

Although ABPA is marked by high eosinophilia, inflammation driven by 

continual exposure to A. fumigatus antigens induces high levels of interleukin (IL)-8 and 

neutrophils in the lungs (21). IL-8 is a pleiotropic cytokine that can bind chemokine (C-

X-C) motif receptor (CXCR)-1 and -2 on the surface of neutrophils and stromal cells to 

induce neutrophil chemotaxis, increase mucus production, collagen deposition, and 

angiogenesis (22). All of these functions are associated with asthma pathogenesis. In fact, 

in an ovalbumin (OVA) sensitization model of asthma, CXCR-2-/- mice were protected 

from developing airway hyperresponsiveness (AHR), a hallmark symptom of asthma 

(23). These findings were confirmed in an A. fumigatus sensitization model of asthma 

(24), however, lack of CXCR-2 signaling is lethal in primary infection models (25). The 

incongruent outcomes observed in CXCR-2-/- mice in an acute infection model compared 

to an asthma model highlight how specific immune responses to A. fumigatus can be 

beneficial or harmful to a host depending on the context of the interaction with the 

pathogen.  
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Figure 1.1: The lifecycle of Aspergillus fumigatus. Conidiophores asexually produce 
resting conidia that are easily dispersible due to their small size and hydrophobicity. A 
conidium will swell and grow into hyphae upon encountering an environment that is 
conducive to germination. Access to an air interface will induce conidiophore formation. 
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Figure 1.2: The IL-23/IL-17 Axis. IL-23 is a heterodimeric cytokine made up of an IL-
12p40 subunit and an IL-23p19 subunit. Upon binding its receptor (IL-23R), IL-23 
signaling can either augment or induce IL-17 production depending on the cell expressing 
the receptor. The IL-17RA/RC receptor binds to the three configurations formed by IL-
17A and IL-17F as these subunits can either homo- or heterodimerize. Ligation with the 
IL-17RA/RC receptor triggers the production of antimicrobial peptides, pro-
inflammatory cytokines and chemokines including IL-6, G-CSF, GM-CSF, CXCL-1, -2, 
and -5. 
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The IL-23/IL-17 Axis. The IL-17 family of cytokines is composed of six members 

ranging from IL-17A through F. IL-17A exists as a disulfide-linked homodimer and 

binds with high affinity to IL-17RA, IL-17RC is then recruited to form a fully functional 

signaling receptor. IL-17A also forms a disulfide-linked heterodimer with IL-17F. IL-17F 

can exist as a homodimer as well, binding the same IL-17R heterodimer as IL-17A. Cells 

of the innate and adaptive immune system can produce different configurations of the IL-

17A and F dimers. These cells include: γδ T cells, invariant natural killer T cells (iNKT), 

lymphoid-tissue inducer like cells, neutrophils, CD8+ T cells (TC17) and CD4+ T cells 

(TH17) (26,27). For clarity, the IL-17RA/RC ligands will be referred to as IL-17. IL-17 

up-regulates the expression of CXCR-2 ligands (i.e., CXCL-1, CXCL-2 and CXCL-5) as 

well as several pro-inflammatory cytokines, metalloproteases and antimicrobial peptides 

(27). 

IL-23 can either induce or augment IL-17 release depending on the cell type 

expressing IL-23 receptor (IL-23R). IL-23 is a member of the IL-12 cytokine family, 

sharing with the cognate cytokine the IL-12p40 chain, and dimerizing with the IL-23p19 

chain to form a functional signaling molecule. IL-23R is also a heterodimeric receptor 

composed of the IL-12Rβ1 and IL-23A subunits. The relationship between IL-23 and IL-

17 is known as IL-23/IL-17 axis (29) (Figure 1.2). A. fumigatus readily elicits IL-23 and 

IL-17 production from the lungs after exposure (30). Although recognized primarily for 

the induction of neutrophilia, IL-17 also recruits eosinophils in a model of chronic 

aspergillosis (31). However, the exact mechanism underlying IL-17-driven eosinophil 
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recruitment is still unclear. Recently, high levels of IL-17 have been correlated with 

symptom severity in both non-atopic and atopic asthma (28). 

One other IL-17 family member that is associated with A. fumigatus exposure is 

IL-17E. Often referred to as IL-25, this cytokine signals through the IL-17RA/RB 

receptor complex. IL-17E is an epithelial-derived cytokine that has been shown to 

enhance IgE production in ABPA (32,33). There is evidence that contact between chitin, 

an A. fumigatus cell wall component, and airway epithelial cells induce the production of 

IL-17E, IL-33 and thymic stromal lymphopoietin (TSLP). IL-17E, IL-33 and TSLP 

activate resident innate lymphoid type 2 cells (ILC2s) to produce IL-5 and IL-13. This 

cascade of events ultimately leads to the recruitment of eosinophils to the lungs (34).  

 

Eosinophils in allergic asthma. The role eosinophils play in allergen sensitization, 

inflammatory exacerbations, and airway remodeling in asthma is highly complex. This 

may be partially due to the fact that asthma is a heterogeneous disease with numerous 

etiologies and presentations (35,36). In addition, eosinophils are equipped with a vast 

number of immune mediators within their granules and have been associated with several 

different functions that are sometimes redundant and contradictory. For example, 

eosinophils play a role in sensitization by both instructing dendritic cells to elicit a TH2 

response in asthma models, and acting as antigen presenting cells (APCs) in draining 

lymph nodes (37,38). Eosinophils also drive active inflammation and tissue destruction 

by recruiting TH2 cells to the lungs and releasing several cytolytic proteins. In contrast, 
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they also promote inflammation resolution by producing protectins and resolvins to 

inhibit granulocyte migration and elicit efferocytosis in macrophages (39).  

Some of the contradictory functions performed by eosinophils might be accounted for 

by the specific context they encounter (40). For example, in the context of acute infection 

with A. fumigatus, eosinophils play a protective role and prevent mice from succumbing 

to infection. This has been demonstrated with a strain of A. fumigatus that overexposes 

chitin on its surface (Af5517) (41), and is also presented in this dissertation with a 

different fungal strain (CEA10).  O’Dea et al. (41) have shown that eosinopenic mice are 

just as susceptible to acute infection with Af5517 as mice that are deficient in Ly6G+ 

cells, a myeloid cell population that includes neutrophils. However, if mice are exposed 

repeatedly with A. fumigatus, eosinopenic mice succumb to infection at higher rates than 

mice depleted of Ly6G+ cells. The authors attribute the discrepancy in mortality between 

the two models to enhanced TH2 responses, which they claim is beneficial in acute 

infection but detrimental in chronic exposure (41).  

In the following chapters, I detail how eosinophils also directly contribute to the 

production of IL-23 and IL-17 in both acute aspergillosis and in asthma models where 

mice were sensitized to either A. fumigatus or OVA. In producing both IL-23 and IL-17, 

eosinophils do not seem to affect the recruitment of neutrophils, instead the recruitment 

of inflammatory monocytes and the expansion of macrophages are hampered in 

eosinopenic mice. This dissertation explores a novel eosinophil function that might be 

both protecting hosts from an acute pulmonary infection with Aspergillus spp. while also 

driving asthma pathogenesis in atopic patients.  
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Preface to Chapter II 

 

Evelyn Guerra performed the experiments. 

Evelyn Guerra and Stuart Levitz designed experiments.  
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CHAPTER II: Innate IL-23/IL-17 Axis Kinetics in Acute Aspergillosis 
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Abstract 

 Although frequently inhaled, Aspergillus fumigatus conidia rarely cause disease. 

The inhalation of these infective particles by an immunocompromised host, however, can 

cause severe infections that are difficult to diagnose and are often lethal. Neutrophils play 

an important function in protecting hosts from infection. The role of the IL-23/IL-17 axis, 

which promotes the development and recruitment of these phagocytes, is largely 

unknown in pulmonary aspergillosis. This chapter characterizes the innate IL-23/IL-17 

axis in response to a pulmonary challenge with A. fumigatus. Genes involved in the axis, 

namely Il23p19, Il17a and Il17f, were rapidly expressed in response to acute 

aspergillosis. Il17a showed a biphasic pattern of mRNA production that was consistent 

with the temporal pattern of IL-17AF release in the lungs. Cxcl5, a gene that encodes a 

neutrophil chemokine downstream of the IL-23/IL-17 axis, displayed mRNA expression 

kinetics that matched the pattern of IL-17AF release in the lungs, suggesting that Cxcl5 

might be regulated by this IL-17 dimer in our model. Finally, the model revealed that IL-

23p19 and IL-17A are co-produced within a few hours of infection and again on the 

second day of infection.  
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Introduction 

 Aspergillus fumigatus is a ubiquitous, saprophytic mold generally found in 

decaying matter. It reproduces mainly through asexual sporulation, a process that 

produces small (2.5 - 3 µm), hydrophobic conidia (5). Its ability to disperse through air 

means humans are continuously exposed to these spores through the lungs. In most 

healthy individuals, conidia are promptly cleared either by the mucociliary apparatus of 

major conducting airways or by resident phagocyte activity. In immunocompromised and 

atopic individuals, however, these mold spores can cause invasive aspergillosis and 

allergic bronchopulmonary aspergillosis (ABPA) respectively (5). 

 Although uncommon, invasive aspergillosis is a highly lethal disease that is often 

misdiagnosed. Prolonged neutropenia is major risk factor for acquiring it, particularly in 

patients who have undergone hematopoietic stem cell transplant or solid organ transplant. 

Non-neutropenic patients at risk for developing invasive aspergillosis are generally 

pharmacologically immunosuppressed and/or suffer from chronic obstructive pulmonary 

disease (42).  

 As neutropenia is a major risk factor for developing invasive aspergillosis, this 

chapter aims to characterize the innate IL-23/IL-17 axis that plays a significant role in 

neutrophil development, recruitment and function. IL-23 is a heterodimeric cytokine 

consisting of IL-23p19 and IL-12p40 subunits (43). IL-23 receptor (IL-23A/IL-12Rβ1) 

ligation activates signal transducer and activator of transcription (STAT)-3, which then 

augments or induces IL-17 production depending on the cell type stimulated (15). IL-17 

is a family of cytokines, consisting of members ranging from A through F. These 
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cytokines bind distinct receptors and form homodimers, although IL-17A and IL-17F can 

heterodimerize. IL-17AA, IL-17FF, and IL-17AF all bind the same heterodimeric 

receptor, IL-17RA/RC, albeit with different affinities. IL-17AA has the highest affinity 

for IL-17RA/RC, while IL-17FF binds with the least affinity and IL-17AF exhibits an 

intermediary affinity (44). In fact, these dimers are the IL-17 family members involved in 

the IL-23/IL-17 axis (29). For the remainder of this dissertation, IL-17 will refer to IL-

17RA/RC ligands. 

 IL-17RA/RC is generally expressed on some leukocytes and the surface of 

stromal cells (i.e., fibroblasts, epithelial and endothelial cells). IL-17 signaling up-

regulates the expression of antimicrobial peptides, granulopoeitic cytokines (e.g., 

granulocyte-colony stimulating factor [G-CSF]) (26), pro-inflammatory cytokines (e.g., 

IL-1, Tumor necrosis factor [TNF-] α, and IL-6) (45), and chemokines, including 

neutrophil chemokines (CXCL-1, CXCL-2, and CXCL-5) (46).  

 In this chapter, the murine innate IL-23/IL-17 axis is characterized by assessing 

the temporal pattern of mRNA levels for Il23p19, Il17a and Il17f in response to A. 

fumigatus. To determine which IL-17 dimers are involved in this innate response, I also 

characterized the release kinetics of IL-17AA, IL-17FF and IL-17AF in the 

bronchoalveolar lavage fluid (BALF) of C57Bl/6 mice infected with A. fumigatus 

conidia. In addition, the temporal pattern of mRNA production was assessed for the three 

neutrophil chemokines previously shown to be regulated by the IL-23/IL-17 axis (26). 

Finally, these experimental approaches revealed that IL-17A and IL-23p19 are co-

produced at specific time points after infection. 
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Materials and Methods 

Mice. Six- to eight-week old C57Bl/6 mice were obtained either from Jackson 

Laboratories or bred in pathogen-free conditions at the University of Massachusetts in 

accordance with guidelines approved by the Institutional Animal Care and Use 

Committee (IACUC).  

 

Reagents. Flow cytometry (FC) buffer used in staining was composed of phosphate 

buffered saline (PBS; Corning) supplemented with 2% fetal bovine serum (FBS; Tissue 

Culture Biologicals).  

