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“I was gratified to be able to answer promptly and I did.  I said I didn’t know.” 

-Mark Twain, Life on the Mississippi 

“Do not take life too seriously.  You’ll never get out of it alive.” 

-Elbert Hubbard 

“There are already surgeons in France and in Germany, who introduce into the 
abdominal cavity or under the skin of their patients either warmed blood serum or 
nucleic acid or other substance, with the object of bringing to the scene a 
protective army of phagocytes to ward the microbes off. The results achieved are 
so encouraging that it is possible to predict new progress in the approach to the 
dressing of wounds. “ 

-Ilya Mechnikov, excerpt from his Nobel lecture, 1908. 
Emphasis added. 
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ABSTRACT 

All organisms exist in some sort of symbiosis with their environment.  The food 

we eat, air we breathe, and things we touch all have their own microbiota and we 

interact with these microbiota on a daily basis.  As such, we employ a method of 

compartmentalization in order to keep foreign entities outside of the protected 

internal environments of the body.  However, as other organisms seek to 

replicate themselves, they may invade our sterile compartments in order to do 

so.  To protect ourselves from unfettered replication of pathogens or from cellular 

damage, we have developed a series of receptors and signaling pathways that 

detect foreign bodies as well as abnormal signals from our own perturbed cells.  

The downstream effector molecules that these signaling pathways initiate can be 

toxic and damaging to both pathogen and host, so special care is given to the 

regulation of these systems.  One method of regulation is the production of 

endogenous small ribonucleic acids that can regulate the expression of various 

receptors and adaptors in the immune signaling pathways.  In this dissertation, I 

present work that establishes an important protein in small ribonucleic acid 

regulation, Dicer, as an essential protein for regulating the innate immune 

response to immuno-stimulatory nucleic acids as well as regulating the 

productive infection of encephalomyocarditis virus.  Depleting Dicer from murine 

embryonic fibroblasts renders a disparate type I interferon response where 

nucleic acid stimulation in the Dicer null cells fails to produce an appreciable 

interferon response while infection with the paramyxovirus, Sendai, induces a 



vii

more robust interferon response than the wild-type control.  Additionally, I show 

that Dicer plays a vital role in controlling infection by the picornavirus, 

encephalomyocarditis virus.  Encephalomyocarditis virus fails to grow efficiently 

in Dicer null cells due to the inability for the virus to bind to the outside of the cell, 

suggesting that Dicer has a role in modulating viral infection by affecting host 

cellular protein levels.  Together, this work identifies Dicer as a key protein in viral 

innate immunology by regulating both the growth of virus and also the immune 

response generated by exposure to pathogen associated molecular patterns.  

Understanding this regulation will be vital for future development of small 

molecule therapeutics that can either modulate the innate immune response or 

directly affect viral growth. 
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CHAPTER I – Introduction 
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ANTI-VIRAL IMMUNOLOGY 

 

OVERVIEW 

 For most organisms, there is a constant battle between the host and a 

number of invading pathogens.  These pathogens often use host resources for 

replication, nourishment and transmission.  Thus, in order to protect oneself, an 

organism must constantly evolve ways to defend itself against invasion from 

foreign pathogens.  This evolutionary arms race has resulted in systems that are 

potent and can be deadly to both pathogen and host.  Dysregulation of the 

immune response can cause everything from minor perturbations, such as 

allergy or hypersensitivity response, up to death if the commensurate response 

to infection is too severe or too weak.  Thus a tight, yet agile regulation of these 

systems must be maintained at all times in order to protect the host from 

collateral damage as well as to provide for the rapid and correct response of the 

immune system to combat invading pathogens.  Additionally, there must be 

specificity to distinguish between foreign and self-materials as well as breadth in 

order to defend against pathogens that vary greatly in size, shape, function and 

location.  Distinguishing between foreign and self-antigens allows the host to 

avoid induction of auto-immunity while providing a comprehensive defense 

against infection.  In order to develop new strategies and treatments of disease, it 

is vital not only to understand the many forms of recognition but also the 

mechanisms of regulation present in the immune response. 
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 The mammalian immune response can be broken down into two distinct 

but connected systems: the innate immune response and the adaptive immune 

response.  Charles Janeway first proposed the idea that the two systems work in 

a coordinated response in order to provide general and specific immunity against 

a variety of pathogens.1  Briefly, the innate immune system relies on recognizing 

a limited number of foreign motifs called pathogen-associated molecular patterns 

(PAMPs) or danger motifs called DAMPs damage-associated molecular patterns 

(DAMPs).  In both cases, pattern recognition receptors (PRR) have evolved to 

detect evolutionarily-conserved motifs, rather than species-specific antigens.2  

For example, the first PRR whose function was clearly described in mammals, 

Toll-like receptor 4, recognizes the common Gram-negative bacterial cell wall 

component LPS, without needing to make a number of distinctions for the 

multitude of species of Gram negative bacteria.3,4  The recognition of PAMPs or 

DAMPs then starts a variety of signaling cascades that produce different 

outcomes depending on the type of receptor and adaptor proteins that are 

engaged.  Many of the components arising from a bacterial, parasitic, or fungal 

infections can give rise to an inflammatory response, where a series of cytokines, 

chemokines and effector molecules are released from infected cells or surveying 

innate immune cells and cause chemotaxis of other immune cells, edema, and 

pyrexia.  Recognition of replicating virus during infection more commonly give 

rise to a type-I interferon based response, which can have a mild or non-existent 

inflammatory component.  The activation of the inflammatory or interferon 
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pathways depends on the type of pathogen detected, the location and availability 

of host innate immune receptors as well as the role of immunity counter-acting 

components produced by the pathogen.  Regardless of the response, infection 

and activation of the innate immune response has two primary functions: first, the 

immediate control of pathogen replication and spread, and second, the priming of 

the adaptive immune response.2  The adaptive immune response, in the most 

simplistic terminology, consists of circulating cells in the bloodstream (T and B 

cell lymphocytes) that have the ability to tailor their receptors to specific 

pathogens and thus can generate a targeted response to each individual 

pathogen.  Whereas innate immunity receptors are partially defined by their static 

detection of evolutionarily conserved molecules, the adaptive immune cells are 

partially defined by their ability to edit their T and B cell receptors to target 

species-specific antigens and create long term memory so that if a pathogen is 

seen again, the response can be generated in a much more timely manner.  

While both arms of the immune system are essential for effective immunity, for 

this dissertation, most of the discussion will be focused on elements more 

commonly associated with the anti-viral innate immune response. 

 

INNATE ANTIVIRAL IMMUNITY 

 

The innate immune response can be activated by all manners of 

pathogens, including viruses, bacteria, parasites, and others.  Depending on the 
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type of pathogen, the innate immune response that is activated is specific to 

limiting the replication and spread of that particular class of pathogen. For 

viruses, the most common and important anti-viral molecules are the interferons 

(IFN).5 

 

INTERFERONS  

 IFNs are glycoproteins that are part of the larger family of cytokines.  They 

are divided into three subgroups based on their function and expression.6  In 

general, IFNs are involved in anti-viral signaling by upregulating a series of 

interferon sensitive genes (ISGs) that lead to the establishment of the anti-viral 

state: a series of cellular modifications that make the cells inhospitable to viral 

replication.5  There are potentially hundreds of physiologically relevant ISGs.7,8  

Some of the most well-studied ISGs include RNA-activated protein kinase R, 

RNase L, myxoma resistance protein 1, oligoadenylate synthase, APOBEC3, 

and RSAD2.  These ISGs collectively serve as a series of restriction factors that 

control viruses by restricting infection, targeting viral and host RNA for 

degradation, inhibiting protein synthesis, and disrupting lipid rafts, amongst 

others. (Reviewed in9)  In addition to ISG upregulation, interferons also function 

as signals to the adaptive immune response that a pathogen is present and lead 

to the induction of the adaptive immune response along with other cytokines. 

While all three classes of IFN are important for protection against infection, for 

the purposes of this thesis, only type I IFN is explored in detail.  For a detailed 
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exploration of the type II Interferons, which are primarily produced by leukocytes 

and lymphocytes, please refer to an excellent review by Schroder et. al.10  The 

type III interferons were discovered in 2003 and thus are the newest class of IFN 

to be described.  While their functions are similar to the type I IFNs, type III IFNS 

are largely restricted to the mucosal membranes and protect the mucosa from 

the array of viruses that attempt to enter through this exposed route.  For a 

comprehensive, up-to-date review, please see Wach et. al.6 

 

TYPE I INTERFERON 

 Type I IFNs consist of two well-characterized types: IFNα, IFNβ and 

several poorly understood subtypes: IFNε, IFNτ, IFNκ, IFNω, IFNδ and IFNζ.  In 

mice and humans, IFNβ is a single gene, predominately expressed in fibroblasts, 

but capable of being synthesized in almost any differentiated cell type.  In 

contrast, IFNα exists as a series of individual genesa that are primarily expressed 

in leukocytes.  They share roughly 70-80% protein homology while maintaining 

~35% homology to IFNβ.5,11  Engagement of various PRRs induces downstream 

signaling that leads to the activation and dimerization of Interferon Regulatory 

Factor 3 (IRF3).  IRF3 translocates into the nucleus of the cell and binds to the 

IFNβ promoter and initializes the transcription of IFNβ.12,13  IFNβ, upon secretion 

from the cell, acts in an autocrine and paracrine loop, engaging the IFN α/β 

receptor (IFNAR) on neighboring cells.  IFNAR is a hetero-dimeric receptor that, 

                                                
a In humans, there are 13 IFNα genes.  In mice there are 14 IFNα genes. 

6



 

when bound by IFN, initiates a signaling cascade that ultimately leads to the 

activation of a series of transcription factors that upregulate the ISGs responsible 

for the aforementioned anti-viral state.5 

 

NUCLEIC ACID SENSING INNATE IMMUNITY RECEPTORS 

 

Innate immune receptors are categorically different from adaptive immune 

receptors in that they recognize broadly conserved molecular patterns rather 

than pathogen specific sequences.  These molecular patterns can be a variety of 

molecules, while the majority recognized are conserved protein, nucleic acid, 

carbohydrate, or danger signal motifs.  The detection of foreign or self nucleic 

acids (NA) depends on a variety of factors, including sequence or motif-

dependent recognition, as well as spatial and temporal recognition.  Some 

receptors, such as the NA sensing Toll-like receptors (TLRs) are able to 

recognize NAs based on their motifs as well as their location within the 

endosomal compartment, which suggests the uptake of NA from an exogenous 

source.  Four TLRs have been described that bind NA.  TLR3 binds dsRNA14, 

TLR7 and 8 can both bind ssRNA15,16, and TLR9 recognizes both ssDNA and 

dsDNA.17 While there are a wide variety of receptors that recognize many 

different PAMPs and all play a vital role in the innate immune response against 

pathogens, for the purpose of this dissertation I will focus on the intracellular 

RNA and DNA sensors. 
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RNA SENSORS 

 

RIG-I and MDA5  

Retinoic Acid Inducible Gene -1 (RIG-I) was the first intracellular RNA 

sensor to be described and is the eponym for the family of receptors that 

followed: the RIG-I like receptors (RLRb).18  Structurally, RIG-I shares homology 

with another RLR, melanoma differentiation-associated gene-5 (MDA5).  Both 

proteins contain a helicase domain with a conserved aspartate-glutamate-x-

aspartate/histidine box motif (DExD/H)c, which allows for the binding of RNA. 

They also both contain two Caspase Activation and Recruitment Domains or 

CARDS.19  These CARD domains were found to be essential for RIG-I and 

MDA5 to interact with an adaptor protein located on the outer mitochondrial 

membrane called MAVS.d20-23  (Fig. 1.1)  Eliminating either the helicase or 

CARDs results in the abrogation of signaling and downstream production of type 

I IFN.19  Like other superfamily class 2 helicases, the RLR’s require ATP 

hydrolysis for the proper function of their helicase and, in the case of RIG-I and 

MDA5, downstream activation of the IFN response.24  One major structural 

difference between RIG-I and MDA5 is that in its steady-state inactive form, RIG-

I exists in an auto-inhibited configuration where salt bridges and hydrophobic 

interactions between the CARD domains and the Hel2i domain cause the N-
                                                
b RLR’s are sometimes referred to as RLH, or RIG-I Like Helicases. 
c DExD/H helicases are part of the conserved Helicase Superfamily 2 (SF2). The “x” denotes any 
amino acid.  
d MAVS is also known as Cardif, VISA, and IPS-1.  
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Fig. 1.1  Simplified model of cytosolic RNA-induced IFN expression 
ss and dsRNA are recognized by a variety of receptors in the cell.  Recognition of foreign 
RNA leads to the production of IFN by signaling to transcription factors in the nucleus.  In 
addition, IFITM can restrict viral entry and IFIT1 and PKR can inhibit translation of viral 
RNA by blocking ribosome formation. 
Solid lines indicate well-established pathways.  Dashed lines indicate interactions that 
are undefined.  DNA is in red, while RNA is in black.   
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terminal domain of RIG-I to fold back on itself.25-27  Thus, expression or over-

expression of RIG-I is not sufficient to drive IFN induction on its own.  After the C-

terminal domain (CTD) engages an appropriate ligand, ATP hydrolysis allows for 

the de-repression of the CARD domains in a manner that is not fully understood 

and signaling can continue.19  Alternatively, MDA5 has no such auto-inhibition, 

and over-expression of MDA5 can drive IFN induction on its own.19  Further work 

has identified that RIG-I and MDA5 do not share common ligands, with RIG-I 

being shown to predominately detect short (<300 nucleotide) blunt-ended and 

base-paired dsRNA that contains either a 5’ triphosphate or diphosphate. (5’ppp 

or 5’pp RNA)28-31  MDA5, however, preferentially binds long double stranded 

RNA longer than 2kb, or branched RNA structures, such as those found in the 

synthetic MDA5 ligand polyinosinic:polycytidylic acid (polyI:C). 32-35  Many 

viruses, such as encephalomyocarditis virus (EMCV) and nodamura virus are 

detected by MDA5 but not by RIG-I, in part because they mask the 5’ ends of 

their genome. 36-38  Regardless of the ligand, engagement of the CTD of RIG-I 

and MDA5 causes aggregation of the receptors on the RNA strand, with RIG-I 

favoring a 5’ end directed filamentation while MDA5 favors internal dsRNA 

binding and the creation of a monofilament in either direction along the dsRNA.  

The creation of the monofilament of receptors along the substrate is vital for 

downstream signaling. 39-43  The accumulation of repeated CARD domains along  
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the RNA strand leads to translocation of the RLR-RNA complex to the 

mitochondrial membrane and activation of MAVS.  The CARD domains on MAVS 

interact with the CARD domains of RIG-I or MDA5 and cause the formation of 

large MAVS polymer units that are essential for further downstream 

activation.44,45 

 

LGP2 

There is a third member of the RLRs, Laboratory of Genetics and 

Physiology 2 (LGP2), that shares the same DExD/H box helicase domain as 

RIG-I and MDA5 but completely lacks the CARDs.19  Without CARDs, LGP2 has 

no ability to directly influence downstream signaling, therefore the function of 

LGP2 has been difficult to describe.  It was initially reported to be an inhibitor of 

RIG-I and activator of MDA5, but subsequent experimentation has shown that it 

is can have negative or positive regulatory effects for IFN production depending 

on the type of virus used for infection.46, 47, 48  (Fig. 1.1)  Differing LGP2 

knockout mouse models have been inconsistent when the mice are infected with 

viruses detected by RIG-I, such as VSV, but they have all shown that LGP2 is 

vital for IFN signaling following infection with picornaviruses such as EMCV that 

signal through MDA5.47,48  An elegant study by Bruns and Horvath et.al. revealed 

that LGP2 acts as a primer for MDA5-RNA monofilament formation.49  (Fig. 1.2)  

In the absence of LGP2, MDA5 bound dsRNA slowly, dissociated quickly, and 

formed few monofilament loci per RNA.  In the presence of LGP2 and ATP, 
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Fig. 1.2  Model of cooperative enhancement of MDA5 signaling by LGP2 
Top panel:  MDA5 binds dsRNA slowly and multiple MDA5 proteins are added in an ATP 
hydrolysis-dependent manner.  When the filament reaches a suitable length, CARD 
clustering initiates signaling to MAVS and downstream expression of IFN. 
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LGP2 facilitated a faster and more stable interaction between MDA5 and the 

RNA and allowed for a greater quantity of shorter monofilaments.  LGP2 was 

unable to generate monofilaments on its own.49  Thus, LGP2 acts as a 

necessary, but not sufficient component of the MDA5 signaling pathway. 

 

IFIT and IFITM 

Interferon-induced protein with tetratricopeptide repeats (shortened to 

IFIT) are a family of genes conserved across many mammalian species.  

Humans have four IFIT proteins while mice have three.  Under basal conditions, 

IFIT proteins are expressed at low or non-existent levels, but are upregulated 

rapidly upon viral infection.50  They can also be upregulated by direct addition of 

IFN or by the engagement of various PRRs.51,52  IFIT proteins, through their 

tetratricopeptide repeats, are able to inhibit the translation of viral mRNAs by 

binding to the eukaryotic initiation factor 3C (EIF3C) and inhibiting the assembly 

of the 43s-mRNA translation complex.53  (Fig. 1.1)  More recently, the IFIT1 

protein was shown to recognize 5’ppp RNA and sequester the RNA, preventing it 

from being used for replication or protein translation.54,55  Since the IFIT proteins 

have no signaling domains or enzymatic activity, it appears IFIT proteins cannot 

signal to induce more IFN, unlike the other 5’ppp RNA binding protein RIG-I.  

The IFN induced trans-membrane (IFITM) genes are a distinct anti-viral 

family with different subcellular localization, expression, and function.  Unlike 

other proteins described in this section, they do not appear to recognize nucleic 
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acids.  Most cells express the IFITM proteins at basal levels.e  While all IFITM 

proteins can be upregulated by IFN56,57, IFITM3 is particularly strongly induced.58  

The function and mechanism of antiviral activity by the IFITM proteins are not 

entirely understood, however several studies have implicated the IFITM proteins 

as important restriction factors in enveloped viral fusion.59-61  (Fig. 1.1)  IFITM 

proteins are normally expressed in the endosome and lysosome compartments, 

where fusion events of many enveloped viruses take place. 62,63  Huang et. al. 

performed an intriguing experiment where they forced SARS-CoV to fuse with 

the plasma membrane of the cell and bypass endosomal fusion. They saw that 

IFITM’s ability to restrict SARS was abolished, suggesting that the route of entry 

is key for IFITM restriction.63  The sub-cellular localization and high levels of 

basal IFITM expression may be key to its function.  Since it restricts viral infection 

at such an early stage, it must be present at high enough quantities in the correct 

compartment to be effective at preventing infection.   

 

DNA SENSORS 

Considering that the immune response relies on distinguishing between 

self and foreign motifs to identify signs of infection, it was little surprise that the 

cytosolic RNA sensors detect nucleic acids that are not traditionally seen in the 

cell.  Long dsRNA and 5’ triphosphorylated RNA are uncommon in the normal 

cellular environment since most cellular RNAs are single-stranded and capped.  
                                                
e Humans have four IFITM proteins while mice have six. 
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However, since many pathogens use DNA as their genomic material instead of 

RNA, the host cell has developed an ability to detect foreign DNA while dealing 

with the presence of copious amounts of self DNA in every cell.  Here, I will 

describe a few of the pertinent DNA receptors that have been implicated in viral 

detection. 

 

DAI  

 DNA-dependent Activator of Interferon-regulatory factors (DAI)f was the 

first described intracellular receptor for DNA.  Takaoka et. al. found that DAI was 

upregulated in L929 cells following the addition of poly dA:dT or other synthetic 

DNA and that knocking down DAI via siRNA blunted the cells’ ability to activate 

IRF3 and lead to IFN production.64  Surprisingly, when the DAI knockout mouse 

was generated, no phenotype could be observed in relation to DNA sensing.  

Work using different cell lines has shown that DAI has a moderate to inexistent 

effect depending on the type of cell used; thus, there must be a redundancy in 

DNA sensing.  Important for this dissertation is that DAI has been shown to have 

no effect in MEFs65-67 

IFI16 

 Interferon gamma-inducible protein 16 (IFI16) was first identified using a 

vaccinia derived nucleic acid motif (VACV70mer) to affinity-purify proteins from 

the cytosol of monocytes that were capable of binding DNA.68  Unterholzner et. 

                                                
f DAI is also known as DLM-1 or ZBP1, Z-DNA binding protein 1. 
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Fig. 1.3  Simplified model of cytosolic DNA-induced IFN expression 
dsDNA can be recognized by a variety of sensors in the cell.  Many receptors must 
engage STING before the signaling cascade can continue and activate interferon or 
inflammation via translocation of transcription factors.  STING can also act as the direct 
receptor of cGAMP created after cGAS detects foreign DNA.  
Solid lines indicate well-established pathways.  Dashed lines indicate interactions that 
are undefined.  DNA is in red, while RNA is in black.   
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al. showed that VACV70mer stimulated IFNβ induction only in its dsDNA form 

and not in a ssDNA form and that VACV70mer associated with IFI16 in the 

cytosol.68  Most importantly, siRNA experiments silencing IFI16 revealed a 

deficiency in IFNβ signaling when IFI16, or its mouse ortholog IFI204, was 

depleted.  IFI16 has also been observed in the nucleus of infected cells, 

suggesting it is able to detect DNA viruses regardless of what cellular 

compartment they replicate in.69 (Fig. 1.3)  IFI16’s role in DNA sensing has been 

complicated by reports that IFI16 can play a role as a transcriptional activator 

and drive the expression of ISG’s regardless of the ligand used to initialize 

signaling.  Thus it has a role in the proper expression of ISG’s post DNA and 

RNA stimulation.296  It has been shown to activate transcription of IFN 

downstream of STING and binds directly to the IFNα promoter, suggesting a role 

beyond that of being just a sensor.296 Most of what is known about IFI16 was 

discovered in human cell lines, and while its mouse ortholog IFI204 is thought to 

behave in a similar manner, the role of IF204 as a transcriptional activator has 

not been verified in mouse cells. 

