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ABSTRACT 

 

Epithelial cells are necessary building blocks of the organs they line. Their apical-

basolateral polarity, characterized by an asymmetric distribution of cell components along 

their apical-basal axis, is a requirement for normal organ function. Although the 

centrosome, also known as the microtubule organizing center, is important in establishing 

cell polarity the mechanisms through which it achieves this remain unclear. It has been 

suggested that the centrosome influences cell polarity through microtubule cytoskeleton 

organization and endosome trafficking. In the first chapter of this thesis, I summarize the 

current understanding of the mechanisms regulating cell polarity and review evidence for 

the role of centrosomes in this process.  

In the second chapter, I examine the roles of the mother centriole appendages in 

cell polarity during cell migration and cell division. Interestingly, the subdistal appendages, 

but not the distal appendages, are essential in both processes, a role they achieve through 

organizing centrosomal microtubules. Depletion of subdistal appendages disrupts 

microtubule organization at the centrosome and hence, affects microtubule stability. These 

microtubule defects affect centrosome reorientation and spindle orientation during cell 

migration and division, respectively. In addition, depletion of subdistal appendages affects 

the localization and dynamics of apical polarity proteins in relation to microtubule stability 

and endosome recycling. Taken together, our results suggest the mother centriole subdistal 

appendages play an essential role in regulating cell polarity. A discussion of the 

significance of these results is included in chapter three. 
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Organization of epithelial cell polarity and de novo lumen formation. 

The epithelial cell is a fundamental cell type in mammals, that lines skin, glands 

and organs including the breast, intestine and kidney. These cells are highly polarized with 

discrete apical and basolateral polarity featured with asymmetric distribution of membrane, 

polarity proteins, and organelles (Rodriguez-Boulan and Macara, 2014). This polarity is 

important in maintaining tissue function and structure, and also for controlling cell 

differentiation and cell proliferation. Disruption of the apical-basolateral polarity can 

generate epithelial tumors, which make up more than 90% of solid tumors in humans 

(Bryant and Mostov, 2008; Martin-belmonte and Perez-moreno, 2011; McCaffrey and 

Macara, 2011; Muthuswamy and Xue, 2012).  

 An interesting and fundamental question is how do cells establish and maintain cell 

polarity. Furthermore, how is cell polarity involved in tissue structure and function. Within 

the last couple of decades, three-dimensional (3D) culture of epithelial cells has become a 

powerful tool to study cell polarity and tumorigenesis (Schmeichel and Bissell, 2003). 

Compared to classic 2D culture, 3D culture better recapitulates the growth environment in 

vivo. Most of the primary cells or established cell lines from epithelial organs (breast, 

intestine and kidney) can grow in suspension with extracellular matrix (ECM) and form 

acinar or tubular structures with a monolayer of cells surrounding a single hollow lumen, 

which resembles the basic function and tissue structure of the epithelium in animals. 

Epithelial cells of 3D-cultured acini are highly polarized with the apical surface toward the 

lumen and the basal surface in contact with ECM. The distinct localization of polarity 
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proteins is the key to maintain cell polarity and also direct control cell proliferation and 

tissue structure.  

  Polarized membrane transport directly participate in the delivery and recycling of 

polarity proteins, and Rab protein is the master regulator of this process (Blasky et al., 

2015; Rodriguez-Boulan and Macara, 2014; Stenmark, 2009). The Rab family proteins are 

conserved small GTPases that switch between the active GTP-bound form and the inactive 

GDP-bound form to coordinate membrane trafficking in eukaryotic cells. There are more 

than 60 Rab proteins in humans, and these Rabs localize and associate with distinct 

intracellular membranes and cargos to direct vesicle trafficking (Blasky et al., 2015). For 

example, Rab8 assists the apical (Sato et al., 2007, 2014) and basolateral (Ang et al., 2003; 

Henry and Sheff, 2008) membrane delivery of newly synthesized polarity proteins through 

the trans-Golgi network (TGN) to the plasma membrane. Apical and basolateral localized 

proteins then can be endocytosed and recycled back to the plasma membrane or sent to the 

lysosome for degradation.  

 In addition, the specific localization of polarity proteins is required for building and 

expanding a single symmetric lumen (Overeem et al., 2015; Rodríguez-Fraticelli et al., 

2011). During lumen formation starting from one single cell, the orientation of cell division 

determines the position of the apical lumen. During symmetric lumen expansion though 

cell division, the basolateral membrane localized NuMA/LGN/G"i complex orients 

mitotic spindles parallel to the apical lumen in the manner dependent on the apical localized 

PAR/aPKC complex. Disruption of either apical or basolateral protein complex leads to 
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multiple lumen formation by causing spindle misorientaion (Durgan et al., 2011; Hao et 

al., 2010; Jaffe et al., 2008; Zheng et al., 2010).  

 

The centrosome as a microtubule-organizing center (MTOC) mediates organelle 

positioning and cell polarity. 

The centrosome, also known as the microtubule-organizing center (MTOC), is 

essential for multiple cellular functions, including cell polarization and cell division which 

are important for lumen formation. Through the microtubule array that radiates from the 

centrosome, centrosomes organize the localization of the Golgi apparatus (Sütterlin and 

Colanzi, 2010) and also directly control the trafficking of recycling endosomes (Gromley 

et al., 2005; Hehnly et al., 2012; Ullrich et al., 1996),  thus contributing to cell polarization. 

Importantly, the correct positioning of the centrosome itself is also essential for cell 

polarization. In many cell types, including fibroblasts and epithelial cells, centrosomes 

localize near the center of the cell (Elric and Etienne-Manneville, 2014; Tang and Marshall, 

2012) through pull/push forces generated by the microtubule array emanated from 

centrosomes against the plasma membrane (Holy et al., 1997).  

A good example and model of centrosome position in regulating cell polarity is the 

reorientation of the centrosome-nucleus axis during cell migration. After migration is 

induced, the centrosome stays at the cell centroid while the nucleus moves backward with 

actin flow (Luxton et al., 2011). This centrosome reorientation is essential for enabling 

cells to establish a front-rear polarity with Golgi and apical polarity proteins, such as PAR 

and aPKC, localizing toward the leading edge. Microtubule dynamics and the microtubule 
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motor dynein are required for this centrosome centering process (Luxton and Gundersen, 

2011; Magdalena et al., 2003; Salaycik et al., 2005; Schmoranzer et al., 2009; Wu et al., 

2011). In addition, disruption of centrosome integrity by laser ablation also affects front-

rear cell polarization, directional migration and cell motility (Wakida et al., 2010). 

Moreover, during cell migration, microtubules at the centrosome are selectively stabilized 

toward the leading edge through a Rho-dependent pathway (Cook et al., 1998; Palazzo et 

al., 2001; Salaycik et al., 2005). These results suggest that the centrosome can position 

itself through organizing microtubules and mediating microtubule stability. 

 

Centrosome structure and possible centrosome components that contribute to 

microtubule organization and cell polarity. 

The centrosome is composed of a pair of centrioles embedded in pericentriolar 

material (PCM). One of the centriole, which is called the mother centriole, possesses two 

sets of appendages (the distal and subdistal appendages) on its distal end, while the other 

centriole is naked and is called the daughter centriole (Bornens, 2012; Doxsey, 2001). 

During cell division, each of the two centrioles will be used as a template for centrosome 

duplication from S to G2 phase. At G2/M transition, the daughter centriole from the old 

centrosome acquires appendage proteins, which is the hallmark of centrosome maturation 

(Graser et al., 2007; Kong et al., 2014; Lange and Gull, 1995). These two centrosomes then 

serve as the two poles of a mitotic spindle, and will be distributed to each daughter cell 

later on (Figure 1.1; Bettencourt-Dias and Glover, 2007; Bornens, 2012; Fırat-karalar and 

Stearns, 2014). In arresting cells, the centrosome serves as the basal body for a cilium, and 
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the mother centriole appendages are essential for cilium formation and function (Chang et 

al., 2013; Graser et al., 2007; Vertii et al., 2016). However, the role of these appendages 

outside of cilia is poorly understood.  

There is evidence suggesting that mother centriole appendages are specifically 

involved in the establishment or maintenance of cell polarity. First of all, the mother 

centriole (but not the daughter centriole) anchors microtubules and is involved in 

centrosome centering (Piel et al., 2000). Moreover, subdistal appendages have been shown 

to directly anchor microtubules at the mother centriole using electron microscopy (EM) 

(Bornens, 2002, 2012). This was further validated using high resolution structured 

illumination microscopy (SIM) that showed microtubules are preferentially attached to the 

subdistal appendage structural protein cenexin (Figure 1.2). Ninein, which localized at

the proximal ends of centrioles and the mother centriole appendages, directs

microtubules nucleated in PCM by #Gtubulin ring complex (#TuRC) and related #G

tubulin complex (Kollman et al., 2011) to the mother centriole subdistal appendages

(Delgehyr et al., 2005;Mogensen et al., 2000).Depletion of subdistal appendage proteins 

ninein, CEP170 and cenexin disrupts microtubule array organization at the centrosome 

without affecting the localization of PCM proteins and microtubule nucleation activity 

(Delgehyr et al., 2005; Guarguaglini et al., 2005; Ishikawa et al., 2005; Tateishi et al., 

2013). Based on the role of subdistal appendages in anchoring and organizing microtubule 

arrays, these appendages may contribute to cell polarization by controlling centrosome 

positioning.  
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Secondly, both the distal and subdistal appendages of the mother centriole directly 

interact with recycling endosome components and participate in ciliary vesicle formation 

during ciliogenesis (Chang et al., 2013; Hehnly et al., 2012; Schmidt et al., 2012; Westlake 

et al., 2011). For example, the distal appendage protein, CEP164, binds to Rab8 and 

Rabin8, which is the guanine nucleotide exchange factor (GEF) for Rab8. Rab8 localizes 

to centrosomes in a manner dependent on the distal appendages and can be activated by 

Rabin8, which also localizes specifically at the distal appendages. Depletion of CEP164, 

which also disrupts distal appendages, affects Rab8 centrosomal localization and leads to 

accumulation of vesicles around the centrosome (Graser et al., 2007; Schmidt et al., 2012), 

which suggests that Rab8 at the distal appendages participates directly in pericentriolar 

endosome trafficking. The subdistal appendage protein, cenexin, also preferentially binds 

to the active form of Rab8 (Chang et al., 2013). Since Rab8 participates in apical and 

basolateral protein transport in epithelial cells  (Ang et al., 2003; Henry and Sheff, 2008; 

Sato et al., 2007, 2014), the centrosomal localization of Rab8 may not only be essential for 

early ciliogenesis but also important for cell polarization.  

