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Abstract 

 

In the last decade Precise Point Positioning (PPP) has become a powerful and widely used 

technique for positioning by means of Global Navigation Satellite System (GNSS) in 

geodetic/scientific and civil/daily applications. Meanwhile, the equivalence principle of 

GNSS data processing has been developed and can now be easily explained and accepted 

since it was firstly algebraically pointed out in 2002. The objective of this thesis is to explore 

high-performance PPP algorithms and to develop GNSS algorithms with application of the 

equivalence principle. The core research and contributions of this thesis are summarized as 

follows. 

In this thesis it is the first time that the specific equivalence of un-differenced and time 

differencing PPP algorithms is proved theoretically on the basis of the equivalence principle 

and the equivalence property of un-differenced and differencing algorithms. Meanwhile, as a 

supplement to the equivalence property of the triple differences, an alternative method is 

proposed and derived to prove the equivalence between triple differences and zero-difference 

which up to now was missing. 

As a consequence of above conducted theoretical study, a time differencing PPP algorithm 

based on the equivalence principle is derived and can be used to obtain the coordinates 

difference and average velocity between two adjacent epochs. Such a time differencing PPP 

algorithm is able to provide both position and velocity results from the phase and code 

observations and is expected to be beneficial for applications, such as airborne gravimetry or 

earthquake monitoring, and could also be an efficient method to detect cycle slips in data 

processing. 

The influence of tropospheric delay on PPP, especially in the context of observations in the 

polar region or with low elevation cut-off angles, where the position results of the 

observations are more significantly affected by tropospheric delay, is analyzed and a 

methodology for minimizing its effect is proposed. Actual meteorological data are used and 

proved to be beneficial for improving PPP precision in the Antarctic region. The effect of 
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tropospheric horizontal gradient correction on PPP is also analyzed and verified to remarkably 

improve PPP precision under lower elevation cut-off angles and higher humidity conditions. 

A priori constrained PPP algorithms are proposed and derived in this thesis to improve the 

efficiency and precision of PPP. The a priori information concerning the geometric and 

physical properties of observations, which is known with a certain a priori precision, is 

applied in the PPP algorithms. The contribution of different a priori information constraints on 

different parameters to PPP solution is analyzed and validated. The a priori constraints as 

employed in the PPP are specified according to coordinates-, receiver clock offset-, 

tropospheric delay- and ambiguities-constraints, respectively. The validation of the derived 

PPP algorithms shows a significant improvement concerning convergence time and 

positioning accuracy. Moreover, the applications of different constraints under specific 

conditions are discussed and validated. 

A multi-constellation combined PPP algorithm based on the equivalence principle is 

proposed and derived in this thesis. With such an algorithm, the exponentially increased 

computational load of the traditional multi-GNSS PPP algorithm can be reduced to the single 

linear increase when more GNSS satellites are available and used for combined computation. 

In case of GPS/BDS combination, a method which can speed up the determination of the 

ambiguities parameters of BDS through applying the contribution of GPS observations is 

proposed to significantly reduce the convergence time in BDS PPP. The GPS/BDS combined 

PPP algorithm with inter-system bias (ISB) parameter is also derived. Using the estimated 

ISB as a priori constraint in the GPS/BDS combined PPP is proposed. The result demonstrates 

that the a priori constraint of ISB shows superiority in the convergence time of PPP 

processing and can mainly improve the positioning accuracy in E component. 

In traditional combined PPP it is difficult to adaptively adjust the contribution of each 

single system to the combination through constructing total calculation, and it will lead to the 

deterioration in the combination accuracy. In this context, the adaptively combined PPP 

algorithms based on the equivalence principle are proposed and derived, which can easily 

achieve an adaptive adjustment of weight ratio of each system in the multi-GNSS 

combination. By using the posteriori covariance matrix of the shared parameters of each 
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single system and the Helmert variance components to adaptively adjust the weight ratio of 

each system, the derived algorithms can improve the accuracy of combination significantly, 

compared to combined PPP with identical weight ratio. 

The developed algorithms are net applicable and can be used for cloud computation for 

internet GNSS service which is considered relevant for possible commercial applications. 
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Principle; Equivalently Eliminated Equation; Time Differencing PPP; Triple Differences; 

Tropospheric Delay; Meteorological Data; Horizontal Gradient; A Priori Constraint; 

Coordinates Constraint; Receiver Clock Offset Constraint; Tropospheric Delay Constraint; 

Ambiguities Constraint; Multi-GNSS Combined PPP; Fast BDS Ambiguity Determination; 

Inter-system Bias; Adaptively Combined PPP; Posteriori Covariance; Variance Component 
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Zusammenfassung 

 

In den letzten zehn Jahren entwickelte sich das Verfahren des Precise Point Positioning (PPP) 

zu einer leistungsstarken und weit verbreiteten Technik in der Positionsbestimmung mittels 

des Global Navigation Satellite System (GNSS) in geodätischen/wissenschaftlichen und 

zivilen/täglichen Anwendungen. Ein wichtiges Grundprinzip der GNSS-Datenverarbeitung ist 

das Äquivalenzprinzip der GNSS-Datenverarbeitung, das 2002 erstmals beschrieben wurde. 

Das Ziel dieser Arbeit ist die Untersuchung von Hochleistungs-PPP-Algorithmen und die 

Entwicklung von GNSS-Algorithmen unter Anwendung des Äquivalenzprinzips. Der Kern 

der Untersuchungen und die Beiträge dieser Arbeit lassen sich wie folgt zusammengefassen. 

Aufbauend auf dem Äquivalenzprinzip und den Äquivalenz-Eigenschaften von 

nicht-differenzierenden und differenzierenden GNSS-Algorithmen wird in dieser Arbeit zum 

ersten Mal die spezifische Gleichwertigkeit von nicht-differenzierenden und 

zeitdifferenzierenden PPP-Algorithmen theoretisch bewiesen. In diesem Zusammenhang 

beschreiben wir – als Ergänzung zu den Äquivalenz-Eigenschaften der Tripel-Differenzen - 

eine bis jetzt noch nicht existierende alternative Methode zum Beweis der Äquivalenz von 

Tripel-Differenzen und undifferenzierten Beobachtungen. 

Aufbauend auf der oben erwähnten theoretischen Untersuchung wurde ein zeitlich 

differenzierender PPP-Algorithmus abgeleitet, der auf dem Äquivalenzprinzip beruht und der 

dazu benutzt werden kann, die Koordinatendifferenz und die mittlere Geschwindigkeit 

zwischen benachbarten Beobachtungszeitpunkten zu bestimmen. Ein solcher zeitlich 

differenzierender PPP-Algorithmus ist in der Lage, sowohl Position als auch Geschwindigkeit 

aus Phasen- und Code-Beobachtungen zu liefern. Dieser Algorithmus sollte für Anwendungen 

wie Fluggravimetrie oder Erdbeben-Überwachung nützlich sein und stellt eine effiziente 

Methode zur Erkennung von Cycle-Slips dar.   

Diese Arbeit umfasst auch Analysen des Einflusses der Troposphärischen 

Signalverzögerung auf das PPP, vor allem im Blick mit Beobachtungen in den Polarregionen 

oder im Fall niedriger Höhengrenzwinkel (sog. Cut-off-Winkel), wo die Positionsbestimmung 
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sehr stark von der Troposphärischen Signalverzögerung beeinflusst ist. In diesem 

Zusammenhang wird eine Methodologie zur Minimierung des Troposphäreneinflusses 

vorgeschlagen. Es werden reale meteorologische Daten verwendet und es wird gezeigt, dass 

dies zur Verbesserung der Präzision des PPP in antarktischen Regionen von Vorteil ist. 

Außerdem wird der Effekt der troposphärischen Horizontalgradienten-Korrektur analysiert 

und es wurde bewiesen, dass diese Methode zu einer deutlichen Verbesserung des PPP im Fall 

niedriger Cut-off-Winkel und hoher Luftfeuchtigkeit führt. 

In dieser Arbeit werden PPP-Algorithmen mit A-priori-Nebenbedingungen (sog. Constraint) 

vorgeschlagen und abgeleitet, um die Effizienz und Präzision des PPP zu verbessern. Die in 

den PPP-Algorithmen angewandten A-priori-Informationen betreffen die geometrischen und 

physikalischen Eigenschaften von Beobachtungen, von denen vorab eine bestimmte 

Genauigkeit bekannt ist. Der Einfluss von verschiedenen A-priori-Nebenbedingungen auf 

verschiedene Parameter innerhalb der PPP-Lösung wird analysiert und validiert. Diese in den 

PPP-Algorithmen angewandten A-priori-Bedingungen sind aus Nebenbedingungen für 

Koordinaten, Empängeruhren-Offsets, Troposphären-Verzögerung und Ambiguities abgeleitet. 

Die Validierung dieser Algorithmen zeigt eine deutliche Verbesserung bezüglich der 

Konvergenzzeit und der Genauigkeit in der Positionsbestimmung. Ferner wird die 

Anwendung verschiedener Constraints unter spezifischen Bedingungen diskutiert unf 

validiert. 

In dieser Arbeit wurde ein kombinierter PPP-Algorithmus für Multi-Satellitensysteme 

vorgeschlagen und abgeleitet, der auf dem genannten Äquivalenzprinzip beruht. Mit einem 

solchen Algorithmus kann die exponentiell ansteigende Computerlast des traditionellen 

Multi-GNSS-PPP dahingehend reduziert werden, dass es nur einen einfachen linearen Anstieg 

gibt, wenn mehr GNSS-Satelliten einbezogen werden. Für den Fall der Kombination von GPS 

mit dem chinesischen Beidou-System (BDS) wird eine Methode vorgeschlagen, die die 

Berechnung der Ambiguity-Parameter für das BDS-System durch Beitrag von 

GPS-Beobachtungen schneller beschleunigt. Diese Methode reduziert die Konvergenzzeit im 

BDS-PPP deutlich. Außerdem wird im Fall der Kombination von GPS und BDS ein 

Inter-System-Bias (ISB) abgeleitet. Es wird vorgeschlagen, diesen ISB als 
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A-priori-Nebenbedingung in das PPP bei der Kombination von GPS und BDS einzuführen. 

Dadurch ergeben sich überlegene Resultate für die Konvergenzzeit in der PPP-Prozessierung 

und die Positionsgenauigkeit in der Ost-Komponente kann verbessert werden. 

Im traditionellen kombinierten PPP-Verfahren ist es schwierig, den Beitrag jedes einzelnen 

Systems zur Kombination durch Konstruktion einer Gesamtlösung adaptiv anzugleichen, was 

zur Verschlechterung in der Kombinationsgenauigkeit führt. In diesem Zusammenhang wurde 

ein adaptiv kombinierter PPP-Algorithmus vorgeschlagen und entwickelt, der auf dem 

Äquivalenzprinzip beruht. Dieser Algorithmus ermöglicht eine einfache adaptive 

Ausgleichung der relativen Wichtungen für jedes Satelliten-System in der 

Multi-GNSS-Kombination. Durch Nutzung der a-posteriori Kovarianz-Matrix, die für alle 

gemeinsamen Parameter der einzelnen Satelliten-Systeme aufgestellt wurde und durch die 

Anwendung der Helmertschen Varianzkomponenten-Schätzung zur adaptiven Ausgleichung 

der relativen Wichtungen der einzelnen Systeme kann die Genauigkeit der Kombination im 

Vergleich zum PPP mit identischen Relativgewichten deutlich gesteigert werden. 

Die entwickelten Algorithmen sind über das Internet anwendbar und könnten für 

Cloud-Berechnungen im Rahmen eines Internet-GNSS-Dienstes verwendet werden, was für 

mögliche kommerzielle Anwendungen von Bedeutung sein könnte. 
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1 Introduction 

 

1.1 Research Background and Motivation 

Global Navigation Satellite System (GNSS) refers to a constellation of satellites providing 

signals from space transmitting positioning and timing data. It is playing a significant role in 

offering high-precision navigation, positioning and timing service for global users 

(Hoffmann-Wellenhof et al., 2008; Someswar et al., 2013). Positioning by means of GNSS is 

one of the most widely used techniques in geodetic and geodynamics applications (Gandolfi 

et al., 2015). In the last decade Precise Point Positioning (PPP) has become a powerful 

technique for determining a point’s coordinates using GNSS (Kouba and Héroux, 2001; 

Zumberge et al., 1997) and it also has become increasingly significant in high-precision 

positioning applications. With PPP technique, observations produced by a single receiver 

without the requirement of a nearby reference station are used to determine its three 

coordinate components, along with other parameters such as the receiver clock error and the 

tropospheric delay of observations (Leandro et al., 2010). Currently it is being strongly 

considered as a solution wherever precise positioning and navigation are required in isolated 

locations or wide areas, where reference station infrastructure is not available (Bisnath and 

Gao, 2009). During recent years PPP has been widely applied in many spots, such as precise 

orbit determination of Low Earth Orbiters (Bisnath and Langley, 2002), marine applications 

(Bisnath et al., 2003; Geng et al., 2010), airborne mapping (Gao et al., 2005), atmosphere 

remote sensing (Gao et al., 2004), land surveying (Dixon, 2006), precise time-transfer 

(Defraigne et al., 2007; Defraigne et al., 2008), ionospheric (Leandro et al., 2007) and 

tropospheric characterization (Kjørsvik et al., 2006), biases calibration (Leandro et al., 2010), 

etc. During the past few years, PPP has achieved performance levels comparable to those 

obtainable through differencing approach (Bisnath and Gao, 2009; Griffiths and Ray, 2009), 

especially for GNSS permanent stations. By using the precise orbit and clock products 

generated by the International GNSS Service (IGS) through a dense global network and 

several contributing analysis centers (Dow et al., 2009), static absolute positioning can 
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achieve an accuracy of mm-cm in post processing and a cm-dm precision level can be 

attained in kinematic applications (Hesselbarth, 2011; Kouba and Héroux, 2001; Wang, 2014). 

For real-time application, with the availability of the IGS real-time service (RTS), it becomes 

possible for the users to obtain precise satellite orbit and satellite clock corrections via RTCM 

streams in real-time. Recent research has shown that the availability of GPS IGS RTS 

products is at least 95%, which makes it possible to perform real-time PPP with high accuracy 

(Caissy et al., 2012; Elsobeiey and Al-Harbi, 2015). Furthermore, with the rapid development 

of PPP technique (Bertiger et al., 2010; Grinter and Roberts, 2011; Grinter and Roberts, 2013), 

several PPP software packages are developed and online PPP processing services are released 

(Moreno Monge et al., 2013). Such online PPP services are open to users and are available 24 

hours per day. Besides precise coordinates and quality information of user stations in the 

International Terrestrial Reference Frame (ITRF) the results also include ionospheric delays, 

tropospheric delays, and receiver clock corrections (Guo, 2014). 

Although for many applications the PPP approach presents definite advantages regarding 

operational flexibility and cost-effectiveness, it requires a relatively long initialization time as 

phase ambiguities converge to constant values and the solution reaches its optimal precision. 

The convergence time of PPP will vary because it is affected by a number of factors, such as 

the number and geometry of visible satellites, observation quality and sampling rate, user 

tracking conditions, and environment (Bisnath and Gao, 2009). Furthermore, due to the 

influence of pseudorange noise and tropospheric delay (etc.), the accuracy and reliability of 

PPP are still limited (Li, 2013). The unknown tropospheric delay parameter is usually 

estimated along with the position and ambiguity parameters. Ingestion of precise tropospheric 

models could reduce the total number of unknown parameters that need to be estimated from 

the observation model, potentially remove the need for noise propagating linear combinations 

of observables, and potentially improve positioning performance (Dodd et al., 2006). In this 

case, the influence of tropospheric delay on PPP is studied in this thesis. Especially in the 

context of polar region or with low elevation cut-off angles, where the position results of the 

observations are more significantly affected by tropospheric delay (Ren et al., 2011; She et al., 

2011; Xu et al., 2014), the actual meteorological data are used and proved to be beneficial for 
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improving PPP precision. The effect of the tropospheric horizontal gradient correction on PPP 

is also analyzed and verified to have remarkable improvement on PPP under lower elevation 

cut-off angles and higher humidity conditions. Moreover, a priori constrained PPP algorithms 

are proposed and derived to improve the efficiency and precision of PPP. The a priori 

information concerning the geometric and physical properties of observations, which is 

known with a certain a priori precision, is applied in the PPP algorithms. In this thesis the a 

priori constraints as employed in PPP are specified according to coordinates-, receiver clock 

offset-, tropospheric delay- and ambiguities-constraints, respectively, and are validated to be 

superior both in convergence time and positioning accuracy of PPP. 

During the past decades of GPS research, advantages and disadvantages of differencing and 

un-differenced, combined and uncombined GPS algorithms have been discussed in detail in 

many publications. However, the equivalence principle can now be easily explained and 

accepted, since the differencing and un-differenced GPS algorithms were algebraically proved 

to be equivalent in Xu (2002) and the equivalence of combined and uncombined algorithms 

were also proved in Xu (2007). As the information, including the used GPS data and model 

and adjustment method, are the same, the results should also be equivalent. The equivalence 

properties are summarized in a theorem in Xu (2007) and Xu et al. (2010) as follows. First, 

for any GNSS survey with definitive space-time configuration, the results obtained by using 

any GNSS data processing algorithms or any mixture of the algorithms are identical. Second, 

the diagonal elements of the covariance matrix and the precision of the solutions are identical. 

And third, suitable algorithms or mixtures of the algorithms will be specifically beneficial for 

special kinds of data dealings. The theorem indicates that if the data used are the same and the 

model is parameterized identically and regularly, then the results must be identical and the 

precision should be equivalent. On the basis of the equivalence principle and the equivalence 

property of un-differenced and differencing algorithms pointed out in Xu (2007) and Xu et al. 

(2010), the specific equivalence of un-differenced and time differencing PPP algorithms is 

proved theoretically in this thesis for the first time. Meanwhile, an alternative method to 

prove the equivalence between triple differences and zero-difference is proposed and derived 

in this thesis as a supplement to the equivalence property of the triple differences stated in Xu 
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(2007) and Xu et al. (2010). Then as a consequence of this theoretical study, a time 

differencing PPP algorithm based on the equivalence principle is also derived. 

As summarized in Xu et al. (2010), one of the most important inference of the equivalence 

principle is the diagonalization algorithm (Xu, 2003). Based on the parameter equivalent 

reduction principle, the equivalently eliminated normal equation can be constructed and thus 

the normal equation can be diagonalised. This has a great significance for sequential 

adjustment and Kalman filter used in real-time data processing, since the nuisance parameter 

from the past can be eliminated and given up to keep the updated problem as small as possible. 

Generally, the observation equation can be separated into two diagonal parts, respectively. 

Each part uses the original observation vector and the original weight matrix, while the 

equation owns only a part of the unknown parameters. The normal equation of the original 

observation equation can also be separated into two parts. Only the interested unknown part is 

needed to be accumulated into the present normal equation to solve the problem. Therefore 

the nuisance parameters are eliminated during sequential data processing so that the data 

processing problem remains as small as possible. Applying this method, it is realistic to make 

an exact and effective real-time data sequential processing (Shen et al., 2008; Shen and Xu, 

2007; Xu et al., 2010). 

With the rapid development of multiple GNSS systems, PPP technique is also advancing 

forward from mainly using GPS measurements towards using multi-GNSS combinations. 

With newly available precise orbit and clock data for GLONASS and BDS satellites, 

additional GLONASS and BDS observations can be applied to augment GPS for improved 

positioning accuracy, reliability, and availability using PPP. Many studies on multi-GNSS 

combination have been conducted during recent years (Cai and Gao, 2013; Dach et al., 2007; 

Jokinen et al., 2011). Nevertheless, these studies focus mainly on validation of precision and 

reliability superiority of multi-GNSS combination, while the combined algorithm itself and 

the weight ratio of each single system in the combination are seldom involved. The traditional 

combined PPP algorithm directly constructs observation equations using all GNSS 

observables to obtain the solution. However, with the advance of other available systems and 

satellites, as well as the wide utilization of high-frequency (1-50 Hz) recording receivers, the 
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computational load of the traditional algorithm increases exponentially, while the efficiency 

of the algorithm decreases significantly at the same time (Huang et al., 2013). This is highly 

undesirable in high performance systems. Therefore, on the basis of the equivalence principle 

and its inference described above, a multi-GNSS combined PPP algorithm is derived in this 

thesis to improve the computation efficiency by decreasing the exponentially increased 

computation load to single linear increase. In case of GPS/BDS combination, a method which 

can speed up the determination of the ambiguities parameters of BDS through applying the 

contribution of GPS observations is proposed and analyzed. The GPS/BDS combined PPP 

algorithm with inter-system bias parameter is also derived. Furthermore, the usage of 

estimated ISB as a priori constraint in the GPS/BDS combined PPP is proposed to improve 

the convergence time and positioning accuracy. In addition, in the traditional combined PPP it 

is difficult to adaptively adjust the contribution of each single system to the combination 

through constructing total calculation, which will lead to the deterioration in the combination 

accuracy. In this context, the adaptively combined PPP based on the equivalence principle, 

which can easily achieve an adaptive adjustment of the weight ratio of each system in the 

multi-GNSS combination is proposed and derived. Compared to combined PPP with identical 

weight ratio the derived algorithms can significantly improve the accuracy of combination. 

