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ABSTRACT 

The exocyst is an evolutionarily conserved, hetero-octameric protein complex 

proposed to serve as a multi-subunit tethering complex for exocytosis, although it 

remains poorly understood at the molecular level. The classification of the exocyst as a 

multisubunit tethering complex (MTC) stems from its known interacting partners, 

polarized localization at the plasma membrane, and structural homology to other putative 

MTCs. The presence of 8 subunits begs the questions: why are so many subunits required 

for vesicle tethering and what are the contributions of each of these subunits to the 

overall structure of the complex? Additionally, are subunit or subcomplex dynamics a 

required feature of exocyst function? We purified endogenous exocyst complexes from 

Saccharomyces cerevisiae, and showed that the purified complexes are stable and consist 

of all eight subunits with equal stoichiometry. This conclusion contrasts starkly with 

current models suggesting that the yeast exocyst tethers vesicles by transient assembly of 

subcomplexes at sites of exocytosis. Using a combination of biochemical and auxin-

induced degradation experiments in yeast, we mapped the subunit connectivity, identified 

two stable four-subunit modules within the octamer, and demonstrated that several 

known exocyst binding partners are not necessary for exocyst assembly and stability. 

Furthermore, we visualized the structure of the yeast complex using negative stain 

electron microscopy; our results indicate that exocyst exists predominantly as an 

octameric complex in yeast with a stably assembled, elongated structure. This is the first 

complete structure of a CATCHR family MTC and it differs greatly from the EM 

structures available for the partial COG and Dsl1 complexes. Future work will be 
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necessary to determine whether exocyst conformational changes are a required feature of 

vesicle tethering and how such changes are regulated. 

These architectural insights are now informing the design of the first in vitro 

functional assay for the exocyst complex. We developed methodology for attaching 

fluorescently-labeled exocyst complexes to glass slides and monitoring the capture of 

purified, endogenous secretory vesicles by single molecule TIRF microscopy. By this 

approach, we can monitor tethering events in real time and determine the required factors 

and kinetics of exocytic vesicle tethering. 
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complex, which directly promotes the fusion of vesicle and target membrane bilayers 

leading to cargo release. (Fig 1.2) 

 

 

Small GTPases 

In all trafficking pathways, small GTPases of the Ypt/Rab family are critical 

orchestrators of nearly every step of secretion, which will be discussed below. Ypt/Rabs 

are small (~200 amino acids) molecular 

switches that cycle between active (GTP-

bound, membrane-associated) and inactive 

(GDP-bound, cytoplasmic) forms. In their 

activated form, these small GTPases interact 

with a diverse array of downstream effectors to 

coordinate vesicular trafficking (Fig 1.3). 

Specialized guanine nucleotide exchange 

factors (GEFs) serve to activate specific 

Figure 1.2: The conserved steps of vesicle trafficking. A vesicle forms at the donor compartment and is filled with 
specific cargos. The vesicle buds from the donor membrane and is transported to the target organelle where it is 
physically tethered. Following tethering, Sec1/Munc18 (SM) proteins regulate the process of SNARE complex 
assembly, a reaction that drives the fusion of the two bilayers and cargo release. V-SNARE=vesicle SNARE, t-
SNARE=target membrane SNARE. 

Figure 1.3: The GTPase activity cycle. Guanine nucleotide 
exchange factors (GEFs) stimulate dissociation of GDP so 
GTP can bind and activate the GTPase. GTP hydrolysis 
activating proteins (GAPs) promote the hydrolysis of GTP 
so the GTPase returns to its inactive, GDP-bound state.
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Ypt/Rabs and GTP hydrolysis activating proteins (GAPs) inactivate them. Because the 

activity of these small GTPases can be fine-tuned and they interact with numerous 

downstream effectors, it is clear that eukaryotic cells can take advantage of these 

switches for tightly regulated processes. S. cerevisiae contains 11 Rab GTPases and 70 

have been identified in humans so far, indicating that while we still have much to learn 

about the mechanism of Rab activity in yeast, a great deal of work will be required in the 

future to decipher the specific roles for all of these small GTPases in higher eukaryotes 

(Lipatova and Segev, 2014). 

 

SNARE complexes 

 The soluble N-ethylmaleimide-sensitive factor attachment protein receptor 

(SNARE) proteins are the core machinery required for vesicle fusion with the target 

membrane in all intracellular trafficking pathways. SNARE proteins contributed by both 

the vesicle (v-SNAREs) and target membrane (t-SNAREs) assemble into a highly stable 

4-helix bundle and this assembly provides the energy required to fuse the two lipid 

bilayers for cargo release (Jahn and Scheller, 2006). SNARE complex assembly is highly 

stable, thus the AAA ATPase complex NSF/α-SNAP (Sec18/Sec17 in yeast) is required 

after vesicle fusion for disassembly and recycling of the SNAREs for subsequent 

reactions (Sollner et al., 1993a; Hayashi et al., 1995; Jahn and Scheller, 2006). 

Additionally, since this assembly is not reversible and directly leads to membrane fusion, 

the timing and localization of proper SNARE complex assembly must be tightly 

regulated. Unique v- and t-SNAREs function in each trafficking pathway, but in vitro 

studies revealed that SNARE proteins from different pathways can assemble 
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promiscuously and alone are not sufficient to guarantee the specificity of vesicle delivery 

to the proper organelle (McNew et al., 2000; Fasshauer et al., 1999; Hohenstein and 

Roche, 2001; Yang et al., 1999; Izawa et al., 2012). Therefore, the combined activity of 

SNAREs, GTPases, SM proteins, tethers, and additional regulators (to be discussed 

below in relation to exocytosis) are necessary to ensure the proper spatiotemporal 

delivery of vesicles in the cell. 

 

Exocytosis and its regulators 

This thesis focuses on one intracellular trafficking pathway called polarized 

exocytosis, where vesicles budded from either the trans-Golgi network (TGN) or 

endosomal compartments are trafficked to a restricted region of the plasma membrane. 

Fusion of vesicles at the plasma membrane is required both for release of cargos to the 

extracellular space as well as for incorporation of lipids and proteins into the plasma 

membrane itself. The restricted nature of exocytic vesicle fusion promotes directional 

outgrowth of the membrane bilayer in these locations, which is required for many 

complex cellular events. This pathway has been best characterized in the budding yeast, 

Saccharomyces cerevisiae, where polarized secretion drives the growth of a budding 

daughter cell and separates mother and daughter cells during cytokinesis. However, this 

same polarized secretion pathway underlies many complex cellular processes in higher 

eukaryotes ranging from developmental events like neuronal growth to more specialized 

processes requiring localized membrane delivery like ciliogenesis, cell migration, and 

autophagy (Heider and Munson, 2012; Orlando and Guo, 2009). Although the 
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mechanistic details of exocytosis are not completely known, most of the relevant players 

have been identified for each step and are highly conserved from yeast to humans.  

Cargos destined for the plasma membrane are recognized and concentrated in the 

nascent vesicle, though the molecular details of cargo sorting are much less clear for 

TGN to plasma membrane trafficking than other intracellular trafficking pathways. The 

exomer complex, which was originally identified in yeast and does not yet have a known 

homolog in metazoans, may be important for plasma membrane-bound cargo selection 

and subsequent vesicle fission from the TGN (reviewed in Paczkowski et al., 2015). A 

redundant pair of Ypt/Rab family GTPases, Ypt31/32 (Rab11 in mammals), are also key 

players at this stage (Lipatova and Segev, 2014). Ypt31/32 are localized to the TGN in 

their GTP-bound form and here they orchestrate both vesicle formation, through the 

downstream effector Sec7, and vesicle transport (Jones et al., 1999; McDonold and 

Fromme, 2014; Lipatova and Segev, 2014). Ypt31/32 seem to function at the beginning 

of a cascade of effector interactions required for the polarized transport of post-Golgi 

vesicles. Ypt31/32 is thought to recruit the type V myosin motor, Myo2, to vesicles as 

well as Sec2 (Rabin8 in mammals), the GEF for the Rab GTPase Sec4 (Rab8 in 

mammals) (Lipatova et al., 2008; Ortiz et al., 2002; Mizuno-Yamasaki et al., 2010; Das 

and Guo, 2011). During the Myo2-mediated transport of vesicles along actin to the 

plasma membrane, Sec2 activates Sec4, which likely exchanges places with Ypt31/32 on 

vesicles as both GTPases bind the same site on Myo2 and Sec4 was shown to act 

downstream of Ypt31/32 (Jin et al., 2011; Ortiz et al., 2002; Mizuno-Yamasaki et al., 

2010). Activated Sec4 interacts with both the exocyst complex (as discussed below) and 



 

7 
 

the protein Sro7/77, interactions which are not fully understood but presumed to be 

important for vesicle tethering and regulation of the SNARE fusion machinery (Guo et 

al., 1999; Grosshans et al., 2006; Rossi et al., 2015). When a vesicle is brought within 

some yet unknown distance to the plasma membrane, vesicle tethering occurs, which is 

then followed by the assembly of the SNARE complex. The yeast exocytic SNAREs 

include the v-SNARE Snc1/2 (VAMP/synaptobrevin family) and the plasma membrane-

associated t-SNAREs Sec9 (SNAP-25 family) and Sso1/2 (syntaxin family) (Aalto et al., 

1993; Brennwald et al., 1994; Gerst et al., 1992). Assembly of Sso1/2 with Sec9 into the 

binary SNARE complex occurs first and then arrival of the vesicle with Snc1/2 leads to 

full complex assembly and vesicle fusion (Nicholson et al., 1998; Munson et al., 2000; 

Munson and Hughson, 2002).  

 

Vesicle Tethering 

Vesicle tethering is one of the most poorly understood steps in all vesicle 

trafficking pathways. This step occurs after the delivery of a vesicle at its target organelle 

but upstream of SNARE complex assembly and vesicle fusion (Fig. 1.2). Tethering is 

defined as the initial capture of a secretory vesicle at a distance from its target membrane, 

which may serve to stabilize the vesicle and bring it close enough to promote SNARE-

mediated fusion. Due to the necessarily reversible and transient nature of vesicle 

tethering events, studies characterizing vesicle tethering and the factors that mediate it 

have been challenging. 

The concept of tethering began to take shape in the mid-1990s when a series of 

papers came out identifying factors that Suzanne Pfeffer termed “velcro factors.” 
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(Pfeffer, 1996; TerBush et al., 1995; Stenmark et al., 1995). The common link between 

all of the factors, despite obvious structural differences, were interactions with 

membranes and small GTPases known to associate with membranes. Barlowe and 

colleagues were the first to directly demonstrate that a distinct vesicle tethering step 

occurs upstream of SNARE activity (Barlowe et al., 1997, Cao et al., 1998).  Using an in 

vitro reconstituted ER to Golgi transport assay, they showed that an extended coiled coil 

yeast protein called Uso1 (p115 in mammals) was capable of physically docking vesicles 

at the Golgi membrane. When freely diffusing ER-derived vesicles were incubated with 

Uso1, COPII vesicle coat proteins, and Golgi membranes, they found that increased 

levels of vesicles pelleted with the Golgi membranes during ultracentrifugation rather 

than remaining in the supernatant (Barlowe et al., 1997). Using temperature-sensitive 

mutants in Golgi SNAREs that block vesicle fusion, they showed that vesicles were still 

tethered in the presence of Uso1, but failed to fuse with the Golgi membrane, physically 

distinguishing tethering from SNARE complex assembly. Additionally, Uso1’s role in 

vesicle tethering was dependent on the Ypt/Rab GTPase Ypt1, further supporting the link 

between tethering and Rab GTPases (Cao et al., 1998).  

Tethering factor is the generic name given to proteins and/or protein complexes 

that are thought to capture vesicles at the target membrane. This term encompasses two 

strikingly different structural classes of molecules including the homodimeric coiled coil 

proteins and the multi-subunit tethering complexes (MTCs). In general, most of the 

factors grouped under the term ‘tethers’ have not yet been experimentally demonstrated 

to perform this function (Brunet and Sacher, 2014). In the case of the homodimeric coiled 
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coil proteins, the group to which the previously described Uso1 belongs, there is some 

experimental evidence for this role (Cao et al., 1998; Drin et al., 2008; Yu and Hughson, 

2010; Wong et al., 2014; Cheung et al., 2015). Their structure makes it easy to envision 

such a function as these proteins can extend up to 45 nm from the target membrane 

allowing them to capture vesicles at a distance. Furthermore, non-coiled coil domains in 

the middle of these extended chains are proposed to serve as hinges that allow the 

vesicles to be brought closer to the target membrane (Gillingham and Munro, 2003; 

Cheung et al., 2015). MTCs are much more complex structures containing 3-10 different 

subunits. Unlike the coiled coil proteins, there is little direct evidence for tethering by 

these complexes (as discussed further below), but an MTC is proposed to function in 

nearly every known vesicle trafficking pathway in the cell (Fig 1.4). In spite of their 

differences, all of these tethering factors have several features in common including 

Fig 1.4: Schematic representation of vesicle trafficking pathways in S. cerevisiae and their MTCs. All 
evolutionarily conserved MTCs (pink boxes) are shown on the organelles where they localize. MTCs are 
required for vesicular traffic into their respective organelles.  
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reported interactions with Ypt/Rab GTPases, membranes, and in many cases SNARE 

proteins (Yu and Hughson, 2010). 

It is not immediately apparent why tethering is a required step for vesicle 

trafficking. One hypothesis is that tethers accelerate vesicle fusion, either simply by 

increasing the rate of vesicle capture (facilitating the rate at which the SNAREs are 

brought close to each other) or by directly stimulating the assembly of SNARE 

complexes. SNARE-mediated vesicle fusion is always significantly slower in vitro, 

arguing that other factors are required in vivo to improve the efficiency of this process 

(Ohya et al., 2009; Stroupe et al., 2009). Furthermore, in some cases overexpression of 

the SNARE proteins can rescue mutations in tethering factors, suggesting that increasing 

the number of SNARE proteins could increase their rate of assembly, overcoming the 

requirement for tethers to accelerate this process (Pfeffer, 1996; Songer and Munson, 

2009). A second hypothesis argues that tethers may be required for specific recognition 

of vesicles at the proper target organelle membrane. Both the coiled coil proteins and the 

MTCs have a complex array of interactions with proteins and lipids found on both vesicle 

and target membranes. Given that SNARE proteins are not sufficient to impart 

specificity, (McNew et al., 2000; Izawa et al., 2012; Fasshauer et al., 1999; Hohenstein 

and Roche, 2001; Yang et al., 1999; Fischer von Mollard et al., 1997; Kweon et al., 2003; 

Brennwald et al., 1994; Garcia et al., 1995) the tethering factors may provide additional 

layers of recognition to guarantee the fidelity of vesicle targeting. In support of this idea, 

it was recently shown that the Golgi-localized coiled coil proteins, or golgins, specifically 

capture certain types of vesicles based upon a poorly understood combination of unique 
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protein receptors and specific membrane curvature (Wong and Munro, 2014). It is 

possible that some or all of these reasons are correct but it will be interesting to see 

whether such structurally diverse classes of proteins like the coiled coil tethers and the 

MTCs truly serve the same tethering function and whether they function by similar 

mechanisms. 

 

Multisubunit Tethering Complexes (MTCs) 

Within the MTC group there is yet another structural division that separates the 

HOPS, CORVET, TRAPPI, TRAPPII, and TRAPPIII complexes from another group, 

which is collectively termed Complexes Associated with Tethering Containing Helical 

Rods (CATCHR). The focus of this thesis will be on the CATCHR family and one of its 

members, the exocyst, so the other complexes will only be briefly discussed below.  

 

HOPS and CORVET: 

Two 6-subunit MTCs called the homotypic fusion and vacuole protein sorting 

(HOPS) and class C core vacuole/endosome tethering (CORVET) complexes function in 

the endolysosomal pathway (Fig. 1.4). CORVET specifically controls homotypic 

endosomal fusion and all vesicle traffic into the late endosome. HOPS controls all traffic 

into the vacuole whether that be from multi-vesicular bodies (MVBs), AP-3 vesicles from 

the TGN, or autophagosomes (Balderhaar and Ungermann, 2013). These complexes are 

chimeras of each other, in that they share 4 core subunits and each contain 2 unique 

subunits of their own (Price et al., 2000; Wurmser et al., 2000; Peplowska et al., 2007; 

Nickerson et al., 2009). Interestingly, HOPS and CORVET are the only known MTCs to 

contain a built-in SM protein, the core subunit Vps33, which may facilitate binding and 
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regulation of SNARE proteins (Dulubova et al., 2001; Laage et al., 2001; Sato et al., 

2000; Lobingier et al., 2012; Lobingier et al., 2014; Baker et al., 2015). HOPS and 

CORVET have not been well-characterized in metazoans, although homologues for the 

subunits, including additional isoforms, have been identified (Balderhaar and 

Ungermann, 2013) 

Like other tethering factors, both HOPS and CORVET are Rab effectors (Abenza 

et al., 2010; Abenza et al., 2012; Brocker et al., 2012; Ostrowicz et al., 2010; Peplowska 

et al.,  2007; Seals et al.,  2000; Wurmser et al., 2000). The two unique HOPS and 

CORVET subunits each interact with specific activated Rab GTPases, namely Ypt7 

(Rab7 in mammals) and Vps21 (Rab5 in mammals) respectively. For some time it was 

thought that HOPS and CORVET would tether through spatially separated Rab GTPase- 

and SNARE-interacting interfaces that would connect opposing membranes (Ostrowicz 

et al., 2010). However, the recent negative stain electron microscopy (EM) structure of 

the full HOPS complex revealed that the two Rab-interacting subunits on HOPS were 

actually located on distal sides of the complex, suggesting that HOPS tethers through 

recognition of Rab7 on opposing compartments (Brocker et al., 2012). This insight can 

likely be applied to CORVET as well, as the architecture of the complex is largely the 

same, with the shared subunits at the core and the unique subunits on the ends (Ostrowicz 

et al., 2010; Plemel et al., 2011).  

Direct experimental evidence revealed roles for both HOPS and CORVET as 

bona fide tethers. HOPS, in particular, has been extensively studied using in vitro vacuole 

and proteo-liposome tethering and fusion assays, though there is still some debate about 
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the requirements for tethering and the mechanism of action for this MTC (Stroupe et al., 

2009; Stroupe et al., 2012; Zucchi and Zick, 2011; Lo et al., 2011; Zick and Wickner, 

2014). In general, in vitro fusion assays require the vacuolar SNARE proteins, SNARE 

disassembly machinery, Ypt7, and the HOPS complex. Interestingly, the lipid 

composition of the liposomes is also an important determinant, which when properly 

adjusted, can bypass the requirement for Ypt7, suggesting that lipid binding by HOPS 

may also be a redundant means by which it tethers (Mima et al., 2008; Stroupe et al.,  

2009). Furthermore, a recent study on the CORVET complex using vacuole-endosome 

clustering and fusion assays revealed that it can also tether and this function is dependent 

on Vps21 (Balderhaar et al., 2013).  

 

The TRAPP complexes: 

The Transport Protein Particle (TRAPP) complexes are similar to HOPS and 

CORVET in that they share a core set of subunits. TRAPPI contains 7 subunits and 

functions in ER to Golgi trafficking (Sacher et al., 1998; Sacher et al., 2001; Barrowman 

et al., 2010). TRAPPII contains the same core of 7 subunits and 3 additional, unique 

subunits for its distinct and poorly-understood role in intra-Golgi and endosome to TGN 

trafficking (Sacher et al., 2001; Barrowman et al., 2010). TRAPPIII is the most recently-

discovered version of the complex, which contains the subunit core with an additional 

subunit, Gsg1, which confers a unique function for this complex in autophagy (Lynch-

Day et al., 2010; Barrowman et al., 2010). A single TRAPP complex exists in metazoans 

and seems to play a critical role in ER-Golgi and intra-Golgi traffic as well as Golgi 

biogenesis (Barrowman et al., 2010). Consistent with a potential role in tethering, TRAPP 
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was shown to bind COPII vesicles (Sacher et al., 2001) and this function was required for 

COPII vesicle association with the Golgi in in vitro assays (Cai et al., 2007b). Extensive 

architectural and structural studies have made TRAPPI and TRAPPII some of the best-

understood putative tethering factors (Kim et al., 2006; Cai et al., 2007; Yip et al., 2010). 

Although these studies presented a model for how TRAPP-mediated tethering might 

occur through identification of the binding surfaces for the opposing compartments, a 

mechanistic picture for COPII vesicle tethering has not been demonstrated 

experimentally (Brunet and Sacher, 2014; Kim et al., 2006; Yip et al., 201). 

The TRAPP complexes are unique among tethering factors in that they function 

as a GEF as opposed to a Rab GTPase effector. Some of the earliest studies on 

TRAPPI/II revealed their role as GEF for the GTPase Ypt1, while the mammalian 

TRAPP complex has GEF activity toward its homolog, Rab 1 (Wang et al., 2000; Sacher 

et al., 2001; Yamasaki et al., 2009). TRAPPII was also proposed to function as GEF for 

Ypt31/32 at the TGN, but this role has been debated (Jones et al., 2000; Morozova et al., 

2006; Wang et al., 2002). Structural studies on the TRAPPI complex elegantly assigned 

the GEF activity to a core of 4 subunits common to both TRAPPI and TRAPPII (Kim et 

al., 2006). However, much still remains to be understood about the role of TRAPP in 

activating Ypt1 (Rab1) and the timing of these events relative to vesicle delivery, the 

function of the coiled coil tethers at the Golgi, and recruitment of SNARE regulatory 

machinery (Kim et al., 2006). Given that the TRAPP complexes are not known to interact 

with SNAREs or SM proteins and clearly function as GEFs rather than Rab effectors, it 
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begs the question whether they are in fact tethers and if they function by a similar 

mechanism as other MTCs. 

 

 

CATCHR family of tethering complexes 

Four putative MTCs, namely COG, Dsl1, GARP, and exocyst, are grouped in a 

family termed Complexes Associated with Tethering Containing Helical Rods 

(CATCHR) (Yu and Hughson, 2010). Despite a low level of sequence homology among 

all of the subunits of this family, a striking structural similarity among these proteins has 

emerged that is suggestive of divergent evolution (Munson, 2009; Yu and Hughson, 

2010; Koumandou et al., 2007; Munson and Novick, 2006; Whyte and Munro, 2001). 

The crystal structures for 12 of the 23 subunits of this family, though from different 

species and MTCs, all share a remarkably similar fold with contiguous helical bundles 

packed together into extended legs (Cavanaugh et al. 2007; Dong et al. 2005; Fukai et al. 

2003; Hamburger et al. 2006; Jin et al. 2005; Moore et al. 2007; Mott et al. 2003; Ren et 

al. 2009; Richardson et al. 2009; Sivaram et al. 2006; Tripathi et al. 2009; Wu et al. 2005; 

Munson and Novick, 2006; Perez-Victoria et al., 2010; Vasan et al., 2010). Furthermore, 

the subunits and regions of subunits yet to be crystallized are predicted to contain the 

same helical fold (Croteau et al., 2009). Not surprisingly, these complexes share a 

number of other structural and functional features as well, which will be discussed below. 

It is of great interest to determine whether, given the pronounced structural similarity of 

the subunit building blocks, these complexes assume similar quarternary structures or 

whether their unique subunit composition leads to a unique structure ideally suited for 

their particular trafficking pathway. 
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COG complex: 

The Conserved Oligomeric Golgi (COG) complex was identified nearly 

simultaneously in several different model organisms, but finally converged on the name 

COG when these complexes were confirmed to be the same, stable, 8-subunit entity 

(VanRheenen et al., 1998; Walter et al., 1998; Suvorova et al., 2001; Whyte and Munro, 

2001; Ungar et al., 2002). COG localizes to the Golgi in both yeast and mammalian cells, 

and plays a required role in retrograde Golgi trafficking and maintenance of glycosylation 

enzyme homeostasis among Golgi cisternae (Miller and Ungar, 2012; Willett et al., 

2013b). 

COG contains 8 different subunits called Cog1-Cog8 and early electron 

microscopy (EM) studies suggested that these subunits are arranged into two distinct, 4-

subunit lobes (Ungar et al., 2002). This model was supported by the fact that one group 

of subunits, Cog1-4, are known to be essential, whereas deletion of Cog5-8 has virtually 

no phenotype, so it was thought that these two functional units were spatially separated 

within the complex (Whyte and Munro, 2001; Ungar et al., 2002; Oka et al., 2005). 

However, extensive architectural characterization of the mammalian complex later 

revealed the connectivity of the subunits and that COG architecture was a bit more 

complex than the 2-lobe model. Instead it seems that two heterotrimers of subunits 

Cog2,3,4 and Cog5,6,7 are connected through the pair of subunits Cog1 and Cog 8 

(Ungar et al., 2005). Furthermore, negative stain EM provided elegant support for this 

architecture and marked subunit positions and binding sites for key interacting partners 
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within the 3-dimensional structure of the Cog1-4 group bound to Cog8 (Lees et al., 

2010). 

COG participates in a multitude of weak interactions, which has led to the 

hypothesis that it may perform multiple roles at the vesicle tethering stage of Golgi 

trafficking. Additionally, several of the subunits appear to function as “hubs” for 

interactions with specific families of partners (Willett et al., 2013b). Consistent with the 

theme of tether-Rab GTPase interactions, COG subunits interact with the yeast Golgi 

Rabs Ypt1 (Rab1) and Ypt6 (Rab6), and a plethora of other Rab GTPases in mammals 

(summarized in Willett et al., 2013b). COG also specifically binds COPI-coated vesicles 

which, along with Rab interactions, may be how COG recognizes Golgi retrograde 

vesicles (Ram et al., 2002; Suvorova et al., 2002; Zolov et al., 2005). Interestingly, COG 

interacts with coiled coil tethering factors, including Uso1 (p115), suggesting that these 

tethers may work together to sequentially provide long-range and shorter range vesicle 

capture functions at the Golgi (Sohda et al., 2007; Willett et al., 2013b). Finally, the COG 

complex is one of the best characterized MTCs for its interactions with SNARE proteins; 

through these interactions, COG has been proposed to not only direct the localization of 

some Golgi SNAREs but also may stabilize and proofread assembled SNARE complexes 

(Willett et al., 2013a,b; Fotso et al., 2005; Oka et al., 2004; Shestakova et al., 2007). This 

function is likely coordinated with another interacting partner, the SM protein Sly1 

(Laufman et al., 2009; Willett et al., 2013a).  

Recent studies in mammalian cells demonstrated that targeting COG subunits to 

the mitochondria was sufficient to re-direct SNARE-containing, intra-Golgi vesicles as 
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well (Willett et al., 2013a). These studies provide strong evidence for COG as a spatial 

landmark for its SNARE binding partners and COPI vesicle fusion, as well as potentially 

serving as a scaffold for vesicle tethering activity (Willett et al., 2013a). However, given 

that COG’s extensive network of interacting partners (including coiled coil tethering 

proteins) is present in the cell cytoplasm, in vitro reconstitution assays are required for 

definitively determining that COG is the tethering factor in these pathways. 

 

Dsl1 complex: 

The Dsl1 complex is the smallest CATCHR with only 3 subunits: Dsl1, Tip20, 

and Dsl3/Sec39, which are all encoded by essential genes (Kraynack et al., 2005; Spang 

et al., 2012). Dsl1 is highly conserved and plays an essential role in retrograde trafficking 

of COPI vesicles from the Golgi to the ER (Andag et al., 2001; Kamena and Spang, 

2004; Kraynack et al., 2005; Reilly et al., 2001; Sweet and Pelham, 1993; VanRheenen et 

al., 2001; Zink et al., 2009). Dsl1 is known to localize to the ER through physical 

interactions with the SNARE proteins, which are also critical for its putative tethering 

function (Kraynack et al., 2005; Tripathi et al., 2009). Due to its less complex 

architecture, Dsl1 has been more thoroughly characterized at a structural level than other 

CATCHR MTCs with nearly complete crystal structures available for the subunits. These 

structural and biochemical studies revealed a clear model for how the subunits assemble 

together, with Dsl1 being the central link between Tip20 and Sec39 (Tripathi et al., 2009; 

Ren et al., 2009). 

Despite its simpler structure, numerous known binding partners make Dsl1 the 

likely orchestrator of vesicle tethering, uncoating, and fusion at the ER membrane. The 
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central subunit, Dsl1, is proposed to capture COPI vesicles through binding directly to 

two subunits of the COPI coat complex (Andag et al., 2001; Andag et al., 2003; Zink et 

al., 2009). An additional interaction between Tip20 and the COPI coat was also 

identified, so it is unclear whether these subunits serve redundant roles in vesicle 

recognition (Diefenbacher et al., 2011). Interestingly, the Dsl1 binding sites on these 

COPI coat proteins overlap with coat complex interaction sites, which are required for 

stabilizing the coat itself, suggesting that Dsl1 binding may first tether and then 

destabilize the vesicle coat (Zink et al., 2009). The other potential membrane attachment 

point for vesicle tethering likely involves ER SNARE protein binding. The Dsl1 complex 

binds to the ER SNAREs Sec20 and Use1 as well as to assembled ER SNARE 

complexes, which may be used for anchoring the complex during tethering and for 

stabilizing or promoting SNARE complex assembly respectively (Ren et al., 2009). 

Importantly, a direct role for Dsl1 in both tethering and vesicle uncoating has yet to be 

tested experimentally. It is also interesting to note that, unlike most of the MTCs, no Rab 

GTPase is known to interact with Dsl1, though many have speculated whether a GTPase 

may be important during vesicle uncoating (Spang et al., 2012). 

 

GARP complex: 

Golgi-associated retrograde protein (GARP) is the four-subunit MTC localized at 

the TGN, which is required for retrograde trafficking between the endosome and the 

TGN (Bonifacino and Hierro, 2010). All four GARP subunits (Vps51, Vps52, Vps53, 

and Vps54) were originally identified in S. cerevisiae but are also required in higher 

eukaryotes as depletion of any of the subunits results in embryonic lethality in mice and 
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Arabidopsis thaliana (Conibear and Stevens 2000; Conibear and Stevens ,2003; 

Siniossoglou et al., 2001; Siniossoglou et al., 2002; Perez-Victoria et al. 2008; Liewen et 

al., 2005; Perez-Victoria et al., 2008; Schmitt-John et al., 2005; Lobstein et al., 2004; 

Guermonprez et al., 2008). The structures of two subunits, human Vps53 and S. 

cerevisiae Vps54, were solved by x-ray crystallography revealing the characteristic 

CATCHR fold of contiguous helical bundles (Perez-Victoria et al., 2010; Vasan et al., 

2010); but knowledge of the overall structure of GARP has largely lagged behind the 

other CATCHR MTCs. Interestingly, biochemical analyses revealed an essential role for 

the N-termini of GARP subunits in maintaining overall complex assembly, which is 

another theme among CATCHR complexes that is beginning to emerge (Perez-Victoria 

et al., 2008; Siniossoglou et al., 2002; Quenneville et al., 2006; Perez-Victoria  et al., 

2010; Perez-Victoria et al., 2009; Munson and Novick, 2006; Yu and Hughson, 2010). 