 

Aspergillus fumigatus culture and murine acute pulmonary aspergillosis model. Wild-

type (WT) A. fumigatus from the AF293 strain was obtained from the Fungal Genetics 

Stock Center in Kansas. AF293 was grown from frozen stocks on Sabouraud-dextrose 

agar (Remel™) slants. Conidia were harvested by vortexing slants with PBS containing 

0.01% Tween-20 (Thermo-Fisher) and filtering the suspension twice through a 30 µm 

nylon mesh folded over a 15 mL conical tube. Suspensions were then washed three times 

with 0.01% Tween-PBS, and re-suspended in the same solution at a concentration of 

6.67x108 conidia/mL. C57Bl/6 mice were infected via the oro-tracheal (OT) route with 

75 µL of conidial suspension, with each mouse receiving 5x107 conidia. Control mice 

received 75 µL of vehicle (0.01% Tween-PBS). OT infection was facilitated by 

anesthetizing mice with isoflurane (Piramal Healthcare).  
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Whole lung RNA isolation and qPCR reaction. Infected and sham-infected mice were 

euthanized in carbon dioxide chambers. Lung tissue was harvested and homogenized in 1 

mL of TRIzol® (Life Technologies) using a PowerGen 700 homogenizer (Fisher; Model 

GLH-115). Total RNA was extracted according to the manufacturer’s protocol and 

purified using the NucleoSpin® RNA kit (Macherey-Nagel). RNA concentration and 

purity were measured using NanoDrop 2000 spectrophotometer (Thermo-Fisher). One 

microgram of each sample was converted to cDNA using iScript™ Reverse Transcription 

Supermix for RT-qPCR (Bio-Rad). Each target was amplified in triplicate using iQ 

SYBR Green Supermix (Bio-Rad) in a CFX96 Touch™ Real-Time PCR Detection 

System (Bio-Rad). Sequences for primers used are listed in Table 2.1 (Life 

Technologies). Data were analyzed as described previously with Hypoxanthine-guanine 

phosphoribosyltransferase (Hprt) message serving as the internal control (47). 

Table 2.1: Primer sequences used in qPCR reactions. 
Target Gene Forward Primer (5’-3’) Reverse Primer (5’-3’) References 
Cxcl-1 (Kc) CGCTTCTCTGTGCAGCGCTGCT CAAGCCTCGCGACCATTCTTGA (48) 
Cxcl-2 (Mip-2) TCCAGAGCTTGAGTGTGACG TCCAGGTCAGTTAGCCTTGC (48) 
Cxcl-5 (Ena78) GGTCCACAGTGCCCTACG GCGAGTGCATTCCGCTTA (48) 
Hprt AGCGTTTCTGAGCCATTGCT GCTACCGCTCCGGAAAGC (49) 
Il17a TTTAACTCCCTTGGCGCAAAA CTTTCCCTCCGCATTGACAC (48) 
Il17f TGCTACTGTTGATGTTGGGAC AATGCCCTGGTTTTGGTTGAA (48) 
Il23p19 TGTGCCCCGTATCCAGTGT CGGATCCTTTGCAAGCAGAA  (50) 
 

In vivo intracellular cytokine staining. At 2, 24 and 48 h post-infection with 5x107 

conidia, C57Bl/6 mice were treated with 500 µg of monensin (Sigma-Aldrich) by 

intraperitoneal (ip) injection as has been previously described (51). Six hours after 

monensin treatment, lungs were harvested and dissociated using a lung dissociation kit 

(Miltenyi Biotec) in combination with the gentleMACS™ Dissociator. Lung single-cell 

suspensions were enriched for leukocytes by a Percoll™ (BD Pharmingen) gradient as 
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described by Wiesner et al. (52). Briefly, lung single cell suspensions were pelleted and 

re-suspended in 40% Percoll™ PBS solution, then overlaid onto 67% Percoll™ PBS. 

Leukocytes were enriched in the interphase layer after a 20-minute centrifugation step at 

650 x g without brake. Interphase cells were washed twice with FC buffer, then Fc 

receptors were blocked with rat anti-mouse CD16/CD32 monoclonal antibody (mAb) 

2.4G2 (BD Pharmingen) as described by the manufacturer. Lung leukocytes were fixed in 

2% paraformaldehyde (Electron Microscopy Sciences) PBS solution overnight at 4oC. 

Fixed cells were permeabilized using Perm/Wash Buffer (BD) according to manufacturer 

instructions, then stained with rat anti-mouse IL-17A-PE or PE-Cy7 mAb TC11-18H10 

(BD Pharmingen or Biolegend) and rat anti-mouse IL-23p19-eFluor 660 mAb fc23cpg 

(eBioscience). FC data were acquired with a BD LSR II cytometer and analyzed using 

FlowJo X software (Tree Star Inc.). Quadrant gates were established using fluorescence 

minus one (FMO) controls. Gating strategy is shown in Figure 2.1. 

 

Cytokine quantification in BALF after infection. BALF from C57Bl/6 mice infected as 

described above was collected after euthanasia at regular time intervals. Briefly, an 18 or 

20 gauge plastic catheter (Temuro) was inserted into the tracheas of three mice per time 

point and lungs were flushed three times with 1 mL of PBS supplemented with 

cOmplete™ protease inhibitor cocktail (Sigma-Aldrich). BALF samples were flash frozen 

in dry ice and subsequently stored at -80oC. IL-17AA, IL-17AF and IL-17FF were 

quantified in each sample using Ready-SET-Go! ELISA sets (eBioscience).  
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Statistics. Statistical analyses were performed using GraphPad Prism 6 software. One-

way ANOVA was used to test differences across time points in qPCR and ELISA 

experiments.  
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Figure 2.1: Gating strategy for in vivo intracellular cytokine staining. Singlet events 
were gated using the FSC-H/FSC-A window, and then debris was gated out in the SSC-
A/FSC-A window. Quadrant gates were determined using FMO controls (not shown). 
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Results 

The transcriptional kinetics of the components of the innate IL-23/IL-17 axis in 

response to acute aspergillosis. To assess the temporal pattern of mRNA expression of 

the major components of the IL-23/IL-17 axis, C57Bl/6 mice were either infected with 

5x107 A. fumigatus conidia (AF293 strain; green) or vehicle (0.01% Tween-PBS; blue) 

(Figure 2.2). At 0, 3, 6, 12, 24, 36, 48, 60 and 72 hours post-infection, the relative 

mRNA expression of Il23p19, Il17a and Il17f in the lung tissue from three mice per time 

point were assessed by quantitative PCR (qPCR). Il23p19 mRNA levels peaked at 36 h 

post-infection, returning to baseline by 72 h post-infection. Il17a showed a biphasic 

pattern of mRNA production, peaking at 6 h and then again at 48 h post-infection, before 

returning to baseline at 72 h post-infection. Il17f peaked at 12 h post-infection, although 

the variability at this time point might denote a turning point for its transcription.  

The role of IL-23 in the induction and augmentation of IL-17 production differs 

depending on the source of the latter. For example, in TH17 development, IL-23 serves to 

augment cytokine production (53). However, in γδ-T cells, signaling from IL-23 receptor 

alone induces IL-17 production and release (54). In our model, Il23p19 mRNA 

production is congruent with Il17a and Il17f mRNA levels within the first 12 h of 

infection, however, as Il23p19 mRNA levels rise from 12 to 36 h post-infection, Il17a 

and Il17f levels return to baseline (Figure 2.2). At these time points, the IL-17 sources 

may not be sensitive to IL-23 signaling or IL-23 may be post-transcriptionally silenced. 
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Figure 2.2: The temporal mRNA transcription pattern of the IL-23/IL-17 axis 
components in acute aspergillosis. Il23p19, Il17a and Il17f transcript levels were 
assessed at regular time intervals from whole lungs of C57Bl/6 mice infected with 5x107 
A. fumigatus (AF293) conidia or vehicle (n=3 per time point). Relative mRNA 
expression was calculated using the 2-ΔΔCt analysis method, with Hprt amplification used 
as the internal control. Each point denotes arithmetic mean from three experiments and 
error bars denote standard error of the mean (SEM). Il23p19 levels appear to peak at 36 h 
post-infection (p < 0.001). Il17a levels appear to peak at 6 h and then again at 48 h post-
infection (p <0.005).  Il17f  levels appear to peak at 12 h post-infection (p <0.05). 
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Figure 2.3: Co-production of IL-23p19 and IL-17A coincide with peaks of Il17a 
message. Representative plots from in vivo intracellular cytokine staining performed in 
C57Bl/6 mice infected with 5x107 A. fumigatus conidia (AF293) treated with 500 µg of 
monensin 2, 24 and 48 h post-infection. Six hours after monensin treatment, lung single 
cell suspensions were fixed and permeabilized, then stained with antibodies against IL-
23p19 and IL-17A. 
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IL-23p19 and IL-17A are co-produced. To assess whether IL-23p19 and IL-17A protein 

production also diverged around 24 h post-infection, in vivo intracellular cytokine 

staining (ICS) was performed using lung leukocytes from C57Bl/6 mice infected with 

5x107 A. fumigatus conidia (AF293 strain). At time points that coincided with the peaks 

of Il17a mRNA transcription and at 24 h post-infection, mice were treated with 500 µg of 

monensin by ip injection. Monensin inhibits cytokine release, thereby allowing for their 

detection by antibody staining (55). Six hours after monensin treatment, lung leukocytes 

were assessed for intracellular IL-17A and IL-23p19 by flow cytometry (Figure 2.3). At 

time points that coincided with Il17a peak transcription, IL-17A and IL-23p19 were 

found within the same cells, suggesting that these cytokines are co-produced in response 

to A. fumigatus. Between 24 and 30 h post-infection, only IL-23p19 protein was detected, 

suggesting that although Il23p19 message is translated, at this time point it was 

insufficient to induce enough IL-17A production to be detected by this method. It is 

important to note that IL-23p19 detection by ICS does not necessarily mean that a fully 

functional IL-23 heterodimer (IL-23p19/IL-12p40) is produced or released.  

 
IL-17AA, IL-17FF and IL-17AF pattern of release in the airways. Given that IL-17A 

and IL-17F can homodimerize and heterodimerize, forming IL-17AA, IL-17FF or IL-

17AF, the concentration of each dimer in the BALF of infected C57Bl/6 mice was 

assessed (Figure 2.4). IL-17AF was the predominant dimer released over the course of 

the first three days of infection. In fact, this dimer also followed the biphasic pattern seen 

in Il17a transcription, albeit with a delayed rise and a shorter pause.  
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Figure 2.4: Temporal pattern of IL-17 dimer production in acute aspergillosis. 
BALF were collected from C57Bl/6 mice infected with 5x107 conidia (AF293) at regular 
time intervals (n=3 per time point) and assessed for the different IL-17 dimers, namely 
IL-17AA (orange), IL-17AF (blue), and IL-17FF (red). Each point denotes arithmetic 
mean from three experiments and error bars denote SEM. IL-17AA and IL-17FF showed 
no difference over a 72 h period (p > 0.05), whereas IL-17AF differed across sampling 
period (p < 0.05). 
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Figure 2.5: Temporal transcriptional pattern of neutrophil chemokines downstream 
of the IL-23/IL-17 axis in response to acute aspergillosis. Cxcl1, Cxcl2 and Cxcl5 
relative transcript levels were assessed from whole lungs of C57Bl/6 mice infected with 
5x107 conidia (AF293) or vehicle by qPCR (n=3 per time point). Relative gene 
transcription was calculated using the 2-ΔΔCt analysis method, with amplification of Hprt 
as the internal control. Each point denotes arithmetic mean from three experiments and 
error bars denote SEM. Cxcl1 levels appear to peak at 6 h post-infection  (p < 0.0001). 
Cxcl2 levels also appear to peak at 6 h post-infection (p <0.001).  Cxcl5 levels appear to 
peak at 24 h and then again between 48 and 60 h post-infection (p <0.001).  
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Temporal transcriptional pattern of neutrophil chemokines downstream of the IL-

23/IL-17 axis. One of the effects of IL-17 is the induction of neutrophil chemokines, 

particularly CXCL (chemokine [C-X-C motif] ligand)-1, -2, and -5 (46). To determine if 

CXCR-2 ligand transcription pattern in our acute aspergillosis model was similar to the 

production of IL-17 as shown in Figure 2.4, their temporal transcription patterns were 

assessed as described previously (Figure 2.5). Both Cxcl-1 and Cxcl-2 peaked at 6 h 

post-infection, with Cxcl-1 showing a smaller peak at 36 h post-infection. Cxcl-2 mRNA 

levels returned to baseline by 36 h post-infection and remained low until 72 h post-

infection. Their pattern of transcription did not particularly resemble the kinetics of the 

IL-23/IL-17 axis components. The pattern of transcription for Cxcl-5, however, highly 

resembled the pattern of IL-17AF release, suggesting that IL-17AF may induce Cxcl-5 

transcription.  
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Discussion 

 To understand the kinetics of the innate IL-23/IL-17 axis in response to the acute 

pulmonary aspergillosis, the temporal transcription pattern of the major components was 

assessed in the first 72 h of infection (Figure 2.2). In the lungs of C57Bl/6 mice, Il23p19, 

Il17a and Il17f were promptly expressed, with Il17f peaking 12 h post-infection. 

Interestingly, Il17a showed a biphasic pattern of transcription peaking as early as 6 h 

post-infection, then returning to baseline, only to peak again at 48 h post-infection. 