 

 

RNA Polymerase III and RIG-I 

 An interesting observation was made by two groups that reported that AT-

rich DNA could be bound and transcribed by RNA Polymerase III (RNA Pol III) in 

the cytosol of transfected cells or cells infected with certain DNA viruses.  This 
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RNA, since it was transcribed by RNA Pol III, does not contain the canonical 5’ 

methyl cap and instead has a 5’ ppp at the end of the RNA.  This RNA is then 

recognized by the RNA sensor RIG-I and induces IFNβ.70,71  Knocking down 

RNA Pol III ablated this pathway.  However, the importance of RNA Pol III and 

RIG-I in sensing DNA is still controversial, since this pathway appears to be 

restricted to cell types that lack other receptors. Additionally, non-AT rich DNA 

can still activate IFNβ despite RNA Pol III’s inability to transcribe non-AT rich 

DNA.72  Therefore it is unlikely this is a key player in IFN induction.  

 

STING 

 Stimulator of Interferon Genes or STINGg was first described in 2008 as 

an important adaptor involved in innate immune signaling after exposure to a 

variety of pathogens.  It was identified as an endoplasmic reticulum bound 

protein that appeared to regulate responses to DNA and RIG-I based 

stimulation.73  (Fig. 1.3)  Work from various labs since the discovery of STING 

has helped reveal STING’s role as a primary crossroad of signaling in DNA 

cytosolic sensing.  IFI16 signals to STING, as do several other DNA damage 

sensing proteins such as DNA-PK, Rad50 and MRE11, which detect blunt ended 

DNA in the cytosol (typically from replicating DNA viruses) and signal to 

STING.68,74-76  STING can also be activated by cyclic di-GMP, which suggested 

that another protein must exist and be responsible for generating the cyclic di-

                                                
g STING is also known as transmembrane protein 173 
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GMP from dsDNA.77,78  Following engagement with the various DNA sensors or 

cyclic di-GMP, STING activates IFNβ induction through recruitment of TBK-1 to 

the ER membrane.79 

 

cGAS 

 Since the modified cyclic di-GMP that stimulated STING had to come from 

a processed DNA source, it was reasonable to hypothesize that a different 

receptor was detecting the cytosolic DNA and processing it to a form that could 

be detected by STING.  Wu and Chen et. al. performed an experiment where 

they  stimulated cells with nucleic acids and then extracted the cytosolic 

fragments and subjected them to a series of treatments including heat 

denaturation, protease treatment, and benzonase treatment, which degrades 

DNA and RNA.  They found that the fractions still stimulated STING and IRF3 

dimerization when transfected into unstimulated cells.  Mass spectrometry 

analysis revealed 2’3’-cGAMP, which is a cyclic di-nucleotide with a 

noncanonical 2’-OH on the GMP linked to the 5’ phosphate of AMP, combined 

with a canonical 3’-OH on the AMP linked to the 5’ phosphate of GMP.80  Further 

work revealed that cyclic GMP-AMP synthase (cGAS) is a DNA specific sensor 

that binds DNA and synthesizes cGAMP which can drive STING-mediated IFN 

induction in the autologous cell as well as neighboring cells, since cGAS can 

diffuse from cell to cell.81,82 (Fig. 1.3) 
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SMALL RNA PATHWAYS 

 

OVERVIEW 

 Since DNA and RNA are common molecules to both host and pathogen, 

the importance of carefully delineating what constitutes pathogenic genomic 

material from host genomic material is key to using nucleic acids as an innate 

immunity stimulant.  Several common long-standing hypotheses revolved around 

detecting types of nucleic acid that were not thought to have host counterparts, 

such as dsRNA.  Common cellular RNA is 5’ methyl capped ssRNA or 5’ 

monophosphate ssRNA.  Thus, dsRNA was thought to primarily arise during the 

replicative cycle of a variety of RNA and DNA viruses since dsRNA would arise 

during the replication of either a positive or negative sense virus or during bi-

directional RNA synthesis from a double stranded genome.83 However, this 

theory had to be revisited with the discovery of the noncoding dsRNA regulatory 

pathways consisting of RNA interference and microRNAs.  Intriguingly, the 

history of small RNAs can be traced back to the desire to create a more vibrant 

color of petunia.  By overexpressing a transgene encoding chalcone synthase, 

Napoli and Jorgensen hoped to determine if chalcone synthase was the rate 

limiting step in developing violet petunia petals.  Instead, the plants they 

produced came out solid white.  They hypothesized that the strong expression of 

chalcone synthase somehow had co-suppressed the endogenous gene.84  At the 

time, a popular way of suppressing the translation of a protein was to use 
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antisense RNA against an mRNA to theoretically bind the mRNA and prevent its 

translation.  However, Guo and Kemphues showed that both antisense and 

sense RNA suppressed an mRNA signal in C. elegans.85  In 1998, a seminal 

paper by Fire and Mello revealed the actual cause of this strong suppression: 

dsRNA.  They termed this phenomenon “RNA interference” (RNAi) and showed 

that adding dsRNA had a potent and sequence-specific capacity to suppress the 

mRNA signal.86  A similar effect had been seen in the earlier studies due to small 

amounts of dsRNA contamination or the generation of dsRNA in vivo by adding 

the antisense RNA into the organism, where the cellular machinery took over and 

started the RNAi process.  Here, I will describe the two main small RNA 

pathways in general before getting into more detail on the specific proteins 

involved.  Since there are considerable differences between the small RNA 

pathways of different species, unless otherwise specified I will be referring to the 

mammalian systems. 

 

RNAi 

 In simple terms, RNA interference describes a system where primarily 

exogenous dsRNA enters a cell (such as that arising from a viral infection) and is 

processed into short dsRNA oligonucleotides (oligos) that are loaded into a 

complex that uses the RNA as a guide to seek out a homologous RNA sequence 

and cleave it, thus suppressing the ability of that RNA to be replicated or 

translated.  (Fig. 1.4, bottom right) Evidence suggests that RNAi acts as an 

21



Fig. 1.4  Simplified model of canonical small RNA pathways 
Left: miRNA biogenesis begins with RNA Pol II transcription of endogenous miRNA 
genes.  Drosha and DGCR8 coordinate in processing the stem-loop from the primary 
transcript.  The pre-miRNA stem-loop is exported through Exportin5 and further 
processed by Dicer in the cytosol.  The mature 22t miRNA is loaded into Ago and the 
RNA induced silencing complex (RISC), where the RNA is unwound and a single strand 
is retained to act as the guide. 
Top right: Convergent transcription from promoters on both strands results in ssRNAs 
that pair as dsRNA and are exported to the cytosol.  ~22nt siRNAs are cleaved and 
mature siRNA is loaded into Ago and RISC where the dsRNA is unwound and the guide 
strand retained. 
Bottom right:  dsRNA from an exogenous source is processed in the cytosol by Dicer 
into ~22nt siRNAs.  The mature siRNA is loaded into Ago and RISC where the dsRNA is 
unwound and the guide strand retained. 
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ancient defense mechanism against infection by cleaving the pathogen’s own 

dsRNA and using it to further silence the pathogen’s genome or mRNAs.87,88  

However, while exogenous RNA remains a major source for the initialization of 

RNAi, there have been multiple reports describing a role for endogenous “short 

interfering RNAs” (siRNAs) as well.  These endo-siRNAs in many ways act more 

like microRNAs (miRNAs; defined below), as they are genome encoded and are 

not always amplified (though this varies from species to species).  These  

endogenous siRNAs appear to be functionally associated with the piwi-RNAs 

(further discussed below), in that they largely provide for genome-defense 

against transposons and retrotransposons.89-91  (Fig. 1.4, top right)  While there 

is a significant amount of variation from species to species, at its core, for an 

organism to truly have RNAi it needs two or three proteins: 

1) A type III RNase, such as Dicer.  While Dicer is the most well-known 

and studied of the type III RNases involved in RNAi, other potential 

orthologs, such as the Dicer-like RNase in Giardia intestinalis, have 

significant enough diversions from the structure of Dicer that they may 

have evolved from a different RNase.  The Type III RNase is 

responsible for cleaving the long dsRNA into short dsRNA fragments 

(commonly referred to as short interfering RNA (siRNA)) that vary 

between 19-23 nucleotides depending on the species.   

2) RNA-dependent RNA polymerase (RdRP).  While RdRP is not 

required for RNAi to function, it does greatly enhance its efficacy. By 
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binding the cleaved dsRNA and replicating it, a small amount of initial 

dsRNA can generate large amount of effector siRNAs that can be used 

in the cell that they originated in, or can be disseminated throughout 

the organism.  In that way, a single intruding dsRNA can be made into 

multiple identical siRNAs that are loaded into Argonaute (Ago) proteins 

(discussed below) and can be used to seek out and silence 

homologous targets.  Worms and plants both employ RdRP to greatly 

enhance their RNAi responses and provide an effective immunity 

against pathogens that generate dsRNA.92,93  The lack of an effective 

RdRP in mammalsh may help explain why RNAi does not constitute a 

major role in host defense from pathogens; nevertheless, flies such as 

Drosophilia melanogaster use RNAi as a potent antiviral defense 

without the added benefit of an RdRP.94 

3) An Argonaute-like protein.  Argonaute, or Ago, is the core protein 

involved in binding both mature siRNAs and miRNAs in the single 

stranded format.  The dsRNA is loaded and unwound in the Ago 

protein and acts as the guide RNA, which is the basis by which 

homology to the target RNA is determined.95-99  Ago does not act alone 

and is joined by several other proteins to form the actual effector 

complex referred to as the RNA-induced silencing complex or RISC.100 

                                                
h The only known RdRP in humans is hTERT, which is responsible for maintaining the ends of 
telomeres. 
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Once the siRNA is loaded into Ago and the RISC has assembled, the 

siRNA is used as a template strand for the siRISC to bind to other ssRNAs and 

looks for perfect base-pair homology between the siRNA and target RNA.99  

Perfect or near-perfect homology results in the catalytic slicing activity of 

Argonaute 2i to activate and cleave the target RNA between residues 10 and 

11.99  The cleavage does not result in the degradation of the siRNA, so a single 

siRNA can be used catalytically to process multiple target RNAs.95 

 RNA interference has been observed in the majority of eukaryotes with 

some noticeable exceptions: Saccharomyces cerevisiae, Leishmania major, 

Trypanosoma cruzi, Plasmodium falciparum, and Cyanidioschyzon merolae.101  

Surely, more will be described as whole-genomics based techniques are applied 

to more species.  The fact that RNAi appears to have been lost independently 

from these different lineages supports the hypothesis that RNAi may actually be 

dispensable for some eukaryotic organisms and that it primarily perseveres 

because it shares two of the three required proteins with the miRNA pathway.   

 

miRNAs 

 The microRNA pathway is a primarily endogenous small RNA pathway, 

compared to the primarily exogenous RNAi pathway.  miRNAs are genome 

                                                
i In humans there are four Argonaute proteins, however only Argonaute 2 has “slicer” activity and 
can cut target RNA. 
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encoded and are expressed as a primary transcript, as part of the 3’ UTR of 

another gene, as part of the intron of another mRNA, or as a cluster of related 

miRNAs.102  (Fig. 1.4, left)  miRNAs largely act as regulators of gene expression.  

Initially, miRNAs were thought to only repress translation of mRNAs, but further 

work has shown that miRNAs can activate gene expression as well.  The first 

miRNA was discovered prior to knowing that dsRNA was the trigger for 

processing and generating mature miRNAs.  The Ambros and Ruvkun labs, 

working with C. elegans, discovered that lin-4 was not a protein-coding RNA, but 

was instead a noncoding RNA that could base pair to lin-14, which is a protein-

encoding mRNA, and that this binding resulted in suppression of LIN-14 protein 

production.103,104  The primary miRNA (pri-miRNA), lin-4, is transcribed by RNA 

Pol II and exists as a single stranded RNA with a canonical stem loop, where the 

ssRNA folds back and pairs to itself to create secondary structure.105-107  The 

stem-loop structure is bound in the nucleus by the Type III RNase Drosha and its 

RNA binding partner DGCR8j, both of which are required to process the pri-

miRNA.  The pri-miRNA is cleaved at the base of the stem, leaving an 

approximately 60-70 nucleotide dsRNA stem-loop structure referred to as the 

pre-miRNA.108-111  Due to the nature of the Drosha cleavage, the dsRNA contains 

a canonical 2nt overhang.  The pre-miRNA binds to the nuclear pore protein 

Exportin-5 and is transferred through the nuclear membrane in a Ran-GTPase 

dependent manner.112,113  Once in the cytosol, the pre-miRNA is processed by a 

                                                
j DGCR8 is short for DiGeorge syndrome chromosome 8 
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second endonuclease, Dicer, in concert with its RNA binding partners TRBPk and 

PACTl.114-116  Dicer cleaves the loop structure off the stem and the resulting 

~22nt dsRNA is known as a mature miRNA.117,118  

The mature miRNA is loaded into an Ago protein and the two strands 

dissociate by one of two methods:  If the miRNA has complete homology at 

nucleotides 9-11 and the miRNA was loaded into Ago2, then the strand referred 

to as the guide strand can be used to drive cleavage of the other strand, referred 

to as the star (or *) strand.119,120  If the miRNA is not base-paired at residues 9-

11, or if the miRNA was loaded into Ago 1,3,or 4, the miRNA must be unwound 

by one of the RISC-associated helicases.121,122  After being unwound, the star 

strand is generally degraded; however, this is not universally true and as more 

miRNA sequencing data is obtained, there have been increasing reports that the 

star strand can be loaded into Ago to act as a miRNA as well.m  Once the miRNA 

is loaded into Ago and the RISC has assembled, the miRNA guide is used to find 

homologous RNA targets.  Unlike siRNAs, which require near-perfect homology 

with their target, miRNAs have much more flexibility in base-pairing their target.  

Still, miRNAs generally require perfect homology in what is called the “seed 

sequence” of the mature miRNA.  The seed sequence consists of nucleotides 2-

7.  These nucleotides, in a manner that is still not completely understood, form 

the basis of miRNA recognition of their target.123,124 Additional recognition comes 
                                                
k TRBP is short for TAR RNA binding protein.  TAR stands for trans-activation response element. 
l PACT is short for PKR activating protein.  PKR stands for protein kinase R 
m The nomenclature for miRNAs is currently disorganized. However, a push to label the miRNAs 
by the relative position on the stem (5p arm versus 3p arm) should help improve the situation.   
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from the central region (nucleotides 9-11) and the 3’ end of the miRNA.125,126 

miRNAs typically do not initiate the cleavage of their targets, although cleavage 

can occur if the central region has perfect homology.119,120  miRNAs can repress 

their targets by a variety of mechanisms, and the importance of the different 

methods is still debated.  miRNAs and the RISC can directly cleave the mRNA, 

prevent translation through steric hindrance of the ribosome, and deadenylate 

the 3’ polyA tail and increase mRNA degradation and turnover.127-129 

 

Piwi-RNAs 

 P-element inducing wimpy testis (Piwi) RNAs (piRNAs) are a class of 

Dicer –independent small RNAs130-132 that are larger than siRNA or miRNAs, at 

~27 nt.n132  The Piwi protein involved in the piRNA pathway was discovered well 

before the piRNAs during a screen for factors impacting germline stem cell 

maintenance in Drosophilia melanogaster.134  Orthologs of piwi were soon 

discovered in humans and C. elegans.135  It was almost 10 years later that 

several groups simultaneously published the identification of the class of RNAs 

that were bound by the Piwi-class proteins. 136-140  Their main function appears to 

be the silencing of retrotransposable elements in the germline.141,142  However, 

since piRNAs are Dicer-independent, they are not explored in detail in this body 

of work. 

   

                                                
n Piwi RNAs in C. elegans are 21 nt and not ~27 nt.133 
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NON-CANONICAL SMALL RNA PATHWAYS 

 The field of small RNA pathways is rapidly changing; new pathways are 

continuously being described, and previously discovered pathways are still being 

elucidated.  Here, I will briefly describe a few of the non-canonicalo pathways 

related to mammalian Dicer. 

1. Endo-siRNAs.  Briefly mentioned earlier, endo-siRNAs arise in the 

nucleus of mammalian cells by several pathways.  Convergent 

transcription occurs when two promoters face each other and an RNA 

polymerase transcribes ssRNAs overlapping on complementary 

strands, which base-pair and feed into the RNAi pathway.  (Fig. 1.4, 

top right)  Transcription of repetitive loci can also cause ssRNA to 

double back on itself to generate dsRNA fragments with loops.89,90  

Long interspersed nuclear elements (LINE) and short interspersed 

nuclear elements (SINE) are both retrotransposon-associated 

elements that are transcribed as non-coding RNAs in mammals.  

These can be processed into repeat-associated siRNAs (rasiRNAs).  

Deleting Dicer leads to an accumulation of LINE transcription since the 

rasiRNAS are not silencing the output of the LINE transcription.91,143  

SINEs are regulated in a similar manner by Dicer as the LINEs.  Dicer 

depletion results in an increase of SINE transcripts such as ALU, the 

                                                
o I understand describing these pathways as “non-canonical” may be controversial, however I use 
the term to denote the difference between pathways where the mechanism is largely understood 
versus pathways where the basics are still being investigated. 
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accumulation of which triggers apoptosis in mouse macular tissue, 

suggesting that Dicer may help clean up dsRNA fragments that could 

potentially trigger a cytotoxic response in normal cells.144,145 

2. Dicer-independent miRNA.  Typical miRNA biogenesis requires both 

Drosha and Dicer for the miRNA to be processed into a mature form.  

However three independent groups have confirmed the existence of a 

Dicer-independent miRNA: miR-451.146-148  While the primary miR-451 

transcript is expressed and processed by Drosha in the typical manner, 

the resulting stem-loop is much shorter than traditional miRNAs, at 

approximately 42nt instead of the normal 60-70nt.  The pre-miRNA 

therefore bypasses Dicer entirely and is loaded into Ago2, which uses 

its catalytic activity to cleave the loop off and become a mature miRNA. 

3. RNA activation (RNAa).  Contrary to the common understanding that 

both siRNAs and miRNAs suppress translation of mRNAs, a newer 

pathway has been described where small dsRNA can transcriptionally 

activate genes by changing the histone profile at the promoter or by 

targeting antisense transcripts that target the activated RNA.149-152  

While the mechanism and biological significance is not fully 

understood, RNAa adds a layer of complexity to the already complex 

small RNA pathways. 
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DICER 

 While there are many proteins that are involved in both the RNAi and 

miRNA pathways, one in particular is vital for both: Dicer.  Since the data 

chapters of this dissertation revolve around the role of Dicer in viral immunity, I’d 

like to provide a little more detail on Dicer.   

 Dicer appears to have evolved from prokaryotic type III RNases and can 

be found in all eukaryotic organisms that have functional small RNA pathways.153  

Because Dicer evolved early in the evolutionary timeframe, it has had time to 

evolve different functions in different families, through gene duplication and loss-

of-function.  Plants have the most diverse Dicer family with 4 distinct Dicer 

genes: DCL1-4.154  Each Dicer serves a different function, with DCL-1 functioning 

primarily in miRNA pathways, while DCL-4 provides the core antiviral processing 

for RNAi.155,156  Arthropods have two Dicers, Dicer-1 and Dicer-2.  Dicer-1 is 

involved in miRNA maturation, while Dicer-2 is essential for antiviral activity.157  

C. elegans and other nematodes have only one Dicer that is essential for both 

miRNA and siRNA processing.158  Mammals also have only one Dicer, which can 

process a variety of substrates including the stem-loops of pre-miRNAs, dsRNA, 

dsRNA-DNA hybrids, and dsDNA.  159-161 
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MOUSE DICER 

 Humans and mice each have a single Dicer protein.p  For this review of 

Dicer, I will be referring to mouse Dicer unless otherwise specified, as there are 

several mouse-specific functions of Dicer.  Dicer1 is a cytosolic protein of 

approximately 220 kDa that consists of the following domains, from N terminal to 

C terminal: 

1. DExD/H box helicase.  The helicase contains a Walker A ATP 

binding motif, but ATP studies have found that ATP is largely 

dispensable for long dsRNA processing ability of Dicer.162  

Mutation studies have actually revealed that removing the 

helicase domain increases the processivity of Dicer on longer 

dsRNA dramatically.163  Currently, the model for Dicer suggests 

that the helicase domain is important for distinguishing pre-

miRNA from linear dsRNA by engaging the loop structure on the 

pre-miRNA.164 

2. DUF283.  Domain of unknown function 283 largely remains a 

domain of unknown function, despite initial reports suggesting 

that it has a role in processing pre-miRNA.163 

3. PAZ.  The Piwi-Argonaute-Zwille domain is important for binding 

to the terminus of a dsRNA.  It has two unique binding pockets 

within this domain, one for binding the 3’ end of one strand of 

                                                
p Human and mouse dicer share ~97% homology at the amino acid level. 
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RNA while the other binds the 5’ end of the second strand.165-168  

The 5’ pocket is especially conserved amongst Dicer proteins 

that preferentially bind pre-miRNAs and appears to favor 5’ ends 

that are less thermodynamically stable, which is a characteristic 

of miRNAs since they do not typically have perfect base-pair 

complementarity and thus have less stable Watson-Crick base 

pairing. 