Additionally, a recently-identified alternative version of this complex called Endosome-

associated retrograde protein (EARP) complex, highlighted the role for Vps54 in TGN 

localization. EARP contains 3 GARP subunits with Vps54 replaced by syndetin, a 

modification which is sufficient to localize EARP to the recycling endosome in 

mammalian cells rather than the TGN and confer a unique endocytic recycling function 

(Schindler et al., 2015). 

A number of known interacting partners are some of the few clues as to GARP 

function, given the lack of structural information for the complex as a whole. Vps53 and 

Vps54 bind endosomal retrograde vesicles destined for the TGN, but the protein or lipid 

contacts on these vesicles have yet to be identified (Quenneville et al., 2006; Perez-
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Victoria et al., 2009; Vasan et al., 2010). As a tether, GARP must also physically interact 

with the TGN membrane and it does so through interactions with activated Ypt6 (Rab6) 

(Siniossoglou et al., 2001; Siniossoglou et al., 2002). GARP also binds another TGN-

localized GTPase called Arl1, which does not seem to be required for GARP localization 

but rather for some unknown modulation of its function (Panic et al., 2003). Furthermore, 

GARP interacts with endosome-TGN pathway SNARE proteins including Tlg1, 

Syntaxin6, Syntaxin 16, and VAMP4 as well as assembled SNARE complexes (Perez-

Victoria et al., 2009). Although the function of GARP-SNARE interactions is not well 

understood, depletion of GARP subunits results in mislocalization of SNAREs and 

reduced levels of assembled SNARE complexes suggesting a potential role in stabilizing 

SNARE complexes (Perez-Victoria et al., 2009). In summary, it remains to be tested 

whether these interactions underlie GARP’s putative role as a vesicle tether or suggest 

additional functions. Given that depletion of a number of golgin coiled coil proteins also 

disrupts endosome to TGN trafficking, it is likely that there is some redundancy in 

tethering in this pathway and GARP may be essential for additional reasons (Reddy et al., 

2006; Derby et al., 2007; Lieu et al., 2007; Lieu et al., 2010; Goud and Gleeson, 2010). 

 

Exocyst complex 

The putative CATCHR MTC for exocytosis, and focus of this dissertation, is 

called the exocyst complex. The composition of the exocyst is highly conserved in 

eukaryotic systems, with eight different subunits Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, 

Exo70, and Exo84, each found at single copy in the complex (TerBush et al., 1995; 

TerBush et al., 1996; Guo et al., 1999; Hsu et al., 1996). Six of the eight subunits were 
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identified in the original S. cerevisiae screen for secretory mutants and all but SEC3 are 

essential genes in yeast (Novick and Schekman, 1980; Finger et al., 1997; Haarer et al., 

1996; Wiederkehr et al., 2004). Since the identification of the complex, budding yeast has 

proven to be a powerful tool for elucidating functional and structural information about 

the exocyst complex. Moreover, homologues of all the subunits exist in both unicellular 

and multicellular eukaryotes and the essential role for the complex in growth and 

development is conserved as well. Null mutants in a number of exocyst subunits result in 

early lethality in both mice and Drosophila indicating a critical role in development 

(Friedrich et al., 1997; Murthy et al., 2003; Murthy et al., 2005). 

Exocyst assembly and architecture: 

As for other members of the CATCHR family, the available crystal structures of 

exocyst subunits display a common motif of tandem helical bundles that form extended 

rod-like structures (reviewed in Munson and Novick, 2006). Biochemical studies predict 

that the subunits may pack together in a side-by-side manner in the assembled 

holocomplex (Fig. 1.5, Munson and Novick, 2006) and that the N-termini of exocyst 

subunits, which have not been amenable to structural characterization, are important for 

intra-complex stability (Dong et al., 2005; Croteau et al., 2009; Shen et al., 2013). 

Although the exocyst subunits share structural homology, their surfaces are characterized 

by unique hydrophobic and electrostatic patterns (Sivaram 2006). This diversity of 
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the ~850 kDa size of the complex, disassembly may remove the exocyst as an obstacle 

for vesicle fusion and/or facilitate recycling of the complex.  

Early biochemical experiments discovered that the eight unique polypeptides of 

the exocyst form a high molecular weight complex (TerBush et al., 1996; Guo et al., 

1999b; Hsu et al., 1996; Hsu et al., 1998). Differential centrifugation, cell fractionation, 

and immunofluorescence experiments in both yeast and higher eukaryotes indicated that 

the exocyst subunits are found primarily as a single complex, with both cytosolic and 

plasma membrane pools (TerBush et al., 1996; Hala et al., 2008; Guo et al. 1999a; 

TerBush et al., 1995; Grindstaff et al., 1998; Bowser et al., 1992; Morgera et al., 2012). 

This observation is consistent with the localization of all of the exocyst subunits to sites 

of polarized secretion at the bud tip and mother-bud neck in yeast, and polarized sites of 

membrane expansion in plant and animal cells (Vega and Hsu, 2001; Grindstaff et al., 

1998; Blankenship et al., 2007; Bryant et al., 2010). However, these results are 

inconsistent with the prevailing model where a subset of yeast exocyst subunits associate 

with secretory vesicles while others associate with the plasma membrane prior to 

complex assembly and vesicle tethering (Boyd et al., 2004) (Fig. 1.6a).  

The existence of subcomplexes or monomeric free pools would lead to a greater 

array of functional possibilities and mechanisms for exocyst regulation. Although the 

exocyst subunits predominantly co-migrate when examined by centrifugation and gel 

filtration studies, the broad distributions and trailing peaks for some exocyst subunits 

suggested that some of the subunits may exist in free pools outside of the complex (Guo 

et al., 1999; Morgera et al., 2012). Localization studies in Drosophila melanogaster 
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indicate that specific exocyst subunits exhibit unique localization patterns during 

oogenesis, development and adulthood, suggesting that the subunits might not always 

function as a single entity (Murthy et al., 2005). Additionally, recent imaging studies in 

the growing hyphae of Neurospora crassa suggest that subsets of exocyst subunits 

associate with vesicles at the Spitzenkörper, whereas another subset localizes to the 

apical membrane (Riquelme et al., 2014).  

Cell fractionation studies in mammalian cells provide the strongest evidence for 

subcomplexes. Ral GTPases function in trafficking, but are unique to metazoan systems. 

Activated RalA and RalB are associated with secretory vesicles (Bielinski et al., 1993) 

and each binds to two exocyst subunits: Sec5 and Exo84, which are predicted to be in 

separate subcomplexes by cell fractionation (Moskalenko et al., 2003; Moskalenko et al., 

2002). Recent studies also showed that Ral GTPases interact with Exo84 and Sec5 in 

distinct subcellular locations (Hazelett et al., 2011; Bodemann et al., 2011). It seems 

likely that there would be a greater need for functional subcomplexes in mammalian 

systems, where different combinations of subunits could respond to a complex array of 

signals. 

Despite a number of studies suggesting that subcomplexes of exocyst subunits 

exist, isolating them and defining their composition has proven challenging, possibly due 

to weak pairwise interactions between the subunits (Dong et al., 2005; Sivaram et al., 

2006). Weak interactions are likely to be functionally important for cooperative assembly 

and disassembly of the complex. More sensitive quantitative techniques for detection of 

these subcomplexes, as well as robust activity assays, will be important for determining 
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their physiological relevance. Furthermore, identification of specific mutants that disrupt 

intra-exocyst interactions is required to tease apart the functions of individual subunits, 

the complex as a whole, and to understand which subunits are critical for stabilization of 

exocyst structure. 

Very little information is available regarding the overall architecture of the 

exocyst complex and how the 8 subunits assemble together. Work using yeast two-hybrid 

analyses, immunoprecipitation, and in vitro binding studies with recombinant proteins 

identified weak pairwise binding interactions among the subunits of the exocyst 

(reviewed in Munson and Novick, 2006 and Liu and Guo, 2011; Katoh et al., 2015) (Fig. 

1.5). Structural and biochemical studies of the holocomplex remained an outstanding 

challenge for the field, to achieve an understanding of how the subunits are pieced 

together, and details of assembly and disassembly of the complex (See Chapter 2). 

Moreover, it will be interesting to see if these mechanisms are conserved across all 

eukaryotes. 

Exocyst localization and activation: 

Consistent with its required role in polarized vesicle exocytosis, the exocyst is 

concentrated at limited regions of the plasma membrane, where it mediates the delivery 

of lipids and proteins necessary for polarized membrane growth. In S. cerevisiae, these 

sites are the tip of the growing bud and the mother-bud neck during cytokinesis (He and 

Guo, 2009). Similarly, the Schizosaccharomyces pombe exocyst is localized at growing 

cell poles and the division septum during membrane scission (Wang et al., 2002; 

Bendezu et al., 2012). Studies in Drosophila and mammalian neurons indicate that the 
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exocyst is found at the ends of neuronal growth cones during neurite branching, as well 

as at sites of synaptogenesis (Hazuka et al., 1999; Mehta et al., 2005; Lalli et al., 2005). 

Cell-cell contact sites in polarized epithelial cells and the leading edge of cell motility 

processes are also sites of exocyst concentration (reviewed in Hertzog and Chavrier, 2011 

and Liu and Guo, 2012). Data is rapidly emerging about the role of the exocyst in plants, 

where the complex localizes to the growing ends of pollen tubes, root hair tips and the 

cell plate for division (Hala et al., 2008; Fendrych et al., 2010). Recently, the exocyst was 

shown to localize to the apical membrane and Spitzenkörper in the rapidly growing 

hyphal tips of Neurospora crassa (Riquelme et al., 2014).  

How the exocyst is recruited and maintained at polarized sites is a critical 

question, and one that has been the focus of much effort since the complex was 

identified. Early studies in budding yeast implicated the exocyst subunit Sec3 as a spatial 

landmark for exocytosis, as the localization of Sec3-GFP appeared unaffected by 

disruptions of the secretory pathway, actin, and cell cycle proteins (Finger et al., 1998). 

Immunofluorescence of endogenous Sec3 called this result into question, however, and 

later reports demonstrated that Sec3 is not sufficient to target and/or retain exocyst 

complexes at sites of secretion (Roumanie et al., 2005; Zhang et al., 2005; Songer et al., 

2009; Bendezu et al., 2012). Consistent with exocyst localization being dependent on 

secretion and polarized actin, live imaging and fluorescence recovery after 

photobleaching (FRAP) analyses suggested that six of the eight exocyst subunits arrive at 

polarized sites on vesicles via transport on actin cables (Boyd et al., 2004) (Fig. 1.6a). 

Sec3 and Exo70 were the exceptions in that Sec3-GFP seemed to localize independently 
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of these mechanisms and Exo70-GFP appeared to use both vesicle-independent and -

dependent routes to polarized sites. The model proposed that exocyst subunits arrive on 

vesicles and assemble with Exo70 and Sec3 at the plasma membrane (Fig 1.6a), although 

it is not clear whether the rest of the subunits would arrive individually or already 

assembled together. Alternatively, consistent with a lack of definitive subcomplexes in 

yeast, the exocyst complex may arrive fully assembled on vesicles where plasma 

membrane binding is mediated by Sec3 and Exo70 (Fig. 1.6b). However, it has been 

challenging to detect a pool of exocyst complex in association with secretory vesicles, 

potentially due to a weak interaction or because only a small fraction requires vesicular 

transport to polarized sites. A third possibility is that exocyst complex is concentrated at 

polarized secretion sites and it participates in numerous vesicle tethering/fusion events 

without the need for vesicular delivery or recycling (Fig 1.6c). The data supporting each 

Fig 1.6: Hypothetical models for exocyst-mediated vesicle tethering in yeast. (a) According to the Boyd et al. 
model, a subset of exocyst subunits associates with secretory vesicles via one or more binding partners (black 
spheres) and assembles with Sec3 and Exo70 at the plasma membrane, effectively driving tethering. (b) Exocyst 
complexes may arrive fully assembled to the plasma membrane where Sec3 and Exo70 will mediate binding to the 
plasma membrane. (c) Exocyst complexes are anchored to polarized sites on the plasma membrane via Exo70 and 
Sec3 and wait for incoming vesicles to tether. 
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of these models remains to be reconciled and it is important to determine whether exocyst 

assembly/disassembly are required for the tethering and targeting of vesicles. It seems 

likely that exocyst disassembly or conformational changes must follow to initiate another 

round of vesicle fusion, but there is no direct evidence yet to suggest whether this 

occurs in vivo. 

Exocyst association with the membrane, regardless of the models proposed in Fig. 

1.6, depends upon the subunits Exo70 and Sec3. Both subunits are effectors for Rho 

GTPases, which are master cell polarity regulators that are localized to the plasma 

membrane and are critical in polarizing the actin cytoskeleton for vesicle delivery. The 

yeast Sec3 N-terminal domain interacts with Rho1, Cdc42 and PI(4,5)P2, while Exo70 

binds Rho3, Cdc42 and PI(4,5)P2 (Baek et al., 2010; Yamashita et al., 2010; Wu and 

Brennwald, 2010; He et al., 2007; Adamo et al., 2001; Adamo et al., 1999; Guo et al., 

2001; Zhang et al., 2001; Robinson et al., 1999). The GTPase interactions of Exo70 are 

conserved, as mammalian Exo70 interacts with the Rho protein TC10 (Inoue et al., 

2003). Elegant genetic studies in S. cerevisiae revealed that exocyst interactions with 

Cdc42 and the other Rho GTPases serve an exocytosis-specific function separate from 

their role in establishing cell polarity (Adamo et al., 2001; Adamo et al., 1999). 

Furthermore, these studies identified partial redundancy between Exo70 and Sec3 in their 

interactions with the Rho GTPases, but that Exo70 is the primary effector for Cdc42 

(Roumanie et al., 2005; Wu et al., 2010) consistent with Sec3 being the only non-

essential exocyst subunit (Haarer et al., 1996; Finger et al., 1997; Guo et al., 2001). 
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Interestingly, Rho-binding defective exocyst mutants can be rescued by GTP-

hydrolysis deficient versions of the Rho GTPases, suggesting that the GTPase cycle is not 

required for their exocytosis-specific functions (Roumanie et al., 2005). Small GTPases, 

such as Cdc42, function both through GTP hydrolysis and hydrolysis-independent 

mechanisms. Commonly, molecular recognition and timing events that require binding 

and release of effectors require hydrolysis of GTP; for example, the Sec4 interaction with 

the exocyst requires this function (see below). Hydrolysis-independent mechanisms are 

proposed to be allosteric regulatory events, where binding of the GTPase activates the 

binding partner through a conformational change (Wu et al., 2008). Since exocyst 

interactions with Rho appear to fit this allosteric model, it is possible that these 

interactions function primarily to activate the exocyst at polarized sites, potentially to 

accelerate SNARE complex assembly for vesicle fusion. 

Because Rho GTPase interactions are not critical for polarized exocyst 

localization, phospholipid interactions may provide this function. sec3ΔN mutants 

crossed to exo70 mutants defective in binding to PI(4,5)P2 are severely growth defective 

or synthetically lethal in yeast, indicating possible redundant functions for these subunits 

in stabilizing exocyst localization through lipid binding (Zhang et al., 2008; Hutagalung 

et al., 2009; Pleskot et al., 2015). Furthermore, mutations in yeast MSS4, the kinase that 

produces PI(4,5)P2, cause diffuse exocyst localization (He et al., 2007). Mammalian 

Exo70 is also dependent on PI(4,5)P2 binding for localization and the residues involved 

in this interaction constitute the most conserved domain on the protein (Liu et al., 2007). 

Plant Exo70 isoforms are also predicted to bind phospholipids (Zárský et al., 2009). The 
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lipid binding residues in the N-terminal region of Sec3 are also highly conserved among 

Sec3 homologues (Baek et al., 2010). Finally, in addition to phospholipid interactions, it 

is likely that additional factors critical for exocyst localization remain to be identified. 

The yeast sec6 mutant alleles, sec6-49 and sec6-54 result in mislocalization of the 

assembled exocyst complex (Songer and Munson, 2009). The mutations are in regions 

suggestive of protein-protein, rather than protein-lipid, interactions. Therefore, these 

mutants are proposed to be defective in binding to a protein factor that anchors the 

assembled complex at the plasma membrane. 

Vesicle recognition and regulation by other small GTPases: 

Similar to the previously discussed MTCs, the yeast exocyst subunit Sec15 

interacts with the GTP-bound Rab protein Sec4 on vesicles, presumably for specific 

secretory vesicle recognition (Guo et al., 1999, TerBush et al., 1995, Goud et al., 1988) 

(Fig. 1.6). It is not yet known whether the Sec4-GTP-Sec15 interaction only facilitates 

exocyst interaction with vesicles or if it plays an additional role in regulating the 

complex. Furthermore, it is not clear whether the Sec4 interaction with exocyst is direct 

as previous studies relied on crosslinking/co-immunoprecipitation in yeast extract and 

yeast 2-hybrid assays (Guo et al., 1999). Since these early studies, the exocyst has been 

shown to interact with the vesicle SNARE Snc1/2, the Sec4 GEF Sec2, the cell polarity 

factor Sro7/77, and the type V myosin Myo2 in yeast, suggesting that vesicle binding and 

recognition may not be solely mediated by Sec4 (Shen et al., 2013; Medkova et al., 2006; 

Zhang et al., 2005; Grosshans et al., 2006; Jin et al., 2011). Vesicle binding by the 
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exocyst complex has been suggested to be weak or transient, thus novel approaches are 

required to characterize tethering activity (see Chapter 3). 

Exocyst interactions with Rab GTPases are conserved in higher eukaryotes as 

well. In both mammals and Drosophila, Sec15 interacts with the Rab GTPase Rab11; this 

interaction appears to be important for endocytic recycling (Zhang et al., 2004; Wu et al., 

2005; Jafar-Nejad et al., 2005). Additionally, interactions with Rab8 and Rab11 were 

later shown to function in trafficking from the Golgi and recycling endosome to the 

plasma membrane, as well as to the base of the primary cilium during ciliogenesis (Das 

and Guo, 2011). It will be interesting to determine which of these Rab GTPases function 

similarly to Sec4 and what role they may play in regulating exocyst activity. 

The interaction of the GTPase Ral with two different exocyst subcomplexes in 

metazoans may be functionally important for exocyst assembly. The reduction of Ral 

expression results in decreased association of Sec10 with Sec6 (Moskalenko et al., 2002). 

Additionally, release of the Ral-exocyst interactions may be triggered by phosphorylation 

events (Chen et al., 2011), possibly leading to dissociation of the exocyst from vesicles or 

disassembly of the complex. 

Exocyst functions: 

Tethering: 

The exocyst, like most of the other CATCHR MTCs, has numerous interactions 

consistent with a role in vesicle tethering at the plasma membrane, though a direct role in 

tethering has yet to be demonstrated experimentally. Establishing an assay for tethering 
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has been hindered by the challenge of purifying intact exocyst complexes and monitoring 

what is likely to be a transient interaction (Fosmarck et al., 2011; Donovan and Bretscher, 

2015b). It is not known which of the known protein and lipid interacting partners 

described above might contribute to this role and how these interaction sites are spatially 

oriented within the exocyst complex. Additionally, it is unclear whether the 8 exocyst 

subunits are all required for vesicle tethering, maintaining complex assembly, or if they 

contribute to additional functions through the diverse array of partners identified in both 

yeast and metazoans (see Chapters 2 and 3). 

 

SNARE regulation: 

In addition (or alternatively) to tethering, the recognition of exocytic vesicles by 

the exocyst may directly ensure the fidelity of secretion by promoting specific SNARE 

complex assembly. For example, the yeast exocyst subunit Sec6 binds to the exocytic 

plasma membrane SNARE Sec9 (Sivaram et al., 2005) as well as the assembled exocytic 

SNARE complex (Dubuke et al., 2015). The function of this interaction is unclear but 

could be involved in regulation or stabilization of SNARE complex assembly, which is 

an emerging trend among MTCs (Sivaram et al., 2005; Dubuke et al., 2015; Hong and 

Lev et al., 2014). HOPS binds to SNARE complexes, promotes proper vacuolar SNARE 

pairing, and may protect SNARE complexes from disassembly (Starai et al., 2008; 

Kramer and Ungermann, 2011; Baker et al., 2015). Similarly, COG binds to SNAREs 

and increases the stability of intra-Golgi SNARE complexes, possibly preventing 

disassembly and promoting fusion. It is unclear whether COG may have an effect on the 

rate of SNARE complex assembly; Dsl1has a slight stimulatory effect on Golgi to ER 
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SNARE complex assembly in vitro, and GARP promotes the assembly of TGN SNARE 

complexes (Shestakova et al., 2007; Ren et al., 2009; Bonifacino and Hierro, 2011). As 

the mechanistic details for these functions are explored further, it will be interesting to 

discover whether all the tethering complexes function similarly in SNARE complex 

regulation, or if there are interesting organelle-specific (or species-specific) differences. 

As described previously in relation to HOPS and COG, interplay between SM 

proteins and tethering complexes is an important, but poorly understood, mechanism of 

SNARE complex regulation. Consistent with this, we identified an interaction between 

the exocyst subunit Sec6 and the yeast exocytic SM protein Sec1, suggesting a potential 

role for the exocyst in recruiting and/or stabilizing Sec1 at sites of secretion for SNARE 

regulation (Morgera et al., 2012, Appendix G). Together, the exocyst and Sec1 may 

function to spatially and temporally control SNARE assembly. In vitro reconstitution of 

SNAREs with purified exocyst complexes, and other regulators, such as Rab and Rho 

GTPases, Sec1, and Sro7/77, will be necessary to determine the effect of the exocyst on 

SNARE assembly and membrane fusion. 

Cytoskeleton interactions: 

Yeast post-Golgi vesicles are transported from the trans-Golgi network to the 

plasma membrane along actin filaments using the type V myosin motor Myo2. The Rab 

GTPases Ypt31/32 and Sec4 both associate with post-Golgi vesicles and bind to Myo2, 

but not simultaneously, as they exchange during the progression of vesicle transport (Jin 

et al., 2011; Mizuno-Yamasaki et al., 2010). Due to this GTPase shuffling, it seems 

unlikely that Rabs would be the sole interactors maintaining the cytoskeletal connection 
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to the vesicle. Indeed, it was recently shown that the cargo-binding domain of Myo2 is 

structurally homologous to the exocyst subunits (Pashkova et al., 2006) and this domain 

of Myo2 directly binds to Sec15; abrogation of the Myo2-Sec15 interaction leads to 

growth and secretion defects in yeast (Jin et al., 2011). Immunoprecipitation of Myo2 

pulls down other exocyst subunits, suggesting association with the full complex, although 

it is unclear whether this occurs during vesicle transport or upon arrival at sites of 

secretion (Jin et al., 2011). The function of this interaction may be to recruit exocyst 

complexes to vesicles for delivery to polarized sites or potentially for stabilizing Myo2 

association with vesicles (Jin et al., 2011). However, no exocyst mutants identified to 

date specifically disrupt vesicle transport so more specific mutant alleles of Sec15 and 

Myo2 are required to tease apart the functional importance of this interaction. 

In mammalian systems, vesicles are transported from the Golgi by microtubules 

and their associated kinesin motors to cortical actin networks at the plasma membrane 

(Wang and Hsu, 2006). Numerous approaches have demonstrated an interaction between 

the exocyst complex and microtubules; furthermore, Exo70 was shown to inhibit the 

polymerization of tubulin in vitro (Wang and Hsu, 2006). The exocyst or one or more of 

its subunits may play a role as adaptors in the connection of vesicles to microtubules, 

analogous to its proposed role in actin-based transport in yeast. Moreover, it was 

proposed that the exocyst may be needed to release vesicles from microtubules to the 

actin networks (Wang and Hsu, 2006). During cell migration, actin is remodeled to build 

a branched network at the leading edge of cells. Polymerization of these networks is 

nucleated by the Arp2/3 complex (Pollard and Borisy, 2003; Ridley et al., 2003) and  
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several studies indicated a distinct role for Exo70 in binding and regulating Arp2/3 

activity during cell motility (Zuo et al., 2006; Liu et al., 2012). There is no mechanistic 

understanding yet for the role of the exocyst in these processes but, taken together, all of 

these interactions provide important clues that the exocyst may be involved in multiple 

stages of trafficking from vesicle transport up through regulating SNARE complex 

assembly. 

 

Diverse cellular functions: 

In contrast to the traditional view of the exocyst as a simple tether of secretory 

vesicles to the plasma membrane, the complex has been implicated in a great variety of 

cellular processes (Fig. 1.7). The common theme seems to involve exocyst-mediated 

localization of membrane-bound vesicles or compartments to specific target sites at the 

appropriate time. For example, at least three yeast exocyst subunits (Sec3, Sec5, and 

Sec8) have been implicated in ER inheritance, potentially by anchoring the cortical ER at 

the bud tip where the exocyst is localized (Wiederkehr et al., 2003). A later study also 

identified an interaction between yeast Sec6 and Rtn1, a protein important for ER 

reticulation, with Rtn1 potentially serving as an exocyst receptor on the ER (De Craene et 

al., 2006). Several studies implicate the exocyst in prospore membrane formation during 

meiosis in budding yeast (Mathieson et al., 2010; Neiman et al., 1998). 
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In higher eukaryotes, the exocyst subunits are expressed in all tissue types 

analyzed thus far (Hsu et al., 1996). Similar to the phenotype in yeast, exocyst mutants or 

knock-downs in more complex organisms are associated with cell growth and 

developmental defects, as has been shown in mouse, plant, and Drosophila model 

systems (Friedrich et al., 1997; Murthy et al., 2003; Murthy et al., 2005, Zhang et al., 

2010). The function of the exocyst in growth and secretion in many cell types reflects its 
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critical role in tethering and SNARE-mediated fusion of exocytic vesicles. Furthermore, 

as suggested by its bud neck localization in budding yeast, the exocyst also appears to 

direct vesicles to the midbody during cytokinesis in mammalian cells (Gromley et al, 

2005; Neto et al., 2014) (Fig. 1.7b), Drosophila (Giansanti et al., 2015), and plants 

(Rybak et al., 2014) . In addition, the exocyst has been shown to be important for 

endocytic recycling in yeast (Jose et al., 2015; Riezman, 1985), Drosophila (Sommer et 

al., 2005) and animal cells (Fig. 1.7c) (He and Guo 2009, Wilson et al., 2005). Highly 

specialized secretory pathways, such as the insulin-stimulated delivery of the glucose 

transporter Glut4 in adipocytes, also require functional exocyst complexes (Inoue et al., 

2003; Inoue et al., 2006, Sano et al., 2015). 

The exocyst is required for many other types of membrane expansion, including 

ciliogenesis, tubulogenesis and cell migration in mammalian systems (Thapa et al., 2012; 

Hertzog and Chavrier, 2011; Liu and Guo, 2012; Das and Guo, 2011) (Fig. 1.7g,h). Due 

to its promotion of cell growth, cell migration, interactions with Ral GTPases, the exocyst 

Figure 1.7 Exocyst functions in a variety of processes in single- and multi-cellular eukaryotes. (a) The exocyst is 
proposed to form an initial connection between vesicle and target membrane through interactions with proteins 
and lipids on both surfaces. The interactions may bring the vesicle close enough to promote SNARE complex 
formation and vesicle fusion and/or the exocyst may play an active role in regulating SNARE assembly. (b) The 
exocyst localizes to the site of cytokinesis to direct and tether vesicles at these sites, leading to formation of a new 
membrane and facilitating abscission. (c) During polarized secretion, the exocyst tethers both exocytic vesicles 
generated at the Golgi apparatus and vesicles that are being recycled to the plasma membrane from the recycling 
endosome (RE, recycling endosome; EE, early endosome). (d) An invading pathogen mediates its entry into the 
cell by hijacking host cell processes including the exocyst complex, to polarize the cytoskeleton and vesicle 
delivery for membrane ruffling and macropinocytosis. (e) The exocyst colocalizes with IQGAP1 (orange) in 
invadopodia, directing the growth of invasive processes and the delivery of matrix metalloproteinases (MMPs) 
that degrade the extracellular matrix (ECM). (f) Exo84 and a possible subcomplex of exocyst subunits interact 
with autophagosome induction machinery (blue), promoting the formation of the autophagosome. The exocyst 
may function to tether vesicles or tubules to each other leading to the production of this compartment. (g) The 
exocyst interacts with lipids and proteins to localize to the leading edge of migrating cells, promoting the 
outgrowth of the leading edge and delivering focal adhesion (blue) components recycled from the rear. (h) The 
exocyst directs membrane and protein delivery to the ciliary base to promote ciliogenesis and the BBsome 
complex shuttles proteins into the cilium beyond the diffusion barrier. (Adapted from Heider and Munson, Traffic 
2012). 
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has been linked with cancer progression and metastasis (Hertzog and Chavrier, 2011; 

Camonis and White, 2005). In one example, the secretion of matrix metalloproteinases 

(MMPs) in tumor cell invadopodia requires exocyst-mediated exocytosis (Sakurai-Yageta 

et al., 2008; Liu et al., 2009; Ren and Guo, 2012; Yamamoto et al., 2013)(Fig. 1.7e). 

Furthermore, the exocyst-mediated exocytic pathway has also been shown to play a role 

in bacterial pathogenesis; the exocyst is co-opted by the bacteria Salmonella to promote 

its invasion of intestinal epithelial cells (Nichols and Casanova, 2010) (Fig. 1.7d). The 

exocyst also has roles in host survival responses in numerous species; several studies 

have linked exocyst function to various aspects of the innate immune response (Chien et 

al., 2006; Ishikawa et al., 2009; Zárský et al., 2013; Stegmann et al., 2014; Guichard et 

al., 2014). 