Il23p19, however, peaked at 36 h post-infection. The temporal transcription pattern for 

Il17a and Il17f did not match suggesting that these genes may be differentially regulated 

in our model (Figure 2.2). Although these gene products signal through the same 

receptor (IL-17RA/RC), in several mouse models Il17a-/- and Il17f-/- diverge in disease 

outcomes. For example, in dextran sulfate sodium-induced colitis, Il17f-/- mice show 

milder symptoms, including decreased weight loss, and lower clinical scores compared to 

Il17a-/- mice (56). Divergence in Il17a and Il17f transcription has also been observed at 

the cellular level. Prostaglandin E2 (PGE2) stimulation preferentially induces Il17a versus 

Il17f transcription in human memory TH17 cells (CD161+ CCR-6+), while stimulation 

with IL-23 and IL-1β induced higher levels of Il17f transcription (57). There is evidence 

that strength of T-cell receptor (TCR) signaling, ROR (RAR-related orphan receptor) α-

mediated transcriptional activation, and histone modifications (i.e., triple methylation of 

histone 3 lysine 4 [H3K4me3]), may account for divergence in Il17a and Il17f 

transcription (27,57). 



 CHAPTER II  
	

47 

Co-production of IL-23p19 and IL-17A suggests that IL-23 may be regulating IL-17 

production in an autocrine manner (Figure 2.3). However, divergence in Il23p19 

transcription and production from Il17a and Il17f transcription between 12 h and 36 h 

post-infection suggests that IL-17 genes may be alternatively induced at these time 

points. 

The transcription of key downstream effectors of the IL-23/IL-17 axis was also 

measured. The IL-23/IL-17 axis is a major contributor to neutrophil recruitment by up-

regulating CXCL-1, -2, and -5 (27). Based on this notion, the transcription kinetics of 

each of these chemokines were assessed to determine whether there are similarities 

between their temporal pattern of transcription to that of Il23p19, Il17a or Il17f (Figure 

2.2). Both Cxcl-1 and Cxcl-2 had their highest peaks of mRNA abundance at 6 h post-

infection, coinciding with the first Il17a peak. If Il17a drove the transcription of these 

chemokines, a delay in peak transcription would be expected. Furthermore, these 

chemokines have been shown previously to be up-regulated by TNF-α, a cytokine 

produced as early as 2 h following challenge with A. fumigatus (58-61).  Alternatively, 

Cxcl-1 and Cxcl-2 transcription peaks could be hidden between time points.  At 36 h 

post-infection, Cxcl-1 transcription peaked again, although at a much smaller scale. At 

this time point Il17a and Il17f transcription had already returned to baseline for 24 and 12 

h respectively. Taken together, available evidence is inconsistent with the notion that up-

regulation of Cxcl-1 at this point is driven by IL-17.  

Cxcl-5 transcriptional kinetics do not follow the same pattern as Cxcl-1, or Cxcl-2 

transcription. In fact, it closely follows the pattern of IL-17AF release, as measured by its 
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concentration in BALF after infection (Figure 2.4-2.5). Although a causative relationship 

has yet to be established, this may be one way IL-17 regulates CXCR-2 signaling. If that 

is the case, IL-17-mediated Cxcl-5 transcription might be a major contributor to lung 

neutrophilia for days 2 and 3 after infection, as this chemokine is the only CXCR-2 

ligand expressed those days. Neutrophils play a significant role in protecting hosts from 

invasive aspergillosis, as neutropenia is a major risk factor in developing disease. 

Furthermore, loss of CXCR-2 signaling in mice delays neutrophil recruitment to the 

lungs after infection with A. fumigatus conidia, and renders them susceptible to mortality 

after infection (25,62).  

In this chapter, I have established the temporal pattern of transcription of the main 

components of the IL-23/IL-17 axis, and some key downstream effectors. In our model of 

acute aspergillosis, Cxcl-5 transcription is correlated with IL-17AF release. Additionally, 

I have discovered that IL-23p19 and IL-17A are co-produced at specific time points after 

infection with A. fumigatus. To my knowledge this is the first report of co-production of 

these cytokines by a single cell population. 
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Preface to Chapter III 

 

Chrono Lee performed bone marrow isolations. 

Cindy Greer and Chris Mueller sensitized and challenged mice in asthma models. 

The UMMS Flow Cytometry Core performed the sorting experiment. 

Evelyn Guerra performed remaining experiments. 

Evelyn Guerra, Stuart Levitz and Chris Mueller designed the asthma experiments. 

Evelyn Guerra and Stuart Levitz designed the remaining experiments. 
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CHAPTER III: Eosinophils as a Source of IL-23 and IL-17 
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Abstract 

 Although the role of the IL-23/IL-17 axis in the primary response to Aspergillus 

fumigatus remains unclear, modeling the infection in mice has led to the discovery of a 

novel source for these cytokines. This chapter identifies how eosinophils, as first 

responders to a pulmonary challenge with A. fumigatus conidia, act as sources for both 

IL-23 and IL-17. In addition, this phenomenon was observed in two asthma models, 

potentially revealing a new therapeutic target for this highly prevalent disease. 
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Introduction 

The antifungal properties of the IL-23/IL-17 axis have been best described in 

models of oral candidiasis (63). In this model, IL-23p19-/- and IL-17RA-/- mice suffer 

from higher fungal burdens and increased weight-loss when compared to WT and IL-

12p35-/- mice (63,64). Concordantly, defects in genes involved in the IL-23/IL-17 axis 

can present as chronic mucocutaneous candidiasis (CMC) in humans (63). CMC is 

characterized by persistent and recurrent Candida spp. infections of the oropharynx and 

cutaneous intertriginous areas (65).  

In addition to increasing CMC susceptibility, patients with a Stat3 mutation can 

develop invasive aspergillosis secondary to bronchiectasis (66,67). STAT3 is a 

transcription factor downstream from several cytokines including IL-23 (67,68). Whether 

defects in the IL-23/IL-17 axis underlie these patients’ increased susceptibility to 

invasive aspergillosis is still unknown.  

A few studies have attempted to define a role for the IL-23/IL-17 axis in response 

to A. fumigatus, but a conclusive narrative has yet to be established (30,69). Two groups 

have reported disparate fungal burdens two or three days post-infection when either IL-23 

or IL-17A is knocked out or neutralized. Werner et al. (30) showed that neutralizing IL-

17A or IL-23 increased fungal burden in the lungs of infected mice, as assessed by A. 

fumigatus 18S rRNA transcripts, two days post-infection (30). In contrast, Zelante et al. 

(69) measured fungal burden by assessing levels of chitin, a fungal cell wall component, 

in IL-23p19-/-, IL-12p40-/-, IL-12p35-/- and WT mice three days post-infection (69). The 

authors found that all knock-out (KO) mice had decreased fungal burden compared to 
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WT; however, IL-23p19-/- animals had the lowest fungal burden. In addition, IL-23p19-/- 

mice had fewer lung infiltrates than the other KO mice, leading the authors to conclude 

that IL-23 hampered fungal clearance (69).  

Unlike the findings by Zelante et al. (69), at least one other study has shown that 

chitin loads increase in IL-12p40-/- mice (70), and several other studies have attributed 

beneficial roles to IL-12 (71-73). Moreover, measuring chitin levels as a function of 

fungal load may be misleading because resting conidia must swell in order to be 

effectively killed by phagocytes (5,16,74). Chitin production necessarily increases during 

conidial swelling to accommodate increased surface area accompanied by rehydration 

(75). Therefore, it is possible that the findings reported by Zelante et al. (69) support that 

IL-23 is beneficial in instructing phagocytes to effectively kill A. fumigatus conidia. In 

fact, the decreased leukocyte infiltration seen in IL-23p19-/- mice might actually delay 

fungal clearance. 

In a model of chronic aspergillosis, similar to an asthma model, mice were 

repeatedly challenged with A. fumigatus conidia, and lung homogenates from Il17a-/- 

mice grew fewer colony forming units than WT mice (31). In light of the studies 

described above, it is intriguing to consider that IL-17 might be beneficial in the context 

of an acute infection, but in the setting of chronic exposure to A. fumigatus, IL-17 might 

debilitate fungal killing.   

Although first established as a product of CD4+ T cells, IL-17 is produced by 

several cell types from the innate and adaptive arms of the immune system (44). In the 

adaptive arm, both CD4+ (TH17) and CD8+ (Tc17) lymphocytes produce IL-17 (27). In 
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the innate arm, a growing list of cell types has been implicated in IL-17 production. 

These include cells from the lymphoid compartment such as ILC3s (66,76), γδ T-17 cells 

(26), and iNKT-17 cells (27,54). From the myeloid compartment, IL-17 production by 

neutrophils (77), macrophages (78,79), monocytes (80) and eosinophils (81,82) have 

been reported. 

The source of IL-23 has primarily been studied in connection to TH17 

development. In the context of this paradigm, APCs such as dendritic cells and 

macrophages have been identified as its main sources (29). In this chapter I show that the 

co-producers of IL-23 and IL-17 discovered in Chapter II are eosinophils. By in vivo ICS, 

eosinophils are revealed to be a local source of these cytokines in response to both acute 

A. fumigatus infection and in two different asthma models.  
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Materials and Methods 

Mice. Six- to eight-week old C57Bl/6, Balb/c and ΔdblGATA-1 mice on the Balb/c 

background were obtained either from Jackson Laboratories or bred in pathogen-free 

conditions at the University of Massachusetts Medical School. All mouse studies were 

performed in accordance with protocols approved by the IACUC.  

 

Aspergillus fumigatus culture and murine acute pulmonary aspergillosis model. WT A. 

fumigatus (AF293 strain) was grown and harvested as described in Chapter II. Briefly, 

conidia were inoculated on Sabouraud-dextrose agar (Remel™) slants and incubated for 

two days at 37oC. Conidia were harvested in PBS containing 0.01% Tween-20 (Thermo-

Fisher). Isoflurane-anesthetized mice were infected via the OT route with 5x107 conidia 

suspended in 0.01% Tween-PBS.  

 

Murine acute allergic asthma model. C57Bl/6 mice were sensitized two times by ip 

injection of 20 µg of OVA (Sigma-Aldrich) in 100 µL of Imject® Alum (Thermo 

Scientific) or 200 µg of A. fumigatus crude protein extracts (AF cpe) (Greer 

Laboratories). Sensitization occurred two weeks apart. Twenty-eight days after the first 

sensitization, mice were challenged with aerosolized 1% OVA or 0.25% AF cpe in saline 

respectively for 20 minutes. Challenges were repeated on days 29 and 30 (Figure 3.8A).  

 

Intracellular cytokine staining, sorting and flow cytometry. Intracellular cytokine staining 

(ICS) was performed as described in Chapter II. Briefly, mice were treated with 500 µg 



 CHAPTER III  
	

56 

of monensin (Sigma-Aldrich) by ip injection, 2 or 48 h after infection with 5x107 conidia, 

or 48 h after the last challenge in the allergic asthma models. Six hours after monensin 

treatment, lung single-cell suspensions were prepared using MACS® lung dissociation kit 

as described by the manufacturer. Single-cell suspensions were enriched for leukocytes 

using a Percoll™ (GE Healthcare) gradient (52). Interphase cells were collected, counted 

with the aid of a hemocytometer, and then co-incubated with rat anti-mouse CD16/CD32 

monoclonal antibody (mAb) 2.4G2 (BD Pharmingen) to block Fc receptors in accordance 

with manufacturer’s directions. Surface antigens were then stained with antibodies listed 

in Table 3.1 and with Fixable Viability Dye eFluor® 780 (eBioscience) or Live/Dead 

Blue (Life Technologies) for 30 minutes at 4o C. After two successive wash steps, lung 

leukocytes were fixed in 2% paraformaldehyde (Electron Microscopy Sciences) PBS 

solution for at least 15 minutes or overnight at 4o C. Fixed cells were permeabilized using 

Perm/Wash Buffer (BD Pharmingen) according to manufacturer instructions and then 

stained with antibodies listed in Table 3.1.  

 For sorting IL-23p19+ IL-17A+ cells, fixed lung leukocytes were only stained for 

intracellular cytokines, and then sorted with BD FACSVantage DV-1 Cell Sorter (UMass 

Medical School Flow Cytometry Core). FC data were acquired with a BD LSR II 

cytometer and analyzed using FlowJo X software (Tree Star Inc.). Gating was established 

using FMO controls containing isotype control mAb conjugated with the fluorophore 

corresponding to the missing antibody as previously described (83).  
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Table 3.1: Antibodies used in flow cytometry. 
Surface Markers 
mAb Clone Manufacturer Isotype 
Ly6C-PE-Cy7 HK1.4 Biolegend Rat IgG2c 
Ly6G-PE-CF594 1A8 BD Biosciences Rat IgG2a 
CCR-2-FITC 475301 R&D Systems Rat IgG2b 
CD11c-BV™ 570 N418 Biolegend Armenian Hamster IgG 
Siglec-F-BV™ 421 E50-2440 BD Biosciences Rat IgG2a 
CD11b-BUV™ 395 M1/70 BD Biosciences Rat IgG2b 
F4/80-APC-Cy7 BM8 Biolegend Rat IgG2a 
CD45-PerCP-Cy5.5  30-F11 BD Biosciences Rat IgG2b 
Intracellular Markers 
mAb Clone Manufacturer Isotype 
IL-23p19-eFluor® 660 Fc23cpg eBiosciences Rat IgG1 
IL-17A-PE-Cy7 TC11-18H10.1 Biolegend Rat IgG1 
IL-17AF-eFluor® 660 B8KN8R eBiosciences Rat IgG2a 
 
 
 
Cytological staining. After sorting, cells were adhered to poly-L-Lysine-coated slides 

(Sigma-Aldrich) by cytospinning 250 µL of cell suspension at 800 rpm for three minutes 

(Shandon Cytospin 2). Cells were dried on the slide, and then dipped in hematoxylin 

solution (Thermo-Fisher) for 30 seconds. Slides were washed in water then dipped in 

eosin (Thermo-Fisher) for one minute.  Increasing concentrations of ethanol (95%-100%) 

were used to dehydrate slides for a total of two minutes. Finally, slides were dipped three 

times in Clear-Rite (Thermo Scientific) for one minute each time. Slides were mounted 

using Permount™ (Fisher Scientific).  