4. RNase III.  Dicer has two RNase III domains and together they 

form a single catalytic center for dsRNA cleavage.  The two 

domains, RNase IIIa and IIIb are offset so that the aspartic acid 

residues that are essential for the RNase function cleave the two 

phosphodiester bonds of the RNA backbone with a 2 nt 

differential, thus also generating a 2 nt overhang.  The cuts are 

made approximately 20-21 nt away from the terminus of the 

dsRNA that is bound up in the PAZ binding pockets.167  This was 

originally thought to act as a molecular ruler and that the length 

between the PAZ domain and RNase domains contributed to the 

establishment of the ~21 nt cleavage length.  However, a recent 

report by Ma et. al. has shown that Dicer reconstituted from 

individual fragments that are not physically connected can still 

produce the ~21 nt dsRNA fragments.169 

 

33



 

DICER1 is encoded on the chromosome 12q and disruption of the gene is 

embryonic lethal.  It exists as two primary isoforms: DicerS and DicerO.r  DicerS is 

1,916bp and is considered the canonical form of Dicer.  It uses exons 1-27 to 

form the mRNA transcript and is found in almost every cell type.  Processing 

studies have shown that this canonical form of Dicer primarily processes dsRNA 

that contain a stem-loop structure, similar to the structure of a pre-miRNA.160  

The second isoform is 1,678bp and is found predominately in murine embryonic 

stem cells and oocytes.170  It uses an alternative mouse transposon C (MT-C) 

driven element in the sixth intron of Dicer to initialize the short DicerO version that 

includes the MT-C leading directly into exons 7-27.170  This alternate transcript 

largely removes the helicase domain from the protein and, as mentioned before, 

the removal of the helicase increases processivity of longer dsRNA.  Thus, in 

normal somatic cells, the longer isoform of Dicer favors processing of miRNAs 

while in oocytes and murine ESC’s, the transposon driven short form DicerO 

favors the processing of endo-siRNAs arising from transposable elements and 

contributes to genome defense while largely ignoring miRNA processing.171,172 

 

 

 

 

                                                
q Chromosome 12 in mice, chromosome 14 in humans. 
r DicerS is for somatic while DicerO is for oocyte. 
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SMALL RNA PATHWAYS IN VIRAL INNATE IMMUNOLOGY 

  

 There are several factors that led to a burst of research into small RNA 

pathways in mammalian and, in particular, human immunology: 

1. RNAi had an established role as a major anti-viral system in plants, 

worms, and flies. (Reviewed in173,174) 

2. miRNAs and their targets were being discovered at an intense rate and 

it became clear they have a major role in regulating the activation and 

maturation of a variety of immune functions. (Reviewed in175-177) 

3. Viral infection produces dsRNA, the substrate by which RNAi is 

initiated. 

4. Dicer shares a conserved DExD/H helicase that places it in part of the 

Helicase Superfamily 2 that also contains RNA helicases involved in 

mammalian anti-viral immunity: RIG-I, MDA5 and LGP2. 

5. Small RNA pathway cofactors, such as TRBP and PACT are essential 

for binding to Dicer, viral factors (HIV TAR, in the case of TRBP) and 

the innate immune response (RIG-I, in the case of PACT), suggesting 

a common link between the systems. (Reviewed in178,179) 

Despite efforts by a number of labs to show that RNAi functioned as a vital 

anti-viral pathway in mammals, research by a variety of groups revealed little to 

no direct RNAi activity in mammalian cells.  This led several prominent 

researchers to claim, perhaps prematurely, that RNAi played no role in 

35



 

mammalian anti-viral immunity.180-182 There have now been a plethora of papers 

describing the role for multiple miRNAs in the regulation of immune responses to 

a variety of pathogens and for the general maturation of immune cells.  However, 

for the sake of this dissertation, I will limit this review to the papers most pertinent 

to the roles of miRNAs in regulating viral infections and IFN signaling pathways.  

 

miRNAS REGULATING TYPE I IFN 

 miRNAs regulate many cellular functions and the signaling pathways that 

lead to Type I IFN expression are no exception.  There are actually very few 

reports of miRNAs directly targeting IFN mRNA.  Witwer et. al. and Li et. al. have 

reported miRNAs that target and regulate IFNβ and a variety of IFNα 

mRNAs.183,184  The physiological relevance of these targeting miRNAs is 

currently unknown since several of them are expressed at very low levels in 

innate immune cells. Interestingly though, these miRNAs can be upregulated by 

IFN, thus suggesting a potential negative feedback mechanism.183  Despite few 

miRNAs directly targeting IFN, miRNAs can regulate IFN by targeting 

components of the IFN signaling pathways.  Upregulation of miR-146a has been 

shown to diminish IFN signaling by targeting the IFN induction pathway proteins 

TRAF6, IRAK1, and IRAK2.185,186  Another miRNA, miR-155, which was first 

described to play a major role in the development of macrophages and activated 

B and T lymphocytes187-189, has been shown to regulate IFN responses by 

targeting the 3’ UTR’s of SOCS1 and TAK1 binding protein.190,191  Similarly, miR-
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221 was able to enhance the anti-viral effects of IFN on Hepatitis C virus 

infection by repressing SOCS1 and SOCS3, which are both known inhibitors of 

JAK/STAT signaling pathways.192 

 

CELLULAR ANTIVIRAL miRNAS 

 Several reports have focused on miRNAs that share seed sequence 

homology with viral sequences, whereby there is the potential that conserved 

miRNA sequences could repress viral genomic or messenger RNA.  One of the 

first reports used a Dicer deficient cell line to identify miR-24 and miR-93 as 

cellular microRNAs that shared sequence with Vesicular Stomatitis virus 

(VSV).193  VSV replication was increased in Dicer deficient mice and by adding 

miR-24 and miR-93 back to Dicer deficient macrophages, they were able to 

suppress VSV replication.  A series of studies then identified miR-122 is a 

hepatic miRNA that can be upregulated by IFN and targets Hep B and Hep C 

viruses in the liver and inhibits their replication.194-196  Similarly, a miRNA found 

abundantly in T lymphocytes, miR-29a, was shown to suppress HIV replication 

following its overexpression.197  Conversely, depleting T cells of miR-29a led to 

an increase in HIV virion production.  Despite these reports, the true question of 

the physiological relevance of these miRNAs in control of viral infection remains 

to be seen.  Further complicating matters is that miRNAs, through their ability to 

theoretically target any sequence that matches their seed sequence, can have 

potential targets in the tens to hundreds to thousands of mRNAs.  As an 
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example, TargetScan miRNA prediction software has 2,109 potential targets 

listed for miR-155-5p, whereas there are currently 118 confirmed, published 

targets of miR-155.198  Thus, determining what true role a miRNA has in 

suppressing a target is difficult when reports are typically only testing a few 

miRNAs or miRNA targets at a time.  In addition, considering that viruses are in 

an evolutionary arms race with their hosts, encoding a potentially potent anti-viral 

agent as a static miRNA would have limited effect on rapidly evolving viruses, 

unless the miRNA targeted a highly conserved region of the viral genome. 

Therefore, it is likely that miRNA regulation and targeting is focused on cellular 

processes, and the targeting of a viral RNA by a cellular miRNA is due to the 

promiscuity associated with miRNA:target RNA homology. 

 

VIRAL miRNAS 

 As part of the evolutionary arms race, viruses are known to adapt cellular 

factors or machinery to enhance their own replication.  The very fact that they are 

obligate intracellular parasites requires them to commandeer cellular machinery 

to survive.  Thus it is not surprising that viruses have also adopted the cellular 

miRNA pathway for their own purposes.  The first viruses shown to encode 

miRNAs are also in the virus family with the most miRNAs: the herpesviruses.  

Alpha, beta, and gamma herpesviruses all encode viral miRNAs that enter the 

canonical miRNA processing pathway.  These miRNAs have functions that range 

from evading the host immune response to the establishment of latency.  
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(Reviewed in199).  The majority of viruses that encode miRNAs are DNA viruses.  

As DNA viruses, they are able to transcribe their miRNAs from their DNA 

genomes without compromising the integrity of their genome by offering it up for 

Drosha and Dicer cleavage.  RNA viruses are largely encoded as a single piece 

of RNA and would risk losing their whole genome to miRNA processing.s  There 

is, however, one RNA virus confirmed to encode a miRNA: bovine leukemia virus 

(BLV)t.  As a retrovirus, BLV has an RNA genome, but uses a DNA intermediate 

to integrate itself into the host genome as well as replicate.  However, unlike 

most cellular miRNAs, the miRNA encoded by BLV is transcribed by RNA Pol III 

instead of RNA Pol II.  The pri-miRNA encoded in BLV is short, and thus is 

incapable of being cleaved by Drosha, but is still cleaved by Dicer.  Thus, it 

appears that by using Pol III as the transcription enzyme, BLV is able to express 

its miRNA independently from the replication of its genome, so that the same 

sequence embedded in its genome won’t be processed.200 

 

DIRECT CLEAVAGE OF VIRAL dsRNA BY DICER OR DROSHA 

 While the process of virus-initiated RNAi in a mammalian system has 

remained elusive, one step that has been reported multiple times is the cleavage 

of viral RNA by Dicer.  In an extensive report, Parameswaran et. al. showed that 

very small quantities of virus derived small RNAs (vsRNAs) could be detected 

                                                
s There are, of course, segmented RNA viruses and dsRNA viruses. 
t BLV, as a retrovirus, is in Group VI of the Baltimore classification of viruses, some consider the 
retroviruses to be RNA viruses, while others consider them to be DNA viruses. 
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following infection of mouse and human cells with VSV, West Nile virus, 

poliovirus, dengue virus, and hepatitis C virus.  While Dicer depletion had a 

modest effect (approximately 2.1 fold decrease in vsRNAs), vsRNAs still 

remained, suggesting that these vsRNAs may not be entirely Dicer dependent, 

and may in fact be degradation products.180  It wasn’t until a series of reports 

looking at vsRNA formation in undifferentiated cells were published that a true 

Dicer-dependent cleavage of viral RNA was revealed.  Li et. al. and Maillard et. 

al. published back to back articles reporting that viral infection with nodamura 

virus or encephalomyocarditis virus generated a pool of ~21 nt Dicer dependent 

vsRNAs in undifferentiated cells like oocytes and murine embryonic stem cells 

(mESCs) as well as newborn suckling mice.201,202  Of particular interest in these 

papers is that the generation of the vsRNAs went away as the cell differentiated.  

Since oocytes and mESCs do not express a functional IFN system, this suggests 

that the Type I IFN pathways supersedes RNAi as the cell differentiates.203  

Additionally, it had previously been published that these cell types express the 

alternate short form of Dicer (DicerO, discussed earlier) and that this isoform of 

Dicer preferentially processes long dsRNA instead of hairpins.  Therefore, it may 

be that RNAi functions in these cells specifically because they have no IFN and 

express a Dicer that can actually process the viral dsRNA.  Whether this holds 

any relevance in actual disease remains to be seen.  

 In addition to the reports showing Dicer cleavage of virus, a report from 

the TenOever lab identified Drosha as an interferon-independent antiviral 
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factor.204  Upon infection with Sindbis virus, VSV, ΔNS-influenza virus, or upon 

poly I:C transfection, they observed translocation of Drosha from its usual 

location in the nucleus into the cytoplasm.  Following Sindbis infection of wild-

type (WT), Dicer knockout (KO) or Drosha KO MEFs, they observed an increase 

in Sindbis replication in the Drosha KO cells only, suggesting a Dicer 

independent processing of viral RNA.  Deep sequencing of infected cells 

revealed an accumulation of Drosha-dependent small RNAs mapping to the 

Sindbis virus genome.204  Intriguingly, one reason that Sindbis was chosen as the 

model virus was a previous report that Sindbis produced a miRNA-like RNA after 

infection of mammalian cells.205  While there was an overall increase in Drosha-

dependent processing of the Sindbis genome, no accumulation of ~21 nt 

vsiRNAs was observed, suggesting that Drosha cleavage does not feed into the 

canonical RNAi pathway.  Instead, the presence of stem-loops in the secondary 

structure of Sindbis RNA appear to be the targets, and the reduction of viral titer 

in Drosha-competent cells may be due to direct cleavage of Sindbis genomic 

RNA by Drosha. 

 

THESIS RATIONALE AND OBJECTIVES 

 

 The role of small RNA pathways in antiviral immunity and regulation of the 

immune response is an intense field of research. However, the field is 

complicated by seemingly conflicting results depending on the cell types, viruses, 
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and immune stimulants used in individual studies.  The potential dual-role of the 

small RNA pathways as immunity-relevant processors of viral RNA and as gene-

regulatory processors in the miRNA pathways make interpretation of results 

complex.  Often when a system is first described, it is explored in broad strokes, 

when the reality is that as our understanding matures, the nuances of each 

pathway come to the foreground.   

Considering both the depth and breadth of small RNA pathways in 

governing antiviral immunity, we sought to explore how eliminating one gene in 

these pathways, Dicer, could impact Type I IFN induction. This work explores the 

role of Dicer in the Type I IFN response to several model RNA viruses as well as 

in the response to several non-viral nucleic acid ligands.  Chapter II is a brief 

presentation of the steady-state status of the system used for our work: Dicer WT 

or KO murine embryonic fibroblasts (MEFs).  Chapter III presents data involving 

the use of model viruses to explore the Type I IFN response in the presence and 

absence of Dicer and how the loss of Dicer can impact the replication of one of 

the model viruses, EMCV.  Chapter IV presents data on type I IFN production 

following stimulation with several non-viral nucleic acid ligands.  Chapter V 

discusses how the data presented in this thesis fits into the panorama of 

currently available research and provides future directions that could be built 

upon the data in this thesis.   

 This work contributes to our understanding of how Dicer can impact the 

expression of innate immunology sensors as well as impact the replication of 
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viral pathogens.  Research in this field will add insight into human disease 

models as well as potential targets for therapeutic interventions.   
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CHAPTER II – Dicer null MEFs: A model 
 
 

 

 

 

 

 

ABSTRACT 

 Studying any complex system can result in difficulty when trying to 

carefully control experiments: thus, many researchers make use of models to ask 

their questions and then extrapolate their results.  Any good model needs to be 

defined, however, to ensure that the phenotypes that are observed are due to the 

changes the researcher has made and not an artifact of the system.  In this 

chapter, I define the Dicer null murine embryonic fibroblast (MEF) model and 

describe long term perturbations of the innate immune pathways.  Additionally, I 

show that reconstituting Dicer in the Dicer null MEFs results in the rescue of 

miRNA maturation, but does not completely rescue the expression of various 

innate immune factors.   
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INTRODUCTION 

 

 The knockout mouse has been a potent tool for understanding gene 

function since it was first described. (Discussed in 206).  However it has limitations 

when the gene being knocked out is embryonic lethal.  The initial attempts to 

create a Dicer knockout mouse were unsuccessful due to the lethality of Dicer 

deletion. 207  Dicer knockout embryos die by day 7.5.  Thus, conditional knockout 

models were created where the targeting cassette for Dicer was flanked by 

loxP.208  Upon addition of Cre recombinase from an internal source (Cre driven 

by a cell specific promoter), or from an external source (such as a retrovirus 

expressing Cre), the loxP sites recombine and Dicer is excised.  However even 

this proved to be difficult as cells lacking Dicer quickly underwent senescence 

due to the loss of miRNA regulation of the p16INK4A/p19ARF locus.  Knocking out 

the p16INK4A/p19ARF locus or p53 relieved Dicer knockout cells from senescence 

and allowed conditional Dicer knockout lines to undergo Cre recombination and 

survive.208 Several lines deficient in Dicer have been created, ranging from 

embryonic stem cells, to MEFs, to a variety of conditionally knocked out Dicer in 

mature lineages.209-213  Considering that Dicer can behave differently in different 

cell lineages, it is important to characterize the system that will be used for future 

experimentation.  In this chapter I will define the Dicer deficient MEFs used in our 

experiments. 
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RESULTS 

 

Dicer1 KO cells are unable to process precursor miRNAs into mature 

miRNAs. 

In order to ascertain what role Dicer may play in regulating antiviral 

immunity, we used cells from previously described Dicer1 conditional knockout 

mice (Dicer1c/c p53-/-).208  A single line of Dicer1c/c cells were infected with an 

GFP or Cre expressing adenovirus and the cells were serially diluted to form 

single cell colonies.  The colonies were verified by PCR to be WT, heterozygous 

or homozygous deleted. To verify that DICER1 function had been ablated or 

reduced in the Dicer1 null and heterozygous MEFs, I analyzed the ability of each 

of the three genotypes to generate mature miRNAs.  MEFs that maintained two 

functional alleles of Dicer1 were able to convert endogenous pre-Let7 to its 

mature 22 nt form (Fig. 2.1a) MEFs that were heterozygous for Dicer1 showed a 

marked decrease in the amount of mature Let-7 generated and also showed an 

accumulation of pre-Let7, suggesting that one allele of Dicer1 is not sufficient to 

maintain miRNA homeostasis in rapidly dividing cells (Fig. 2.1a).  Dicer1 null 

MEFs showed no mature Let-7 and an accumulation of the precursor, indicating 

that Cre recombination had produced a true Dicer1 null cell with no functional 

DICER1 protein. (Figure 2.1a) Small RNAs from the Dicer1 WT and KO cells 

were sequenced using the Solexa deep sequencing platform.  Size selected 

RNAs were mapped to the mouse genome (mm9). 214  Far fewer sequences 
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Figure 2.1 Dicer1 KO cells do not produce mature miRNAs 
(A.) Northern blot showing the accumulation of mature and precursor Let-7 
miRNA in Dicer1 WT, Heterozygous and KO mice.  4ug of small RNA (<200nt) 
were isolated from each genotype and synthetic Drosophila Let-7 was used as a 
positive control. The RNA was loaded onto a 15% PAGE urea gel.  The RNA was 
transferred to a positively charged Nylon membrane and blocked with UltraHyb 
Oligo hybridization buffer.  p32 α-ATP labeled Let-7 Starfire probe hybridized 
overnight and the gel was sequentially washed with 20X SSC and .5X SSC.  (B.) 
Length distribution of small RNAs sequenced from Dicer1 WT and Dicer1 KO  
Total RNA from the two genotypes was isolated and size selected on a 15% 
PAGE gel for RNAs between 18-30nt.  Following small RNA library preparation 
(see Materials and Methods), the RNA was mapped to the mouse genome 
(mm9). 
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were read in the Dicer1 KO cells and the peak of canonical miRNAs at 21-23nt 

was absent, whereas piRNAs at 27nt were unaffected. (Fig 2.1b) When the 

reads from Dicer WT, Dicer heterozygous, and Dicer KO were analyzed, a 

marked decrease in miRNAs was observed, however over 600,000 reads still 

matched to putative miRNAs.  (Table 2.1) Upon further investigation, the majority 

of the miRNAs that were still observed were found to be artificial.  That is, 

computational analysis had identified them as potential miRNAs, but when they 

were tested experimentally, they were found to not be true miRNAs. 215 Still, the 

majority of miRNAs followed the expected outcome and were seen expressed at 

10 to 100 fold more in the WT than the KO. (Fig. 2.2) 

 

Dicer1 WT and KO cells generate limited vsRNAs from Sendai virus. 

 While previous reports have shown that virus-derived small RNA (vsRNA) 

formation in mammalian cells is limited at best, we wanted to see if our cells 

generated any vsRNAs when infected with an RNA virus.  Sendai virus is a 

paramyxovirus with a negative sense ssRNA genome. 216 Sendai virus is also 

known for having a RNA-dependent RNA polymerase (RdRp) that is error-prone 

during replication initiation.  It often makes runs along the genome before falling 

off, thus generating small 5’ppp RNAs that are too short to support any protein 

translation.217  These RNAs are known as copyback defective interfering (DI) 

particles, due to their ability to promote detection by Rig-I and lead to IFN 

production that interferes with a successful viral infection.217,218  Various strains of 
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Table 2.1 RNA Deep sequencing of Dicer WT and KO cells. 
RNA was isolated from Dicer WT and KO cells and size-selected (18-30nt) deep 
sequencing libraries were prepared.  Sequencing reads are presented as raw 
numerical count of the different matched RNAs.  Dicer KO cells generated 
roughly half the total reads of WT.  Non-coding RNAs are RNAs that matched the 
genome, but are not part of any known transcribed region.  piRNAs mapped 
equally in both cell types to annotated piRNAs.  miRNAs are mapped according 
to putative miRNAs determined both experimentally and computationally.  Other 
RNAs refer to transcribed RNAs that matched other sequences, some of which 
are not normally expected to be found in an 18-30nt sample, such as ribosomal 
RNA fragments.  Pie charts represent the percentage of each type of RNA 
matched to the genome in Dicer WT and KO cells. 
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Sendai virus have differing degrees in which they generate DI particles and thus 

activate the interferon response.  The Cantell strain of Sendai virus is known to 

generate large quantities of DI particles, to the point where the DI particles 

interfere with viral replication by activation of the immune response as well as 

acting as ribosomal decoys, where no productive protein production is generated 

from them.  Of note though is that these copy-back particles in Sendai Cantell 

can be large, on the order of 2kb of dsRNA. 217,218  Thus, these large dsRNAs 

would be a prime candidate for processing by Dicer.  Deep sequencing analysis 

of Dicer WT and KO MEFs infected with Sendai virus revealed that both WT and 

KO produced vsRNAs, primarily located at the 5’ and 3’ end of the viral genome.  

(Fig. 2.3a)  However, more reads were mapped to Sendai in the Dicer KO 

samples than in the WT samples, suggesting a Dicer independent phenotype.  

Length distribution (LENDIS) of the mapped reads showed most reads were at 

the lower cutoff of 18nt, also suggesting a Dicer independent phenotype. (Fig. 

2.3b) 

 

Dicer1 KO cells have altered levels of innate immune receptors and 

adaptors. 

 In order to provide a robust picture of the state of the immune system in a 

Dicer-depleted cell, I assessed the levels of some of the nucleic acid receptors at 

steady-state levels in the WT and KO cells.  Nanostring analysis of steady-state 

mRNA revealed that while some receptors and adaptors, such as Rig-I, MDA5, 
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Fig. 2.3 Sendai virus mapped RNA deep sequencing of Dicer WT and KO 
cells. 
Dicer WT and KO were infected with [80HA/mL] of Sendai virus and RNA was 
isolated from Dicer WT and KO cells after 8 hours. Size-selected (18-30 nt) deep 
sequencing libraries were prepared.  (A.)  Results are presented as matched 
small RNAs to Sendai virus genome position.  The majority of reads matched to 
the 5’ or 3’ end.  (B.) LENDIS distribution revealed no increase of small RNAs in 
Dicer WT cells and no uniformity to the size of the RNA, suggesting Dicer 
independent formation of the Sendai mapped small RNAs.  
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IFIT1,and MAVS showed equivalent levels between WT and KO cells, the 

general trend was that KO cells had reduced levels of receptors when compared 

to their WT counterparts. (Fig. 2.4a) The DExD/H RNA helicase LGP2 showed a 

marked decrease in expression, as well as the PYHIN containing DNA helicases 

IFI205 and IFI204, and the DNA sensor STING.  The GTPase MX1, which in 

mice has broad anti-viral activity against nuclear-replicating viruses and in 

particular against Influenza, is down-regulated as well.  IFIT3 and IFITM2 and M3 

proteins, which are known to restrict the replication of enveloped viruses as well 

as sequester 5’ppp RNA, are all significantly reduced compared to WT.  To test 

whether these genes are permanently down-regulated, we added exogenous 

Type I IFN to the supernatants of the cells for 2 hours and then looked at the 

upregulation of IFN stimulated genes (ISGs).  In all cases, adding exogenous IFN 

upregulated ISGs in both the Dicer WT and KO cells, and in the case of MDA5, 

actually produced an increase in the levels of MDA5 transcript. (Fig. 2.4b-e) This 

suggests that both the WT and KO cells have an intact IFN receptor and 

signaling pathways and that if properly stimulated, the ISGs can be upregulated.  