In addition, the subdistal appendage acts as a hub for coordinating Rab11-

dependent endosome trafficking in non-ciliated cells (Gromley et al., 2005; Hehnly et al., 

2012; Ullrich et al., 1996). Cenexin is the fundamental structural protein of subdistal 

appendages, and depletion of cenexin disrupts the subdistal appendages (Chang et al., 

2013; Ishikawa et al., 2005). Centriolin is another mother centriole subdistal appendage 

protein, and is required for the mother centriole localization of exocyst subunits (Sec6, 

Sec15, and Sec84) and the Rab11 GTPase activating protein (GAP) Evi5 (Dabbeekeh et 
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al., 2007; Faitar et al., 2005; Gromley et al., 2005; Hehnly et al., 2012). Interestingly, 

depletion of cenexin or centriolin have opposite effects on endosome recycling; depletion 

of centriolin increases the rate of recycling, while depletion of cenexin decreases the rate 

and causes accumulation of vesicles around the centrosome. Cenexin or the subdistal 

appendage preferentially binds to active Rab11, which is required for pericentriolar 

endosome trafficking. The Rab11 GAP Evi5, which localizes at mother subdistal 

appendages through centriolin, regulates Rab11 activity at the centrosome. Therefore, 

depletion of centriolin keeps active Rab11 at centrosomes and thus, increases endosome 

recycling (Hehnly et al., 2012).  

The above results suggest that the mother centriole appendage, specifically the 

subdistal appendage, is the key centrosome component regulating cell polarization based 

on its roles in microtubule anchoring/organizing and pericentriolar endosome trafficking. 
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Figure 1.1 The centrosome cycle. 
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Figure 1.2 Microtubules anchor at the subdistal appendages. 
(A) A model depicting the orientation of the centrosome in (B). The mother centriole is 
labeled as “M”, and the daughter centriole is labeled as “D”.  
(B) Normal human fibroblasts were cultured on coverslips and prepared for immuno-
fluorescence staining. Images were taken and processed using a DeltaVision OMX super-
resolution microscope system. Images 1-8 show the microtubule organization at the 
centrosome with 0.125-µm interval. In images 3-4, microtubules (green) are specifically 
radiated from the subdistal appendage (yellow). The subdistal appendage (cenexin, light 
orange). Centrioles (#-tubulin, red). Scale bar, 1 µm.
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CHAPTER II 
 

 

THE MOTHER CENTRIOLE APPENDAGE PROTEIN CENEXIN MODULATES 

LUMEN FORMATION THROUGH SPINDLE ORIENTATION 
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ABSTRACT 

 

Establishing an apical-basal polarity axis is instrumental in the functional shaping 

of a solitary lumen within an acinus. By exploiting micropatterned slides, wound healing 

assays, and three-dimensional culture systems, we identified a mother centriole subdistal 

appendage protein, cenexin, as a critical player in symmetric lumen expansion through the 

control of microtubule organization. In this regard, cenexin was required for both 

centrosome positioning in interphase cells and proper spindle orientation during mitosis. 

In contrast, the essential mother centriole distal appendage protein, CEP164, did not play 

a role in either process, demonstrating the specificity of subdistal appendages for these 

events. Importantly, upon closer examination we found that cenexin depletion decreased 

astral microtubule length, disrupted astral microtubule minus-end organization and 

increased levels of the polarity protein, NuMA, at the cell cortex. Interestingly, spindle 

misorientation and NuMA mislocalization were reversed by treatment with a low-dose of 

the microtubule-stabilizing agent, taxol. Taken together, these results suggest that cenexin 

modulates microtubule organization and stability to mediate spindle orientation.  
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INTRODUCTION 

 

In organs such as breast, kidney and intestine, polarized epithelial cells form acini, 

each with a single lumen (Figure 2.1, left) (Overeem et al., 2015). However, in epithelial 

pre-invasive carcinomas, disruption of apical-basal polarity leads to multiple ectopic 

lumina (Figure 2.1, right) (McCaffrey and Macara, 2011; Monteleon and D’Souza-

Schorey, 2012). Thus, a better understanding of the molecular mechanism responsible for 

multiple lumina formation will provide insight into the origin and progression of epithelial 

diseases.  

 Formation of a solitary central lumen requires both regulated apical 

membrane/lumen establishment and subsequent symmetric lumen expansion (Overeem et 

al., 2015). Lumen generation requires a single epithelial cell to undergo the first cell 

division. After division, both mother and daughter cell centrosomes/spindle poles reorient 

to a position where the newly forming apical plasma membrane will emerge (Rodríguez-

Fraticelli et al., 2012). In subsequent cell divisions, spindle orientation must be tightly 

regulated to complete apical domain formation at the center of a developing acinus 

(Overeem et al., 2015). More specifically, dividing cells must orient their mitotic spindles 

parallel to the apical lumen to symmetrically expand the already existing central lumen.  

The molecular components that modulate spindle orientation involve proteins at mitotic 

spindle poles and polarity proteins at the lateral cell cortex. Many spindle pole proteins are 

involved in nucleating and anchoring microtubules. The polarity protein complex 

(NuMA/LGN/G"i) is thought to capture astral microtubules at the lateral cell cortex 
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(Gillies and Cabernard, 2011; Kotak and Gönczy, 2013; Kotak et al., 2014; Zheng et al., 

2010, 2013). However, the molecular interface between mitotic spindle poles, astral 

microtubules, and cortical capture of astral microtubules is poorly understood.  

 The centrosome is an essential contributor to cell polarity. In luminal epithelial 

cells, the centrosome is involved in polarity formation in two distinct ways: 1) during cell 

division it organizes and orients the mitotic spindle ensuring single lumen expansion (Jaffe 

et al., 2008), and 2) in interphase it repositions itself toward the apical membrane 

(Rodríguez-Fraticelli et al., 2012). More specifically, during mitosis the pericentriolar 

material proteins, pericentrin and CEP215, contribute to spindle orientation through their 

interaction with the mother centriole subdistal appendage proteins, centriolin and ninein 

(Chen et al., 2014). In interphase, the subdistal appendage protein, cenexin, anchors both 

centriolin and ninein to subdistal appendages (Gromley et al., 2003; Hehnly et al., 2012; 

Soung et al., 2009). Cenexin is also known to be important for the structural integrity of 

the subdistal appendages (Tanos et al., 2013). Thus, we hypothesize that these mother 

centriole specific substructures, and the molecular components associated with them 

(above), may play a role in spindle orientation and centrosome positioning. In this study, 

we test this hypothesis and compare results with an essential distal appendage component, 

CEP164 (Graser et al., 2007), to dissect the role of subdistal appendages versus distal 

appendages in lumen formation. 
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Figure 2.1 A schematic of the symmetric and non-symmetric lumen expansion. 
A model depicting symmetric lumen expansion where acini expand around the central 
lumen (left), and non-symmetric lumen expansion where cells expand while creating 
multiple unorganized lumina (right). 
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RESULTS 

 

The subdistal appendage protein, cenexin, but not the distal appendage protein, CEP164, 

is required for solitary lumen establishment. 

 To determine which appendage type was required for lumen formation, we created 

cell lines stably depleted of CEP164 (distal appendage protein) and cenexin (subdistal 

appendage protein) (Figure 2.2). Depletion of both was confirmed by loss of primary cilia 

(Figure 2.3) as shown previously (Chang et al., 2013; Graser et al., 2007; Hehnly et al., 

2013). In addition, subdistal appendage proteins, centriolin (Gromley et al., 2003; Hehnly 

et al., 2012) and CEP128 (Jakobsen et al., 2011; Schrøder et al., 2012) were lost after 

cenexin depletion (Figure 2.4). Importantly cenexin depletion did not disrupt CEP164 

localization to distal appendages, and CEP164 depletion had no effect on cenexin 

localization to subdistal appendages (Figure 2.5) (Schmidt et al., 2012; Tanos et al., 2013). 

This result demonstrated that cenexin depletion targeted subdistal appendages specifically.  

Based on these findings, we tested lumen formation following depletion of CEP164 

or cenexin (Figure 2.6). At early stages of acinus formation (acini with ≤5 cells), the 

majority of control cells (94%, GAPDH-depleted) formed acini with a single lumen. 