1.2 The Main Research Contents and Overview of the Dissertation 

This thesis mainly explores high-performance PPP algorithms and develops GNSS algorithms 

with application of the equivalence principle, it includes the following chapters: 

First, Chapter 1 presents the background and the motivation of this thesis and specifies the 

contributions of this research. 

In Chapter 2 commonly used adjustment and filtering algorithms in PPP are outlined. Then 

the equivalence principle is described and developed. The specific equivalence of 

un-differenced and time differencing PPP algorithms is proved theoretically. An alternative 

method to prove the equivalence between triple differenced and zero-difference is proposed 

and derived. An algorithm of time differencing PPP based on the equivalence principle is 

derived and a numerical example is given. 
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Chapter 3 explores the influence of tropospheric delay on PPP. The effects of using actual 

meteorological data on positioning, especially in the context of observations in the polar 

region or with low elevation cut-off angles, are highlighted. The influence and improvement 

by applying horizontal gradient correction on PPP is also studied in this chapter. Several 

practical and enlightening conclusions are given. 

In Chapter 4 a priori constrained PPP algorithms are researched and derived. A priori 

information concerning geometric and physical properties of observations, which is known 

with a certain a priori precision, is applied in the PPP algorithms. The contribution of different 

a priori information constraints on different parameters to PPP solution is studied and 

validated. The a priori constrained PPP algorithms are specified according to coordinates-, 

receiver clock offset-, tropospheric delay- and ambiguities-constraints, respectively, and are 

validated to have great superiority in convergence time and positioning accuracy. Moreover, 

the applications of different constraints under specific conditions are also discussed. 

Chapter 5 proposes and derives a multi-constellation combined PPP algorithm based on the 

equivalence principle. The advantages of the algorithm, the computation efficiency and 

accuracy of the algorithm are validated through several numerical examples. Then a method 

which can speed up the determination of the ambiguities parameters of BDS through applying 

the contribution of GPS observations is proposed and analyzed in case of GPS/BDS 

combination. The GPS/BDS combined PPP algorithm with inter-system bias parameter is also 

derived. Furthermore, the usage of estimated ISB as a priori constraint in the GPS/BDS 

combined PPP is proposed to improve the convergence time and positioning accuracy. 

In Chapter 6 the principle, developments and application of the adaptively robust filter, are 

summarized and introduced. Then the adaptively robust PPP of a single system based on the 

equivalence principle is derived. Moreover, due to the defect of the multi-GNSS combination 

with equal weight ratio, two kinds of adaptively multi-GNSS combined PPP algorithms based 

on the equivalence principle are derived, which can easily achieve an adaptive adjustment of 

the weight ratio of each system in the multi-GNSS combination. The posteriori covariance 

matrix of the shared parameters of each single system and the Helmert variance components 

are used to adaptively adjust the weight ratio of each system in the multi-GNSS combination, 
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respectively. Numerical examples are conducted to validate the derived algorithms. 

Finally, Chapter 7 summarizes the main results as obtained in the previous chapters, 

presents the final conclusions and suggests recommendations for future work. 

1.3 The Main Contributions of the Dissertation 

The main contributions of this thesis can be summarized as follows. 

1. In this thesis it is the first time that the specific equivalence of un-differenced and time 

differencing PPP algorithms is proved theoretically on the basis of the equivalence 

principle and the equivalence property of un-differenced and differencing algorithms. 

Meanwhile, as a supplement to the equivalence property of the triple differences, an 

alternative method is proposed and derived to prove the equivalence between triple 

differences and zero-difference, which up to now was missing. 

2. As a consequence of above conducted theoretical study, a time differencing PPP 

algorithm based on the equivalence principle is derived and can be used to obtain the 

coordinates difference and average velocity between two adjacent epochs. Such a time 

differencing PPP algorithm is able to provide both position and velocity results from the 

phase and code observations and is expected to be beneficial for different types of 

applications, such as airborne gravimetry, earthquake monitoring, and could also be an 

efficient method to detect cycle slips in data processing. 

3. The influence of tropospheric delay on PPP, especially in the context of observations in 

the polar region or with low elevation cut-off angles, where the position results of 

observations are more significantly affected by tropospheric delay, is analyzed and a 

methodology for minimizing its effect is proposed. Due to the specificity of Antarctic 

positioning, the actual meteorological data are used and proved to be beneficial for 

improving PPP precision in the Antarctic region. The effect of tropospheric horizontal 

gradient correction on PPP is also analyzed and verified to remarkably improve PPP 

precision under lower elevation cut-off angles and higher humidity conditions.  

4. A priori constrained PPP algorithms are proposed and derived in this thesis to improve the 

efficiency and precision of PPP. The a priori information concerning the geometric and 
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physical properties of observations, which is known with a certain a priori precision, is 

applied in the PPP algorithms. The contribution of different a priori information 

constraints on different parameters to PPP solution is analyzed and validated. The a priori 

constrained PPP algorithms are specified according to coordinates-, receiver clock offset-, 

tropospheric delay- and ambiguities-constraints, respectively, and not only the efficiency 

and accuracy improvement by applying constraints but also their applications under 

specific conditions are discussed and validated. 

5. A multi-GNSS combined PPP algorithm based on the equivalence principle is proposed 

and derived in this thesis. With such an algorithm, the exponentially increased 

computational load of the traditional multi-GNSS PPP algorithm can be reduced to the 

single linear increase when more GNSS satellites are available and used for combined 

computation. In case of GPS/BDS combination, a method which can speed up the 

determination of the ambiguities parameters of BDS through applying the contribution of 

GPS observations is proposed to significantly reduce the convergence time in BDS PPP. 

The GPS/BDS combined PPP algorithm with inter-system bias parameter is also derived. 

Using the estimated ISB as a priori constraint in the GPS/BDS combined PPP is proposed. 

The result demonstrates that the a priori constraint of ISB shows superiority in the 

convergence time of PPP processing and can mainly improve the positioning accuracy in 

E component. 

6. In traditional combined PPP it is difficult to adaptively adjust the contribution of each 

single system to the combination through constructing total calculation, and it will lead to 

the deterioration in the combination accuracy. In this context, the adaptively combined 

PPP algorithms based on the equivalence principle are proposed and derived, which can 

easily achieve an adaptive adjustment of weight ratio of each system in multi-GNSS 

combination. By using the posteriori covariance matrix of the shared parameters of each 

single system and the Helmert variance components to adaptively adjust the weight ratio 

of each system, the derived algorithms can improve the accuracy of combination 

significantly, compared to combined PPP with identical weight ratio. 
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2 Equivalence Principle of Precise Point Positioning 

 

2.1 Introduction 

Commonly used adjustment and filtering algorithms in Precise Point Positioning (PPP) are 

outlined in this chapter. Adjustment algorithms discussed here include the least squares 

adjustment and the sequential least squares adjustment. The filtering algorithm discussed here 

is the classic Kalman filter. The equivalence principle is described and developed. On the 

basis of the equivalence principle and the equivalence property of un-differenced and 

differencing algorithms, the specific equivalence of un-differenced and time differencing PPP 

algorithms is proved theoretically. Meanwhile, as a supplement to the equivalence property of 

the triple differences, an alternative method is proposed and derived to prove the equivalence 

between triple differences and zero-difference which up to now was missing. As a 

consequence of the conducted theoretical study, an algorithm of time differencing PPP based 

on the equivalence principle is derived and a numerical example is given. Such a time 

differencing PPP algorithm is able to provide both position and velocity results from the 

phase and code observations. 

2.2 Commonly Used Adjustment and Filtering Algorithms in PPP 

In PPP, precise ephemeris and precise satellite clock errors are usually immediately 

substituted into the observation equation to fix the satellite orbits and remove the satellite 

clock errors. Furthermore, the first-order effects of ionospheric delay is eliminated via 

dual-frequency observations. Therefore the calculation model of PPP can be written as (Ye et 

al., 2008; Zumberge et al., 1997) 

 v c t Nρ δ λ λ εΦ Φ= + ⋅∆ + + ⋅ − ⋅Φ +   (2.1) 

where ρ  is the geometric distance between the satellite at the emission time and the receiver 

antenna at the reception time; c denotes the speed of light; t∆  denotes the receiver clock 

error; δ  denotes the tropospheric delay; λ  denotes the wavelength; Φ  is the 

ionosphere-free combined observation; N denotes its ambiguity; εΦ  denotes the not modeled 
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remaining errors like multipath and observation noise; and vΦ  is the corresponding 

observation error. 

To solve the unknowns, like coordinates, clock error, and tropospheric delay parameters the 

commonly used adjustment and filtering algorithms in PPP are outlined in the next sections. 

2.2.1 Least Squares Adjustment 

The principle of least squares adjustment can be summarized as follows (Leick et al., 2015; 

Xu, 2007). 

The system of the linearized error equation of Eq. (2.1) can be represented as 

 ,V AX L P= −   (2.2) 

where L is the observational vector of dimension n; A is the coefficient matrix of dimension 

n m× ; X is the unknown parameter vector of dimension m; V is the residual vector of 

dimension n; m is the number of unknown parameters; n is the number of observations; P is 

the symmetric and definite weight matrix of dimension n n× . 

The least squares principle for solving the error equation is well-known as 

 minTV PV =   (2.3) 

where TV  is the transpose of vector V. 

Solving the minimum value of TV PV  with respect to X and take Eq. (2.2) into account, 

one has 

 0TA PV =   (2.4) 

where TA  is the transpose matrix of A. 

Substituting Eq. (2.2) into Eq. (2.4), one has 

 0T TA PAX A PL− =   (2.5) 

Therefore, the least squares solution of Eq. (2.2) is 

 1( )T TX A PA A PL−=   (2.6) 

where superscript -1 is an inverse operator. Denoting TM A PA= , 1( )T
XQ A PA −= , where M 

is usually called normal matrix and XQ  is the cofactor matrix. 
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The covariance matrix X∑  of the estimated parameter X is 

 2
0X XQ σ∑ =   (2.7) 

where 0σ  is the standard deviation, which can be computed by 

 0 ( )
TV PV n m

n m
σ = >

−
  (2.8) 

2.2.2 Sequential Least Squares Adjustment 

Suppose iL  is an observational vector of dimension in  at epoch i, and the corresponding 

weight matrix is iP . At epoch i-1, the estimation value of the unknown parameters and its 

weight matrix are obtained and denoted as 1iX −  and 
1iXP
−

. The error equation at epoch i can 

be represented as 

 ,i i i i iV A X L P= −   (2.9) 

where subscript i denotes epoch i; iA  is the coefficient matrix of dimension in m× ; iV  is 

the residual vector of dimension in ; m is the number of unknown parameters; in  is the 

number of observations at epoch i. Since the unknown parameter iX  has the a priori 

expectation and variance, the least squares principle of the parameter estimation is (Yang, 

2006) 

 
11 1( ) ( ) min

i

T T
i i i i i X i iV PV X X P X X

−− −+ − − =   (2.10) 

Solving the minimum value of Eq. (2.10) with respect to iX  and taking Eq. (2.9) into 

account, one has 

 
1 1( ) 0

i

T
i i i X i iA PV P X X

− −+ − =   (2.11) 

Substituting Eq. (2.9) into Eq. (2.11), one has 

 
1 1 1( ) ( ) 0

i i

T T
i i i X i i i i X iA P A P X A PL P X

− − −+ − + =   (2.12) 

Therefore, the sequential least squares solution of Eq. (2.9) is 
11 

 



 
1 1

1
1( ) ( )

i i

T T
i i i i X i i i X iX A P A P A PL P X

− −

−
−= + +   (2.13) 

Denoting 

 
1i i

T
X i i i XP A P A P

−
= +   (2.14) 

one has 

 
1

1
1( )

i i

T
i X i i i X iX P A PL P X

−

−
−= +   (2.15) 

 
1

1 1( )
i i i

T
X X i i i XQ P A P A P

−

− −= = +   (2.16) 

Eq. (2.15) is the recurrence formula of the sequential least squares solution, that 

 

1

2 1

1

1
1 1 1

1
2 2 2 2 1

1
1

( )

( )
i i

T
X

T
X X

T
i X i i i X i

X P A L

X P A P L P X

X P A PL P X
−

−

−

−
−

 =


= +


 = +


  (2.17) 

 

1

2 1

1

1 1 1

2 2 2

i i

T
X

T
X X

T
X X i i i

P A P A

P P A P A

P P A P A
−

 =


= +


 = +


  (2.18) 

The posteriori covariance matrix 
iX∑  of iX  is 

 2 1 2
0 0i i i i iX X XQ Pσ σ−∑ = =   (2.19) 

where 0i
σ  is the standard deviation, which can be computed by (Yang, 2006) 

 11 1
0

( ) ( )
i

i

T T
i i i i i X i i

i

V PV X X P X X
n

σ −− −+ − −
=   (2.20) 

where in  is the number of observations at epoch i. 

2.2.3 Kalman Filter 

The Kalman filter is known to estimate the state vector based on a sequence of observations 

and its state equation. The principle of the classic Kalman filter is outlined as follows (Brown 

and Hwang, 1992; Gelb, 1986; Koch and Yang, 1998; Schwarz et al., 1989; Xu, 2007; Yang, 

2006). 
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The observation equation and the state equation can be expressed as 

 ,i i i i iV A X L P= −   (2.21) 

 , 1 1i i i i iX X W− −= Φ +   (2.22) 

where subscript i and i-1 denote epoch time; 1iX −  and iX  are the simplified state vectors of 

dimension m at epoch i-1 and epoch i, respectively; , 1i i−Φ  is the state transition matrix of 

dimension m m× ; iW  is the residual vector of the system state model of dimension m with 

zero expectation and covariance matrix 
iW∑ ; iL  is the observational vector of dimension 

in ; iA  is the coefficient matrix of dimension in m× ; iV  is the residual vector of 

observational vector of dimension in ; m is the number of unknown parameters; in  is the 

number of observations at epoch i; iP  is the weight matrix of observational vector of 

dimension i in n× . 

According to Eq. (2.22), the predicted value of the state vector iX  at epoch i can be 

obtained through the estimated state vector 1iX −  and the transition matrix as 

 , 1 1i i i iX X− −= Φ   (2.23) 

The covariance matrix 
iX∑  of the predicted state vector iX  can be obtained by using the 

covariance propagation law as 

 
1, 1 , 1i ii

T
i i X i i WX −− −∑ = Φ ∑ Φ + ∑   (2.24) 

The residual vector 
iXV  of the predicted state vector iX  is 

 
i i iXV X X= −   (2.25) 

Therefore a least squares principle of the parameter estimation is formed as 

 min
i i i

T T
i i i X X XV PV V P V+ =   (2.26) 

where 1
i iP −= ∑  is the weight matrix of iL  and 1

i iX XP −= ∑  is the weight matrix of iX . 
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Making the partial differentiation of Eq. (2.26) with respect to iX  equals zero, one has 

 0
i i

T
i i i X XA PV P V+ =   (2.27) 

Substituting Eq. (2.21) and (2.25) into Eq. (2.27), one has 

 ( ) ( ) 0
i i

T T
i i i i i i i iX XA P A P X A PL P X+ − + =   (2.28) 

Therefore, the least squares solution of state vector iX  is 

 1( ) ( )
i i

T T
i i i i i i i iX XX A P A P A PL P X−= + +   (2.29) 

The covariance matrix of iX  is 

 1 2
0( )

i i

T
X i i i XA P A P σ−∑ = +   (2.30) 

Denoting 

 
i i

T
X i i i XP A P A P= +   (2.31) 

one has 

 1 2
0i iX XP σ−∑ =   (2.32) 

According to the principle of the matrix identity transformation (Yang et al., 2001), that 

 ( )i i i i i iX X K L A X= + −   (2.33) 

where iK  is called the gain matrix of the Kalman filter and is formed as 

 1( )
i i

T T
i i i i iX XK A A A −= ∑ ∑ + ∑   (2.34) 

or in accordance with the matrix identity equation 

 1( )
i

T T
i i i i i iXK A P A P A P−= +   (2.35) 

The covariance matrix of iX  can be obtained by using the covariance propagation law to 

Eq. (2.33) as 

 1( )
i i i i i

T T
X i i i i iX X X XA A A A−∑ = ∑ −∑ ∑ + ∑ ∑   (2.36) 

or 
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 ( )
i iX i i XI K A∑ = − ∑   (2.37) 

where I is the identity matrix. 

  The main difference between Kalman Filter and Sequential Least Squares Adjustment is 

that Kalman filter is applied in kinematic case, taking into account the state equation, the 

velocity and acceleration information of the carriers; while sequential least squares 

adjustment is usually applied in static processing. Kalman filter is a general form of 

sequential least squares adjustment, and the sequential least squares adjustment is a special 

case of Kalman filter. Kalman filter estimation uses the predicted values computed by the 

state equation at current epoch, while sequential least squares adjustment uses the estimated 

values of last epoch. 

As introduced Kalman filter assumes a state equation, which is formed by a system 

transition matrix and a cofactor. Therefore, the estimated values in Kalman filter process are 

dependent on the transition matrix and cofactor. The transition matrix should be based on 

strengthened physical models, and the cofactor should be well-known or reasonably given. If 

the system description is accurate enough, of course Kalman filter will lead to a more precise 

result. However, if the system is not sufficiently well-known, the result of Kalman filter will 

sometimes not converge to the true values (divergence). Furthermore, a kinematic process is 

generally difficult to be precisely represented by theoretical system equations. Another 

problem of Kalman filter is the strong dependency of the given initial values. 

2.3 Equivalence Principle and Equivalently Eliminated Observation 

Equation 

The equivalence properties are summarized in a theorem in Xu (2007) and Xu et al. (2010) as 

follows. First, for any GNSS survey with definitive space-time configuration, the results 

obtained by using any GNSS data processing algorithms or any mixture of the algorithms are 

identical. Second, the diagonal elements of the covariance matrix and the precision of the 

solutions are identical. And third, suitable algorithms or mixtures of the algorithms will be 

specifically beneficial for special kinds of data dealings. The theorem indicates that if the data 

used are the same and the model is parameterized identically and regularly, then the results 
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must be identical and the precision should be equivalent. As we know that the observation 

equations of the differencing methods or combined algorithms can be obtained by carrying 

out a related linear transformation to the original equations. All methods are theoretically 

equivalent, since the weight matrix is similarly transformed according to the law of 

covariance propagation. Any combinations of the solutions must be equivalent to each other 

and to the original observation equation, none of the combinations will lead to better solutions 

or better precision of the solutions. However, suitable algorithms or combination of the 

algorithms will lead to convenience in the computation and software realization and may 

decrease the risk for wrong computation as well. Nevertheless, theoretically the final result 

should be equivalent even if the efficiency or the error tolerance capacity of computation will 

be improved. From this rigorous theoretical aspect, such as the traditional wide-lane 

ambiguity fixing technique (Petrovello, 2006; Teunissen, 2003; Teunissen, 2005; Teunissen et 

al., 1997) may lead to a more effective search, but not a better solution and precision of the 

ambiguity. The equivalent observation equation approach based on the derivation of Zhou 

(1985) can be used to unify the differencing and un-differenced methods as well as 

uncombined and combined algorithms. 

As summarized in Xu et al. (2010), one of the most important inference of the equivalence 

principle is the diagonalization algorithm (Xu, 2003). Based on the parameter equivalent 

reduction principle, the equivalently eliminated normal equation can be constructed and thus 

the normal equation can be diagonalised. This has a great significance for sequential 

adjustment and Kalman filter used in real-time data processing, since the nuisance parameter 

from the past can be eliminated and given up to keep the updated problem as small as possible. 

Generally, the observation equation can be separated into two diagonal parts, respectively. 