However in the unstimulated basal-state, the cells have reduced levels of some 

nucleic acid detectors.   

 

Reconstitution of Dicer rescues mature miRNA production. 

 Dicer is involved in regulating many genes through its function as a 

miRNA processor.  Given that a prolonged loss of miRNAs may have unforeseen 
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Fig. 2.4 Nucleic acid receptors and ISGs have variable expression in Dicer 
KO cells. 
(A.)  Dicer WT and KO MEF RNA at steady-state levels.  RNA was counted on a 
Nanostring and results are shown normalized to the geometric mean of GusB 
and HPRT expression. Results are average of three biological replicates. (B.-E.) 
WT and KO cells were stimulated with medium or exogenous IFN (100U/mL) for 
1 hour and RNA was isolated and counted on Nanostring.  Results are shown 
normalized to the geometric mean of GusB and HPRT.  Results are the average 
of two biological replicates. 
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effects on the overall fitness of the cell, we reconstituted expression of Dicer in 

the KO cells using a codon-optimized version of human DICER1.  Initial 

reconstitutions all failed due to random recombination events of Dicer during the 

cloning process.  Only when the sequence of Dicer was codon-optimized for 

maximal expression in mammalian cells and minimal expression in bacterial cells 

were we able to generate the lentivirus constructs necessary for reconstitution.  I 

transduced Dicer1 WT and KO cells with a lentivirus based vector containing 

GFP, full length human DICER1 (hsDicer), or a truncated DICER1 missing the 

helicase domain (ΔHelicase).  I then assessed expression of hsDicer by both 

Western blot (Fig. 2.5a) and hsDicer mRNA levels (Fig. 2.5b) and the rescue of 

the common miRNA Let-7 (Fig. 2.5c).  Let-7 expression was normalized to the 

Dicer-independent small RNA Sno202 and expression in both the hsDicer and 

ΔHelicase reconstituted cells showed comparable levels to the Dicer1 WT cells.  

Interestingly, the ΔHelicase mutant showed increased levels protein expression, 

mRNA expression and Let-7 cleavage.  I attempted to modulate the expression 

of the ΔHelicase mutant, however I was unable to normalize the expression 

profile in relation to hsDicer.  The shorter sequence may have increased the rate 

at which the ΔHelicase mutant could be expressed, leading to higher levels, 

while the increased Let-7 cleavage could be due to increased protein levels or  

may be due to the auto-inhibitory nature of the Dicer helicase domain.163   
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Fig. 2.5 miRNA maturation can be rescued after reconstitution with WT or 
ΔHelicase Dicer. 
(A.) Dicer1 WT and KO cells were transduced with a lentivirus that expressed 
GFP, human DICER1 (hsDicer) or DICER1 missing the helicase domain 
(ΔHelicase).  Following 24 hours, the cells were selected using puromycin and 
allowed to recover for 3 days.  Protein lysates showed the presence of full length 
human DICER1 and a smaller helicase-deleted variant.  (B.) RNA from rescued 
cells was isolated and Taqman assays for Let-7 and Sno202 were run according 
to the manufacturer’s specifications.  Let-7 expression is shown normalized to 
Sno202 .  Data is shown as the mean of four biological replicates. 
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Dicer reconstitution fails to rescue all innate immune receptors and 

adaptors. 

 While the reconstitution showed a complete rescue of miRNA maturation 

as assessed by Let-7 maturation, the reconstitution failed to rescue all of the 

receptors and adaptors that had been downregulated at the basal state in Dicer 

KO cells.  While STING, IFI204, and MX1 all showed some level of rescue, 

LGP2, IFI205, and IFIT3 all failed to return to WT levels following the 

reconstitution of Dicer.  (Fig 2.6a-c) Since Dicer can only process miRNAs that 

exist in pre-miRNA form, it is possible that some alteration of the transcription 

profile may have occurred in the KO cells; thus, without the proper stimuli, the 

reconstituted KO cell may never see the proper regulatory pre-miRNA. In this 

case, the reconstituted Dicer would have no effect on the rescue of any gene 

downstream of an unexpressed pre-miRNA.  

 

DISCUSSION 

 

 Since any model system is only that, a model, special care must be made 

not to draw too broad of a conclusion from the data generated.  What is important 

is that careful consideration be given to the strengths and weaknesses at hand.  

Since Dicer is required for embryogenesis, there is no way to study the lack of 

Dicer on a whole organism.  Therefore we developed a system that could be 

used to explore the questions asked later in this thesis.  That is, my model had to 
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Fig. 2.6 Dicer reconstitution fails to rescue expression of LGP2 and IFIT3 
RNA was extracted from WT, KO, KO +Dicer and KO + ΔHelicase MEFs at 
steady state.  The RNA was hybridized to a custom nanostring codeset overnight 
and counted.  Results are presented as total counts normalized to the geometric 
mean of GusB and HPRT.  Results are the average of three biological replicates. 
The panels are divided into (A.) RLRs, (B.) DNA Sensors and (C) restriction 
factors. 
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be able to produce IFN, support viral infection and replication, be able to be 

reconstituted with Dicer or mutant Dicer, and be easy enough to maintain that 

experiments could be run in replicates.  There are many other Dicer deficient 

models that I could have used, and in fact I did use some of them but found them 

unsuitable for my studies.  Since Dicer depletion causes an immediate shift to 

senescence, I found that by the time we were able to deplete Dicer with either 

drugs or a Cre delivering virus, select the cells, and let them recover, the Dicer 

depleted cells were already unsuitable for studying the IFN response.  Thus I 

decided to continue using our p53-/- cells as I could study the effects of Dicer 

knockout without the worry of senescence. Of course, introducing a mutation 

such as this, depleting p53, will have a major impact on other pathways in the 

cell.  p53 has a major role in sensing DNA damage and regulating the cell cycle 

to prevent replication of a cell with damaged DNA.297  In order to provide some 

assurance that deleting p53 would not fundamentally alter the results we 

obtained from stimulating our cells, many of the experiments were done 

simultaneously with the Dicer cells that had the p16INK4A/p19ARF locus deleted.  

The results were the same, and data from Dicer c/c p16INK4A/p19ARF are not 

shown in this dissertation.   

Upon characterization of my cells, I determined that Dicer-deficient cells 

are truly deficient in a variety of ways.  The loss of miRNA maturation was 

expected and became the evidence used to determine the knockout or 

reconstituted status of my cells.  Reconstitution of the Dicer KO cells with hsDicer 
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or ΔHelicase Dicer did result in differing amounts of protein being expressed.  

However, in future chapters, the phenotype observed for both the full length and 

ΔHelicase Dicer were identical, suggesting that, at least for the role of Dicer in 

controlling the IFN response, the helicase domain is dispensible and having 

additional Dicer protein may not affect the overall maturation of miRNAs.  

Impacting my studies, I found that some of the innate immune receptors and 

adaptors were expressed at low levels in the KO cells and a subset of them could 

not be rescued with expression of ectopic Dicer.  While Let-7 maturation 

suggests that Dicer reconstitution rescued mature miRNA formation, Let-7 is a 

miRNA that is constitutively expressed.  A low copy-number inducible miRNA 

may not be fully rescued in the same manner and may be responsible for the 

lack of rescue seen with LGP2, and IFIT3.  While these two genes were the only 

ones that showed statistical significance between the WT and the reconstituted 

cells, it is unclear how the levels of these genes impacts the response.  Other 

genes like IFI205, MX1 and IFI204 showed variation in how well they were 

rescued after the addition of Dicer, and while the raw numbers do not support 

significance based on the universally supported p<.05 scheme, there can still be 

a biological relevance to the depletion of these genes.  IFI204, STING and MX1 

all showed a marked decrease in their reconstituted form compared to wild-type, 

but had p values between .05 and .1.  Again, it is unclear how these differences 

affect function however, it is clear that Dicer null cells are deficient in a variety of 

innate immune receptors and adaptors and that reconstituting Dicer may not 
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rescue all miRNA expression when that expression is independent of the 

temporal and stimulated status of the cells when they are reconstituted. 

 

MATERIALS AND METHODS 

 

Dicer WT and KO MEFs 

  Dicer1c/c were created as previously described in the laboratory of Dr. 

Stephen Jones.208 These conditional knockout mice have loxp sites flanking 

exons 15-17 of both Dicer1 alleles.  The exons encode the PAZ domain, which is 

required for Dicer to bind to the terminal end of the dsRNA, whether it is linear or 

the stem of a pre-miRNA.  Following Cre recombinase expression by transducing 

the cells with a Cre-expressing adenovirus, exons 15-17 are excised and all 

downstream exons, including those that encode the RNase III domains, are 

placed in an incorrect translational frame, effectively eliminating protein 

expression.  As previously described, knocking out Dicer1 induces p19ARF – p53 

mediated senescence.  In order to relieve the cells of p53 mediated senescence, 

the Dicer1 conditional mice were crossed to p53 null mice to generate a line of 

mice that were Dicer1c/c p53 KO.  To generate murine embryonic fibroblasts 

(MEFs), pregnant mice were sacrificed on day E13.5 and the embryos were 

dissociated and cultured.  A line of MEF cells was established after adherence of 

the dissociated cells.  The Dicer1c/c p53-/- MEFs were transduced with Ad5CMV-

Cre Adenovirus vector from the Gene Transfer Vector Core at the University of 
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Iowa.  The cells were cloned using limiting dilution and assayed by PCR and 

Northern blot.  Three lines were established; Dicer1 WT p53 KO, Dicer1 Het p53 

KO and Dicer1 KO p53 KO.  MEFs were maintained in DMEM supplemented 

with 10% FBS 2 mM glutamine and 2 mM penicillin/streptomycin.   

 

Virus 

  Sendai virus, Cantell strain, was purchased from ATCC (Cat# VR-907).  

MEFs were infected at 80 hemagglutination units [HA/mL] and harvested at 8 

hours for RNA, which was then processed for the deep sequencing libraries. 

 

Northern Blot 

  Total RNA was isolated from cells lysed in TRIzol (ThermoFisher scientific 

#15596026) by extraction using acidified phenol:chloroform (ThermoFisher 

scientific #AM9720).  The total RNA was resuspended in water and re-extracted 

using MirVana lysis/extraction buffer and miRNA homogenate additive (Life 

Technologies #AM1560).  Following this second phenol:chloroform extraction, 

large RNA (>200 nt) was precipitated using 1/3 volume of ethanol and low speed 

centrifugation (2500g) at room temperature for 4 minutes.  The remaining small 

RNA was precipitated with a 0.7 volume chilled isopropanol precipitation followed 

by a high speed centrifugation (16,000g) at 4° C for 10 minutes.  The precipitated 

small RNAs were resuspended in water, quantified, and 4 µg of RNA was loaded 

in each lane of a 15% polyacrylamide gel (National Diagnostics #EC-833).  The 
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gels were run, transferred to a positively charged nylon membrane, and non-

specific hybridization was blocked by incubating the blot in ULTRA-Hyb oligo 

prehybridization buffer (Life Technologies Cat#AM8663).  Starfire Probes against 

miRNA Let-7 were purchased (Integrated DNA Technologies) and the probes 

were labeled by α-P32 dATP in a polyA dependent manner.  The probes were 

hybridized overnight, washed with 2X and 0.5X SSC wash buffer, and exposed to 

a phosphoimager plate. 

 

Deep sequencing 

 Note: Sequences are listed in a table at the end of this subsection.  RNA 

was extracted by phenol:chloroform and size selected on a 15% polyacrylamide 

gel.  RNA between 18-30nt was ligated on the 3’ end to the 3’ adaptor using T4 

RNA ligase II, truncated (NEB #M0242S).  The RNA was size selected on a 15% 

polyacrylamide gel again and RNA between 39 and 51nt was selected.  The RNA 

was then ligated on the 5’ end to the 5’ adaptor using T4 RNA ligase (NEB 

#M0204S) and bands between 65 and 77nt were size selected on a 10% 

polyacrylamide gel (National Diagnostics #EC-833).  The RNA was then reverse 

transcribed using Superscript III reverse transcriptase (ThermoFisher scientific 

#18080044) and the RT primer.  The newly synthesized cDNA was amplified 

using the following primers: cDNA forward,  cDNA reverse  The cDNA was 

amplified in 20 cycles and the resulting PCR products were gel purified on a 1% 

agarose gel.  The fresh PCR products were then TOPO cloned into a pCR-Blunt-
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TOPO vector (ThermoFisher scientific #K2800-02) and transformed into 

competent cells.  Twenty colonies were selected and the inserts were amplified 

by PCR using the primers M13R and M13F. The inserts were then sequenced 

and analyzed to ensure library validity.  Once the libraries were confirmed, the 

libraries were processed on a Solexa Genome Analzyer (Illumina, San Diego, 

CA) 

 Analysis was done by mapping sequences to the mouse genome (mm9) 

and allowing up to 1 mismatch.  Sequences were annotated based on predicted 

miRNAs in miRBase release 17. 219-224 

Dicer reconstitution 

 The human DICER1 gene sequence was obtained from NCBI gene bank 

(Gene ID: 23405).  The gene was codon optimized by Dr. Jeremy Luban’s 

laboratory, and synthesized by Genscript USA Inc. The delta helicase mutant 

Oligo 
Name 

Sequence 

3’ adaptor 5’ -AppCTGTAGGCACCATCAAT/ddC/- 3’ 

5’ adaptor 5’ –GUUCAGAGUUCUACAGUCCGACGAUC- 3’ 

RT primer 5’ –ATTGATGGTGCCTACAG- 3’ 

cDNA 
forward 

5’-AATGATACGGCGACCACCGACAGGTTCAGACTTCTACAGTCCGA- 3’ 

cDNA 
reverse 

5’ –CAAGCAGAAGACGGCATACGAATTGATGGTGCCTACAG- 3’ 

M13R 5’ –CAGGAAACAGCTATGAC- 3’ 

M13F 5’ –TGTAAAACGACGGCCAGT- 3’ 
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was created by synthesizing the codon optimized human DICER1 with amino 

acids 2-601 deleted.  The start codon led directly into the sequence immediately 

following the helicase domain.  The resultant codon optimized human DICER1 

gene was cloned into pAIP (pALPS-IRES-Puromycin S deaminase), an HIV-1 

based transfer vector with DICER1 expression under the control of the spleen 

focus-forming virus long terminal repeat (LTR). The generation of pAIP has been 

described previously. 225 Viruses were produced by transfection of 293T cells 

using TransIT-LT1 (Mirus #MIR2300), according to the manufacturer’s 

instructions. For three-part vector systems, the following DNA ratio was used: 4 

parts transfer vector : 3 parts packaging plasmid : 1 part envelope. The viral 

supernatant was collected 48 h after transfection, filtered through a sterile 0.45 

µm syringe filter (Millipore #SLGP033S), and stored in 1mL aliquots at -80 °C. 

The frozen virus stocks were titered by measuring the reverse transcriptase (RT) 

activity present in the viral supernatant using qRT-PCR. 

 

Nanostring 

RNA from cells was collected and purified using the RNeasy Plus RNA 

purification kit (Qiagen, Cat #73404) according to manufacturer’s specifications.  

RNA was quantified by UV absorbance on NanoDrop.  Once quantified the RNA 

was hybridized overnight at 65o C to a custom probe set covering 50 mouse 

innate immunology related genes.  The labeled RNA was prepared and run on a 

NanoString Prep station and bioanalyzer.  Data was normalized and analyzed 
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using nSolver v2.5.  Counts were normalized to the geometric mean of GusB and 

HPRT as housekeeping genes. 
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CHAPTER III: Dicer depletion leads to a disparate Type I IFN 
response. 

 
 
 
 
 
 
 
 

ABSTRACT 
 
 The regulation of the innate immune response is a complex process 

involving the activation of signaling pathways, transcriptional regulation, post-

transcriptional regulation, and translational regulation, among others.  miRNAs 

and other small RNAs can function in a trans-activating and post-transcriptional 

manner to initiate expression of, or suppress translation of, a variety of innate 

immune receptors and adaptors.  Here I explore the role that Dicer depletion has 

on the initiation of the type I IFN response following a variety of stimulants.  

Intriguingly, Dicer depletion results in a near-universal loss of type I IFN 

expression regardless of the type of stimulant used.  However, Sendai virus 

infection produces the opposite phenotype, where higher levels of IFN are 

produced after Dicer depletion.  Here I report the results of IFN induction in Dicer 

null cells and hypothesize the various mechanisms that may be responsible. 
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INTRODUCTION 
 
  
 

Viral infection gives rise to a variety of common indicators of infection, one 

of the most prevalent indicators being the presence of foreign nucleic acids in the 

cell.  Viral genomes can have many possible nucleic acid configurations.  RNA 

viruses can have positive, negative, or ambisense single-stranded RNA genomes 

as well as double-stranded RNA genomes.  DNA viruses can be single- or 

double-stranded, or in the case of Hepadnaviridae, a genome consisting of single 

and double-strandedness.216  Since mammalian cells contain some of the same 

types of nucleic acid configurations, primarily dsDNA and ssRNA, it is vital that 

the host antiviral defense mechanisms include a way to differentiate and detect 

nucleic acids that either do not exist in mammalian cells or are detected outside 

of the expected compartment that the nucleic acid would normally reside in.  As 

discussed in Chapter I, these foreign nucleic acids activate a variety of receptors 

including the RIG-I like helicases: RIG-I, MDA5 and LGP2, and various DNA 

receptors including DAI, IFI16, cGAS/STING, and RNAPol III/RIG-I amongst 

others. These receptors are responsible for detecting a variety of ligands that are 

seen as foreign, including dsRNA (MDA5), 5’ pppRNA (RIG-I), modified di-

nucleotides(cGAS/STING), dsDNA (cGAS/STING, DAI, IFI16, RNAPolIII/RIG-I), 

as well as normal cellular ligands that are out of their normal location, such as 

genomic DNA in the cytosol of cells.28,32,38,48,68,70,73,81,226  We are interested in 
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how the deletion of Dicer can alter these pathways and alter the downstream 

production of type I IFN 

In order to regulate the expression of type I IFNs, multiple methods of 

gene expression regulation are employed, including transcriptional and 

translational regulation.  One form of post-transcriptional control that has been 

heavily implicated in the innate immune response is the microRNA pathways.  

176,227,228 miRNAs have been shown to heavily regulate the innate immune 

response.  Eliminating certain miRNAs has deleterious effects on signaling, 

proper activation and maturation of the adaptive immune response175,189,229, and 

in a few cases, direct suppression of a viral infection.  193 Complicating the role of 

miRNAs in general is that there are different expression profiles for miRNAs 

depending on the type of host cell.  Additionally, miRNA expression differs as the 

cell undergoes maturation with some miRNAs only expressed after a cell has 

fully differentiated and some expressed only during the developmental stages.  

Here I explore the role of Dicer and its ability to process miRNAs upon the 

activation of the IFN response in murine embryonic fibroblasts (MEFs).   

 To test this, I used several synthetic ligands including the RNA ligands; 

poly I:C and 5’ppp RNA and the DNA ligands; poly dA:dT, HSV 60mer, and 

VACV 70mer.  Additionally I used several viruses: EMCV, VSV and Sendai.  

EMCV and VSV are reported in Chapter IV, and Sendai is reported in this 

chapter. 
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Sendai virusu is a paramyxovirus that encodes its own RNA-dependent 

RNA polymerase (RdRp).  During viral replication, the newly synthesized RNA is 

quickly bound by the viral nucleoprotein N, which prevents detection of the 5’ ppp 

RNA by RIG-I.  The N gene is the located on the 5’ end of the (+) RNA, ensuring 

that it is the first viral protein generated during a viral infection. 216 Sendai virus is 

also known for having a RdRp that is error-prone during replication initiation.  It 

often initiates runs along the genome before falling off, thus generating quantities 

of small 5’ppp RNAs that are too short to support any protein translation.  These 

RNAs are known as defective interfering (DI) particles, due to their ability to 

promote detection by RIG-I and lead to IFN production that interferes with a 

successful viral infection.  Various strains of Sendai virus have varying degrees 

to which they generate DI particles and thus activate the interferon response.  

The Cantell strain of Sendai virus has long been known to generate large 

quantities of DI particles, to the point where the DI particles interfere with viral 

replication by activation of the immune response as well as acting as ribosomal 

decoys, where no productive protein production is generated from them. 217,218 

For this reason, the Cantell strain of Sendai has long been used as a method to 

induce interferon.  Unless otherwise specified, the Cantell strain of Sendai was 

used for experiments. 

 

 

                                                
u Sendai virus is also known as parainfluenza virus 5 
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RESULTS 

 

Dicer1 KO cells generate more IFN and IFN-related chemokines following 

Sendai virus infection 

I stimulated Dicer wild-type and Dicer knockout cells with medium or 

Sendai virus [80HA/mL] and assayed the supernatants by ELISA after 16 hours.  

While neither cell type showed any appreciable interferon production at basal 

levels, the Dicer knockout cells consistently produced more interferon protein 

than their wild-type counterparts following Sendai infection.  (Fig. 3.1a)  In order 

to ascertain if the increase in interferon was seen at the mRNA level as well as 

the protein level, I isolated RNA from Dicer wild-type and Dicer knockout cells 

over several time-points and measured interferon induction normalized to total 

ribosomal 18s RNA. Intriguingly, I found that interferon mRNA levels stayed fairly 

consistent between the wild-type and knockout cells, with only one time point 

showing a significant increase in message levels in the knockout cells.  Whether 

or not this increase during a single time point can account for the increase in 

protein production remains unclear.(Fig. 3.1b)  

To assess if the increase in IFN protein made a difference in downstream 

activation of IFNAR and upregulation of ISGs, I looked at supernatant levels of 

the IFN dependent chemokine CCL5/RANTES.  Again, I observed that RANTES 

production was significantly higher in the Dicer KO MEFs compared to WT. (Fig. 