Similar results were obtained with CEP164-depleted cells (81%). In contrast, only 55% of 

cenexin-depleted cells formed acini with a single lumen. As acini expanded with multiple 

cell divisions (acini containing >5 cells), the percentage of acini with multiple lumina was 

low in control (27%) and CEP164-depleted cells (37%), compared to 60% in cenexin-

depleted cells (Figure 2.6B and 2.6C). These findings suggest a role for the subdistal 
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appendage protein, cenexin, in symmetric lumen formation and expansion. Due to the 

significant increase of acini with multiple lumina in cenexin-depleted cells, we 

hypothesized that cenexin governs lumen formation by regulating centrosome positioning 

and spindle orientation during various stages of the cell cycle. 
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Figure 2.2 Creating cell lines depleted of distal or subdistal appendage proteins. 
 (A) A model depicting CEP164 localization to distal appendages (blue) and cenexin 
localization to subdistal appendages (red) on the mother centriole.  
 (B) Immunoblot analysis of U2OS cells treated with CEP164 shRNA (upper images) or 
cenexin shRNA (lower images), and compared to cells treated with control shRNA 
(GAPDH). Staining with antibodies to actin (loading control), and CEP164 (top) or cenexin 
(bottom). 
(C) RT-PCR analysis showing CEP164 and cenexin gene expression in MDCK cells 
depleted of GAPDH (control), CEP164 or cenexin. 
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Figure 2.3 Depletion of CEP164 or cenexin caused ciliogenesis defects. 
MDCK cells treated with shRNAs targeting CEP164 or cenexin were defective in 
ciliogenesis when compared to control (GAPDH shRNA).  
(A) Cells were seeded at confluence on 0.4 µm transmembrane and cultured in serum-free 
conditions for 5 days. Cells were fixed with cold methanol and stained for cilia (acetylated 
tubulin, green), centrosomes (γ-tubulin, red), and nuclei (DAPI, blue). Scale bar, 5 µm.  
(B) The percentage of cells having cilia was calculated for n=3 experiments. Data are 
represented as mean ± SD. >50 cells were counted in each group. ***, p-value <0.001. 
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Figure 2.4  Subdistal appendage proteins are lost after cenexin depletion.  
(A) The subdistal appendage proteins, centriolin (left) and CEP128 (right) at interphase 
centrosomes were displaced from the mother centrioles in cenexin-depleted U2OS cells. 
Centrosomes were stained for centrin (red), centriolin or CEP128 (green), and nuclei 
(DAPI, blue). Insets depict 4.5x magnification of the centrosome region. Scale bar, 5 µm. 
(B) The integrated intensity of centriolin (left) or CEP128 (right) at centrosomes 
measured in U2OS cells depleted of GAPDH and cenexin. Data are represented as mean 
± SD of >30 centrosomes in each group. ****, p-value <0.0001.  
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Figure 2.5  Loss of subdistal appendages does not perturb distal appendages and 
vice versa. 
(A) Isolated interphase centrosomes from U2OS cells that express GAPDH-, CEP164-, or 
cenexin-shRNAs. Mother centrioles were decorated with antibodies against the distal 
appendage protein, CEP164 (right column, green), the subdistal appendage protein, 
cenexin (left column, green), and centrioles (#-tubulin, red). Scale bar, 1 µm. 
(B, C) and (D, E) The integrated intensity of CEP164 (B, D) or cenexin (C, E) at 
centrosomes in U2OS cells (B, C) and in MDCK cells (D, E) depleted of GAPDH, 
CEP164 and cenexin. Data are represented as mean ± SD of >20 centrosomes in each 
group. *** depicts a p-value <0.001. 
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Figure 2.6   Cenexin depletion leads to multiple lumina formation during early 
cyst development. 
(A) 3D-cultured MDCK acini were fixed and stained for actin (phalloidin, red) and nuclei 
(DAPI, blue). A single confocal z-section at the center of the acinus is displayed. Scale bar, 
5 µm. 
(B) Scatter plot illustrating the number of lumina in different acini. The number of acini 
with a given number of lumen in the population correlates to the size of each point (refer 
to legend for each graph). Each graph represents >100 acini scored over 3 independent 
experiments.  
(C) The percentage of acini with >1 lumen in MDCK 3-D cultured cells depleted of 
GAPDH, CEP164, or cenexin. Data are represented as mean ± SD from 3 independent 
experiments. >30 acini were counted in each group per experiment. ***, p-value <0.001. 
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Cenexin is required for centrosome positioning in interphase.  

During interphase, centrosome positioning near the cell centroid is crucial for 

directional cell migration. Pathways involving cell polarity proteins and regulation of 

microtubule dynamics are emerging as common regulators of centrosome positioning in a 

variety of contexts (Elric and Etienne-Manneville, 2014; Luxton and Gundersen, 2011). 

Thus, we first investigated whether cenexin depletion disrupts apical-basolateral polarity 

in epithelial cells. Neither cenexin depletion nor CEP164 depletion disrupted the adherens 

junction protein, E-cadherin, or the apical membrane polarity proteins, PAR3 and PKC! 

localization (Figure 2.7) (Rodriguez-Boulan and Macara, 2014), suggesting that cenexin 

and CEP164 are not involved in polarity establishment. 

 We further tested if cenexin was involved in centrosome positioning by exploiting 

micropatterned surfaces to generate cells with nearly identical shapes and sizes (refer to 

Figure 2.8A, left) (Théry et al., 2006). Centrosomes in nearly all control cells (GAPDH-

depleted) localized within a 7 µm radius (dashed circle, Figure 2.8B) of the cell centroid. 

Strikingly, in cenexin-depleted cells, there was a six-fold increase in the percentage of 

centrosomes outside the centroid (30% compared to 5% in control cells and 3% in cells 

depleted of CEP164; Figure 2.8B and 2.8C). Moreover, cenexin depletion did not induce 

overt defects in microtubule nucleation at the centrosome (Figure 2.9) (Ibi et al., 2011), but 

did cause defects in microtubule focusing at this site (Figure 2.8A) (Ibi et al., 2011). This 

suggested that defects in microtubule focusing disrupt centrosome positioning. To examine 

the contribution of microtubule organization and stability in centrosome positioning, we 

took two approaches: 1) Depletion of two well-established centrosome-localized 
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modulators of microtubule nucleation, anchoring, and/or organization, PCM1 

(Dammermann and Merdes, 2002) and pericentrin (PCNT) (Dictenberg et al., 1998; 

Doxsey et al., 1994; Zimmerman et al., 2004) and by 2) treatment with the microtubule-

destabilizing drug, nocodazole.  

 PCM1- or PCNT-depletion caused only a subtle effect on centrosome centering 

(4%-10% not centered) (Figure 2.10A and 2.10D) compared to cenexin depletion (30%). 

Importantly, cenexin loss did not affect the presence of PCM1 or PCNT at the centrosome 

(Figure 2.10G and 2.10H) suggesting that cenexin, but not PCM1 or PCNT, has a 

significant role in centrosome positioning. PCM1 is involved in microtubule anchoring 

(Dammermann and Merdes, 2002), but it is possible that cenexin anchors a separate subset 

of microtubules that predominate during centrosome positioning highlighting cenexin in 

centrosome centering and microtubule focusing.   

In a second experiment, we directly tested if microtubule dynamics were important 

for centrosome positioning by treating cells with nocodazole (4 nM, 10 nM, and 20 µM) 

to destabilize microtubules (Figure 2.11) (Vasquez et al., 1997). Cells treated with low 

concentrations of nocodazole (4-10 nM) exhibited significant centrosome displacement 

from the cell’s centroid region similar to that seen in cenexin-depleted cells. Since cenexin 

depletion seemed to disrupt microtubules at the centrosome (Figure 2.8A), we attempted 

to rescue centrosome centering by stabilizing these microtubules with the microtubule-

stabilizing drug, taxol (Yvon et al., 1999). Taxol treatment robustly reversed the effects of 
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cenexin depletion allowing cells to re-center their centrosomes (Figure 2.12) suggesting 

that stably focused microtubules at the centrosome are required for centrosome positioning.  

We confirmed the role of cenexin in centrosome positioning using a 

physiologically-relevant wound-healing assay. The percentage of centrosomes that reorient 

to a position between the nucleus and the leading edge of the cell during migration was 

calculated. Two hours after inducing cell migration, 50% of control cells (GAPDH-

depleted) reoriented their centrosome toward the leading edge, while fewer CEP164- and 

cenexin-depleted cells reoriented their centrosomes (43% for CEP164 depletion; 42% for 

cenexin depletion). Six hours after application of a scratch wound, ~60% of control 

(GAPDH-depleted) and CEP164-depleted cells reoriented their centrosomes (Figure 2.13A  

and 2.13B). However, centrosome reorientation was observed in only 40% of cenexin-

depleted cells (Figure 2.13B), and could be rescued with an shRNA-resistant form of 

cenexin (Figure 2.13C). We conclude that cenexin is essential for centrosome reorientation 

during migration, while CEP164 may be dispensable in this process. 

   

Cenexin is critical for centrosome positioning in interphase via modulation of microtubule 

stability. 