Another interesting facet to exocyst function was discovered through the study of 

the involvement of the GTPase RalB in autophagosome biogenesis (Bodemann et al., 

2011) (Fig. 1.7f). This study proposed that RalB triggers its exocyst binding partner 

Exo84 to serve as a platform for the assembly of the autophagy induction complex and 

vesicle formation machinery. A more recent study in Arabidopsis revealed a role for the 

exocyst in targeting autophagosomes to the vacuole as well (Kulich et al., 2013). It will 

be interesting to see whether the exocyst’s role in autophagy is yet another aspect of its 

tethering/membrane fusion activities, or truly a novel function for some of its subunits as 

a scaffold for autophagy induction machinery. 

In contrast to these various roles for the exocyst, several secretory processes 

appear not to be dependent on wild-type levels of exocyst function. 
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In Schizosaccharomyces pombe for example, severely reduced levels of Sec8 protein 

blocked septum cleavage with only a modest effect on cargo secretion and no significant 

effect on polarized growth (Wang et al., 2003). It is possible that exocyst function is rate-

limiting during cytokinesis and not growth, but recent results suggested the presence of 

parallel actin-dependent and exocyst-dependent secretory pathways in S. 

pombe (Bendezu et al., 2011). Additionally, Drosophila Sec5 mutants suggested a 

requirement for the exocyst during neuronal development, but not for synaptic vesicle 

fusion (Murthy et al., 2003). This specialized system may have evolved additional 

mechanisms to mediate the fine-tuned release of synaptic vesicles. However, Sec8 was 

found on purified mammalian synaptic vesicles, so it is possible that the exocyst could be 

required for synaptic transmission in other animals (Takamori et al., 2006). 

The exocyst complex is tied to a vast array of cellular processes and this diversity 

may be aided in part by the large number of subunits each with their unique surface 

properties and binding partners. Additionally, post-translational modifications such as 

phosphorylation are emerging as mechanism by which exocyst function is regulated in 

different cell types and situations (Luo et al., 2013; Ren and Guo, 2012; Chen et al., 

2011). Alternative splicing is another means of modulating exocyst function and several 

Exo70 splice variants were shown to possess unique functions, particularly with regard to 

actin polymerization (Lu et al., 2013). In multicellular eukaryotes, some exocyst subunits 

contain several paralogues, which may allow for functional diversification. In plants, 

Exo70 is highly diversified with several dozen duplications per genome in Arabidopsis 
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thaliana and some of these paralogues are proposed to possess unique functions in certain 

plant cell types (Cvrčková et al., 2012; Wang et al., 2010). 

Summary: 

 Early genetic and biochemical experiments laid the foundation for our 

understanding of exocyst as an essential, evolutionarily conserved factor that functions 

just upstream of exocytic SNARE assembly and vesicle fusion. We now know that the 

exocyst functions at the center of a complex network of protein and lipid interactions and 

its role extends far beyond basic cellular growth and secretion (Heider and Munson, 

2012).  However, despite nearly two decades of research in yeast and higher eukaryotic 

systems, these studies have yet to shed light on the specific, definitive role of the exocyst 

in these pathways. Structural studies are essential to making mechanistic predictions 

about the function of the holocomplex, the roles for each of the 8 subunits, and the 

requirement for dynamic assembly and disassembly of exocyst subunits (see Chapter 2). 

However, the size, complexity, and presumed instability of the exocyst have impeded 

such biochemical and structural studies over the years (TerBush et al., 2001). For similar 

reasons, in vitro activity assays have been challenging to implement; since in vivo 

disruption of the exocyst provides only limited phenotypic insight, in vitro studies are 

critical to dissecting the function of the exocyst and its partners (see Chapter 3). With 

recent advancements in purification and structural techniques for large protein complexes 

as well as quantitative, high resolution imaging techniques, we are in a fortunate position 

to begin answering many of these open questions about exocyst and its related MTCs. 
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CHAPTER II: Subunit connectivity, assembly 
determinants, and architecture of the yeast exocyst complex 
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Significant background and experimental rationale: 

Similar to other tethering factors, the exocyst is a peripheral membrane protein 

complex that interacts with numerous GTPases, SNAREs, phospholipids, and the vesicle 

transport motor Myosin V (Heider and Munson, 2012; Yu and Hughson, 2010; Jin et al., 

2011; Munson and Novick, 2006). The exocyst is proposed to interact with vesicles 

through Sec15 binding to the Rab GTPase Sec4 and Myosin V, as well as Sec6 binding 

the v-SNARE Snc (Guo et al., 1999; Jin et al., 2011; Shen et al., 2013). On the target 

membrane side, both Sec3 and Exo70 interact with Rho GTPases and PI(4,5)P2 (Wu et 

al., 2008; Wu et al., 2010; He et al., 2007; Zhang et al., 2008; Baek et al., 2010), and 

Sec6 may interact with an as yet unidentified “anchor” factor at the plasma membrane 

(Songer and Munson, 2009). It is through this myriad of connections that the exocyst is 

predicted to selectively capture secretory vesicles and tether them to the plasma 

membrane. A current model for exocyst function proposes that a subcomplex of exocyst 

subunits in S. cerevisiae is carried on vesicles to another subcomplex at the plasma 

membrane, and that assembly of these together drives vesicle tethering (Boyd et al., 

2004), although this model has not yet been validated biochemically, nor have the 

putative subcomplexes been identified. Whether regulated assembly of the exocyst is 

required for tethering and SNARE complex regulation in yeast or other organisms, and if 

these mechanisms differ between different species, are important unanswered questions. 

 Mechanistic models for exocyst function must be informed by the structural 

arrangement of its subunits. Crystal structures of several exocyst subunits reveal a 

strikingly similar motif of contiguous helical bundles that pack together into long rods, 
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classifying it in the evolutionarily conserved Complexes Associated with Tethering 

Containing Helical Rods (CATCHR) family (Yu and Hughson, 2010; Munson and 

Novick, 2006). Numerous pairwise subunit interactions were identified via yeast-2-

hybrid assays, immunoprecipitations, and in vitro binding experiments using recombinant 

and in vitro translated proteins (Munson and Novick, 2006; Katoh et al., 2015). To 

examine the architecture and regulation of assembly of the exocyst, we developed a new 

robust exocyst purification method to reproducibly isolate stable exocyst complexes from 

S. cerevisiae. Using an auxin-inducible degradation system to deplete single subunits, we 

mapped the connectivity of the eight subunits and determined that most of the subunits 

are required for the association of two assembly modules within the exocyst. In contrast, 

depletion of known binding partners had no effect on the assembly status of the exocyst. 

Here we present the first structure of a fully assembled CATCHR MTC—we determined 

the structure of the fully assembled exocyst using negative stain electron microscopy 

(EM) and 2-dimensional averaging. Furthermore, we demonstrate that exocyst complexes 

are stoichiometric, with no detectable subcomplexes; therefore, we propose that the yeast 

exocyst functions predominantly as a fully assembled complex. 
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Results: 

Purification of intact yeast exocyst complexes 

Biochemical and structural studies of the intact exocyst complex were previously 

limited by preparations with poor yield, stability and purity (TerBush et al., 1996; 

TerBush et al., 1995; TerBush et al., 2001; De Craene et al., 2006; Hsu et al., 1998; 

Munson lab unpublished data). In order to answer critical questions regarding the 

architecture of the yeast exocyst complex and its putative assembly dynamics, we 

developed an improved protocol for isolating the entire native complex from yeast extract 

(Oeffinger et al., 2007; Hakhverdyan et al., 2015). In order to maintain endogenous 

expression levels and function, we fused C-terminal Protein-A (PrA) affinity tags onto 

each exocyst subunit individually by integrating DNA encoding PrA at each genomic 

locus, creating eight different tagged haploid Saccharomyces cerevisiae strains (for yeast 

strains used see Appendix E, Table 5.1) The C-terminal PrA tags did not confer growth 

defects (Fig. 2.1a), thus demonstrating that each of the tagged subunits was functional. 

Yeast strains were grown, harvested in log phase as frozen noodles, and lysed using a 

planetary ball mill grinder (see Methods). The lysate powder was resuspended in a 

physiological buffer, bound to rabbit IgG-conjugated magnetic beads, and eluted from the 

beads either by proteolytic digestion, or by denaturation using SDS loading buffer (Fig. 

2.2). Exocyst subunit identities were confirmed by the molecular weight shift of the PrA 

tag on SDS-PAGE (Fig. 2.2), MALDI-MS, and western blot analyses. 
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We isolated intact exocyst complexes from yeast extracts using each of the eight 

subunits as the PrA-tagged purification handle. The eight exocyst subunits co-purify with 

equal stoichiometry by both Coomassie-stained SDS-PAGE and densitometry using 

Krypton fluorescent protein stain (Fig. 2.2, 2.3, and Appendix 5.2), consistent with earlier 

reports (TerBush et al., 

1996; De Craene et al., 

2006). We next asked if 

the complexes purified by 

this method undergo 

disassembly and 

reassembly during the 

purification. When 

Sec10-GFP lysate was 

mixed with either Sec3-

PrA or Exo70-PrA 

Figure 2.2 Purification of intact yeast exocyst complexes. Purified 
complexes were separated by SDS-PAGE and visualized by Krypton 
staining (Thermo Scientific). The asterisk corresponds to the PrA-tagged 
exocyst subunit used as purification handle (shifts the protein molecular 
weight by 25 kDa). Both the Sec3 and Exo84 protein bands often migrate as 
multiple species due to phosphorylation, which appear as slightly smeared 
bands on SDS-PAGE. The resuspension buffer used was 50 mM Hepes pH 
7.4, 300 mM NaCl, plus protease inhibitors. 

Figure 2.1 Characterization of purified yeast exocyst complexes. (a) Yeast strains with C-terminally PrA-tagged 
exocyst subunits show normal growth compared to wild-type (WT) by serial dilution at all temperatures tested. 
PrA-only corresponds to yeast expressing PrA tag alone. (b) Lysate mixing reveals exocyst complexes are not 
disassembling and reassembling during purification. Sec3-PrA or Exo70-PrA lysate powders were each mixed 
individually with lysate powder from Sec10-GFP. Exocyst complexes were subsequently purified from the mixed 
lysates (after 60 min binding at 4°C in 20 mM PIPES pH 6.8, 300 mM KCl) and run on SDS-PAGE for Coomassie 
staining (left) and Western blot (right). GFP antibody also recognizes exocyst PrA tag. Asterisks indicate PrA-
subunit on Coomassie gel. (c) Cryogenic ball mill grinding improves yield and complex integrity. Protein 
concentrations (mg/ml) were measured using BioRad protein assay and all beads were incubated with the same 
total protein in the same volume. Purified complexes were separated by SDS-PAGE and visualized by Coomassie 
staining. (d) Native elution from IgG-beads using a PreScission Protease site engineered between the C-terminus of 
each exocyst subunit and the PrA tag. Sec15-PrA tagged exocyst complexes bound to IgG-beads were incubated 
with PPX for 60 minutes at 4°C to elute native, intact complexes into buffer 20 mM PIPES pH 6.8, 300 mM NaCl 
(sup). IgG-beads were boiled in SDS/DTT loading buffer to release any undigested complexes (bead boil). Heavy 
chain of Rabbit IgG is indicated. 
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lysates, and the exocyst complexes were subsequently purified, no Sec10-GFP was 

detected in either pull-down, indicating that no exchange or assembly of subunits 

occurred during the incubation (1h at 4 C) (Fig. 2.1b), consistent with our previous 

studies (Songer and Munson, 2009). Therefore, the purified complexes represent the state 

of the endogenous complex at the time of cell lysis.  

The improved yield and purity of our exocyst preparations are due to reduced 

proteolysis from cryogenic lysis (Fig. 2.1c) and the use of rabbit IgG-conjugated 

magnetic beads, which has a tight affinity for PrA (Richman et al., 1982; Oeffinger et al., 

2007). Additionally, protease cleavage allowed for increased purity and native elution of 

untagged complexes for structural studies (Fig. 2.1d). Substoichiometric levels of co-

purifying proteins were detected by mass spectrometry and krypton fluorescent protein 

staining, but they appear to primarily be highly expressed, non-specific contaminants or 

previously detected binding partners, including Rtn1 (De Craene et al., 2006). 

Figure 2.3 All exocyst subunits co-purify with equal stoichiometry. Exocyst complexes were purified 
with each subunit as PrA purification handle (two representative handles shown), run on SDS-PAGE, 
and stained with Krypton fluorescent protein stain. Densitometry analysis showed equal stoichiometry 
for all subunits with no excess of purification handle or subsets of subunits, suggesting there are no 
detectable free pools or subcomplexes for any subunits. Error bars indicate SEM (n=3-4 technical 
replicates). 
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We next tested the functionality of our exocyst preparations by western blotting 

for known exocyst interacting partners (Fig. 2.4). The improved yield and rapid, gentle 

purification procedure allowed detection of binding of Sec1, Myo2, and Snc1/2 

(redundant paralogues) to the exocyst. Previous studies revealed an interaction of the 

exocyst subunit Sec6 with both Sec1 and Snc2 (Morgera et al., 2012; Shen et al., 2013) 

and Sec15 with Myo2 (Jin et al., 2011). Here, we show that these proteins can be pulled 

down with tagged exocyst subunits that are not their direct binding partners, suggesting 

that these interactions occur within the context of the assembled complex. 

Figure 2.4 Exocyst complexes purified under physiological conditions interact with known 
binding partners. Exocyst complexes were purified from yeast lysate (using 50 mM Hepes pH 
7.4, 150 mM NaCl as resuspension buffer), run on SDS-PAGE, and western blotted to look 
for co-purification of known exocyst interacting partners when compared to a negative 
control (PrA-expressing strain in (a) and GFP-PrA expressing strain in (b) and (c)). 0.5% 
lysate input samples were run for the Sec1 and Myo2 binding experiments and 0.4% input 
for the Snc binding blot. 100% of bound samples were used in all cases. (a) Sec8-PrA and 
Sec15-PrA were each used as purification handles to co- purify Snc. We blotted our pull-
downs for Exo70 to show that we are pulling down assembled exocyst complexes with Sec8-
PrA and Sec15-PrA. The rabbit antibody reacts with both Exo70 and the PrA tag. (b) Sec6-
PrA was purified and Myo2 binding was detected. (c) Sec8-PrA was purified and Sec1 
binding was detected. There was some bleed over of the GFP-PrA bound lane into the input 
lane of Sec8-PrA. 
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Using Sec15-PrA as the purification handle, we monitored exocyst integrity under 

a variety of pH and salt conditions (Fig. 2.5a). The presence of reducing agents had no 

effect on complex recovery, and the complex was stable across a range of pH solutions, 

in contrast to previous studies (TerBush et al., 2001). Increasing the pH above 8.5 

rendered purified exocyst complexes sensitive to salt concentrations ≥300 mM. Using 

Tris, pH 8.5 and ≥500 mM salt, only Sec15 and Sec10 remained bound together, 

indicating a strong physical interaction between these two subunits, consistent with 

earlier studies (Guo et al., 1999a).  

Figure 2.5 Purified exocyst complexes are stable over a wide range of conditions and are comprised of discrete 
pairwise interactions. (a) Sec15-PrA exocyst complexes were purified using buffers of different pH and KCl 
concentration as indicated and visualized using Coomassie-stained SDS-PAGE (b) Sec15-PrA exocyst complexes 
were purified using 50 mM Hepes pH 7.4, 300 mM NaCl buffer and various commonly used detergents at the 
following concentrations: 0.1% NP-40, 0.1% Tween-20, 1% Triton X-100, 20 mM Sodium cholate. (c) 
Destabilizing buffer conditions were used with each exocyst subunit as PrA purification handle in order to isolate 
subcomplexes and stable subunit pairs. A=20 mM PIPES pH 6.8, 300 mM KCl. B=20 mM Tris pH 8.0, 500 mM 
KCl. C=20 mM Tris pH 8.0, 300 mM KCl, 500 mM Urea. Asterisks correspond to the PrA-tagged subunit.
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The exocyst complex peripherally associates with vesicles and the plasma 

membrane (Bowser et al., 1992). We therefore tested the effect of detergents, particularly 

whether the stoichiometry changes due to the solubilization of membrane-bound 

subcomplexes or disruption of intersubunit interactions. We tested several non-ionic 

detergents including NP-40 (Igepal), Tween-20, and Triton X-100, and none affected the 

overall yield of assembled exocyst or the relative stoichiometry of the subunits (Fig. 

2.5b). In contrast, the exocyst was severely disrupted by sodium cholate, a strong anionic 

detergent. Taken together, these results indicate that varying the ionic strength of the 

resuspension buffer has a pronounced effect on exocyst integrity, suggesting that ionic 

interactions may be a major stabilizing force for intersubunit connections. 

We used our pull-down assay to identify stable intracomplex interactions within 

the endogenous exocyst complex using partially destabilizing buffer conditions with each 

of the eight PrA-tagged exocyst subunits (Fig. 2.5c). Several stable subunit pairs 

emerged: Sec3-Sec5, Sec8-Sec6, and Sec10-Sec15. Neither Exo70 nor Exo84 bound 

tightly to any of the other subunits under these destabilizing conditions. Although several 

of these pairwise interactions had been previously identified (Guo et al., 1999a; Katoh et 

al., 2015; Roth et al., 1998; Wiederkehr et al., 2004), the relative stabilities of the subunit 

pairs compared to other intersubunit interactions were unknown.  

 

Subunit connections and intra-complex assembly determinants 

We applied a more targeted approach to answer additional architectural questions:  How 

are these pairs of subunits assembled into the overall connectivity map of the assembled 
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exocyst? Which of these intersubunit interactions are functionally important for 

maintaining exocyst integrity? Are some subunits more important for interactions with 

binding partners on the plasma membrane and vesicle? We decided to selectively 

eliminate individual exocyst subunits to define their role in maintaining overall complex 

assembly. All exocyst subunits except Sec3 are encoded by essential genes and, 

therefore, cannot be deleted from the yeast genome (Wiederkehr et al., 2004; Haarer et 

al., 1996). We tested the temperature-sensitive (ts) mutants sec3-2, sec5-24, sec6-4, sec8-

6, and sec10-2 using Sec15-PrA as the purification handle and only sec8-6 had a major 

effect on exocyst integrity at the restrictive temperature. These results were difficult to 

interpret, however, as the ts alleles vary in severity and amount of destabilization or 

degradation of the mutant protein. Previous studies using a similar panel of exocyst ts 

mutants showed greater disassembly for several of the mutants than we observed, even at 

the permissive temperature (TerBush et al., 1995). These differences are likely due to 

proteolysis of exocyst subunits during spheroplasting lysis, which destabilizes the 

complex (see Fig. 2.1c). To overcome these challenges, we employed an auxin-inducible 

degradation (AID) system to specifically remove each individual exocyst subunit.  
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 This degron system uses the IAA17 AID sequence from Arabidopsis thaliana, 

which is fused to each exocyst subunit. When co-expressed with OsTIR1, exposure to the 

plant hormone auxin leads to rapid proteosomal degradation of the tagged subunit 

(Nishimura et al., 2009; Nishimura et al., 2014) (Fig. 2.6a). Addition of these tags to the 

C-terminal ends of exocyst subunits conferred no growth defects on their own, but when 

grown on plates containing auxin (Indole 3-acetic acid, IAA), all exocyst-AID strains 

were inviable except for Sec3-AID (Fig. 2.6b). We confirmed rapid and specific IAA-

Figure 2.6 Use of the auxin-inducible degron (AID) system to selectively degrade essential exocyst proteins from 
yeast. (a) Schematic of the AID system. The auxin-inducible degron (AID) tag from Arabidopsis thaliana was 
fused to the C-terminus of exocyst subunits at their genomic locus in yeast strains constitutively expressing 
OsTIR1 (F-box transport inhibitor response 1) protein. Upon treatment with the natural plant hormone auxin 
(IAA=Indole 3-acetic acid), the SCF-OsTIR1 E3 Ubiquitin ligase complex is activated, which then recruits E2 
Ubiquitin ligases for polyubiquitination of the AID-tagged protein. The AID-tagged protein is then rapidly 
degraded by the proteasome (Nishimura 2009, Nishimura 2014). (b) AID-tagged exocyst strains were tested for 
growth by serial dilution growth assay on YPD plates containing the indicated amount of IAA. Suppressor 
colonies can be seen in some dilutions. (c) Degradation of exocyst subunits in these strains was confirmed by 
western blotting lysates from NaOH/SDS lysis. (–) denotes untreated strains and (+) treated with IAA. All subunits 
were degraded to <10-12% of starting protein level. Asterisks indicate the AID-tagged exocyst subunit in blots 
where antibodies also bind non-exocyst subunits.
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induced degradation of individual exocyst subunits in liquid culture by western blot 

analyses of yeast lysates. Each exocyst subunit was degraded to <12% of the starting 

level within 60 minutes of IAA treatment (Fig. 2.6c), whereas the protein levels of the 

remaining subunits were mostly unchanged (Fig. 2.7).  

Figure 2.7 Degradation of one exocyst subunit does not affect the protein levels of the remaining 
exocyst subunits. Exocyst-AID strains were grown in YPD 30°C and treated with IAA for 60 
minutes. Degradation of the AID-tagged exocyst subunit was confirmed by western blot of yeast 
lysates from NaOH/SDS lysis. The protein levels for the remaining subunits were blotted in the same 
strain (same column in the western blot). (–) denotes untreated and (+) treated with IAA. The 
positions of the untagged exocyst subunits are indicated to the left of the blots and the AID-tagged 
subunit is marked with (*). All lysates were blotted for ADH as a loading control. 
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To assess the role of each individual subunit in maintaining the assembly of the 

endogenous exocyst complex, we combined this AID system with our PrA-tag 

purification approach. Genomic C-terminal PrA tags were added to Sec8, Sec15, or Sec6 

in strains already expressing an AID-tagged exocyst subunit and OsTIR1. Two different 

PrA-tag handles were tested for each AID-tagged subunit in order to determine the fate of 

each of the exocyst subunits. Most of the dual-tagged exocyst strains grew normally, but 

Figure 2.8 Exocyst AID/PrA strains are functional and inviable on IAA-containing YPD plates. We 
constructed yeast strains expressing double-tagged exocyst complexes: one subunit with a C-terminal 
AID-tag and another with a C-terminal PrA tag. All tags were integrated at the genomic loci under the 
endogenous promoter. Strains were serially diluted on standard YPD plates or YPD plates containing IAA 
and grown at 30°C. 	
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were inviable on IAA plates, as expected (Fig. 2.8). Surprisingly, Sec10-AID/Sec15-PrA 

showed no growth defect on IAA plates and no loss of Sec10-AID in IAA-containing 

liquid culture; similarly, Sec15-AID was not degraded in combination with PrA-tagged 

exocyst subunits (Fig. 2.9). We speculate that the lack of degradation in these strains may 

be due to masking of the AID tag 

by the 25 kDa PrA tag on a 

neighboring exocyst subunit. 

We purified the exocyst 

complex from both untreated and 

IAA-treated cultures for each 

exocyst-AID-PrA combination 

strain and visualized the 

complexes by Coomassie staining 

and western blots (Fig. 2.10 and 

Fig. 2.11). Surprisingly, the loss 

of Sec5, Sec6, Sec8, Sec10, 

Exo70, or Exo84 resulted in the 

exocyst complex splitting into 

two distinct, stable modules: 

Sec3–Sec5–Sec6–Sec8 (3–5–6–8) 

and Sec10–Sec15–Exo70–Exo84 (10–15–70–84). The results from the different 

combinations of AID and PrA tags are summarized in the table in Fig. 2.10, showing the 

Figure 2.9 Sec15-AID and Sec10-AID did not show depletion in 
combination with several C-terminal Protein-A tagged exocyst 
subunits. (a) Sec15-AID was viable on IAA plates in combination 
with Sec8-PrA and Exo70-PrA. Sec10-AID was viable on IAA 
plates in combination with Sec15-PrA. Strains were serially 
diluted on standard YPD plates or YPD plates containing IAA and 
grown at 30°C. (b) AID strains that were viable on IAA also did 
not show depletion by Coomassie-stained SDS-PAGE and 
exocyst complexes remained fully assembled.
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division of the exocyst structure into two modules. Loss of Sec3 had the least 

destabilizing effect on exocyst complex assembly. Degradation of each of the other 

subunits had distinct effects on its own module, depending on the strength and 

connectivity of its interactions with its partners, but no effect on the integrity of the 

opposing module. 

We found that the individual assembly of each module is predominantly based on 

the association of three stable subunit pairs (3–5, 6–8, and 10–15), instead of requiring 

the cooperative assembly of all four subunits together. If exocyst assembly was 

cooperative, we would expect to observe complete disassembly of all four subunits from 

Figure 2.10 Most exocyst subunits are critical for maintaining the assembly of two 4-subunit modules within 
the full octameric complex. Exocyst complexes were purified using the indicated PrA purification handle (blue) 
from yeast strains where one AID-tagged subunit (magenta) is degraded. The resuspension buffer used was 50 
mM Hepes pH 7.4, 150 mM NaCl. Purified complexes were run on SDS-PAGE and visualized with Coomassie 
staining. (–) denotes untreated and (+) treated with IAA. Exocyst subunits are denoted by their number 
(Sec3,Sec5,Sec6,Sec8,Sec10,Sec15,Exo70,Exo84 as 3,5,6,8,10,15,70,84). Degradation of 6 of the subunits 
tested led to the complete separation of exocyst into two 4-subunit modules: 3–5–6–8 and 10–15–70–84 with 
the connections depicted in the central table. Sec10-AID,Sec15-PrA was not determined (N.D.). Faded symbols 
represent subunits that showed partial loss from the complex.
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each module upon loss of one subunit; instead, we generally find subcomplexes 

containing 2-3 subunits (e.g. Sec6 and Sec5 remain bound after Sec8 is degraded). This 

finding is consistent with our earlier biochemistry results demonstrating that these 

subunit pairs are stable enough to be co-purified (Fig. 2.5c). Therefore, the most robust 

interactions within the complex exist between pairs of subunits and the overall assembly 

appears to be mediated by a network of weaker interactions. Several additional rules for 

exocyst assembly can be drawn from these results (Fig. 2.12). Sec8 requires Sec6 for 

Figure 2.11 Western blot confirms composition of exocyst subcomplexes following depletion of individual subunits. 
Exocyst complexes were purified using the indicated PrA purification handle (blue) from yeast strains where one AID-
tagged subunit (magenta) is degraded. Purified complexes were run on SDS-PAGE and visualized by Western blotting 
with antibodies specific to exocyst subunits (antibody indicated in inset box for each blot). (–) denotes untreated and (+) 
treated with IAA for 40 minutes. Exocyst subunits are denoted by their number. Magenta asterisks indicate the AID-
tagged subunit, and green asterisks indicate the subunit whose co-purification is being monitored in that particular blot. 
Polyclonal antibodies also recognize PrA-tagged subunits, which in all cases is the band running higher than the subunit 
monitored (green asterisk), with the exception of Sec3, which runs above the PrA- tagged subunit. 
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assembly into the complex. Sec5 is required for 

Sec3’s assembly and for the stable interaction of 

Sec3 with Sec6 and Sec8. In the absence of Sec8, 

there was also loss of Sec3 from Sec5–Sec6, 

suggesting either a potential interaction between 

Sec3 and Sec8 or a potential conformational change 

that weakens Sec3’s association with Sec5–Sec6. 

In the case of the other module, Sec10 and Sec15 

are a stable pair that require Exo84 for their 

association with Exo70. Although we were unable 

to test it, we predict that degradation of Sec15 

would not disrupt Sec10’s connection with Exo84 

and Exo70, as its only known stable exocyst 

partner is Sec10 (Guo et al., 1999a) (Fig. 2.5).  

These studies only provide a few clues as to 

the interconnections between the modules. All subunits are required for the assembly of 

the two modules, including Exo70 and Exo84, which is perhaps surprising in light of our 

biochemical studies, which demonstrated that they were not tightly associated with any 

other subunits of the complex (Fig. 2.5). We propose that the interconnections between 

the modules are made up of a network of weaker subunit-subunit interactions, although 

we cannot rule out that the degradation of a subunit from one module may alter the 

structure of its respective subcomplex, making it incompatible for binding the opposing 

Figure 2.12 Model depicting the subunit 
connectivity within and between each 
exocyst module (green and purple). Thick 
lines indicate the strong pairwise 
connections identified in Fig. 2.5c, Fig. 
2.9, and Fig. 2.10 which are required for 
stability of the assembled exocyst. The 
thin line depicts a putative connection 
between Sec8 and Sec10–Sec15 identified 
in the AID studies, but Sec8’s direct 
binding partner within this pair is not 
known. Dashed lines represent interactions 
identified in previous in vitro studies using 
Y2H and recombinant proteins 
(summarized in Munson and Novick, 
2006); these are consistent with several 
additional, weaker pairwise interactions 
identified here. 
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module. Other previously identified subunit interactions may contribute to this inter-

module network but their relative contributions remain to be tested (Fig. 2.12) (Munson 

and Novick, 2006; Katoh et al., 2015). 

 

Exocyst binding partners have no effect on exocyst assembly 

We wondered if any additional binding partners would be necessary to maintain 

this stable assembly. However, only substoichiometric amounts of known binding 

partners were detected in our exocyst preparations, suggesting that these partners do not 

need to remain bound to the exocyst to maintain its integrity (Fig. 2.2 and Fig. 2.4).  

A major unresolved question is how the exocyst assembles in vivo and whether 

additional factors are required for regulating this assembly. Selective elimination of 

individual exocyst interacting partners along the late secretory pathway might identify 

subcomplexes, indicating a failure of the complex to fully assemble. To test this idea, we 

again employed our AID tag approach to deplete the master polarity regulator Cdc42 

(Adamo et al., 2001), the type V myosin motor Myo2 (Jin et al., 2011), the SNARE 

regulator Sec1 (Hashizume et al., 2009), the v-SNARE Snc2 (Shen et al., 2013), and the 

Rab GTPase Sec4 (Guo et al., 1999a) (Fig. 2.13a). The functional consequences of each 

of these interactions are not known, and it is unclear at which stage in exocytosis these 

interactions occur (Morgera et al., 2012; Wu et al., 2010; Wiederkehr et al., 2004; Zhang 

et al., 2001).  