3.1c) When replication levels of Sendai were observed, I noticed very mild 
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Figure 3.1 IFNβ protein production is enhanced in Dicer1 KO cells following 
Sendai virus infection 
(A.) Dicer1 WT and KO cells were infected with Sendai virus [80HA/mL] for 16 
hrs and the supernatants were assayed by IFNβ  ELISA or (C.) RANTES ELISA.  
Data shown as mean of three biological replicates.  (B.) Dicer1 WT and KO cells 
were infected with Sendai [80HA/mL] and RNA was isolated at the time points 
indicated.  IFNβ mRNA was detected by qPCR and normalized to 18s RNA and 
compared to steady state normalized IFNβ mRNA at time 0.  Data shown as 
representative of three biological replicates.  (D.) Sendai replication was 
monitored at the times indicated by extracting RNA and measuring the Sendai 
nucleoprotein RNA relative to 18s.  Results are average of two biological 
replicates. replication of the virus with no discernible difference between Dicer 
WT and KO cells.  The general replication defect of the Cantell strain has been 
observed before.  (Fig. 3.1d)   
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replication of the virus with no discernible difference between Dicer WT and KO 

cells.  The general replication defect of the Cantell strain has been observed 

before.  (Fig. 3.1d)  While most of the experimentation thus far had been in the 

Dicer WT and KO p53-/- cells, I also explored Sendai infection in primary 

macrophages taken from a Dicer conditional KO, ESR1-Cre + mouse.  This 

mouse was not used much in experimentation due to the quick senescence in 

rapidly dividing cells, but as macrophages do not divide rapidly, they could be 

used for infection studies.  By adding tamoxifen, the ESR1-Cre drove 

recombination of the loxP sites flanking Dicer and Dicer was excised.  (Fig 3.2a) 

When infected with Sendai virus, the primary mouse macrophages showed a 

phenotype identical to the MEFs, with CCL5/RANTES significantly increased in 

the Dicer C/C ESR1-Cre cells that received tamoxifen and were depleted of 

Dicer. There was no difference between Dicer C/C and Dicer C/C ESR1-Cre 

when no tamoxifen was added to the system.  (Fig. 3.2b)  

Several factors may influence mRNA stability and levels, so I wanted to 

see if IFNβ transcription was affected in the absence of any coding region 

regulation as well as 5’ and 3’ untranslated region regulation.  To test this, I used 

siRNAs to knockdown Dicer in HEK293 cells.  HEK293 cells were transfected 

with 10nM of either a non-silencing (NS) siRNA or an siRNA specific against 

Dicer.  Due to the fast growing nature of the HEKs, the knockdown was transient 

and I chose to use 48 hours as the endpoint for our assays.  (Fig. 3.3a) I 

transfected HEK293 cells with a firefly luciferase reporter gene under control of 
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Fig. 3.2.)  Bone Marrow Derived Macrophages (BMDMØ) from Dicer 
Conditional ESR1-Cre Knockout Mice Produce More of the IFN-related 
chemokine RANTES 
(A.)  Bone marrow cells were isolated from the femur and treated with L929 
supernatants for 10 days.  BMDMØ were given media or media with Tamoxifen 
and DNA and protein were isolated 48 hours later. Knockout was confirmed by 
PCR  (B.)  48 hours post tamoxifen treatment, Dicer c/c BMDMØ were infection 
with 40 HA units of Sendai virus.  Supernatants were assayed by ELISA 24 hours 
after infection. 
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the IFNβ promoter.  I then stimulated the cells with medium or Sendai virus and 

measured total firefly luciferase values that were normalized to cellular protein  

content.  When compared to medium or a non-silencing siRNA control, HEK cells 

that were knocked down for Dicer showed increased levels of interferon beta 

reporter activation when compared to medium or non-silencing siRNA controls. 

(Fig. 3.3b)  To test whether this response was interferon specific and not a broad 

response to Dicer depletion, I decided to look at NF-κB promoter-luciferase 

reporter activity in the system.  Sendai virus is a poor activator of the pathways 

that lead to NF-κB activation so I tested the cells with medium, Sendai and 

respiratory syncytial virus, which is known to activate the NF-κB response 

through TLR4 and TLR2.  In our system, Dicer depletion had no effect on NF-κB 

reporter luciferase activity. (Fig. 3.3c)  To see if the Sendai phenotype extended 

to a primary human line, I took human peripheral blood mononuclear cells 

(PBMCs) and transfected NS or Dicer specific siRNAs into them.  Following 

Sendai infection of the human PBMCs, IFNα was measured in the supernatants 

and a significant increase of IFNα was observed in the PBMCs that were 

knocked down with Dicer. (Fig. 3.4) 

 

Dicer1 KO MEFs fail to produce IFN in response to stimulation with 

immuno-stimulatory nucleic acids. 

 To examine how the loss of Dicer would impact the expression of type I 

IFN, I assayed the Dicer WT and KO MEFs’ ability to generate IFN following 
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Figure 3.3)  Dicer Knockdown Increases Sendai induced IFNβ transcription 
HEK293FT cells were transfected with Lipid, a control non-silencing siRNA pool 
or a siRNA pool against Dicer (siDicer).  24 hours later, the cells were transfected 
with 80ng IFNβ-luciferase reporter (A.) Western blot of Dicer protein in HEK 
293FT cells 24, 48, 65, and 72 hours post transfection with control or Dicer 
siRNAs.  Actin blot shown as loading control.  48 hours was chosen as optimal 
Dicer knockdown.  (B.) 24 hours post siRNA transfection, cells were transfected 
with IFNβ luciferase reporters.  They were then infected with 20HA units of 
Sendai virus 24 hours after that.  IFNβ-luciferase activity was measured 16 hours 
following infection.  Luciferase activity is shown as relative light units (RLU) and 
have been normalized to total protein content in each well, determined by 
microBCA assay.  (C.) 24 hours post siRNA transfection, cells were transfected 
with NF-κB luciferase reporters.  They were then infected with medium, Sendai 
virus, or Respiratory Syncytial Virus and assayed after an additional 24 hours. 
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Fig. 3.4  Human PBMC’s infected with Sendai express more IFNα after Dicer 
knockdown. 
Human PBMC’s were harvested, counted and plated. 24 hours later, non-
adherent cells were removed and the cells were transfected with the indicated 
siRNAs.  48 hours later, the cells were stimulated with Sendai virus and 
supernatants were collected 16 hrs later.  IFNa measured by ELISA. 
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stimulation with a variety of artificial ligands that activate different receptors.  

polydA:dT is a synthetic DNA ligand that is able to activate multiple receptors 

depending on the cell type.  The RNA Polymerase III can transcribe AT-rich DNA 

into its RNA counterpart, which is then detected by RIG-I.70  Additionally, IFI16 

and its presumed mouse counterpart IFI204 can bind to the naked dsDNA and 

cooperatively assemble into filaments in order to initiate signaling to STING and 

ultimately IFN or to activate NLRP3 inflammasomes. 230  When I transfected poly 

dA:dT into our Dicer WT and KO MEFs, I observed a robust IFNβ protein 

induction in the wild-type cells while IFNβ protein induction was absent in the KO 

cells. (Fig. 3.5a)  The downstream IFN inducible chemokine RANTES was also 

assayed by ELISA and a similar result was observed, with the KO cells failing to 

secrete RANTES. (Fig. 3.5b)  A time course of the transfected cells revealed a 

strong and early induction of IFNβ mRNA transcription in the Dicer WT cells that 

tapered off over time, while the Dicer KO response was inconsequential. (Fig. 

3.5c)   

Since poly dA:dT is an entirely synthetic ligand, I then transfected in 

oligomers derived from herpes simplex virus (HSV60) and vaccinia Virus 

(VACV70) which had previously been shown to induce IFN signaling.68  While 

both the Dicer WT and Dicer KO MEFs induced IFN in response to the positive 

control (Sendai virus) only the Dicer WT cells generated a protective IFN 

response when transfected with the immuno-stimulatory nucleic acids. (Fig. 

3.5d)  To test RNA based immune activation in the MEFs, I transfected the 
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Fig 3.5 a-c.  Dicer depletion results in loss of nucleic acid stimulated IFN 
induction.   
Dicer WT and KO cells were transfected with medium or poly dA:dT [600ng/mL] 
and supernatants were collected after 8 hours and tested for (A.) IFNβ and (B.) 
RANTES production.  Results are average of three biological replicates.  (C.) WT 
and KO cells were transfected with medium or poly dA:dT [600ng/mL] and RNA 
was isolated at the indicated time points.  IFNβ mRNA was normalized to 18s 
expression and graphed relative to medium stimulated cells.  Results are 
average of three biological replicates.   
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synthetic dsRNA branched nucleic acid ligand poly I:C, which has repeatedly 

been shown to induce an IFN response through MDA5/MAVS.32,33  While both 

the WT and KO cells responded to the polyI:C stimulation, the RANTES 

response was significantly higher in the WT cells compared to KO cells. (Fig. 

3.5e)  Attempts to detect IFNβ protein by ELISA were unsuccessful, as the 

induction of IFN was too low to accurately quantify in our cell types.  The 

synthetic ligand 5’ppp RNA has been described to be a ligand for RIG-I based 

induction of IFN; however in our hands, the induction was low.28,29  Regardless, 

when IFNβ mRNA levels were measured two hours after induction with HSV-

60mer, poly I:C and 5’ppp RNA, a general trend was observed where the Dicer 

KO cells failed to robustly respond to any of the ligands. (Fig 3.5f)   

 

Exogenous IFN fails to rescue ISG induction by nucleic acid stimulation. 

Since I had observed that certain receptors were down-regulated in Dicer 

KO cells (see Chapter II Fig. 2.4), I assessed whether exogenous IFN would 

drive expression of the receptors and allow a normalized response when 

stimulated with nucleic acids.  I pre-stimulated Dicer WT and KO cells with 

medium or IFN and then transfected the cells with poly dA:dT or 5’ppp.v  I 

isolated the RNA and analyzed it via Nanostring and observed a general defect 

in ISGs upregulation in the Dicer KO cells.  Even so, the effect was more 

                                                
v It should be noted that the medium and IFN only data is the same as presented in Chapter II. It 
is repeated here to compare to the data following stimulation with poly dA:dT and 5’ppp RNA. 
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Fig 3.5 d-f. Dicer depletion results in loss of nucleic acid stimulated IFN 
induction.   
(D.)  WT and KO cells were stimulated with Sendai virus [80HA/mL] or 
transfected with medium, HSV60mer [500mM], VACV70mer [500mM], or poly 
dA:dT [600ng/mL] for 8 hours and supernatants were harvested.  The 
supernatants were serially diluted onto NCTC929 cells for 24 hours and then 
challenged with VSV [1000pfu/mL].  The lowest dilution that protected 50% of the 
cells was recorded.  Results are representative of three biological replicates.  (E.)  
WT and KO cells were transfected with medium or poly I:C [2ug/mL] and 
supernatants collected and assayed for RANTES after 8 hours.  Results are 
average of three biological replicates. (F.) Cells were transfected with medium, 
HSV60mer [500nM], poly I:C [2ug/mL], or 5’ppp RNA [1ug/mL] and RNA was 
collected after 2 hours.  IFNβ expression was normalized to GusB expression 
and displayed relative to IFNβ induction in medium-treated cells.  Results are 
average of three biological replicates. 
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noticeable in MEFs that had been pre-stimulated with medium instead of IFN.  

This suggests that while the Dicer KO cells still showed a general inability to 

respond to poly dA:dT and 5’ppp, this defect could be partially overcome by 

driving expression of the receptors with exogenous IFN.   (Fig. 3.6 a-d.) 

 

Dicer reconstitution fails to rescue poly dA:dT induced IFN and many anti-

viral receptors. 

 By reconstituting Dicer into the KO MEFs we could add back the ability to 

process constitutive and inducible miRNAs into the cells.  Transduction of Dicer 

KO cells with a lentivirus containing either a full length or helicase-deleted codon 

optimized version of human Dicer resulted in the full reconstitution of miRNA 

expression, as measured by Let-7 expression.  (Data shown in Chapter II Fig. 

2.5)  Despite this, the reconstituted Dicer KO cells showed little actual IFNβ or 

RANTES produced following transfection with poly dA:dT, while the cells 

continued to respond normally to the control, Sendai virus. (Fig. 3.7a-c.)   

 

DISCUSSION 

 

The loss of Dicer potentially impacts hundred or thousands of genes, 

depending on the miRNAs expressed in the particular cell in question and the 

status of any external stimulants the cell may be receiving.  I wanted to assess 

what impact the loss of miRNAs had on type I IFN responses to a variety of 
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Fig. 3.6  Exogenous IFN can drive receptor expression in Dicer WT and KO 
cells and rescue some nucleic acid based stimulation 
Dicer WT and KO cells were pre-stimulated with either medium or IFN [100U/mL] 
for 1 hour.  They were then transfected with poly dA:dT [600ng/mL] or 5’pppRNA 
[1ug/mL] and RNA was isolated after an additional 6 hours.  The RNA was 
quantified and hybridized to a custom nanostring codeset.  Selected ISGs include 
(A.) LGP2, (B.) IFI204, (C.) MDA5, and (D.) RIG-I.  Results are normalized to the 
geometric mean of GusB and HPRT expression and are the average of two 
biological replicates. 
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Fig. 3.7  Dicer reconstitution fails to rescue poly dA:dT induced IFN 
expression. 
Dicer KO cells were reconstituted with human Dicer or ΔHelicase Dicer.  The 
cells were transfected with (A., B.) poly dA:dT [600ng/mL] or infected with (C.) 
Sendai [40HA/mL] and supernatants were collected after 8 hours, (poly dA:dT) or 
16 hours (Sendai).  Supernatants were measured for (A.) IFNβ or (B.) RANTES 
by ELISA. 
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stimulants.  Intriguingly, we saw that a disparate response arose, depending on 

the type of stimulant used.  The Cantell strain of Sendai virus is a potent 

interferon inducer, in large part due to the high number of ~600 nt 5’ppp DI 

particles it creates.  It is detected predominately through a RIG-I mediated 

mechanism, but recent studies have implied that IFIT1 can also detect 5’ppp 

RNAs and can cause a decrease in Influenza replication, despite seemingly 

having no ability to trigger downstream IFN activation.  55 IFIT1 is expressed at 

slightly higher levels in Dicer KO cells, but given their lack of signaling, it appears 

unlikely that this would result in the higher levels of IFN observed.  Interestingly, 

Sendai virus has been shown to upregulate miR203, which in turn downregulates 

IFIT1.  231  Thus, the increased levels of IFIT1 may be due to the dysregulation of 

this miRNA.  A different, potential mechanism for the observed IFN induction may 

lie in the loss of IFITM3 expression in Dicer KO cells. (For ref, see Chapter II 

Fig. 2.4) IFITM3 is significantly reduced in Dicer KO cells and is important for the 

restriction of several viruses, including Influenza, West Nile virus and dengue.  

59,60  By restricting pore formation, IFITM3 acts as a barrier to the initial entry of 

the virus to the cell.  232 It may be that IFITM3 reduction in the Dicer KO cells 

allows more immune-stimulatory RNA to enter the cell and drive higher IFN 

levels.  However, this is countered by the fact that we did not see increased viral 

replication in our cells.  However, it is possible that there were more DI particles 

in KO cells that were undetectable by the qPCR methodology we employed.  

Complicating our observations was that we also saw a decrease in IFIT3 
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expression in Dicer KO cells, and IFIT3 has been implicated in increasing RIG-I 

signaling by engaging MAVS and TBK1 and enhancing signaling.  233  All told, 

with so many receptors and adaptors having increased or decreased expression 

in the KO cell, it is difficult to pinpoint a precise cause for the observed increase 

in IFN. 

Surprisingly, Sendai virus infection was the only stimulant we observed 

with increased IFN expression.  The non-viral stimulants all showed a marked 

decrease in signaling, regardless if they were RIG-I, MDA5, or DNA sensor 

agonists.  Since RIG-I and MDA5 expression levels remained consistent between 

WT and KO cells, it would appear that some other mechanism is at play.  One 

possibility for increased Sendai signaling would be due to the down-regulation of  

IFIT3 and IFITM3.  The reduction in expression may result in increased 5’ppp 

RNA in the Sendai infected Dicer KO cells.  With regards to the loss of poly I:C 

and 5’ppp RNA signaling, the most obvious potential culprit would be the loss of 

LGP2, since LGP2 is essential for MDA5 signaling47-49 and has also been shown 

to be important in RIG-I signaling.48  Previous reports have shown a loss of 

MDA5 dependent signaling when LGP2 is knocked out, suggesting they act in 

concert to initiate dsRNA induced IFN signaling.49,234  Further investigation of 

LGP2 reconstitution is warranted to ascertain its importance to signaling in a 

Dicer null environment. 

DNA sensing is largely ablated in a Dicer null cell.  Poly dA:dT, 

HSV60mer, and VACV70mer all failed to induce measurable amounts of IFN or 
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RANTES.  In MEFs, poly dA:dT can stimulate IFN through direct activation of 

DNA sensors but can also be transcribed by RNA pol III to create intermediate 

RNA species that activate IFN through RIG-I.  71  While RIG-I expression appears 

normal in Dicer null cells, the ability to stimulate IFN through a RIG-I ligand such 

as 5’ppp RNA is diminished, which suggests any RNA intermediates created 

from poly dA:dT may share a similar fate.  Additionally, the IFI16 ortholog IFI204 

is diminished in Dicer null cells; thus, any direct DNA sensing through IFI204 

would be impaired as well.  These redundant methods of initializing IFN induction 

are both diminished in Dicer null MEFs, which may explain why no induction of 

IFN is observed.  Additionally, if IFI204 is a transcriptional activator like its human 

ortholog IFI16 is, then the loss of IFI204 may result in greater defects than just 

loss of DNA recognition.  The loss of transcription initiation by IFI204 could have 

far-reaching effects on downstream signaling after all ligands, DNA, RNA, and 

others included. 

By adding exogenous IFN we induced receptor expression in the Dicer 

WT and KO MEFs.  While this did not rescue the observed phenotype entirely, it 

did drive some of the receptor expression high enough that upon further 

stimulation with poly dA:dT or 5’ppp RNA, the responses were normalized.  In 

particular, IFN induction largely rescued 5’ppp RNA activation of RIG-I, MDA5, 

and IFI204 expression and partially rescued LGP2 expression. 

Intriguingly, reconstituting Dicer into the Dicer null cells did not rescue the 

poly dA:dT phenotype.  While this may seem counterintuitive considering that the 
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reconstitution rescued miRNA expression, the Dicer KO cells had been without 

miRNAs for some time and it is possible that a key developmental and time-

sensitive miRNA may have been lacking early during the cell’s growth.  

Additionally, considering that various innate immunity receptor and adaptor 

proteins were already down-regulated in the Dicer KO cells, and that many 

miRNAs are not constitutively expressed, the miRNAs responsible for altering the 

expression of the receptors may not have been upregulated until stimulation, 

which may then render them too late to be able to alter the production of IFN.  In 

this case, a certain threshold of receptor and adaptor would need to be reached 

before the rescue of signaling could occur. 

 Altogether, it’s difficult to come up with a set pattern of how adding Dicer 

back into cells that had been lacking Dicer alters the expression of cytosolic 

nucleic acid receptors.  This is likely due to each receptor or adaptor being under 

the regulation of different miRNAs and transcription factors that are expressed at 

different times and under different stimulations. 

 It is clear that deleting Dicer has deleterious effects on the ability of a MEF 

to respond to nucleic acid agonists.  However, since any given cell has multiple 

signaling pathways and receptors for various types of nucleic acid ligands, it’s 

difficult to draw broad conclusions.  For example, if poly dA:dT is being 

recognized by IFI204 and STING but also being transcribed by RNA Pol III into 

an RNA that can be detected by RIG-I or the IFIT proteins, it would be difficult to 

tease out which dysregulated receptor in the Dicer KO is responsible for the loss 
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of IFN induction.  Still, this study highlights the importance of miRNA regulation of 

innate immune responses and further work should be done to determine which 

miRNAs impact the expression of these various cytosolic nucleic acid receptors. 

 

MATERIALS AND METHODS 

 

Cells 

  Dicer WT and KO MEFs were created and maintained as outlined in 

Chapter II Materials and Methods.  HEK293T cells were maintained in 

Dulbecco’s modified eagle medium (DMEM) with 10% fetal calf serum 100U/mL 

penicillin/streptavidin and 10mM glutamine.   

Murine bone marrow derived macrophages were isolated from Dicer C/C 

ESR1-Cre + mice. The mice were sacrificed and bone marrow was flushed from 

both legs.  Cells were resuspended in 5ml of red cell lysis buffer. After red blood 

cell lysis, remaining cells were spun down and resuspended in 120 ml of DMEM 

with10%FCS, 10mM glutamine, 100U/mL penicillin/streptavidin and 20% L929 

supernatant containing recombinant mouse colony stimulating factor.  The cells 

were plated and 3 days later, non-adherent cells were removed.  Fresh medium 

with L929 supernatant was added as needed and on day 7, the cells were 

subjected to 10uM tamoxifen.  Tamoxifen treatment resulted in depletion of Dicer 

from Dicer C/C ESR1-Cre + cells.   
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Human peripheral blood mononuclear cells (PBMCs) were obtained by 

harvesting whole blood and spinning through a lymphocyte separation media 

gradient. (Cellgro # 25-072)  Lymphocytes were extracted from the interphase 

and the cells were plated.  Non-adherent cells were removed the following day 

and adherent cells were scraped and counted. 

 

ELISAs 

Secreted IFNβ and RANTES from infected cell culture supernatants were 

quantified by ELISA.  RANTES was assayed using R&D systems DuoSet ELISA 

(R&D Systems, Cat# DY478) and IFNβ was assayed using a PBL murine IFN 

ELISA kit (PBL Assay Sciences, Cat# 42400-2).  IFNα was assayed using a PBL 

human IFNα ELISA kit (PBL Assay Sciences, Cat# 41100-1). All ELISAs were 

run according to manufacturer’s specifications albeit in half the normal volume. 