During migration, wound-edge migrating cells contain more centrosome-localized 

stable/acetylated microtubules (Palazzo et al., 2003). After application of a scratch wound 

in control cells (6 hours), prominent acetylated microtubule arrays focused at the 

centrosome were noted (Figure 2.14A, GAPDH-depleted cells). In contrast, cenexin-

depleted cells showed a significant reduction of acetylated tubulin at the centrosome 
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concomitant with disorganized microtubules (Figure 2.14A), reminiscent of cenexin-

depleted cells grown on micropatterns (Figure 2.8A). Taxol treatment of cenexin-depleted 

cells rescued microtubule organization (stabilized microtubules) at the centrosome, and 

centrosome reorientation. These findings (Figure 2.14), together with those on centrosome 

centering (Figure 2.8 and 2.12), suggest that the subdistal appendage protein, cenexin, is 

critical for adjusting the position of the centrosome during migration via modulation of 

microtubule stability.   
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Figure 2.7 Depletion of CEP164 or cenexin does not affect the overall polarity of 
epithelial cells. 
Depletion of CEP164 or cenexin did not affect localization of E-cadherin (top row), 
PAR3 (middle row), and PKC! (bottom row) in polarized MDCK cultures. Cells were 
grown on transwell membranes (0.4 µm pore size) for 5 days under serum-free 
conditions. Scale bar, 10 µm.   
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Figure 2.8 Cenexin is required for interphase centrosome centering. 
(A) Left, Fibronectin-coated-crossbow micropattern on glass coverslips was used to mimic 
a migrating cell with a uniform cell shape and size. Right, U2OS cells were seeded onto 
micropatterns and stained for microtubules ("$tubulin, white) and centrosomes (#-tubulin, 
red). Scale bar, 10 µm. Insets at the right of main images depict a 4x-magnified projection 
of microtubule anchoring at the centrosome. Cenexin-depleted cells show fewer 
microtubules focused at centrosomes. 
(B) Interphase centrosome positions in cells grown on crossbow micropatterns. 270 
centrosomes were plotted for the control cells, and 200 centrosomes were plotted for 
CEP164- depleted or cenexin- depleted cells. The centroid position in the pattern was 
determined and a circle with the radius of 7 µm was drawn. All points that fall outside of 
the circle were considered non-centered. Data were collected from >3 independent 
experiments.  
(C) Distances between centrosomes and the cell centroid shown in (B) for GAPDH-, 
CEP164-, and cenexin-depleted cells. Data are represented as median ± interquartile range. 
****, p-value<0.0001. 
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Figure 2.9 Cenexin-depleted centrosomes retain the ability to nucleate 
microtubules. 
U2OS cells were treated with 20 µM of nocodazole for 2 hours to depolymerize all the 
microtubules. Cells were then washed with medium and incubated at 37°C for microtubule 
regrowth. Cells were fixed in cold methanol at the indicated time for microtubule regrowth 
and prepared for immunofluorescence staining. Centrosomes (centrin, red), and 
microtubules (green). Scale bar, 1 µm. 
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Figure 2.10  Pericentriolar proteins, PCM1 and pericentrin, have a subtle effect on 
centrosome centering. 
(A) Interphase centrosome positions for >125 centrosomes are plotted for lamin-depleted 
(control) and PCM1-depleted U2OS cells using a previously published siRNA 
(Dammermann and Merdes, 2002).  
(B) Distances between centrosomes and the cell centroid (shown in Figure 2.10A) are 
shown for lamin- and PCM1-depleted cells. Data are represented as median ± interquartile 
range. ***, p-value<0.001.  
(C) Immunoblot analysis of U2OS whole cell lysates after cells were treated with control 
or PCM1 siRNA. Staining against PCM1 and actin (loading control) is shown.  
(D) Interphase centrosome positions were measured from cells grown on crossbow 
micropattern slides. 164 centrosomes were plotted for the control cells (GAPDH-depleted), 
and 99 centrosomes for PCNT-depleted U2OS cells.  
(E) Distances between the scored centrosomes and the cell centroid (shown in Figure 
2.10D) for GAPDH- and PCNT-depleted cells were measured. Data are represented as 
median ± interquartile range. **, p-value<0.01. 
(F) Immunoblot analysis of U2OS whole cell lysate treated with PCNT or control 
(GAPDH) shRNA. Staining with antibodies against PCNT and actin. 
(G-H) The presence of PCM1 (G) or PCNT (H) at interphase centrosomes was not 
decreased in cenexin-depleted U2OS cells. Cells were stained for centrosomes (centrin or 
γ-tubulin, red), and PCM1 or PCNT (green). Insets depict 2x magnification of the 
centrosome region. Scale bar, 5 µm. 
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Figure 2.11 Microtubule dynamics are involved in centrosome positioning. 
(A) U2OS cells were grown on crossbow micropatterned slides and treated with 
nocodazole (mock, 4 nM, 10 nM, and 20 µM), and stained for microtubules ("-tubulin, 
white) and centrosomes (#-tubulin, red). Scale bar, 10 µm.  
(B) Distances between centrosomes and the cell centroid with various nocodazole 
treatments. Data are represented as median ± interquartile range of >50 cells/treatment. 
Representative of n=2 experiments. **, p-value <0.01.   
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Figure 2.12 Stabilizing microtubules with taxol treatment rescues the centrosome 
centering defect in cenexin-depleted cells. 
(A) Interphase centrosome positions in cells grown on crossbow micropatterns were treated 
with or without taxol as labeled; 100 centrosomes were plotted in each group.  
(B) Distances between centrosomes and the cell centroid shown in (A). Data are 
represented as median ± interquartile range. ****, p-value<0.0001. 
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Figure 2.13  Cenexin is required for centrosome reorientation during cell 
migration. 
(A) Top row, a model depicting centrosome (red) localization during migration. Upon 
inducing cell migration, the centrosome reorients into the light red quadrant in front of the 
nucleus (blue) towards the direction of migration. Bottom row, U2OS cells depleted of 
GAPDH (control), CEP164, or cenexin were fixed and stained for centrosomes (#-tubulin, 
red), nuclei (DAPI, blue), and microtubules ("-tubulin, white) 6-hours after scratch wound 
application. Scale bar, 10 µm. 
(B) The percentage of centrosomes that orient towards the front quadrant (modeled in 
Figure 2.13A top row, light red section) at 2 hours (dark grey) and 6 hours (light grey) after 
scratch wound application. Cells were depleted of GAPDH, CEP164, or cenexin. Data are 
represented as mean ± SEM for 3 independent experiments, and >200 cells were counted 
in each group/experiment. **, p-value<0.01. n.s. = not significant.  
(C) U2OS cells depleted of GAPDH or cenexin, and subsequently rescued with an shRNA-
resistant human cenexin were scored for centrosome reorientation towards the leading edge 
6-hours after scratch wound application. Data are represented as a box-and-whisker plot 
with max and min of >300 cells over 3 regions in each group. Representative of n=2 
experiments. ***, p-value<0.001. 
(D) Immunoblot analysis of U2OS whole cell lysates after cells were transfected with 
control or cenexin expression constructs. Staining against cenexin and actin (loading 
control) is shown.  
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Figure 2.14  Loss of acetylated microtubules at the centrosomes with cenexin- 
depletion during cell migration. 
(A) U2OS cells (GAPDH-depleted, cenexin-depleted, and cenexin-depleted cells treated 
with taxol) were fixed 6 hours after applying a scratch wound. Top row, cells were 
stained with centrosomes (pericentrin, red), microtubules ("$tubulin, white), and nuclei 
(DAPI, blue). Bottom row, cells were stained for acetylated microtubules (green), and 
centrosomes (pericentrin, red). Insets, below main images, depict a 4x-magnified 
projection of acetylated microtubules at the centrosome. Scale bar, 10 µm. 
(B) The percentage of centrosomes that orient towards the front quadrant (A) at 6 hours 
after applying a scratch wound. Data are represented as a box-and-whisker plot with max 
and min of >300 cells over >3 regions in each group. Representative of n=2 experiments. 
***, p-value<0.001.  
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Cenexin regulates mitotic spindle pole positioning and thus, spindle orientation. 

During mitosis, spindle pole integrity and function are crucial for spindle 

orientation. In fact, loss of function of spindle pole proteins can affect astral microtubule 

dynamics and spindle orientation (Barros et al., 2005; Chen et al., 2014; Delaval et al., 

2011; Hehnly and Doxsey, 2014; Hehnly et al., 2015; Thaiparambil et al., 2012). Moreover, 

proper control of division orientation is required for the symmetric expansion of a central 

lumen in a growing acinus and for the development of a variety of organs (modeled in 

Figure 2.1, (Blasky et al., 2015; Overeem et al., 2015)). For these reasons, we tested if 

appendages were present in spindle poles/mitotic centrosomes and if cenexin and CEP164 

localized to these structures, as they did in interphase cells. Mitotic cells processed for 

transmission electron microscopy (TEM) showed that one of the two centrioles in mitotic 

centrosomes contained both subdistal and distal appendages (Figure 2.15A). We next 

determined that cenexin and CEP164 displayed conventional appendage-like localization 

at the subdistal and distal appendages of mitotic centrioles suggesting that both CEP164 

and cenexin maintained their appendage localization during mitosis (Figure 2.15B). In 

support of previous studies (Lange and Gull, 1995), cenexin accumulated primarily at 

appendages of the older centriole (Figure 2.15C, top, and quantification of >30 cells in 

Figure 2.15D, left). Interestingly, the intensity difference of CEP164 between the two 

spindle poles was not as significant as cenexin (Figure 2.15C and 2.15D). These findings 

suggest that differential localization of cenexin to the poles might contribute to proper 

spindle orientation (Yamashita, 2009).  
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CEP164 or cenexin was depleted and tested for changes in spindle positioning 

during mitosis (Figure 2.16E). Only cenexin-depleted cells showed variability in the 

orientation of their spindle to the substratum (Figure 2.16A, 2.16B, and 2.16E). More 

specifically, 50% of cenexin-depleted cells demonstrated a spindle angle >5°, whereas 

most control spindles were parallel to the substratum (<5°, 75% for control). CEP164-

depleted cells displayed a modest difference compared to control (<5°, 68% for CEP164; 

Figure 2.16B and 2.16E). Importantly, spindle orientation defects could be rescued by 

expressing an shRNA-resistant form of cenexin (Figure 2.16A-D and 2.16F-G). We 

observed similar defects in U2OS cells (Figure 2.16H) or when additional shRNAs were 

used (Figure 2.16I) further demonstrating that the subdistal appendage protein, cenexin, 

but not the distal appendage protein, CEP164, is essential for modulating spindle 

orientation.  