Each part uses the original observation vector and the original weight matrix, while the 

equation owns only a part of the unknown parameters, where the nuisance parameters have 

been eliminated during the sequential data processing. Therefore in least squares adjustment, 

the unknown parameters are divided into two groups: interested unknowns and uninterested 

unknowns in practice. It is better to eliminate the group of uninterested unknowns because of 

its size. In this case, through using the equivalently eliminated observation equation, the 
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uninterested unknown parameters can be eliminated directly from the observation equations 

instead of from the normal equations. 

The linearized observation equation can be represented as 

 ( ) 1

2

,
X

V A B L P
X

 
= − 

 
  (2.38) 

where L is the observational vector of dimension n; A and B are the coefficient matrices of 

dimension ( - )n m r×  and n r× ; 1X  and 2X  are the unknown vectors of dimension m-r 

and r; V is the residual vector of dimension n; m is the number of total unknowns; n is the 

number of observations; P is the symmetric and definite weight matrix of dimension n n× . 

Then the normal equation of the least squares can be formed as 

 11 12 1 1

21 22 2 2

M M X B
M M X B
    

=    
    

  (2.39) 

where 

 11 12

21 22

T T

T T

M M A PA A PB
M M B PA B PB

  
=   

   
  (2.40) 

 1
TB A PL= ,  2

TB B PL=   (2.41) 

The elimination matrix is formed as 

 
0I

Z I
 
 − 

  (2.42) 

where I is the identity matrix; 0 is a zero matrix; 1
21 11Z M M −= , 1

11M −  is the inversion of 

11M . 

Multiplying the normal Eq. (2.39) by the elimination matrix Eq. (2.42) one has 

11 12 1 1

21 22 2 2

0 0M M X BI I
M M X BZ I Z I
       

=       − −       
 

or 
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 11 12 1 1

2 2 20
M M X B

M X R
    

=    
    

  (2.43) 

where 

 
1 1

2 21 11 12 22 11
1

11( )

T T T

T T

M M M M M B PB B PAM A PB
B P I AM A P B

− −

−

= − + = −

= −
  (2.44) 

 1 1
2 2 21 11 1 11( )T TR B M M B B P I AM A P L− −= − = −   (2.45) 

If only the unknown vector 2X  is of interest, then only the second equation of Eq. (2.43) 

needs to be solved. The solution is identical to that of solving the whole Eq. (2.43). 

Denoting 

 1
11

TJ AM A P−=   (2.46) 

and it has properties of 

2 1 1 1 1 1
11 11 11 11 11( )( )T T T T TJ AM A P AM A P AM A PAM A P AM A P J− − − − −= = = =  

2 2( )( ) 2 2I J I J I IJ J I J J I J− − = − + = − + = −  

1 1
11 11[ ( )] ( ) ( ) ( )T T T T TP I J I J P P AM A P P P PAM A P P I J− −− = − = − = − = −  

Matrices J and (I-J) are idempotent and ( )TI J P− is symmetric, that is 

 2J J= , 2( ) ( )I J I J− = − ,  ( ) ( )TI J P P I J− = −   (2.47) 

Using the above derived properties, 2M  in Eq. (2.44) and 2R  in Eq. (2.45) can be 

rewritten as 

 2 ( ) ( )( ) ( ) ( )T T T TM B P I J B B P I J I J B B P I J P I J B= − = − − = − −   (2.48) 

 2 ( ) ( )T T TR B P I J L B I J PL= − = −   (2.49) 

Denoting 

 2 ( )D I J B= −   (2.50) 

then the eliminated normal equation (the second equation of Eq. (2.43)) can be rewritten as 
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 2( ) ( ) ( )T T T TB I J P I J BX B I J PL− − = −   (2.51) 

or 

 2 2 2 2
T TD PD X D PL=   (2.52) 

which is the least squares normal equation of the following linear observation equation 

 2 2 2 ,U D X L P= −   (2.53) 

or 

 2 2( ) ,U I J BX L P= − −   (2.54) 

where L and P are the original observational vector and the weight matrix, 2U  is the residual 

vector, which has the same property as V in Eq. (2.37). 

The advantage of using Eq. (2.54) is that the unknown vector 1X  has been eliminated. 

However, L vector and P matrix remain the same as in the originals. In this case, the 

correlation problems can be avoided. 

2.4 Equivalence of Un-differenced and Time Differencing PPP 

Algorithms 

In this section, the equivalent equations are formed to eliminate the ambiguities from the 

original un-differenced equations, then the equivalence of the time differencing and original 

un-differenced equations is proved theoretically. 

The linearized PPP observation equation can be expressed as 

 ( ) 1

2

,
X

V A B L P
X

 
= − 

 
  (2.55) 

Suppose at one station n common satellites ( )1 2, , , nk k k  are observed at time t1 and t2, 

thus the original observation equation can be written as 

 1 1 11

2 2 22

,t t t

t t t

V I B LX
V I B LX
      

= −      
      

2

01
0
I

P
Iσ

 
=  

 
  (2.56) 

where if no cycle slip exists, 1X  denotes the ambiguity and 2X  represents other unknown 
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parameters. For simplicity, ambiguity is scaled by the ionosphere-free combined wavelength 

λ  and directly used as unknown. Thus the coefficient matrix of 1X  is an identity matrix I.  

Comparing Eq. (2.55) with Eq. (2.56), one has (cf. Sect. 2.3) 

,
I

A
I

 
=  
 

    1

2

,t

t

B
B

B
 

=  
 

     1

2

,t

t

L
L

L
 

=  
 

     1

2

t

t

V
V

V
 

=  
 

 

( )11 2 2

01 2
0

T I I
M A PA I I I

I Iσ σ
  

= = =  
  

 

( )
2

1
11 2

01 1
02 2

T I I I I
J AM A P I I I

I I I I
σ

σ
−      

= = =     
     

 

2 2
1
2n n

I I
I J

I I×

− 
− =  − 

 

( ) 1 2
2 2

2 1

1
2

t t
n n

t t

B B
I J B

B B×

− 
− =  − 

 

Therefore the equivalently eliminated equation of Eq. (2.56) is 

 1 1 2 1
2 2

2 2 1 2

01 1,
02

t t t t

t t t t

U B B L I
X P

U B B L Iσ
−       

= − =       −       
  (2.57) 

where the ambiguity parameter 1X  has been eliminated, and the observable vector and 

weight matrix remain unchanged. Denoting 2 1TD t tB B B= − , the least squares normal equation 

of Eq. (2.57) can be formed as 

( ) ( ) 1
2

2

1
2

tTDT T T T
TD TD TD TD

tTD

LB
B B P X B B P

LB
−   

− = −   
   

 

or 

 ( )2 2 1
T T
TD TD TD t tB B X B L L= −   (2.58) 

Alternatively, a time differencing equation can be obtained by multiplying Eq. (2.56) with a 

transformation matrix ( )TDC I I= −  or directly by subtracting the common observables of 
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time t1 from that of time t2, which can be formed as 

1 1 11

2 2 22

t t t
TD TD TD

t t t

V I B LX
C C C

V I B LX
      

= −      
      

 

or 

 ( ) ( )2 1 2 1 2 2 1t t t t t tV V B B X L L− = − − −   (2.59) 

Therefore the covariance TD∑  and weight matrix TDP  of time differencing observational 

equation can be represented as 

 2 20
2

0
T

TD TD TD

I
C C I

I
σ σ

 
∑ = = 

 
  (2.60) 

and 

 1
2

1
2TD TDP I
σ

−= ∑ =   (2.61) 

Supposing Eq. (2.59) is solvable, its least squares normal equation is then 

 ( ) ( ) ( ) ( )2 1 2 1 2 2 1 2 1
T T

t t t t t t t tB B B B X B B L L− − = − −   (2.62) 

It is obvious that Eq. (2.62) and Eq. (2.58) are identical. Therefore in case of two epochs, 

the time differencing Eq. (2.59) is equivalent to the equivalently eliminated Eq. (2.57) and 

consequently equivalent to the original zero-difference equation. In practice, it should be 

noted that the precondition of the equivalence of time differencing and zero-difference is that 

the sample rate of the observations used in the computation should be high enough, then the 

common error between two epochs can be expected to be the same or similar enough and the 

result of the time differencing obtained is considered as precise and reliable enough and 

should be equivalent to that of zero-difference. 

2.5 Equivalence of Un-differenced and Triple Differences Algorithms 

It is known that data differentiations are methods of combining GNSS observations of 

different stations (Xu, 2007). As we know, single difference can be formed by observations 

between two stations, two satellites or two epochs. Here we take the case that single 

difference is the difference formed by data observed at two stations on the same satellite as 
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 1, 2 2 1SD ( )k k k
i i i iO O O= −   (2.63) 

where O is the original observable, i1 and i2 are two id numbers of the two stations. 

Double differences are formed between two single differences related to two observed 

satellites as 

 
1, 2 2 1
1, 2 1, 2 1, 2

2 2 1 1
2 1 2 1

DD ( ) SD ( ) SD ( )

( ) ( )

k k k k
i i i i i i

k k k k
i i i i

O O O

O O O O

= −

= − − −
  (2.64) 

where k1 and k2 are two id numbers of the satellites. 

Triple differences are formed between two double differences related to the same stations 

and satellites at the two adjacent epochs as 

 

1, 2 1, 2 1, 2
1, 2 1, 2 1, 2

2 2 1 1
2 1 2 1

2 2 1 1
2 1 2 1

TD ( ( 1, 2)) DD ( ( 2)) DD ( ( 1))

( 2) ( 2) ( 2) ( 2)

( 1) ( 1) ( 1) ( 1)

k k k k k k
i i i i i i

k k k k
i i i i

k k k k
i i i i

O t t O t O t

O t O t O t O t

O t O t O t O t

= −

= − − +

− + + −

  (2.65) 

where t1 and t2 are two adjacent epochs. 

In order to prove the equivalence of triple differences and zero-difference, the eight terms 

of triple differences in Eq. (2.65) should be rearranged to the new order as 

 

{ }
{ }

1, 2 2 2 2 2
1, 2 2 2 1 1

1 1 1 1
2 2 1 1

2 2 1 1
2 1 2 1

TD ( ( 1, 2)) ( 2) ( 1) ( 2) ( 1)

( 2) ( 1) ( 2) ( 1)

( ) ( )

k k k k k k
i i i i i i

k k k k
i i i i

t k t k t k t k
i i i i

O t t O t O t O t O t

O t O t O t O t

D O D O D O D O

   = − − −   

   − − − −   

= ⋅ − ⋅ − ⋅ − ⋅

  (2.66) 

where tD  represents the time difference observables between time t1 and t2. 

From Eq. (2.66) triple differences can be regarded as to make time differencing of the same 

satellite between two adjacent epochs at the station firstly, then to be formed by double 

differences between two single differences related to two observed satellites. The time 

differenced observable between two adjacent epochs has the same property as the original one, 

which is still uncorrelated (cf. Eq. (2.56) and Eq. (2.60)-(2.61)). And it is generally accepted 

that the single difference as well as double differences equation are equivalent to the 

zero-difference equation, which has been explained and proved in Xu (2007). Moreover, with 

consideration of the equivalence of un-differenced and time differencing proved in Sect. 2.4, 
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it can be concluded that the triple differences equation is equivalent to the zero-difference 

equation. 

2.6 Time Differencing PPP Based on the Equivalence Principle 

As a result of the theoretical study, a time differencing PPP based on the equivalence principle 

is derived. 

Referring to Sect. 2.3, one has 

 ( ) 1

2

,
X

V A B L P
X

 
= − 

 
  (2.67) 

where 1X  denotes the receiver clock error parameter; 2X  denotes the coordinates, 

tropospheric delay and ambiguity parameters. Therefore the equivalently eliminated 

observation equation of the receiver clock error parameter can be formed as 

 2 2 2 ,U D X L P= −   (2.68) 

where the characters in Eq.(2.68) have the same meaning as in Eq. (2.53). 

If no cycle slip exists, the ambiguities can be eliminated through the difference of two 

adjacent epochs. The tropospheric delay can also be eliminated between epochs. Generally the 

tropospheric delay can be deemed as fixed and unchanged during a certain period, typically as 

two hours. However, when the weather at the observed station changes drastically and 

constanly, or there are high variations in the atomosphere humidity, then the unchanged 

duration should be considered much less. Therefore the time differencing of Eq. (2.68) at 

epoch i and i-1 can be formed as 

 ( ), 1 1 1
2 2 2 2 2 1 ,i i i i i i

i iU D X D X L L P− − −
−= − − −   (2.69) 

Denoting 

 1
2 2 2
i i idX X X −= −   (2.70) 

thus Eq. (2.69) can be expressed as 

 ( ), 1 1
2 2 2 2 2 1 ,i i i i i i

i iU D dX dD X L L P− −
−= ⋅ + ⋅ − −   (2.71) 
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where 1
2 2 2
i i idD D D −= −  and can be ignored (Chen and Wang, 2007; Li et al., 2010). It means 

when the high-rate recording observations are used, then the coefficients of the linearized 

observation equations at two epochs are highly similar or nearly the same, thus the difference 

between them can be small enough to be ignored. In this case Eq. (2.71) can be simplified to 

 ( ), 1
2 2 2 1 ,i i i i

i iU D dX L L P−
−= ⋅ − −   (2.72) 

where 2
idX  denotes the coordinates difference between two epochs. 

Thus the coordinates difference can be estimated through solving Eq. (2.72). The average 

velocity of the station can also be obtained in accordance with the sample interval of the 

observations. 

To validate the derived time differencing PPP algorithm, the GPS observations of IGS 

station GMSD (30.56º N, 131.02 º E, located in Japan) on GPS day 334 with sample intervals 

of 1 s and 30 s were used, respectively. In principle, the position coordinates difference 

between epochs is zero for the static observations. Thus the coordinates difference between 

epochs obtained in the static time differencing PPP can be regarded as the computational error 

and reflect the precision of the computation method. The coordinates difference between 

epochs of interval 1 s and 30 s are shown in Fig. 2.1 and Fig. 2.2, respectively. The mean 

value and the standard deviation of the coordinates difference are given in Table 2.1. 
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Fig. 2.1. Coordinates difference between epochs (1 s interval) 

 

Fig. 2.2. Coordinates difference between epochs (30 s interval) 

Table 2.1 Mean and STD of the coordinates difference (units: cm) 
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Interval 
1 s 30 s 

detX detY detZ detX detY detZ 

Mean (cm) -0.02 0.03 -0.01 0.02 -0.13 -0.06 

STD (cm) 0.38 0.34 0.28 0.70 0.83 0.62 

From Fig. 2.1-2.2 and Table 2.1 it can be found that the precisions of the coordinates 

difference are different with different sample intervals of the observations. The coordinates 

differences between epochs of observations with a 1 s interval are within 1 cm in most 

instances while that of observations with a 30 s interval are within 2 cm. The coordinates 

difference between epochs of observations with a 1 s interval has higher precision than that of 

a 30 s interval. That is because the smaller the interval is, the more similar the common error 

between two epochs will be. Therefore the error elimination in the time differencing is much 

better. In case of a 1 s interval, the coordinates difference between epochs is just the velocity 

of the station between epochs. The obtained coordinates difference as well as velocity, which 

can be obtained by making differential of the coordinate difference with respect to the interval, 

can keep stable from the beginning of computation. This approach is superior to making 

position difference of PPP which always needs some convergence time. Thus the results can 

be useful in applications, such as airborne gravimetry, which needs reliable velocity and 

acceleration solutions. It is known that in airborne gravimetry, the external information 

related to the acceleration of the platform which carries the sensors (a classical air gravimeter 

or a strapdown system), is needed to allow the correct discrimination of accelerations that are 

not due to the Earth gravity field. The coordinate difference can also be useful for earthquake 

monitoring. It makes the integration for the obtained coordinate difference to compute the 

final position at each epoch. In case of a 30 s interval (cf. Fig. 2.2) it is noted that there is a 

big jump (red circle) where the coordinates difference in X, Y and Z components reached 2 m, 

5 m and 1 m, respectively. This is caused by an existing cycle slip in the phase measurement 

from one of the satellites during the observations. In this case the ambiguity of the satellite 

changed between these two adjacent epochs, which would not be eliminated through 

differencing, and caused the big error in coordinates difference computation. Therefore the 

coordinates difference between epochs could be an efficient method to detect cycle slips. 
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2.7 Conclusions 

In this chapter, the basic algorithms used in the thesis were described. The commonly used 

adjustment and filtering algorithms in PPP including least squares adjustment, sequential least 

squares adjustment and Kalman filter were introduced. Then the equivalence principle and the 

equivalently eliminated observation equation approach were described. It has a great 

significance in eliminating the nuisance unknown parameters directly through the observation 

equations, which can reduce the size problem in the computation. On the basis of the 

equivalence principle and the equivalence property of un-differenced and differencing 

algorithms, the specific equivalence of un-differenced and time differencing PPP algorithms is 

proved theoretically for the first time. Moreover, through regarding triple differences as to 

make time differencing of the same satellite between two adjacent epochs at one station first 

and then to be formed by double differences, the equivalence of zero-difference and triple 

differences is proved. Finally, as a consequence of the conducted theoretical study, a time 

differencing PPP algorithm based on the equivalence principle was derived and a numerical 

example was given. Through such a time differencing PPP algorithm the coordinates 

difference and average velocity between epochs can be obtained. The obtained coordinates 

difference can keep stable from the beginning of computation, which is superior to making 

position difference of PPP because that always needs a certain convergence time. Thus the 

results could be useful in the applications, such as airborne gravimetry, as well as earthquake 

monitoring. Results also show that the time differencing PPP could be an efficient method to 

detect cycle slips. 
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3 Influence of Tropospheric Delay on Precise Point 

Positioning 

 

3.1 Introduction 

As known, due to the influence of pseudorange noise, tropospheric delay and other error 

sources, the accuracy and reliability of PPP are still limited (Li, 2013). Tropospheric delay is 

one of the key factors which affect the precision of GPS positioning (Dai et al., 2011). The 

unknown tropospheric delay parameter is usually estimated along with the position and 

ambiguity parameters. Ingestion of precise tropospheric models can reduce the total number 

of unknown parameters that need to be estimated from the observation model, potentially 

remove the need for noise propagating linear combinations of observables, and potentially 

improve positioning performance (Dodd et al., 2006). In this case, the influence of 

tropospheric delay on PPP is studied in this chapter. 

The tropospheric delay in satellite navigation positioning usually refers to the signal delay 

generated when the electromagnetic waves get through the non-ionized neutral atmosphere 

below 80 km. The tropospheric delay could be about 2 m in the zenith direction and a few 

tens of meters in the case of a lower satellite elevation (Xu, 2007). There are two methods for 

dealing with the tropospheric delay in single point positioning. One is using a tropospheric 

model to calculate and correct the delay immediately. The other one is to treat the delay as an 

unknown parameter which will be estimated in the adjustment (Ge and Liu, 1996). However, 

in high-precision GPS positioning it is difficult to obtain optimal positioning results by only 

using the first method. That is because of the existence of model errors and measurement 

errors of the meteorological parameters along the signal transmission path. It is better to 

regard the computed value of the tropospheric model as an approximation, and then to 

estimate the exact tropospheric delay by a stricter adjustment procedure. 

The effects of using a tropospheric model on GPS PPP was researched by Kouba (2009b). 

In that study the global pressure and temperature model GPT (Boehm et al., 2007) was used 
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to compute a priori zenith hydrostatic delay and demonstrated to perform well for low and 

mid latitude stations. However, in the polar region or with low elevation angles, the GPS 

height solution errors can sometimes reach more than 10 mm. Nevertheless, it should be 

noted that the station height time series based on simple GPT model have a better 

repeatability than those based on more realistic tropospheric a priori delay derived from 

surface pressure if atmosphere loading correction is not included, since the a priori 

hydrostatic part of the zenith delay derived from the empirical pressure can partially 

compensate for the atmospheric loading displacement (Kouba, 2009b; Wanninger, 2012). 

According to Xu et al. (2014), there are more visible satellites with lower elevation angles in 

the Antarctic region comparing with the low-latitude observatories. And researches show that 

the observations with lower elevation angles are more significantly influenced by the 

tropospheric delay (Ren et al., 2011; She et al., 2011). Thus the residual errors of the 

tropospheric model can greatly affect the precision of the positioning there. Both zenith delay 

model and mapping function play an important role. In recent years, there are some most 

commonly used models. An improved global pressure and temperature empirical model GPT2 

(Lagler et al., 2013) was proposed in 2013. In this chapter, the impact of the tropospheric 

delay on the Antarctic positioning, especially the effect of the meteorological data derived 

from GPT2 model and actual meteorological data on global positioning are analyzed and 

compared. The existing tropospheric models are proposed usually based on the assumption 

that the atmosphere is homogeneous in all directions (Xu and Wu, 2009). However, the 

tropospheric delay is anisotropic in the horizontal direction (Cao et al., 2014; Miyazaki et al., 

2003). Thus the influence of horizontal gradient correction on PPP is studied in this chapter. 