 

Quantitative PCR and Nanostring 

 RNA from cells was collected and purified using the RNeasy Plus RNA 

purification kit (Qiagen, Cat #73404) according to manufacturer’s specifications.  

RNA was quantified by NanoDrop and 500 ng of RNA was transcribed to DNA, 

amplified, and quantified in an MJ Research thermal cycler using QuantiTect 

One-Step SYBR green RT-PCR kit (Qiagen Cat# 204243).  The following primers 

were purchased from Qiagen as QuantiTect Primer Assays: (IFNβ  – Cat 

#QT00249662, GusB – Cat #QT00176715, 18S – Cat# QT02448075,).  Sendai 
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(Dharmacon D-001810-10) were transfected into HEK293 or human PBMCs at 

10µM using Dharmafect 4 according to the manufacturer’s specifications. 

 

Western Blot 

 Cell lysates were prepared in Passive Lysis Buffer (Promega E1941) and 

centrifuged to pellet cell nuclei.  Clarified lysates were denatured by boiling 

samples in 1X Laemmli buffer and run on 10% SDS-PAGE gels until the leading 

dye band reached the bottom of the gel.  Gels were transferred to PVDF 

membranes using a semi-dry transfer apparatus for 45 minutes at 25V.  

Following transfer, PVDF membranes were blocked with 3% BSA and probed 

with a mouse monoclonal antibody against Dicer (Clongene 13D6) followed by a 

polyclonal HRP conjugated anti-mouse antibody (Sigma A9044).  Actin was 

detected using a rabbit polyclonal antibody against β-Actin (Abcam ab8227) and 

a goat HRP-conjugated anti-rabbit antibody (Vector PI-1000).  The blot was 

developed in Pierce SuperSignal West Dura Extended substrate (Thermo 

Scientific #34075). 

 

Luciferase Assays 

   The IFNβ promoter and NF-κB promoter were cloned into pGL4 firefly 

luciferase reporter plasmids (Promega #E6651).  IFNβ or NF-κB reporters were 

transfected using GeneJuice according to manufacturer’s specifications (EMD 

Millipore #70967).  Twenty-four hours post transfection, cells were stimulated and 
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lysates were collected after an additional 16 hours. Dual-luciferase reporter 

assay kit (Promega #E1980) was used to determine total luciferase activity.  

Luciferase activity was normalized to total protein content using a microBCA 

kit(ThermoFisher Scientific #23235).   

 

IFN Bioassay 

 NCTC 929 cells were plated at 50,000 cells/well in a 96 well plate.  

Supernatants from stimulated cells were irradiated in a Stratalinker 2400 to 

eliminate any infectious virus or crosslink any remaining immunostimulatory 

nucleic acids.  Supernatant was serially diluted onto the NCTC929 cells for 24 

hours.  After 24 hours, the medium was replaced and the NCTC929 cells were 

challenged with 1000 pfu/mL of VSV-Indiana strain.  After an additional 24 hours, 

cells were monitored for cytopathic effect.  IFN protective titers were determined 

as the dilution of supernatant where fewer than 50% of the cell monolayers were 

still intact. 
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CHAPTER IV: Loss of Dicer1 negatively regulates EMCV viral 
production. 

 
 
 
 
 
 
 
 
 
 

ABSTRACT 
 
  Dicer depletion has been shown to impact the replication of many 

viruses.  DNA viruses that encode viral miRNAs tend to be negatively impacted 

by the loss of miRNA biogenesis machinery, while some RNA viruses, primarily 

those that naturally infect flies or plants have shown to have increased replication 

following the loss of Dicer.  Considering that miRNAs also play a major role in the 

regulation of innate immunity, understanding how the absence of Dicer affects 

viral replication is key to our understanding of what role, if any, Dicer plays in 

regulating viral infection.  Here we report for the first time that Dicer depletion in a 

mammalian system results in negative regulation of a RNA virus: EMCV.  Dicer 

depletion results in ~100-fold loss of virus production due to aberrant binding of 

the virus to the cell.   
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INTRODUCTION 

 

 A successful viral infection requires a series of steps to occur.  First, the 

virus must bind to their target cell via a receptor and enter through membrane 

fusion, endocytosis, or capsid/genome injection.  Next, the virus must replicate its 

genomic material in the appropriate cellular compartment.  Concurrent to or post-

replication, the viral genes are transcribed and translated to create the necessary 

structural and non-structural proteins required for the assembly of new virions.  

Lastly, the virions assemble and the virus sheds either through lytic or non-lytic 

release of the virions.  Successfully targeting any of these stages can result in a 

significant loss to viral production and so both host cellular defenses and human 

anti-viral therapeutic strategies look to disrupt these processes. 

 The picornavirus, encephalomyocarditis virus (EMCV) is a model virus for 

studying multiple pathways and diseases.  It can cause encephalitis, myocarditis, 

and diabetes in a host of species, but is generally considered to have little 

morbidity in human infection (reviewed in235).  In the laboratory, EMCV infection 

is used to stimulate the dsRNA sensing pathways as it strongly induces IFN in an 

MDA5/MAVS dependent manner.38  Like other picornaviruses, EMCV is a small 

non-enveloped virus.  The EMCV genome is a small, roughly 7.8kb positive-

sense RNA genome.  As it is positive sense, the RNA from the virus itself is 

infectious (reviewed in235).  EMCV RNA has a covalently linked small viral protein 

called VPg on the 5’, followed by a 5’ UTR which contains the Internal Ribosome 
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Binding Site (IRES).236  The IRES itself is roughly 450 nt with complex secondary 

structure and allows for immediate translation of the viral genome into a 

polypeptide.237  EMCV encodes 13 proteins, 4 structural and 9 non-structural, 

which include the viral protease and RNA-dependent RNA polymerase.  EMCV 

viral entry is mediated through an unknown mechanism.  Two sialoglycoproteins 

have been reported as being receptors for EMCV: Vascular cell adhesion 

molecule 1 (VCAM-1) and Sialylated glycophorin A.  Glycophorin A is found on 

human blood cells and has been shown to have an impact on EMCV binding, but 

it is dispensable for infection.238  VCAM-1 was found to control viral entry on 

murine vascular endothelial cells, but EMCV infection of cells that do not express 

VCAM-1 has also been observed.239  Once bound, the viral genome enters the 

cell in an acidification independent manner240, but it is not fully understood.  The 

positive-sense infectious RNA is immediately translated in the cytoplasm upon 

entry.  The polyprotein that results from translation is primarily processed by the 

viral protease 3C.241  Polyprotein processing liberates the various non-structural 

proteins and the RNA-dependent RNA polymerase, which are required for 

replication.  Negative strand synthesis occurs in an unknown manner and uses 

the initial positive strand RNA genome as the template.  The negative strand then 

acts as template for additional positive strand synthesis which can be used for 

translation and genome packaging.235  During this phase however, replication 

intermediates provide the dsRNA242 that is essential for initiating MDA5/MAVS 

based IFN activation.38  Once the genomes have been replicated and the 
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structural proteins cleaved, virion assembly occurs in the cytosol.  Newly 

synthesized VPg capped RNA is loaded into the icosahedral capsid and virus 

escapes through membrane permeabilization and cell lysis with 7 to 10 hours. 

243,244 Here I describe the role of Dicer in EMCV reproduction in a Dicer null 

environment. 

 

RESULTS 

 

Dicer1 KO cells exhibit reduced IFN β production following EMCV infection. 
 

miRNAs have been shown to be involved in a large cross-section of gene 

regulation, and miRNAs in the immune response have been reported to alter 

everything from cytokine production to the differentiation of adaptive cell 

lineages.  To assess the impact of losing a vital component of the miRNA 

machinery during viral infection, I infected Dicer1 WT and Dicer1 KO cells with 

encephalomyocarditis virus (EMCV) at a multiplicity of infection (MOI) of 0.1.  

Dicer1 WT cells responded readily, producing Interferon-β (IFNβ) protein 

following a 16 hour infection (Fig 4.1a).  Dicer1 KO cells failed to respond as 

robustly, producing a significantly reduced amount of IFNβ.  To determine if this 

was related to a difference in IFNβ mRNA levels, I measured IFNβ mRNA by 

qPCR throughout the course of infection. (Fig. 4.1b)  As the infection 

progressed, IFNβ mRNA was produced in both samples, albeit at a greater level 
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in the WT cells. Thus at both the mRNA and protein levels, Dicer1 KO cells fail to 

respond robustly to the presence of an EMCV infection.   

IFNβ is a vital signaling cytokine for the stimulation of Interferon 

Stimulated Genes (ISGs) and can directly influence the production of other 

effector chemokines and cytokines, such as CCL5/RANTES.  When measured 

by ELISA, the amounts of CCL5/RANTES protein in the Dicer1 WT supernatants 

exceeded the amount from Dicer1 KO cells, suggesting that the increased levels 

of IFN β seen in the WT samples was due to increased IFN β protein production 

and not simply less uptake of IFN β by the culture (Fig. 4.1c).  To assess if the 

IFN and CCL5/RANTES defect could be overcome by infection with additional 

virus, I infected Dicer1 WT and KO cells with MOIs of 0.1, 1, and 10 (Fig. 4.1d).  

At high MOIs, I measured a very limited CCL5/RANTES response in the Dicer1 

WT cells, whereas the Dicer1 KO cells produced a robust response. However, 

observation of the cells revealed that the Dicer1 WT monolayers had been 

obliterated by the virus, while the Dicer1 KO cells were alive and healthy.  Since 

Dicer1 KO cells are able to produce CCL5/RANTES at a high MOI of infection 

while maintaining a healthy monolayer, this suggests that the failure to produce a 

cytokine response may be due to an issue with virus replication rather than a 

failure of the cellular viral response. 
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Figure 4.1 IFNβ and RANTES protein production is diminished in Dicer1 KO 
cells following EMCV infection. 
(A.) Dicer1 WT and KO cells were infected with EMCV for 16 hrs and the 
supernatants were assayed by IFNβ  ELISA or (C.) RANTES ELISA.  Data 
shown as the mean of four biological replicates.  (B.) Dicer1 WT and KO cells 
were infected with EMCV and RNA was isolated at the time points indicated.  
IFNβ  mRNA was detected by one-step RT-qPCR and normalized to 18s RNA 
and compared to steady state normalized IFNβ  mRNA at time 0.  Data shown is 
representative of three biological replicates.  (D.) Dicer1 WT and KO cells were 
infected with different MOIs of EMCV and supernatants were collected after 16 
hours and assessed for CCL5/RANTES protein by ELISA.  Sendai was added as 
a control. Data shown as mean of four biological replicates.  
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Dicer1 KO cells do produce IFNβ in response to VSV infection. 

In order to ascertain if the IFNβ defect was universal in nature, I decided 

to infect the Dicer1 WT and KO cells with the rhabdovirus vesicular stomatitis 

virus (VSV).  VSV grows well in a variety of cell types and while it does not 

induce a strong immune response it is easily monitored for cytopathic activity.  

Contrary to what was seen with EMCV, VSV infection led to a moderate 

production of IFNβ in both Dicer1 WT and KO cells. (Fig. 4.2a)  While the low 

level of IFNβ did not induce further downstream effector molecules such as 

RANTES,  IFNβ mRNA could be detected in both Dicer1 WT and KO cells 

although a significantly reduced amount of IFNβ mRNA was detected in the KO 

cells. (Fig. 4.2b)  

These results indicate that the phenotype observed in the Dicer KO cells 

was specific to EMCV infection and was not recapitulated in the VSV infection 

model. 

 
EMCV virus production is defective in Dicer1 KO cells. 
 
 Because IFNβ production was affected so drastically in the KO cells, I 

explored the possibility that EMCV viral infection may be altered between the two 

cells types.  Dicer1 WT and KO cells were infected with various MOIs and after 

16 hours, the supernatants were plaqued onto BHK-21 cells.  Intriguingly, the 

number of EMCV plaque forming units was the same between Dicer WT and 

Dicer KO cells at an MOI of 10, whereas if the MOI dropped to .1, a 2 log 

difference could be seen in the amount of productive virions produced.  At low 
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Figure 4.2 IFNβ protein and RNA production is unaffected in Dicer1 KO 
cells following VSV infection. 
(A.) Dicer1 WT and KO cells were infected with VSV for 16 hrs and the 
supernatants were assayed by IFNβ  ELISA. Data shown as the mean of four 
biological replicates.  (B.) Dicer1 WT and KO cells were infected with VSV.  RNA 
was isolated at the time points indicated.  IFNβ mRNA was detected by one-step 
RT-qPCR and normalized to 18s RNA and compared to steady state normalized 
IFNβ mRNA at time 0.  Data shown is representative of three biological 
replicates. 
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MOI infections, EMCV in Dicer1 KO cells failed to replicate at levels seen in WT 

cells.  In contrast, when infected with VSV, equivalent amounts of virus were 

recovered from infected cell supernatants, suggesting Dicer has a virus-specific 

impact on EMCV infection. (Fig. 4.3a) Visual confirmation revealed that WT cells 

infected with EMCV at an MOI of 10 were dead, while the KO cells maintained a 

monolayer.  The obliteration of the monolayer of Dicer1 WT cells may have 

impacted the absolute number of PFUs produced.  Since Dicer1 KO cells are 

able to produce a cytokine response at high MOIs (as seen in Fig. 4.1d), this 

suggests that the 2 log defect in virion production is to blame for the loss of 

cytokine response in the Dicer1 KO cells, and that the loss of cytokine response 

can be overcome by adding 2 log more virus.  To assess if the virus replication 

was affected by Dicer depletion we monitored viral RNA replication by detecting 

EMCV RNA over time using qPCR.  We infected Dicer MEFs with EMCV for 1 

hour, followed by multiple washes to remove unbound virus.  As the infection 

continued, EMCV replication in Dicer1 WT cells far outpaced replication in the 

Dicer1 KO cells (Fig. 4.3b.)  However, this difference in EMCV RNA levels may 

be due to virus infection steps that occur prior to replication of the RNA.  There 

are multiple stages of the virus life cycle where Dicer may be impacting the viral 

growth including: binding, entry, replication, transcription, translation, assembly 

and release.  Since plaque assays measure multi-cycle viral kinetics, I assessed 

the ability of EMCV and VSV to infect Dicer1 WT and KO cells in a single cycle 

assay. I infected equal numbers of Dicer1 WT and KO cells with EMCV or VSV 
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Figure 4.3  EMCV fails to efficiently infect Dicer1 KO cells. 
(A.) Plaque Assay: Dicer1 WT and KO cells were infected with EMCV at 
10, 1, or 0.1 MOI or VSV at 0.1MOI for 16 hours and supernatants were 
harvested and serially diluted on BHK-21 cells.  After 1 hour absorption, 
the cells were washed and a 1X-MEM 2% agarose overlay was added. 
Monolayers were fixed and stained with 4% formaldehyde-5%crystal violet 
and plaques were counted after 2 days.  Data shown as mean of three 
biological replicates.  (B.) Viral RNA Replication: Dicer1 WT and KO cells 
were infected with EMCV at .1 MOI and after 1 hr, the cells were washed 
multiple times and each well was harvested at the indicated time points.  
RNA was isolated and EMCV specific RNA was detected using qRT-PCR.  
EMCV RNA was normalized to GusB.  Data shown as the mean of two 
biological replicates.  (C.) Infected Cell Center: Dicer1 WT and KO cells 
were infected with EMCV or VSV at varying MOIs and allowed to absorb 
for 1 hr.  After 1 hr, a series of washes removed unbound virus and the 
cells were trypsinized and serially diluted into cultures of suspended BHK-
21 cells.  The mixed cultures were plated and allowed 2 hours to adhere, 
before the medium was removed and a 1X MEM-2% agarose overlay was 
added.  Monolayers were fixed and stained with 4% formaldehyde-5% 
crystal violet and plaques counted after 2 days.  Data shown as the mean 
of three biological replicates.  
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and allowed the virus to absorb for 1 hr.  After trypsinization of the cells, I mixed 

serially diluted Dicer MEFs into BHK-21 cells and plated the mixed cell 

population.  The cells were allowed to adhere for 2 hours and then overlaid with 

2% Agar-MEM.  Since the BHK-21 cells grow EMCV and VSV similarly between 

the two cultures, any difference in plaque formation would arise from the initial 

single round of infection in the Dicer MEFs.  After two days, we counted plaques 

and observed that while there was no difference in the growth of VSV plaques, 

EMCV plaques showed a similar two-log reduction of PFU in the cultures that 

were seeded with Dicer1 KO cells.  In both WT and KO seeded BHK-21 

monolayers, EMCV and VSV plaque size was similar, regardless of the genotype 

of the initially infected cell. (Fig. 4.3c)   

 

Reconstitution of Dicer rescues EMCV virus production and IFN 

production. 

 Dicer is involved in regulating many genes through its function as a 

miRNA processor.  Given that a prolonged loss of miRNAs may have unforeseen 

effects on the overall fitness of the cell, I wanted to reconstitute Dicer and test 

whether this rescued the EMCV infection defect.  I reconstituted expression of 

Dicer in the KO cells using a codon-optimized version of human DICER1.  I 

transduced Dicer1 WT and KO cells with a lentivirus based vector containing 

GFP, full length human DICER1 (hsDicer), or a truncated DICER1 missing the 

helicase domain (ΔHelicase) as reported in Chapter II Fig. 2.5.  I infected 
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reconstituted Dicer1 WT and KO cells with EMCV and VSV and after 16 hours, 

assayed their supernatants for IFNβ and PFUs.  (Fig 4.4a and 4.4b).  IFNβ 

protein levels were raised significantly following rescue of the KO cells with both 

human Dicer (hsDicer) and ΔHelicase Dicer, compared to KO cells that received 

control GFP.  The ΔHelicase reconstituted Dicer1 KO cells in fact showed a 

marked increase in IFNβ production over even Dicer1 WT cells.  Reconstitution 

with both Dicer variants led to a complete rescue of EMCV virion formation with 

the reconstituted KO cells produced roughly 3 log more virus than the KO + GFP 

cells.  VSV PFU’s remain unchanged regardless of the status of Dicer (Fig 4.4c). 

 

Dicer1 is critical for EMCV binding to MEFs. 

 While Dicer reconstitution rescued the observed phenotype, the 

mechanism remained unclear.  In order to ascertain what aspects of a productive 

viral infection were being compromised in a Dicer1 KO cell, I tested the ability of 

EMCV to bind to the surface of the WT and KO MEFs.  I incubated virus with WT 

and KO MEFs at 4o to inhibit internalization of the virus.  Following extensive 

washing, the total amount of virus bound to the cells was assayed by 

quantification of viral RNA.  My viral binding assay showed that EMCV is unable 

to bind to a Dicer1 KO cells at a level comparable to WT.  EMCV binding was 

restored when the Dicer1 KO cell was reconstituted with either hsDicer or 

ΔHelicase Dicer. (Fig 4.5a.)  If binding is truly a bottle-neck in EMCV infection, 

then skipping the binding and entry step entirely should alleviate the phenotype.  
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Figure 4.4 IFNβ production and viral growth can be rescued by exogenous 
DICER1 expression. 
Dicer1 WT and KO cells were transduced with a lentivirus that expressed GFP, 
human DICER1 (hsDicer) or DICER1 missing the helicase domain (ΔHelicase).  
Dicer1 WT, KO and rescued KO cells were infected with EMCV [.1 MOI] or VSV 
[.1 MOI]   After 16 hours, the supernatants were assayed for (A.) IFN𝛃 protein 
production, (B.) EMCV plaque number, or (C.) VSV plaque number.  Data shown 
as mean of six biological replicates for IFN and three biological replicates for 
plaque assay data. 
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To test this hypothesis, I isolated whole positive sense EMCV RNA from virions 

and transfected the RNA into Dicer1 WT and KO cells.  The cells were 

subsequently washed and diluted into BHK-21 cells.  This assay was identical to 

the one in Fig 4.3c, however instead of infecting the cells, the RNA transfection 

allowed me to bypass the physical interaction between virion and cell.  I 

observed no statistical difference in the number of plaques between the Dicer1 

WT and KO cells following transfection of viral RNA. (Fig. 4.5b)  As binding 

appears to be a major cause of the EMCV infection defect, I looked at the only 

known EMCV receptor in mice: Vascular cell adhesion molecule 1 (VCAM1).239  

It is found predominantly on vascular endothelial cells and while it has been 

shown to allow entry of EMCV into otherwise non-permissive cells, it is not the 

only receptor for EMCV, as cells that express no VCAM1 can still become 

infected.  When I compared levels of Vcam1 between Dicer WT and KO cells, I 

observed no difference in expression of the gene by qPCR, suggesting an 

alternative receptor is responsible for EMCV infection in MEFs. (Fig. 4.5c) 

 

DISCUSSION 

 

Small RNAs have proven to be an integral part of gene regulation systems 

in a variety of eukaryotes, from the miRNA regulated control of mRNA to the 

siRNA regulation of exogenous foreign RNA.  However, its dual-role as a both a 

system of cellular maintenance and cellular defense mechanism has raised 
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Figure 4.5.  EMCV binding is reduced in Dicer1 KO cells. 
(A.) Dicer1 WT and KO cells were shifted to 40 C and incubated with EMCV at an 
MOI of 10.  After two hours, cells were washed three times in cold PBS and lysed 
for RNA extraction.  EMCV RNA copy number was measured by qPCR and 
normalized to GusB expression.  Data shown as the mean of three biological 
replicates.  (B.) Dicer1 WT and KO cells were transfected with 100ng of full 
length EMCV viral genomic RNA extracted from virions.  After 1 hour, the cells 
were washed, trypsinized and diluted into BHK-21 cells.  After 2 hours, the cells 
were overlaid with 2% Agarose-MEM.  Monolayers were fixed and stained with 
4% formaldehyde-5%crystal violet and plaques were counted after 2 days.  Data 
shown as the mean of three biological replicates.  (C.) Vcam1 expression was 
quantified in RNA extracted from unstimulated Dicer1 WT and KO cells by qPCR.  
Vcam1 expression was normalized to GusB.  Data shown as the mean of three 
biological replicates. 
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questions regarding what role Dicer and other proteins involved in the small RNA 

pathways may have and what kind of cross-talk may exist between its multiple 

effector functions.  With regards to small RNA regulation of viral RNA, most 

efforts have focused on the role of small RNA pathways in suppressing viral 

replication 201,202,245-247 and conversely, the RNAi inhibitors encoded by many 

viruses. 248-254  The data presented here suggests that certain viruses may in fact, 

have adapted to the presence of RNAi machinery and require that machinery for 

efficient replication. 