 We found that spindle misorientation in cenexin depleted cells was the likely cause 

of multi-lumina formation in acini (as in Figure 2.6A and 2.6B). In control acini (GAPDH 

depletion), the spindle was nearly parallel to the apical lumen in most cells (on average 

18°, Figure 2.17A and 2.17B), suggesting that spindle alignment contribute to normal 

symmetric lumen expansion. However, in cenexin-depleted cells, a higher degree of 

spindle angle variability and an overall increase in spindle angle towards the apical lumen 

was observed (Figure 2.17A and 2.17B). Taken together, these results indicate that cenexin 

is required for control of spindle orientation and single lumen formation. Importantly, taxol 

treatment rescued spindle misorientation in cenexin-depleted cells, as there was a 

significant decrease in the spindle angle in relation to the lumen under these conditions 
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(Figure 2.17C and 2.17D), This suggests that cenexin regulates microtubule stability that 

influences centrosome positioning in both non-dividing and mitotic cells. 

 

Cenexin depletion decreases astral microtubule number and length in mitotic cells.  

To better understand the role of cenexin in spindle positioning we examined the 

overall morphology of the mitotic spindle in cenexin-depleted cells. Astral microtubule 

arrays in cells depleted of cenexin were disrupted when compared to control cells 

(GAPDH-depleted, Figure 2.18A). The plus-end microtubule binding protein EB1 was 

used to visualize astral microtubules and revealed a significant decrease in both astral 

microtubule number (30% of control, Figure 2.18B) and length (17% of control, Figure 

2.18C) in cenexin depleted cells. Having observed defects in the astral microtubule plus 

ends (EB1 staining), we examined the minus ends at the poles by visualizing the minus-

end binding protein, KIF2A (Ganem and Compton, 2004). Interestingly, we observed a 

significant defocusing of KIF2A at spindle poles in cenexin-depleted cells compared to 

controls (Figure 2.18D), while the presence of KIF2A at the spindle poles was unchanged 

(Figure 2.18E). This suggests that cenexin loss causes disorganization of microtubule 

minus-ends, which can lead to defects in anchoring, stability, and/or growth of astral 

microtubules. Cenexin depletion did not affect spindle pole localization of canonical 

spindle pole proteins involved in microtubule nucleation and spindle orientation, namely 

#-tubulin, pericentrin, and the pericentrin binding protein, CEP215 (Figure 2.19A) (Chen 

et al., 2014; Zimmerman et al., 2004) nor did we observe any significant difference in cell 

cycling, mitotic progression, chromosome congression, kinetochore alignment or 
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kinetochore-fiber formation under these conditions (Figure 2.19B-2.19E, (Gasic et al., 

2015)). Thus, we conclude that spindle microtubules, as well as microtubule-nucleating 

and -depolymerizing activity at the spindle pole are not grossly affected in cenexin-

depleted cells, whereas cenexin is required for proper organization of astral microtubules.  

 

Cenexin-depletion destabilizes astral microtubules and contributes to cortical NuMA 

mislocalization. 

The interaction between astral microtubules and the cell cortex has been shown to 

direct spindle orientation. This process involves the NuMA/LGN/Gαi complex (NuMA 

complex), which is transiently organized at the cell cortex during metaphase, to assist in 

astral microtubule capture (Kotak and Gönczy, 2013). Since we observed spindle 

misorientation (Figure 2.16 and 2.17) and astral microtubule defects in cenexin-depleted 

cells (Figure 2.18), we hypothesized that cenexin depletion could disrupt the distribution 

of the NuMA complex at the cell cortex. Interestingly, we found that cenexin depletion in 

two separate cell lines (MDCK and U2OS) increased cortical NuMA localization when 

compared to control cells (Figure 2.20A-2.20D). These findings suggested that loss of 

astral microtubules caused by cenexin depletion, did not impede NuMA recruitment to the 

cell cortex, but instead, increased NuMA localization at this site.  

 NuMA may not require astral microtubules for delivery to the cell cortex (Kotak et 

al., 2014), but instead, it may require astral microtubules to dissociate from the cortex 

(Zheng et al., 2013). In fact, in our system, a second approach suggested the requirement 

for astral microtubules in cortical NuMA dissociation. Control cells treated with 
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nocodazole to selectively destabilize astral microtubules (Figure 2.21A) (Vasquez et al., 

1997) showed a 5-fold increase in NuMA at the cell cortex compared to vehicle-treated 

cells (Figure 2.20E and 2.20F). This closely mimicked the phenotype of cenexin depletion 

(Figure 2.20A and 2.20B).  

To further confirm that cenexin depletion affects the stability/growth of astral 

microtubules and therefore impedes NuMA dissociation from the cell cortex, taxol was 

used to stabilize astral microtubules (Figure 2.21C) (Yvon et al., 1999). A significant 

reduction in cortical NuMA was observed under these conditions compared to mock treated 

cenexin depleted cells (Figure 2.20G and 2.20HJ). The taxol treatment rescued the spindle 

misorientation phenotype in cenexin-depleted cells (1.6-fold, Figure 2.21D and 2.21E), 

while low-dose nocodazole treatment caused spindle misorientation in control cells (Figure 

2.21B and 2.21E). Thus, we argue that astral microtubules loss observed in cenexin-

depleted cells causes NuMA mislocalization at the cell cortex and spindle misorientation. 

 

Cenexin-regulated subdistal appendages are required for ensuring appropriate 

lumenogenesis. 

 We present a model wherein the cenexin-regulated subdistal appendages are 

required for microtubule organization at the mother centriole (Figure 2.22) (Bornens, 2002; 

Kunimoto et al., 2012). In line with previous findings (Hehnly et al., 2012; Tanos et al., 

2013), cenexin depletion causes subdistal appendage protein loss with no overt defects to 

distal appendages (Figure 2.5). We conclude that cenexin-regulated-subdistal appendages 

and not distal appendages are specifically required for centrosome positioning both in 
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interphase cells for proper directed migration (Figure 2.8 and 2.13), and during mitosis for 

appropriate placement and orientation of the mitotic spindle (Figure 2.16). In addition, our 

findings suggest that cenexin affects a specific pool of microtubules, namely astral 

microtubules, that influences spindle orientation and modulates localization of NuMA at 

the cell cortex (Figure 2.18 and 2.20). We reason that this regulation is required for apical-

basal axis orientation and epithelial lumen positioning (Figure 2.16 and 2.17; modeled in 

Figure 2.22). 

 



57

 

 