 

Cytokine quantification in BALF after infection. BALF from Balb/c and ΔdblGATA-1 

mice infected as described above was collected after euthanasia at 60 h post-infection. 

BALF collection was performed as described in Chapter II. Ready-SET-Go! ELISA sets 
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(eBioscience) were used to quantify IL-17AA, IL-1AF, and IL-17FF. IL-23 was 

measured using R&D Quantikine ELISA kit.  

 

Generation of bone marrow-derived eosinophils (BM-Eos). Bone marrow cells were 

isolated from murine femurs and differentiated as described previously (84). Briefly, BM 

cells were subjected to a gradient with Histopaque 1083 (Sigma). Interphase cells were 

washed twice to remove any leftover Histopaque and cultured in Isocove’s modified 

Dulbecco’s medium (IMDM; Life Technologies) supplemented with 10% FBS (Tissue 

Culture Biologicals), 100 U/mL penicillin and 100 U/mL streptomycin, 1X Glutamax 

(Life Technologies) and 2 µL of β-mercaptoethanol (Life Technologies). The first four 

days of culture, cells were stimulated with 100 ng/mL of murine stem cell factor (mSCF) 

(PeproTech) and 100 ng/mL of murine FMS-like tyrosine kinase 3 ligand (mFLT3L) 

(PeproTech). The following ten days, cells were stimulated with 10 ng/mL IL-5 (R&D). 

Cells were fed every other day (Figure 3.11). Differentiation was confirmed by flow 

cytometry with rat mAb against murine Siglec-F-BV421 (BD Biosciences). 

 

BM-Eos Stimulation. BM-Eos were stimulated with live or heat-killed A. fumigatus 

AF293 conidia, zymosan (10-100 µg/mL; Sigma), lipopolysaccharide (LPS, 100 ng/mL; 

Sigma) and several cytokines at different concentrations and combinations for lengths of 

time ranging from two hours to two days. Cytokines used to stimulate BM-Eos included 

IL-5 (10 ng/mL), IL-1β (1-10 ng/mL; R&D), GM-CSF (10 ng/mL; PeproTech), IL-23 

(10 ng/mL; eBiosciences), IL-17E (0.1-10 ng/mL; R&D), IL-17AA (0.1-10 ng/mL; 
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R&D), PGE2 (10-5-10-3 M; Cayman Chemicals), transforming growth factor-β (TGF-β) 

(1-10 ng/mL; eBiosciences), and IL-6 (10-100 ng/mL; eBiosciences). When co-incubated 

with live A. fumigatus conidia, cultures were supplemented with 0.5 µg/mL of 

voriconazole (Sigma) to prevent fungal overgrowth. Following stimulation, supernatants 

were collected for ELISA and/or RNA isolation for qPCR. 

 

Quantitative PCR. RNA from BM-Eos was isolated using Qiagen’s RNeasy kit according 

to the manufacturer’s instructions.  qPCR was performed using KAPA SYBR FAST 

One-Step qRT-PCR kit according to instructions provided by the manufacturer, in a 

CFX96 Touch™ Real-Time PCR Detection System (Bio-Rad). Primer sequences for each 

target are listed in Table 3.2 and were designed and synthesized by Sigma or previously 

published and synthesized by Life Technologies. A 2% agarose gel (Acros Organics) was 

used to confirm PCR amplicon sizes.  

Table 3.2: Primer sequences used in qPCR reactions. 
Target 
Gene 

Forward Primer (5’-3’) Reverse Primer (5’-3’) References 

Epx CCAGAGATGGAGACAGATTC GATAAAGAGATTCGCCTCAG Sigma 
Il17ra AGTGTTTCCTCTACCCAGCAC GAAAACCGCCACCGCTTAC (48) 
Il17rc CCTTGGAACCCAGTGGCTGTA ACACTGGTGTGATCGGAAGTCTTG (85) 
Il23a TTACAGCAAAATCATCCCAC- TTGATGATTACCTGAAGCAG Sigma 

  
 
Statistical analysis. Statistical analyses were performed using GraphPad Prism 6 

software. T-tests were used to compare means between groups of two. Comparisons 

between more than two groups were made using one- or two-way ANOVA and Tukey’s 

post-hoc analysis. 
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Results 

Eosinophils co-produce IL-23p19 and IL-17. As discussed in Chapter II, IL-23p19 and 

IL-17A were co-produced in response to A. fumigatus at time points corresponding to 

Il17a transcription. To identify the cell type(s) responsible for their production in acute 

aspergillosis, the IL-23p19+ IL-17A+ population was sorted 8 h post-infection with 5x107 

A. fumigatus conidia (Figure 3.1A). In accordance with eosinophil morphology, the 

cytoplasm of sorted cells uniformly stained strongly with eosin, and nuclei were 

characteristically polymorphous (86).   

To further confirm that eosinophils were indeed producing IL-23p19 and IL-17A, 

these double-positive cells were assayed for surface markers characteristic of eosinophils, 

namely Siglec-F and CD11b (Figure 3.1B). In Balb/c mice acutely infected with A. 

fumigatus, the IL-23p19+ IL-17A+ cells were Siglec-F+ CD11b+ and also CD11c-. These 

markers have been shown to accurately define eosinophils in the murine lungs (86,87). 

Additionally, in mice where eosinophilopoiesis is disrupted (ΔdblGATA-1), IL-23p19+ 

IL-17A+ cells were largely absent (Figure 3.1B).  

In the context of eosinophil deficiency, virtually no IL-23p19+ cells were detected 

(Figure 3.2). As functional IL-23 is comprised of IL-23p19 and IL-12p40 subunits, I 

confirmed that IL-23 heterodimer was indeed produced in acutely infected lungs of WT 

mice, and that their levels were significantly diminished in the absence of eosinophils 

(Figure 3.3). In addition, nearly all (96.9%) IL-23p19+ cells were found to be Siglec-F+ 

CD11c- (Figure 3.4A). The majority (87.1%) of eosinophils recruited to the lungs were 
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IL-23p19+ (Figure 3.4B). In conclusion, eosinophils are the predominant local source of 

IL-23 in our acute aspergillosis model. 
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Figure 3.1: Eosinophils co-produce IL-23p19 and IL-17. (A) C57Bl/6 mice infected 
with 5x107 AF293 conidia were treated with 500 µg monensin ip 2 h post-infection, lung 
single-cell suspensions were made 6 h after monensin treatment. Cells were fixed and 
permeabilized, then stained with anti-IL-23p19 and anti-IL-17A. FC analysis uncovered a 
population producing both cytokines. That population was sorted and stained with H&E, 
revealing cells consistent with eosinophil morphology (i.e., polymorphous nucleus and 
pink cytoplasm). Scale bar corresponds to 20 µm and 3 µm in figure inset. (B) IL-23p19+ 
IL-17A+ populations were also detected in Balb/c mice infected with 5x107 AF293 
conidia, which was absent in ΔdblGATA-1 mice. Further characterization of the IL-
23p19+ IL-17A+ population by surface markers confirmed they were eosinophils (Siglec-
F+ CD11b+ CD11c-).  
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Figure 3.2: Eosinopenic mice lack IL-23p19+ cells. (A) ΔdblGATA-1 mice lack lung-
recruited eosinophils (Siglec-F+ CD11c-) after infection with 5x107 AF293 conidia when 
compared to Balb/c mice. (B) Anti-IL-23p19 staining of lungs from infected Balb/c and 
ΔdblGATA-1 after treatment with 500 µg of monensin shows nearly complete abrogation 
of IL-23p19+ cells in the absence of eosinophils 8 h post-infection. 
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Figure 3.3: Lack of eosinophils correlates with diminished levels of IL-23 in acute 
aspergillosis. BALF from Balb/c and ΔdblGATA-1 mice were collected 60 h after 
challenge with 5x107 A. fumigatus. IL-23 (IL-23p19/IL-12p40) levels were significantly 
reduced in eosinopenic mice. Data were statistically analyzed using an unpaired t-test (n 
= 6); * = p < 0.05. 
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Figure 3.4: Eosinophils are a significant source of local IL-23p19 in acute 
aspergillosis. (A) Overlay of IL-23p19+ cells (maroon) onto the live cells gate (gray) in 
the Siglec-F vs. CD11c window. An average of 96.9±1.34% of IL-23p19+ events was 
found within the eosinophil gate (Siglec-F+ CD11c-). (B) Representative histogram 
showing the shift in the IL-23p19 channel of the eosinophil population compared with its 
FMO/isotype control. A mean of 87.1±6.4% of Siglec-F+ CD11c- cells were also IL-
23p19+.  Arithmetic mean ± standard deviation (SD) shown in each plot (n=5).   
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Myeloid cells contribute to IL-17 production in acute aspergillosis. To assess whether 

lack of eosinophils affects IL-17 levels in the lungs of mice acutely infected with A. 

fumigatus, levels of IL-17AA, IL-17FF and IL-17AF were assessed in the BALF of 

Balb/c and ΔdblGATA-1 mice 60 h post-infection with 5x107 A. fumigatus conidia 

(Figure 3.5). Again, IL-17AF was the most abundant IL-17 dimer produced, but in 

Balb/c mice, IL-17FF is the second most abundant dimer, and IL-17AA the least 

abundant dimer. In the BALF of infected C57Bl/6 mice, IL-17AA levels were on average 

higher than IL-17FF, which was barely detected (see Chapter II, Figure 2.4).  

ΔdblGATA-1 mice (Balb/c background) carry a deletion in the palindromic 

enhancer sequence of the GATA-1 promoter, which renders them unable to produce 

eosinophils (88). These mice had lower levels of IL-17AA and IL-17AF than WT mice, 

but unchanged levels of IL-17FF (Figure 3.5). To assess whether other cells from the 

myeloid compartment contributed to the levels of IL-17 in the lungs of acutely infected 

mice, I designed a flow cytometry antibody panel to detect eosinophils, lung 

macrophages, inflammatory monocytes and neutrophils in the lungs. This panel consisted 

of antibodies against Siglec-F, CD11c, CD11b, CCR-2 and Ly6G. Before performing in 

vivo intracellular cytokine staining with this panel, I confirmed that the markers listed 

above sufficiently characterized each population of interest. To this end, antibodies 

against Ly6C and F4/80 were added to the panel. Table 3.3 lists how each population has 

been characterized previously (86).  The gating strategy for each myeloid cell population 

is shown in Figure 3.6. 
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Consistent with markers characteristic of eosinophils, Siglec-F+ CD11c- cells 

were also Ly6C+ Ly6G+ CCR-2- CD11b+ and F4/80+, (Figure 3.6A) (86). Lung 

macrophages gated as Siglec-F+ CD11c+ consist of resident alveolar macrophages and 

recruited macrophages that have differentiated from inflammatory monocytes (89). A 

distinction between the two populations was not necessary for the purpose of this 

experiment. Siglec-F+ CD11c+ cells were Ly6CLo Ly6G- CCR-2- CD11bInt F4/80+ 

confirming their identity as lung macrophages (Figure 3.6A) (89). Inflammatory 

monocytes (Siglec-F- CD11b+ CCR-2+) were confirmed to be Ly6CHi Ly6G+ CD11c- 

F4/80Lo (Figure 3.6B) (89). Finally, neutrophils were gated as Siglec-F- CD11b+ CCR-2- 

Ly6GHi. This population was found to be Ly6CHi and F4/80- as formerly defined (Figure 

3.6B). 