 The disparate IFN response to EMCV between WT and KO cells can be 

attributed to differences in replication of EMCV in the two cell types.  It takes 

roughly 100 fold more EMCV in the Dicer1 KO cells to generate an equivalent 

IFNβ response as the Dicer1 WT cells.  As observed, when equivalent MOIs of 

EMCV were used to infect WT and KO cells, the KO cells consistently produced 

roughly 100 fold less virus than the WT cells.  When the EMCV RNA was 

quantified over time, EMCV RNA was observed in much greater quantities in the 

Dicer1 WT cells, which is expected given the large difference in virus output 

observed. The infected cell center assay is a useful assay to look for the 

efficiency in establishing a primary infection in both WT and KO cells.  Since the 

cells are mixed with uninfected BHK-21 cells, plated, and overlaid with agarose 

within 3 hours of infection, any virus spread in the BHK-21 cells must come from 

an initially infected Dicer1 WT or KO cell.  Since EMCV produced approximately 

a log more infected cell centers in Dicer1 WT cells at every MOI, it is apparent 
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that the true effective difference between Dicer WT and KO cells during a single 

cycle of EMCV replication is a roughly 10-fold reduction in infected cells, rather 

than the 100-fold difference in recovered virus observed through multiple round 

kinetics in the plaque assay.  VSV had no problem spreading into the uninfected 

BHK-21 cells, regardless of whether it initially infected a Dicer1 WT or KO cell, 

again suggesting that this particular defect is seen with EMCV, but not all 

viruses. 

 While EMCV showed a marked decrease in its ability to replicate and 

produce progeny virus in Dicer1 KO cells, the phenotype was completely 

reversed upon the addition of Dicer back into the cells.  As the cells were once 

again able to generate mature miRNAs (Chapter II Fig 2.5), the amount of virus 

generated in the rescued cells approached that of the WT cells.  Once viral 

replication had been restored, the expression of IFNβ and RANTES was also 

restored, suggesting that the production of these cytokines was dependent on 

the replication of the virus and matched what had been observed earlier; when 

Dicer1 KO cells are given a high MOI of initial virus, they are able to produce an 

immune response.   

Intriguingly, when the Dicer1 KO cells were rescued with helicase-deleted 

Dicer, more IFNβ was observed, suggesting that the helicase-deleted Dicer 

processes either the mature miRNAs or the EMCV genome in a manner separate 

from full-length Dicer.  Some evidence of alternative dicing efficiency has been 

observed before.  When the helicase domain of Dicer was deleted, increased 
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efficiency of dsRNA processing was observed, suggesting that the helicase 

domain served as an auto-inhibitory domain that may be conformational changed 

upon the binding of various partners.163  However, more recent reports have 

suggested the helicase domain plays a vital role in distinguishing dsRNAs with a 

terminal loop, allowing Dicer to distinguish miRNAs from other RNAs.169,255  

Additionally, a recent report has described a second isoform of Dicer1 that is 

predominately expressed in murine oocytes.170  This isoform of Dicer1 is lacking 

part of the helicase domain and preferentially processes RNAs that are derived 

from long double-stranded regions of RNA, rather than the canonical stem-loop 

structure of a pre-miRNA.  This isoform difference may explain why mouse 

oocytes have robust RNAi responses to long dsRNA,170,201 while failing to 

efficiently process miRNAs172 yet somatic cells tend to preferentially cleave pre-

miRNAs169,255 and not process long dsRNA, where the long dsRNA instead 

triggers the IFN response.34  

My results show that a loss of Dicer leads to decreased sensitivity to 

infection with EMCV due to an inability of EMCV to bind to the surface of a 

Dicer1 KO cell.  While EMCV binding is reduced in a Dicer1 KO to approximately 

25% of binding to a Dicer WT, this effect is compounded through each 

subsequent round of infection, which could explain the 2 log difference seen in 

PFU formation.  By using the positive sense EMCV RNA and transfecting it 

directly into cells, we were able to abrogate the 10-fold difference in plaque 

formation that we observed when using an infection model, providing further 

111



 

evidence that the binding phase of the viral infection cycle was disrupted in 

Dicer1 KO cells.  While I did test for differences in VCAM1 expression in my 

cells, since expression was identical it is unlikely that VCAM1 is acting a major 

binding receptor in the MEFs.  VCAM1 is not the only receptor for EMCV, since 

VCAM1 deficient cells can still be infected, so it is possible that another cellular 

adhesion molecule may act as a redundant, or in this case, primary receptor for 

EMCV.  

Together, these results strongly suggest that EMCV requires the presence 

of an active miRNA processing pathway in order to replicate efficiently.  When 

the ability to process miRNAs was removed, EMCV replicated poorly and 

subsequently led to a reduced IFN response to infection.  While this is not the 

first time that Dicer depletion has impacted viral replication, previous reports 

have focused on DNA viruses that encode their own viral miRNAs and thus 

require processing of their miRNAs to replicate at WT levels.  193,256-258 For RNA 

viruses, the current literature has focused on increased viral growth in the 

absence of Dicer in order to focus on Dicer as a potential anti-viral mechanism 

(for review, see 259).  This report joins one other report indicating that an RNA 

virus requires a functional miRNA pathway to replicate efficiently.260  This data 

suggests that the pro or anti-viral role of mammalian Dicer may be more 

complicated than previously thought and some RNA viruses may have adapted 

to the presence of the miRNA pathway directly or indirectly.   

 

112



 

MATERIALS AND METHODS 

 

Cells and Virus 

  Baby hamster kidney-21 cells and MEFs were maintained in Dulbecco’s 

modified eagle medium supplemented with 10% fetal calf serum, 2 mM glutamine 

and 100U/mL penicillin/streptomycin.  Encephalomyocarditis virus (EMCV) strain 

2887A-EGFP was a gift from L. Bakkali-Kassimi, ANSES, Maisons-Alfort, France 

and was grown on BHK-21 cells.  MEFs were infected with EMCV at MOIs of 

10,1, and 0.1, depending on the experiment.  In all cases, cells were infected 

with EMCV for one hour and then washed, with samples taken at 2,4,8,16,and 24 

hours for RNA, 16 hours for protein and viral titer.  Vesicular stomatitis virus 

(VSV) Indiana strain was previously described were grown on BHK-21 cells and 

infections were done the same as EMCV. 

 

ELISAs 

Secreted IFNβ and RANTES from infected cell culture supernatants were 

quantified by ELISA.  Supernatant was first irradiated using a UV stratalinker 

2400 (Stratagene) to inactivate residual EMCV and VSV and samples were run 

neat or diluted, depending on the cytokine being assayed.  RANTES was 

assayed using R&D systems DuoSet ELISA (R&D Systems, Cat# DY478) and 

IFNβ  was assayed using a PBL murine IFN ELISA kit (PBL Assay Sciences, 
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Agarose – MEM.  Monolayers were fixed and stained 2 days later with 4% 

Formaldehyde – 5% Crystal Violet and plaques quantified. 

 Infected Cell Center assays were performed as follows.  Dicer1 WT and 

KO were plated at 500,000 cells/well in a 12 well plate in 1 mL of medium.  After 

2 hours, the medium on the Dicer1 WT and KO cells was removed and replaced 

with 500uL of medium.  EMCV and VSV were added to the Dicer1 WT and KO 

cells at an MOI of 0.1, 1 and 10 (EMCV only).  After 1 hour absorption, the cells 

were washed twice in 1X PBS to remove unattached virus.  The cells were then 

trypsinized in 0.5mL Trypsin-EDTA for 2 minutes at 37oC.  Trypsin activity was 

quenched by adding 0.5mL of complete media to each well.  The cells were 

removed from the plate, with a final concentration of 500,000 cells in 1 mL of 

media.  The cells were first diluted 100 fold and then serially diluted into 500,000 

suspended BHK-21 cells per well.  The BHK-21 plus infected MEFs were plated 

and allowed to adhere for 2 hours before the medium was removed and an agar 

overlay was added to the monolayer.  Transfected Cell Center assays were 

performed following the above method, using viral RNA isolated using QIAamp 

Viral RNA purification kit (Qiagen #52904).  The RNA was transfected at 

100ng/well with .5µl of Lipofectamine 2000 (ThermoFisher scientific #11668027).  

After 1 hour, the cells were washed, trypsinized and diluted into BHK-21 cells as 

described above. 

 Viral binding assays were performed using plated Dicer MEF cells that 

were shifted to 4oC for 30 min, followed by the addition of 10 MOI of EMCV or 1 
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MOI of VSV on ice.  The cells were incubated at 4oC for 2 hours, after which the 

cells were washed three times with cold PBS, lysed for RNA extraction, and the 

genes of interest were amplified by qPCR. 
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 The role of Dicer in regulating anti-viral immunity in mammals has been 

extensively investigated and hotly contested since RNAi and miRNAs were first 

discovered.  The dual role that Dicer plays in both anti-viral defense and gene 

regulation via miRNAs makes it an important candidate for involvement in anti-

viral immunity, directly or indirectly.  While in plants and flies Dicer has 

differentiated these two roles into distinct Dicer proteins,155,261,262 nematode Dicer 

is able to perform the dual-role of RNAi and miRNA regulation in a single 

protein.158  Despite this, the evidence suggests that in chordates the role of Dicer 

has evolved to primarily process miRNAs for gene regulation169,170,255, while the 

ability of Dicer to act as a direct anti-viral protein may have been largely 

supplanted by the development of the type I IFN pathways.  The few reported 

instances of direct Dicer cleavage of viral RNA have largely been when the virus 

itself encodes a miRNA, 263 or in cells where the IFN response has not 

developed, such as oocytes and embryonic stem cells.201,202 

 Predicted and confirmed miRNAs in mammalian cells number in the 

hundreds to thousands depending on the organism.  However, several factors 

complicate our ability to examine the role of any given miRNA in modulating host 

activity.  First, there is the host cell type; the miRNAs expressed by a MEF are 

different from those expressed in an ES cell or a T cell.  Second, there is the 

context in which miRNA expression is being measured; whether the cell is in 

steady-state or is being stimulated, and what type of stimulant is engaging the 

cell.  Third, there is the promiscuity involved in the miRNA targeting.  Since any 
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given miRNA can have tens to thousands of potential, computationally defined 

targets, the physiologically relevant function of a miRNA depends on the amount 

of miRNA expressed, the amount of miRNA loaded into an argonaute and which 

argonaute is favored, as well as the availability of the target mRNA.  Additionally, 

it has been reported that certain mRNAs can alter the length of their 3’ UTR in 

order to become more or less susceptible to regulation by post-transcriptional 

mechanisms. 264-266 

 

DICER NULL MEFS HAVE IMPAIRED NUCLEIC ACID DETECTION 

 

 As discussed in Chapter II, there are several Dicer null models that have 

been created.180,181,254,267  The data generated from these various models has not 

always been consistent.  As an example, in a report by Paramesewan et al., 

dengue virus infection of Huh7 cells generated very low levels of dengue specific 

vsRNAs, whereas in a report by Bogerd et al., dengue infection in HEK293 cells 

produced no Dicer dependent vsRNAs.180,256  Additionally, in the same report by 

Bogerd et al., they saw no difference in dengue replication regardless of Dicer 

status, while a report by Kakumani et al. reported that dengue replication was 

increased when Dicer, Drosha, Ago1, and Ago2 were downregulated.254,256  As 

another example, Bogerd et al. and Backes et al saw no difference in VSV 

replication in Dicer null cells compared to WT, while Otsuka et. al. saw an 

increase in VSV production following the depletion of Dicer.181,193,256  Backes et. 
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al. argued that small RNAs play no role in VSV replication by engineering an 

artificial virus that encoded a small RNA antagonist.  While the antagonist did 

affect miRNA maturation, it had no impact on VSV replication, thus they 

proposed that VSV replication was independent of small RNAs.181  When it came 

time to look at a Dicer null cell, they compared VSV growth patterns between 

Dicer WT and Dicer KO cells, however they used WT MEFs and KO ES cells.  

These are considerably different cell types, where the ES cells produce no 

immune response203 and employ a different isoform of Dicer compared to 

somatic cells.170   

Considering that these are just a few examples, it is clear that the current 

literature regarding Dicer’s role in antiviral immunity is incomplete.  A few 

important notes should be considered here.  The Bogerd report relied on 

depleting Dicer in HEK293 cells, which are an immortalized embryonic kidney 

cell.  HEK cells are very limited in the induction of innate immune activation.  

HEK cells do not express TLR2, TLR4, MDA5 or LGP2 and have other immune 

deficits.32,46,268,269  Also the Bogerd, Paramesewan and Kakumani studies did not 

report innate immune activation or IFN induction, thus any differences in virus 

replication that they observed are not necessarily due to Dicer interacting with 

the viral RNA, but may instead have to do with differing amounts of IFN produced 

by their Dicer depleted cells.  The MEF model employed in my studies also 

shares caveats.  A line of fibroblasts is not an entire immune system and only 

represents one potential type of cell that is infected.  Thus the conclusions drawn 
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from these MEF studies should be recognized as MEF specific and adapting the 

conclusions observed here to other cells and systems should be done with 

caution.  The major strengths of this system however are as follows:  

1. The cells are drawn from the same lineage.  The Dicer KO cells 

are Dicer C/C cells where the Dicer was deleted, thus the WT 

and KO cells share a common ancestry. 

2. The cells support a complete innate immune pathway.  Unlike 

HEKs, or ES cells, the MEFs express a wide range of proteins 

involved in pathways that detect various types of PAMPs and 

nucleic acids. 

3. The cells are complete Dicer knockouts.  While some data was 

confirmed in Dicer knockdowns of other cells, the main data here 

was produced from true Dicer knockouts.  

4. The cells were reconstituted with Dicer and the reconstitutions 

rescued some of the phenotypes.   

While no model is perfect, these Dicer MEFs have proven a capable system for 

studying the induction of the type I IFN response by a variety of ligands. 

 

MICRORNAS: THE REPRESSOR OF MY REPRESSOR IS MY ACTIVATOR 

 

 For decades, a standard practice in immunology was to identify a gene 

that appears to play a role in the immune response, by a pull-down, screen, or 
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array, and then study its role by knocking out the gene in a mouse model and 

examining the phenotype post infection.  The TLR genes, RIG-I, MDA5, LGP2, 

and others were all researched by this method and the results helped establish 

the role of each of these proteins in innate immunity.  The issue, of course, with 

using the same approach for looking at Dicer’s role in innate immunity is that 

knocking out Dicer knocks out the regulation of thousands of genes via miRNAs.   

As previously discussed in Chapter III, determining the contribution of any 

particular miRNA in regulating innate immunity in a Dicer knockout is a daunting 

effort.   

What is intriguing, however, is the generalized loss of nucleic acid 

detection in a Dicer knockout cell.  5’ppp RNA, poly I:C, poly dA:dT and a variety 

of immuno-stimulatory DNAs all fail to induce an IFN response in Dicer null cells.  

Considering that the canonical behavior of miRNAs is to repress translation of a 

protein, and Dicer null cells are lacking miRNAs, this suggests that the miRNAs 

responsible may actually be repressing a repressor of the innate immune 

response.  One potential model of innate immune receptor regulation by miRNA 

is as follows: (Fig. 5.1) 

1. Innate immune receptors are maintained at steady-state at low levels 

by a counteracting repressor.   

2. Upon activation of innate immunity in the cell, either primary 

engagement via PRR, or secondary engagement via IFNAR, a miRNA 

is rapidly upregulated. 
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Fig. 5.1  Potential model of miRNA repression of repressors. 
A miRNA that targets a nuclear repressor or co-repressor of ISGs is maintained 
at steady state levels, thus driving a level of repressor that allows modest ISG 
expression.  Upon stimulation, the miRNA is unregulated and suppresses 
translation of the repressor, resulting in increased expression from the ISG 
promoter.  Without Dicer, no regulation of the repressor exists, and it can 
suppress all transcription of the ISGs it is bound to. 
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3. This miRNA represses translation of the repressor. 

4. Innate immune receptors are then upregulated in the cell. 

 

As an example, the nuclear receptor co-repressor (NCoR) and silencing 

mediator of retinoic acid and thyroid hormone receptors (SMRT)w are proteins 

that reside in the nucleus and actively repress other DNA-binding transcription 

factors that rely on hormonal activation.270,271  They have both been shown to be 

active co-repressors of both NF-κB responsive genes and AP-1 responsive 

genes.  The AP-1 transcription factor is downstream of TAK1 kinase signaling 

and is vital for the initiation of several anti-viral response genes downstream of 

PRR engagement, including IFNβ.272,273  Thus, NCoR and SMRT are able to co-

repress AP-1 activation sites until they themselves are repressed, leading to 

increased activation of AP-1 and its downstream effector genes.  In humans, at 

least, NCoR is able to be targeted by several confirmed or predicted miRNAs, 

including Let-7b-5p.274  While this remains to be confirmed experimentally, it 

provides a potential framework for understanding how a loss of miRNAs can lead 

to a repression of signal. 

Alternatively, the non-canonical role of small RNAs as activators of 

transcription (RNAa) may also play a role here, where small, Dicer-dependent 

RNAs may act to stimulate expression of anti-viral receptors or adaptors, and this 

pathway may be lost in Dicer null cells.  In Chapter II, I discussed a paper by 

                                                
w SMRT also known as NCOR2 
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Chiang et. al. that described a series of “miRNAs” that had been computationally 

determined, but could not be experimentally validated.215  One such miRNA, 

mmu-miR-1186, was then later determined to be a small activating RNA that 

bound to the promoter region of cyclin B1 and drove its expression.275  Another 

miRNA, miR373, was reported to drive enrichment of RNA Pol II on the  promoter 

regions of genes whose promoter matched the sequence of miR373.152    Driving 

enrichment of RNA Pol II resulted in a 5-fold increase in targeted gene 

expression, when miR373 was introduced into the cells.152  Therefore, given our 

current understanding of how small RNAs can repress or activate transcripts, 

there are multiple possible mechanisms by which the loss of Dicer-dependent 

small RNAs could cause the loss of IFNβ expression observed. 

 

SENDAI VIRUS INDUCED IFN 

 

As noted earlier, Sendai virus infection is the exception to the general 

failure of Dicer KO cells to produce an IFN response.  Despite the evidence 

(Chapter III, Fig. 3.1, 3.2, 3.3, and 3.4) suggesting this is a consistent 

phenotype, a mechanism for how Sendai induces more IFN in a Dicer null 

environment has not been established.  What has been established is that IFN is 

produced more readily at the protein and RNA levels, and that Dicer depletion 

results in more transcription at the IFNβ promoter, regardless of the mRNA 

downstream of the promoter.  We observed this despite seeing no difference in 

125



 

the limited replication of the virus between Dicer WT and KO cells.  This result 

may be due to the uniqueness of the Sendai virus used to induce IFN.  Sendai 

Cantell is grown in chicken eggs and allantoic fluid is harvested to prepare viral 

stocks.  The virus isolated from allantoic fluid strongly induces IFNβ due to the 

number of DI copybacks produced.217  At the same time, full-length genome 

replication and protein production are impaired compared to other strains of 

Sendai.   

Intriguingly, Sendai Cantell virus passaged one time through LLC-MK2, a 

rhesus macaque cell line, and purified from plaques, no longer creates DI 

copyback fragments and fails to induce IFN activation.217  This suggests that the 

selection pressure to eliminate DI copyback dsRNAs arises in IFN competent 

cells (LLC-MK2) and not the chicken embryos which have active small RNA 

processing pathways. 276,277  While we saw no evidence of dsRNA processing by 

Dicer in our deep sequencing, there remains the possibility that some function of 

Dicer, even if it is simply binding and sequestering DI copyback dsRNAs, may 

play a role in limiting their visibility to the cytosolic innate immune receptors.  

Andersson et. al. reported that in adenovirus infected cells, Dicer became so 

over-encumbered with adenovirus VA RNAs that it failed to continue processing 

other small RNAs.253  Contrary to our studies, the binding of adenovirus VA RNA 

did lead to the production of Dicer-dependent small RNAs, whereas we did not 

observe any Dicer mediated, Sendai-specific, small RNAs in our cells.  This 

suggests that the processing seen in other systems, such as with adenovirus VA 
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RNA may rely on either the sheer amount of RNA presented to Dicer, or may rely 

on a secondary structure that is a more preferred substrate to mammalian Dicer 

than pure dsRNA. 

Another potential mechanism for increased Sendai-induced IFNβ in Dicer 

null cells relates to the loss of LGP2 expression in Dicer null MEFs.  Several 

reports have shown that over-expression of LGP2 can result in diminished RIG-I 

signaling.46,278,279  Examinations of LGP2 KO mouse models has resulted in 

conflicting results, with LGP2 KO mice created by Venkataraman et. al. showing 

increased RIG-I based responses and diminished MDA5 responses.47  

Meanwhile, a separate LGP2 KO mouse created by Satoh et. al. revealed a 

positive role for LGP2 in both RIG-I and MDA5 signaling.48  While questions 

remain as to the true role of LGP2 in RIG-I induced signaling, reconstituting Dicer 

null cells with ectopic LGP2 may address the increase in Sendai induced IFNβ 

expression.  It may be that without LGP2 to sequester Sendai RNA, more RNA is 

readily available to drive RIG-I based recognition in the Dicer null MEFs. 