58

Figure 2.15 Appendage proteins localize at mother centriole during mitosis. 
(A) Mitotic cells were collected by mitotic shake-off and processed for transmission 
electron microscopy. Shown is a representative mother centriole from a mitotic spindle. 
Scale bar, 0.1 µm. The distal appendage is highlighted by a blue arrowhead, and the 
subdistal appendage is highlighted by a red arrow.  
(B) Immunofluorescence staining of U2OS cells at metaphase; centrioles (centrin, red), 
CEP164 or cenexin (green). Dashed line (blue) depicts where line-scan measurements were 
obtained for (C). Scale bar, 5 µm. Insets depict 4x-magnification of mother and daughter 
spindle poles.  
(C) Line scans through two spindle poles of images in (B). Upper image, demonstrates the 
presence of more cenexin on one pole (the mother/older spindle pole) than the other. 
Bottom image, depicts similar amounts of CEP164 intensity across two spindle poles.  
(D) The integrated intensity of cenexin (left) or CEP164 (right) at the mother and 
daughter spindle poles were measured in >30 mitotic cells (U2OS). Data are represented 
as mean ± SD of >30 cells in each graph. 
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Figure 2.16  Cenexin-depletion causes mitotic spindle tilting in polarized epithelial 
cell. 
(A and C) Orthogonal view (x-z) of metaphase MDCK cells stained for microtubules ("-
tubulin, green), and spindle poles (γ-tubulin, red) depleted of GAPDH, CEP164 or cenexin 
(A), and subsequently rescued with shRNA-resistant human cenexin (C). Grey line depicts 
the culture substrate, and yellow-dashed lines portray the orientation of spindles to 
substrates.  
(B and D) Quantification showing a significant increase (>10°) in spindle angles from cells 
depleted of cenexin (3-fold) compared to control cells (GAPDH shRNA), while no 
significant change was seen in CEP164-depleted cells. Data are represented as mean ± 
SEM of 3 independent experiments with >25 cells measured in each treatment/ experiment.  
(E) Collective raw spindle angles from (B) are shown. Data are represented as median ± 
interquartile range. ***, p-value <0.001. 
(F) MDCK cells treated with GAPDH shRNA, cenexin shRNA, or cenexin shRNA plus an 
shRNA-resistant human cenexin construct were fixed and stained for cenexin. The 
integrated intensity of cenexin at mitotic spindle poles was measured for each treatment. 
Each dot represents the average intensity of two spindle poles in the cell, and mean ± SD 
is shown. >20 cells were measured for each group. ***, p-value <0.001. 
(G) Collective raw spindle angles were measured and compared between MDCK cells 
depleted of cenexin and cells rescued with an shRNA resistant cenexin (D). Data are 
represented as median ± interquartile range. *, p-value<0.05. **, p-value<0.01.  
(H) Demonstrates the raw spindle angles measured in U2OS cells depleted of GAPDH, 
CEP164, or cenexin. Data are represented as median ± interquartile range of 29 cells. **, 
p-value<0.01.  
(I) Raw spindle angles were measured in MDCK cells treated with a GAPDH shRNA, and 
two different shRNAs towards either CEP164, or cenexin. CEP164-1 and cenexin-1 
shRNAs were the same shRNAs used in (A-D). CEP164-2 and cenexin-2 shRNAs were 
additional shRNAs to confirm the protein depletion phenotype. Data are represented as 
median ± interquartile range. A representative of n=3 experiments is shown, n=25 
cells/treatment. **, p-value<0.01.  
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Figure 2.17  Cenexin-depletion leads to mitotic spindle tilting in 3-dimensional 
culture. 
(A and C) 3D-cultured MDCK acini were stained for actin (red), centrosomes (#-tubulin, 
magenta), and microtubules ("-tubulin, green). From the left to right are control cells 
(GAPDH-depleted), cenexin-depleted cells (A), and cenexin-depleted cells treated with 
taxol (C). Scale bar, 10 µm. 
(B) Raw spindle angles measured from acini in (A). Spindle angles were measured in 
GAPDH-depleted cells (n=43), and cenexin-depleted cells (n=50). **, p-value<0.01.  
(D) Raw spindle angles measured from cenexin-depleted acini treated with taxol (n=27) or 
without taxol (n=22) for 2 hours. *, p-value<0.05.  
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Figure 2.18  Cenexin depletion disrupts the organization of microtubules at 
spindle poles, and also causes astral microtubule defects. 
(A and D) Metaphase spindles in MDCK cells were decorated with a plus-end microtubule 
marker, EB1 (A), or the minus-end microtubule marker, KIF2A (D). Dashed white line 
outlines edges of the cell (A). Insets taken from yellow box and magnified 2x to illustrate 
the shortening of astral microtubules (A) or the defocusing of KIF2A (D). Scale bar, 5 µm. 
(B) Astral microtubule number per spindle pole was determined. Data are represented as 
mean ± SD of 20 spindle poles. **, p-value<0.01. 
(C) Astral microtubule length was measured from spindle pole to microtubule tip labeled 
with EB1. n>10 cells/group. n-values listed in chart are the number of individual astral 
microtubules measured. 
(E) The integrated intensity of KIF2A at spindle poles was measured for GAPDH-, and 
cenexin-depleted MDCK cells. Data are represented as mean ± SD of 46 poles in each 
group.  
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Figure 2.19  Cenexin depletion does not cause mitotic defects. 
(A) The presence of PCNT (left) or CEP215 (right) at spindle poles was unchanged in 
cenexin-depleted U2OS cells. Spindle pole (γ-tubulin, red), PCNT or CEP215 (green). 
Scale bar, 5 µm. 
(B) Cell cycle distribution was analyzed by propidium iodide (PI) staining and flow 
cytometry in MDCK cells depleted of GAPDH, CEP164, or cenexin. 2x104 cells were 
analyzed in each group. The average percentage of cells at G1, S-phase, and G2/M are 
represented ± SD from 3 experiments. 
(C) Time-lapse imaging was used to determine prophase to cytokinesis duration in MDCK 
cells depleted of GAPDH, CEP164, or cenexin. 100 cells were recorded in each group. 
Mean ± SD are shown.  
(D) Cenexin-depletion does not affect chromosome congression during mitosis. Cells were 
stained for kinetochore (CREST, red), the mitotic spindle ("-tubulin, green), and DNA 
(DAPI, blue). Scale bar, 5 µm.   
(E) Cenexin depletion does not affect kinetochore fibers in mitotic spindles. MDCK cells 
were placed on ice for 20 minutes before fixing. Cells were stained for kinetochore fibers 
(K fiber; "-tubulin, green), centrosomes (#-tubulin, red), and DNA (DAPI, blue). Scale bar, 
5 µm.  
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Figure 2.20  Cenexin depletion destabilizes astral microtubules and contributes to 
cortical NuMA mislocalization. 
(A) Shown is a single z-section of NuMA staining in a metaphase U2OS cell depleted of 
GAPDH or cenexin. Scale bar, 5 µm. Inset taken from yellow box was magnified 2x to 
illustrate the increase in cortical NuMA after cenexin depletion compared to control 
(GAPDH shRNA). 
(B) The cortical integrated intensity of NuMA (A) was measured in metaphase cells 
depleted of GAPDH or cenexin. Data are represented as mean ± SD of >28 cells/treatment. 
**, p-value<0.01.  
(C) A single z-section is shown for metaphase MDCK cells depleted of GAPDH or cenexin 
were stained for NuMA. Scale bar, 5 µm. Insets taken from yellow box were magnified 2x 
to illustrate the increase in cortical NuMA with cenexin-loss compared to control 
(GAPDH-depleted cell).  
(D) The percentage of mitotic cells with visible cortical NuMA localization in MDCK cells 
treated with cenexin- or GAPDH-shRNAs. Mean ± SEM. 30 cells/treatment were counted 
per n=3 experiments. **, p-value<0.01.  
(E) GAPDH-depleted U2OS cells were treated with nocodazole and labeled for NuMA. 
Inset taken from yellow box was magnified 2x to illustrate the increase in cortical NuMA 
when disrupting astral microtubules with nocodazole treatment. Scale bar, 5 µm.  
(G) Cenexin-depleted U2OS cells were treated with taxol and labeled for NuMA. Inset 
taken from yellow box was magnified 2x to illustrate the decrease in cortical NuMA when 
stabilizing astral microtubules with taxol treatment. Scale bar, 5 µm.  
(F and H) The cortical integrated intensity of NuMA was measured in metaphase cells 
depleted of GAPDH (E), or cenexin (G). Data are represented as mean ± SD of >20 
cells/treatment. **, p-value<0.01. ***, p-value<0.001. 
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Figure 2.21 Stabilizing astral microtubules with taxol treatment rescues the spindle 
orientation defect in cenexin-depleted cells. 
(A) Astral microtubules were disrupted with nocodazole treatment in control (GAPDH 
shRNA) U2OS cells, while the spindle and spindle poles were kept intact. Cells were fixed 
and stained for microtubules ("-tubulin, green), spindle poles (#-tubulin, red), and DNA 
(DAPI, blue). Insets taken from yellow box were magnified 2x. Scale bar, 5 µm.  
(B) Orthogonal view of metaphase U2OS cells treated with nocodazole, fixed, and stained 
for microtubules ("-tubulin, green), and spindle poles (γ-tubulin, red).  
(C) Cenexin-depleted U2OS cells treated with taxol demonstrated an increase in astral 
microtubules. Cells were fixed and stained for microtubules ("-tubulin, green), spindle 
poles (#-tubulin, red), and DNA (DAPI, blue). Insets taken from yellow box were 
magnified 2x. Scale bar, 5 µm. 
(D) Orthogonal view of metaphase U2OS cells depleted of cenexin treated with taxol. Cells 
were fixed and stained for microtubules ("-tubulin, green), and spindle poles (γ-tubulin, 
red).  
(E) Spindle angles were measured in GAPDH- and cenexin-depleted metaphase cells 
treated with or without taxol or nocodazole (as depicted). Data are represented as median 
of >25 cells/treatment. **, p-value<0.01. 
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Figure 2.22  A model portraying cenexin functions in microtubule focusing and 
mitotic spindle orientation. 
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 MATERIALS AND METHODS 

 

Materials 

The following primary antibodies were used for immunofluorescence staining or 

immunoblotting: rabbit anti-cenexin (Abcam and Proteintech), rabbit anti-CEP164 (from 

Dr. Erich Nigg, University of Basel, and Novus), goat anti-#-tubulin (Santa Cruz), mouse 

anti-centrin (EMD Millipore), rat anti-"-tubulin (EMD Millipore), mouse anti-acetylated 

tubulin (Sigma-Aldrich), rabbit anti-NuMA  (Abcam), mouse anti-E-cadherin (BD 

Biosciences), rabbit anti-PAR3 (EMD Millipore), rabbit anti-PKC! (Santa Cruz), rabbit 

anti-pericentrin (Abcam), rabbit anti-CEP215 (Bethyl Laboratories). The following 

secondary antibodies were used for immunofluorescence staining: donkey anti-goat 568 

(Invitrogen), donkey anti-rat DyLight 649, donkey anti-rabbit Alexa 647, donkey anti-

mouse Alexa 647, donkey anti-rabbit Alexa 488, donkey anti-mouse DyLight 488 (Jackson 

ImmunoResearch Group). Nocodazole, taxol, and cytochalasin D were obtained from 

Sigma-Aldrich. GAPDH, cenexin (cenexin-1: V3LMM 507347; cenexin-2: V3LHS 

336238, (Hehnly et al., 2012)), CEP164 (CEP164-1: V2LHS 96265; CEP164-2: V2LHS 

232472), and pericentrin (V3LHS 368782) shRNAs were purchased from Open 

Biosystems (GE Dharmacon) and the UMMS RNAi Core Facility generated lentivirus for 

each. Human cenexin-GFP construct was from Dr. Kyung S Lee, National Cancer Institute 

(Soung et al., 2006), and we introduced two mutations on nucleotide 783-784 (AC!GT) 

so that it was resistant to shRNA silencing.  
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Cell lines and culture 

U2OS and MDCK cells were grown in Dulbecco’s Modified Eagle Medium 

(Invitrogen) supplemented with 10% fetal bovine serum (Atlanta Biologicals) and 100 

U/ml Penicillin-Streptomycin (Gibco). To establish cell lines depleted of a specific protein, 

lentiviruses expressing target gene shRNAs were incubated with cells for 24 hours in the 

presence of 4 µg/ml polybrene (Sigma). Puromycin (3 µg/ml) was used to select for 

transduced cells. The crossbow micropattern slides were from CYTOO (Mini CW-S-FN).  

Nocodazole (M1401; Sigma) and taxol (T7191 and T7402; Sigma) were dissolved 

in DMSO. For nocodazole treatment, unless otherwise specified, the concentration of 

nocodazole was 100 nM. For taxol treatment, we titrated the working concentration by 

checking if it caused multiple spindle defects in mitosis. The working concentration that 

was used was 5-50 nM. For centrosome centering experiments with micropatterned slides 

, cells were seeded onto patterned slides and incubated for 2 hours for cell attachment. Cells 

were further incubated with nocodazole or taxol in serum-free medium for 2 hours before 

immunofluorescence staining.  