The AID-tagged partner strains were treated with IAA for 1 hour, which is 

sufficient time for numerous rounds of vesicle delivery and fusion in S. cerevisiae 

(Donovan and Bretscher, 2012). Degradation of Sec1 induced a severe vesicle 
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accumulation phenotype, as expected (Novick and Schekman, 1979), while degradation 

of Myo2 and Cdc42 caused a more mild secretion defect consistent with previous reports  
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(Fig. 2.13b,c) (Adamo et al., 2001; Govindan et al., 1995). N-terminal AID-tagging Snc 

and Sec4 resulted in severe vesicle accumulation even before IAA treatment, suggesting 

that these N-terminal tags partially impair protein function (Fig. 2.13b,c). Using a PrA 

tag on Sec8, we pulled out exocyst complexes after degradation of these partners (Fig. 

Figure 2.14 Depletion of known exocyst binding partners does not affect the assembly of exocyst complex. (a) 
Exocyst binding partners Cdc42, Myo2, Sec1, Snc2 (in snc1Δ strain background), and Sec4 were AID-tagged in 
strains with Sec8-PrA and constitutively expressing OsTIR1. (–) denotes untreated and (+) treated with IAA for 60 
minutes. Western blots demonstrate degradation of these proteins from yeast lysate using antibodies specific to the 
AID-tagged protein of interest. In the Sec1 blot, the Sec1 antibody also reacts with the PrA tag on Sec8-PrA. (b) 
Exocyst complexes were purified using Sec8-PrA as the purification handle from untreated (–) versus IAA-treated 
(+) yeast lysates. 

Figure 2.13 AID-tagged exocyst binding partners are functional and have varying levels of growth and secretion 
defects in IAA-containing media. (a) N-terminally AID-tagged Cdc42, Snc2, and Sec4 combined with Sec8-PrA 
and OsTIR1 were tested for growth on YPD and YPD-IAA plates at 30°C relative to the wild-type (WT) parent 
strain (BY4742). AID- Sec4/Sec8-PrA demonstrated a mild growth defect on YPD plates and in liquid culture 
(data not shown); this growth defect was exacerbated slightly in the presence of IAA. AID-Snc2/ snc1Δ/Sec8-PrA 
showed a slight growth defect in the presence of IAA, and AID-Cdc42/Sec8-PrA was inviable on IAA plates. 
Sec1-AID/Sec8-PrA and Myo2-AID/Sec8-PrA showed no growth defects when compared to their parent strain 
(W303-1A) but were inviable on IAA plates. (b) Graphs depict the fold increase of internal Bgl2 levels in AID-
tagged partner strains over internal Bgl2 levels in the appropriate WT untreated control strain. Sec1-AID and Sec6-
AID showed severe secretion defects, while Myo2-AID and AID-Cdc42 showed minor defects consistent with 
previous reports43,44,48. AID-Snc and AID-Sec4 showed severe Bgl2 accumulation even before treatment, 
suggesting a partial loss of function due to the AID tag. Error bars indicate SEM for n=3-4 different treated or 
untreated yeast cultures. (c) Thin section EM confirms the vesicle accumulation defects observed in the Bgl2 
assay. AID-Cdc42 cells also showed a loss of polarity and fewer budding cells. Scale bar=1 µm. 
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2.14). For each of the proteins tested, we observed that the exocyst complexes were fully 

assembled, stoichiometric, and could be recovered with the same yield. This indicates 

that none of these components are required for driving or stabilizing the assembly of 

exocyst complexes. Together with the preceding observations that the exocyst subunits 

copurify in stoichiometric complexes, these data support a model where the exocyst 

functions predominantly in a fully assembled state in actively growing cells, even under 

conditions where vesicles are not being transported and the exocyst is not interacting with 

its partners.  

 

Visualization of exocyst structure by electron microscopy 

Our new purification method for the yeast exocyst complex allowed us to obtain 

pure complexes for structural studies. We purified both Sec15-GFP and wild type 

complexes and analyzed them using negative stain EM. Raw micrographs revealed 

distinct particles (Fig. 2.15a) with an ellipsoid structure, approximately 25 nm in length 

(Fig. 2.15a). Iterative rounds of unsupervised 2D classification and class averaging 

revealed multiple coherent views of the exocyst complex resolved between 17 – 25 Å 

resolution (Fig. 2.15b,c, Fig. 2.16). However, this averaging failed to reveal a unique 

density attributable to GFP, precluding identification of Sec15’s location within the 

structure. At this resolution, the orientations and overall architecture of the exocyst were 

indistinguishable between these biologically and technically independent datasets (Fig. 

2.15c and Fig. 2.16). No apparent density or class averages were observed for smaller 

particles, such as subcomplexes. 
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The 2D class averages resolve into roughly four distinct views of the complex 

(Fig. 2.15c and Fig. 2.16), which may represent four “faces” of the complex as it interacts 

with the EM grid. One end of the structure (left side of each of the 2D images; arrow) 

Figure 2.15 Negative stain electron microscopy of purified exocyst complexes. (a) A representative transmission 
electron micrograph of Sec15-GFP exocyst complexes after negative staining in uranyl acetate. Scale bar is 50 nm. 
(b) Representative 2D class average (Sec15-GFP) is shown, overlaid with a ribbon diagram of the structure of 
yeast Exo70 (residues 67-623), PDB ID 2B1E	(Dong et al., 2005). The orientation and position of Exo70 were 
arbitrarily chosen to illustrate the similarities in the length and width of the “legs” of the complex and Exo70. (c) 
Highly populated 2D class averages generated by unsupervised classification for both wild type and Sec15-GFP 
image datasets, the number of particles per class is indicated next to each 2D average. Four apparent “faces” of the 
complex are labeled as I-IV. The red arrow points to the more “compact” end of the complex in class I, while the 
white arrowhead points to the more “open” flexible end in class III. Scale bar is 20 nm. 
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appears to be more tightly packed and ordered than the other end, which appears to be 

more flexible, often containing a long looping leg wrapping around the end (right side; 

arrowhead). Two of the faces of the complex (I and II) appear wider and contain three to 

four “legs” or columns of density packed together, whereas the two slightly narrower 

faces (III and IV) appear to have only two to three legs each. We speculate that the more 

tightly packed end of the long axis of the complex may be comprised of many of the N-

terminal ends of exocyst subunits, as they generally have not been amenable to 

biochemical studies in isolation (Croteau et al., 2009). The C-terminal ends, therefore, 

Figure 2.16 The complete class gallery of the Sec15-GFP tagged exocyst complexes. Class averages with similar 
orientations are shown in the same row. Each row starts with the most populated class and ends with the least 
populated class. The number of particles per class is shown near the lower left corners. Although the last row is 
labeled V as a different class from the others, we cannot rule out that these 2D averages belong to class III and the 
flexible ends were averaged out. Classes I-IV are equivalent to the numbered classes shown in Figure 2.15c.
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would be present in the more flexible, “open” end of the structure; these regions contain 

many of the regions involved in binding GTPases and the plasma membrane (Wu et al., 

2010; He et al., 2007; Wu et al., 2005; Dong et al., 2005). The exception is Sec3, whose 

membrane-interaction domain is located at its N-terminal end (Baek et al., 2010; 

Yamashita et al., 2010), and may therefore lie at the flexible open end of the exocyst 

(arrowhead), in an opposite orientation to the others. 

Each of the individual legs observed in the 2D class averages of the exocyst 

complex are ~3 nm wide. Although the N- and C-terminal ends of the subunits cannot be 

unambiguously identified at this resolution, we can estimate the length of the legs in the 

range of ~15-35 nm, with the additional long leg at the flexible end ~25 nm longer than 

the others. The width and lengths of the legs are consistent with the crystal structure of 

nearly full-length yeast Exo70 (residues 67-623), which is ~16 nm long and ~3-3.5 nm 

wide (Dong et al., 2005), as shown in Fig. 2.15b, in which the crystal structure of Exo70 

is superimposed onto an arbitrarily chosen leg. Exo70 is the smallest exocyst subunit (71 

kDa), the others range from 84 kDa to 155 kDa. The large size of Sec3 (155 kDa, 

estimated extended helical bundle length of ~38 nm) also suggests that it may be the 

subunit that wraps around the end of the complex (Fig. 2.15c, arrowhead). The other 

available crystal structures (Exo84CT, Sec6CT and Sec15CT) also revealed similar 

CATCHR family helical bundles that are ~3 nm wide; the other subunits are predicted to 

have similar folds (Croteau et al., 2009; Wu et al., 2005; Dong et al., 2005; Hamburger et 

al., 2006; Sivaram et al., 2006). The subunits of the complex appear to lie in a roughly 

parallel arrangement to each other, as suggested by previous interaction studies (Munson 
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and Novick, 2006; Dong et al., 2005; Sivaram et al., 2006). Our interpretation of the 2D 

averages suggests that this structure represents a fully assembled complex with an 

estimated volume of ~1800-2200 nm3. Using the volume and molecular weight of the 

structure of Exo70, and the assumption that all the subunits have roughly similar helical 

bundle structures, we calculate a comparable volume of ~1900 nm3 for the octameric 

complex. Therefore, we suggest that our structure contains all eight subunits, consistent 

with the biochemical and AID experiments. Furthermore, we speculate that the wider 

faces containing 3-4 legs represent the two distinct modules identified in our AID studies, 

with one module as the top face, and the other as the bottom face. However, we cannot 

rule out that the 2D averages could actually be showing the same face in alternative 

conformations; higher resolution data will therefore be necessary to resolve these models. 

 
Experimental procedures 

 
Yeast methods. The strains used in this study are listed in Appendix table 5.1. Standard 

methods were used for yeast media and genetic manipulations. Cells were grown in YPD 

medium containing 1% Bacto-yeast extract (Fisher Scientific), 2% Bacto-peptone (Fisher 

Scientific), and 2% glucose (Sigma Aldrich). All protein-A (PrA) tags were integrated at 

the genomic loci in haploid yeast strains (BY4741 or BY4742) by integration of linear 

PCR products. PrA products were amplified from a plasmid (pProtAHIS5, Rout lab 

Rockefeller) encoding a PreScission Protease (PPX) site upstream of the PrA tag and a S. 

pombe HIS5 selection marker (Oeffinger et al., 2007). Approximately 60 bp of homology 

to the 3’ end of the coding sequence and 60 bp of homology to the 3’ flanking sequence 

were used for homologous recombination. All exocyst PrA tags were added at the C-
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terminal ends. AID tags (IAA17) and linker were amplified from BYP6740 (pMK43, 

Yeast Genome Resource Center (YGRC), Japan). For C-terminal AID tag strains, tags 

were added at the genomic locus of the strain BY25598 (YGRC), which expresses 

OsTIR1 under the ADH1 promoter (parent w303-1a), using linear PCR products and 

kanMX selection. N-terminal AID tags (SNC2, SEC4, and CDC42 only) were integrated 

at the genomic locus of BY4742 using the pRS306 integrating plasmid (Sikorski and 

Hieter, 1989). Inserts were amplified by overlap extension of PCR products to generate a 

product consisting of ~300bp of 5’ regulatory element, AID tag, linker, and homology to 

5’ end of the gene of interest, and this was then inserted into pRS306 using NotI and 

XhoI restriction sites. The plasmids were linearized using restriction enzymes specific to 

the 5’ regulatory elements of each gene (SNC2: MluI, SEC4: BsrGI, CDC42: HpaI) prior 

to yeast transformation. For the AID-Snc2 strain, SNC1 was deleted by replacing the 

genomic locus with the kanMX cassette. Finally, for all N-terminal AID tag strains, the 

OsTIR1 gene was integrated at the MET15 locus using a URA3 marker and ADH1 

promoter. The plasmid BYP6744 (pNHK53, YGRC) was used as template for generating 

the OsTIR1 PCR product and homology to the MET15 regulatory elements was added to 

the ends. For serial dilution growth assays, yeast were grown in YPD to OD 1.5 and 

serially diluted 10-fold across YPD plates or YPD plates containing indicated 

concentrations of Indole-3-acetic acid, IAA (VWR). Yeast plates were incubated at 30°C 

for 2 days before imaging on Fujifilm LAS3000 (GE).  
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Exocyst protein-A purification. 2 liters of yeast cells were grown in YPD at 30°C to an 

OD of 1.3-1.5. Cells were washed with water, extruded through a syringe as frozen 

noodles into liquid nitrogen, and stored at -80°C until ready to be lysed (Oeffinger et al., 

2007). Noodles were lysed in a 50 ml stainless steel Komfort jar with stainless steel ball 

bearings pre-chilled in liquid nitrogen using a PM100 machine (Retsch). The resulting 

yeast powder was stored at -80°C. 150 mg of yeast powder was added to 1.5 ml 

microfuge tubes prechilled in liquid nitrogen. 600 µl of resuspension buffer (50 mM 

Hepes pH 7.4, 150 mM NaCl unless noted otherwise in the text, with 1X cOmplete Mini 

EDTA-free protease inhibitor solution (Roche Life Science) was added to the tube (buffer 

composition dependent upon experiment and noted in the relevant figure) then vortexed 

and pipetted briefly to resuspend completely. Spheroplasting and bead beating lysis were 

performed as previously described7 using 50 mM Hepes pH 7.4, 300 mM KCl lysis 

buffer. The use of NaCl versus KCl had no effect on exocyst preparations. Tubes were 

spun at 14,000xg for 10 minutes at 4°C and the supernatant is added to 5 µl home-made 

Rabbit IgG-magnetic bead slurry (Hakhverdyan et al., 2015; Oeffinger et al., 2007). 

Binding was done for 45 minutes at 4°C on nutating platform. The beads were washed in 

resuspension buffer and eluted in either 1X SDS loading buffer or by 1 h treatment with 

PreScission Protease (GE Healthcare) at 4°C for a native elution. Samples were run on 

SDS-PAGE and stained with Coomassie Blue or Krypton fluorescent protein stain 

(Thermo Fisher Scientific). Western blot analyses were performed using rabbit 

polyclonal antibodies to Sec6, Sec8, Sec10, Exo70, and Exo84 (Morgera et al., 2012; 

Songer and Munson, 2009). Rabbit polyclonal antibodies to Sec3, Sec15, and Sec5 and 
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mouse monoclonal antibodies to Cdc42 and Sec4 were gifts from P. Brennwald 

(University of North Carolina Chapel Hill). Rabbit polyclonal antibodies to Sec1 and Snc 

were gifts from C. Carr (Texas A&M University). Goat polyclonal antibody to Myo2 was 

a gift from L. Weisman (University of Michigan). Rabbit polyclonal antibody to ADH 

was purchased from Abcam (Catalog number ab20994). Mouse monoclonal antibody to 

GFP was purchased from Clontech (Catalog number 632380). Western blot analyses of 

exocyst protein levels in input versus unbound samples showed that ~60% of exocyst 

complexes are bound to the beads (varies slightly by bead preparation). The IgG beads 

are saturated in these experiments, however, as the exocyst complexes remaining in the 

lysates can be pulled down by sequential bead incubations. Krypton staining of the 

resulting gels showed no differences in stoichiometry in sequential pull-downs of either 

Sec5-PrA or Sec15-PrA (Appendix 5.1). Coomassie-stained gels were imaged on a LAS 

4000 (GE Healthcare Life Sciences) and Krypton gels were imaged on a Typhoon 

FLA9000 (GE Healthcare Life Sciences). Western blots were treated with ECL and 

imaged on a LAS 4000.  

 

Auxin-induced degradation of exocyst subunits and exocyst regulators. 2L of yeast 

cells were grown in YPD at 30°C to an OD of 1.0. Indole-3-acetic acid, or IAA, (VWR) 

dissolved in 100% ethanol at 500 mM was added to yeast cultures for a final 

concentration of 0.7 mM. The cells were allowed to grow in IAA for 45 min (with 15 

minutes for post-processing) at 30°C until reaching an OD of about 1.5. The cells were 

then washed with water, harvested as frozen noodles, and lysed as described in 
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purification method. NaOH/SDS lysis was used for visualizing IAA-induced degradation 

in yeast lysates for Fig 2.6 and 2.7. Briefly, 2.5 OD units of yeast were incubated in 100 

mM NaOH for 5 minutes, centrifuged to remove the NaOH, resuspended in SDS loading 

buffer with DTT, and heated at 95°C before loading onto gel for SDS-PAGE and 

Western blot. 

 

Bgl2 Secretion Assay. AID strains were grown at 30°C in YPD and treated for 1 hour 

with 0.7 mM IAA before harvesting. Bgl2 secretion assays were performed as previously 

described  (Adamo et al., 1999). Internal Bgl2 levels were quantified by western blots 

and normalized to internal ADH levels. All strains were normalized relative to internal 

Bgl2 levels of the appropriate untreated, wild-type strain control. 

 

Thin-section Electron Microscopy. EM on wild-type and AID-tagged yeast strains was 

performed as described (Perkins et al., 2007). Briefly, yeast were grown in YPD at 30 °C 

and treated with 0.7 mM IAA for 1 hr. 10 OD units were harvested, fixed for 1 h at room 

temperature with 3% gluteraldehyde, 2.5% sucrose, 5 mM CaCl2, 5 mM MgCl in 0.1 M 

sodium cacodylate, pH 7.4. Cells were spheroplasted using buffer containing 10% β-

glucuronidase and 0.5 mg/ml zymolyase for 30 min at 30 °C, washed in 0.1 M 

cacodylate/1 M sorbitol, resuspended in 0.1 M sodium cacodylate, pH 6.8/1 M sorbitol, 

and embedded in 2% agarose. Agarose pieces were stained with 1% OsO4, 1% potassium 

ferrocyanide in 0.1 M sodium cacodylate, pH 6.8 for 30 min, then washed completely and 

stained in 1% thiocarbohydrazide for 5 min at rt.  After washing completely, samples 
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were treated for 5 min with 1% OsO4/1% potassium ferrocyanide and washed again. 

After ethanol dehydration and embedding in Epon resin (Electron Microscopy Science), 

thin sections were cut at 70 nm and added to uncoated copper grids. Grids were post-

stained with uranyl acetate and lead citrate. Samples were viewed on a Philips CM10 at 

80kV and recorded using a Gatan Erlangshen 785 CCD Digital Camera. 

 

Negative Stain Electron Microscopy and Image Analysis. Sec15-PrA and Sec15-

GFP,Sec6-PrA complexes were purified in 20mM PIPES at pH 6.8 and 300mM KCl. The 

complexes were released from IgG beads after PPX cleavage to produce purified wild-

type and Sec15-GFP complexes. Those complexes were absorbed to glow discharged 

carbon-coated copper grids and stained with 1% uranyl acetate. Micrographs of wild-type 

complex were collected on FEI Tecnai F20 electron microscope operated at 200kV and 

20,400x nominal magnification. The defocus value ranged from 0.5 to 2.0 μm. Images 

were collected with a Gatan K2 summit direct detector with final pixel size 2.45 

Angstroms. We semi-automatically picked 67,509 Sec15-GFP particles and 24,891 wild 

type particles, and gray-scale normalized with Relion-1.3 (Scheres et al., 2012). 

Micrographs of Sec15-GFP complex were collected on FEI Titan Krios electron 

microscope operated at 300kV and 29,000x nominal magnification. The defocus value 

ranged from 0.5-3.0 μm. Images were collected automatically using EPU (FEI) with final 

pixel size 2.87 Angstroms. Particles were selected manually and gray-scaled normalized 

with BOXER as implemented in EMAN2 (Ludtke et al., 1999). For the Sec15-GFP 

dataset, there were:  2,568 unique micrographs; 67,509 particles picked; and 60,751 
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particles survived. For the untagged wild-type dataset, there were 298 unique 

micrographs; 24,891 particles picked; and 17,420 particles survived. Contrast Transfer 

Function (CTF) estimation was performed with CTFFIND3 (Mindell et al., 2003). CTF-

correction, two-dimensional classification and averaging were performed via Maximum 

A Posteriori refinement as implemented in RELION (Scheres et al., 2012). 
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CHAPTER III: A single molecule fluorescence microscopy 
assay to study vesicle tethering by the exocyst complex 
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Significant background and experimental rationale: 

Tethers are one class of factors required for the proper delivery of vesicles to their 

target intracellular compartment. Upon vesicle arrival at the appropriate destination, 

tethering factors are proposed to physically capture vesicles at a distance through 

physical interactions with protein and/or lipid factors on the vesicle and target 

membranes. This activity is proposed to serve as the first vesicle recognition step but may 

also serve to promote SNARE-mediated fusion either by increasing v-SNARE proximity 

to the target membrane or by actively promoting SNARE complex assembly.   

The group of molecules called tethers is subdivided into two major classes: the 

long coiled coil proteins and the multisubunit tethering complexes (MTCs) (Yu and 

Hughson, 2010). As previously described (Chapter I), there is experimental evidence for 

vesicle tethering by the coiled coil proteins and their extended structures seem ideally 

suited to this role. A recent study elegantly demonstrated using atomic force microscopy 

that one TGN coiled coil tether, GCC185, can extend as far as 145 nm from the Golgi 

and capture vesicles with a splayed, N-terminal end. After vesicle capture, this tether uses 

its hinge domain to collapse into the Golgi and bring vesicles closer to the TGN 

membrane (Cheung et al., 2015). Furthermore, recent in vivo, microscopy experiments 

suggest that a number of the coiled coil tethers each possess an intrinsic ability to 

recognize a specific class of vesicles, though the protein or lipid requirements for this 

recognition remain to be determined (Wong and Munro, 2014).  

In the case of the MTCs, very little direct evidence exists to support their 

classification as vesicle tethers beyond inferences from in vivo genetic and cell biological 
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experiments. In exocyst temperature-sensitive mutants or AID strains, vesicle 

accumulation is observed (Novick and Schekman, 1980 and Fig. 2.12). However, it is not 

clear whether the vesicles accumulate due to the loss of tethering function or rather some 

other more direct role in vesicle fusion with the SNAREs. A recent study in yeast showed 

that re-directing exocyst complexes to the mitochondria results in re-targeting of Sec4-

vesicles as well (Luo et al., 2014). However, since these experiments are performed in 

vivo, in the presence of many trafficking factors, it is difficult to determine if exocyst is 

directly functioning as a tether or recruiting other factors to the mitochondria to perform 

this role. 

Given its classification as a tethering complex, it is necessary to experimentally 

determine whether the octameric exocyst complex is capable of vesicle tethering. 

Although we know that most of the subunits are required to maintain complex assembly, 

components that interact with both vesicular and plasma membrane factors exist within 

both 4-subunit modules. In the Sec3-Sec5-Sec6-Sec8 module, Sec6 interacts with the v-

SNARE Snc (Shen et al., 2013) and Sec3 with plasma membrane Rho GTPases and 

PI(4,5)P2 (Baek et al., 2010; Yamashita et al., 2010; Zhang et al., 2008). The other 

module containing Sec15-Sec10-Exo70-Exo84 interacts with the vesicular Rab GTPase 

Sec4 (Guo et al., 1999a), the Sec4 GEF Sec2 (Medkova et al., 2006), and Myo2 through 

Sec15 (Jin et al., 2011); Exo70 binds plasma membrane Rho GTPases and PI(4,5)P2 (Wu 

et al., 2008; Wu et al., 2010; He et al., 2007). It is unknown whether the combined 

contributions of these subunits or modules are required for stable vesicle capture. It is 

important to determine which exocyst subunits, secretory vesicle proteins, and potentially 
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other accessory cytosolic factors are required for vesicle capture to occur. The optimal 

way to definitively determine these requirements is to develop an in vitro assay that is 

capable of monitoring vesicle tethering events. In this way, vesicle tethering can be 

reconstituted using a defined set of factors. 

Exocyst, like other putative tethers, is thought to weakly or transiently associate 

with secretory vesicles in order to release a vesicle for SNARE-mediated fusion and to 

free exocyst for the next tethering event. Transient protein-protein interactions are 

prevalent in membrane trafficking pathways and others including the Cdc42 and Rho 

GTPase signaling pathways (Nooren and Thornton, 2003). In the case of vesicle 

trafficking, a long sequence of regulators hands off vesicles at each stage of the pathway 

until a vesicle is fused at its destination, thus weak or transient interactions are not 

unexpected. However, such interactions are challenging to study by traditional 

immunoprecipitation or pull-down approaches where weak partners may fall apart during 

preparation or the copy number of interacting complexes are too low for detection (Jain 

and Ha, 2012).  

In vitro single molecule fluorescent imaging methods present a number of 

advantages that can overcome these challenges (Aggarwal and Ha, 2014). In this 

approach, which will be discussed in more detail below, one can effectively perform a 

pull-down assay with a bait protein immobilized on a microscope slide and watch the 

binding of prey proteins in real time. If the fluorescent background signal of the prey-

sample solution is sufficiently low, washing out this sample is not required and transient 

events can be monitored as they occur, rather than requiring numerous steps before 
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detection. Even if the number of events is not high, all the individual binding events 

occurring on the slide surface are detectable, as opposed to western blot of pull-down 

assays, for example, where a minimal signal is required for detection. Other advantages 

include the small amount of required input material, the ability to determine complex 

stoichiometry, and the ability to quantify the kinetics and heterogeneity of events in a 

population that are normally averaged out in ensemble experiments.  

We are developing the first in vitro tethering assay for the exocyst using 

colocalization single molecule spectroscopy (CoSMoS) (Friedman et al., 2006; Hoskins 

et al., 2011). In this assay, we attach fluorescently-labeled exocyst complexes to a glass 

slide and monitor the capture of fluorescent, endogenous secretory vesicles by 

colocalization on a single molecule, multi-wavelength TIRF microscope. Using the AID 

system and mutants in exocyst subunits or their interacting partners, we will determine 

the required factors for vesicle tethering. This assay will also allow us to characterize the 

kinetics of tethering and potential conformational changes of the exocyst complex during 

tethering events in real time. The insights gained from this approach and our architectural 

studies will also provide a foundation for understanding the enigmatic mechanism of 

vesicle tethering by related multi-subunit complexes that are specific to other vesicle 

trafficking pathways.  

 

Premise of the assay: 

Colocalization single molecule spectroscopy (CoSMoS) is a multi-wavelength 

single molecule fluorescence microscopy method developed by the laboratory of Jeff 

Gelles at Brandeis University (Friedman et al., 2006). This method has been used with 
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great success to visualize the activity and dynamic assembly/disassembly of 

macromolecular complexes by monitoring the colocalization of single, fluorescently 

labeled molecules on a total internal reflection fluorescence (TIRF) microscope. In this 

technique, a biotinylated, fluorescent bait-molecule is attached to a polyethylene glycol 

(PEG)/Biotin-PEG passivated glass microscope slide through a streptavidin-biotin 

sandwich. A solution containing a fluorescent prey-molecule (supplied by purified 

sample or cellular extract) is flowed in and binding (colocalization) with the bait 

molecule is monitored in real time. TIRF imaging only excites fluorescent molecules 

very close to the slide interface (approximately 100 nm), making it possible to use 

cellular extracts, which normally contribute a substantial level of background 

fluorescence (Crawford et al., 2008; Hoskins et al., 2011; Shcherbakova et al., 2013; Jain 

and Ha, 2012).  Furthermore, one of the major advantages of the Gelles lab microscope 

design is the capability of monitoring three different colored fluorophores simultaneously 

so complex events can be monitored (Friedman et al., 2006; Hoskins et al., 2011). 

In our version of this assay, we attach fluorescently-labeled exocyst complexes 

from yeast extract to the flow cell containing the Biotin-PEG/PEG surface. Depending on 

the immobilization method (to be discussed below), various controls are used to 

determine the specificity and identity of the immobilized particles, which appear as 

discrete, diffraction limited spots in the field of view. When the appropriate surface 

density of exocyst particles is achieved, the remaining extract is washed out of the flow 

cell. At this point, a solution containing fluorescently-labeled secretory vesicles is 

introduced to the flow cell and the colocalization of vesicles with exocyst spots can be 
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monitored in real time (Fig 3.1a). In future versions of this assay, we will take advantage 

of the 3-color detection system. Although we do not support a model where exocyst 

assembly occurs concurrently with tethering (Fig 3.1b), this experimental setup would 

allow this model to be tested. Furthermore, Förster resonance energy transfer (FRET), 

also known as fluorescence resonance energy transfer, can be used in combination with 

this method, to monitor putative conformational (Fig 3.1c) or assembly changes of 

exocyst in response to binding vesicles or other partners (Crawford et al., 2013; Ha, 

2001).  

 

First version of tethering assay:  

 

Exocyst slide immobilization using antibodies: 

Due to our success at purifying intact, functional, endogenous exocyst complexes 

from yeast extract using the IgG-Protein-A (PrA) approach (Chapter II), we decided to 

use this method for attaching exocyst complexes to slides. In order to do this, we also 

required biotinylated antibody for bridging the Biotin-PEG/streptavidin surface to the 

PrA-tagged exocyst complexes (Fig 3.2a). Since the rabbit antibody (Thermo Fisher 

Scientific 50177287) we use to generate the IgG-magnetic beads has an exceptionally 

tight affinity for the Protein-A tag (Richman et al., 1982; Oeffinger et al., 2007), this 

antibody was reacted with Sulfo-NHS-Biotin (Pierce) to generate biotinylated rabbit IgG 

(data not shown). 
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Figure 3.1 Schematics of CoSMoS assay for investigating vesicle tethering by 
exocyst complex. (a) 2-color vesicle tethering assay with fluorescent, immobilized 
exocyst complex and fluorescent, endogenous secretory vesicles. (b)  3-color 
experiment where putative exocyst subcomplexes are labeled with different 
colored fluorophores. The ordering of colocalization events can be monitored in 
real time. (c) Single molecule FRET to monitor exocyst conformational changes 
in concert with binding fluorescent vesicles (or other partners). 
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Fluorescent labeling of exocyst complexes: 

The other requirement for the immobilized exocyst is that it be detectable with a 

fluorescent molecule. We decided to make use of genetically encoded SNAP-tags, which 

enable the incorporation of bright, photostable organic dyes into the subunits (Juillerat et 

al., 2005); these dyes avoid the poor photon output and blinking behavior of single 

fluorescent proteins (Dickson et al., 1997) (Fig 3.2b). The SNAP-tag is a 20 kDa mutant 

of the DNA repair protein O6-alkylguanine-DNA alkyltransferase that reacts specifically 

and rapidly with benzylguanine (BG) derivatives leading to covalent labeling of the 

SNAP-tag with a synthetic substrate. The specificity of this reaction is sufficient that the 

SNAP-tagged protein of interest can be labeled in cell extract. Furthermore, we are 

making use of a more recently modified version of the SNAP tag called fast SNAP 

(SNAPf  hereafter referred to as SNAP) with 10-fold faster labeling kinetics (Sun et al., 

Figure 3.2 Schematic of exocyst 
immobilization and fluorescent 
visualization strategy. (a) Double-
tagged exocyst complexes containing a 
SNAP-tagged subunit (red) and 
Protein-A-tagged subunit (PrA, green) 
are attached to PEG-biotin-streptavidin 
from yeast extract via biotinylated IgG. 
(b) C-terminal SNAP tag on exocyst 
subunit of interest is covalently labeled 
in yeast extract with a BG—conjugated 
organic dye (modified from Eric 
Anderson).
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2011). All exocyst subunits were functional with C-terminal SNAP tags, as none of the 

tagged proteins caused growth defects on YPD at the temperatures tested (Fig 3.3a) 

 Most of the exocyst subunit SNAP fusions were tested to determine which were 

least prone to proteolysis during the period of SNAP-tag labeling in yeast extract 

(prepared by cryogenic grinding lysis). Ultimately, Sec6-SNAP was decided upon for 

showing greater stability in extract both at room temperature and on ice, compared with 

other exocyst subunits (Fig 3.3b). DNA encoding the C-terminal SNAP tag was 

Figure 3.3 Use of the SNAP tag for labeling exocyst subunits. (a) Serial dilution growth 
assay on YPD plates confirm that all genomic, C-terminal exocyst SNAP-tag fusions are 
functional in yeast. (b) Extract labeling using BG-DY-649P1 was tested for all exocyst-
SNAP strains (2 representative shown) and visualized by SDS-PAGE and Typhoon 
FLA9000 imaging. Red arrow=full-length protein, Red asterisks=unreacted dye substrate. 
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transformed and integrated at the genomic locus of Sec6 in a strain containing a C-

terminal PrA tag on Sec8.  