After confirming the identity of the myeloid cells of interest in the lungs of 

infected animals, I assessed whether each population produced IL-17. Out of three 

commercially available antibodies against IL-17, two target either the IL-17A or IL-17F 

subunit. However, it is unknown whether these antibodies selectively recognize their 

respective homodimers without cross-reactivity against IL-17AF. Importantly, the third 

antibody recognizes the IL-17AF heterodimer, without cross-reactivity with IL-17AA or 

IL-17FF. IL-17AF garnered our interest, as it was the most abundant IL-17 permutation 

in our acute aspergillosis model (Figure 2.4, 3.5). While eosinophils were the only cells 

found to be producing IL-23p19 (Figure 3.1B, 3.2, 3.4), IL-17AF was produced by 

eosinophils, lung macrophages, inflammatory monocytes and neutrophils in C57Bl/6 and 

Balb/c mice (Figure 3.7A).  
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To measure cytokine abundance within each cell population, I calculated the shift 

in median fluorescence intensity (MFI) from the FMO/isotype control to the stained 

sample (ΔMFI). Of all the myeloid cells, eosinophils had the highest ΔMFI for IL-17AF, 

which did not significantly differ between C57Bl/6 and Balb/c mice. For the other 

myeloid cells, ΔMFI in the IL-17AF channel greatly differed between C57Bl/6 mice and 

mice in the Balb/c background (WT and ΔdblGATA-1), however, there were no 

significant difference between WT (Balb/c) and ΔdblGATA-1 (Figure 3.7B). 
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Figure 3.5: Lack of eosinophils correlates with lower levels of certain IL-17 dimers. 
BALF from Balb/c and ΔdblGATA-1 mice (n=3 per group) infected with 5x107 A. 
fumigatus conidia (AF293 strain) was collected 60 h post-infection. IL-17AA, IL-17FF 
and IL-17AF levels were assessed by ELISA. IL-17AA and IL-17AF levels were 
decreased in ΔdblGATA-1 mice, however IL-17FF levels remained unchanged. Data 
were statistically analyzed using multiple t-tests that were corrected using the Sidak-
Bonferroni method  * = p< 0.05. 
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Table 3.3: Surface markers characteristic of different myeloid cell populations. 
Marker Eosinophils Neutrophils Inflammatory Monocytes Lung Macrophages 
Ly6C + ++ ++ Low 
Ly6G + ++ + - 
CCR-2 - - + - 
CD11c - - - + 
Siglec-F + - - + 
CD11b + + + +/- 
F4/80 + - Low + 
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Figure 3.6: Gating strategy for lung myeloid cells elicited in acute aspergillosis. (A) 
Eosinophil gate (Siglec-F+ CD11c-) was confirmed to be Ly6C+ Ly6G+ CCR-2- CD11b+ 

and F4/80+, in accordance with previous reports. The gate for lung macrophages (Siglec-
F+ CD11c+) was also confirmed with other markers. Lung macrophages were also 
Ly6CLo Ly6G- CCR-2-, CD11bInt F4/80+. (B) Inflammatory monocytes gated as Siglec-F- 
CD11b+ CCR-2+ were found to be Ly6CHi Ly6G+ CD11c- F4/80Lo. Neutrophils gated as 
Siglec-F- CD11b+ CCR-2- Ly6GHi CD11c- were found to be Ly6CHi and F4/80-.  
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Figure 3.7: Myeloid cells contribute to IL-17AF production in acute aspergillosis. 
(A) Lung myeloid cells isolated from C57Bl/6, Balb/c and ΔdblGATA-1 mice infected 
with 5x107 A. fumigatus conidia (AF293) were assessed for their ability to produce IL-
17AF six hours after 500 µg monensin ip injections. IL-17AF was produced by 
eosinophils, lung macrophages, inflammatory monocytes and neutrophils. (B) MFI from 
FMO/isotype controls was subtracted from MFI of each population to calculate ΔMFI. 
Data were aggregated from 4-5 mice of each strain, and were analyzed by unpaired t-tests 
or one-way ANOVA as appropriate. Post-hoc analyses were done using Tukey’s multiple 
comparison tests after one-way ANOVA.  * = p < 0.05, ** = p < 0.01.  
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Eosinophils co-produce IL-23p19 and IL-17AF in allergic asthma. As eosinophils are 

thought to drive many of the pathological findings in allergic asthma, and as increased 

levels of IL-17 have recently been positively correlated with severity of asthma 

symptoms (90), I wanted to assess whether eosinophils can also produce IL-23p19 and/or 

IL-17 in murine models of allergic asthma. Two established models of acute allergic 

asthma were chosen: one where mice were sensitized and challenged with A. fumigatus 

crude protein extracts (Af cpe) (33), and another where sensitization was achieved with 

OVA admixed with aluminum hydroxide then challenged with aerosolized OVA (91) 

(Figure 3.8A). In both allergic asthma models, eosinophils produced both IL-23p19 and 

IL-17AF (Figure 3.8B).  

In both asthma models, eosinophils were the most significant producers of local 

IL-23p19 (Figure 3.9). Close to 100% of IL-23p19+ cells were found in the eosinophil 

gate regardless of allergen (Figure 3.9A). On average, 35.1% of lung cells produced IL-

23p19 in the A. fumigatus asthma model, compared to 22.5% in the OVA model (Figure 

3.9A). Although fewer cells produced IL-23p19 in the OVA model, this difference was 

not statistically significant (Figure 3.9B).  

A similar pattern in IL-17AF production was observed in both asthma models as 

was seen in acute aspergillosis. While IL-17AF is primarily produced by eosinophils, as 

measured by ΔMFI, lung macrophages, inflammatory monocytes and neutrophils 

contribute to its production (Figure 3.10). Interestingly, eosinophils from the lungs of 

mice sensitized and challenged with Af cpe showed an increased shift in MFI when 

compared to the OVA sensitized and challenged mice (Figure 3.10B).  
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Figure 3.8: Eosinophils co-produce IL-23p19 and IL-17AF in two different models 
of asthma. (A) Schematic of sensitization and challenge timeline for asthma models. 
C57Bl/6 mice were sensitized with either 20 µg of OVA in 100 µL of alum or 200 µg of 
Af cpe by ip injections twice in two-week intervals. Two weeks after the second 
sensitization, mice were challenged with either OVA or Af cpe by aerosol exposure on 
days 28, 29, and 30 after the first sensitization. Two days after the last challenge, mice 
were treated with 500 µg of monensin by ip injection. Six hours after monensin 
treatment, intracellular cytokine staining was performed in lung single cell suspensions. 
(B) Eosinophils (Siglec-F+ CD11c-) were found to produce IL-23p19 and IL-17AF.  
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Figure 3.9: Eosinophils are a significant source of local IL-23p19 in asthma. (A) In 
C57Bl/6 mice sensitized and challenged with A. fumigatus protein extracts or OVA, 
eosinophils were the most significant producers of lung IL-23p19. Arithmetic mean ± SD 
shown in each plot (n=5).  (B) Although there were fewer IL-23p19+ cells in the lungs of 
the OVA sensitized and challenged mice compared to the Af cpe model, the difference 
was not statistically significant, ns = p > 0.05. (C) Several myeloid cells were assessed 
for their ability to produce IL-23p19 in Af cpe and OVA asthma models. Only 
eosinophils reliably showed a significant shift in IL-23p19 signal. (D) ΔMFIs were 
calculated for each of the myeloid cell types assessed in (C).  
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Figure 3.10: Different myeloid cell types contribute to IL-17AF production in 
asthma. (A) In both OVA and A. fumigatus asthma models, IL-17AF is produced by 
eosinophils, lung macrophages, inflammatory monocytes, and neutrophils. (B) ΔMFI for 
each myeloid cell population was calculated as described previously. Eosinophils showed 
a pronounced shift in signal for IL-17AF compared to the other cell types. The fungal 
asthma model elicited higher levels of IL-17AF production by eosinophils than the OVA 
asthma model. Data were analyzed by two-way ANOVA, employing Tukey’s multiple 
comparison test, *=p<0.05, n=5 per group. 
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In vitro stimulation of BM-Eos failed to induce IL-23 or IL-17. BM-Eos were generated 

as previously described (84) (Figure 3.11). To assess whether IL-23 or IL-17 could be 

induced by A. fumigatus, cells and live or heat-killed AF293 conidia were co-incubated 

for 4, 8 or 24 h. No IL-23, IL-17AA, IL-17AF, or IL-17FF was detected by ELISA in the 

supernatants of co-cultures. In addition, several combinations of zymosan or LPS, and 

IL-5, TGF-β, IL-6, GM-CSF, IL-1β, TNF-α, IL-17E (IL-25), PGE2, IL-23 and IL-17AA 

were used to stimulate BM-Eos. None of the combinations tried reproducibly induced IL-

23 or any of the IL-17 dimers from BM-Eos.  

 

BM-Eos highly express Il17ra, but do not express Il17rc or Il23a. Given that IL-23 

induces IL-17 from neutrophils and other innate cell types (54,77), I tested whether BM-

Eos express the receptor for IL-23 (IL-23A/IL-12Rβ1). Freshly differentiated eosinophils 

expressed eosinophil peroxidase (Epx), but no Il23a transcript was detected by qPCR 

(Figure 3.12) (27). Il17ra and Il17rc transcript levels were also assessed in these cells. 

Although Il17ra transcription was detected, its partner in IL-17 signaling, Il17rc could 

not be detected (Figure 3.12).  

GM-CSF has been shown to activate eosinophils by inducing the transcription of 

several cytokines, including Tnf, Il13, and Il6, as well as increasing cell diameter (92). 

Therefore, I tested whether 18 h activation with GM-CSF induced the transcription of 

Il23a or Il17rc, and found that these genes were not induced by this cytokine (Figure 

3.11).  
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Figure 3.11: Generation of bone marrow-derived eosinophils. BM-Eos were 
generated by culturing low-density bone marrow (LDBM) cells isolated from the 
interphase cells generated by a gradient between Histopaque 1083 and Hank’s Balanced 
Salt Solution. LDBM cells were subsequently cultured in mSCF and mFLT3L for 4 days, 
then IL-5 for 10 days. 
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Figure 3.12: Bone marrow-derived eosinophils express Il17ra, but not Il17rc or 
Il23a. Transcription of eosinophil peroxidase (Epx), Il23a, Il17ra and Il17rc was 
assessed by qPCR from freshly differentiated (14 d) BM-Eos (lanes 1-3 of left panel), as 
well as BM-Eos left unstimulated (Us; lane 1), or treated with IL-5 (lane 2) or GM-CSF 
(lane 3) for 18 h (right panel).   
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Discussion 

  Since the discovery of TH17 cells, many other cell types have been recognized to 

produce IL-17, including: epithelial cells, other lymphocytes (i.e., Tc17, γδ-T cells, 

iNKT-17 and ILC3s), and myeloid cells (i.e., neutrophils, monocytes, macrophages and 

eosinophils), (27,54,77-82). IL-23 production, however, is generally thought to be 

confined to macrophages and dendritic cells (29,43,93). To my knowledge, this is the 

first report showing that eosinophils are involved in IL-23 production (Figure 3.1).  

 A literature search yielded two other publications describing evidence for 

eosinophil-derived IL-17. The most recent of which used a reporter IL-17A-EGFP mouse 

line to show that eosinophils (Siglec-F+ CD11b+) recruited to the peritoneum produce IL-

17 in response to ip LPS injections (82). In our hands, LPS alone does not induce IL-17 

production from BM-Eos, even though IL-23 was elicited from bone marrow-derived 

dendritic cells treated in the same manner within the same experiment (data not shown). 

In humans, Molet et al. (81) demonstrated that eosinophils from asthmatic patients 

stained with anti-sense IL-17 cRNA via in situ hybridization (81). In our murine models 

of allergic asthma, eosinophils produced both IL-23p19 and IL-17AF (Figure 3.8). Our 

finding that eosinophils make up a higher proportion of IL-17AF-producing cells in 

allergic asthma (73.2-% [AF cpe] 65.2% [OVA]) than in acute aspergillosis (14.2%) 

indicates that eosinophil-derived IL-17 could play a larger role in asthma pathogenesis 

than in acute aspergillosis. 

 Research has revealed some overlap in attempting to dissect the role of eosinophils 
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and IL-17 in asthma pathogenesis. Several asthma mouse models show that absence of 

eosinophils correlates with decreased AHR, decreased mucus production, and reduced 

numbers of lung neutrophils (39), findings that were replicated in mouse models that lack 

IL-17 signaling (94,95). Another example of overlap in roles are the findings that IL-17 

signaling and eosinophil co-culture with epithelial cells have separately been shown to 

up-regulate Mucin 5AC (MUC5AC), a mucin protein produced by bronchial airway 

goblet cells (95-97).  

 Given that eosinophils stain with mAbs against IL-17A and IL-17AF (Figures 3.1, 

3.7), it is unclear whether they are the source of IL-17AA in addition to IL-17AF, as it is 

unknown whether the mAb clone recognizing the IL-17A subunit also recognizes the 

heterodimeric cytokine. In ΔdblGATA-1 mice, the BALF of infected animals showed 

decreased levels of IL-17AA, while IL-17FF levels remained the same (Figure 3.5). 

Although this finding indicates that eosinophils might produce IL-17AA but not IL-17FF, 

it is also possible that these specific IL-17 dimers are differentially regulated by IL-23, as 

its levels were significantly diminished in the absence of eosinophils (Figure 3.3). In 

other myeloid cells of ΔdblGATA-1 mice, no decrease in ΔMFI for IL-17AF was 

detected (Figure 3.7B), suggesting that IL-23 does not drive IL-17AF production from 

these cells. Whether IL-23 is necessary for eosinophil-derived IL-17 is still to be 

determined.   