 

Reverse transcription (RT-PCR) analysis 

 Total RNA was isolated from cells by using TRIzol reagent (Ambion), and 5 µg of 

RNA was converted into 100 µl of cDNA by using SuperScript II RT kit (Invitrogen). The 

following PCR primers were used to detect gene expression in MDCK cells: Actin, forward 

5’-CAA AGC CAA CCG TGA GAA G-3’, reverse 5’-CAG AGT CCA TGA CAA TAC 

CAG-3’; GAPDH, forward 5’-AAC ATC ATC CCT GCT TCC AC-3’, reverse 5’-GAC 
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CAC CTG GTC CTC AGT GT-3’; cenexin primer-1, forward 5’-GCA TGT GCA ACT 

TGC TGA CA-3’, reverse 5’-TTC AGG ATG TCA GGC AGC TG-3’; cenexin primer-2, 

forward 5’-CAA CAT CGA GCG CAT CAA GG-3’, reverse 5’-GCT CAG CTT CTG 

CAG GAG AA-3’; CEP164 primer-1, forward 5’-GAC CCC CAA GTC TCA GGT TG-

3’, reverse 5’-TTG TAT GCA GTG GAG AGG CG-3’; CEP164 primer-2, forward 5’-

CCT GGA TGA GGC AGC ATT GA-3’, reverse  5’-AGT CAG CAG AGG GAG GAG 

AG-3’. 

 

Immunofluorescence staining 

Cells were seeded on glass coverslips (#1.5, Warner Instruments) and grown to sub-

confluence for immunofluorescence confocal microscopy. Cells were then fixed (cold 

methanol) and stained as previous described (Chen et al., 2014; Delaval et al., 2011; 

Hehnly and Doxsey, 2014; Hehnly et al., 2012). Images were taken on a Perkin Elmer 

spinning disk confocal microscope: Zeiss Axiovert 200, Plan-Apochromat 100x/1.4 Oil 

DIC objective and Hamamatsu ORCA-ER camera. The entire cell was imaged at 0.2-µm 

step-intervals and displayed as maximum projections (MetaMorph, Molecular Device) 

unless otherwise specified. The fluorescence range of intensity was adjusted identically for 

each image series. For immunofluorescence staining of isolated centrosomes, centrosomes 

were prepared and stained according to our previous studies (Blomberg-Wirschell and 

Doxsey, 1998; Hehnly et al., 2012; Hung et al., 2015). For fluorescence intensity 

quantification at centrosomes/spindle poles, the integrated intensity was measured using a 

sum projection of the original stack followed by previously described methods (Chen et 
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al., 2014; Hehnly and Doxsey, 2014). The quantification of CEP128 (Figure 2.4B) was 

performed using maximum projections of the original stack due to a high degree of 

background staining. Orthogonal images of mitotic spindle were processed with Imaris 

software. For measuring spindle angles in 2-dimensional cultures, #-tubulin staining was 

used to indicate spindle pole positions, and spindle angle measurements were carried out 

as previous described (Chen et al., 2014; Delaval et al., 2011; Hehnly and Doxsey, 2014). 

For measuring astral microtubule length by EB1 staining, Imaris software was used 

followed by a previously described method (Stout et al., 2011).  

 

Three-dimensional acinus culture and staining 

Modified from previously published methods (Debnath et al., 2003). MDCK cells 

were seeded in 2% matrigel (BD Biosciences) at 5 x 103 cells per well on matrigel pre-

coated 8-well chamber slides (Thermo Scientific Nunc). After 36 to 48 hours, acini were 

fixed with 4% paraformaldehyde for 20 minutes, and permeablized with 0.5% Triton X-

100 for 10 minutes at 4°C. Before blocking with 10% donkey serum for 2 hours, acini were 

rinsed with PBS twice. To stain target proteins, acini were incubated with primary 

antibodies overnight at 4°C. Acini were rinsed three times with PBS for 20 minutes each 

at room temperature and then incubated with rhodamine phalloidin or secondary antibodies 

for 1 hour. After a brief wash with PBS, acini were stained with DAPI and mounted in 

ProLong Gold Antifade reagent (Invitrogen). Images were taken at 0.2-µm intervals from 

the top to the bottom of the acinus on a spinning disk confocal microscope as described 

above. The number of lumina per acinus was quantified by actin staining. In addition, we 
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defined acini with less or equal to 5 cells, which undergo a maximum of 4 cell divisions, 

as the early stage of acinus formation. Acini with more than 5 cells were defined as acini 

in a later expansion stage. Matlab was used to generate scatter plots illustrating the number 

of lumina in acini.  

 For measuring spindle angles in acini, #-tubulin staining was used to indicate 

spindle pole positions, and actin staining was used to indicate the apical lumen. Spindle 

angles in acini were then measured followed by a previously described method (Durgan et 

al., 2011). For the taxol treatment, cells were seeded and cultured as described above and 

incubated with taxol-containing medium for an additional 2 hours before performing 

immunofluorescence staining. 

 

Transmission electron microscopy of mitotic spindle poles 

 Mitotic cells were collected by mitotic shake-off (Fox, 2004), and were fixed in 

2.5% glutaraldehyde in PBS for 30 minutes. After post-fixation in 1% osmium tetroxide 

and embedding in SPI-Pon-Araldite, 150-nm sections were cut and examined with a Philips 

CM10 transmission electron microscope.  

 

Migration assay 

Cells were seeded at confluence with the ibidi culture-insert, and then cultured in serum-

free conditions for 48 hours. After removing the inserts, cells were incubated in serum-

containing medium for cell migration. Cells were then fixed at 2 - 6 hours and prepared for 

immunofluorescence staining. The percentage of centrosomes that reorient to a position 



76

between the nucleus and the leading edge of the cell during migration was calculated as 

previously described (Gomes and Gundersen, 2006; Schliwa and Honer, 1993). For taxol 

treatment, cells were incubated with taxol containing medium after inducing cell migration.  
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CHAPTER III 

 

 

DISCUSSION 
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The centrosome has been thought to control cell polarization and cell shape through 

its ability to organize microtubules. However, the mechanism of how centrosomal 

microtubules participate in cell polarization is not clear. Furthermore, there are different 

populations of microtubules at the centrosomes (nucleated and organized at PCM or 

anchored at the mother centriole appendages), which make it necessary to discern functions 

of microtubules from different populations. Previous results indicate the mother, but not 

the daughter, centriole is involved in centrosome positioning (Piel et al., 2000). In addition, 

PCM proteins have been shown to dramatically delocalize from the centrosome after cell 

division (Dictenberg et al., 1998; Khodjakov and Rieder, 1999; Piehl et al., 2004; Woodruff 

et al., 2014). Compared to mitosis, less microtubules are nucleated and organized at PCM, 

and the predominant microtubule population is subdistal appendage-anchored 

microtubules during interphase (Piehl et al., 2004). In addition, cells need to establish and 

maintain cell polarity at interphase. Therefore, we hypothesized that the microtubules 

anchored at mother centriole subdistal appendages are the main population of microtubules 

that contribute to cell polarity.  

To determine the functions of anchored microtubules, we depleted cenexin, an 

essential structural protein of subdistal appendages (Ishikawa et al., 2005; Tanos et al., 

2013), and studied the consequences in biological events, such as cell migration, cell 

division, and lumen formation. We found that cenexin depletion affects microtubule 

organization and stability during interphase and mitosis, and hence is required for 

centrosome reorientation during cell migration and spindle orientation during cell division 

(Hung et al., 2016). We proposed that subdistal appendages are required for microtubule 
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anchoring at the centrosome and anchored microtubules are more stable than microtubules 

at PCM.  

 

Mother centriole subdistal appendage is involved in microtubule anchoring 

Cenexin (cenexin-1, ODF2 isoform 9) is the major isoform of ODF2 gene in 

somatic cells (Soung et al., 2006). Compared to its spliced variant, outer dense fibre protein 

2 (ODF2) only found in sperm (Petersen et al., 1999), cenexin has a unique C-terminal 

extension, that is related to its functions of mother centriole localization, mitotic 

progression and ciliogenesis (Chang et al., 2013; Soung et al., 2006, 2009). We used the 

fact that cenexin depletion produces disruption of the subdistal appendage structure to 

study the roles of microtubules anchored at subdistal appendages. We found that depletion 

of cenexin disrupts microtubule organization at the centrosome/spindle pole. However,  

cenexin/ODF2 does not directly interact with microtubules (Donkor et al., 2004) and other 

proteins may mediate microtubule anchoring at subdistal appendages. Several proteins 

specifically localized at mother centriole subdistal appendages, ninein, CEP170 and 

trichoplein, have been proposed to anchor microtubules during interphase (Delgehyr et al., 

2005; Guarguaglini et al., 2005; Ibi et al., 2011; Mogensen et al., 2000). Interestingly, these 

proteins are lost from centrosomes during metaphase (Casenghi et al., 2003; Guarguaglini 

et al., 2005), which is the mitotic stage where spindle orientation is determined. It will be 

of great interest to further examine the molecular components and mechanisms that directly 

anchor microtubules during interphase and mitosis.  
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Notably, other than spindle misorientation, we did not observe significant changes 

in cell cycling or mitotic progression in our cenexin-stably-depleted cells (Figure 2.19), 

while cenexin depletion causes G2/M arrest, apoptosis, and chromosome segregation 

defects in a previous study (Soung et al., 2006). This discrepancy may be due to different 

levels of cenexin reduction and assay time points after inducing cenexin depletion. More 

interestingly, slimier as the previous study (Soung et al., 2006), we also observed a 

decrease of PLK1 at the spindle poles. PLK1 is essential for centrosome maturation and 

mitotic progression, and the localization of PLK1 and appendage components to the 

centrosome/spindle pole is mutually dependent (Archambault and Glover, 2009; 

Guarguaglini et al., 2005; Kong et al., 2014; Lee and Rhee, 2011; Soung et al., 2006). In 

cenexin-depleted cells, the cell division defects related to loss of PLK1 from the spindle 

pole may be compensated by other mechanisms. However, PLK1 has been shown to 

negatively control the interaction between dynein and the NuMA/LGN complex, which 

generate the force to position the mitotic spindles (Kiyomitsu and Cheeseman, 2012). 