3.2 Tropospheric Delay Model 

The tropospheric delay can be represented as the product of the tropospheric refraction in 

zenith direction and a mapping function related to the elevation angle. It is separated into 

hydrostatic (about 90%, caused by dry gas in the atmosphere) and wet (about 10%, caused by 

water vapor) parts, which can be defined according to Hoffmann-Wellenhof et al. (2001), 

Leick (2004) as 
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 h w h h w wZ MF Z MFδ δ δ= + = × + ×   (3.1) 

where δ  denotes the tropospheric delay; the subscript h and w denote hydrostatic and wet; 

hZ  and wZ  denote the tropospheric zenith hydrostatic delay and zenith wet delay; hMF  

and wMF  are mapping functions related to the hydrostatic and wet components. The residual 

influence of the wet component of the tropospheric delay still exists while more than 90% of 

the hydrostatic component can be corrected immediately by using a tropospheric model 

(Brunner and Welsch, 1993; Collins and Langley, 1997; Tsujii et al., 2000). 

3.2.1 Zenith Tropospheric Delay 

The hydrostatic zenith delay hZ  can be accurately modeled based on the surface pressure as 

(Saastamoinen, 1972) 

 3

0.0022768
1 0.00266cos(2 ) 0.00028 10h

PZ
B H−=

− − ×
  (3.2) 

where hZ  is the zenith hydrostatic delay (in units of meters); P is the atmospheric pressure 

(in units of millibars); B is geodetic latitude at the station (in units of radians) and H is the 

geodetic height at the station (in units of meters). 

  On the other hand, the zenith wet delay component is more difficult to model accurately 

due to its temporally unpredictable changes and is therefore estimated as an unknown along 

with other unknowns in the adjustment in precise point positioning. The zenith wet delay 

could also be computed by Saastamoinen formula with a loss of precision: 

 3

12550.0022768 0.05

1 0.00266cos(2 ) 0.00028 10w

e
TZ

B H−

 × + × 
 =

− − ×
  (3.3) 

where wZ  is the zenith wet delay (in units of meters); T is the temperature at the station (in 

units of Kelvin); e is the partial pressure of water vapor (in units of millibars). 

With the approximate position and the meteorological data, the hydrostatic and wet zenith 
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delay could be easily computed by Eqs. (3.2) and (3.3). According to Eq. (3.2), 1 mbar 

pressure change at sea level can cause a change of about 2.3 mm in a priori zenith hydrostatic 

delay, it is essential to use as accurate meteorological data as possible (Tregoning and Herring, 

2006).  

Generally, the meteorological data needed by Eqs. (3.2) and (3.3) can be obtained from 

actual observations, or derived from using a standard atmospheric value at sea level and the 

height of the station (Berg, 1948). Meteorological data can also be determined by empirical 

models called GPT (Boehm et al., 2007) or the later GPT2 model (Lagler et al., 2013). In this 

chapter, the meteorological data derived from GPT2 models and the actual meteorological 

observations were used. 

3.2.2 Mapping Functions 

To obtain the slant tropospheric delay, a mapping function which describes the variation of 

the slant tropospheric delay with respect to satellite elevation angle is needed. Many mapping 

functions were proposed in the past, such as NMF (Niell Mapping Function, (Niell, 1996)), 

VMF1 (Vienna Mapping Function 1, (Boehm et al., 2006b)), GMF (Global Mapping Function, 

(Boehm et al., 2006a)), which were commonly researched in the recent years. By comparison, 

a general form of the hydrostatic and wet mapping functions can be outlined as (Herring, 

1992) 
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  (3.4) 

where MF is the mapping function; ε  is the elevation angle; a, b and c are empirical 

coefficients with different values in various mapping functions. ( , , )h h ha b c  and ( , , )w w wa b c  

are used for the hydrostatic and wet components, respectively. 

The accuracy of the mapping function would definitely affect the precision of the slant 

delay, thus affecting the positioning precision. And when the elevation cut-off angle is lower, 

the impact is more significant. Applying a rule of thumb (Boehm et al., 2006b; MacMillan 
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and Ma, 1994), an error in the wet mapping function of 0.01 or in the hydrostatic mapping 

function of 0.001 would cause an error of 4 mm in the station height under 5° elevation 

cut-off angle at 2000 mm ZHD and 200 mm ZWD, respectively. In this study, the GMF 

mapping function was applied to make the analysis. 

3.3 Comparison of Tropospheric Delays Based on GPT2 and Actual 

Meteorological Observations 

3.3.1 Data Preparation 

The data of a globally distributed set of 9 IGS (International GNSS Service, www.igs.org) 

stations during 2013 were used to make the analysis. This set of 9 IGS stations (DAV1, OHI2, 

OUS2, HRAO, NURK, MANA, FUNC, YAKT and SCOR) would represent high-latitude, 

mid-latitude, and low-latitude areas in both southern and northern hemispheres. The 

distribution of these stations is shown in Fig. 3.1. 

 

Fig. 3.1. Distribution of the selected IGS stations used for analysis 

3.3.2 Comparison of Zenith Hydrostatic Delays 

A priori zenith hydrostatic delay (ZHD) derived from a tropospheric model, which is 

proportional to the surface pressure at the station, will greatly affect the precision of 

positioning. Furthermore, the higher percentage of low-elevation observations at high latitude 

stations amplifies the effect of an a priori ZHD error (Tregoning and Herring, 2006). Thus a 
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comparison of pressures and ZHD derived from GPT2 and the actual meteorological data for 

Antarctic stations is presented here. 

The surface atmosphere pressure (denoted as M, once-daily) and pressure time series 

derived from GPT2 model for stations in Antarctic region (e.g. DAV1 and OHI2) in 2013 are 

given in Fig. 3.2. 

 

Fig. 3.2. Comparison of surface pressure and pressure derived from GPT2 for stations DAV1 
(a) and OHI2 (b) 

Fig. 3.2 shows that the pressure time series derived from GPT2 model is a smooth scatter 

diagram while the actual surface pressure time series is more discrete, which could better 

reflect the temporal variation of the pressure. 

Fig. 3.3 shows the zenith hydrostatic delay derived from GPT2, actual meteorological 

observations and VMF1, which are plotted in blue scatters, olive scatters and red ones, 

respectively. The statistics of their differences are given in Table 3.1. The interval of the ZHD 

derived from GPT2 and actual meteorological data are set as 6 hours, in accordance with the 

interval of VMF1 ZHD. 
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Fig. 3.3. Comparison of zenith hydrostatic delays for stations DAV1 (a) and OHI2 (b) 

Table 3.1 Statistics of zenith hydrostatic delay difference (units: mm) 

Stations 
GPT2-VMF1 M-VMF1 

Mean RMS Mean RMS 

DAV1 4.0 22.2 -0.7 3.7 
OHI2 4.9 29.4 2.9 5.6 

From Fig. 3.3 and Table 3.1 it can be found that, the ZHD derived from actual 

meteorological observations agrees well with the one derived from VMF1 model, which is 

considered as the true value here. The difference of ZHD at these two stations has an average 

of -0.7 mm and 2.9 mm, and their RMS (Root Mean Square) are 3.7 mm and 5.6 mm (cf. 

Table 3.1), which is much more less than the difference between GPT2 and VMF1. Moreover, 

the ZHD series derived from GPT2 model is a nearly slippy scatter diagram, it is known that 

ZHD is in proportion to the pressure at one station, thus the pressures derived from GPT2 

model can hardly reflect the temporal variation, especially in case of dramatic changes in 

weather. Therefore a priori ZHD derived from actual meteorological observation is 

recommended if it is available in the position processing. 

3.4 Effect of Meteorological Data on Precise Point Positioning 

3.4.1 Tropospheric Delay Estimation 

As mentioned before, the residual influence of the wet component of the tropospheric delay 

35 
 



still exists while more than 90% of the hydrostatic component can be corrected immediately 

by using the tropospheric model. Therefore, the tropospheric delay is regarded as an unknown 

parameter and will be estimated by the adjustment in precise point positioning. The value 

calculated by the tropospheric model is regarded as an initial approximation in the estimation. 

   As mentioned in Sect. 3.3.1, the same 9 stations are selected in this part. Combined with 

GMF mapping function, GPT2-derived meteorological data and the actual meteorological 

observations (denoted as M in Table 3.3 and Fig. 3.4) were used to calculate the tropospheric 

delay, respectively, which were treated as a priori values. Then the tropospheric delay was 

estimated as an unknown parameter along with position coordinates, receiver clock offsets 

and carrier phase ambiguities in the precise point positioning. Finally the position results both 

in horizontal and vertical directions were obtained. The details in the PPP processing are 

listed in Table 3.2. 

Table 3.2 Observation models and data processing strategies for PPP 

Item Models and Strategies 

Observations Undifferenced ionosphere-free code and phase combination 

Observation weight Elevation dependent weight 
Elevation angle cutoff 5°/10° 
Sampling rate 30s 
Precise orbit Fixed, IGS final precise ephemeris 

Precise clock biases Fixed, IGS precise clock 

Tropospheric delay 
Saastamoinen model (real meteorological data/GPT2) & random 
walk process 

Mapping function Global Mapping Function (GMF)  
Ionospheric delay First order effect eliminated by ionosphere-free linear combination 
Phase-windup effect Corrected 
Earth rotation parameter Fixed, IGS ERP product 

PCO & PCV Satellite antenna and receiver antenna Applied 

Relativistic effects IERS Convention 2010 
Tidal displacement Solid Earth tides, pole tides, ocean tides (IERS Convention 2010) 
Receiver clock biases Estimated as white noise for each epoch 
Phase ambiguity Estimated as constant for each ambiguity arc 
Time system GPS Time 
Terrestrial frame ITRF2008 
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3.4.2 Data Analysis and Results 

To make a comparison, the position coordinates published by IGS were regarded as standard 

values to compute the RMS of the position results with following formula. 

 
( )2

_( , , ) standard _( , , )
1_( , , )

n

i N E U N E U
i

X X
RMS N E U

n
=

−
=
∑

  (3.5) 

where i denotes the epoch, n is the number of epochs; _( , , )i N E UX  represents the computed 

position result of N, E or U directions at epoch i respectively; standard _( , , )N E UX  represents the 

IGS published position coordinates in corresponding direction. 

  The RMS with respect to IGS published results are given in Table 3.3. The RMS results in 

U direction are shown in Fig. 3.4. 

Table 3.3 RMS with respect to IGS results during 2013 (units: mm) 

Stations 

5° 10° 

GPT2/GMF-IGS M/GMF-IGS GPT2/GMF-IGS M/GMF-IGS 

N E U N E U N E U N E U 

DAV1 2.4 4.2 12.5 2.3 4.2 9.3 1.8 3.6 5.3 1.8 3.6 4.1 
OHI2 6.2 7.6 22.4 6.2 7.6 19.6 6.3 5.8 11.6 6.3 5.8 11.1 
OUS2 5.3 4.8 6.6 5.3 4.8 6.8 4.5 4.3 7.0 4.5 4.3 7.1 
HRAO 4.0 8.7 17.9 4.0 8.7 17.9 4.3 8.3 13.9 4.3 8.3 13.9 
NURK 5.7 9.4 22.0 5.7 9.4 22.5 6.5 6.1 14.0 6.5 6.1 14.2 
MANA 2.4 6.7 17.6 2.4 6.7 17.7 2.1 6.9 15.2 2.1 6.9 15.2 
FUNC 4.3 4.3 5.7 4.3 4.2 5.3 4.1 3.9 3.9 4.1 3.9 3.6 
YAKT 3.8 6.9 5.5 3.8 6.9 6.0 3.3 7.2 4.6 3.3 7.2 4.8 
SCOR 2.2 3.6 8.9 2.2 3.6 8.4 2.1 3.8 5.9 2.1 3.8 5.8 
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Fig. 3.4. RMS in U direction under 5° elevation cut-off angle (a) and 10° elevation cut-off 
angle (b) during 2013 

   In order to analyze the results intuitively, the visible satellite trajectories connected to the 

elevation angles for Antarctic stations (e.g. DAV1 and OHI2) are shown in Fig. 3.5. 

 

Fig. 3.5. Skyplots of the observations for Antarctic stations DAV1 and OHI2 

From Table 3.3 and Fig. 3.4 - Fig. 3.5 it can be found that: (1) There is a high variability in 

U direction under different elevation cut-off angles in Table 3.3. That is because when the 

elevation cut-off angle was set from 10° to 5°, the tropospheric errors of the observations 

which increase significantly, are included and used in the computation. Due to the specificity 

of Antarctic region, there are more observations with lower elevation angles. And the lower 

the elevation angles are, the larger the height solution errors will be, since observations with 

lower elevation angles are more significantly influenced by the tropospheric delay. Thus the 
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residual errors of the tropospheric model can greatly affect the precision of positioning there. 

(2) Using GPT2-derived meteorological data and actual meteorological observations the same 

positioning precision can be achieved in most areas of the world except for the Antarctic 

region (e.g. DAV1 and OHI2). Thus in most instances GPT2 model is meaningful and useful 

in case of a priori tropospheric delay is required but the actual measured meteorological data 

is not available. (3) The improvement of the actual meteorological observations on the 

positioning result is significant in the Antarctic region (e.g. DAV1 and OHI2) compared to 

using GPT2-derived meteorological data. That is because in the Antarctic positioning more 

visible satellites are in lower elevation angles (cf. Fig. 3.5; (Xu et al., 2012)), which has a 

significant influence on the tropospheric delay. Therefore, the improvement of the more 

accurate tropospheric model with actual measured meteorological data on the positioning 

precision is certainly more obvious. (4) When the elevation cut-off angle was set to 5°, the 

precision in U direction of DAV1 and OHI2 improved by 25% and 13%, respectively. While 

under 10° elevation cut-off angle, the precision in U direction improved by 23% and 5%, 

respectively. Therefore when the cut-off angle is lower, the effect of the actual meteorological 

observations on the positioning precision is also more significant in Antarctic due to the 

retention of low elevation angle observations. (5) For high-precision positioning in the 

Antarctic region, actual meteorological data is suggested to be measured and used. 

In order to have a better understanding of the result, the standard deviations STD and 

average difference µ  with respect to IGS results were additionally computed by Eq. (3.6). 

The symbols have the same meanings as that of Eq. (3.5). 
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  (3.6) 

It is found that the standard deviations of using GPT2/GMF with respect to IGS are the 

same as that of using M/GMF on the whole. However, the values of µ  are different when 

using different models, which have the same tendency as the RMS results given in Table 3.3. 
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Therefore it is inferred that the difference between GPT2/GMF and M/GMF can influence the 

tropospheric delay, thus affect the values of µ , which also reflect in the values of RMS. 

When using M/GMF, smaller µ  can be obtained comparing to that of GPT2/GMF, which 

means the average difference of the computed coordinates and IGS coordinates is reduced. 

3.5 Effects of A Tropospheric Horizontal Gradient Model 

3.5.1 Tropospheric Horizontal Gradient Model 

The tropospheric model of Eq. (3.1) was proposed usually based on the assumption that the 

atmosphere is homogeneous in all directions. However, the tropospheric delay is anisotropic 

in the horizontal direction. Thus a tropospheric delay model which has added a horizontal 

gradient correction was proposed by various researchers (Chen and Herring, 1997; MacMillan, 

1995; Miyazaki et al., 2003; Teke et al., 2011) as 

 ( cos sin )h h w w N E gZ MF Z MF G G MFδ φ φ= × + × + + ×   (3.7) 

where φ  is the azimuth angle from north; NG  and EG  are the gradient vectors in 

north-south and east-west directions, respectively. gMF  denotes the gradient mapping 

function, which can be set as cotwMF ε due to the anisotropic water vapor distributions (Li et 

al., 2011); ε  denotes the elevation angle. 

3.5.2 Data Analysis and Results 

The same IGS stations mentioned in Sect. 3.3.1 were selected to test the effects of horizontal 

gradients under different weather conditions and different elevation cut-off angles. The data 

of January and July 2013 were used to make the analysis. The elevation cut-off angles were 

set to 5° and 10°, respectively. The mean and RMS of difference between position results with 

and without horizontal gradients under different elevation cut-off angles are given in Table 

3.4-3.5. Similarly with Sect. 3.4.2, the position results with and without horizontal gradients 

were compared with the standard values from IGS. The RMS with respect to IGS published 

results under different elevation cut-off angles are given in Table 3.6-3.7. For an intuitive 

analysis, the RMS under 5° elevation cut-off angle in January and July were plotted and are 
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shown in Fig. 3.6-3.7. 

Table 3.4 Mean and RMS of difference between position results with and without horizontal 
gradients in January 2013 (units: mm) 

Stations 

5° 10° 

Mean RMS Mean RMS 

N E U N E U N E U N E U 

DAV1 3.6 1.6 -1.1 3.6 1.6 1.1 2.7 0.7 -1.2 2.7 0.7 1.3 
OHI2 3.0 0.2 -2.3 3.1 0.5 2.6 2.1 -0.6 -0.5 2.1 0.6 0.7 
OUS2 4.1 -0.6 -2.8 4.1 0.7 2.8 2.9 -1.2 -0.1 2.9 1.2 0.3 
HRAO -2.3 -1.3 -5.5 2.4 1.5 5.7 -2.2 -1.4 -3.9 2.2 1.6 4.2 
NURK -1.9 -0.8 -1.4 1.9 1.0 1.5 -0.8 -0.7 -1.3 0.8 0.9 1.3 
MANA -3.6 -0.1 -8.7 3.7 1.4 8.8 -4.3 0.8 -4.3 4.3 1.3 4.4 
FUNC 1.8 0.1 -1.1 1.8 0.3 1.3 1.6 0.3 -0.1 1.6 0.3 0.3 
YAKT 2.8 -2.1 0.3 2.9 2.2 0.4 2.0 -0.9 -0.6 2.1 1.0 0.6 
SCOR -1.1 0.8 0.9 1.1 0.9 0.9 -0.6 0.4 -0.1 0.6 0.5 0.1 

Table 3.5 Mean and RMS of difference between position results with and without horizontal 
gradients in July 2013 (units: mm) 

Stations 

5° 10° 

Mean RMS Mean RMS 

N E U N E U N E U N E U 

DAV1 4.3 -1.6 -4.9 4.3 1.7 4.9 2.6 -0.8 -2.1 2.6 0.8 2.1 
OHI2 1.7 -0.4 -2.4 1.8 0.5 2.5 1.0 -0.5 -0.8 1.0 0.5 0.8 
OUS2 2.0 0.3 -0.1 2.0 0.3 0.2 0.4 -0.1 0.3 0.4 0.23 0.3 
HRAO -0.3 -0.1 -0.1 0.3 0.1 0.1 -0.2 -0.1 -0.2 0.2 0.2 0.2 
NURK 3.3 -0.1 -6.5 3.3 0.5 6.5 2.1 0.6 -0.1 2.1 0.7 0.4 
MANA -0.6 1.7 -3.4 0.6 1.8 3.5 -1.0 1.2 -2.8 1.0 1.4 2.8 
FUNC 1.8 -0.6 -3.3 1.8 0.7 3.4 1.5 -0.5 -2.1 1.6 0.6 2.1 
YAKT -1.2 2.1 0.9 1.0 1.8 0.8 -1.0 0.8 0.6 0.8 0.8 0.5 
SCOR -0.4 -1.9 0.4 0.5 2.0 0.5 -0.4 -1.0 -0.1 0.4 1.0 0.1 

Table 3.6 RMS with respect to IGS results in January 2013 (units: mm) 

Stations 

5° 10° 

NoGrad-IGS Grad-IGS NoGrad-IGS Grad-IGS 

N E U N E U N E U N E U 

DAV1 3.3 4.2 5.9 0.4 2.7 4.8 2.7 4.2 3.1 0.3 3.5 4.3 
OHI2 3.7 12.2 15.2 0.6 12.0 12.8 3.5 6.5 8.0 1.4 6.0 7.5 
OUS2 10.2 4.9 5.0 6.1 4.3 2.3 8.6 4.8 5.1 5.8 3.7 5.1 
HRAO 8.0 7.1 13.1 5.7 5.9 10.0 8.1 7.1 19.6 5.9 5.9 15.7 
NURK 2.3 13.9 7.3 0.5 13.1 5.9 1.5 11.7 4.4 0.7 10.9 3.1 
MANA 1.9 13.0 12.0 1.9 13.2 7.2 2.8 14.2 10.7 1.7 13.4 6.5 
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FUNC 2.6 9.3 7.0 0.8 9.3 6.0 2.5 9.1 5.5 0.9 8.9 5.5 
YAKT 11.0 7.9 2.4 9.5 5.7 2.1 10.1 6.2 2.4 9.1 5.2 1.9 
SCOR 2.0 2.7 2.8 0.9 1.8 2.7 1.6 2.3 4.9 1.1 1.9 4.7 

Table 3.7 RMS with respect to IGS results in July 2013 (units: mm) 

Stations 

5° 10° 

NoGrad-IGS Grad-IGS NoGrad-IGS Grad-IGS 

N E U N E U N E U N E U 

DAV1 2.5 5.8 17.5 1.8 4.1 15.2 1.8 3.5 9.1 0.9 2.8 7.0 
OHI2 2.2 2.1 14.4 0.6 2.4 11.9 2.2 1.8 0.8 1.2 2.2 0.6 
OUS2 5.2 4.3 7.3 3.2 4.6 7.2 4.4 3.7 6.5 4.0 3.6 6.8 
HRAO 2.7 6.8 15.9 2.4 6.8 15.8 2.9 6.3 12.9 2.7 6.2 12.7 
NURK 7.6 5.0 6.6 4.3 5.1 1.1 7.1 5.5 2.5 5.0 5.1 2.6 
MANA 1.7 5.4 5.3 2.0 4.0 2.0 2.2 4.8 8.4 1.3 3.9 5.7 
FUNC 6.8 2.2 5.7 5.0 2.8 2.5 6.2 1.3 1.9 4.7 1.3 0.7 
YAKT 5.3 5.9 1.0 4.1 3.9 0.7 4.6 6.7 4.7 3.7 5.9 4.1 
SCOR 0.9 3.6 9.1 0.5 1.8 8.7 0.7 3.6 5.1 0.4 2.7 5.1 

 
Fig. 3.6. RMS with respect to IGS results under 5° elevation cut-off angle in January 2013 
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Fig. 3.7. RMS with respect to IGS results under 5° elevation cut-off angle in July 2013 

Results in Table 3.4-3.5 show the difference between position results with and without 

horizontal gradients under 5° elevation cut-off angle is more significant than that under 10° 

elevation cut-off angle. Moreover, the impact of adding gradient estimation in horizontal 

direction is generally bigger than in vertical direction. 