Although unreacted SNAP dye would primarily be washed out of the flow cell 

with unbound cell extract once exocyst complexes attach to the slide surface, unreacted 

dye does have some tendency 

for non-specific adsorption to 

the slide at high concentrations 

(≥50 nM) (Eric Anderson, 

unpublished data). In order to 

remove some of this residual 

dye substrate, labeled extracts 

were loaded on a NAP-5 

buffer exchange column and 

fractions were collected from 

the column (Fig 3.4a). 

Although a substantial amount 

of unreacted dye remains, the 

total dye concentration in 

these fractions was sufficiently 

low to avoid concern for non-

specific sticking (Fig 3.4b). 

Fractions 3 and 4 were used as 

Figure 3.4 Use of NAP-5 desalting column to reduce unreacted 
substrate levels in labeled yeast extracts. (a) Samples of input (pre-
NAP-5) and fractions from NAP-5 column run on SDS-PAGE and 
imaged on Typhoon FLA9000. Red arrow=full-length protein, Red 
asterisks=unreacted BG-DY649P1 substrate. (b) Total dye level in 
extract reduced to less than 50 nM. Plate reader assay on Typhoon 
FLA9000: top row=standard curve of BG-DY649P1 substrate, bottom 
row=labeled extract fractions from NAP-5 column. 
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the source of exocyst complexes for the slide surface in this first set of TIRF experiments 

described below.  

 

Fluorescent secretory vesicles: 

 In order to maximize the functionality of the secretory vesicles used in the 

tethering assay, we opted to use endogenous post-Golgi vesicles purified from yeast 

extract rather than proteoliposomes. Endogenous vesicles will likely contain most of the 

functionally relevant lipid content and protein factors required for an optimal interaction 

with exocyst complexes. In future efforts, once the exocyst-vesicle interaction is better 

understood, we may be able to fully reconstitute tethering in vitro with liposomes. 

 Vesicle trafficking and fusion is normally a highly efficient process in eukaryotic 

cells. In a wild-type yeast cell, few vesicles can be seen in the cytosol by electron 

microscopy (Walworth and Novick, 1987). Therefore, in order to improve the yield of 

Figure 3.5 Purification scheme for post-Golgi vesicles. (S1) -- supernatant 1, (S2) -- supernatant 2, (P3) -- 
pellet 3. P3 is gently resuspended, layered onto sorbitol gradient, and centrifuged 71,000xg. Quality control 
involves western blotting for known vesicle marker proteins including membrane proteins (Snc, Sso, Sec4) 
and soluble cargo (Bgl2), negative stain electron microscopy (EM), Nanosight=Nanosight NTA single 
particle tracking and light scattering. 
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purified vesicles, temperature-sensitive post-Golgi secretory mutants are used to 

accumulate vesicles prior to purification. The purification scheme for secretory vesicles 

was modified from previous studies (Fig 3.5, Walworth and Novick, 1987; Forsmark et 

al., 2011; Rossi et al., 2015). 

Several secretory mutants were tested: sec6-4 (exocyst subunit), sec9-7 (exocytic 

t-SNARE), and sec9-4 and all resulted in sufficient vesicle yield for purification (Fig 

3.6). In a previous proteomic study, sec6-4 vesicles were analyzed by mass spectrometry 

for vesicle resident proteins and no exocyst subunits were detected, potentially because 

the exocyst is destabilized in this mutant or the exocyst interaction with vesicles is not 

stable enough to withstand the extensive vesicle purification protocol (Forsmark et al., 

2011). Based upon this, we decided to move forward with sec6-4 vesicles to ensure they 

were not pre-loaded with exocyst complexes that could inhibit the interaction with 

surface-immobilized complexes. However, even when vesicles were purified from 

mutants where the exocyst is not destabilized (sec9-4 and sec9-7), exocyst subunits did 

Figure 3.6 Purification of post-Golgi vesicles from different exocytic mutants. S3=supernatant 3, P3=pellet 3 
(gradient input).  Fractions (1-10) from top of sorbitol density gradient were western blotted for vesicle markers (v-
SNARE, Snc, and cargo protein, Bgl2). Exocyst subunits (Exo70, Exo84, Sec15) did not co-migrate with vesicle 
markers in either mutant background, suggesting association with vesicles is not stable. Snc blots show both full-
length (upper band) and proteolyzed Snc (lower band). 
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not co-purify with vesicle markers as detected by western blot, consistent with the idea 

that this interaction is lost during purification (Fig 3.6).  

  We next sought a 

method for detecting purified 

secretory vesicles by TIRF 

microscopy. N-terminal GFP 

fusions of the Rab GTPase 

Sec4 and the vesicle SNARE 

Snc1/2 have been commonly 

used over the years as post-

Golgi vesicle markers for 

microscopy (Donovan and 

Bretscher, 2012). We 

integrated N-terminal GFP 

tags at the genomic locus for 

Sec4 and Snc2 in the sec6-4 

strain background and the 

proteins localized properly to 

the budding daughter cell at 

the permissive temperature (Fig 3.7). GFP-tagged Snc2 co-migrated with vesicle marker 

proteins in density gradient fractions by western blotting, suggesting that the tagged 

protein is properly loaded into vesicles (Fig 3.8). The soluble vesicle cargo protein, Bgl2 

Figure 3.7 N-terminally GFP-tagged Sec4 and Snc2 localize to budding 
daughter cell in sec6-4 strain background at permissive temperature 
(25°C). GFP tags were integrated at genomic locus with endogenous 
promoter.  

Figure 3.8 Purification of post-Golgi vesicles with GFP-tagged Snc2 
or GFP-Sec4. Fractions (1-10 from the top) from sorbitol gradient 
were western blotted for vesicle markers (Snc and Bgl2) and Sec8. 
Molecular weight of Snc in top blots corresponds to GFP-tagged Snc. 
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(Adamo et al., 1999), co-migrated with the v-SNARE Snc suggesting these vesicles are 

intact. Negative stain electron microscopy and Nanosight NTA (single particle 

tracking/light scattering) confirmed the integrity and approximate 100-150 nm size of the 

post-Golgi vesicles (Fig 3.9).  

 Prior to testing the GFP-vesicles for capture by surface-immobilized exocyst 

complexes, we evaluated the GFP-tagged vesicles on the TIRF microscope. Firstly, in 

order to detect the GFP-vesicles, we used a clean slide that was not coated in PEG in 

Figure 3.9 Purified GFP-Sec4, sec6-4 vesicles are intact, homogenous, and properly sized. (a) Clustered 
negatively-stained purified vesicles imaged by transmission EM (TEM). Scale bar = 0.5 µm. (b) Spread out 
negatively-stained purified vesicles imaged by TEM. Scale bar = 0.5 µm. (c) Representative Nanosight NTA 
histogram for diameter of vesicle population. The population was homogenous and predominantly ~115 nm 
in diameter. 
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order to stick vesicles to the slide surface, as the photostability of molecules in solution 

cannot be characterized by TIRF. Only the GFP-Sec4 vesicles were detectable in this 

experiment (not GFP-Snc2) (Fig 3.10). A buffer solution containing the glucose 

oxidase/catalase oxygen scavenging system (Crawford et al., 2008), was then added and 

the photostability of individual GFP-Sec4 vesicle spots was monitored over time (3.10b). 

This was compared to a second flow cell where the vesicle spots were incubated in buffer 

that lacked oxygen scavengers (Fig 3.10a). The total number of vesicle spots was counted 

in a single field of view from each flow cell and plotted versus frame number (with frame 

Figure 3.10 Evaluation of GFP-tagged vesicles for single molecule TIRF experiments. (a) GFP-Sec4 vesicles on 
clean slide surface in absence of oxygen scavenger system. (b) GFP-Sec4 vesicles on clean slide surfaces in 
presence of glucose oxidase/catalase oxygen scavenging system. (c) Few GFP-Sec4 vesicles stick non-specifically 
on PEG-passivated slide surface. (d) Total number of vesicle spots per field in (A, pink) versus (B, red) monitored 
over time for photobleaching. Acquisition rate=1 frame/s. (e) 6 representative fluorescence intensity traces (from 
>100) for single vesicle spots (from (B)) over time. Photobleaching steps and blinking behavior are apparent. 
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rate of 1 frame/sec) (Fig 3.10d). GFP-vesicles bleached in approximately 1 minute while 

oxygen scavengers prolonged the fluorescence for a few minutes longer. Over 100 

vesicle spots were analyzed for fluorescence intensity over time. In the oxygen scavenger 

treated samples, many of these fluorescence traces revealed distinct photobleaching steps 

consistent with 2-3 GFP-Sec4 molecules per vesicle (Fig 3.10e). However, this is likely 

an underestimate due to the incomplete maturation of fluorescent proteins in the yeast 

cytosol (Iizuka et al., 2011; Ulbrich and Isacoff, 2007). The traces also revealed severe 

blinking properties for GFP-Sec4 molecules (Fig 3.10e). For stable interactions, blinking 

is not necessarily a significant limitation but for transient interactions, blinking events 

may be hard to distinguish from rapid binding and release events. Importantly, however, 

we confirmed that GFP-Sec4 vesicles did not non-specifically stick or accumulate on 

PEG-coated slides, which will be used for exocyst binding experiments (Fig 3.10c, and 

discussed below). 

 

Fluorescent vesicle capture by immobilized exocyst complexes: 

  In order to test vesicle capture by immobilized exocyst, a number of control 

experiments were required. The slides and coverslips were cleaned by sonication in acid 

followed by 200 proof ethanol, passivated using PEG-Silane/Biotin-PEG-Silane, and 

stored at -80°C until ready for use (See experimental procedures). Just before beginning 

the experiment, vacuum grease was used to create 4 flow chambers. Streptavidin was 

added to each flow chamber one at a time when ready for use and washed out quickly 

before incubating with IgG-biotin. In all cases, when a field of view was being 
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monitored, the flow cell contained either buffer or purified vesicle solution, both 

containing oxygen scavengers. As tested previously, GFP-Sec4 vesicles were added to 

the first flow chamber and no non-specific accumulation of vesicles was observed in the 

green channel (no image acquired). In the second flow cell, streptavidin and IgG-biotin 

were once again added. After washing, undiluted yeast extract (Sec6-SNAP, Sec8-PrA 

labeled with BG-DY649P1) was added and, within 1 minute, a dense field of spots 

(carpet) was detected in the red channel (Fig 3.11a). In a third flow chamber, streptavidin 

was added but no IgG-biotin. The undiluted yeast extract was added to the slide. After 

several minutes, no spots accumulated in the red or green channels, suggesting that 

exocyst attachment to slides does require the antibody and no other fluorescent 

contaminants from the cell extract stuck to the slide surface (Fig 3.11b). 

Although the carpet of exocyst in the second flow chamber was too dense for 

accurate colocalization experiments, we added undiluted GFP-Sec4 vesicles to determine 

whether the number of vesicle binding events was higher in the presence of exocyst (field 

(A)) than the absence (field (B)). Indeed, when 8 different fields of view were monitored, 

the number of green spots on the surface was always 4-6 times higher in the fields of 

view containing immobilized exocyst complexes (Fig 3.11c). It was also apparent that the 

GFP-vesicles bleached very rapidly in this experiment (Fig 3.11c). Although this result 

was promising, a number of questions arose. With the large number of exocyst particles 

on the surface, why were so few vesicle binding events observed? Are the vesicles or 

exocyst particles not fully functional? Is the orientation of the exocyst relative to the slide 
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surface obstructing vesicle binding sites? Are additional, soluble factors required to 

bridge this interaction? 

 

 

 

Figure 3.11 Protein-A exocyst and GFP-vesicle binding experiment by TIRFm. (a) Specific slide attachment of 
Sec8-PrA, Sec6-SNAP exocyst complexes from yeast extract using rabbit IgG-biotin. Sec6-SNAP is labeled 
with BG-DY649P1. The red channel is shown.  (b) Sec8-PrA, Sec6-SNAP exocyst complexes did not attach to 
slides in the absence of IgG-biotin, indicating specificity of attachment. The red channel is shown. (c) Example 
field of captured GFP vesicles in green channel (frame 216). (d) GFP-Sec4 vesicles were added to fields A 
(exocyst carpet, blue) and B (no exocyst, red). Movies were acquired in the green channel (1 frame/sec) for 
approximately 20 seconds in 8 fields of view (exocyst carpet) and 2 fields of view (no exocyst). The total 
number of GFP-vesicles on the slide surface were quantified over 20 seconds. The gaps in the plot (e.g. between 
frame number 50 and 100) indicate moving to a new field of view and refocusing.  
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Ongoing optimization of tethering assay reagents 

 

Sources of problems with exocyst complexes: 

 In addition to some of the concerns raised in the previous section regarding the 

functionality and orientation of surface-immobilized exocyst complexes, several other 

issues later became apparent. Firstly, in subsequent experiments, attachment of exocyst to 

slide surfaces using the PrA-IgG-Biotin approach proved to be unreliable. It was difficult 

to achieve a reproducible, sufficiently high level of exocyst spots on the slide surface and 

so an alternative attachment method was required. Secondly, despite using the cryogenic 

lysis method to generate exocyst extracts, which greatly reduces proteolysis during lysis, 

substantial proteolysis was still observed by western blot for some exocyst subunits in the 

SNAP-tagged extracts (Fig 3.12). This is likely due to the prolonged period of extract 

incubation required for SNAP tag labeling and dye removal. The assembly of the exocyst 

complex depends on the integrity of most of its subunits, so reducing this proteolysis is 

important for preserving structure and function. Ongoing efforts to optimize these 

different aspects of exocyst preparation will be discussed below. 

 

 

Figure 3.12 Proteolysis of exocyst subunit Sec8-PrA during SNAP-tag 
labeling and excess dye removal. Western blot for Sec8 revealed 
substantial proteolysis of Sec8-PrA in labeled, extract fractions from 
NAP-5 column (Fractions 1,3,4,5). Proteolysis is compared to 
untagged Sec8 in extract from strain expressing PrA-tag alone prepared 
by a similar method and to untagged Sec8 in MMY101 (Wild-type) 
lysate prepared by rapid NaOH/SDS lysis. No laddering is observed in 
NaOH/SDS sample indicating proteolysis occurs during the extended 
period of labeling and NAP-5 purification of extracts. 
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Optimization of exocyst immobilization method: 

In order to improve the reproducibility of exocyst slide attachment, we next aimed 

to use the bifunctional SNAP substrate BG-PEG-Biotin-DY649 (Ivan Correa, New 

England Biolabs) as a means to both attach 

and visualize exocyst complexes on the slide 

surface (Fig 3.13). However, the major 

challenge with using this substrate is the 

need to remove the unreacted dye from yeast 

lysate since both unreacted dye and labeled, 

SNAP-tagged proteins will bind to 

streptavidin on the slide surface. The 

desalting columns used for the other SNAP substrates did not remove sufficient dye to 

make the bifunctional substrate useable.  

The first approach tested for removing unreacted dye was to use our PrA/IgG 

purification approach. Sec6-SNAP, Sec8-PrA complexes were labeled with BG-PEG-

Biotin-DY649 and then pulled out of yeast extract using Rabbit IgG magnetic beads. 

Although the double-tagged, labeled complexes were effectively pulled down, substantial 

proteolysis was apparent and complexes could not be efficiently eluted from the beads by 

PreScission Protease (PPX) digest (Fig 3.14).  

Although the NAP-5 commercial desalting columns were not effective in 

removing unreacted BG-PEG-Biotin-DY649, we decided to test other gel filtration resins 

and columns. A number of gel filtration resins and column sizes were tested including 

Figure 3.13 Slide attachment method using 
bifunctional SNAP substrate. Exocyst complexes 
with genomic SNAPf and CLIPf  tags are 
immobilized from yeast extract and visualized using 
BG-PEG-Biotin-DY649. Complex assembly is 
confirmed by colocalization of DY649 and CLIP 
Surface 488. 
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GE Superdex 200 10/300, 

GE Superose 6 10/300, and 

a homemade Fine G-50 

5/200 column. Only the 

Superose 6 column showed 

significant separation of 

labeled exocyst complexes 

from free dye when the 

fractions were run on SDS-PAGE and visualized on the Typhoon FLA9000 fluorescence 

reader. Increasing the salt concentration of the lysis buffer from 150 mM to 300 mM 

further reduced the level of unreacted dye that co-fractionated with exocyst complex on 

the Superose 6, presumably by disrupting weak, ionic interactions between the charged 

dye and other high molecular weight components in yeast extract. However, the level of 

free dye was still higher than that of labeled exocyst proteins by SDS-PAGE so additional 

steps were needed.  

The most effective tool for removing the unreacted bifunctional substrate was 

using purified, recombinant SNAPf protein conjugated to agarose resin as a ‘sponge’. 

Using the SNAPf resin alone greatly reduced the unreacted BG-PEG-Biotin-DY649 from 

yeast extract (Fig. 3.15, right gel, second lane). However, using a Superose 6 10/300 gel 

filtration column (GE) after SNAPf bead incubation resulted in labeled exocyst fractions 

with virtually no unreacted dye remaining. Exocyst-containing fractions were readily 

concentrated using 30 kDa molecular weight cutoff, centrifugal concentrators (Fig 3.15). 

Figure 3.14 Purification of 
Sec8-PrA/Sec6-SNAP 
complexes labeled with 
BG-PEG-Biotin-DY649 to 
remove unreacted dye. 
Complexes were eluted 
from beads using PPX 
(Bound). Beads were boiled 
in SDS/DTT to elute 
remaining complexes. 
(Left) is Coomassie-stained 
SDS-PAGE and (right) is 
gel imaged on Typhoon, 
Alexa 647 fluor settings.  
50% of each bound and 
bead boil loaded for each 
gel. Substantial proteolysis 
of Sec6-SNAP (marked *) 
is apparent (right).





97 
 

Two considerations were important for making use of the CLIP tag. First, the 

kinetics of CLIP tag labeling are slower than that of SNAP tag (Ivan Correa, 

communication). Second, the SNAP tag reacts non-specifically at a low level with BC 

substrates (Eric Anderson, communication). To overcome this problem, SNAP labeling 

was done rapidly and to completion at 

room temperature followed by CLIP tag 

labeling on ice. Due to the protease-

deficient strain background, performing 

labeling in sequence and at room 

temperature was not a problem and no 

cross-reactivity of the tags was detectable 

(Fig 3.16). Furthermore, the SNAP beads 

reacted at a low level with the unreacted 

CLIP substrate and the remainder was 

predominantly removed by Superose 6 gel 

filtration (Fig 3.15, left). 

We next tested the attachment of Sec6-SNAP/Sec8-CLIP (labeled with BG-PEG-

Biotin-DY649 and CLIP Surface 488) exocyst complexes on the TIRF microscope. In 

one lane, no streptavidin was added and undiluted labeled extract was flowed in. Very 

few spots were detected in both the red (3.17a, left) and blue channels (no image 

acquired).  In a second lane, streptavidin was loaded before the undiluted exocyst 

samples and in this case a dense carpet of spots was detected in both the red and blue 

Figure 3.16 Orthogonal labeling of SNAP and CLIP tag 
in yeast extract. Extract samples were run on SDS-
PAGE and imaged in red (for BG-PEG-Biotin-DY649) 
and green (for CLIP Surface 547) channels. Gel images 
were overlaid and pseudo-colored in Photoshop. (1) 
SNAP labeling to completion, (2) CLIP labeling to 
completion, (3,4) SNAP labeling followed by CLIP 
labeling. No reaction of SNAP tag with CLIP substrate 
was observed. 
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channels (3.17a, right). The carpet was too dense to do accurate colocalization 

experiments, but given that the carpet was specific to lanes containing streptavidin and 

the signal was high in the blue channel as well, this is good indication that assembled 

exocyst complexes readily attached to the surface. In order to do vesicle binding 

experiments, the density of the exocyst on the slide surface must be optimized. In a recent 

experiment performed on the TIRF microscope at UMass, using a 10-fold dilution of 

exocyst sample did reduce the number of spots in the red channel, suggesting that 

sufficient dilution and rapid wash out will allow for fine-tuning of the surface density 

(Fig 3.17b). 

Another variable to consider for these experiments is which exocyst subunits to 

tag as that will determine the face of the complex accessible for vesicle binding. In order 

to achieve different orientations of the exocyst complex relative to the slide, a number of 

different protease-deficient strains were made with different SNAP-tagged subunits. In 

these strains (Appendix Table 5.2), another subunit was CLIP-tagged. Our recent 

architectural studies informed the design of these strains in that we opted to fuse the two 

tags on subunits in different modules in order to avoid masking one module entirely (Fig 

Figure 3.17 Specific attachment of SNAP-tagged exocyst complexes to slides using BG-PEG-Biotin-DY649. The 
yeast extract used (Sec6-SNAP, Sec8-CLIP) was also labeled with CLIP Surface 488. (a)  Left: In the absence of 
streptavidin, no spots were observed in the red channel or blue (not shown). Right: In the presence of streptavidin, 
a carpet of spots was seen in both the red channel and the blue (not shown). (b) The number of exocyst spots on 
the surface can be fine-tuned by diluting the extract (10-fold here) and washing out extract when desired density 
was achieved. The red channel is shown.
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2.9, 2.11). Fig 3.15 shows one example of labeling these SNAP/CLIP double-tagged 

exocyst complexes in the protease-deficient yeast extract. 

Sources of problems with fluorescent secretory vesicles:  

 The functionality of the purified vesicles depends on the integrity of vesicle 

resident proteins as well as the lipid composition. In order to maximize the potential for 

exocyst binding to vesicles, it is important to not disrupt any potential exocyst receptors. 

Although the required factors for exocyst binding vesicles are not known, Snc1/2 and 

Sec4 were previously shown to interact with Sec6 and Sec15 respectively (Shen et al., 

2013; Guo et al., 1999a). Myo2, the vesicle transport motor protein in yeast, interacts 

with Sec15 (Jin et al., 2011). Western blot of purified vesicle fractions revealed 

substantial proteolysis of intrinsically disordered Snc1/2 during the course of the 

purification (Fig 3.6). Furthermore, GFP-Snc2 vesicles were not detectable by TIRF 

microscopy, which may be 

an outcome of the severe 

proteolysis. Myo2 does not 

co-migrate with vesicle 

markers suggesting that it is 

not stably associated with 

these vesicles (Fig 3.18). 

Finally, GFP-Sec4 vesicles, 

which were used in the preliminary vesicle binding experiments, are likely not fully 

functional due to the N-terminal GFP tag based on several lines of evidence. First, we 

Figure 3.18 Myo2 does not stably associate with purified post-Golgi 
vesicles. Vesicle fractions from sorbitol gradient (1-12 from the top) 
were western blotted for Myo2, Sec8, and vesicle markers (Cdc42, Sec4, 
Bgl2, and Snc). P3=pellet of 100,000xg spin loaded onto gradient.
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observed qualitatively that the GFP-Sec4, sec6-4 strain grows more slowly than its sec6-4 

parent strain in liquid culture. Additionally, fusion of the smaller AID tag at the N-

terminus of both Sec4 and Snc2 results in a severe vesicle accumulation phenotype (Fig. 

2.12b,c) and strains expressing N-terminally SNAP-tagged of Sec4 are inviable (data not 

shown). In summary, in order to improve the function of these post-Golgi vesicles, it is 

preferable to tag proteins other than putative exocyst interacting partners and to reduce 

proteolysis during the purification as well. 

 

Vesicle labeling with lipophilic dyes:  

An alternative to protein tagging is to make use of lipophilic dyes. Many 

variations of such dyes exist, but they are often characterized by poor photon output and  

inconvenient excitation/emission properties for the established microscope setup (Jeff 

Gelles, communication). Consistent with this, the dye DilC12(3) was tested on sec6-4 

vesicles. Labeling with DilC12(3) was highly efficient and readily detectable by viewing 

the density gradient fractions on a fluorescence plate reader (Fig 3.19a). However, when 

tested on the TIRF microscope, spots and aggregates of dye or vesicles accumulated 

rapidly and non-specifically on PEG-passivated slides; these spots were also rapidly 

photobleached even in the presence of oxygen scavengers (Fig 3.19b,c). Another dye, 

FM4-64, efficiently labeled vesicles (Fig 3.20) and preliminary testing showed higher 

photostability for this dye. However, this dye has a large Stokes shift, which may not be 

compatible with multi-wavelength single molecule experiments.  

 

Fluorescent labeling of vesicles using SNAP tagged vesicle proteins:   
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While optimizing the tagging of vesicle marker proteins, it was also prudent to switch 

from the GFP tag to the SNAP tag so that a bright, photostable dye could be used. SNAP- 

Cdc42 was tested in combination with sec6-4, as it is a known vesicle cargo protein and 

its interaction with exocyst is proposed to be required downstream of vesicle tethering 

Figure 3.19 Fluorescent labeling of sec6-4 vesicles using DilC12(3). (a) Vesicle fractions from 
sorbitol gradient (1-12 from the top) were imaged in the green channel on the Typhoon FLA9000 in a 
96 well plate. Two different concentrations were tested for labeling. Signal corresponding to the dye 
co-migrated with vesicle-containing fractions. (b) (Left) Vesicle spots on surface in presence of 
exocyst carpet, (Right) vesicle spots on surface in absence of exocyst carpet. One representative field 
of view is shown for each. (c) Quantification of total number of vesicle spots on surface in presence 
(blue) or absence of exocyst carpet (red) over time for several fields of view (time gaps are due to 
moving to new field and re-focusing). Acquisition rate=1 frame/sec.
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(Guo et al., 2001; Zhang et al., 

2008; Hutagalung et al., 2009; Wu 

et al., 2010). However, labeled 

SNAP-Cdc42 was difficult to 

detect in purified vesicle fractions, 

was substantially degraded during 

purification (Fig. 3.21a), and the 

strain exhibited very slow growth 

in liquid culture (Fig. 3.21b). 

Consistent with this, previous 

reports using GFP-Cdc42 

suggested that N-terminal tagging 

of this protein reduces its vesicle 

association (Watson et al., 2014). 

Alternatively, SNAP-Sso1 is 

another potential marker, as this 

plasma membrane SNARE is 

transported on vesicles as it is 

recycled and the exocyst is not 

known to interact with this 

SNARE on its own (Forsmark 

et al., 2011; Dubuke et al., 

Figure 3.20 Purification of FM4-64-labeled vesicles. (a)  
Western blot of sorbitol gradient fractions (1-12 from the top), 
Input=100,000xg pellet loaded on gradient, Conc.=concentrated 
vesicle fractions. (b) Sorbitol gradient fractions imaged in 96 
well plate on Typhoon FLA9000 in green channel. FM4-64 
signal co-fractionates with vesicle markers (Snc, Sec4, Sso1).  

Figure 3.21 SNAP-tagged Cdc42 is proteolyzed during vesicle 
preparation. (a) Western blot of sorbitol gradient fractions (1-12 from 
top), P3=100,000xg pellet loaded on gradient. Cdc42 associates with 
vesicles but is substantially proteolyzed. (b) SNAP-Cdc42, sec6-4 grew 
more slowly than its parent strain sec6-4 in liquid culture at 25°C in 
YPD.
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2015). When SNAP-Sso1, sec6-4 vesicles were labeled with SNAP-Surface 547 and 

purified, SNAP-Sso1 was detectable in the purified fractions by Western blot (Fig 3.22a) 

and Typhoon imaging (Fig 3.22b). Additionally these vesicles appeared to be of the 

correct size by negative stain EM (Fig 3.22c). Therefore, we will move forward with 

these vesicles for future single molecule TIRF experiments. 

  

Optimization of vesicle purification method: 

Lysis method is another variable that affects the integrity of the vesicle proteins. 

Established vesicle purification protocols use spheroplasting with the cell wall enzyme 

zymolyase (Walworth and Novick 1987; Forsmarck et al., 2011; Rossi et al., 2015). 

Spheroplasting is a relatively gentle lysis method that maintains the integrity of 

Figure 3.22 Purification of SNAP-Sso1, sec6-4 vesicles labeled with SNAP-Surface 547 (a) Western blot of 
sorbitol gradient fractions (1-12 from top), input=100,000xg pellet loaded on gradient, Conc.=concentrated vesicle 
fractions. SNAP-Sso1 co-fractionates with other vesicle markers (Snc, Sec4). (b) Input, gradient fractions 5-8, and 
Conc. vesicle sample were run on SDS-PAGE and imaged on Typhoon FLA9000 in the green channel. 
Fluorescently-labeled SNAP-Sso1 is detectable. (c) Negative stain EM of purified, labeled SNAP-Sso1, sec6-4 
vesicles.  
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membrane-bound organelles. However, it has long been known that commercially 

available zymolyase contains contaminating proteases, which may contribute to the 

significant proteolysis observed with the intrinsically disordered SNARE proteins. 