PLK1 might corporate with mother centriole appendage component to control spindle 

orientation through their direct interaction. 

 

Microtubule organization during mitosis 

The microtubule organization of interphase centrosomes is very different from 

mitotic spindles; long microtubules are almost evenly radiated out from interphase 

centrosomes while the spindle poles present astral microtubules and spindle microtubules. 

Furthermore, centrosomal microtubules are specifically stabilized and post-translationally 
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modified during centrosome reorientation in interphase, while astral microtubules are 

short-lived. It is possible that a separate mechanism regulates microtubule stability and 

organization during mitosis.  

During mitosis, the centriole duplicates along with DNA replication, and the 

recruitment of mother centriole appendage proteins to the daughter centrosome, such as 

cenexin and CEP164, is the hallmark for centrosome maturation and required for cell 

division (Graser et al., 2007; Kong et al., 2014; Lange and Gull, 1995). This suggests that 

mother centriole appendages and components play an important role during mitosis. 

However, whether or not the appendage structure is present at centrosomes/spindle poles 

was an outstanding question. We collected mitotic cells for electron microscopy and found 

that appendages are present during mitosis (Figure 2.15A). Interestingly, there is a ~2-fold 

difference of cenexin localizing at the mother centrosome compared to the daughter 

centrosome, while the difference of CEP164 between two spindle poles was not as 

significant as cenexin (Figure 2.15B- 2.15D). To understand how the subdistal appendage 

organizes microtubules at spindle poles, it will be necessary to compare the localization of 

cenexin (subdistal appendages) between mother and daughter centrosomes. 

  

Microtubule organization and microtubule dynamics 

 An interesting finding in our study is that disrupting microtubule minus-end 

organization at the centrosome/spindle pole affects microtubule stability in both interphase 

and mitotic cells (Figure 2.8, 2.12, 2.14, 2.18, and 2.21). In in vitro assays using pure 

tubulins, microtubules are polymerized and depolymerized both at the plus- and minus- 
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ends (Walker et al., 1988). On the contrary, the microtubule minus-ends attached to 

centrosomes exhibit a much more stable dynamics compared to free microtubules (Keating 

et al., 1997). Theoretically, centrosomal minus-ends can be protected by minus-end 

capping proteins. However, #-tubulin ring complex (#TuRC) is the only identified minus-

end binding protein at the centrosomes (Dammermann et al., 2003; Jiang and Akhmanova, 

2011). Microtubule anchoring proteins on the subdistal appendages can be another minus-

end capping protein, and therefore disrupting the subdistal appendage can expose the 

minus-ends and destabilize the microtubules. 

 

Appendage-anchored and PCM-organized microtubules in spindle orientation 

 In our previous study, we found that disruption of a key PCM protein pericentrin 

causes spindle misorientation and astral microtubule defects (Chen et al., 2014). Pericentrin 

is a large coiled-coil protein, which serves as a scaffold for microtubule nucleation and 

centrosome/spindle pole organization (Chen et al., 2014; Dictenberg et al., 1998; Doxsey 

et al., 1994; Jurczyk et al., 2004; Li et al., 2000; Sillibourne et al., 2007; Takahashi et al., 

2002; Young et al., 2000; Zimmerman et al., 2004). The reduction of microtubule 

nucleating activity and disruption of PCM organization can be the major contributors of 

the spindle orientation and astral microtubule defects in pericentrin mutation cells. 

However, depletion of pericentrin also disrupts the accumulation of subdistal appendage 

components centriolin and ninein at the centrosome/spindle pole. In addition, depletion of 

centriolin causes spindle misorientation, but is less severe compared to pericentrin 

depletion (Chen et al., 2014). These results suggest that both appendage anchored- and 
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PCM nucleated/organized- microtubules are essential for regulating spindle orientation. In 

the meanwhile, PCM component pericentrin and appendage components ninein and 

centriolin may be the link for these two populations of microtubules. 

 

Conclusion 

 Currently, there are no known disease-related cenexin mutations, and this is likely 

due to the fundamental importance of the ODF2 gene in cilium function. However, this 

study demonstrates subdistal appendages play a necessary role in cell migration and 

mitosis, reinforcing the importance of microtubule dynamics in these key biological events.   
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APPENDIX A 

 

 

THE POSSIBLE ROLE OF MOTHER CENTRIOLE APPENDAGES IN 

REGULATING THE LOCALIZATION OF POLARITY PROTEINS 
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In our study of the function of cenexin in cell polarization and lumen formation, we 

observed no effects on cell polarity. This is consistent with a previous study of mice 

expressing truncated Odf2 gene that shows defects in microtubule organization but normal 

cell polarization (Kunimoto et al., 2012; Tateishi et al., 2013). Interestingly, we often 

observed a weaker staining of apical polarity proteins (gp135, and PKC!) at the surface of 

lumina in cenexin-depleted cells (Figure A.1A). To further quantify this phenotype, we 

picked control and cenexin-depleted acini with similar size and number of lumen, and 

measured the intensity of polarity proteins localized at the apical lumen surface (Figure 

A.1B and A.1C).  The localization of gp135, and PKC! at the apical lumen surface was 

slightly decreased in cenexin-depleted cells.  

 We hypothesize that cenexin depletion affects endosome trafficking, which 

participates in the delivery and recycling of polarity proteins (Blasky et al., 2015). We first 

checked whether the polarity proteins of our interest are cycled through endosomes. We 

isolated endosome membranes from interphase and mitotic cells, and then used 

immunoblotting to determine whether polarity proteins, NuMA and PKC!, were co-

precipitated with endosomal proteins, Rab11 and transferrin receptor (TFR). An interesting 

finding of our study was that the amount of endosome-loaded polarity protein NuMA, and 

PKC!, increase during mitosis compared to interphase (Figure A.2). This result suggests 

there might be an active vesicle trafficking of polarity proteins during mitosis. In addition, 

this result implies that NuMA is delivered to the cell cortex through endosomes during 

mitosis, while the mechanism of how NuMA localizes to the cell cortex is not clear.  
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We were further interested in examining whether cenexin depletion affects 

endosome trafficking during mitosis. We estimated endosome trafficking by photo 

bleaching GFP-tagged Rab11-associated endosomes at the interphase centrosome or one 

of the spindle poles in metaphase cells, and monitoring the fluorescent recovery after 

photobleaching (FRAP). During both interphase and metaphase, the recovery is 2-fold 

faster in cenexin-depleted cells (Figure A.3). In a previous study, depletion of cenexin 

decreased the rate of transferrin cycling out of the cell and produced the accumulation of 

vesicles around the centrosome (Hehnly et al., 2012). Cenexin depletion may only affect 

vesicle trafficking out of the centrosome, but not have a profound effect on trafficking 

toward the centrosome. Therefore, we observed a net accumulation and faster recovery 

after photo bleaching in cenexin-depleted cells. Taken together, these results also suggest 

cenexin regulates endosome trafficking though a similar mechanism during mitosis and 

interphase. 
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Figure A.1 Cenexin depletion reduces polarity proteins localizing at the apical 
lumen. 
(A) 3D-cultured MDCK acini were stained for actin (orange), apical polarity proteins, 
gp135 (red) and PKC! (green). A single confocal z-section at the center of the acinus is 
displayed. Scale bar, 10 µm. 
(B) Line scans through apical lumen region of images in (A). Cenexin depletion reduces 
polarity proteins, gp135 (left) and PKC! (right), localizing at the apical lumen.   
(C) Quantification of area under curve in (B). Data are represented as mean ± SD of 5 
lumina in each group. *, p-value<0.05. 
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Figure A.2 Polarity proteins, NuMA and aPKC!, traffic through endosomes in 
interphase and during mitosis. 
U2OS cells were arrested in interphase by serum starvation, and mitotic cells were 
collected by mitotic shake-off. Endosome membranes were then isolated from interphase 
and mitotic cells according to our previous study (Hehnly and Doxsey, 2014).  Immunoblot 
of isolated endosomes was used to examine whether polarity protein, NuMA and 
PKC!, are loaded onto recycling endosome. Rab11 and transferrin receptor (TFR) are used 
for loading control and markers for endosomes.  
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Figure A.3 Endosomes traffic back to the centrosomes in a faster rate in cenexin-
depleted cells compared to control. 
Hela cells expressing FIP3-GFP were treated with GAPDH shRNA or cenexin shRNA and 
used for a fluorescent recovery after photobleaching (FRAP) experiment. It was performed 
with a Leica TCS SP5 II laser scanning confocal microscope using a 63x oil objective. The 
cells were imaging at 37°C, with 5% CO2 using the Tokai Hit Stage Top Incubation 
System. The interphase centrosome (A) or one of the metaphase spindle pole was bleached 
at 100% laser intensity for 1 second twice. After photo bleaching, images were taken 
followed by every 2 seconds for 16 seconds, every 10 seconds for 90 seconds, and every 
30 seconds for 2 minutes. The fluorescence intensity of the region of interest was normalize 
to the total cellular fluorescence intensity. I= (T0/I0) * (It/Tt); T0 and Tt is the total cellular 
fluorescence, and I0 and It is the intensity of the centrosome/ spindle pole region.  
(C) The half time of recovery (thalf) is calculated with the one-phase association equation 
using GraphPad Prism software. Data are represented as mean ± SE. *, p-value<0.05. ***, 
p-value<0.001. 
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