  From Table 3.6-3.7 and Fig. 3.6-3.7 it can be found that: (1) Generally the precision of 

precise point positioning can be improved when the tropospheric horizontal gradient 

correction is added in the calculation. (2) Comparing the results under different elevation 

cut-off angles, it shows when the elevation cut-off angle was set to 5°, that the positioning 

precision can be improved more significantly by adding tropospheric horizontal gradient 

correction than for elevation cut-off angle of 10°. (3) Comparing the results between July and 

January (cf. Fig. 3.6-3.7), the positioning precision of the stations located in southern 

hemisphere especially in the mid-latitudes area (e.g. OUS2, HRAO) has bigger improvement 

in January than in July. An opposite situation can be found to the northern hemisphere stations 

(e.g. MANA, FUNC). That is because the weather conditions of the mid-latitudes area in 

southern hemisphere in January are much more variable than in July, so does the condition in 

northern hemisphere in July. It might cause remarkable azimuth dependency of water vapor 

distribution. Thus, adding the horizontal gradient correction can have a more significant effect 

on the positioning. (4) Comparing the results of all these stations, when adding tropospheric 
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horizontal gradient corrections, the average improvement of N, E and U directions can reach 

up to 51%, 15% and 30%, respectively. The positioning precision of low-latitudes stations had 

the larger improvement than the high-latitudes stations. This may be because of the different 

humidity conditions in different latitudes. The effect of horizontal gradients is generally larger 

at low-latitudes sites because of higher humidity. And due to the lesser amount of humidity at 

higher latitudes, the effect decreases with increasing northern and southern latitudes. 

3.6 Conclusions 

In most instances and areas worldwide, GPT2 model is meaningful and useful in case of a 

priori tropospheric delay is required but the actual measured meteorological data is not 

available. However, in the Antarctic region the improvement of the actual meteorological 

observations on the positioning result is significant compared to using GPT2-derived 

meteorological data. Furthermore, when the elevation cut-off angle is lower, the effect of the 

actual meteorological observations on the positioning precision is more significant in 

Antarctic due to the retention of low elevation angle observations. Thus for high-precision 

positioning in the Antarctic region, actual meteorological data is suggested to be measured 

and used. 

   The effect of the tropospheric horizontal gradient correction on the precise point 

positioning was also analyzed. Results show that adding horizontal gradient corrections can 

generally improve the positioning precision. Under the lower elevation cut-off angles and 

higher humidity conditions, especially in summer time and low-latitudes area, the 

improvement of horizontal gradient correction on PPP is remarkable. The average 

improvement of N, E and U directions could reach up to 51%, 15% and 30%, respectively. 
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4 A Priori Constrained Precise Point Positioning 

Algorithms 

 

4.1 Introduction 

Although for many applications the PPP approach presents definite advantages regarding 

operational flexibility and cost-effectiveness, it requires a relatively long initialization time as 

phase ambiguities converge to constant values and the solution reaches its optimal precision. 

The convergence time of PPP will vary because it is affected by a number of factors, such as 

the number and geometry of visible satellites, observation quality and sampling rate, user 

tracking conditions, and environment (Bisnath and Gao, 2009). Furthermore, due to the 

influence of pseudorange noise and atmospheric delay (etc.), the accuracy and reliability of 

PPP are still limited (Li, 2013). As scientists gain increasingly deeper and more complete 

understanding of the geometric and physical properties of observations, a multitude of a priori 

information can be obtained and utilized in the data processing (Chen, 2010; Xie, 2014). A 

priori information, which is known with a certain a priori precision, could be expected to 

improve the efficiency and precision of PPP. In PPP, generally the a prior constraints are 

mainly focus on the error models corrections on the domain of observation equation. In this 

chapter the a priori information constraints concerning the different estimated parameters on 

the domain of normal equation rather than the error models on the domain of observation 

equation are emphasized on. The contribution of different a priori information constraints 

concerning different parameters to PPP solution is studied and validated. The a priori 

constraints employed are comprehensively specified according to coordinates-, receiver clock 

offset-, tropospheric delay- and ambiguities-constraints. Furthermore, not only the efficiency 

and accuracy improvement by applying constraints but also their applications under specific 

conditions are discussed. Numerical examples were also conducted. 
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4.2 Analytic Contribution of Different Constraints on Parameters to PPP 

Solution 

4.2.1 A Priori Constrained PPP Algorithms 

As we know, after applying precise orbit and clock corrections, ionosphere-free code and 

phase observations for GNSS satellites in traditional PPP can be written as 

 
2 2

1 1 2 2
2 2

1 2
IFIF trop IF P

f P f PP c dt d dm
f f

ρ ε⋅ − ⋅
= = + ⋅ + + +

−
  (4.1) 
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⋅Φ − ⋅Φ

Φ = = + ⋅ + + ⋅ + +
−

  (4.2) 

where IFP  is the ionosphere-free code observation; IFΦ  is the ionosphere-free phase 

observation; 1f  and 2f  are the different frequencies of the dual-frequency observations; 

ρ  is the geometric distance between the satellite and the receiver; dt  denotes the receiver 

clock offset; tropd  denotes the tropospheric delay; IFdm  and IFmδ  denote a series of error 

corrections including relativistic effect, earth tide, ocean tide and hardware delay; IFλ  

denotes the wavelength; IFN  denotes its ambiguity; 
IFPε  and 

IF
εΦ  denote the not modeled 

remaining errors like multipath and observation noise of code and phase. 

  Thus the linearized error equation of PPP can be expressed as 

 ,V AX L P= −   (4.3) 

where the terms in Eq. (4.5) have the same meaning as Eq. (2.2) in Sect. 2.2. 

In PPP, generally the unknown parameter vector X in Eq. (4.3) can be separately divided 

into four groups, ( )1 2 3 4
TX X X X X= , where 1X  denotes the coordinates; 2X  

denotes the receiver clock offset; 3X  denotes the tropospheric delay and 4X  denotes the 

ambiguities in PPP. And similarly we can set ( )1 2 3 4A A A A A= . Thus the linearized 

error equation can be rewritten as 
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 As we know, the satellite orbits can be fixed and satellite clock errors can be removed by 

using precise ephemeris and precise satellite clock offset products. And the first-order effect 

of ionospheric delay can be eliminated by using dual-frequency ionosphere-free combined 

observations. Furthermore, these four groups of parameters have different properties. The 

coordinate parameter is a constant in the static positioning, while in the kinematic case it 

changes every epoch. And the coordinate parameter is independent of a satellite. The 

parameter of troposphere delay is a piece-wise constant, we normally estimate it every 2 

hours. The station clock is a random error, which should be estimated every epoch. The 

ambiguity parameter is dependent on a specific satellite, it is a constant if there is no cycle 

slip of this satellite during the observing period. 

The least squares normal equation can be formed as 
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According to Xu (2007), it is known that the a priori constraints may be interpreted as 

additional observations or fictitious observations and will cause two additional terms in both 

sides of the normal Eq. (4.5). The difference between the common normal equation and the 
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normal equation of the a priori constraint is that the a priori terms will be added to the 

corresponding elements of the normal equation coefficient matrices N and B, which can be 

expressed as 

 0 , ( 1,2,3,4)i iCX W P i= − =   (4.8) 

 ( )
T

ii constrain ii iN N C PC= +   (4.9) 

 ( )
T

i constrain ii iB B C PW= +   (4.10) 

where Eq. (4.8) is the representation of the a priori constrain to parameter iX ; C is the 

coefficient matrix; W is the constant vector; iP  is the a priori weight matrix; ( )ii constrainN  and 

(co )i nstrainB  are the newly updated normal equation coefficients with respect to parameter iX . 

Substituting Eq. (4.9) and Eq. (4.10) into Eq. (4.5), the new normal equation matrix with a 

priori constrain to the corresponding parameter is obtained. Thus the a priori constrained PPP 

can be applied. 

4.2.2 Contribution Analysis of the Constraints to PPP 

On the basis of the equivalence principle, an equivalently eliminated normal equation can be 

formed as (refer to Sect. 2.3, the second equation of Eq. (2.43)) 

 2 2 2M X R=   (4.11) 

Thus a priori constraint to the parameter 2X  in Eq. (4.11) can be represented as 

 2 20 ,CX W P= −   (4.12) 

 2 2 2
TM M C P C′ = +   (4.13) 

 2 2 2
TR R C PW′ = +   (4.14) 

where 2M ′  and 2R ′  are the new normal equation coefficients with respect to parameter 2X  

in Eq. (4.11). 

According to Eq. (4.11), the PPP solution can be expressed as 
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2 2 2( )X M R−=   (4.15) 

 
2

1
2( )XQ M −=   (4.16) 

where 2X  includes the coordinates, tropospheric delay and ambiguities parameters, 
2XQ  

denotes the coefficient matrix of 2X . 

In accordance with Eq. (4.13) and Eq. (4.14), the new PPP solution by applying constraints 

can be expressed as 

 ( ) ( )1

2 2 2 2 2
T TX M C P C R C PW

−′ = + +   (4.17) 

 ( )
2
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2 2
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XQ M C P C
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Therefore, the analytic contribution of the constraints to PPP solution can be expressed as 

 ( ) ( )1 1
2 2 2 2 2 2 2 2 2( )T TdX X X M C P C R C PW M R

− −′= − = + + −   (4.19) 

To assess the precision, the covariance matrix 
2X∑  of the parameter can be formed as 

 
2 2

2
X XQ σ∑ =   (4.20) 

 
2 2

2
X XQ σ′ ′∑ =   (4.21) 

where σ  denotes the standard deviation and can be computed by 

 
TV PV

n m
σ =

−
  (4.22) 

where n is the number of observations; m is the number of estimated parameters. 

Therefore, the contribution of the constraints to the estimation precision of PPP can be 

expressed as 

 
2 2 2X X X

′∆∑ = ∑ −∑   (4.23) 

4.3 Applications of Different Constraints under Specific Conditions 

4.3.1 Application of A Priori Constrain to Coordinates 

In practice, the a priori constrain to coordinates in PPP solutions can reduce the convergence 
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time and avoid divergent positioning results. The a priori constraint of the coordinates 1X  of 

Eq. (4.8) can be known and formed in many cases. 

1. A priori three-dimensional coordinates constraint 

In applications for atmosphere research and long distance network RTK, the precise 

coordinates of the reference station are known in advance. In this case, the coefficient matrix 

C and constant vector W in Eq. (4.8) turn to be 

 ( )0 0 0, TC I W x y z= =   (4.24) 

where I is an three-dimensional identity matrix; ( )0 0 0x y z  are the precisely known 

three-dimensional coordinates. 

1P  in Eq. (4.8) can be given by variance matrix W∑  and 

 
0

0

0

2

1 2
1

2

,
x

W W y

z

P

σ

σ

σ

−

 
 

= =  
  
 

∑ ∑   (4.25) 

Therefore, large weight indicates strong constraint and small weight indicates loose 

constraint. The strongest constraint is to keep the datum fixed. In this case, the 

three-dimensional coordinates are fixed in the estimation. 1P  can be set to a really large 

value such as 

 

10

1 10
1

10

10
10

10
WP −

 
 

= =  
 
 

∑   (4.26) 

This a priori constrain to the coordinates can be used to resolve float ambiguities, since the 

coordinate parameters and ambiguity parameters are highly correlated and it is difficult to fix 

the ambiguities correctly (Li and Shen, 2009). 

On the other hand, in the real-time slow-motion kinematic positioning, the precise a priori 

coordinates of the slow-motion carrier can be considered as stationary during a certain time 

period. Thus the coordinates estimated at epoch i-1 can be inherited directly at epoch i. In this 

case, the coefficient matrix iC  and constant vector iW  at epoch i in Eq. (4.8) turn to be 
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 ( )1 1 1 1
1 0 0 0,

Ti i i i i iC I W X x y z− − − −= = =   (4.27) 

where 1
1
iX −  is the estimated coordinates at epoch i-1, and 

 1
1

1 i
i

X
P P −=   (4.28) 

where 1
1
iX

P −  is the posteriori weight matrix of 1
1
iX −  at epoch i-1 (cf. Sect. 2.2, Eq. (2.18)). 

The a priori constrain to coordinates is particularly beneficial to real-time disasters 

monitoring, such as landslide, urban land subsidence, and structural monitoring (Zang et al., 

2014). In these cases, the slow-motion carriers have in common that the monitoring stations 

are continuously and long-term tracked with precise a priori information on coordinates. In 

addition, the deformation during or preceding geological disasters is generally continuous and 

in slow-motion, thus the monitoring station can be considered as stationary and the 

coordinates between epochs can be considered like static positioning during a certain period. 

The coordinates will be constrained to fluctuate only in a definitive range, which can remove 

the influence of other noises and improve the precision. However, it should be noted that the a 

priori constraints applied should be well-formulated mathematically and well-reasoned 

physically, in other words, the a priori information is considered as exactly known. And the 

information is known with certain a priori precision. Otherwise it will lead to the wrong or 

unreasonable results. 

2. A priori horizontal coordinates constraint 

In some deformation monitoring applications, such as bridge deformation, solar radiation 

and vehicles are major factors in causing the height variation while the horizontal coordinates 

remain unchanged. Therefore constraits can be applied to the horizontal coordinates. In this 

case, the coefficient matrix C and constant vector W in Eq. (4.8) turn to be 

 ( )0 0 0 0 0
0 0

0 0

sin cos sin sin cos
,

sin cos 0
TB L B L B

C W x y
L L

− − 
= = − 

  (4.29) 

where 0B  and 0L  denote geodetic latitude and longitude of the monitoring station, 

( )0 0x y  are the precisely known horizontal coordinates. And 
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= =   

 
∑ ∑   (4.30) 

3. A priori height constraint 

In horizontal displacement monitoring, such as high building and dam monitoring, the 

height would remain unchanged. In this case, the coefficient matrix C and constant vector W 

in Eq. (4.8) turn to be 

 ( )0 0 0 0 0 0cos cos cos sin sin ,C B L B L B W h= =   (4.31) 

where 0B  and 0L  denote the geodetic latitude and longitude of the monitoring station, 0h  

is the precisely known height. And 

 ( )0

1 2
1 ,W W hP σ−= =∑ ∑   (4.32) 

4.3.2 A Priori Constrain to Receiver Clock Offset 

In many cases the International GNSS Service (IGS) can provide receiver clock offset product. 

The physical properties of the receiver clocks at the permanent tracking stations for time 

service can be known previously (Cerretto et al., 2010; Li, 2012). Therefore, the physical 

model of the clock offset can be used as an a priori constraint. In this case, the coefficient 

matrix C and constant vector W in Eq. (4.8) turn to be 

 0 0 1, ( )ocC I W dt a a T T= = = + −   (4.33) 

where I is identity matrix; 0dt  denotes the receiver clock error calculated by known physical 

model of the clock; 0a  and 1a  denote clock error and clock speed; ocT  is the reference 

epoch; T is the current epoch. Such constraint can be applied in the stations which have 

external atomic clocks since the physical model of atomic clock can be well known in 

advance and used as a priori constraint. 

2P  in Eq. (4.8) can be given by variance matrix W∑  and 

 ( )0

1 2
2 ,W W dtP σ−= =∑ ∑   (4.34) 

It is known that the receiver clock sequence obtained by the conventional single-day PPP is 
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discontinuous at the junction of day and day, which is the so-called day-boundary (Defraigne 

and Bruyninx, 2007). The day-boundary problem appears because the observation, orbit and 

satellite clock products are generally provided by one day, however, the initial conditions and 

error influences (e.g. tropospheric delay, multipath) between days are usually different, which 

is absorbed by the receiver clock offset in the single-day estimation. Thus there is a system 

error between the receiver clock offsets of different days. The day-boundary problem can 

significantly affect the application of PPP technology on precise timing and time transfer 

service (Huang, 2012). In this case, with the a priori constrain to the receiver clock offset, the 

day-boundary problem can be suppressed and the receiver clock sequence will become 

continuous between different days by applying clock offset constraint in the continuous PPP 

solution. In practice, the receiver clock offset constraint is normally combined with the 

coordinates constraint, which improves the speed of convergence and suppresses clock slip 

effectively. The receiver clock offset obtained has better continuity and higher stability. 

4.3.3 A Priori Constrain to Tropospheric Delay 

IGS has been producing the total troposphere zenith path delay (ZPD) product (Byun and 

Bar-Sever, 2009). The ZPD product can be selected as the precise external troposphere 

corrections to calibrate the troposphere zenith delay and as the a priori constraint in PPP. In 

this case, the coefficient matrix C and constant vector W in Eq. (4.8) turn to be 

 0, tropC I W d ZPD= = =   (4.35) 

where I is identity matrix; 0tropd  denotes the precise troposphere zenith path delay correction 

provided by IGS. In case of non-IGS stations, the previously estimated values can be used as 

the constraint, since the tropospheric delay can be considered as a constant during a certain 

period under normal weather condition. 

3P  in Eq. (4.8) can be given by variance matrix W∑  and 

 ( )0

1 2
3 ,

tropW W dP σ−= =∑ ∑   (4.36) 

Due to the high precision of the external tropospheric correction, the tropospheric delay can 
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therefore be strongly constrained with a very small initial standard deviation (cf. 
0

2
tropdσ  in Eq. 

(4.36)) in the estimation (Shi and Gao, 2014). It is known that the tropospheric delay will 

degrade other unknown parameters, especially the height coordinate in PPP (Hadas et al., 

2015). Through using the a priori tropospheric delay constraint, the effect of the tropospheric 

delay on the PPP height solution can be removed because of the reduced correlation between 

troposphere and height parameters. Consequently, it can be expected that the PPP precision 

should be improved. 

4.3.4 A Priori Constrain to Ambiguities 

In practice, when the stations are long-term tracked, the ambiguities of the same visible 

satellites estimated in the former days can be adopted directly and used as the a priori value 

for the next days. And as long as there is no cycle slip, this kind of ambiguity constraint based 

on the values from previous days is reliable. Since the most or at least parts of the ambiguities 

are known through the a priori constraint, it can be expected that the convergence time of 

results should be greatly reduced. In this case, the coefficient matrix iC  and constant vector 

iW  at epoch i in Eq. (4.8) turn to be 

 1,i i iC I W N −= =   (4.37) 

where 1iN −  is the estimated ambiguities of the same visible satellites at epoch i-1. And 

 1
4

4 i
i

X
P P −=   (4.38) 

where 1
1
iX

P −  is the posteriori weight matrix of 1
4
iX −  at epoch i-1 (cf. Sect. 2.2, Eq. (2.18)). 