 

DICER AS AN ANTI-VIRAL 

 

 Evidence that Dicer has a direct role in anti-viral immunity is currently 

lacking.  However, ample evidence suggests that Dicer, as a pre-miRNA 

processor, does play a vital role in viral innate immunology.  While the general 

small RNA anti-viral role appears to have been superseded by IFN in chordates, 
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there remains the notion that in certain circumstances, Dicer can directly cleave 

and produce small RNAs that impact viral fitness.201,202  Much has been made 

about the fact that viruses encode dsRNA antagonists that disrupt RNAi; several 

viruses have been shown to encode proteins or RNA that disrupt RNAi and Dicer 

processing in vivo. 248-252  However, the extent to which these proteins and RNA 

directly target Dicer and the RNAi pathway is less clear.  The proteins described 

in these reports sequester dsRNA and thus protect the viral genome or 

replication intermediates from being detected by the host innate immune 

response.  In the case of adenovirus VA RNA, the sheer amount of VA RNA 

caused competition for Exportin 5 and Dicer and thus inhibited microRNA 

biogenesis.248  Besides the dual reports by Maillard and Li201,202, Dicer has not 

been shown to produce viral derived siRNAs that function to suppress viral 

growth in chordates.  The Maillard report may prove to be the exception to the 

rule because they used murine oocytes and embryonic stem cells, which lack 

IFN and express the shorter, dsRNA specific DicerO,x and this  may just provide 

the perfect conditions for RNAi.201  The report by Li et. al. is more complicated in 

its interpretation.  They infected baby hamster kidney cells (BHK-21) with a 

positive sense ssRNA virus, nodamuravirus, which expresses a potent RNAi 

inhibitor.  They only saw vsiRNA accumulation when the RNAi inhibitor protein 

B2 was expressed.  Additionally, they detected vsiRNA accumulation when a 

nodamura ΔB2 virus was used to infect baby suckling mice.  WT nodamura virus 

                                                
x DicerO is the Oocyte version 
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killed newborn suckling mice, while nodamura ΔB2 virus was non-lethal.  ΔB2 

virus resulted in approximately 1,000 fold less viral RNA, but did show an 

accumulation of 22nt vsiRNAs.  Adult suckling mice cleared both WT and ΔB2 

virus without issue by invoking an IFN response.202  Of note, neither the Maillard 

nor Li reports showed that any of the vsiRNAs generated had actual activity 

against the viral genome.  Many questions remain from these studies: 

1. Why is RNAi seemingly limited to oocytes, ESCs, or newborn mice? 

2. Is RNAi only detected in vivo when viruses are stripped of their ability 

to encode an RNAi inhibitor? 

3. Since many viruses do not encode RNAi inhibitors, why aren’t vsiRNAs 

detected with these viruses? 

4. Is RNAi unique to viruses such as nodamuravirus, which is transmitted 

by mosquitos and thus has to deal with the active arthropod RNAi 

defenses? 

One of the first concepts that must be considered is that the role of Dicer 

in viral RNA processing can vary.  Mice express an isoform of Dicer (DicerO) that 

is efficient at processing linear dsRNA,170 in lieu of expressing the isoform 

(DicerS)y that efficiently processes miRNAs, thus leading to a generalized loss of 

miRNA expression in mouse oocytes.172,280  When the Drosha binding partner 

DGCR8 is depleted from mouse oocytes, the cells expressed no phenotype,280 

despite DGCR8’s essential role in miRNA processing providing additional 

                                                
y DicerS being the somatic version 
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evidence that miRNAs are not a major factor for gene expression in oocytes.110  

Humans, however, do not express an alternative isoform like DicerO.170  In fact, 

human ESC and oocytes do express miRNAs, albeit a different subset from the 

miRNAs expressed in somatic cells. 281-283  Thus the presence of virus derived, 

Dicer dependent small RNAs may be due to the unique features of DicerO, but 

cannot be extrapolated to other mammalian systems. 

The role of RNAi inhibitors is complicated, since many RNAi inhibitors 

sequester RNA,249-251 thus making them adept at inhibiting RNAi as well as 

evading the IFN response.  Whether viral RNAi inhibitors directly target the RNAi 

response or if it is the result of an off-target effect due to binding available RNA in 

the cell remains to be seen.  As expected, it has been reported that RNAi targets 

viral replication in arthropod vectors,284 and arboviruses encode RNAi 

inhibitors.252  What is intriguing however, is that in the case of West Nile virus, 

the viral RNAi inhibitor is a non-coding 525 nt RNA with complex secondary 

structure.252  This same region had previously been reported to be required for 

replication and pathogenicity.285,286  This held true even when the IFN deficient 

Vero cell line was used for infection.286  It may be that RNAs with complex 

secondary structure are able to act as effector molecules in currently 

undiscovered roles.   

For somatic cell anti-viral protection, Dicer’s role appears to be currently 

limited to processing miRNAs that regulate anti-viral immunity.  However given 

the number of proteins involved in the RNAi and microRNA pathways, there may 

130



 

still yet be a role for Dicer, Drosha, or the Argonaute proteins in direct anti-viral 

immunity. 

 

DICER’S ROLE IN CONTROLLING EMCV INFECTION 

 

 The data presented in Chapter IV show a clear role for Dicer in regulating 

infection of MEFs by EMCV.  A 100-fold reduction of virus production (Fig. 4.3) is 

a significant defect and supports the notion that the prevention of infection is 

perhaps more useful than modulating the intracellular response after an infection 

has already occurred.  A significant amount of research using RNAi, siRNAs, and 

miRNAs has focused on creating small RNAs that directly target viral sequences.  

(For examples, see 245-247,287)  This research has shown promise in silencing viral 

genomic and mRNA and many are being adapted as potential therapeutic 

agents.  There are obstacles to overcome, such as the appropriate specificity 

and delivery of the small RNA into the cell that is infected in order to reduce any 

potential toxicity or off-target effects (for review, see288).  Additionally, with some 

viruses that have high natural variation and mutation rates, such as HIV-1, 

escape mutants can quickly generate to resist siRNA based therapies. 289-291  

Thus, research into anti-viral therapies have expanded to include using small 

RNAs to target cellular proteins that serve as receptors for viruses and have a 

much lower natural mutation rate.  In a recent example, work from the Rossi 

group showed that targeting the HIV-1 co-receptor protein CCR5 could inhibit 
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HIV-1 infection.292  Obviously, targeting the receptor for many viruses would not 

work due to the importance of many receptor proteins in normal cellular function.  

However, this does provide an additional pathway forward for developing 

potential therapeutics.   

The work presented here strongly suggests that Dicer impacts EMCV 

growth, not through direct RNAi activity, but by processing miRNAs, one of which 

is important for the expression of the unknown EMCV receptor.  (Fig. 4.4, 4.5) 

This is not the first time that viral infection has been modulated by receptor down-

regulation; miR-23b was previously reported to be induced upon RIG-I activation 

and targets the very low density lipoprotein receptor (VLDLR).260  VLDLR 

knockdown inhibited infection with Rhinovirus 1B.  Similar to my results, 

transfection of the infectious RNA into the cell, thus bypassing receptor 

engagement, resulted in equal growth rates of rhinovirus in cells regardless of 

miR-23b expression.260  My results show that Dicer can have a major role in 

regulating the growth of a virus in mammalian cells, however it is the absence of 

Dicer and its attendant role in processing cellular small RNAs that results in the 

loss of viral reproduction. 

 

FUTURE DIRECTIONS 

 

The work presented in this dissertation suggests that a complicated 

regulatory network exists for miRNA regulation of nucleic acid based sensing in 
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MEFs.  While some of the primary receptors involved in cytosolic RNA sensing 

remain unchanged in a Dicer null cell (RIG-I, MDA5) the downstream effector 

response after engagement of these receptors is severely diminished.  The 

greatest caveat of the Dicer null model is that it becomes difficult to tease apart 

the individual contributions of miRNAs into the overall regulatory network.  Closer 

examination of potential miRNA binding sites in the mRNAs of genes like IFI204 

and LGP2 may yield potential candidates, However this approach seems unlikely 

to be informative considering that if miRNAs directly targeted their mRNAs, one 

would expect to see increased expression following Dicer depletion.  Thus it may 

be more important to examine the activation of transcription of these genes; 

examine what transcription factors and repressors are involved in regulating 

transcription of their mRNA.  Since siRNA and miRNA based therapies are 

already thought to have great potential in the treatment of disease, determining 

small RNAs that regulate the transcription of genes important in innate anti-viral 

immunity could potentially be useful as therapeutic interventions.   

The most pressing issue related to the EMCV work presented in this 

dissertation is to determine what cellular protein is used as the EMCV receptor. 

Future efforts may want to focus on determining how other pathogenic viruses 

replicate in a Dicer null environment.  The Dicer null cells allow a unique 

opportunity to screen individual miRNA effects by reconstituting individual or 

pools of miRNAs and monitoring how they impact the growth of a variety of 

pathogens.  Considering the high rate of mutations in various viruses, therapeutic 
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small RNAs that target relatively static host genes to prevent viral infection may 

have more use than small RNAs that can quickly be rendered inactive by a single 

nucleic acid mutation in the target region of the pathogen genome.   

 

CONCLUDING REMARKS 

 

 RNA was once considered a relatively unimportant messenger stuck 

between the genetic repository of information, DNA, and the building blocks of 

life, protein.  RNA has been the target of an explosion of research in the last few 

decades as it became increasingly obvious that the DNA regions that are protein-

coding are not the only important regions of genetic material.  In 1972, Susumu 

Ohno argued that an organism, like a human, could only support a certain 

number of genes before the mutation rate would be intolerable.  He theoretically 

determined an upper limit of 30,000 potential genes for a human.  Recognizing 

that our genome was too large to only code for such a limited number of genes, 

he helped popularize the misnomer of “junk DNA” as the non-coding regions of 

DNA that were unrecognized as contributing to protein synthesis.  293 Rather 

amazingly, in humans, ~98% of DNA is non-protein coding. 294 In a landmark 

paper, the ENCODE consortium biochemically determined that at least 80% of 

the human genome is active in some form.  295 This non-protein coding DNA is 

still revealing its function, and as more work focuses on how RNA regulates other 

cellular processes, the nuances of gene expression will come into focus.  Dicer 
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has proven to be integral to a large number of cellular functions due to its role as 

a small RNA processor.  The work presented here argues that Dicer has an 

essential role in anti-viral innate immunity, both as a regulator of the expression 

of genes important for nucleic acid sensing and as a restricting factor in the 

ability of EMCV to infect MEFs efficiently.   

In conclusion, Dicer and Dicer-like proteins can be traced back through 

the evolutionary timescale to the beginnings of eukaryotic life, and beyond, when 

one considers prokaryotic type III RNases.  Therefore, one can infer that the 

processing of dsRNA is a key regulatory step across many of the kingdoms of 

life.  In that context, it is clear that humans have evolved with the presence of 

small RNA regulation and any pathogen we face evolved in the presence of small 

RNA regulation as well.  This body of work delineates a role for Dicer in the 

control of viral reproduction as well as control of the signaling pathways that 

allow the innate immune response to recognize the foreign from the self. 
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APPENDIX 
 

 The purpose of this appendix is to address the pertinent questions that 

remain following this body of work.  As such, I will introduce the question at hand 

and provide my comments on the experimentation that should take place to 

answer the question.  While this is in no way exhaustive, it will provide a 

framework from which future proposals may be generated.   

 

WHERE DOES DICER AFFECT NUCLEIC ACID SENSING AND SIGNALING? 

 Perhaps the most extensive question is determining where Dicer is having 

its impact on nucleic acid sensing.  Based on the data presented in Chapter III, 

the production of IFN and RANTES post-NA stimulation is low or lacking, 

regardless of the type of NA used.  In order to ascertain where Dicer is working in 

these signaling pathways, I propose starting in the nucleus and working 

backwards to cytosolic sensing of the NA.  This section will actually address two 

different approaches: exploring the signaling pathway, and looking for overall 

chromatin rearrangement in the cells.  The reasoning behind this is that total 

chromatin rearrangement may cause differences in transcription at the IFN𝝱 

promoter without it being unique to the IFN locus itself.   

 

1.) Determine if there is a difference between Dicer WT, KO, and reconstituted 

cells in the engagement of RNA Pol II to DNA in the cells to look at total 

chromatin remodeling changes that occur in the absence of Dicer.  Previous 
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reports have suggested Dicer can regulate chromatin and histone methylation by 

direct regulation via miRNAs298,299 or other mechanism299. By using Pol II CHIP-

SEQ, the sequences of DNA that are available for RNA Pol II transcription at the 

basal state can be analyzed and overall changes in open chromatin can be 

assessed.  This will be followed up by RNA Pol II CHIP-SEQ after stimulation of 

the Dicer WT, KO and reconstituted cells after with Sendai virus, poly dA:dT, poly 

I:C, 5’ppp RNA, and exogenous IFN.  All of the data generated in my system thus 

far suggests that Dicer WT and KO cells respond equally to the presence of 

exogenous IFN, so by adding it as a control stimulant, we can look at the 

engagement of RNA Pol II to various ISG’s and they should be similar between 

the cells types.  Sendai virus is a stimulant that activates IFN𝝱 transcription and 

production in both WT and KO cells, although the data suggests IFN𝝱 production 

is higher in Dicer KO cells.  By looking at the engagement of RNA Pol II at the 

IFN promoter after Sendai infection, we can ascertain if the higher IFN levels are 

driven by more recruitment of transcription machinery.  With poly dA:dT and 

5’ppp RNA, very low levels, if any, of IFN are seen, thus it is important to 

determine if the regulation is prior to transcription or post-transcriptional.  It is 

possible that post transcriptional modification of the IFN transcript may be 

different depending on the type of stimulant used, and can be assessed by 

adding Alpha-amanitin after stimulation and measuring the amount and stability 

of IFN𝝱 mRNA.  However, I would hypothesize that in all cases, the amount of 

RNA Pol II on the IFN promoter would mimic the phenotype already observed at 
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the RNA and protein levels.   

2.) Moving further upstream, I would assess the dimerization and translocation of 

IRF3 into the nucleus by making cytosolic and nuclear fractions after stimulation 

with the above agents or medium, and then determine what fraction of IRF3 is a 

monomer versus dimer, and how much of it translocates from cytosolic fraction to 

nuclear fraction by western blot.  There are a series of kinases that act as 

signaling cascade proteins that lead from either STING, in the case of DNA, or 

MAVS, in the case of the RIG-I, and MDA5 RNA sensors.  These can all be 

assessed for their phosphorylated forms and you can “walk back” up the chain of 

signaling proteins, however I prefer the idea of jumping a few steps ahead and 

then walking back down if necessary.   

3.) Thus the next step I would examine would be MAVS aggregations (post poly 

I:C or 5’ppp RNA stimulation) or STING??? (post poly dA:dT stimulation)  MAVS 

aggregations occur when RIG-I or MDA5 bind their ligand and aggregate their 

CARD domains, leading to MAVS aggregations on the mitochondria44,45.  By 

staining for MAVS aggregations, you can assess an approximation of the amount 

of signaling that is immediately downstream of the actual ligand engagement.  At 

this point, if you are still seeing differential MAVS aggregations in Dicer WT and 

KO cells, then it suggests it’s the actual sensing of ligand that is impacting the 

downstream expression of IFN𝝱.  It’s unlikely that it’s the actual RIG-I and MDA5 

engagement of ligand that is playing a role, seeing as how RIG-I and MDA5 are 

expressed at equivalent levels in Dicer WT and KO cells.  But there is another 
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protein, LGP2 that can impact ligand sensing by both RIG-I and MDA5.  LGP2 

has a long and complicated history in RNA sensing, and more detailed 

information can be found in Chapter I of my dissertation.  Briefly, LGP2 has been 

shown to help with the initiation and aggregation of MDA5 on dsRNA, thus 

leading to enhanced signaling to MAVS and further downstream.  LGP2 has also 

been shown to inhibit and enhance RIG-I signaling, depending on what cells the 

experiments were performed in and whether it was in vitro or in vivo work.  We 

also know that LGP2 is essentially missing in a Dicer KO cell, and does not come 

back following reconstitution.  Thus, we will want to look at what happens if we 

add back LGP2. 

 

WHAT HAPPENS WHEN YOU RECONSTITUTE DICER WT AND KO CELLS 

WITH LGP2, IFI204, OR IFI205? 

 Of the sensors that are down-regulated in Dicer KO cells, LGP2, IFI204, 

and IFI205 are either not reconstituted, or reconstituted in a non-significant 

amounts (Fig. 2.6).  This is significant for several reasons.  As mentioned above, 

LGP2 can impact RIG-I and MDA5 signaling, despite its inability to signal on its 

own.  IFI204 is an ortholog of IFI16 in humans, which has been implicated in both 

DNA sensing, but also in the transcription initiation of a variety of ISGs following 

stimulation of cells296.  Either of these two functions may play a role in the loss of 

IFN production following DNA stimulation.  IFI205 is a related PYHIN family 

member but has been suggested to play more of a role in activating ASC 
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mediated inflammasomes after DNA binding300.  If the loss of IFI204 and IFI205 

are responsible for a failure to sense DNA, then you never get initiation of 

signaling downstream of DNA only.  However, if IFI204 acts like its human 

ortholog IFI16 and is able to regulate the transcription initiation of IFN-related 

genes, then the loss of IFI204 would have far reaching effects beyond just that of 

DNA sensing.  The loss of signal from RIG-I and MDA5 mediated pathways 

would also be impacted by the loss of IFI204 if it plays a general role in the 

transcription of ISGs.  Thus it is important to look at what happens in a Dicer null 

cells where these proteins have been reconstituted.   

 Using the same lentivirus-derived transduction approach as I did with Dicer, 

I propose making lentivirus constructs expressing a codon optimized version of 

LGP2, IFI204 and IFI205.  The lentivirus would use a selection antibiotic so that 

cells that receive the various constructs could be enriched out of the population 

of Dicer KO cells.  After the cells expressing the various constructs have been 

selected, the cells will be stimulated with viral and non-viral ligands to see if the 

addition of any of the single receptors can rescue some or all of the phenotypes 

observed.  Of course, the rescue of a single protein may not actually rescue the 

phenotype if they are required to work in concert with another down-regulated 

gene.  In addition to measuring the terminal output, such as IFN expression, I 

propose that a variety of assays are run in the control and reconstituted cells.  

For LGP2, I would run a LGP2/MDA5 aggregation assay to see if the addition of 

LGP2 back into the Dicer null cell rescues the detection of dsRNA.  If 
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LGP2/MDA5 aggregation occurs, with no downstream signaling, then it would 

suggest that the loss of Dicer plays a role downstream of whether LGP2 is 

expressed or not.  In the case of IFI204, I would want to explore upstream 

signaling of IFI204 to STING, as well as looking to see if IFI204 is sitting on the 

transcription start site of ISGs following stimulation.  By assessing both, it may 

help tease out if IFI204 is having function as a DNA sensor, transcriptional 

activator or both.  For IFI205, the limited knowledge we have of is does not 

suggest it would play a role in IFN induction, but rather in inflammasome 

activation.  Still, it would be informational to ascertain if IFI205 reconstitution has 

any role in downstream IFN signaling. 

 

WHAT vsiRNAS ARE GENERATED BY THE 𝚫HELICASE DICER? 

 The report by Flemr et. al. suggested that oocytes and ESCs express a 

helicase truncated form of Dicer that can more readily bind and process long 

dsRNA, such as those arising from viral infection170.  Additionally Mailliard et. al. 

was able to show that in oocytes and ESCs, vsiRNAs could be detected after 

infection with EMCV201.  Considering that my 𝚫Helicase Dicer could potentially 

mimic the alternative mouse transcript of Dicer reported by Flemr, it would be 

intriguing to assess whether a Dicer null cell that has been reconstituted with 

𝚫Helicase and infected with EMCV would generate detectable vsiRNAs.  A 

recent paper by Kennedy et. al. revealed that mutated human Dicer where the 

helicase has been deleted can generate vsiRNAs when expressed in Dicer null 
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cells301.  By reconstituting the Dicer null MEFs with WT and 𝚫Helicase Dicer, and 

then infecting with EMCV, VSV, Sendai, and mock, we could assess any vsiRNA 

formation by deep sequencing.  I would expect that the 𝚫Helicase Dicer will 

generate vsiRNAs when infected with EMCV and VSV, and Sendai may generate 

vsiRNAs, depending on the length and double-strandedness of the copybook DI 

particles that this particular strain of Sendai generates.  However, I would expect 

that the WT Dicer reconstituted cells would not generate vsiRNA from any of the 

viruses, since the full-length, somatic version of Dicer selects for dsRNA with a 

hairpin loop255. 

 

WHAT RECEPTOR IS RESPONSIBLE FOR BINDING EMCV ON A MEF 

 According to my data, EMCV fails to bind as well to a Dicer KO MEF 

compared to a Dicer WT MEF.  However the only defined receptor for EMCV, 

VCAM1, is expressed equally at the RNA level in both Dicer WT and KO cells.   

Thus, two possibilities arise: First, VCAM1 may be expressed equally at the 

mRNA level, but post-transcriptional regulation may result in different levels of 

protein expression. Second, since VCAM1 is not the only receptor for EMCV, a 

different receptor may be responsible for the difference in binding.  To test for the 

first, I would do a western blot or fluorescent microscopy to look at total VCAM1 

protein expression or surface expression, respectively.  However, array data from 

other groups suggests VCAM1 is expressed at very low levels in MEF cells, so 

VCAM1 expression may be difficult to observe.  I would then transduce VCAM1 

142



 

into the Dicer WT and KO MEFs and see if over expression of VCAM1 leads to a 

rescue of the binding phenotype.  To identify other potential receptors for EMCV, 

there are multiple approaches that could be taken.  First, if there are sufficient 

antibodies, I would propose doing an EMCV pulldown of bound cellular proteins 

and using mass spectrometry to identify the peptide sequences pulled down by 

the anti-EMCV antibody.  However, from personal experience, I know that EMCV 

antibodies are lacking.  Another potential approach is to screen CRISPR libraries 

for EMCV binding and then identify which genes have an impact on EMCV 

binding when they are deleted.  Thus, other potential receptors for EMCV can be 

identified and then by looking at the candidates individually for expression in my 

Dicer MEFs, a suitable candidate could be found.  Since transfecting EMCV 

infectious RNA directly into the cells results in equal viral growth, (Figure 4.5b) I 

would expect that after using one of these methods to identify a potential 

receptor, the overexpression of that receptor in Dicer KO cells would ameliorate 

the EMCV growth defect in Dicer KO cells. 
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