Cryogrinding lysis is a preferable method for reducing proteolysis, however, preliminary 

experiments suggest it may be too harsh for preserving vesicle integrity and other large 

membrane fragments contaminated the preparations as determined by Nanosight and 

negative stain EM. As an alternative, we expressed and generated recombinant 

oxalyticase enzyme in E. coli shock fluid as an alternative to zymolyase for 

spheroplasting. Oxalyticase lysed efficiently and a substantially higher level of full-

length Snc, Sso1, and several exocyst subunits were recovered by this method (Fig 3.23). 

Figure 3.23 Yeast lysis with oxalyticase reduces proteolysis of SNAREs and some exocyst subunits. Yeast pellets 
of identical OD units were lysed either with zymolyase (0.5 mg/ml 20T) or increasing volume of lyticase shock 
fluid (100 µl, 500 µl, or 1 ml lyticase shock fluid per 30 ml spheroplasting buffer). Lysate samples were run on 
SDS-PAGE and imaged by Western blot. ADH was blotted as a total protein control and revealed that while 
lyticase did not substantially increase the lysis efficiency over zymolyase, it substantially improved the recovery of 
full-length Snc, Sso, and Sec10. The red arrowhead indicates Exo84 (the above band is due to nonspecific binding 
of the antibody). Red asterisks indicate SNARE degradation products.
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Increasing the concentration of full-length vesicle proteins will improve the functionality 

of the vesicles and increase the number of fluorescent SNAP-Sso1 proteins per vesicle 

for better detection on the TIRF microscope. 

Summary and next steps with the assay: 

 With these new reagents in hand, the next step is to test them on the TIRF 

microscope. SNAP-Sso1 vesicles labeled with SNAP-Surface 547 will be added to flow 

cells containing BG-PEG-Biotin-DY649-immobilized exocyst complexes with different 

orientations and different CLIP-488-labeled subunits. Minimizing proteolysis of both 

vesicular and exocyst components is likely to improve the functionality of all assay 

components. However, it remains to be seen whether vesicle capture depends upon 

additional soluble components lost during the purification, which could be supplied by 

yeast extract. Using the AID system or available temperature-sensitive mutants, we can 

eliminate vesicular and/or cytosolic components from yeast extract to determine the 

required factors for vesicle binding by exocyst. Additionally, we can generate exocyst 

subcomplexes using the exocyst AID strains, which would allow us to determine the 

minimal complex for stable vesicle binding. Using this single molecule approach, we 

have the capability of visualizing the kinetics and heterogeneity of vesicle binding events 

in real time. Furthermore, using the multi-wavelength capabilities of the Gelles’ lab TIRF 

microscope, we can also monitor more complex events as well. An in vitro assay is 

necessary to definitively demonstrate the role of the exocyst complex as a vesicle tether 

during exocytosis and it is likely that a similar assay could be used to characterize this 

function with related MTCs.  
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Experimental procedures: 

Yeast methods: The strains used in this study are listed in Appendix Table 5.2. Standard 

methods were used for yeast media and genetic manipulations. Cells were grown in YPD 

medium containing 1% Bacto-yeast extract (Fisher Scientific), 2% Bacto-peptone (Fisher 

Scientific), and 2% glucose (Sigma Aldrich). All protein-A (PrA) tags were integrated at 

the genomic loci in haploid yeast strains (BY4741 or BY4742) by integration of linear 

PCR products. PrA products were amplified from a plasmid (pProtAHIS5, Rout lab 

Rockefeller) encoding a PreScission Protease (PPX) site upstream of the PrA tag and a S. 

pombe HIS5 selection marker (Oeffinger et al., 2007). Approximately 60 bp of homology 

to the 3’ end of the coding sequence and 60 bp of homology to the 3’ flanking sequence 

were used for homologous recombination. All exocyst PrA tags were added at the C-

terminal ends. Linear PCR products of SNAPf  and CLIPf tags, linker, and drug resistance 

marker were amplified from pFast-SNAP-HygR and pFast-CLIP-NatR plasmids (Moore 

lab, UMass Medical School). Tags were integrated at the C-termini of exocyst subunits at 

the genomic locus in either the previously described PrA-tagged parent strains or 

protease-deficient yeast strains (BJ2168) using at least 55 bp of homology to the 3’ end 

of the coding sequence and 55 bp of homology to the 3’ flanking sequence. N-terminal 

GFP and SNAP tags were added to vesicle marker genes at the genomic locus of sec6-4 

(NY778, Novick et al., 1980) using the pRS306 integrating plasmid (Sikorski and Hieter, 

1989). Inserts were amplified by overlap extension of PCR products to generate a product 

consisting of ~300-500 bp of 5’ regulatory element, SNAP or GFP tag, linker, and 

homology to 5’ end of the gene of interest, and this was then inserted into pRS306 using 
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NotI and XhoI restriction sites. The plasmids were linearized using a restriction enzyme 

specific to the 5’ regulatory elements of each gene prior to yeast transformation. 

 

SNAP and CLIP tag labeling in yeast extract: Yeast strains were grown at 30°C in 

YPD until OD600=1.3, harvested in liquid nitrogen as frozen noodles, and lysed using 

cryogenic ball mill grinding (Retsch). For a single extract preparation, two tubes each 

with 200 mg of yeast extract powder were each resuspended in 450 µl of resuspension 

buffer (50 mM Hepes pH 7.4, 300 mM NaCl, 10% glycerol, 1 mM DTT, 1X cOmplete 

Mini EDTA-free protease inhibitor solution (Roche Life Science)) and resuspended by 

briefly vortexing and pipetting gently. Extracts were spun at 14,000xg for 15 minutes at 

4°C and the supernatants were recovered. SNAP tag labeling was performed at room 

temperature, in the dark, for 20 minutes with 350 nM BG-substrate (either SNAP-

Surface-549 (New England Biolabs S9112S) or BG-PEG-Biotin-DY649 (Ivan Correa, 

Material Transfer Agreement, New England Biolabs)). CLIP tag labeling was performed 

at room temperature, in the dark, for 30 minutes with 2 µM BC-substrate (either CLIP-

Surface-547 (New England Biolabs S9233S) or CLIP-Surface-488 (New England 

Biolabs S9232S)). Labeled extracts were spun at 45,000 rpm for 40 min at 4°C in 

TLA100.4 ultracentrifuge rotor. The supernatant was recovered and added to pre-washed 

SNAPf agarose beads (approximately 100 µl bead volume) and incubated on ice under 

foil for 20 min and then in dark at room temperature for 30 minutes. Mix beads by 

pipetting (do not nutate to avoid beads on side of tube that could later be loaded on gel 

filtration column). Spin tubes in Galaxy mini centrifuge, inject 400 µl lysate supernatant 
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onto Superose 6 10/300 column (GE), and elute in same buffer as used for resuspension. 

Collect 0.5 ml fractions, pool fractions previously determined to contain exocyst 

complexes, and concentrate using 0.5 ml, 30 kDa molecular weight cutoff centrifugal 

concentrators (Amicon Ultra). Freeze 25 µl concentrated extract samples in liquid 

nitrogen and store at -80°C in dark. Fluorescently labeled exocyst complex samples were 

visualized by SDS-PAGE and a Typhoon FLA9000 fluorescence reader (GE). 

 

Purification of secretory vesicles: Vesicle accumulating yeast strains were grown at 

25°C to OD=0.8-1.0 in YPD and then shifted to pre-warmed YPD at 37°C for 2 hours. 

Cells were pelleted (~2000 ODs per 50 ml conical), washed with ice cold yeast wash 

buffer (20 mM Tris pH 8, 20 mM sodium azide, 20 mM sodium fluoride), flash frozen in 

liquid nitrogen, and stored at -80°C. A conical tube with 2000 ODs of yeast pellet was 

spheroplasted with buffer containing 0.1 M Tris-HCl pH 7.5, 1.4M sorbitol (add fresh: 10 

mM sodium azide, 1 mM DTT, 1.5 ml oxalyticase shock fluid (oxalyticase expression 

construct from C. Stroupe, Univ. of Virginia Medical School) or 0.5 mg/ml 20T 

Zymolyase (MP Biomedicals)) at 37°C, 90 rpm, for 30 min in shaking incubator. 

Spheroplasts were pelleted at 2000xg and then resuspended in lysis buffer (0.8 M 

sorbitol, 20 mM triethanolamine pH 7.4, add fresh: 2 cOmplete Mini EDTA-free tablets 

(Roche Life Science), 1 mM EDTA, 1 mM DTT, 1 mM PMSF). Samples were spun at 

700xg at 4°C and supernatant (S1) was saved. S1 was spun at 13,000xg  at 4°C in SS34 

rotor for 20 min and supernatant (S2) was saved. Depending on the experiment, S2 was 

either subjected to a 30,000xg, 4°C, 15 min spin in a Ti50.2 ultracentrifuge rotor or not, 
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and then a 100,000xg, 4°C, 60 min spin in a Ti50.2 rotor to generate pellet 3 (P3). P3 was 

gently resuspended in 200 µl lysis buffer and, if SNAP tag labeling was being performed, 

1 µM final concentration of SNAP-Surface-549 (New England Biolabs S9112S) was 

added for 30 min on ice under foil. If FM4-64 (Thermo Fisher Scientific T-3166) labeling 

was being performed, FM4-64 (from 1 mg/ml stock solution in DMSO) was added to a 

final concentration of 1 µg/ml before the 100,000xg spin. To obtain a homogeneous 

population of post-Golgi vesicles, the resuspended 100,000xg pellet was subjected to an 

11 ml 15– 45% sorbitol (in 20 mM triethanolamine pH 7.2) velocity gradient and spun 

for 1 hour at 71,000xg, 4°C, with slow acceleration and no braking. Fractions were 

collected from the top and analyzed by fluorescent plate reader (Typhoon FLA9000) to 

identify vesicle fractions. Vesicle fractions were pooled based on plate reader (and 

previous western blot experiments) and spun at 100,000xg in TLA100.4 ultracentrifuge 

rotor for 40 min at 4°C to generate pellet 4 (P4). P4 was gently resuspended in a 

sufficient volume of lysis buffer for 10-fold concentration, aliquoted into 25 µl tubes, 

flash frozen in liquid nitrogen, and stored in the dark at -80°C. Vesicle fractions were 

blotted using the same antibodies described in Chapter II experimental methods with the 

addition of our rabbit polyclonal antibody to Sso1 and rabbit polyclonal antibody to Bgl2 

(P. Brennwald, UNC Chapel Hill). Vesicle integrity was validated using negative stain 

EM with uranyl acetate (performed as described in Rossi et al., 2015 by Anne Mirza) and 

Nanosight NTA single particle tracking analysis. 
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Single molecule total internal reflection fluorescence (TIRF) microscopy 

experiments and analysis: The slides and the coverslips for flow chambers were acid 

cleaned in coplin jars by water bath sonication in a series of solutions: 1) 200 proof 

ethanol, 2) 1:1 HCl:methanol, 3) H2SO4, 4) distilled water, 5) 200 proof ethanol. The 

slides and coverslips were treated with polyethylene glycol (PEG)/biotin-PEG (200:1) 

(Crawford et al., 2008) and stored at -80°C. Flow cells were constructed using vacuum 

grease just before TIRF experiments. Experiments were performed using custom-made 

micromirror TIRF microscopes (Friedman et al., 2006) with modifications (Hoskins et 

al., 2011) and data collection was performed using LabView (National Institutes, Austin, 

TX). The microscope fields of view ranged between 314 mm and 3,250 mm. Flow cells 

were washed with buffer containing 0.1 mg/ml BSA. Streptavidin was added to slides at 

0.01 mg/ml concentration for 20 seconds before wash out. 25 µl exocyst and vesicle 

samples were added to flow cells without dilution but with added glucose 

oxidase/catalase oxygen scavenging system reagents (Crawford et al., 2008). Movies 

were acquired at 1 frame per second continuously for the indicated length of time in Fig. 

3.10, 3.11, and 3.21. Data analysis was performed by Eric Anderson (Moore lab, UMass 

Medical School) using custom programs implemented in MATLAB (The Mathworks) as 

previously described (Hoskins et al., 2011; Shcherbakova et al., 2013; Friedman and 

Gelles, 2015). 

 

. 
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CHAPTER IV: Discussion 
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Scientific Questions 
 

  Despite nearly two decades of study, many questions still remain regarding 

exocyst structure and function, primarily due to the inability to purify intact exocyst 

complexes as well as the generic secretory phenotype exhibited by exocyst mutants. A 

better understanding of the subunit topology and architecture of the exocyst is critical to 

making mechanistic predictions regarding its function in vesicle tethering and SNARE 

complex regulation. In a number of other MTCs, such structural studies revealed the 

spatial separation of subunits involved in interacting with opposing membranes. We 

sought to develop an improved exocyst purification method for characterizing the 

complex biochemically and structurally, which would allow us to propose a model for 

how the eight exocyst subunits are positioned for vesicle capture. Furthermore, we aimed 

to use this purification approach to identify putative exocyst subcomplexes, determine 

whether or not the exocyst complex undergoes regulated assembly/disassembly in vivo, 

and identify which factors may be required for stabilizing or regulating the assembly of 

the exocyst in the cell. 

 Although classified as an MTC, the exocyst has not been experimentally shown to 

possess an intrinsic vesicle tethering function. Over the years, numerous binding partners 

have been identified, which are consistent with such a function but do not conclusively 

show that exocyst itself is capable of functioning as a tether. We aimed to design an in 

vitro vesicle tethering assay for the exocyst complex, which would allow us to 

definitively test the exocyst’s capacity to capture secretory vesicles and to systematically 

test the requirements for tethering activity. By selective elimination of exocyst subunits, 
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we could identify the minimal complex required for stable vesicle capture. An in vitro 

system would allow us to dissect the other required factors including vesicle receptor 

proteins and potentially other soluble factors present in the cytoplasm. It is possible that 

some of these known partners will not be required for vesicle tethering in vitro, which 

will lead to further interesting questions regarding the requirement for these interactions 

in the cell. The development of such an assay for the exocyst complex will pave the way 

for similar assays that test the tethering function of other putative MTCs. 
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Major results and implications: 
 

Subunit connectivity, assembly determinants, and architecture of the yeast exocyst 
complex 
 

In this study we used biochemical, genetic, and structural methods to dissect the 

architecture of the yeast exocyst complex and examined mechanisms for its assembly and 

function. We purified endogenous, intact exocyst complexes from S. cerevisiae (Fig. 2.2) 

and our biochemical and structural characterization demonstrated an intrinsically stable, 

intact, octameric complex (Fig. 2.5 and Fig. 2.15). Our results using the AID system 

indicated that the presence of most of the exocyst subunits are critical to complex 

integrity and stability (Fig. 2.10 and Fig. 2.11). Degradation of 6 out of the 7 AID-tagged 

subunits tested, except Sec3, triggered complete separation of the exocyst into two 

modules (Fig. 2.10 and Fig. 2.11). Each of these modules (Sec3–5–6–8 and Sec10–15–

Exo70–Exo84) is assembled by several critical pairwise interactions (3–5, 6–8, 10–15) 

with weaker contributions from 5–6, 70–84, 84–10, and 8–10 or 8–15 (Fig. 2.5 and 2.12); 

furthermore, the disassembly of one module does not affect the integrity of the other. 

Consistent with this, our negative stain EM 2D class averages demonstrate a stable, 

homogenous, octameric complex (Fig. 2.15 and Fig. 2.16). The assembly and stability of 

the exocyst structure is independent of the known binding partners Sec4, Snc1/2, Myo2, 

Sec1, and Cdc42 (Fig. 2.14). These components are not stable, stoichiometric partners of 

the exocyst complex, nor is their binding necessary to assemble or stabilize the exocyst 

complex during vesicle transport, tethering or fusion. We propose that the role of these 

interactions is to modulate the function, rather than the assembly, of the exocyst complex. 
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Our results do not support previous hypotheses that suggested a requirement for 

polarized vesicle transport in driving the assembly of a subcomplex of exocyst subunits 

(e.g. Sec15–10–5–6–8–Exo84) on vesicles with a subgroup (Sec3 and Exo70) serving as 

a “landmark” on the plasma membrane; assembly of these two subgroups would 

subsequently drive vesicle tethering (Boyd et al., 2004). Under physiological conditions, 

we do not detect any stable subcomplexes in our pulldowns. It is possible that we detect 

only stoichiometric complexes because uncomplexed subunits or unstable subcomplexes 

are degraded during the purification; however, our biochemical and AID experiments 

argue against this possibility, as we can easily purify individual subunits and 

subcomplexes from yeast lysate with equal yield to assembled complexes (Fig. 2.5, 2.10, 

2.11). Furthermore, under conditions where we have disrupted vesicle transport, cell 

polarity, and exocyst binding to vesicles, no subcomplexes are detectable (Fig. 2.14). We 

cannot rule out the presence of either low levels of subcomplexes or free pools of exocyst 

subunits below our level of detection (<5-10%), however, the majority of the exocyst 

exists in the fully assembled state. On the other hand, subcomplexes appear to be present 

in mammalian cells: the components identified thus far (Exo84–Sec10 and Sec5–Sec6 in 

opposing groups) are consistent with the modules identified here (Moskalenko et al., 

2003; Bodemann et al., 2011). Similarly, differences in subunit localization patterns in 

the growing hyphae of Neurospora crassa, in Arabidopsis thaliana, and in different 

Drosophila melanogaster tissues suggest putative subgroups of exocyst subunits 

(Riquelme et al., 2014; Fendrych et al., 2013; Murthy et al., 2005). Regulated assembly 

and disassembly of the exocyst in different organisms may be an important mechanism 
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by which the exocyst complex participates in a diverse array of processes in a variety of 

cell types. 

Negative stain EM revealed, for the first time, the ellipsoid-shaped structure of the 

yeast exocyst complex, with its distinct helical bundle-shaped “legs” packed together 

(Fig. 2.15, 2.16). Overall, the yeast exocyst structure is roughly similar to those of the 

mammalian exocyst complexes previously imaged using rotary shadowing EM (Hsu et 

al., 1998). However, unlike the individual Y-shape structures observed with 

glutaraldehyde-fixed mammalian exocyst particles, our yeast 2D averages do not appear 

to have the same short “arms.” The arms may be too flexible or heterogeneous to be 

observed in our 2D averages, they may represent mammalian specific domains (e.g. Ral 

binding domains in Sec5 and Exo84), or perhaps the mammalian exocyst was partially 

disassembled during processing.  

Members of the CATCHR family of MTCs, including exocyst, COG, GARP, and 

Dsl1, share functional similarity, as well as structural similarity at the individual subunit 

level. Thus, they might be expected to assemble into similar quaternary structures, 

although they contain different numbers of subunits (Yu and Hughson, 2010). Similar to 

the exocyst modules identified here, COG consists of two structurally and functionally 

distinct subassemblies with four subunits each (Lees et al., 2010; Ungar et al., 2005). 

However, in terms of their overall shapes, as determined by negative stain EM, the 

exocyst differs markedly from that of both COG and Dsl1. The COG and Dsl1 structures 

consist of ~3 nm wide legs emanating from a central flexible “joint” (Lees et al., 2010, 

Ren et al., 2009), whereas the exocyst’s legs fold alongside each other to form a compact 
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ellipsoid structure. It is possible that the COG and Dsl1 complexes might adopt more 

compact structures with all their subunits present, or perhaps they represent a different, 

biologically relevant conformation that is not captured in the exocyst EM particles.  

All putative tethering complexes interact with numerous partners that could allow 

them to bridge a vesicle at the appropriate target membrane. The recent COG, Dsl1, and 

HOPS structures demonstrate that known binding sites for factors on opposing 

membranes are spatially separated within each complex, suggesting a mechanism by 

which vesicle tethering and regulation of SNARE complex assembly might occur (Lees 

et al., 2010; Tripathi et al., 2009; Brocker et al., 2012). Consistent with this, Sec3 and 

Sec15, exocyst subunits that interact with the plasma membrane and vesicle respectively 

(Guo et al., 2001; Zhang et al., 2001; Baek et al., 2010; Yamashita et al., 2010; Guo et al., 

1999), are found in opposing modules (Fig. 2.12).  Exo70, which functions redundantly 

with Sec3 to interact with factors on the plasma membrane (Zhang et al., 2008; 

Hutagalung et al., 2009), associates most strongly with the module containing Sec15 but 

may be spatially separated within the 3D structure (Fig. 2.12). Additionally, Sec3 and 

Exo70’s membrane-interacting domains may be on the same side of the complex despite 

being in different connectivity modules (Fig. 2.12). In the Dsl1 structure, the sites known 

to bind COPI vesicle coats and the ER are separated by about 30 nm (Tripathi et al., 

2009; Ren et al., 2009). Similarly, in HOPS, one end of the structure contains the binding 

sites for the Rab GTPase Ypt7 and SNAREs, and the other end contains the second Ypt7 

binding site (Brocker et al., 2012). It will be interesting to determine whether there is a 

conserved distance for vesicle capture by MTCs at the target membrane and whether all 
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MTCs undergo conformational changes to bring vesicles into closer proximity for 

SNARE assembly and vesicle fusion, as was previously suggested for the Dsl1 complex 

(Ren et al., 2009). Future efforts will require the use of higher resolution data and other 

strategies to uniquely identify each exocyst subunit within the structure. 

We propose that, in contrast with models proposing that assembly of 

subcomplexes is required for exocyst function, the yeast exocyst complex functions as a 

stable, assembled octamer in the cell. The subunits pack together into an elongated 

structure. This structure could be a single conformation that functions through changing 

interactions with various partner proteins. Alternatively, the exocyst may undergo 

conformational changes in response to binding its protein or membrane partners. 

Defining the subunit positions and binding of partners at higher resolution is necessary 

for elucidating the mechanisms of vesicle tethering and SNARE complex regulation at 

the plasma membrane. This knowledge is also critical in determining whether the MTCs 

function by similar mechanisms, and how they are uniquely suited to specific trafficking 

pathways and cell types. Importantly, the ability to purify stable yeast exocyst complexes 

will now enable functional studies to obtain a detailed molecular understanding of its role 

in vesicle tethering and SNARE complex regulation.  

 
A single molecule fluorescence microscopy assay to study vesicle tethering by the 
exocyst complex 
 
 We designed an in vitro assay for monitoring vesicle tethering by the exocyst 

complex, which makes use of single molecule TIRF microscopy. In order to maximize 

the functionality of the components used in this assay, we used endogenous yeast exocyst 
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complexes and endogenous, purified yeast post-Golgi vesicles. A number of approaches 

were tested for visualization of both exocyst complexes and vesicles as well as 

attachment of exocyst complexes to the glass slide surface. In the first version of this 

assay, we attached PrA-tagged exocyst complexes from yeast extract to a biotinylated 

slide using streptavidin and biotinylated IgG and monitored the capture of vesicles 

containing GFP-Sec4. In a good proof of principle, we observed 4-6 times more vesicle 

capture events at the slide surface in the presence of exocyst complexes compared to 

fields lacking exocyst complexes (Fig 3.11c). However, given the carpet of exocyst 

complexes on the slide surface (Fig. 3.11a), we expected to observe more tethering events 

and for ease of experiments, increasing the number of events in a single field of view is 

desirable. As a result, we sought to identify ways of improving the functionality of the 

exocyst complexes and vesicles used to optimize the assay. 

 Our biochemical and architectural studies on exocyst complex provided several 

critical insights for improving the functionality of the exocyst complexes used in the 

tethering assay. Substantial proteolysis of exocyst components occurred during extract 

preparation and SNAP-tag labeling (Fig. 3.3, 3.4, 3.12). Our biochemistry data suggested 

that loss of any one exocyst subunit is sufficient to disassemble the exocyst complex (Fig 

2.9) and proteolysis resulted in reduced recovery of intact exocyst complexes (Fig 2.1c). 

In the initial single molecule studies we were only monitoring the association of Sec6 and 

Sec8 (Fig 3.11, 3.17), which are components of the same module (Fig 2.11), therefore, it 

is possible that some fraction of the exocyst complexes on the slide surface were only 

partially assembled. Furthermore, by attaching and visualizing exocyst complexes on 
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slides using Sec6 and Sec8 respectively, we were potentially obstructing vesicle access to 

the Sec3-Sec5-Sec6-Sec8 module with two large tags or the vesicle-interacting side of the 

complex facing toward the slide surface. Finally, the PrA/Biotin-IgG attachment method 

proved to be irreproducible and so we sought an alternative approach. 

 Our biochemical studies on exocyst complex also shed light on a number of 

potential considerations for improving the functionality of the purified post-Golgi 

vesicles. First, N-terminal AID tagging of Sec4 and Snc2 resulted in a severe vesicle 

accumulation phenotype (Fig. 2.12) indicating that these tags partially compromised the 

function of these proteins. Combining this information with the knowledge that GFP-

Sec4, sec6-4 showed a synthetic growth defect in liquid culture and that SNAP-Sec4 was 

inviable, we sought to tag alternative components that are not predicted to interact with 

exocyst complex. Second, substantial proteolysis was apparent in western blots of 

purified vesicle fractions, particularly for the intrinsically disordered SNARE proteins 

Snc and Sso (Fig 3.6 and 3.23). Since the vesicle SNARE, Snc, was previously shown to 

interact with exocyst complex (Shen et al., 2013), it may be an important binding partner 

for the exocyst on vesicles and so increasing the yield of full-length Snc (and potentially 

other vesicular proteins) is important.  

 We generated a number of new reagents in order to test the next version of the 

tethering assay. Several yeast extracts were generated from protease-deficient yeast 

strains, which contained a SNAP-tagged subunit labeled with BG-PEG-Biotin-DY649 for 

both attachment and visualization of exocyst complexes. A second subunit was CLIP-

tagged and labeled with the fluorescent substrate CLIP-Surface-488, allowing for 
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unambiguous identification of exocyst spots on the slide surface as well as for confirming 

the assembly status of the complex. The SNAP- and CLIP-tagged subunits are found in 

different modules (Fig. 2.11), in an effort to avoid masking one group with double tags. 

Several different SNAP- and CLIP-tag combination strains were generated in order to 

determine which version was most functional (Appendix Table 5.2); testing different 

SNAP-tagged subunits may be important in particular as this will allow testing of 

different orientations of the complex relative to the slide surface. For fluorescent labeling 

of vesicles, we sought to avoid N-terminal tagging of potential exocyst partners on the 

vesicle. SNAP-Sso1 vesicles are the current focus, as Sso1 is a vesicular cargo and has 

not been shown to interact directly with the exocyst. Finally, spheroplasting lysis using 

purified, recombinant lyticase greatly improved the recovery of full-length SNARE 

proteins during vesicle purification so moving forward, this will be the lysis method for 

vesicle preparations.  

 Tethering activity by MTCs has been challenging to study due to the difficulty in 

purifying intact complexes and the predicted transient nature of such events. We now 

have the assay and reagents for monitoring vesicle tethering activity by the exocyst 

complex in real time, using endogenous components isolated directly from yeast extract. 

Over the course of developing this assay, we have identified and addressed many critical 

factors for preparing these reagents using the S. cerevisiae system. Since we are attaching 

complexes to slides using yeast extract, such an approach should be amenable to other 

yeast MTCs as long as the complexes tolerate the SNAP tag. Now with this assay in 
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place, we will be able to experimentally test the kinetics and requirements of exocytic 

vesicle tethering as well as potential exocyst complex dynamics during these events. 

 

Future Directions: 

 
Exocyst architecture and binding partners: 
 

Our work predicts that the exocyst complex functions as a fully assembled 

octamer in yeast and that regulated assembly/disassembly does not take place as part of 

its function. However, given the complexity of the exocyst and its 8 subunits, we 

wondered whether the exocyst functions by binding and releasing a series of partners or 

by undergoing conformational changes. Due to the large size of the exocyst complex, it 

seems likely that the exocyst may have to shift conformation or be displaced in order to 

allow vesicles to approach the plasma membrane at a distance sufficient for SNARE 

complex assembly. Furthermore, the available structural information for the partial COG 

and Dsl1 complexes show a more ‘open’ conformation with legs extending from a central 

joint (Lees et al., 2010; Ren et al., 2009), while our exocyst EM structure is more 

compact and ‘closed’. We wondered whether the structures we obtained represent a 

single conformation of the exocyst or if the COG and Dsl1 structures may more closely 

resemble that of the exocyst when fully assembled. Additionally, it is also important to 

note that our EM studies used native yeast complexes while the others were assembled in 

vitro using recombinantly expressed subunits of COG and Dsl1, which is another 

possible source of variation. Our biochemical and structural studies provide several tools 

to answer these questions. 
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Subcomplex structural studies: 

In order to address the potential difference in fully-assembled versus partial 

complex structures, we can make use of the subcomplexes generated by the AID system 

(Fig. 2.9). These subcomplexes are stably assembled and using the different exocyst AID 

strains, a variety of exocyst subassemblies are available to be characterized structurally 

by EM. Of particular interest would be to test each of the 4-subunit modules to see if 

these structures can be placed into the overall negative stain structure we obtained and if 

our hypothesis is correct regarding the two faces of the complex (Fig. 2.14). Furthermore, 

it would be interesting to see whether the structure of either of these 4-subunit modules 

resemble that of the partial COG structure. COG also contains 8 subunits, which are also 

divided into two, functionally distinct, 4-subunit groups. This information, combined 

with the highly conserved CATCHR fold of COG and exocyst subunits, make these 

complexes the most likely to assume similar quaternary structures. A deeper 

understanding of the holocomplex structures of these and other CATCHR MTCs is 

critical to determining whether there is a common mechanism of function among them 

and if vesicle capture occurs at a conserved distance from the target membrane based on 

structural restrictions. 