 To assess whether IL-23 provides an autocrine signal that induces eosinophil 

production of IL-17, an in vitro system was established using BM-Eos. Several candidate 
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stimulants of IL-23 and IL-17 production failed to induce production of these cytokines 

(data not shown). I found that BM-Eos do not produce IL-23 or IL-17 during ex vivo 

development, or express their cognate receptors Il23a or Il17rc (Figure 3.12). While 

Il17ra mRNA was detected in freshly differentiated BM-Eos, this subunit can also 

dimerize with IL-17RB and bind IL-17E (IL-25) (44). Concordantly, IL-17RA/RB has 

previously been found to be expressed by human eosinophils (98). In mice, IL-17E up-

regulates IL-5 production from ILC2s, thus inducing eosinophil recruitment (34). 

However, the direct effect of IL-17E on eosinophils is still unknown. Given that A. 

fumigatus has been reported to induce IL-17E from epithelial cells (34), BM-Eos were 

treated with varying concentrations of IL-17E, but those attempts failed to induce IL-23 

or IL-17 (data not shown).  

  The discovery that eosinophils play a role in the innate response to acute 

aspergillosis as producers of IL-23 and IL-17 raises several questions. It has only recently 

become clear that the IL-23/IL-17 axis plays a significant role in fungal infections (63), 

as well as in driving asthma pathogenesis (90). The novel findings described in this 

chapter link asthma, eosinophilia, the IL-23/IL-17 axis, and fungal infections. These 

connections may lead to an updated model of fungal infection resolution and asthma 

pathogenesis, as well as indicate new potential therapeutic targets for both diseases. 



 CHAPTER IV  
	

83 

Preface to Chapter IV 
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CHAPTER IV: Effects of Eosinopenia in Acute Aspergillosis 
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Abstract 

Prolonged granulocytopenia is among the most well established risk factors for 

invasive aspergillosis. However, the contribution of granulocytes other than neutrophils 

in preventing invasive aspergillosis has been largely ignored. The findings described 

herein demonstrate that eosinophils associate with and kill A. fumigatus conidia in vivo, 

in addition to inducing the recruitment of inflammatory monocytes and expansion of 

macrophages in the lungs. Finally, I show that eosinopenic mice are more susceptible to 

acute infection with A. fumigatus conidia than wild-type mice.  
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Introduction 

 Best known for their role in allergic diseases and helminth infections, eosinophils 

play significant roles against several different pathogens in addition to the resolution of 

inflammation, tissue repair, and maintaining mucosal integrity (37). They are well 

equipped for such a diverse array of functions as they are deployed with granules 

containing pre-formed cytokines, chemokines, and antimicrobial/cytotoxic proteins. 

Additionally, eosinophils maintain sensitivity to a wide variety of environmental stimuli, 

expressing receptors for cytokines, chemokines, lipid mediators, danger associated 

molecular patterns, as well as opsonized and non-opsonized pathogens (37,86,99).  

In healthy individuals, eosinophils make up a small percentage of peripheral 

blood leukocytes; however, eosinophilia is a hallmark of several allergic diseases 

including ABPA (13). Very little is known about their involvement in acute aspergillosis. 

In fact, only recently have eosinophils been considered part of the innate immune 

response to acute aspergillosis (100). Lilly et al. (100) have shown that ΔdblGATA-1 

mice infected with the ATCC 13073 strain of A. fumigatus conidia suffer from higher 

fungal burdens than WT mice. In addition, they have found that BM-Eos co-incubated 

with A. fumigatus conidia inhibits fungal growth and release several cytokines and 

chemokines, including: IL-1β, IL-4, IL-13, IL-9, CCL-2, CCL-4, and CCL-11 (100).  

 In this chapter, I assess the capacity of eosinophils to associate with and kill 

conidia in vivo. I also investigate their function as immunomodulators in acute 

aspergillosis by regulating the recruitment of inflammatory monocytes and the expansion 
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of macrophages in the lungs. Finally, I describe their ability to confer protection against 

mortality in acute aspergillosis.  
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Materials and Methods 

Mice. Six- to eight-week old C57Bl/6, Balb/c and ΔdblGATA-1 mice were obtained 

either from Jackson Laboratories or bred in specific pathogen-free conditions at the 

University of Massachusetts. All mouse studies were performed in accordance with 

guidelines approved by the IACUC.  

 

Aspergillus fumigatus culture and murine acute pulmonary aspergillosis model. Green 

fluorescent protein (GFP)- and red fluorescent protein (dsRed)-expressing A. fumigatus 

(AF293 strain) were kindly provided by Tobias Hohl. Each strain was grown and 

harvested as described in Chapter II. The CEA10 strain was a generous gift from Robert 

Cramer. They were grown in glucose minimum media (GMM: 10g Dextrose, 15g Agar, 

0.52g KCl, 0.52g MgSO4�7H2O, 1.52g KH2PO4, 1mL of trace elements [40mg 

Na2B4O7�10H2O, 400mg CuSO4�5H2O, 800mg FeSO4�7H2O, 800mg MnSO4�4H2O, 

800mg Na2MoO4�2H2O, 8g ZnSO4�7H2O in 1L of distilled H2O], pH 6.5 in 1L of 

distilled H2O) (101). All chemicals for GMM were obtained from Sigma. Conidia were 

harvested in PBS containing 0.01% Tween-20 (Thermo-Fisher). Isoflurane-anesthetized 

mice were infected via the OT route with 5x107 conidia suspended in 0.01% Tween-PBS.  

 

Cytological staining. BALF was collected from C57Bl/6 mice infected with GFP-AF293 

conidia as described in Chapter II. Cells pelleted from BALF were fixed for 15 minutes 

with 2% paraformaldehyde in PBS. After washing out fixative, cells were adhered to 

poly-L-Lysine coated slides (Sigma-Aldrich) by cytospin. Cells were dried on the slide, 
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and then stained with H&E as described in Chapter III. Slides were examined for 

eosinophils associating with GFP-expressing conidia using a Nikon Eclipse E400 

microscope. 

 

Creating Fluorescent Aspergillus Reporter (FLARE) conidia. FLARE conidia were 

created as described previously (102). Briefly, 5x108 dsRed conidia (AF293) per mL 

were incubated with 0.5 mg/mL 6-((6-((Biotinoyl)Amino)Hexanoyl)amino)Hexanoic 

Acid, Sulfosuccinimidyl Ester, Sodium Salt (Biotin-XX, SSE) (ThermoFisher) in 50 mM 

carbonate buffer (Sigma), pH 8.3 at 4oC for 2 h in a tube rotator. Excess Biotin-XX, SSE 

was washed off with 0.1 M Tris-HCl pH 8.0 (Sigma), then conidia were incubated with 

0.02 mg/mL Streptavidin, Alexa Fluor® 633 (Life Technologies) away from light at room 

temperature for 30 minutes. Labeling was confirmed by flow cytometry prior to infecting 

animals. 

 

Staining for flow cytometry. Lungs from infected mice were collected and dissociated 

using a MACS® lung dissociation kit as described by the manufacturer. Single-cell 

suspensions were enriched for leukocytes using a Percoll™ (GE Healthcare) gradient (52). 

Interphase cells were collected, counted with the aid of a hemocytometer, and co-

incubated with rat anti-mouse CD16/CD32 monoclonal antibody (mAb) 2.4G2 (BD 

Pharmingen) to block Fc receptors in accordance with the manufacturer’s directions. 

Surface antigens were then stained with antibodies listed in Table 4.1 and with Fixable 

Viability Dye eFluor® 780 (eBioscience) for 30 minutes at 4oC. After two successive 
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wash steps, lung leukocytes were fixed in 2% paraformaldehyde (Electron Microscopy 

Sciences) PBS solution for 15 minutes at 4oC, and re-suspended in FC buffer after two 

washes. For ex vivo ICS, interphase cells collected from a Percoll™ gradient were 

incubated with Roswell Park Memorial Institute medium (RPMI; Life Technologies) 

supplemented with 100 U/mL streptomycin, 100 U/mL penicillin, 10% FBS (Tissue 

Culture Biologicals) and 1 µM monensin (Sigma) in a tissue culture incubator (37oC, 5% 

CO2) for 5 h prior to surface staining. After overnight fixation, cells were permeabilized 

with Perm/Wash Buffer (BD Pharmingen) according to manufacturer instructions and 

then stained with rat anti-mouse IL-17AF-eFluor 660 mAb B8KN8R (Biolegend) or rat 

anti-mouse IL-23p19-eFluor 660 mAb fc23cpg (eBioscience).  FC data were acquired 

with a BD LSR II cytometer and analyzed using FlowJo X software (Tree Star Inc.). 

Gating was established using FMO controls containing isotype control mAb conjugated 

with the fluorophore corresponding to the missing antibody. Lung myeloid populations 

were gated as described in Figure 3.6. Surface markers identifying each population are 

reviewed in Table 4.2. Number of each lung myeloid cell type was calculated by 

multiplying the proportion of each cell type by the number of live cells.  

Table 4.1: Antibodies used in flow cytometry. 
mAb Clone Manufacturer Isotype 
Ly6G-PE-Cy7/PE-CF594 1A8 Biolegend/BD  Rat IgG2a 
CCR-2-FITC 475301 R&D Systems Rat IgG2b 
CD11c-BV™ 570 N418 Biolegend Armenian Hamster IgG 
Siglec-F-BV™ 421 E50-2440 BD Biosciences Rat IgG2a 
CD11b-BUV™ 395 M1/70 BD Biosciences Rat IgG2b 
F4/80-APC-Cy7 BM8 Biolegend Rat IgG2a 
CD45-PerCP-Cy5.5  30-F11 BD Biosciences Rat IgG2b 
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Table 4.2: Surface markers identifying different myeloid cell populations. 
Marker Eosinophils Neutrophils Inflammatory Monocytes Lung Macrophages 
Ly6G + ++ + - 
CCR-2 - - + - 
CD11c - - - + 
Siglec-F + - - + 
CD11b + + + +/- 
 
 
Cytokine quantification in BALF after infection. BALF from Balb/c and ΔdblGATA-1 

mice infected with CEA10 conidia was collected after euthanasia at 60 h post-infection. 

Ready-SET-Go! ELISA sets (eBioscience) were used to quantify IL-17AA, IL-1AF, IL-

17FF and CCL-2. CXCL-5 was quantified using R&D Quantikine kit. CXCL-1 and 

CXCL-2 were measured using a custom Bio-Plex® Multiplex System (Bio-Rad).  

 

Statistical analysis. Statistical tests were performed using Graph Pad Prism 6. T-tests 

were used to compare the means of two groups. In data sets where the mean of more than 

two groups was compared, I used 2-way ANOVAs. In comparing Kaplan-Meyer curves, 

the Mantel-Cox test was used. 
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Results 

Eosinophils associate with and kill A. fumigatus. In conjunction with being recruited to 

the lungs early in acute aspergillosis (see Chapter III), eosinophils have the capacity to 

associate with and kill conidia. Association is used here to describe binding with or 

without phagocytosis. An eosinophil associating with a GFP-expressing conidium is 

shown in the micrograph in Figure 4.1. Here, cells were prepared from BALF of 

C57Bl/6 mice within the first day of infection. In addition to identifying neutrophils and 

mononuclear cells in these H&E stained samples, several cells had characteristic 

eosinophil morphology having taken up eosin within their cytoplasms and displaying 

polymorphous nuclei (86). 

 The Fluorescent Aspergillus Reporter (FLARE) assay developed by Hohl et al. 

(102) was used to quantitatively assess the ability of eosinophils to associate with and kill 

A. fumigatus conidia in vivo.  This assay exploits the instability of fluorescent proteins 

(i.e., dsRed) in denaturing environments such as phagolysosomes to assess the viability 

of conidia associated with a leukocyte of interest. Alexa Fluor® 633 was then used to 

identify dead conidia (102) (Figure 4.2). 

 The ability of eosinophils to associate with and kill conidia in the lungs of infected 

Balb/c mice was assessed on days one and three post-infection by using FLARE. Over 

this time period there was an increase in the number of eosinophils (Siglec-F+ CD11c-), 

even though the proportion of total leukocytes in the lungs remained the same (Figure 

4.3A, B). Association was calculated by adding the proportion of cells associated with 

live conidia (Gate R1) to the proportion of cells associated with dead conidia (Gate R2). 
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The majority of eosinophils did not associate with conidia, and the small proportion that 

did remained constant from day one to day three post-infection (Figure 4.3C, D). 