4.4 Examples and Analysis 

4.4.1 PPP with Coordinates Constraint 

As described in Sect. 4.3.1, the a priori constrain to coordinates in PPP solutions is expected 

to reduce the convergence time and improve positioning accuracy in many circumstances. In 

case of real-time slow-motion kinematic positioning, such as landslide, urban land subsidence, 

and structural monitoring, the slow-motion carriers have in common that the monitoring 

stations are continuously and long-term tracked with precise a priori information on 
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coordinates. In addition, the deformation during or preceding geological disasters is generally 

continuous and in slow-motion, thus the monitoring station can be considered as stationary 

and the coordinates between epochs can be inherited like static positioning during a certain 

period. The PPP algorithm with coordinates constraint has taken full account of characteristics 

of the monitoring station. On this basis four schemes were conducted to make comparison and 

analysis possible. 

Scheme 1: Kinematic PPP positioning. 

Scheme 2: PPP with a priori coordinates accuracy (cf. Sect. 4.3.1, 
0xσ ,

0yσ and
0zσ were set 

as 5 cm here). 

Scheme 3: PPP with time period constraint. In this case, the monitoring station is 

considered as stationary and the coordinates between epochs are inherited like static 

positioning during a certain period (set as 1 hour here). 

Scheme 4: PPP with time period constraint and a priori coordinates accuracy. In this case, 

the monitoring station is considered as stationary and the coordinates between epochs are 

inherited like static positioning during a certain period (set as 1 hour here), and a priori 

coordinates accuracy (set as 5 cm here) is constrained at the first epoch of every time period 

set. 

The GPS/BDS observations of MGEX station GMSD on GPS day 303 in 2014 were used 

to validate the algorithms. The sample interval of the data is 30 s. The observation models and 

details of PPP processing are listed in Table 4.1. 

Table 4.1 Observation models and data processing strategies for PPP 

Item Models and Strategies 

Observations Un-differenced ionosphere-free code and phase combination 

Observation weight Elevation dependent weight 
Elevation angle cutoff 7° 

Precise orbit 
Fixed, IGS precise ephemeris product and MGEX precise ephemeris 
from GFZ 15min 

Precise clock biases 
Fixed, IGS precise clock product and MGEX combined precise 
clock from GFZ 5min 

Tropospheric delay Saastamoinen model & parameter estimation 
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Ionospheric delay First order effect eliminated by ionosphere-free linear combination 
Phase-windup effect Corrected 
Earth rotation parameter Fixed, IGS ERP product 

PCO & PCV 
Satellite antenna and receiver antenna correction applied for GPS, 
not applied for BDS 

Relativistic effects IERS Convention 2010 
Tidal displacement Solid Earth tides, pole tides, ocean tides (IERS Convention 2010) 
Phase ambiguity Estimated as constant for each ambiguity arc 
Time system GPS Time 
Terrestrial frame ITRF2008 

GPS and BDS observations were used in the computation, respectively. To make a 

comparison, the position coordinates published by IGS were treated as standard values to 

compute the bias and RMS of the position results of the four schemes in N, E and U 

components. The bias of four schemes of GPS and BDS solutions with respect to IGS 

published results are shown in Fig. 4.1 and Fig. 4.2. The RMS results of GPS and BDS 

solutions are given in Table 4.2. The convergence time of all four schemes are given in Table 

4.3. Due to the different positioning precision of GPS and BDS solutions, the convergence 

criterion was defined as the bias of the first moment and its following 20 epochs in N, E and 

U components were always less than 0.05 m for GPS solutions and 0.1 m for BDS solutions 

in this case. 
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Fig. 4.1. Bias of GPS solutions with respect to IGS published results 

 

Fig. 4.2. Bias of BDS solutions with respect to IGS published results 

Table 4.2 RMS of GPS and BDS solutions with respect to IGS results (units: m) 
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RMS 
 

Scheme1 Scheme2 Scheme3 Scheme4 

GPS 
N 0.014 0.011 0.010 0.006 
E 0.015 0.012 0.014 0.008 
U 0.050 0.030 0.042 0.016 

BDS 
N 0.026 0.018 0.019 0.015 
E 0.034 0.018 0.022 0.013 
U 0.235 0.101 0.180 0.068 

Table 4.3 Convergence time of all four schemes 

Convergence 
Time 

Scheme1 Scheme2 Scheme3 Scheme4 

GPS (<5cm) 1h9min 16min 17min 16min 

BDS (<10cm) 4h25min 59min 1h12min 57min 

From Fig. 4.1-4.2 and Table 4.2-4.3 it can be found that: (1) Compared to Scheme 1, 

Schemes 2-4 can reduce the convergence time and improve positioning accuracy significantly, 

especially in U component. By using Scheme 2, 3, and 4 the accuracy of GPS solutions in U 

component can be improved by 40%, 16%, and 68%. The accuracy of BDS solutions in U 

component can be improved by 57%, 23%, and 71%, respectively. That is because the 

characteristics of the slow-motion carriers described above are taken full account of by PPP 

with coordinates constraint (Schemes 2-4). The results are constrained to fluctuate only in a 

definitive range, which can remove the influence of other noises and improve the positioning 

accuracy. By using Scheme 4, the convergence time of GPS and BDS solutions are decreased 

by 76% and 78%, respectively. (2) Comparing GPS solutions with BDS solutions, the 

accuracy and convergence time improvements both illustrate that in this case the effects of 

coordinates constraint on BDS solutions is more significant than on GPS. (3) The results of 

PPP with time period constraint and a priori coordinates accuracy (Scheme 4) show that they 

are superior both in convergence time and positioning accuracy, which is particularly 

beneficial to such real-time slow-motion monitoring applications. 

4.4.2 PPP with Receiver Clock Offset Constraint 

The GPS observations of IGS station GMSD during GPS week 1813 were used to validate the 

algorithms derived in Sect. 4.3.2. The sample interval of the data is 30 s. The precise orbit and 

satellite clock products from IGS were used. Two computation schemes were conducted to 
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make comparison and analysis possible. 

Scheme 1: The observation data of seven days was processed through PPP day by day, thus 

the precise receiver clock offset of every single day could be obtained. 

Scheme 2: The observation data of seven days was processed continuously through PPP 

with a priori receiver clock offset constraint. The coordinates and receiver clock offset 

published by IGS were used as the a priori information when computing the data of the first 

day, other days used the estimated results of the day before as the a priori information. Thus 

the continuous precise receiver clock offset could be obtained. 

The comparison results of Scheme 1 and Scheme 2 are shown in Fig. 4.3. The differences 

between Scheme 1 and Scheme 2 were computed and are shown in Fig. 4.4. 

 

Fig. 4.3. Comparison of Scheme 1 and Scheme 2 
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Fig. 4.4. Differences between Scheme 1 and Scheme 2 

From Fig. 4.3 and Fig. 4.4 it can be found that: (1) From the comparison of the results of 

the first day it can be deduced that the result can achieve convergence more quickly with the 

coordinates and receiver clock offset constraints (Scheme 2) than with the single day solution 

(Scheme 1). (2) The continuity and stability of the receiver clock offset time series obtained 

by Scheme 2 is superior to that of Scheme 1. From the discrepancy of Scheme 1 and Scheme 

2 (cf. Fig. 4.4), it is obvious that there are day-boundary discontinuities in Scheme 1, which 

can reach up to a magnitude of ns and is un-neglectable in precise timing and time transfer 

service. Thus PPP with the receiver clock offset constraint combined with coordinates 

constraint (Scheme 2) can suppress the day-boundary problem effectively. 

4.4.3 PPP with Tropospheric Delay Constraint 

The GPS observations of IGS station GMSD during GPS days 278-282 in 2014 were used to 

validate the algorithms derived in Sect. 4.3.3. The sample interval of the data is 30 s. The 

ZPD product from IGS was collected and used in this case. Two computation schemes were 

conducted to make comparison and analysis possible. 

Scheme 1: Conventional PPP positioning. The empirical model was applied to calculate the 

a priori tropospheric delay and the residual tropospheric delay was estimated every hour. The 

tropospheric delay was considered as constant during one hour. 

60 
 



Scheme 2: Tropospheric delay constrained PPP. ZPD product from IGS was applied and 

used as an a priori constraint. The ZPD value and the accuracy were constrained at the first 

epoch of every hour in this case. 

To be able to make a comparison, the position coordinates published by IGS were treated as 

standard values to compute the bias and RMS of the position results of the two schemes in N, 

E and U components. As an example, the bias of both schemes with respect to IGS published 

results on GPS day 282 are shown in Fig. 4.5. The RMS with respect to IGS results of both 

schemes are given in Table 4.4. 

 
Fig. 4.5. Bias with respect to IGS published results on day 282 

Table 4.4 RMS with respect to IGS results (units: mm) 

RMS 
 

278 279 280 281 282 

Scheme1 
N 5.4 5.3 8.2 6.4 6.1 
E 17.3 9.4 12.8 2.7 4.7 
U 29.1 30.4 24.3 22.7 16.2 

Scheme2 
N 5.4 5.0 7.9 6.2 6.3 
E 17.6 9.2 13.2 3.0 5.1 
U 26.5 28.0 21.9 21.0 12.1 

From Fig. 4.5 and Table 4.4 it can be found that: (1) Compared to the conventional method 
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(Scheme 1) PPP with tropospheric delay constraint (Scheme 2) can mainly reduce the 

convergence time of the positioning in U component. (2) The position precision in N and E 

components are nearly identical by using two schemes. However, the positioning accuracy in 

U components of these five days is improved by 9%, 8%, 10%, 7%, and 25%, respectively. It 

is obvious, that the tropospheric delay constraint is the most superior in height solution. 

Owing to the usage of the tropospheric delay constraint, the correlation between troposphere 

and height coordinate can be solved and the effect of the tropospheric delay on PPP height 

solution can be removed to some extent, thus the positioning accuracy of the height 

component is improved most significantly. 

4.4.4 PPP with Ambiguities Constraint 

The GPS observations of IGS station GMSD during GPS days 302-304 in 2014 were used to 

validate the algorithms derived in Sect. 4.3.4. The sample interval of the data is 30 s. Two 

computation schemes were conducted as a basis for comparison and analysis. 

Scheme 1: The observation data of three days was processed through conventional PPP day 

by day. 

Scheme 2: The observation data of three days were processed through PPP with an a priori 

ambiguities constraint. The ambiguities estimated at the day before were used as the a priori 

value for the next days. In this case, the ambiguities estimated on GPS day 302 were used as 

the a priori value for day 303; the ambiguities estimated on GPS day 303 were used as the a 

priori value for day 304. 

For comparison, the position coordinates published by IGS were treated as standard values 

to compute the bias of the position results of the two schemes in N, E and U components. The 

bias of two schemes with respect to IGS published results on day 303 and 304 are shown in 

Fig. 4.6 and Fig. 4.7. 
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Fig. 4.6. Bias with respect to IGS published results on day 303 

 
Fig. 4.7. Bias with respect to IGS published results on day 304 

From Fig. 4.6 and Fig. 4.7 it can be found that with the ambiguities constraint (Scheme 2), 
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the result can achieve convergence much more quickly than by using Scheme 1. The reason 

for this is that in conventional PPP, a period of time is needed to solve the ambiguities 

parameters. However, Scheme 2 uses the ambiguities estimated at the day before as a priori 

values at the beginning of the computation. In this case, the ambiguities of the same visible 

satellites will not need to be solved any more, which significantly reduces convergence time. 

4.5 Conclusions 

In this chapter, a priori constrained PPP algorithms, which the a priori constraints employed 

can be comprehensively specified according to coordinates-, receiver clock offset-, 

tropospheric delay- and ambiguities-constraint, were derived. Numerical examples were 

conducted to validate that with a priori constraints convergence time of PPP can be reduced 

and positioning accuracy can be improved. PPP with a priori coordinates accuracy and time 

period constraints is particularly beneficial to the convergence time and accuracy of the 

real-time slow-motion carriers positioning, such as landslide, urban land subsidence, and 

structural monitoring. That is because it fully accounts for characteristics of slow-motion 

carriers. As deformation during geological disasters is generally continuous and in 

slow-motion, the monitoring station can be considered as stationary and the coordinates 

between epochs can be inherited like static positioning during a certain period. The 

coordinates are constrained to fluctuate only in a definitive range, which can remove the 

influence of other noises and improve the precision. Results of the example show that with 

such coordinates constraints, accuracy of GPS and BDS solutions improves and can reach 68% 

and 71%, while the convergence time is decreased by 76% and 78%, respectively. PPP with 

receiver clock offset constraint helps to solve the day-boundary discontinuities which are 

un-neglectable in precise timing and time transfer service. With coordinates and clock offset 

constraint, the results achieve convergence more quickly and more stable and continuous 

clock offset series can be obtained. PPP with tropospheric delay constraint removes the effect 

of the tropospheric delay on PPP height solution to improve the positioning accuracy in height 

component, which can reach up to 25% in the example. PPP with ambiguities constraint is 

greatly superior in reducing the convergence time of positioning.
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5 Multi-Constellation Combined Precise Point Positioning 

Based on the Equivalence Principle 

 

5.1 Introduction 

The Global Navigation Satellite System (GNSS) has been developed rapidly in recent years 

and is in constant use nowadays. The Global Positioning System (GPS) is playing an 

important role now and has made remarkable contributions in both surveying and navigation 

in the past decades. Since October 2011 Russia’s GLONASS system is functional again and is 

now operating at full capability with 24 satellites in orbits, enabling full global coverage (IAC, 

2015). At the moment Europe’s Galileo is in its Full Operational Capibility (FOC) phase by 

following In-Orbit Validation (IOV) and has 12 satellites in orbits (ESA, 2015; ESA, 2016). 

The Chinese BeiDou navigation satellite system is steadily advancing forward towards being 

an operational global navigation satellite system, which is planned to be completed by 2020. 

The first phase of the establishment, consisting of 5 GEO (Geostationary Earth Orbit) 

satellites, 5 IGSO (Inclined Geo-Synchronous Orbit) satellites and 4 MEO (Medium Earth 

Orbit) satellites, has been completed at the end of 2012, which provides positioning and 

navigation service in the Asia-Pacific area (CNAGA, 2014; Yang, 2010; Yang et al., 2014). 

Over the past decades, with the rapid development of multiple GNSS systems, the 

developing features of GNSS precise positioning are being changed from GPS-only to 

combined multi-GNSS systems positioning. The combination of multi-GNSS systems can be 

considered as a major milestone in GNSS precise positioning, because it improves the 

reliability and productivity of GNSS positioning (Wang et al., 2001). The combination of 

multiple GNSS can significantly increase the number of simultaneous observed satellites, 

optimize spatial geometry, and therefore better dilution of precision, improve convergence 

time, accuracy, continuity and reliability of precise positioning, especially in constrained 

environments such as urban canyons, vegetation areas or deep open-cut mines (Li et al., 2015). 

Due to its rapidity and flexibility, Precise Point Positioning (PPP) can be one of the most 

promising application technologies in the combination of multiple GNSS systems. Many 
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studies on multi-GNSS combination, particularly with focus on GPS and GLONASS 

combination have been conducted in the last decade (Cai and Gao, 2013; Dach et al., 2007; 

Jokinen et al., 2011). Nevertheless, these studies focus mainly on validation of precision and 

reliability superiority of multi-GNSS combination, while the combined algorithm itself is 

seldom involved. The traditional combined PPP algorithm directly constructs observation 

equations using all GNSS observables to obtain the solution. However, with the advance of 

other available systems and satellites, as well as the wide utilization of high-frequency (1-50 

Hz) recording receivers, the computational load of the traditional algorithm increases 

exponentially while at the same time, the efficiency of the algorithm decreases significantly 

(Huang et al., 2013). This is highly undesirable in high performance systems. Therefore, on 

the basis of the equivalence principle and its inference discussed formerly in this thesis, a 

multi-GNSS combined PPP algorithm is derived to improve the computation efficiency as 

presented in this chapter. In case of GPS/BDS combination, a method which can speed up the 

ambiguities determination of satellites from BDS through applying the contribution of GPS 

observations is proposed and analyzed. The GPS/BDS combined PPP algorithm with 

inter-system bias parameter is also derived. Furthermore, the usage of estimated ISB as a 

priori constraint in the GPS/BDS combined PPP is proposed to improve the convergence time 

and positioning accuracy. 

5.2 The Conventional Multi-Constellation Combined PPP Algorithm 

The observation equations of the traditional PPP have been introduced in Sect. 4.2.1 (refer to 

Eqs. (4.1)-(4.3)). The linearized observation Eq. (4.3) can be solved by using the sequential 

least squares adjustment (cf. Sect. 2.2.2) and the Kalman filter (cf. Sect. 2.2.3). In case of 

static positioning the sequential least squares adjustment is usually applied while the Kalman 

filter is utilized in the kinematic positioning. Taking sequential least squares PPP as an 

example, the corresponding solutions can be formed as 

 1 1

1

1 1 1
1

1 1

( ) ( )

( )
i i

i i

T T
i i i i X i i i X i

T
X i i i X

X A P A Q A PL Q X
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− −

−

− − −
−

− −

 = + +


= +
  (5.1) 

where 1iX − , iX  and 
1iXQ
−

, 
iXQ  are the estimation value of the unknown parameters and 
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its cofactor matrix at epoch i-1 and i, respectively. 

In case of multiple GNSS systems, the ionosphere-free code and phase observations of 

GPS, GLONASS, Galileo and BeiDou combination can be expressed as 

 
IF

G G G G G G
IF trop IF PP c dt d dmρ ε= + ⋅ + + +   (5.2) 

 
IF

G G G G G G G G
IF trop IF IF IFc dt d N mρ λ δ εΦΦ = + ⋅ + + ⋅ + +   (5.3) 

 
IF

R R R R R R
IF trop IF PP c dt d dmρ ε= + ⋅ + + +   (5.4) 

 
IF

R R R R R R R R
IF trop IF IF IFc dt d N mρ λ δ εΦΦ = + ⋅ + + ⋅ + +   (5.5) 

 
IF

E E E E E E
IF trop IF PP c dt d dmρ ε= + ⋅ + + +   (5.6) 

 
IF

E E E E E E E E
IF trop IF IF IFc dt d N mρ λ δ εΦΦ = + ⋅ + + ⋅ + +   (5.7) 

 
IF

C C C C C C
IF trop IF PP c dt d dmρ ε= + ⋅ + + +   (5.8) 

 
IF

C C C C C C C C
IF trop IF IF IFc dt d N mρ λ δ εΦΦ = + ⋅ + + ⋅ + +   (5.9) 

where indices G, R, E and C represent GPS, GLONASS, Galileo and BeiDou satellites, 

respectively.  

Similar as Eq. (4.3), the linearized error equation of multi-GNSS combined positioning for 

Eqs. (5.2) to (5.9) can be formed as 

 

0 0 0
0 0 0

,
0 0 0
0 0 0

G G G G

R R R R

E E E E

C C C C

V A L P
V A L P

X
V A L P
V A L P

       
       
       = −
       
       
              

  (5.10) 

where indices G, R, E and C represent GPS, GLONASS, Galileo and BeiDou satellites, 

respectively. The unknown parameter vector X  to be estimated includes shared parameters 

as coordinates and tropospheric delay, the self-owned parameters of each system as receiver 

clock offset and ambiguities. To solve Eq. (5.10), the form of the sequential least squares 

solution as Eq. (5.1) can also be applied in the conventional way. 