 

Structural studies with exocyst binding partners: 

 

It is possible that the ‘closed’ structure we obtained for the octameric exocyst 

complex represents only one conformation and that the complex may adopt additional 

conformations during the course of its function in yeast. Since the complexes used for our 

EM studies are highly purified and contain only substoichiometric levels of known 
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binding partners, we wonder whether the presence of additional factors could modulate 

the structure we observe by EM. The small GTPases Cdc42 and Rho3 are of particular 

interest as they have a required but unclear function in exocytosis and interact with the 

exocyst subunits Exo70 and Sec3 (Robinson et al., 1999; Guo et al., 2001; Zhang et al., 

2001; Adamo et al.,1999; Adamo et al., 2001; Wu et al., 2010). Interestingly, GTP-

hydrolysis deficient mutants in Rho3 and Cdc42 rescue specifically exocytosis-defective 

mutants in these GTPases and it was proposed that the role of these interactions with 

exocyst is to locally ‘activate’ the polarized exocyst complex to increase vesicle fusion 

events at these sites (Roumanie et al., 2005). It is possible that this local activation is 

induced by a conformational change of the exocyst, which may impact either its role in 

vesicle tethering or SNARE complex regulation. Adding purified binding partners such 

as the Rho GTPases to our purified complexes may trigger conformational changes that 

we could detect by EM. Furthermore, we can purify additional binding partners including 

vesicles, SNAREs, Myo2, and Sec1, all of which can be tested in the context of exocyst 

binding by EM. These EM studies will also facilitate localizing the binding sites for these 

partners within the 3-dimensional exocyst structure. 

 

Exocyst subunit positioning: 

 

Making mechanistic predictions about exocyst function in vesicle tethering and 

SNARE regulation depends on a more detailed knowledge of subunit positions within the 

3-dimensional structure. With this information and the extensive array of known exocyst 

binding partners, we can begin to build a model for how these interaction sites are 

spatially organized within the complex. We were unable to localize density associated 
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with the C-terminal GFP tag on Sec15 in our negative stain EM studies (Fig. 2.14); it is 

possible that the C-terminus of this protein is too flexible to be detected in our 2-

dimensional averages. The C-termini of several of the other exocyst subunits are also 

predicted to be flexible and, consistent with this, preliminary subunit positioning studies 

using Exo70-GFP and Sec8-GFP were unsuccessful (Adam Frost, communication). N-

terminal GFP tags may yield better results but we have not yet tested whether these GFP-

fusions will be functional. An alternative approach for subunit positioning is to make use 

of some of the exocyst yeast strains generated for the single molecule tethering assay. For 

the first version of that assay, strains were generated that contained a C-terminal SNAP 

tag and a C-terminal PrA tag on different exocyst subunits. In collaboration with Dr. 

Gang Han’s lab (UMass Medical School), we generated a SNAP tag substrate conjugated 

to a gold particle. We can purify exocyst complexes with the PrA tag, label the SNAP-

tagged subunit specifically with gold particles, and elute the complexes from beads using 

protease digestion. It is also possible that we will not have success in positioning subunits 

using the negative stain EM approach and we are already working toward a higher 

resolution cryo-EM structure in our collaboration with the Frost lab. Finally, we are also 

collaborating with the Rout and Chait laboratories at Rockefeller to use in vitro chemical 

cross-linking and mass spectrometry to identify intra-exocyst interacting residues. The 

connectivity model we developed (Fig. 2.11) combined with any subunit interaction 

information gleaned from the cross-linking studies will provide critically important 

restraints for positioning subunits within the 3-dimensional structure determined by EM. 
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Single molecule vesicle tethering assay: 
 
 The clear next step for the single molecule vesicle tethering assay is to test the 

newly developed reagents on the TIRF microscope in a vesicle capture experiment. As 

previously discussed, we are confident that the exocyst complexes attached to slides from 

protease-deficient yeast extracts are predominantly fully assembled and functional. 

Furthermore, fluorescently labeled SNAP-Sso1 vesicles are more likely to be functional 

as tagging this protein is unlikely to obstruct tethering interactions and our new lysis and 

vesicle purification approach improves the integrity of vesicle-associated proteins. Using 

an appropriate density of exocyst complex at the slide surface, we will monitor vesicle 

capture events by colocalization of vesicles (green) with immobilized exocyst complexes 

(red and blue) in real time. It is possible that the orientation of exocyst complex may not 

be optimal when using Sec6-SNAP as the attachment point so we will systematically test 

differently tagged exocyst complexes of different orientations and determine whether we 

observe increased numbers of vesicle capture events with certain SNAP-tagged subunits. 

 Once the tethering assay has been effectively established, the next steps will 

involve using this assay to identify the required factors for stable vesicle capture by the 

exocyst. The AID system is an effective way to degrade several known vesicle proteins 

including Sec4 and Snc (Fig. 2.13). We can selectively eliminate vesicular components 

during the temperature shift of vesicle accumulating yeast strains, and purify vesicles that 

lack certain components. Furthermore, if we determine that cellular extract is required for 

the assay, we can also selectively degrade AID-tagged candidate components from the 

extract to identify the required factors. There are also a number of mutants available for 
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the Rab GTPase Sec4 including GDP-locked and GTP-locked versions. It has been 

proposed that the role of Rab GTPases in membrane trafficking is to mediate binding and 

release events of vesicular cargos, where binding is dependent on the active (GTP) 

conformation and release would occur upon GTP hydrolysis. We could test whether 

Sec4-GDP vesicles are capable of binding to exocyst complex and whether GTP-locked 

Sec4 vesicles exhibit slower release kinetics than wild-type. Finally, as a further test of 

specificity of vesicle capture by exocyst, transport vesicles from other intracellular 

trafficking pathways could be specifically accumulated and purified from other mutant 

strains. For example, temperature sensitive mutants in ER to Golgi SNAREs could be 

used as a source of 50 nm COPII vesicles (Kaiser and Schekman, 1990; Liu and Barlowe, 

2002) and these vesicles could be tested as a putative negative control in the tethering 

assay. 

Vesicle-interacting subunits are found in both 4-subunit modules of the exocyst 

complex. We could attach different modules of exocyst subunits using AID/SNAP 

double-tagged complexes and determine whether an individual module is capable of 

stable vesicle binding. It is possible that the combination of binding from two subunits 

(potentially Sec15 and Sec6) will be required. Additionally, it is possible that the overall 

3-dimensional structure of the octamer is a critical determinant for vesicle capture. 

 As we now have several critical conditions established for studying exocyst 

complexes by single molecule TIRF microscopy, we could also make use of this setup to 

do single molecule FRET experiments. In the last decade, numerous studies have taken 

advantage of FRET for monitoring intramolecular conformational changes (Kahlscheuer 
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et al., 2015). We could use such experiments to monitor FRET efficiency changes 

between different regions of the exocyst complex during putative conformational changes 

upon binding partners, such as GTPases and secretory vesicles. However, such 

experiments are nontrivial to design and more structural information about the exocyst 

will be necessary to carefully select the positions of the FRET pairs. Furthermore, the 

conformational changes of the exocyst could be quite small, though recent technological 

and analysis improvements in the single molecule field allow for monitoring of 

subnanometer distance changes, given the positions of the FRET or quenching 

fluorophore pairs are positioned properly (Zhou et al., 2011). If exocyst binding to its 

partners triggers larger scale changes to a conformation that more closely resembles the 

‘open’ structures seen previously for other MTCs (Ren et al., 2009; Lees et al., 2010), the 

changes in FRET signal would be less challenging to interpret. Such studies would be an 

excellent complement to the structural approach described previously, providing real-

time measurements of the conformational changes as they occur. 
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Summary 

 
 These studies provide an important advance in both our understanding of exocyst 

architecture and assembly determinants as well as methodologies for addressing 

important, unanswered questions about exocyst function. We determined that the exocyst 

complex exists and functions as a fully assembled octamer in yeast and now it remains to 

be determined mechanistically how this large complex functions in exocytosis. Further 

biochemical and structural studies will elucidate the positions of subunits within the 

complex, which will be critical to forming hypotheses as to how exocyst tethers and 

regulates SNARE complexes. Additionally, since assembly and disassembly do not 

appear to be critical features of exocyst function, it will be interesting to determine 

whether conformational changes or other means of regulation modulate the function of 

this large complex. With our development of an in vitro vesicle tethering assay for 

exocyst, we are poised to start dissecting functional questions and developing new 

hypotheses about exocyst function that can be tested in vivo.  

The exocyst is part of a larger family of factors called tethering factors. On the 

whole, tethering factors are some of the most poorly understood regulators of 

intracellular trafficking. However, advances in our knowledge and technologies are 

bringing to light a number of commonalities among the MTCs. Our studies provide an 

important foundation for understanding both the structure and function of the yeast 

exocyst complex and may provide a framework for understanding how all of these 

essential, complex multi-subunit tethering machines modulate the proper targeting and 

fusion of vesicles in their respective trafficking pathways. 
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APPENDIX A: Exocyst purification yield quantification 
 

 For all experiments based on exocyst pull-downs (Chapter II), it was important to 

determine what fraction of the exocyst complex is pulled down from yeast extract. This is 

necessary for determining the extent to which our conclusions represented the state of 

total exocyst complex in yeast cells.We quantified the amount of PrA-tagged exocyst 

complexes that are pulled down, relative to the input levels, using western blot analyses 

(Fig. 5.1a). We determined that for each PrA-tagged exocyst subunit, approximately 60% 

of exocyst complexes are isolated (Fig. 5.1a,b) (noted in Chapter II methods). When we 

performed sequential pull-downs from the same input lysate and visualized them on SDS-

PAGE with the sensitive fluorescent protein stain Krypton (concentration correlates 

linearly with fluorescence intensity (Thermo Fisher Scientific)), we found that the 

exocyst is eventually depleted (Fig. 5.1c). Therefore, less than 100% of the complexes 

are bound in each experiment because the IgG-beads are saturated, not because any 

particular pools of exocyst are inaccessible to pull-down.  Additionally, exocyst 

stoichiometry is unchanged with sequential pull-down suggesting that fully assembled 

complexes are not pulled out preferentially (Fig. 5.1c). PrA-tagged subunits from each 

exocyst module were tested and no apparent subcomplexes or free pools were detectable 

in either case (Fig. 5.1c). In summary, our studies relying upon exocyst pull-downs 

represent a majority of exocyst complexes in the yeast cell and the pull-downs are not 

biased in sampling different pools of exocyst complexes such as those that are fully 

assembled (Fig. 5.1c) or cytosolic (Fig. 2.5b).  
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Figure 5.1 Yield quantification for exocyst PrA pull-downs. (a) Each PrA-tagged exocyst subunit was pulled down 
from yeast lysate using IgG magnetic beads and the unbound fraction was recovered. Levels of PrA-tagged exocyst 
subunits were compared by western blot for 0.3% input versus 0.3% unbound lysate samples and quantified using 
densitometry. (b) Densitometry quantification for western blots revealed that approximately 60% of exocyst 
complex from yeast lysate is bound in these purifications. Error bars indicate SEM (n=3). (c) Sequential exocyst 
pull-downs were performed from the same initial input lysate using fresh aliquots of IgG beads. Pull-downs were 
visualized by Krypton-stained SDS-PAGE. Exocyst yield decreased with sequential pull-down due to depletion of 
the PrA-tagged subunit from lysate but the stoichiometry was unchanged.  
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APPENDIX B: Exocyst subunit stoichiometry quantification 

Our Krypton- and Coomassie-stained SDS-PAGE gels indicated that the exocyst 

subunits co-purify with equal stoichiometry. In order to show this as rigorously and 

quantitatively as possible, each PrA-tagged exocyst subunit was pulled down and the 

purified complexes were visualized on Krypton-stained SDS-PAGE gels (representative 

gel Fig. 2.2). Each PrA-tagged exocyst subunit was pulled down and the ratio of each co-

purifying subunit band relative to the PrA purification handle was quantified using 

densitometry (Fig 2.3, Fig 5.2). If a free pool or subcomplex containing the PrA-tagged 

exocyst subunit existed, we would expect to see a higher ratio of that subunit or group of 

subunits relative to the remaining subunits of the complex. We saw no indication of such 

free pools, with the possible exception of Exo70, which also shows a small free pool by 

gel filtration of yeast extract (Fig. 5.5). However, this could also represent dissociation of 

Exo70 from the complex during the experiment as this subunit is likely less tightly 

associated. In all cases, the intensity of the Sec3 band was lower than that of the other 

subunits including in the experiments where Sec3-PrA was the purification handle. This 

is likely due to the smearing of phosphorylated Sec3 in the gel, which is more 

pronounced in these experiments as the gels were run long enough to sufficiently resolve 

all exocyst subunit bands for quantification. We conclude, therefore, that the exocyst 

complex exists predominantly as a fully assembled octamer with no detectable (<5-10%) 

free pools or subcomplexes, consistent with our EM structural studies as well (Fig. 2.14, 

2.15). 
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Figure 5.2 All exocyst subunits co-purify with equal stoichiometry. Exocyst complexes were purified with each subunit as 
PrA purification handle, run on SDS-PAGE, and stained with Krypton fluorescent protein stain. Densitometry analysis 
showed equal stoichiometry for all subunits with no excess of purification handle or subsets of subunits, suggesting there 
are no detectable free pools or subcomplexes for any subunits. Error bars indicate SEM (n=3-4 technical replicates). 
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APPENDIX C: Characterizing secretory defect in exocyst partner AID strains 

 We showed that yeast strains expressing either AID-tagged Snc2 (in snc1Δ 

background), Sec4, Myo2, Cdc42, or Sec1 were inviable or exhibited growth defects on 

IAA-containing YPD plates and that the proteins were depleted from cells grown in 

liquid culture after 1 hour treatment with IAA (Fig. 2.12). However, we needed to 

demonstrate that this depletion induced a secretory phenotype within the 1 hour of 

treatment in liquid culture in order to determine whether blocking post-Golgi vesicle 

trafficking affected exocyst assembly. We used a Bgl2 secretion assay to determine 

whether we were, in fact, disrupting exocytosis. In this experiment, yeast strains were 

monitored for the accumulation of a known post-Golgi vesicle cargo protein, Bgl2, in the 

cytosol upon depletion of each exocyst interacting partner. Using this assay we showed 

that all of the AID-tagged partners 

exhibited vesicle accumulation 

within 1 hour (Fig 2.12b) and 

validated this result with negative 

stain EM of yeast cells (Fig 2.12c). 

Here, a representative set of 

western blots used for densitometry 

quantification of Bgl2 

accumulation is shown (Fig. 5.3).  

We went further to 

investigate whether each of these 

Figure 5.3 Depletion of exocyst binding partners using 
AID system results in accumulation of secretory vesicles. 
Western blots show increase of internal Bgl2 levels in 
AID-tagged partner strains over internal Bgl2 levels in the 
appropriate WT untreated control strain. Sec1-AID and 
Sec6-AID showed severe secretion defects, while Myo2-
AID and AID-Cdc42 showed minor defects. AID-Snc and 
AID-Sec4 showed severe Bgl2 accumulation even before 
treatment, suggesting a partial loss of function due to the 
AID tag (quantified in Fig. 2.12b) 
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secretion blocks affects exocyst localization by generating strains expressing Sec8-GFP 

at endogenous levels from its genomic locus in combination with each of these AID-

tagged proteins. There is a clear effect on exocyst localization and cell morphology upon 

loss of Sec6, consistent with earlier studies (Fig 5.4) (Songer and Munson, 2009) and 

with exocyst complex disassembly (Figure 2.9). There is some mislocalization and 

increased cytosolic signal observed with Sec1-AID and Myo2-AID. Minor 

mislocalization was observed with AID-Sec4, minor spreading of the polarized exocyst 

signal in AID-Snc2 (consistent with Shen and Novick, 2013), and fewer budded cells but 

proper exocyst localization with AID-Cdc42. While these results are interesting, further 

investigation and careful quantification would be required to conclusively determine 

which of these factors are really required for polarized exocyst localization. Given that 

the exocyst complexes we purified from these strains are assembled, we believe that 

Sec8-GFP is a reliable readout for localization of the exocyst complex as a whole. In 

summary, consistent with the secretion assays (Fig 2.12), depletion of these proteins does 

have an effect on exocyst and the secretory pathway but does not disrupt the assembly or 

integrity of the complex (Figure 2.13). 
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Figure 5.4 Exocyst localization is partially disrupted upon depletion of several exocyst binding partners. Sec8-
GFP was monitored in all cases. The localization of Sec8-GFP was monitored in AID strains relative to Sec8-GFP 
in the appropriate wild-type strain background indicated at the top of each column. Yeast cells were treated for 1 
hour with IAA, harvested in log-phase, fixed with methanol and then imaged on an Axioskop2 plus epifluorescent 
microscope (Zeiss, Thornwood, NY) fitted with a 100x Plan-NEOFLUAR (Zeiss 1.30 NA oil immersion) 
objective lens. Images were collected using a Diagnostic Instruments camera (Sterling Heights, MI; model 2.1.1) 
and 3rd Party Interface Advanced (ver. 3.5.4 for MacOS) software. Images were adjusted for total contrast in 
Adobe Photoshop. n>100 cells were imaged for each strain. 
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APPENDIX D: Fractionation of yeast lysate to identify exocyst subcomplexes 

 We showed that when any of the exocyst subunits was used as PrA purification 

handle, the stoichiometry of all subunits was equal (Fig 5.2). If free pools of subunits or 

subcomplexes existed, we would have expected to see an excess of the PrA handle with 

or without a subset of other subunits. However, we previously showed that when 

spheroplasted yeast lysates were fractionated on a Superose 6 gel filtration column, broad 

peaks for Sec6 and Sec8 corresponding to lower molecular weight species extended 

beyond the exocyst peak suggesting a possible cytosolic subcomplex (Morgera et al., 

2012). Furthermore, a free pool corresponding to free Exo70 was also observed (Morgera 

et al., 2012). Since these results were largely inconsistent with the results from our new 

purification method and we showed that spheroplasting reduces the yield of intact 

exocyst complexes (Fig 2.1c), this experiment was repeated using lysate generated by 

cryogenic ball mill grinding. Furthermore, recent experiments also revealed that the 

Exo70 polyclonal antibody we used recognizes another protein that runs at approximately 

the same molecular weight as Exo70 by SDS-PAGE. In order to dissect the free pool 

peak contribution of this protein from Exo70, the lysate used for this study expressed 

Exo70-PrA. In this experiment, the exocyst subunits co-migrate in a single peak that 

correlates with the size of the intact complex (Fig. 5.5). A substantially smaller free pool 

of Exo70 was observed in this experiment compared to the previous one once the 

contribution from the non-specific 70 kDa band was eliminated. It is possible that a low 

level of free Exo70 does exist in the cell. Additionally, it is possible that since Exo70 is 

one of the more weakly associated subunits of the complex, some of this disassembles 
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from the complex during the course of the gel filtration fractionation experiment (Fig. 

2.5). Given the varying sensitivity of the 

different exocyst antibodies for these dilute 

samples, the prolonged extract incubation 

time required for such experiments, and the 

resolution limitations of the gel filtration 

column, it is difficult to draw firm 

conclusions from such experiments. 

However, the gel filtration results are 

consistent our data from other assays, 

suggesting that the majority of exocyst 

subunits exist as part of the octameric 

complex.  

 

 

 

 

 
 
 
 
 

 

 

Figure 5.5 Fractionation of Exo70-PrA lysates on 
Superose 6 10/300 shows exocyst subunits are 
predominantly assembled in octameric complex. 0.25 
ml fractions were analyzed by western blot using 
specific polyclonal antibodies. Band intensities were 
normalized to the most intense band visualized by 
ECL. Sec15 data not shown because antibody was  
not sensitive enough for dilute post-gel filtration 
lysate samples. 12 ml=670 kDa, 15 ml=158 kDa, 16 
ml=44 kDa. 
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APPENDIX E: Strain table for Chapter II and Appendix C 

Table 5.1 

Yeast Strain Genotype Source 

BY4741 
MATa his3∆1 leu2∆ 0 
met15∆0 ura3∆0 Brachmann, 1998 

BY4742 
MATα his3∆1 leu2∆0 lys2∆0 
ura3∆0 Brachmann, 1998 

MMY1371 

MATa ura3-1::ADH1-
OsTIR1-9Myc(URA3) ade2-
1his3-11,15 leu2-3,112 trp1-1 
can1-100 from YGRC Japan 

    
Exocyst PrA and GFP-PrA 

strain   

MMY1388 

MATa his3∆1 leu2∆ 0 
met15∆0 ura3∆0  
LYS2::ADH1 promoter/GFP-
PrA (HIS5) this study 

MMY1183 

MATa his3Δ1 leu2Δ0 
met15Δ0 ura3Δ0 
SEC3::Sec3-PrA (HIS5) this study 

MMY1316 

MATa his3Δ1 leu2Δ0 
met15Δ0 ura3Δ0 
SEC5::Sec5-PrA (HIS5) this study 

MMY1074 

MATa his3∆1 leu2∆ 0 
met15∆0 ura3∆0  
SEC6::Sec6-prA (HIS5) this study 

MMY1185 

MATa his3Δ1 leu2Δ0 
met15Δ0 ura3Δ0 
SEC8::Sec8-PrA (HIS5) this study 

MMY1186 

MATa his3Δ1 leu2Δ0 
met15Δ0 ura3Δ0 
SEC10::Sec10-PrA (HIS5) this study 

MMY1075 

MATa his3Δ1 leu2Δ0 
met15Δ0 ura3Δ0 
SEC15::Sec15-PrA (HIS5) this study 

MMY1187 

MATa his3Δ1 leu2Δ0 
met15Δ0 ura3Δ0 
EXO70::Exo70-PrA (HIS5) this study 

MMY1188 

MATa his3Δ1 leu2Δ0 
met15Δ0 ura3Δ0 
EXO84::Exo84-PrA (HIS5) this study 

MMY1175 

MATα his3Δ1 leu2Δ0 ura3Δ0 
SEC6::SEC6-PrA HIS3 
SEC15::SEC15-GFP (HIS5) this study 

    
Exocyst AID strains   

MMY1372 

MATa ura3-1::ADH1-
OsTIR1-9Myc(URA3) 
SEC3::Sec3-5xGA-IAA17 
(kanMX) ade2-1his3- this study 
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11,15 leu2-3,112 trp1-1 can1-
100

MMY1373 

MATa ura3-1::ADH1-
OsTIR1-9Myc(URA3) 
SEC5::Sec5-5xGA-IAA17 
(kanMX)  ade2-1his3-
11,15 leu2-3,112 trp1-1 can1-
100 this study 

MMY1374 

MATa ura3-1::ADH1-
OsTIR1-9Myc(URA3) 
SEC6::Sec6-5xGA-IAA17 
(kanMX)  ade2-1his3-
11,15 leu2-3,112 trp1-1 can1-
100 this study 

MMY1375 

MATa ura3-1::ADH1-
OsTIR1-9Myc(URA3) 
SEC8::Sec8-5xGA-IAA17 
(kanMX)  ade2-1his3-
11,15 leu2-3,112 trp1-1 can1-
100 this study 

MMY1376 

MATa ura3-1::ADH1-
OsTIR1-9Myc(URA3) 
SEC10::Sec10-5xGA-IAA17 
(kanMX)  ade2-1his3-
11,15 leu2-3,112 trp1-1 can1-
100 this study 

MMY1377 

MATa ura3-1::ADH1-
OsTIR1-9Myc(URA3) 
SEC15::Sec15-5xGA-IAA17 
(kanMX)  ade2-1his3-
11,15 leu2-3,112 trp1-1 can1-
100 this study 

MMY1378 

MATa ura3-1::ADH1-
OsTIR1-9Myc(URA3) 
EXO70::Exo70-5xGA-IAA17 
(kanMX)  ade2-1his3-
11,15 leu2-3,112 trp1-1 can1-
100 this study 

MMY1379 

MATa ura3-1::ADH1-
OsTIR1-9Myc(URA3) 
EXO84::Exo84-5xGA-IAA17 
(kanMX)  ade2-1his3-
11,15 leu2-3,112 trp1-1 can1-
100 this study 

    
Exocyst AID/PrA strains   

MMY1380 

MATa ura3-1::ADH1-
OsTIR1-9Myc(URA3) ade2-
1his3-11,15 leu2-3,112 trp1-
1can1-100; SEC6::Sec6-PrA 
(HIS5) this study 

MMY1389 

MATa ura3-1::ADH1-
OsTIR1-9Myc(URA3) ade2-
1his3-11,15 leu2-3,112 trp1- this study 
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1can1-100; SEC8::Sec8-PrA 
(HIS5)

MMY1381 

MATa ura3-1::ADH1-
OsTIR1-9Myc(URA3) ade2-
1his3-11,15 leu2-3,112 trp1-
1can1-100; SEC15::Sec15-
PrA (HIS5) this study 

MMY1393 

MATa ura3-1::ADH1-
OsTIR1-9Myc(URA3) ade2-
1his3-11,15 leu2-3,112 trp1-
1can1-100; SEC3::Sec3-AID 
(kanMX); SEC8::Sec8-PrA 
(HIS5) this study 

MMY1396 

MATa ura3-1::ADH1-
OsTIR1-9Myc(URA3) ade2-
1his3-11,15 leu2-3,112 trp1-
1can1-100; SEC3::Sec3-AID 
(kanMX); SEC15::Sec15-PrA 
(HIS5) this study 

MMY1402 

MATa ura3-1::ADH1-
OsTIR1-9Myc(URA3) ade2-
1his3-11,15 leu2-3,112 trp1-
1can1-100; SEC5::Sec5-AID 
(kanMX); SEC8::Sec8-PrA 
(HIS5) this study 

MMY1397 

MATa ura3-1::ADH1-
OsTIR1-9Myc(URA3) ade2-
1his3-11,15 leu2-3,112 trp1-
1can1-100; SEC5::Sec5-AID 
(kanMX); SEC15::Sec15-PrA 
(HIS5) this study 

MMY1392 

MATa ura3-1::ADH1-
OsTIR1-9Myc(URA3) ade2-
1his3-11,15 leu2-3,112 trp1-
1can1-100; SEC6::Sec6-AID 
(kanMX); SEC8::Sec8-PrA 
(HIS5) this study 

MMY1395 

MATa ura3-1::ADH1-
OsTIR1-9Myc(URA3) ade2-
1his3-11,15 leu2-3,112 trp1-
1can1-100; SEC6::Sec6-AID 
(kanMX); SEC15::Sec15-PrA 
(HIS5) this study 

MMY1401 

MATa ura3-1::ADH1-
OsTIR1-9Myc(URA3) ade2-
1his3-11,15 leu2-3,112 trp1-
1can1-100; SEC8::Sec8-AID 
(kanMX); SEC6::Sec6-PrA 
(HIS5) this study 

MMY1398 

MATa ura3-1::ADH1-
OsTIR1-9Myc(URA3) ade2-
1his3-11,15 leu2-3,112 trp1-
1can1-100; SEC8::Sec8-AID 
(kanMX); SEC15::Sec15-PrA 
(HIS5) this study 
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MMY1403 

MATa ura3-1::ADH1-
OsTIR1-9Myc(URA3) ade2-
1his3-11,15 leu2-3,112 trp1-
1can1-100; SEC10::Sec10-
AID (kanMX); SEC8::Sec8-
PrA (HIS5) this study 

MMY1391 

MATa ura3-1::ADH1-
OsTIR1-9Myc(URA3) ade2-
1his3-11,15 leu2-3,112 trp1-
1can1-100; SEC15::Sec15-
AID (kanMX); SEC8::Sec8-
PrA (HIS5) this study 

MMY1390 

MATa ura3-1::ADH1-
OsTIR1-9Myc(URA3) ade2-
1his3-11,15 leu2-3,112 trp1-
1can1-100; EXO70::Exo70-
AID (kanMX); SEC8::Sec8-
PrA (HIS5) this study 

MMY1394 

MATa ura3-1::ADH1-
OsTIR1-9Myc(URA3) ade2-
1his3-11,15 leu2-3,112 trp1-
1can1-100; EXO70::Exo70-
AID (kanMX); 
SEC15::Sec15-PrA (HIS5) this study 

MMY1404 

MATa ura3-1::ADH1-
OsTIR1-9Myc(URA3) ade2-
1his3-11,15 leu2-3,112 trp1-
1can1-100; EXO84::Exo84-
AID (kanMX); SEC8::Sec8-
PrA (HIS5) this study 

MMY1400 

MATa ura3-1::ADH1-
OsTIR1-9Myc(URA3) ade2-
1his3-11,15 leu2-3,112 trp1-
1can1-100; EXO84::Exo84-
AID (kanMX); 
SEC15::Sec15-PrA (HIS5) this study 

    
Non-Exocyst AID/PrA 

strains   

MMY1411 

MATa ura3-1::ADH1-
OsTIR1-9Myc(URA3) ade2-
1his3-11,15 leu2-3,112 trp1-
1can1-100; SEC1::Sec1-AID 
(kanMX); SEC8::Sec8-PrA 
(HIS5) this study 

MMY1410 

MATa ura3-1::ADH1-
OsTIR1-9Myc(URA3) ade2-
1his3-11,15 leu2-3,112 trp1-
1can1-100; MYO2::Myo2-
AID (kanMX); SEC8::Sec8-
PrA (HIS5) this study 

MMY1433 

MATa his3∆1 leu2∆0 lys2∆0 
ura3∆0 SNC2::AID-Snc2 
MET15::OsTIR1-myc this study 
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(URA3); SNC1::kanMX; 
SEC8::Sec8-PrA (HIS5)

MMY1435 

MATa his3∆1 leu2∆0 lys2∆0 
ura3∆0 SEC4::AID-Sec4 
MET15::OsTIR1-myc 
(URA3); SEC8::Sec8-PrA 
(HIS5) this study 

MMY1436 

MATα his3∆1 leu2∆0 lys2∆0 
ura3∆0 CDC42::AID-Cdc42 
MET15::OsTIR1-myc 
(URA3); SEC8::Sec8-PrA 
(HIS5) this study 

AID/Sec8-GFP strains  

MMY1515 

MATa ura3-1::ADH1-
OsTIR1-9Myc(URA3) ade2-
1his3-11,15 leu2-3,112 trp1-
1can1-100; SEC8::Sec8-GFP 
(HIS) this study 

MMY1516 

MATa ura3-1::ADH1-
OsTIR1-9Myc(URA3) ade2-
1his3-11,15 leu2-3,112 trp1-
1can1-100; SEC1::Sec1-AID 
(KANMX), SEC8::Sec8-GFP 
(HIS) this study 

MMY1517 

MATα his3∆1 leu2∆0 lys2∆0 
ura3∆0 CDC42::AID-Cdc42 
MET15::OsTIR1-myc 
(URA3); SEC8::Sec8-GFP this study 

MMY1487 

MATa ura3-1::ADH1-
OsTIR1-9Myc(URA3) ade2-
1his3-11,15 leu2-3,112 trp1-
1can1-100; MYO2::Myo2-
AID (KANMX); SEC8::Sec8-
GFP (HIS) this study 