However, over the same time period, the proportion of eosinophils associated with dead 

conidia increased, suggesting an increase in conidial killing by these cells (Figure 4.3C, 

D). 
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Figure 4.1: Eosinophils associate with A. fumigatus conidia. Photomicrograph of H&E 
preparation of BALF from C57Bl/6 mouse infected with 5x107 GFP-expressing A. 
fumigatus conidia (AF293 strain). Left panel shows brightfield image of an eosinophil 
with conidium (black arrow), and right panel shows image from GFP channel, where the 
white arrow indicates a conidium.  
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Figure 4.2: Assessing conidial killing in vivo using the FLARE method. A. fumigatus 
conidia (AF293 strain) expressing dsRed were labeled with Alexa Fluor 633. Leukocytes 
associated with live conidia can be identified as being part of a dsRed+ AF633+ 
population. Dead conidia will lose dsRed signal as the protein denatures, presumably 
within the acidic environment of a phagolysososme. This strategy allows cells associated 
with dead conidia to be identified as a dsRed- AF633+ population. Schematic adapted 
from Jhingran et al.  (102). 
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Figure 4.3: Eosinophils associate with and kill A. fumigatus conidia. (A,C) Balb/c 
mice were infected with 5x107 FLARE conidia, as described in Figure 4.2. One and three 
days post-infection, lung single cell suspensions were assessed for eosinophils (Siglec-F+ 
CD11c-), and their capacity to associate and kill conidia. (B) Proportion of eosinophils to 
total live lung cells at day 1 (�) and day 3 (n) post-infection was not significantly 
different. However, due to an increase in cell number at day three, the calculated number 
of eosinophils was found to increase over time. (D) The number of eosinophils associated 
with conidia was not different between day one and day three, which was calculated by 
multiplying the sum of proportions of events in gates R1 and R2 by the number of 
eosinophils. An increase in conidial killing was observed from day one (36.9%) to day 
three (68.6%) post-infection. Percent conidial killing was calculated by the quotient of 
events in gate R2 and the sum of R1 and R2 multiplied by 100. Data were statistically 
analyzed using t-tests, * = p < 0.05, ** = p < 0.01, ns = p > 0.05. 
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Eosinophils enhance inflammatory monocyte recruitment and lung macrophage 

population expansion. As discussed in Chapter II, one of the major effects of the IL-

23/IL-17 axis is the induction of factors that enhance granulopoiesis, neutrophil 

chemotaxis and activation (54). Given that neutrophil function is an important factor in 

combating A. fumigatus (25), the potential that eosinopenia affected lung neutrophilia 

after infection was investigated. First, I assessed the number of leukocytes (CD45+ cells) 

three days after infection with 5x107 A. fumigatus conidia in the lungs of Balb/c and 

ΔdblGATA-1 mice. I found that BALB/c mice had approximately 2x106 more CD45+ 

cells than ΔdblGATA-1 mice (Figure 4.4A). This difference could not be accounted for 

the lack of eosinophils in ΔdblGATA-1 mice, as their numbers averaged 1.7x105 ± 

0.2x105 in Balb/c mice at the same time point.  

To determine if the decreased abundance of CD45+ cells in ΔdblGATA-1 was due 

to diminished neutrophil recruitment to the lungs, at 60 h post-infection the levels of 

neutrophil chemokines regulated by IL-17 was assessed, specifically CXCL-1, -2, and -5 

(Figure 4.4B). No significant differences were detected for these chemokines in the 

absence of eosinophils. Finally, the number of neutrophils (Siglec-F- CD11b+ CCR-2- 

Ly6GHi CD11c-) one and three days post-infection was quantified in Balb/c and 

ΔdblGATA-1 mice (Figure 4.4C). No differences were detected between groups; 

however, the number of inflammatory monocytes (Siglec-F- CD11b+ CCR-2+) and lung 

macrophages (Siglec-F+ CD11c+) increased from day one to day three in Balb/c mice but 

not in ΔdblGATA-1 mice (Figure 4.5A, B). In fact, at day three post-infection, 

ΔdblGATA-1 mice had fewer numbers of inflammatory monocytes and macrophages in 
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the lungs. These data suggest that lack of eosinophils disrupts inflammatory monocyte 

recruitment, which then hampers lung macrophage expansion, as inflammatory 

monocytes can differentiate into macrophages (89). 

 One chemokine involved in inflammatory monocyte recruitment is CCL-2, which is 

one out of four ligands that bind CCR-2 (103). CCL-2 has been shown to be produced by 

eosinophils after stimulation with A. fumigatus conidia (100) and to be up-regulated by 

IL-17 in other inflammatory contexts  (46,48,53,104,105). To test whether decreased 

levels of CCL-2 cause the decreased numbers of inflammatory monocytes in the lungs 

three days post-infection, levels of CCL-2 in BALF samples were assessed in Balb/c and 

ΔdblGATA-1 mice 60 h post-infection with 5x107 conidia (Figure 4.5C). No differences 

in the levels of this specific CCR-2 ligand were detected, suggesting that in eosinopenic 

mice, inflammatory monocyte recruitment is regulated through alternative means. 
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Figure 4.4: Lack of eosinophils does not affect neutrophil chemokine levels or 
neutrophil numbers in the lungs. (A) Lack of eosinophils correlates with lower levels 
of CD45+ in the lungs three days after infection with 5x107 conidia. Data were 
statistically analyzed using t-tests, ** = p < 0.001. (B) CXCR-2 ligand levels are not 
significantly different in eosinopenic mice compared to WT mice 60 h after challenge. 
(C) From day one to day three post-infection, neutrophil numbers in the lungs do not 
significantly differ, and the lack of eosinophils do not affect neutrophil recruitment. Data 
were statistically analyzed by 2-way ANOVA, ns = p > 0.05. 
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Figure 4.5: Eosinopenic mice show decreased recruitment of inflammatory 
monocytes to the lungs and reduced expansion of lung macrophages following 
challenge with A. fumigatus. (A,B) Lung single-cell suspensions from Balb/c (�) and 
ΔdblGATA-1 (eosinopenic; n) mice infected with 5x107 AF293 conidia were made one 
and three days post-infection and assessed for phagocytes. Inflammatory monocyte and 
lung macrophage numbers failed to increase in the absence of eosinophils. Data were 
statistically compared by 2-way ANOVA and post-hoc comparisons between groups 
were performed using Tukey’s multiple comparison test. (C) Levels of inflammatory 
monocyte chemokine CCL-2 in BALF of infected Balb/c and ΔdblGATA-1 60 h post-
infection. 
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Eosinopenia renders mice more susceptible to acute aspergillosis. Infecting Balb/c and 

ΔdblGATA-1 mice with 5x107 A. fumigatus conidia from the AF293 strain rendered no 

casualties (Figure 4.6A). However, after infection with the same inoculum of the CEA10 

strain, which has been shown to be a more virulent strain in other mouse models of acute 

aspergillosis (106-110), ΔdblGATA-1 succumbed to infection at higher rates than Balb/c 

mice (Figure 4.6B). 

 The increase in mortality observed with the CEA10 strain in ΔdblGATA-1 mice 

prompted the question of whether eosinophils also produce IL-23 and IL-17 in response 

to this specific strain. Unfortunately, as mice were more ill after infection with this strain, 

treatment with monensin precipitated their death before the six-hour incubation ended. 

Therefore, instead of performing in vivo intracellular cytokine staining after infection, I 

incubated leukocytes with monensin ex vivo for cytokine staining. Myeloid cells showed 

the same pattern of staining with mAbs against IL-23p19 and IL-17AF. Eosinophils were 

the only cells positive for both cytokines, while inflammatory monocytes, macrophages 

and neutrophils were positive for IL-17AF (Figure 4.7). 

 Although eosinophils produce IL-23 and IL-17AF in response to infection with 

CEA10 conidia, when assessing for IL-17AF levels in the BALF of Balb/c and 

ΔdblGATA-1 mice, eosinopenic mice showed increased production of both this dimer 

and IL-17FF (Figure 4.8). Interestingly, levels of two CXCR-2 ligands, namely CXCL-1 

and CXCL-2, were decreased in ΔdblGATA-1 mice compared to Balb/c mice. However, 

CXCL-5 levels remained unchanged between the two groups (Figure 4.9).  
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Figure 4.6: Eosinophils play a protective role against mortality in acute infection 
with the CEA10 strain of A. fumigatus but not with the AF293 strain. (A) Mortality 
study of Balb/c (blue) and ΔdblGATA-1 (red) mice infected with 5x107 AF293 conidia 
and (B) CEA10 conidia. Kaplan-Meyer curve shows combined data from two or three 
separate experiments. Data were statistically analyzed using the Mantel-Cox test, 
*=p<0.05. 
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Figure 4.7: Eosinophils co-produce IL-23 and IL-17AF in response to the CEA10 
strain of A. fumigatus conidia. In C57Bl/6 mice infected with 5x107 CEA10 conidia, 
eosinophils also co-produce IL-23 and IL-17AF, while macrophages, inflammatory 
monocytes and neutrophils contributed to IL-17AF production.  
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Figure 4.8: Lack of eosinophils is correlated with increased levels of IL-17FF and 
IL-17AF after infection with CEA10 strain of A. fumigatus. Increased levels of IL-
17FF and IL-17AF were observed in eosinopenic mice (red) infected with 5x107 A. 
fumigatus conidia (CEA10 strain), when compared to Balb/c (blue). Data were 
statistically analyzed using t-tests, * = p<0.05.  
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Figure 4.9: Eosinopenia correlates with decreased levels of CXCL-1 and CXCL-2 
but not CXCL-5. Levels of neutrophil chemokines were assessed 60 h after challenge 
with the CEA10 strain of A. fumigatus. No statistically significant difference was 
observed in CXCL-5 production; however, eosinopenic mice (ΔdblGATA-1, red) 
showed lower levels of CXCL-1 and CXCL-2 compared to Balb/c (blue). Data were 
statistically analyzed using t-tests, * = p<0.05. 
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Discussion 

 Although only 17.5% of eosinophils were found to associate with conidia one day 

post-infection, and 7.8% on day three, nearly all (~96%) eosinophils were contained both 

IL-23p19 and IL-17AF 54 h post-infection (see Chapter III). This discrepancy suggests 

that direct association with A. fumigatus is not necessary for the production of these 

cytokines. In further support of this notion, co-incubation of BM-Eos with conidia or 

zymosan failed to elicit IL-23 or IL-17 production (see Chapter III). These findings 

indicate that the factor(s) eliciting IL-23 and IL-17 production by eosinophils may be 

host-derived. As discussed in Chapter III, several cytokines that induced IL-23 and IL-17 

production from other cell-types were not capable of driving their production in BM-Eos. 

 Although ΔdblGATA-1 mice recruited neutrophils at the same level as Balb/c mice, 

the number of leukocytes (CD45+ cells) that reach the lungs at day three post-infection 

with A. fumigatus was substantially decreased (Figure 4.4A). This was due, at least in 

part, to decreased recruitment of inflammatory monocytes and reduced expansion of 

macrophages in the lungs (Figure 4.5A, B). Inflammatory monocytes (Ly6CHi CCR-2+) 

are deployed from the bone marrow and recruited to sites of inflammation via several 

chemokines, some of which are up-regulated by IL-17 (89,111). For example, the CCR-2 

ligands CCL-2, CCL-3 and CCL-7 are up-regulated by IL-17 in fibroblasts, macrophages, 

dendritic cells, and CD4+ T cells (46,48,104,105). However, I detected no differences in 

CCL-2 production comparing Balb/c and ΔdblGATA-1 mice (Figure 4.5C). Levels of 

other CCR-2 ligands were not assayed. Interestingly, IL-17 itself has been previously 

observed to induce monocyte chemotaxis in vitro (112). Eosinophils may induce the 
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influx of inflammatory monocytes through the production of other cytokines or 

chemokines, as suggested by findings that BM-Eos produce CCL-4 after co-incubation 

with A. fumigatus conidia (100). 

 Once inflammatory monocytes arrive at the site of inflammation, they can 

differentiate into macrophages or dendritic cells (89). The failure of macrophages to 

expand in number as was observed in infected lungs by three days post-infection is most 

likely due to the reduced recruitment of inflammatory monocyte (Figure 4.5A, B). 

Espinosa et al. (113) have shown that inflammatory monocytes play a significant role in 

preventing mortality in invasive aspergillosis. They found that mortality rates were higher 

in the absence of CCR-2+ cells, a finding that was concomitant with increased hyphal 

growth and fungal invasion within lung parenchyma. The authors attributed the 

difference in mortality to enhanced neutrophil conidiocidal activity in the presence of 

inflammatory monocytes, and the ability of monocyte-derived dendritic cells (mo-DCs) 

to efficiently kill conidia (113).  

 Previously shown to be efficient killers in vitro, macrophages have recently been 

dismissed as essential phagocytes in response to A. fumigatus in vivo, in favor of 

neutrophils as superior killers (113,114). Mircescu et al. (115) showed that depletion of 

resident alveolar macrophages did not render mice susceptible to aspergillosis, while the 

administration of mAb against Gr-1 (RB6-8C5) does (115). Importantly, along with 

depleting neutrophils, the RB6-8C5 mAb depletes other myeloid cells including 

monocytes and eosinophils as it recognizes both Ly6G and Ly6C (Table 3.3, Figure 3.6) 
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(116). This confound was addressed by the authors by demonstrating that monocytes 

were also depleted in their experiments (115). Given these methodological constraints, 

the precise role of recruited macrophages in protecting mice from A. fumigatus remains 

unclear.  

 In addition to being efficient conidial killers, there is evidence that macrophages 

play an important role in clearing apoptotic neutrophils, thus preventing hyper-

inflammation (117). In human monocyte cultures, IL-17 exposure for five days before 

treatment with IL-10 for an additional three days caused monocyte differentiation into 

alternatively activated macrophages, subtype C (M2c) (117). These cells expressed 

higher levels of Mer receptor tyrosine kinase (MerTK), a protein that recognizes 

apoptotic cells, and phagocytosed more early apoptotic neutrophils than classically 

activated macrophages (M1) or alternatively activated macrophages, subtype a (M2a) 

(117). Therefore, in addition to augmenting the expansion of macrophages in the lungs, 

eosinophils might also induce their differentiation into M2c by contributing to IL-17 

levels in the lungs. 