However, for the solution and calculation of Eq. (5.10), the traditional method of direct 

accumulation can hardly meet the demand of rapidly solving an ocean of real-time and 
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high-rate data. Especially, when considering the preprocessing and iteration calculation in the 

positioning as well. With a constant increase of the number of available satellites, the 

exponentially increased computational load has to be taken into the conventional positioning 

algorithm. To solve this problem, an algorithm based on the equivalence principle which can 

improve the calculating efficiency, is proposed and derived in the following section. Firstly, 

the formulas of the parameter solution and its covariance matrix can be rewritten to the form 

of the accumulation of the coefficient matrix of the normal equation. The coefficient matrix of 

the normal equation is transferred between epochs by accumulation, so that it can be written 

as 

 

1

1
1

1
i

T
i i i i i

T
i i i i i

i i i

X i

N A P A N
W A PL W
X N W
Q N

−

−
−

−

 = +
 = +
 =
 =

  (5.11) 

where subscript i denotes the epoch; iN  and iW  are the coefficient matrices of normal 

equation at epoch i. Compared to Eq. (5.1), the traditional accumulation form of the 

parameter vector iX  and its covariance matrix 
iXQ  are changed to the accumulation form 

of the coefficient matrices iN  and  iW  of the normal equation. iN  and  iW  have the 

same dimension as 
iXQ  and iX , thus the computational load of Eq. (5.11) and Eq. (5.1) are 

identical in real-time processing. While in post processing, the inversion of 
iXQ  and iX  at 

each epoch can be omitted by using Eq. (5.11), the accumulation of the coefficient matrices 

only need to be solved at the last epoch, which shows significant superiority in computing 

efficiency compared to using Eq. (5.1). In accordance with Eq. (5.11) and the equivalence 

principle, the multi-GNSS combined PPP algorithm will be derived in the following section. 

5.3 Multi-Constellation Combined PPP Algorithm Based on the 

Equivalence Principle 

5.3.1 Multi-Constellation Combined PPP Algorithm 

Based on the equivalence principle, the unknown parameters can be divided into two groups. 
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One group can be eliminated directly through constructing the equivalently eliminated 

observation equation (cf. Sect. 2.3).  

Similar to the form of Eq. (2.38), the unknown parameter vector X in Eq. (4.3) can be 

divided into 1X  and 2X , thus one has 

 ( ) 1

2

,
X

V A B L P
X

 
= − 

 
  (5.12) 

where 1X  denotes the parameter varying with time, which is changeable between epochs 

and refers to the receiver clock offset in PPP. 2X  denotes the fixed parameters that do not 

change over time and can be maintained between epochs, which refer to coordinates, 

tropospheric delay and ambiguities in static PPP. In practical processing, the tropospheric 

delay parameter is considered as a constant during a certain time period (e.g. 2 hours) under 

normal weather condition and should be reinitialized every certain period during the 

estimation. It should be also pointed out that in case of kinematic PPP, coordinates vary over 

time and can not be inherited directly for the next instant computation. 

The normal equation of Eq. (5.12) can be formed as 

 11 12 1 1

21 22 2 2

M M X B
M M X B
    

=    
    

  (5.13) 

where 11
TM A PA= , 12

TM A PB= , 21
TM B PA= , 22

TM B PB= , 1
TB A PL= , 2

TB B PL= . 

Appling the equivalence algorithm (Xu, 2002; Xu, 2007; Zhou, 1985) (cf. Sect. 2.3), the 

equivalently eliminated equation of Eq. (5.13) can be formed as 

 11 12 1 1

2 2 20
M M X B

M X R
    

=    
    

  (5.14) 

where 1
2 22 21 11 12M M M M M−= − , 1

2 2 21 11 1R B M M B−= − . 

Therefore the unknown parameter 2X  can be solved directly through the second equation 

of Eq. (5.14), that can be expressed as 
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 2 2 2M X R=   (5.15) 

The parameter 1X  can be solved through applying 2X  to the first equation of Eq. (5.14), 

that 

 11 1 12 2 1M X M X B+ =   (5.16) 

Referring to the accumulation form of the normal equation as Eq. (5.11), the recursion 

formulas of the PPP solution at epoch i can be formed as 
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  (5.17) 

Thus, the PPP algorithm of a single system based on the equivalence principle is derived. 

For multi-Constellation combined PPP, the fixed unknown parameter 2X  should further 

be divided into two groups, that 

 1
2

2

Y
X

Y
 

=  
 

  (5.18) 

where 1Y  denotes the shared parameters between GNSS systems as coordinates and 

tropospheric delay; 2Y  denotes the unshared parameter as ambiguities of different GNSS 

systems. 

Thus 2M  and 2R  in Eq. (5.15) should be rewritten as 

 11 12
2

21 22

N N
M

N N
 

=  
 

, 1
2

2

D
R

D
 

=  
 

    (5.19) 

Then Eq. (5.15) can be rewritten as 

 11 12 1 1

21 22 2 2

N N Y D
N N Y D
     

=     
     

  (5.20) 
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Similarly, the equivalently eliminated equation of Eq. (5.20) can be obtained as 

 1 1 1

21 22 2 2

0N Y S
N N Y D
     

=     
     

  (5.21) 

where 1
1 11 12 22 21N N N N N−= − , 1

1 1 12 22 2S D N N D−= − . 

Therefore 

 1 1 1N Y S=   (5.22) 

For GPS, GLONASS, Galileo and BeiDou systems, the normal equation of the shared 

unknown parameter 1Y  of each system can be expressed as 

 1 1 1
G GN Y S= , 1 1 1

R RN Y S= , 1 1 1
E EN Y S= , 1 1 1

C CN Y S=   (5.23) 

where indices G, R, E and C represent GPS, GLONASS, Galileo and BeiDou satellites, 

respectively. 

Therefore, the normal equation of the multi-GNSS combined PPP can be obtained as 

 1 1 1
1 1

m m
k k

k k
N Y S

= =

=∑ ∑   (5.24) 

where m denotes the number of GNSS systems. 

After solving the shared parameter 1Y  by Eq. (5.24), 2Y  can be solved by the second 

equation of Eq. (5.21), thus 2X  can be obtained and so is 1X . In this way, the complete 

solution of multi-GNSS combined PPP can be obtained. Similar to Eq. (5.17), the recursion 

formulas of the combined PPP solution at epoch i can be formed as 
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  (5.25) 

where 1
1,

m
k

k k s
N

= ≠
∑  and 1

1,

m
k

k k s
S

= ≠
∑  denote the accumulation of the normal equations of other 

GNSS systems except the self-owned system in combined PPP. 

5.3.2 Specific Analysis under Static and Kinematic Conditions 

Eqs. (5.12) to (5.25) are the complete solution of multi-GNSS combined PPP based on the 

equivalence principle. In static combined PPP, 1X  denotes the receiver clock offset 

parameter, which is changeable between epochs; 2X  denotes the coordinates, zenith 

tropospheric delay and ambiguities, which are fixed parameters and can be inherited between 

epochs; 1Y  denotes the coordinates and zenith tropospheric delay, which are the shared 

parameters between different GNSS systems; 2Y  denotes the unshared parameters, such as 

ambiguities of different GNSS satellites from different systems. In case of kinematic 

combined PPP, 1X  denotes the receiver clock offset parameter and coordinates; 2X  

denotes the zenith tropospheric delay and ambiguities; 1Y  denotes the zenith tropospheric 

delay; 2Y  denotes the ambiguities of different GNSS satellites from different systems. 

On the other hand, if the state equation of the motion carrier is known formerly in 

kinematic combined PPP, the coordinates parameter should be predictable by the state 

equation in Kalman filter. In this case, 1X  denotes the receiver clock offset parameter; 2X  
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denotes the coordinates, tropospheric delay and ambiguities; 1Y  denotes the coordinates and 

tropospheric delay; 2Y  denotes the ambiguities of different GNSS satellites from different 

systems. Based on the state equation, the predicted value of the parameter 2
iX  at epoch i can 

be obtained as 

 1
2 , 1 2
i i

i iX X −
−= Φ   (5.26) 

where 1
2
iX −  is the estimated value at epoch i-1, and , 1i i−Φ  is the state transition matrix. 

Similar to the form of Eq. (5.17), the recursion formulas at epoch i for the equivalently 

eliminated normal Eq. (5.15) and Eq. (5.16) can be formed as 
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  (5.27) 

where the predicted normal matrices 2
iM  and 2

iR  can be derived through using the error 

propagation law. The following solution for kinematic combined PPP has the same form as Eq. 

(5.25). 

5.3.3 Efficiency Comparison of the Multi-GNSS Combined PPP Algorithms 

To validate the computational efficiency of the combined PPP algorithm based on the 

equivalence principle, a simulation example was conducted in this section. The observations 

of GPS, GLONASS, Galileo and BDS were simulated, which contained 2000 epochs. The 

simulated observations were generated according to the precise ephemeris and a given station 

coordinates. Firstly the distance between satellites and the station can be derived and then we 

artificially added all kinds of errors to the distance to obtain the simulated observations. The 

sample rate of the simulated observations can be set as an arbitrary value, since it would not 

affect the efficiency of the computation. The number of visible satellites of each system at 

each epoch was all set as 10 and there was no satellite change during the observation period. 
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Two processing schemes were conducted to make comparison and analysis possible. 

Scheme 1: The conventional multi-constellation combined PPP (cf. Sect. 5.2). 

Scheme 2: The multi-constellation combined PPP based on the equivalence principle (cf. 

Sect. 5.3.1). 

In the computation of both schemes the numbers of GNSS systems were set as 1, 2, 3 and 4, 

respectively. The processing was conducted with a high performance configuration computer. 

The computation time of the different number of GNSS systems needed for the processing of 

both schemes is indicated in Fig. 5.1. 

 
Fig. 5.1. Comparison of the operation time needed in the processing 

From Fig. 5.1 it can be found that, with the advance of the GNSS systems and satellites, the 

operation time of the conventional combined PPP (Scheme 1) increases exponentially. By 

using the combined PPP based on the equivalence principle derived in this chapter (Scheme 

2), the computation time increases linearly with more available GNSS systems and satellites, 

which leads to a greatly superior computation efficiency. 

5.3.4 Examples and Analysis 

1. Static combined PPP 

To validate the combined PPP algorithm based on the equivalence principle, a set of 6 IGS 

stations (CAS1, GMSD, POHN, REUN, TUVA and XMIS) from MGEX (Multi-GNSS 
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Experiment) network were used to make the analysis. The GPS, GLONASS and BDS 

observations of these selected stations were during GPS weeks 1821 and 1822 with a sample 

interval of 30 s. The observation models and details of static PPP processing are listed in 

Table 5.1. 

Table 5.1 Observation models and data processing strategies for PPP 

Item Models and Strategies 

Observations Un-differenced ionosphere-free code and phase combination 

Observation weight Elevation dependent weight 
Elevation angle cutoff 7° 
Precise orbit Fixed, MGEX precise ephemeris from GFZ 15min 

Precise clock biases Fixed, MGEX combined precise clock from GFZ 5min 

Tropospheric delay Saastamoinen model & parameter estimation 
Ionospheric delay First order effect eliminated by ionosphere-free linear combination 
Phase-windup effect Corrected 
Earth rotation parameter Fixed, IGS ERP product 

PCO & PCV 
Satellite antenna and receiver antenna correction applied for GPS 
and GLONASS, not applied for BDS 

Relativistic effects IERS Convention 2010 
Tidal displacement Solid Earth tides, pole tides, ocean tides (IERS Convention 2010) 
Phase ambiguity Estimated as constant for each ambiguity arc 
Time system GPS Time 
Terrestrial frame ITRF2008 

Four schemes were conducted to make comparison and analysis possible. 

Scheme 1: GPS single system static PPP positioning (denoted as GPS in Fig. 5.2 - Fig. 5.7 

and Table 5.2). 

Scheme 2: GLONASS single system static PPP positioning (denoted as GLONASS in Fig. 

5.2 - Fig. 5.7 and Table 5.2). 

Scheme 3: BDS single system static PPP positioning (denoted as BDS in Fig. 5.2 - Fig. 5.7 

and Table 5.2). 

Scheme 4: GPS/GLONASS/BDS static combined PPP algorithm based on the equivalence 

principle (denoted as G+R+C in Fig. 5.2 - Fig. 5.7 and Table 5.2). 

To make a comparison, the position coordinates published by IGS were treated as standard 

values to compute the bias and RMS of the position results of the four schemes in N, E and U 
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components. As examples, the bias of four schemes with respect to IGS published results in N, 

E and U components of the 6 stations for 9 days during the test period are shown in Fig. 5.2 - 

Fig. 5.7. The RMS results of GPS day 337 are given as an example in Table 5.2. 

 
Fig. 5.2. Bias of four schemes with respect to IGS published results for station CAS1 
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Fig. 5.3. Bias of four schemes with respect to IGS published results for station GMSD 

 
Fig. 5.4. Bias of four schemes with respect to IGS published results for station POHN 
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Fig. 5.5. Bias of four schemes with respect to IGS published results for station REUN 

 
Fig. 5.6. Bias of four schemes with respect to IGS published results for station TUVA 
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Fig. 5.7. Bias of four schemes with respect to IGS published results for station XMIS 

Table 5.2 RMS with respect to IGS results (units: m) 

Stations 
 

GPS GLONASS BDS G+R+C 

CAS1 
N 0.003 0.039 0.077 0.021 
E 0.006 0.046 0.054 0.018 
U 0.145 0.389 0.198 0.257 

GMSD 
N 0.006 0.054 0.009 0.022 
E 0.007 0.060 0.040 0.022 
U 0.008 0.151 0.187 0.111 

POHN 
N 0.005 0.058 0.050 0.014 
E 0.029 0.109 0.088 0.067 
U 0.041 0.169 0.356 0.103 

REUN 
N 0.002 0.027 0.028 0.004 
E 0.017 0.034 0.031 0.027 
U 0.022 0.270 0.047 0.066 

TUVA 
N 0.004 0.046 0.045 0.013 
E 0.019 0.117 0.183 0.019 
U 0.024 0.150 0.190 0.079 

XMIS 
N 0.003 0.037 0.019 0.002 
E 0.014 0.090 0.036 0.023 
U 0.059 0.169 0.116 0.052 

From Fig. 5.2 - Fig. 5.7 and Table 5.2 it can be found that: (1) For single system 
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positioning, the precision of GPS solutions is superior to GLONASS and BDS solutions. 

Generally said, single GPS PPP can achieve an accuracy of mm in horizontal component and 

cm in vertical component, which indicates that PPP nowadays has high-precision. (2) It is 

noted that because of the location and the high latitude of station CAS1 (-66.28°), the RMS in 

U component reached up to 14.5 cm while in this case in N and E components they were 3 

mm and 6 mm. This did not meet the normal accuracy relation regularity between horizontal 

and vertical components any more, which means that the vertical component of the RMS is 

generally the double of the horizontal component. That is because the station CAS1 is located 

in the Antarctic and due to the specificity of Antarctic positioning mentioned in Chapter 3, 

there are more observations with lower elevation angles in this region, and observations with 

lower elevation angles are more significantly influenced by the tropospheric delay. Thus the 

error effects of the tropospheric delay contained in the observations increase greatly and are 

used in the computation and lead to a degrading of the precision in U component. (3) 

Compared to single GLONASS or single BDS PPP, the positioning precision is improved 

significantly by GPS/GLONASS/BDS combination. However, the single GPS PPP solutions 

are still superior to combined PPP. That is because the combination of GPS, GLONASS and 

BDS systems are based on the equal weight ratio in this case. The contribution of each system 

to the combination is deemed to be identical, thus the precision of the combination results are 

influenced and degraded by GLONASS and BDS, which is inferior to single GPS but better 

than single GLONASS or BDS. (4) Based on the analysis, in combined PPP it is necessary to 

take into account a specific weight ratio rather than an identical one of each system, which 

could make the contribution of each system to the combined result more reasonable and 

improve the precision of combination. The related work has been done and will be described 

in Sect. 6.4 and Sect. 6.5. 

2. Kinematic combined PPP 

In case of kinematic combined PPP, the high-rate GPS/GLONASS/BDS observations of 

MGEX station GMSD on GPS day 334 in 2014 were used to validate the algorithm and make 

the analysis. The sample interval of the data is 1 s and the observed period is 8 hours. The 

difference between static and kinematic combined PPP is that the coordinate parameters can 
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not be directly inherited between epochs but should be reinitialized at each epoch. The 

observation models and details of kinematic PPP processing are similar to the static case 

which is referred to in Table 5.1. 

Like in the static case, four schemes were conducted to make comparison and analysis 

possible. 

Scheme 1: GPS single system kinematic PPP positioning (denoted as GPS in Fig. 5.8 and 

Table 5.3). 

Scheme 2: GLONASS single system kinematic PPP positioning (denoted as GLONASS in 

Fig. 5.8 and Table 5.3). 

Scheme 3: BDS single system kinematic PPP positioning (denoted as BDS in Fig. 5.8 and 

Table 5.3). 

Scheme 4: GPS/GLONASS/BDS kinematic combined PPP algorithm based on the 

equivalence principle (denoted as G+R+C in Fig. 5.8 and Table 5.3). 

To make a comparison, the position coordinates published by IGS were treated as standard 

values to compute the bias and RMS of the position results of the four schemes in N, E and U 

components. The bias of all four schemes with respect to IGS published results in N, E and U 

components is shown in Fig. 5.8. The RMS results are given in Table 5.3. 
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Fig. 5.8. Bias of four schemes with respect to IGS published results 

Table 5.3 RMS with respect to IGS results (units: m) 

RMS GPS GLONASS BDS G+R+C 

N 0.042 0.150 0.102 0.041 
E 0.059 0.206 0.103 0.041 
U 0.112 0.615 0.229 0.157 

From Fig. 5.8 and Table 5.3 it can be found that: (1) Similar to the static positioning, the 

precision of single GPS solutions is also superior to single GLONASS and single BDS 

solutions. (2) Compared to the single system positioning, the horizontal precision of 

kinematic PPP is improved by GPS/GLONASS/BDS combination, which is superior to any 

single system PPP. However, the height precision of combined PPP is still inferior to single 

GPS kinematic PPP. It is inferred to be influenced and degraded by GLONASS and BDS, 

especially GLONASS solutions with obvious fluctuation in this case. The results indicate that 

combined multi-systems PPP has the dominant advantage of improving the horizontal 

precision of kinematic positioning. (3) From Table 5.2 and Table 5.3, it can be found that 

generally in Asia-Pacific area the positioning accuracy of a single BDS system is in between 

single GPS and single GLONASS, which is worse than single GPS but better than single 
82 

 



GLONASS. 

5.4 Fast BDS Ambiguity Determination Based on the Contribution of 

GPS Observations 

5.4.1 Introduction 

As mentioned in Sect. 5.1, with the rapid development of GNSS, PPP technique is advancing 

forward from mainly using GPS measurements towards multi-GNSS combinations, with 

newly available precise orbit and clock data for GNSS satellites. The Chinese BeiDou 

navigation satellite system (BDS) is steadily advancing forward towards being an operational 

global navigation satellite system, which is planned to be completed by 2020. And at present, 

the Multi-GNSS Experiment (MGEX) network which tracks multi-GNSS constellations and 

conducts tracking data analysis has basically achieved global distribution. However, since 

BDS system is under construction, four or more satellites are still not available at the same 

time in a plurality of regions (He et al., 2013; Zhang et al., 2015). In this case, the additional 

GPS observations can be applied to augment BDS for reducing the convergence time and 

improving positioning accuracy, reliability and availability compared to single BDS PPP. On 

this basis, similar to BDS/GPS combined PPP, a method which can speed up the 

determination of the ambiguities parameters of BDS through applying the contribution of 

GPS observations is proposed and analyzed in this section. In this method, the coordinates 

computed formerly by GPS observations are used as a priori information in the computation 

of BDS PPP, which improves the convergent speed eventually. 

5.4.2 Methodology 

The complete solution of the PPP algorithm based on the equivalence principle is derived and 

described in Sect. 5.3, where 1X  denotes the receiver clock offset parameter and 2X  

denotes the coordinates, tropospheric delay and ambiguities parameters in Eq. (5.17). On this 

basis, the coordinates computed formerly by GPS observations are used as a priori 

information in the BDS PPP computation. Referring to the a priori constrained PPP algorithm 

derived in Sect. 4.2.1, the a priori constraint from GPS observations can be represented as 
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 2 20 ,CX W P= −   (5.28) 

where C is the coefficient matrix; 2X  has the same meaning as in Eq. (5.17);  W is the 

constant vector; 2P  is the a priori weight matrix. 

Thus the new normal equation coefficients with respect to parameter 2X  for Eq. (5.17) 

can be formed as 

 2 2 2
TM M C P C′ = +   (5.29) 

 2 2 2
TR R C PW′ = +   (5.30) 

Substituting Eq. (5.29) and Eq. (5.30) into Eq. (5.17), the new PPP solution with a priori 

constrain is obtained. In case of applying the coordinates result from GPS observations, the 

coefficient matrix C and constant vector W in Eq. (5.28) can be referred to Eq. (4.24) and Eq. 

(4.25) in Sect. 4.3.1, that C=I is a three-dimensional identity matrix, ( )0 0 0
TW x y z=  is 

the known three-dimensional coordinates with the variance of 
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obtained from the processing of GPS observations. 