MMY1508 

MATα his3∆1 leu2∆0 lys2∆0 
ura3∆0 SNC2::AID-Snc2; 
MET15::OsTIR1-myc 
(URA3); SNC1::KANMX; 
SEC8::Sec8-GFP this study 

MMY1513 

MATα his3∆1 leu2∆0 lys2∆0 
ura3∆0 SEC4::AID-Sec4; 
MET15::OsTIR1-myc 
(URA3); SEC8::Sec8-GFP this study 

MMY115 

MATa his3∆1 leu2∆ 0 
met15∆0 ura3∆0 Sec8-
GFP(HIS3) Invitrogen 
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APPENDIX F: Strain table for CHAPTER III 
 

Table 5.2 
 

Yeast Strain Genotype Source 

MMY1198 

MATa his3∆1 leu2∆ 0 
met15∆0 ura3∆0 
SEC3::SEC3-SNAP-HygR this study 

MMY1199 

MATa his3∆1 leu2∆ 0 
met15∆0 ura3∆0 
SEC5::SEC5-SNAP-HygR this study 

MMY1200 

MATa his3∆1 leu2∆ 0 
met15∆0 ura3∆0 
SEC6::SEC6-SNAP-HygR this study 

MMY1201 

MATa his3∆1 leu2∆ 0 
met15∆0 ura3∆0 
SEC8::SEC8-SNAP-HygR this study 

MMY1202 

MATa his3∆1 leu2∆ 0 
met15∆0 ura3∆0 
SEC10::SEC10-SNAP-HygR this study 

MMY1203 

MATa his3∆1 leu2∆ 0 
met15∆0 ura3∆0 
SEC15::SEC15-SNAP-HygR this study 

MMY1204 

MATa his3∆1 leu2∆ 0 
met15∆0 ura3∆0 
EXO70::EXO70-SNAP-HygR this study 

MMY1205 

MATa his3∆1 leu2∆ 0 
met15∆0 ura3∆0 
EXO84::EXO84-SNAP-HygR this study 

MMY1328  

MATa his3Δ1 leu2Δ0 
met15Δ0 ura3Δ0 
SEC8::Sec8prA (His3); 
SEC6::SEC6-fastSNAP 
(HygR) this study 

MMY1353 

MATa his3∆1 leu2∆ 0 
met15∆0 ura3∆0; 
SEC6::Sec6-fastSNAP 
(HygR); EXO84::Exo84-prA 
(HIS) this study 

MMY1354 

MATa his3∆1 leu2∆ 0 
met15∆0 ura3∆0; 
SEC8::Sec8-fastSNAP 
(HygR); EXO70::Exo70-prA 
(HIS) this study 

MMY1355 

MATa his3∆1 leu2∆ 0 
met15∆0 ura3∆0; 
SEC15::Sec15-fastSNAP 
(HygR); EXO84::Exo84-prA 
(HIS) this study 

MMY1356 

MATa his3∆1 leu2∆ 0 
met15∆0 ura3∆0; 
SEC6::Sec6-fastSNAP this study 
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(HygR); SEC3::Sec3-prA 
(HIS)

MMY1357 

MATa his3∆1 leu2∆ 0 
met15∆0 ura3∆0; 
EXO84::Exo84-fastSNAP 
(HygR); SEC3::Sec3-prA 
(HIS) this study 

MMY1358 

MATa his3∆1 leu2∆ 0 
met15∆0 ura3∆0; 
EXO84::Exo84-fastSNAP 
(HygR); EXO70::Exo70-prA 
(HIS) this study 

MMY1359 

MATa his3∆1 leu2∆ 0 
met15∆0 ura3∆0; 
SEC6::Sec6-fastSNAP 
(HygR); EXO70::Exo70-prA 
(HIS) this study 

MMY1422 

MATa prc1-407 prb1-1122 
pep4-3 leu2 trp1 ura3-52 
gal2 SEC3::Sec3-SNAP 
(HygR) this study 

MMY1423 

MATa prc1-407 prb1-1122 
pep4-3 leu2 trp1 ura3-52 
gal2 SEC5::Sec5-SNAP 
(HygR) this study 

MMY1424 

MATa prc1-407 prb1-1122 
pep4-3 leu2 trp1 ura3-52 
gal2 SEC8::Sec8-SNAP 
(HygR) this study 

MMY1425 

MATa prc1-407 prb1-1122 
pep4-3 leu2 trp1 ura3-52 
gal2 SEC10::Sec10-SNAP 
(HygR) this study 

MMY1426 

MATa prc1-407 prb1-1122 
pep4-3 leu2 trp1 ura3-52 
gal2 SEC15::Sec15-SNAP 
(HygR) this study 

MMY1427 

MATa prc1-407 prb1-1122 
pep4-3 leu2 trp1 ura3-52 
gal2 EXO70::Exo70-SNAP 
(HygR) this study 

MMY1428 

MATa prc1-407 prb1-1122 
pep4-3 leu2 trp1 ura3-52 
gal2 EXO84::Exo84-SNAP 
(HygR) this study 

MMY1479 

MATa prc1-407 prb1-1122 
pep4-3 leu2 trp1 ura3-52 
gal2 SEC3::Sec3-SNAP 
(HygR). SEC10::Sec10-CLIP 
(NatR) this study 

MMY1480 

MATa prc1-407 prb1-1122 
pep4-3 leu2 trp1 ura3-52 
gal2 SEC3::Sec3-SNAP 
(HygR). EXO70::Exo70-
CLIP (NatR) this study 
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MMY1481 

MATa prc1-407 prb1-1122 
pep4-3 leu2 trp1 ura3-52 
gal2 SEC5::Sec5-SNAP 
(HygR). SEC8::Sec8-CLIP 
(NatR) this study 

MMY1482 

MATa prc1-407 prb1-1122 
pep4-3 leu2 trp1 ura3-52 
gal2 SEC5::Sec5-SNAP 
(HygR). EXO84::Exo84-
CLIP (NatR) this study 

MMY1483 

MATa prc1-407 prb1-1122 
pep4-3 leu2 trp1 ura3-52 
gal2 EXO70::Exo70-SNAP 
(HygR). SEC3::Sec3-CLIP 
(NatR) this study 

MMY1484 

MATa prc1-407 prb1-1122 
pep4-3 leu2 trp1 ura3-52 
gal2 EXO70::Exo70-SNAP 
(HygR). SEC8::Sec8-CLIP 
(NatR) this study 

MMY1485 

MATa prc1-407 prb1-1122 
pep4-3 leu2 trp1 ura3-52 
gal2 EXO84::Exo84-SNAP 
(HygR). SEC3::Sec3-CLIP 
(NatR) this study 

MMY1486 

MATa prc1-407 prb1-1122 
pep4-3 leu2 trp1 ura3-52 
gal2 EXO70::Exo70-SNAP 
(HygR). SEC5::Sec5-CLIP 
(NatR) this study 

MMY1505 
MATα leu2-3,112 ura3-52 
sec6-4 SSO1::SNAP-Sso1 this study 

MMY1473 

MATa his3∆1 leu2∆ 0 
met15∆0 ura3∆0  
CDC42::SNAP-Cdc42 this study 

MMY1474 
MATα leu2-3,112 ura3-52 
sec6-4 CDC42::SNAP-Cdc42 this study 

MMY1349 

MATα his3∆1 leu2∆ 0 
met15∆0 ura3∆0 
SNC2::SNAP-SNC2 this study 

MMY1350 
MATα leu2-3,112 ura3-52 
sec6-4; SNC2::SNAP-Snc2 this study 

MMY1284 

SEC4::GFP-Sec4; MATa
his3∆1 leu2∆ 0 met15∆0 
ura3∆0 this study 

MMY1303 
SEC4::GFP-Sec4; 
SEC6::sec6-4 this study 

MMY1277 

SNC2::GFP-Snc2 MATa 
his3∆1 leu2∆ 0 met15∆0 
ura3∆0 this study 

MMY1294 
SNC2::GFP-Snc2; 
SEC6::sec6-4 this study 

MMY1330 
sec9-4, SNC1::GFP-Snc1, 
SNC2::GFP-Snc2 this study 
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APPENDIX G: Regulation of exocytosis by the exocyst subunit Sec6 and the SM 
protein Sec1 

 
Morgera, F., Sallah, M.R., Dubuke, M.L., Gandhi, P., Brewer, D.N., Carr, C.M., and 
Munson, M. (2012). Regulation of exocytosis by the exocyst subunit Sec6 and the SM 
protein Sec1. Molecular Biology Of The Cell 23, 337-346. 

 
Significant background and rationale (modified from Morgera et al., 2012): 
 

The exocyst subunit Sec6 plays critical roles in several aspects of exocyst 

function. As with many of the exocyst subunits, Sec6 was originally discovered as a 

temperature-sensitive sec mutant of the secretory pathway (Novick et al., 1980). At the 

restrictive temperature, the sec6-4 mutant strain shows a loss of exocyst stability, with 

defects in polarized growth and secretion (TerBush and Novick, 1995). Additional 

temperature-sensitive mutations in conserved residues on the surface of the Sec6 C-

terminal domain (Sivaram et al., 2006) led to loss of localization of the exocyst without 

complex disassembly (Songer and Munson, 2009). These residues are proposed to 

maintain exocyst localization through interactions with anchoring factor(s) at sites of 

secretion. Sec6 also binds the reticulon Rtn1, implicating Sec6 in the organization of 

cortical endoplasmic reticulum structure (De Craene et al., 2006). Moreover, we 

previously showed that the yeast exocyst subunit Sec6 interacts with the plasma 

membrane t-SNARE Sec9, inhibiting the formation of Sec9-containing SNARE 

complexes in vitro (Sivaram et al., 2005). Because the loss of Sec6 function in sec6-

4 results in a block in SNARE assembly (Grote et al., 2000), the Sec6–Sec9 interaction 

we observe may be a critical intermediate in the assembly of SNARE complexes. 

The SM protein family is essential for regulating SNARE proteins and SNARE-

mediated membrane fusion. Although members of the SM family all bind individual 
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SNARE proteins and/or SNARE complexes, several distinct modes of interaction have 

been reported, raising the possibility that SM proteins have multiple functions via 

different mechanisms (Toonen and Verhage, 2003, 2007; Carr and Rizo, 2010). The best-

characterized SM protein, Munc18-1 (neuronal Sec1), binds to 1) the “closed” inhibited 

conformation of the t-SNARE syntaxin-1a (Misura et al., 2000); 2) the N-terminus of 

syntaxin-1a (Burkhardt et al., 2008); and 3) ternary SNARE complexes containing 

syntaxin-1a (Dulubova et al., 2007; Shen et al., 2007; Rodkey et al., 2008; Xu et al., 

2010). A similar constellation of binding interactions has been reported for the 

endosomal SM protein Vps45 (Carpp et al., 2006; Furgason et al., 2009). Other SM 

proteins such as Sly1 appear to bind only the N-terminus of the partner syntaxin (Bracher 

and Weissenhorn, 2002; Yamaguchi et al., 2002; Peng and Gallwitz, 2004; Arac et al., 

2005). In contrast, the yeast Sec1 protein interacts predominantly with assembled ternary 

SNARE complexes and not with the syntaxin Sso1 (Carr et al., 1999; Togneri et al., 

2006). Functionally, several SMs appear to have an inhibitory role in SNARE complex 

assembly, whereas other studies clearly identified a positive role for SM proteins in 

SNARE complex assembly and membrane fusion (Gallwitz and Jahn, 2003; Scott et al., 

2004; Shen et al., 2007; Toonen and Verhage, 2007). Thus, the functions of SM proteins, 

the mechanism(s) underlying these functions, and the extent to which these functions are 

conserved all remain important and incompletely resolved questions. 

Although our Sec6–Sec9 binding studies indicated that the exocyst may play a 

direct role in controlling SNARE complex assembly, the question remained: how is Sec6 

inhibition of Sec9 released to promote SNARE complex assembly? Several studies 
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suggested that the exocyst might function with or through the SM protein Sec1 to 

regulate SNARE complex assembly (Finger and Novick, 2000; Grote et al., 

2000;Wiederkehr et al., 2004; Hashizume et al., 2009), and the exocyst and Sec1 are 

specifically localized to sites of secretion in yeast. Although evidence pointed to a 

function for Sec1 after SNARE complex assembly by binding assembled SNARE 

complexes (Carr et al., 1999; Scott et al., 2004; Togneri et al., 2006) and promoting 

liposome fusion in vitro (Scott et al., 2004), a recent analysis of a large panel of Sec1 

mutants demonstrated an additional functional requirement for Sec1 prior to SNARE 

complex assembly (Hashizume et al., 2009). Furthermore, overexpression of Sec1 

resulted in increased levels of SNARE complexes (Wiederkehr et al., 2004). We 

hypothesized, therefore, that the exocyst and Sec1 work together to directly regulate the 

SNAREs and SNARE complex assembly. To understand the functional interplay among 

these proteins, we examined their relationships with one another both in vitro and in vivo. 

 

Summary of results and implications (updated from Morgera et al., 2012): 
 

Here we show that Sec6 binds Sec1 both in vitro (Morgera et al., Fig. 1) and in vivo 

(Appendix G Fig. 5.6 below, Morgera et al., Fig. 4b) and the Sec6–Sec1 interaction is 

exclusive of Sec6–Sec9 (Morgera et al., Fig. 3.5) but compatible with Sec6–exocyst 

assembly (Morgera et al., Fig. 5). These results are consistent with our exocyst pull-

downs showing Sec1 co-purifies with Sec8-PrA and not solely Sec6 (Chapter II, Fig. 

2.4c). In contrast, the Sec6–exocyst interaction is incompatible with Sec6–Sec9 (Morgera 

et al., Fig. 5). Consistent with the fact that Sec1 cannot outcompete Sec9 for binding to 

Sec6 (Morgera et al., Fig. 3), we observed that Sec1 could not relieve Sec6’s inhibition of 
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SNARE complex assembly in vitro (Appendix G, Fig. 5.7 below, Morgera et al., Fig. 6). 

Therefore we proposed that, upon vesicle arrival, Sec6 releases Sec9 in favor of Sec6–

exocyst assembly and simultaneously recruits Sec1 to sites of secretion for coordinated 

SNARE complex formation and membrane fusion. 

 Our recent results have led to a re-interpretation of this data, however. Firstly, we 

showed that the exocyst complex exists predominantly in the fully assembled state in 

yeast with all subunits at equal stoichiometry (Chapter II). Therefore, models proposing a 

role for a Sec6 dimer (Sivaram et al., 2005) outside of the exocyst as a regulator of 

SNARE complex assembly are unlikely. Additionally, our lab recently proposed that the 

physiological interaction of Sec6 with the SNAREs likely occurs through the assembled 

SNARE complex rather than Sec9 alone or Sec9-Sso1 binary SNARE complexes 

(Dubuke et al., 2015). Furthermore, Sec6 is not a negative regulator of binary SNARE 

complex assembly, as our previous native gel (Sivaram et al., 2005; Morgera et al., 2012) 

and gel filtration (Sivaram et al., 2005) SNARE assembly assays were misinterpreted 

(Dubuke et al., 2015). Therefore, it is likely that Sec6’s interaction with SNARE 

complexes occurs in the context of the fully assembled exocyst and this interaction likely 

serves a positive regulatory role in SNARE complex assembly, consistent with that of 

other MTCs with their respective SNAREs (Dubuke et al., 2015; Hong and Lev, 2014). 

However, this role for exocyst in promoting SNARE complex assembly must be tested 

experimentally and it remains to be determined how exocyst binding to Sec1 fits into this 

process as well. 
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Figure 5.7 Sec6 inhibition of SNARE complex assembly. Sec6 inhibits Sec9–Sso1 formation; this is not relieved 
by addition of Sec1. Purified Sec6 ± Sec1 proteins were incubated at equimolar concentrations with Sso1 and Sec9 
for 0 or 8 h at 18°C to allow SNARE complex assembly. Reactions were run on 6% native PAGE gels and stained 
with Coomassie blue. Representative gels (more than three experiments at four different time points were run) for 
the 0 h (middle) and 8 h (right) time points are shown; the uncomplexed proteins were run on a separate gel for 
comparison (left). Asterisk indicates the mobility of the Sso1–Sec9 complex.  
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These studies brought up several new questions, which I aimed to address. The 

exocyst complex no longer exhibits characteristic foci of localization at the bud tip. 

However, it is unclear whether the exocyst is still on the plasma membrane and 

unpolarized or if the complex has become cytosolic. Furthermore, it remains to be tested 

whether localization is the true defect in these mutants or if the loss of localization is an 

outcome of another defect such as a failure of exocyst complexes to disassemble for 

recycling after tethering events. Our recent results, which indicate that the exocyst 

complex remains assembled at all times, are not consistent with this possibility (Chapter 

II).  Finally, the surface residues mutated are highly conserved and indicative of a 

putative protein-protein interaction site, so we predict that there is a Sec6 binding partner 

that remains to be identified. Once the partner is known, more information will be 

available for understanding the functional impact of this interaction. 

 

Osh4 overexpression studies 
 

 The Beh lab (Simon Fraser University) proposed a potential interaction between 

Sec6 and the putative sterol transport factor Osh4. In their studies, they purified post-

Golgi secretory vesicles and observed that Osh4 co-fractionation with vesicles was 

dependent on exocyst function because this interaction was lost in sec6-4 and sec6-49. 

Furthermore, using co-immunoprecipitation they observed interactions between Osh4 and 

Cdc42, Rho1, Sec4, and Sec6. Since Osh4 association with vesicles was disrupted in 

sec6-49, a mutant where exocyst complexes remain assembled, they concluded that 

Osh4’s direct binding partner may be Sec6 (Alfaro et al., 2011). However, since the co-

immunoprecipitation studies were performed in extract, it is possible that this is not a 
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direct interaction and the loss of Osh4 on vesicles may be due to the loss of properly 

localized exocyst complex (or other function lost in the sec6-49 mutant). 

 As part of a candidate-based approach to search for the putative “anchor” factor, 

we went on to characterize the potential role of this interaction using genetic interaction 

studies. Overexpression of a binding partner (such as by using a high copy 2µ plasmid) 

can sometimes rescue the phenotypic defects of a yeast strain mutated for binding that 

partner. A 2µ plasmid expressing OSH4 (or an empty vector) was transformed into yeast 

strains expressing either SEC6, sec6-4, sec6-49, or sec6-54 as the sole copy of Sec6 on a 

CEN LEU plasmid. We did not observe rescue of sec6 mutant growth by OSH4 

overexpression (Fig. 5.9). However, a slight synthetic negative growth defect could be 

seen for sec6-49 and sec6-54 upon OSH4 overexpression even at permissive 

temperatures in some experiments (Fig. 5.9). As we did not observe a clear result from 

these studies, we did not further pursue the possible interaction between exocyst and 

Osh4. 

 

 

Figure 5.9 Investigating a potential genetic interaction between SEC6 and OSH4. OSH4 was overexpressed using 
a 2µ URA plasmid in strains expressing SEC6, sec6-4, sec6-49, or sec6-54 as the sole copy of Sec6 on a CEN 
LEU plasmid. Synthetic genetic effects were assessed as a function of growth by serial dilution growth assay on 
SC-URA plates at the indicated temperatures.  
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Plasma membrane targeting 

If the major deficiency in the sec6-49 and sec6-54 mutants is mislocalization, then 

the phenotype should be rescued by forcing Sec6-49p or Sec6-54p localization at 

polarized membrane sites. Many cytosolic proteins are targeted to the plasma membrane 

and polarized sites by distinct protein- or lipid-interacting domains. The Cdc42/Rac 

Interactive Binding (CRIB) domain has been identified in many effectors of Cdc42p and 

is required for binding to the GTP-bound form of Cdc42p (Zhang et al., 2008; Burbelo et 

al., 1995; Lamson et al., 2002; Orlando et al., 2008). Additionally, upstream polybasic 

(PB) motifs, such as the one found in the Cdc42 effector Gic2p, are proposed to enhance 

membrane association through interactions with negatively charged phospholipids 

(Zhang et al., 2008). Fusing the Gic2 CRIB domain/PB motif to the C-termini of Sec6-

49p and Sec6-54p may be sufficient for re-polarizing the exocyst complex at the plasma 

membrane. Another possibility is to add a C-terminal polybasic sequence and CAAX 

motif to Sec6p, Sec6-49p and Sec6-54p. This is the target sequence for the addition of a 

lipid moiety that anchors proteins into membranes and is a required motif for the 

localization of Cdc42p (Johnson et al., 1999; Fairn et al., 2010). However, this motif is 

not sufficient for polarization and could lead to localization at other intracellular 

membranes as well (Richman et al., 2002), but it is possible that a sufficient amount of 

exocyst would be properly localized to rescue the exocytic defects of the mutants. 

Additionally, if properly localized, the CAAX motif/PB motif-tagged Sec6p could 

demonstrate if physical anchoring in the plasma membrane is detrimental for exocyst 
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function; for example, a growth defect may be observed if Sec6p needs to be recycled off 

the plasma membrane following a vesicle tethering and docking event.  

Two different truncations of the wild-type Gic2 N-terminal region (aa 1-208 or aa 

96-208) with a V5 epitope tag (for detection by western blot and immunofluorescence) 

were fused to the C-termini of either SEC6 CEN LEU, sec6-49 CEN LEU, or sec6-54 

CEN LEU, under the control of the SEC6 promoter. Each of these tags contains the basic 

residues (PB motif) and CRIB motif found in Gic2, but Gic2(1-208) contains an 

additional functional domain that is predicted, but not yet confirmed, to be unnecessary 

for membrane targeting (Peter Pryciak, communication). As an alternative approach, the 

CCAAX motif from the yeast Ras2 protein with an upstream V5 epitope tag were also 

fused to wild-type and mutant Sec6 on CEN plasmids. To assay whether C-terminal 

tagging itself is detrimental to the Sec6 proteins, a mutated form of the CCAAX motif 

(SSAAX) that is not membrane-targeting was also tested. Each CEN LEU plasmid was 

plasmid shuffled into a strain expressing SEC6 CEN URA by counter-selection of URA3-

expression on 5-FOA. Thus, each tagged protein could be tested for rescue of cellular 

growth as the sole copy of Sec6 (Fig. 5.10). None of the tags negatively impacted the 

growth of wild-type SEC6. Neither sec6-49 or sec6-54 was viable with the Gic2(1-208)-

V5, V5-CCAAX, or V5-SSAAX tags consistent with previous studies suggesting these 

mutants were only viable with the short HA epitope tag at their C-termini (Songer and 

Munson, 2009). However, it is also possible that plasma membrane targeting was 

successful in these constructs and that the targeting itself had a negative functional 

consequence, perhaps by mis-targeting the few remaining functional exocyst complexes. 
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Neither sec6-49 nor sec6-54 growth was rescued by the Gic2(96-208)-V5 tag (Fig. 5.10). 

The expression of the fusion proteins was confirmed by Western blot in strains 

expressing wild-type SEC6 CEN URA plasmid in the presence of SEC6 CEN LEU, sec6-

49 CEN LEU, or sec6-54 CEN LEU plasmids. All tagged proteins were the correct 

molecular weight and were expressed at similar levels to wild-type protein, with the 

exception of the Gic2(96-208)-V5 constructs, which ran smaller than expected by 

western blot (data not shown). 

It is important to note that the endogenous Gic2 targeting sequence is found at its 

N-terminus and we wondered whether this might be required for targeting Sec6. 

Furthermore, it is possible that sec6-49 and sec6-54 might be more amenable to N-

terminal tagging as C-terminal tagging was already shown to be problematic (Songer and 

Munson, 2009). However, before proceeding with generating these constructs, we sought 

Figure 5.10 The growth defects of sec6-49 and sec6-54 are not rescued by C-terminal plasma membrane targeting 
sequences, assayed by serial dilution growth assay. SEC6, sec6-49, and sec6-54 were fused at the C-terminus with 
the indicated tags, expressed at endogenous levels on CEN plasmids as the sole copy. SC-Leu=synthetic complete 
media without Leucine.  
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to investigate whether these targeting sequences were functioning as expected by fusing 

the same sequences to GFP protein alone. CEN LEU plasmids were cloned with Sec6 

regulatory elements, GFP, and the C-terminal membrane-targeting tags (Gic2(1-208)-V5, 

Gic2(96-208)-V5, V5-CCAAX, V5-SSAAX) and transformed into wild-type yeast. The 

expression levels and localization patterns for each construct were highly variable, thus 

these experiments were inconclusive. Further testing with higher expression plasmids (2µ 

and GAL CEN) containing GFP fused with these targeting sequences revealed that the 

sequences are functional for targeting. Lower expression level constructs similar to the 

expression level of Sec6, such as Ste5, were more difficult to detect (Fig. 5.11, right). 

Therefore, the low copy number of exocyst subunits (Ghaemmaghami et al., 2003; Kulak 

et al., 2014; Chong et al., 2015) makes imaging a challenging approach for validating the 

efficiency of membrane targeting by these tags. 

 

 

Figure 5.11 Visualizing plasma membrane targeting constructs of varied expression levels using wide-field 
fluorescence microscopy. (Left) GFP alone with indicated Gic2 sequence on 2µ overexpression plasmid was 
readily visualized at cell periphery. (Center) GFP with CCAAX motif was expressed under GAL promoter and 
readily visualized in punctate structures. (Right) GFP-tagged Ste5 protein expressed at endogenous levels was 
difficult to visualize due to low copy number in S. cerevisiae. Magnification=1000x. 
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N-terminal Gic2 sequences (1-208) and (96-208) were tested at the N-termini of 

SEC6, sec6-49, and sec6-54 in CEN LEU plasmids under the control of the SEC6 

promoter. These tags did not impact growth either positively or negatively for SEC6, 

sec6-49, or sec6-54 (Fig. 5.12). It remains to be tested whether or not these tags are 

sufficient for targeting Sec6, but the low endogenous expression level and likely 

incomplete targeting of Sec6 made this challenging to resolve. It is possible that directing 

Figure 5.12 Investigating growth effects of targeting Sec6 and mutants to the plasma membrane using N-terminal 
tagging constructs. SEC6, sec6-49, and sec6-54 were fused at the N-terminus with the indicated tags, expressed at 
endogenous levels on CEN plasmids as the sole copy, and assayed for growth by serial dilution assay. None of the 
targeting tags rescued growth of sec6-49 and sec6-54 but tagged mutant strains were viable in this case. SC-
Leu=synthetic complete media without Leucine.
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Sec6, Sec6-49p, and Sec6-54p to the plasma membrane does not occur in the context of 

the assembled exocyst complex due to masking of the CRIB motif. Additionally, it is 

possible that the complex is being properly targeted but re-localization is not sufficient to 

rescue the phenotype. 

In order to obtain more consistent expression levels, the sec6-49 (MMY1174) and 

sec6-54 (MMY1281) alleles were integrated at the genomic locus. These strains exhibited 

Figure 5.13 Genomic integration of sec6-49 and sec6-54. Several colonies for each integrated strain were tested 
for growth compared to strains expressing the mutant or wild-type gene on a CEN plasmid. The genomic 
integration versions of the mutants displayed the same growth as plasmid-borne mutants by serial dilution growth 
assay. (A) sec6-49 was integrated into BY4742 using a linear PCR product with a LYS2 marker. Transformants 
were validated by sequencing. (B) sec6-54 was integrated into BY4743 using a linear PCR product with a URA3 
marker. Diploids were sporulated and haploids were confirmed by temperature-sensitivity and sequencing. 
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similar growth patterns to the plasmid-borne copy strains, with severe growth defects on 

synthetic media at higher temperatures and no growth on rich media except at permissive 

temperatures (Fig 5.13). Preliminary examination of exocyst localization changes in the 

integrated sec6-49 and sec6-54 strains indicated mislocalization at the non-permissive 

temperature, as expected, but remains to be completed quantitatively.  

In summary, it is not clear whether the plasma membrane targeting of Sec6 or the 

mutants is occurring properly and further experiments are required to draw firm 

conclusions. It is unlikely that further analyzing the C-terminally-tagged constructs will 

be fruitful, as none of them rescued growth and it is likely that the tags further exacerbate 

the loss of function in sec6-49 and sec6-54. The next step will be to further characterize 

the Gic2(1-208) N-terminal tags to see whether targeting is properly occurring, in order 

to conclude whether re-localization of the exocyst can rescue the mutants. Since imaging 

approaches have proven challenging given the low signal of exocyst subunits by 

fluorescence microscopy and the likely incomplete targeting of these proteins, cell 

fractionation experiments may give clearer results. 

 

Proteomics screen for Sec6 interacting partner 

 We decided to also use a proteomics approach to identify the disrupted interacting 

partner in sec6-49 and sec6-54. To this end, we integrated a C-terminal Protein-A tag on 

Sec8 in the integrated sec6-49 and sec6-54 strains, in order to purify exocyst complexes 

and identify changes in associated binding partners. We purified Sec8-PrA tagged 

exocyst complexes from yeast strains expressing SEC6, sec6-49, or sec6-54 that were 



164 
 

either shifted for 3 hours 

at 37°C or unshifted. We 

used a lower salt 

condition (150 mM NaCl) 

in order to increase the 

level of binding of weaker 

partners and PPX native 

digestion from the beads 

to reduce non-specific 

partners associated with 

the beads in our samples 

(Fig. 5.14). The levels of 

recovered exocyst 

complex were lower in temperature-shifted samples consistent with previous studies 

(Songer and Munson, 2009) but may be sufficient for mass spectrometry studies. The 

stoichiometry of exocyst subunits does not appear to be different, as expected from 

previous studies (Songer and Munson, 2009), but this remains to be tested quantitatively.  

These experiments serve as a good proof of principle that we will be able to 

purify sufficient levels of the mutant exocyst complexes for proteomic studies. Further 

optimization is required for increasing the recovery of digested complexes from the IgG 

beads, particularly in lower salt conditions. Additionally, as a membrane-anchored or 

membrane-associated factor is the most likely candidate for the exocyst anchoring factor, 

Figure 5.14 Purification of wild-type, sec6-49, and sec6-54 exocyst 
complexes using Sec8-PrA. Purified complexes were visualized by SDS-
PAGE and Coomassie staining. In all cases, particularly with sec6-49, 
exocyst yield was lower after the 3 hour temperature shift at 37°C in SC 
media. 
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purification buffer containing different detergents will also need to be tested for 

solubilization of these factors during lysis. The next stage will be to send these samples 

for mass spectrometry and determine the differences in binding partner profiles for SEC6 

versus sec6-49 and sec6-54, as well as temperature-shifted versus unshifted samples.  
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