 While the lack of eosinophils does not increase susceptibility to infection with 

AF293 conidia (Figure 4.6A), a more virulent conidial isolate (i.e., CEA10) (106) killed 

ΔdblGATA-1 mice at a higher rate than Balb/c mice (Figure 4.6B). Eosinopenic 

responses to infection differed when comparing CEA10 and AF293. Specifically, IL-

17FF and IL-17AF levels were increased in the lungs of ΔdblGATA-1 mice infected with 

CEA10 (Figure 4.8), even though in WT mice, eosinophils produced IL-23p19 and IL-
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17AF in response to this A. fumigatus strain (Figure 4.7). Additionally, IL-17 levels in 

eosinopenic mice had an inverse correlation with CXCL-1 and CXCL-2 levels in CEA10 

infection (Figure 4.9). The levels of these same chemokines were unchanged when 

Balb/c and ΔdblGATA-1 mice infected with AF293 conidia were compared (Figure 

4.4B). Taken together, these data highlight the versatility of eosinophil function and how 

these cells can differentially modulate the immune response to distinctive isolates of the 

same pathogen species. 
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CHAPTER V: Discussion 
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 This dissertation explores how eosinophils drive incongruent fates in the host 

depending on the chronicity of antigen exposure. Our findings indicate that an acute 

exposure to A. fumigatus drives eosinophils to protect mice from succumbing to infection 

(Figure 4.6B). In contrast, after repeated exposure to sensitized antigens, eosinophil-

derived IL-23 and IL-17 (Figure 3.8) may contribute to AHR, mucus hypersecretion, and 

lung neutrophilia, ultimately leading to obstructive airway disease (e.g., asthma, ABPA) 

(Figure 5.1) (118). 

 

Re-thinking eosinophil function beyond the TH1/TH2 paradigm. Since their discovery, 

eosinophils have been largely associated with parasitic (i.e., helminth) infections and 

allergic inflammatory disorders such as asthma and atopic dermatitis (37,119). This is 

partly due to the fact that eosinophils are largely absent from the peripheral blood of 

healthy individuals, and their presence in this compartment becomes clinically relevant in 

disease states (37).  

In studying eosinophil function in such disease processes, these granulocytes have 

been inextricably associated with TH2 responses. For example, IL-5, a cytokine produced 

by TH2 CD4+ T cells, is directly involved in eosinophil differentiation and recruitment 

(37,120). Eosinophil recruitment is also regulated by other canonical TH2 cytokines, such 

as IL-4 and IL-13, which activate STAT-6 to up-regulate eotaxin expression (37,120). 

Reciprocally, eosinophils initiate a TH2 response by skewing dendritic cells with 

cytokines such as IL-4, acting as APCs themselves, recruiting effector TH2 cells to the 

site of inflammation, and activating memory TH2 cells (37,38). 
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  Although less attention has been focused on the relationship between eosinophils 

and TH1 responses, interferon (IFN)-γ ranks third in abundance of cytokines stored in the 

granules of circulating eosinophils (121). Pre-formed IL-12 and IL-10 are also stored 

within these granules, and have been shown to reciprocally induce each other’s release. 

That is, treatment of circulating eosinophils with IL-12 induces IL-10 release and vice 

versa (121).  

 Eosinophils seem to defy categorization within the current classification of immune 

cells due to the diverse set of immune-modulating factors stored in their granules (Figure 

5.2), and the assorted functions attributed to their release (reviewed in (120)). That 

eosinophils would deploy cytokines related to TH17 development and function as 

described in Chapter III should therefore not be surprising. Nevertheless, to strengthen 

the evidence maintained in Chapter III, transcription of Il17a, Il17f and Il23p19 should be 

assessed within eosinophils using a fluorescent reporter mouse line for each gene.  

 Future work should also determine the factors that elicit IL-23 and IL-17 production 

from eosinophils. An in vitro system for studying this phenomenon would be best suited 

for unraveling the molecular mechanisms associated with the production of each 

cytokine, as well as determining how their production might be related. As already 

discussed in Chapter III, some factors have already been tested using freshly 

differentiated BM-Eos, however, this method yielded no viable results. 
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Figure 5.1: Eosinophils as drivers of the IL-23/IL-17 axis in acute aspergillosis and 
asthma. Eosinophils produce IL-23, which might act as an autocrine signal to induce IL-
17AF production. Eosinophils also augment inflammatory monocyte recruitment and the 
expansion of macrophages. IL-17AF, which is produced by other myeloid, cells types 
including inflammatory monocytes, macrophages and neutrophils might be driving 
CXCL-5 expression. IL-17 and CXCL-5 have been previously shown to increase mucus 
production by the airway epithelia. Airway remodeling through increased collagen 
deposition and angiogenesis is also mediated by CXCR-2 ligands. If self-limited, this 
cascade of events might help in clearing A. fumigatus conidia from the airways, however, 
in the context of atopy, where these events become chronic, it might drive asthma 
pathogenesis. 
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Figure 5.2: The eosinophil armamentarium. Eosinophils are equipped with a variety of 
immune mediators including cytokines, chemokines, enzymes, lipid signaling molecules, 
and growth factors as well as a diverse set of receptors that can activate release of 
distinctive pre-formed factors. Figure adapted from Rosenberg et al. (122). APRIL, a 
proliferation-inducing ligand; EGF, epidermal growth factor; EPX, eosinophil 
peroxidase; MBP, major basic protein; NGF, nerve growth factor; PDGF, platelet-derived 
growth factor; PRRs, pattern recognition receptors; SCF, stem cell factor; TLRs, toll-like 
receptors; VEGF, vascular endothelial growth factor.  
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Eosinophils and IL-17 in asthma. The convergence between IL-17 and eosinophils 

found in our models of allergic asthma point to a novel mechanism by which eosinophils 

contribute to the pathogenesis of asthma that may be independent of TH2 cells and 

cytokines. If this phenotype holds up in humans, it could be of use in better stratifying 

asthma types, as heterogeneity in this disease has prevented the success of some targeted 

asthma therapies (95,119). 

 Although asthma is unified by a hallmark symptom of episodic shortness of breath 

accompanied by wheezing due to AHR, only recently has asthma been recognized to be 

driven by several different etiologies (35,95).  These etiologies have severe consequences 

in therapeutic outcome, with as many as 10% of patients failing to respond to standard 

corticosteroid treatment (35,123). Stratification of asthma based on the predominant 

cellular infiltrate found in induced sputum has indicated four distinct types of asthma: 

eosinophilic, neutrophilic, mixed granulocytic and paucigranulocytic (124). It would be 

interesting to assess the presence of IL-23+ IL-17+ eosinophils in each of these types, as 

even in neutrophilic and paucigranulocytic asthma a small number of eosinophils are 

present (124). 

 To specifically assess the contribution of eosinophil-derived IL-23 and IL-17 in 

asthma pathogenesis, mixed bone marrow chimeras can be constructed where lethally 

irradiated mice are transplanted with a mixture of bone marrow cells from ΔdblGATA-1 

and IL-23p19-/- or ΔdblGATA-1 and IL-17A-/- mice. Successful engraftment of bone 

marrow cells will produce mice that are either deficient in IL-17A- or IL-23p19-
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producing eosinophils. After sensitization and challenge, parameters such as AHR, 

mucus hypersecretion and airway remodeling can be tested and compared with irradiated 

animals receiving ΔdblGATA-1 and WT bone marrow cells.  

 

Eosinophils in pulmonary aspergillosis. In asthma, eosinophils act as drivers of 

inflammation and tissue remodeling (37,38,119), however, in our mouse model of acute 

aspergillosis, they protect against mortality (Figure 5.1). It is still unknown how 

eosinophils achieve this, nevertheless, I have found that eosinophils are able to kill A. 

fumigatus conidia (Figure 4.3), and modulate the types of myeloid cells that are recruited 

to the lungs after infection (Figure 4.5). Out of these two factors, the latter may play a 

bigger role in protecting mice from succumbing to infection. In fact, it has already been 

reported that depletion of inflammatory monocytes renders mice vulnerable to A. 

fumigatus infection (113). The defects in inflammatory monocyte recruitment and 

expansion of macrophages seen in the absence of eosinophils might decrease the 

phagocytic capacity of ΔdblGATA-1 mice (Figure 4.5), which may explain the increased 

mortality in this group. Alternatively activated type C macrophages (M2c) may also help 

attenuate hyperinflammation by clearing the lungs of apoptotic neutrophils as discussed 

in Chapter IV. Determining whether lower levels of MerTK+ macrophages (M2c) are 

present in ΔdblGATA-1 mice would be a good start in addressing the latter hypothesis.   
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Disparate host responses to different strains of A. fumigatus. It is important to note that 

the experiments describing the decreased number of inflammatory monocytes and 

macrophages depicted in Figure 4.5 were performed with the AF293 strain of A. 

fumigatus. Infection with this strain did not kill either Balb/c or ΔdblGATA-1 mice 

(Figure 4.6A). Only CEA10 infection rendered mice susceptible to infection (Figure 

4.6B). This strain clearly elicits a different inflammatory response from ΔdblGATA-1 

mice than the AF293 strain, at least when concerning IL-17FF, IL-17AF, CXCL-1 and 

CXCL-2 (Figure 4.8-4.9). Unlike the WT murine lungs, human peripheral blood 

mononuclear cells (PBMCs) produce more IL-17AA after co-incubation with CEA10 

than AF293 conidia (106). Interestingly, AF293 elicited a cytokine profile from PBMCs 

that was similar to that seen in A. nidulans, a species that is less pathogenic than A. 

fumigatus (106). 

 As levels of CXCL-1 and CXCL-2 were decreased in ΔdblGATA-1 mice infected 

with the CEA10 strain raises the question of whether ΔdblGATA-1 mice suffer from low 

levels of neutrophils after infection (Figure 4.9), something that is not seen in AF293 

infection (Figure 4.4). If so, it would explain the discrepancy in mortality caused by the 

two strains of A. fumigatus, as neutropenia is a known risk factor in invasive aspergillosis 

(10). However, in C57Bl/6 mice, Rizzetto et al. (106) have shown that pulmonary 

infection with 2x107 CEA10 conidia was highly lethal, even though as many as 91% of 

BALF cells were identified as neutrophils. In comparison, infection with the same 

inoculum of AF293 conidia yielded 100% survival and lower proportions of neutrophils 

in BALF (34%) (106). Therefore, it may be that while too little of a neutrophilic response 
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renders mice susceptible to invasive aspergillosis, a zealous one might also be 

detrimental. It remains to be established how Balb/c and ΔdblGATA-1 mice respond to 

the CEA10 strain in terms of a neutrophil response.  

 It is unknown what makes the CEA10 strain so much more lethal than the AF293 

strain in mice. Both strains were isolated from patients who suffered from invasive 

aspergillosis, and about 98% of their genomes align with high confidence (125). The 2% 

difference in the genomes of CEA10 and AF293 may be a factor that accounts for the 

difference in virulence. The CEA10 genome is 1.4% larger than that of AF293, and 

harbors 218 unique genes (125). Some of these genes are involved in cell envelope 

biogenesis, which may translate into differences in cell wall composition between the two 

strains (126). As such, CEA10 conidia may be recognized by different PRRs than those 

used to recognize the AF293 conidia (41), which may account for the discrepancies in the 

composition of cellular infiltrates seen by Rizzetto et al. (106).   

 Differences in virulence between multiple strains of A. fumigatus is a well 

documented phenomenon (106,127). It is unknown what makes some A. fumigatus strains 

more virulent than others. Presumably the answer lies as much on a particular host’s 

intrinsic factors as on isolate-specific traits (14). This is exemplified above in the 

discrepancy between the 100% mortality rate observed in C57Bl/6 mice infected with 

CEA10 by Rizzetto et al. (106), and the 27% mortality rate reported here in Balb/c mice 

infected with the same strain (Figure 4.6B). As well as the reported differential host 

response to other distinct A. fumigatus strains (106,127). Ultimately, A. fumigatus’ 



 CHAPTER V  
	

119	

capacity to cause disease lies in the complex interaction between a host and the pathogen.  

 

Conclusion. The involvement of eosinophils in the acute immune response to A. 

fumigatus reveals a novel aspect of this specific host-pathogen interaction. Deployment 

of IL-23 and IL-17 by eosinophils in this interaction bridges the primary and the allergic 

response to A. fumigatus in an unexpected way. Further investigation into this link may 

broaden the understanding of how sensitization in allergic asthma is achieved, 

particularly as I have shown that production of IL-23 and IL-17 by eosinophils in asthma 

is not confined to mold antigens.  That is, the same phenomenon was observed in OVA 

sensitized and challenged mice (Figure 3.8-3.10). As eosinophils are found in secondary 

lymphoid organs and can act as APCs (37), their role in skewing the adaptive immune 

response by potentially promoting either a TH2 or TH17 response could bring light to the 

factors underlying the heterogeneous etiology of asthma.  
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