Therefore the contribution of GPS observations to the BDS PPP solution can be analyzed 

as follows. 

According to Eq. (5.17), the PPP solution except receiver clock offset of a single BDS 

system can be expressed as 

 1
2 2 2( )X M R−=     (5.31) 

 
2

1
2( )XQ M −=    (5.32) 

where 2X  includes the coordinates, tropospheric delay, and ambiguities parameters; 
2XQ  

denotes the coefficient matrix of 2X . 

In accordance with Eq. (5.29) and Eq. (5.30), the new BDS PPP solution based on the GPS 

observations can be expressed as 
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2 2 2 2 2
T TX M C P C R C PW

−′ = + +    (5.33) 

 ( )
2

1

2 2
T

XQ M C P C
−′ = +   (5.34) 

Therefore, contribution of the GPS observations to the coordinates, tropospheric delay and 

ambiguities parameters in BDS computation can be expressed as 

 ( ) ( )1 1
2 2 2 2 2 2 2 2 2( )T TdX X X M C P C R C PW M R

− −′= − = + + −      (5.35) 

To assess the precision of the estimated parameter, the covariance matrix of the parameter 

can be formed as 

 
2 2

2
X XQ σ∑ =   (5.36) 

 
2 2

2
X XQ σ′ ′∑ =   (5.37) 

where σ  denotes the standard deviation and can be computed by 

 
TV PV

n m
σ =

−
  (5.38) 

where n is the number of BDS observations, m is the number of coordinates, tropospheric 

delay and ambiguity parameters of BDS. 

Therefore, contribution of the GPS observations to the estimation precision of coordinates, 

tropospheric delay and ambiguities parameters in BDS PPP computation can be expressed as 

 
2 2 2X X X

′∆∑ = ∑ −∑   (5.39) 

Thus, through using the coordinates computed formerly by GPS observations as a priori 

information in the BDS PPP, it can be expected that convergent speed and positioning 

precision will be improved. The convergence time of BDS computation is reduced if there is a 

priori information provided by GPS or other sensors and can be applied in the beginning of 

the computation. In practical, such algorithm is especially useful in applications of tracking 

particular vehicles and carriers under severe environment. For instance, in the canyon where 

there are less or lack of visible GPS satellites, while BDS satellites are observed due to its 

special constellation constitution (e.g. GEO satellites), in this case such as for weaponry 

launching, the GPS observations before launching (in static condition) can be used to speed 
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up the convergence time in the beginning, then the equipment can rely on itself by using BDS 

observations after launching and break away from its base platform. 

5.4.3 Example and Analysis 

The GPS/BDS observations of IGS station GMSD on GPS day 281 in 2014 were used to 

validate the method derived in Sect. 5.4.2. The sample interval of the data is 30 s. The 

observation models and details of PPP processing are indicated in Table 5.1. Two computation 

schemes were conducted to make comparison and analysis possible. 

Scheme 1: BDS single system kinematic PPP. 

Scheme 2: BDS fast positioning based on GPS observations (cf. Sect. 5.4.2). 

To compare convergence conditions in the two schemes, the ionosphere-free ambiguities of 

satellites C04, C09 and C11 are shown in Fig. 5.9 - Fig. 5.11, respectively, where C04 is GEO 

satellite, C09 is IGSO satellite, C11 is MEO satellite of BDS system. Furthermore, to make a 

comparison, the position coordinates published by IGS were treated as standard values to 

compute the bias of the position results of the two schemes in N, E and U components. The 

bias and RMS of two schemes with respect to IGS published results are shown in Fig. 5.12 

and Table 5.4. 

 

Fig. 5.9. Ionosphere-free ambiguity of satellite C04 

86 
 



 
Fig. 5.10. Ionosphere-free ambiguity of satellite C09 

 
Fig. 5.11. Ionosphere-free ambiguity of satellite C11 
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Fig. 5.12. Bias with respect to IGS published results 

Table 5.4 RMS comparison of two schemes (units: cm) 

RMS N E U 

Scheme 1 2.1 2.1 25.9 

Scheme 2 1.8 1.9 12.8 

From Fig. 5.9 - Fig. 5.12 and Table 5.4 it can be found that, ionosphere-free ambiguities of 

BDS satellites can be determined and converged to stable more quickly because of the 

contribution of GPS observations; the convergence time of Scheme 2 is greatly reduced 

compared to Scheme 1. Based on GPS observation, coordinates parameters can be obtained in 

advance and used as a priori information for the computation of BDS observation. Thus it 

shows significant superiority in convergent speed of computation. The positioning accuracy in 

N, E and U components are improved by 14%, 10% and 50%, respectively. It is useful for 

BDS computation if there is a priori information provided by GPS or other sensors and can be 

applied in the beginning of the computation. 
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5.5 GPS/BDS Combined PPP Algorithm with Inter-system Bias 

Parameter 

5.5.1 Methodology 

The Chinese BeiDou navigation satellite system (BDS) is providing coverage of the 

Asia-Pacific area positioning and navigation service since December 2012. With the 

combination of BDS, the GNSS PPP can improve its positioning precision, availability, and 

reliability. However, in order to achieve the best positioning solutions, the inter-system bias 

(ISB) between GPS and BDS should be resolved as precisely as possible (Jiang et al., 2016). 

In this section, a GPS/BDS combined PPP algorithm with inter-system bias parameter is 

derived. 

Similar as described in Sect. 4.2, the ionosphere-free code and phase observation equations 

for GPS and BDS combination can be expressed as 

 
IF

G G G G G G
IF trop IF PP c dt d dmρ ε= + ⋅ + + +   (5.40) 

 
IF

G G G G G G G G
IF trop IF IF IFc dt d N mρ λ δ εΦΦ = + ⋅ + + ⋅ + +   (5.41) 

 
IF

C C C C C C
IF trop IF PP c dt d dmρ ε= + ⋅ + + +   (5.42) 

 
IF

C C C C C C C C
IF trop IF IF IFc dt d N mρ λ δ εΦΦ = + ⋅ + + ⋅ + +   (5.43) 

where indices G and C represent GPS and BeiDou satellites, respectively. The meanings of 

the terms are the same as in Eq. (4.1) and Eq. (4.2). Due to the different time systems used by 

GPS and BDS, the receiver clock offset of GPS Gdt  and BDS Cdt  should be estimated 

separately. Alternatively, it is possible to treat the receiver clock offset of GPS as a reference, 

thus the receiver clock offset of BDS can be expressed as a form of receiver clock offset of 

GPS as follows 

 C G gc
sysdt dt t= +   (5.44) 

where gc
syst  is the time system bias between GPS and BDS, which is the so-called ISB. Thus 

the unknown parameters to be estimated in GPS/BDS combined PPP include 

three-dimensional coordinates ( , , )x y z , the receiver clock offset of GPS Gdt , the ISB 
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parameter between GPS and BDS gc
syst , the tropospheric delay tropd , the ambiguities 

parameters of GPS satellites G
IFN , and the ambiguities parameters of BDS satellites C

IFN . 

To express the linearized error equation of the observation as 

 V AX L= −   (5.45) 

Therefore the parameter vector X to be estimated can be expressed as 

 1 1, , , , , , , , , , ,
TG gc G Gn C Cm

sys trop IF IF IF IFX x y z dt t d N N N N =      (5.46) 

where n is the number of GPS satellites, m is the number of BDS satellites. 

Therefore, GPS/BDS combined PPP with ISB parameter can be realized through solving 

Eq. (5.45). 

The estimation of the ISB parameter gc
syst  can be performed in three different ways: as 

epoch-wise variable, piece-wise constant, or daily constant. For rigorous data analysis, ISB 

should be estimated on an epoch-wise basis. However this approach will introduce too many 

unknown parameters and reduce the efficiency of the solution. Through a detailed analysis of 

ISB estimation by making double-differences using measurements from various receivers, 

Paziewski and Wielgosz (2015) have shown that the ISB values estimated as a constant 

parameter for “longer pieces” show better repeatability than estimating an epoch-varying 

parameter. Considering current PPP accuracy limits and computing speed, the piece-wise 

constant ISB model is chosen here as the optimal approach. 

Furthermore, the GPS/BDS combined PPP with the ISB constraints is proposed in this 

section. The ISB value estimated at the day before is used as an a priori constraint for the 

processing of the next day. The superiority of the a priori ISB constraint in the GPS/BDS 

combined PPP is validated in the following example. 

5.5.2 Example and Analysis 

A set of 3 IGS stations (NNOR, REUN and XMIS) from MGEX network during GPS week 

1811 were used to validate the GPS/BDS combined PPP with the ISB inter-system bias 

parameter. The sample interval of the data is 30 s. The observation models and details of PPP 
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processing are referred to in Table 5.1. The ISB parameter is estimated as an hourly 

piece-wise constant. Two computation schemes were conducted to make comparison and 

analysis possible. 

Scheme 1: The observation data of GPS week 1811 was processed through GPS/BDS 

combined PPP with a day by day ISB. 

Scheme 2: The observation data of three days was processed through PPP with a priori ISB 

constraint. The ISB estimated on the day before was used as the a priori value for the next day. 

In this case, the ISB estimated on GPS day 264 was used as the a priori value for day 265; the 

ISB estimated on GPS day 265 was used as the a priori value for day 266. 

 To make a comparison, the position coordinates published by IGS were considered as 

standard values to compute the bias and RMS of the position results of the two schemes in N, 

E and U components. The RMS of both schemes with respect to IGS published results on day 

265 and 266 are given in Table 5.5. The comparison of the convergence time in N, E and U 

components using both schemes on day 265 and 266 are analyzed and shown in Fig. 5.13 and 

Fig. 5.14, respectively. The convergence criterion is defined as the bias of the first moment 

and its following 20 epochs in N, E and U components are less than 0.1 m. 

Table 5.5 RMS comparison of two schemes (units: cm) 

Day of 
Year 

Station 
Without ISB constraint With ISB constraint 

N E U N E U 

265 
NNOR 0.4 1.1 2.6 0.4 1.2 2.5 
REUN 0.5 2.0 0.6 0.6 1.2 0.6 
XMIS 0.3 1.2 3.3 0.3 1.1 3.0 

266 
NNOR 0.4 1.3 2.1 0.3 1.2 2.1 
REUN 0.7 1.7 1.2 0.7 1.1 1.1 
XMIS 0.3 1.4 2.5 0.3 1.4 2.4 

MEAN 0.43 1.45 2.05 0.43 1.20 1.95 
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Fig. 5.13. Comparison of the convergence time of two schemes on day 265 

 

Fig. 5.14. Comparison of the convergence time of two schemes on day 266 

From Table 5.5 and Fig. 5.13 - Fig. 5.14 it can be found that: (1) The mean RMS of of PPP 

processing without a priori ISB constraint are 0.43, 1.45 and 2.05 cm in N, E and U 

components, respectively. By using the a priori ISB constraint, the mean RMS are 0.43, 1.20 

and 1.95 cm in three components, respectively. The average positioning accuracy has an 

improvement of 17% in E component and 5% in U component while in N component stays 

nearly the same. (2) The average convergence time of PPP processing without a priori ISB 
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constraint are 14.8, 28.7 and 24.5 minutes in N, E and U components, respectively. When 

using ISB as an a priori constraint, mean convergence time in the three components are 13.4, 

21.5 and 18.6 minutes, respectively. The convergence speed in N, E and U components are 

improved by 9%, 25% and 24%, respectively. Thus it can be concluded, that the a priori 

constraint of ISB is superior in convergence time of PPP processing and can mainly improve 

the positioning accuracy in E component. 

5.6 Conclusions 

A multi-constellation combined PPP algorithm based on the equivalence principle was 

derived in this chapter. Being different from traditional multi-constellation combined PPP, the 

new algorithm firstly decomposes the entire combined computation into independent 

computing of each single system. Then the normal equations of the shared parameters of 

different GNSS systems, which are equivalently eliminated through the normal equation of 

single system, were directly and simply accumulated to obtain the combined solutions. 

Numerical examples were conducted to validate the efficiency and accuracy of the algorithm. 

By using this derived algorithm, the exponentially increased computational load of traditional 

multi-GNSS PPP algorithm can be reduced to the single linear increase when more GNSS 

satellites are available and used for combined computation. Results show that the 

GPS/GLONASS/BDS combination with the identical weight ratio in Sect. 5.3 can improve 

positioning accuracy compared to single GLONASS and single BDS. However, positioning 

accuracy in this case is inferior to single GPS. That is because the precision of the combined 

results is degraded by GLONASS and BDS due to the identical weight ratio of each system. 

Therefore it was found that it is necessary to consider a specific weight ratio to make the 

contribution of each system to combined results more reasonable and improve the accuracy of 

combination. The related work can be referred to in Sect. 6.4 and Sect. 6.5. 

A method to speed up the determination of ambiguities parameters of BDS through 

applying the contribution of GPS observations was proposed and analyzed. The coordinates 

computed formerly by GPS observations were used as a priori information in the computation 

of BDS PPP. Thus it was found that the ionosphere-free ambiguities of BDS satellites could 

be determined and converged to stable more quickly. In addition, the convergence time could 
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be greatly reduced. It can be said that the method is useful for BDS computation if there is a 

priori information provided by GPS or other sensors and can be applied in the beginning of 

the computation. 

The GPS/BDS combined PPP algorithm with inter-system bias parameter was also derived 

in this chapter. Furthermore, using the estimated ISB as a priori constraint in the GPS/BDS 

combined PPP was proposed. Results of the example demonstrate that the a priori constraint 

of ISB is superior in convergence time of PPP processing and can mainly improve the 

positioning accuracy in E component. 
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6 Adaptively Multi-Constellation Combined Precise Point 

Positioning Based on the Equivalence Principle 

 

6.1 Introduction 

A new adaptively robust filter with application in kinematic navigation and positioning has 

been systematically established and developed in recent years (Yang et al., 2013). The 

adaptively robust filter applies a robust estimation principle to resist the effects of 

measurement outliers and introduces an adaptive factor to control the influence of dynamic 

model disturbances. It can balance the contribution of the dynamic model information and the 

measurements in accordance with the magnitudes of their discrepancy (Yang et al., 2001). In 

this chapter, the principle of the adaptively robust filter, its developments and applications are 

firstly summarized and introduced. Then the adaptively robust PPP of a single system is 

derived. Due to the defect of the multi-GNSS combination with equal weight ratio (cf. Sect. 

5.3), two kinds of adaptively multi-GNSS combined PPP based on the equivalence principle 

are derived. With these an adaptive adjustment of the weight ratio of each system in the 

multi-GNSS combination can easily be achieved. The posteriori covariance matrix of the 

shared parameters of each single system and the Helmert variance components are used to 

adaptively adjust the weight ratio of each system in the multi-GNSS combination, 

respectively. Numerical examples are conducted to validate the derived algorithms. 

6.2 Main Progress of the Adaptively Robust Theory in Satellite 

Navigation and Positioning 

6.2.1 Principle of the Adaptively Robust Filter 

Supposing the linear dynamic model and observation model are 

 , 1 1i i i i iX X W− −= Φ +   (6.1) 

 i i i iL A X e= +   (6.2) 

where subscript i and i-1 denote epoch time; 1iX −  and iX  are the state vectors of 
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dimension m at epoch i-1 and epoch i, respectively; , 1i i−Φ  is the state transition matrix of 

dimension m m× ; iW  is the residual vector of dimension m of the system state model with 

zero expectation and covariance matrix 
iW∑ ; iL  is the observational vector of dimension 

in ; iA  is the coefficient matrix of dimension in m× ; ie  is the error vector of observations 

with zero expectation and covariance matrix i∑ , here 2 1
0i iPσ −∑ = ; iP  denotes the weight 

matrix of iL ; 2
0σ  is the variance of the unit weight; m is the number of unknown parameters; 

in  is the number of observations at epoch i. iW  and ie  are mutually uncorrelated. It is 

further assumed that iV  is the residual vector of the observation of dimension in , iX  is the 

predicted state vector, thus the observation error equation and the state predicted equation are 

 ˆ
i i i iV A X L= −   (6.3) 

 , 1 1
ˆ

i i i iX X− −= Φ   (6.4) 

where ˆ
iX  and 1

ˆ
iX −  denote the estimated state vectors at epoch i and i-1, respectively. The 

covariance matrix 
iX∑  of the predicted state vector iX  can be obtained by using the 

covariance propagation law as 

 
1

ˆ, 1 , 1 ii i

T
i i i i WX X −
− −∑ = Φ ∑ Φ + ∑   (6.5) 

The principle of the adaptively robust filter can be expressed as (Yang, 2006) 

 ( ) ( )ˆ ˆ min
i

TT
i i i i i i i iXV PV X X P X Xα+ − − =   (6.6) 

where 1
i iP −= ∑  is the robust equivalent weight matrix of iL ; (0 1)i iα α≤ ≤  is the adaptive 

factor; 1
i iX XP −= ∑  is the weight matrix of the predicted state vector iX . 

By solving Eq. (6.6) , the estimator of the adaptively robust filter can be obtained as 

 1ˆ ( ) ( )
i i

T T
i i i i i i i i i iX XX A P A P A PL P Xα α−= + +   (6.7) 

  An alternative expression to Eq. (6.7) is 

96 
 



 ˆ ( )i i i i i iX X K L A X= + −   (6.8) 

where iK  is the gain matrix based on the equivalent weight matrix of observations, that 

 11 1( )
i i

T T
i i i i iX X

i i

K A A A
α α

−= ∑ ∑ + ∑   (6.9) 

The posteriori covariance matrix of the state vector ˆ
iX  is 

 ˆ ( ) /
ii i i iXX I K A α∑ = − ∑   (6.10) 

6.2.2 Determination of the Robust Equivalent Weight Matrix and the Adaptive Factor 

The equivalent weight matrix iP  in Eq. (6.7) can be calculated commonly by the Huber 

weight function (Huber, 1981) or the IGG (Institute of Geodesy and Geophysics) series 

functions (Yang, 1994; Yang, 1999; Yang et al., 2002; Zhou, 1989). In case of independent 

observations, iP  is a diagonal matrix with elements ( )1,2,...,
ki ip k n= . According to the 

IGG Ⅲ function (Yang et al., 2002), 
ki

p  can be defined as 

 

0

2

10
0 1

1 0

10

k

k k

i k

k
i i k

k

k

p V k

k Vkp p k V k
k kV

V k

 ≤

  −  = < ≤  −  


>










  (6.11) 

where kV  is the residual of the observation 
ki

L ; kV  is the standard residual corresponding 

to kV ; 0k  and 1k  are two constants which are usually chosen as 0 1.0 ~ 1.5k =  and 

1 2.5 ~ 8.0k = . 
ki

p  is a descending function with respect to the standard residual kV , 

therefore the outlier in observation 
ki

L  can be controlled. Other equivalent weight functions 

can be chosen or constructed according to particular situations. The dependent equivalent 

weight matrix was also researched by Yang (1994) in case of dependent observations. 

An appropriate adaptive factor should be sensitive to disturbances of predicted parameters 

or dynamic model errors. Several statistics of error judgement, i.e. the discrepancy between 
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the predicted and estimated state vector (Yang et al., 2001), the predicted residual (Xu and 

Yang, 2000; Yang and Gao, 2006b), the ratio of the Helmert variance components of the 

predicted state vector and observations (Yang and Xu, 2003), and the discrepancy between 

predicted and estimated velocities of the dynamic model (Cui and Yang, 2006) can be used to 

construct the adaptive factor. For instance, based on the statistics of discrepancy between 

predicted and estimated state vector, a three-segment function, similar to the IGG Ⅲ 

function, is presented for adaptation as defined below. 

 

0
2

0 1
0 1

1 0

1

1

0

i

i
i i

i

i

X c

c c X c X c
c cX

X c

α

 ∆ ≤

  − ∆

= < ∆ ≤  −∆  
 ∆ >










  (6.12) 

where 0c  and 1c  are two constants, which are usually chosen as 0 1.0 ~ 1.5c =  and 

1 2.5 ~ 8.0c = ; iX∆   is the discrepancy between predicted and estimated state vector, 

expressed as 

 
( )tr

i

i i
i

X

X X
X

−
∆ =

∑


   (6.13) 

where iX  is the estimated state vector, iX  is the predicted state vector. 

6.2.3 Special Estimators 

Eq. (6.7) is the general estimator of an adaptively robust filter. With differing adaptive factors 

iα  and differing equivalent weight matrices iP , several kinds of estimators can be formed. 

Case 1. If 0iα =  and i iP P= , than 

 1ˆ ( )T T
i i i i i i iX A P A A PL−=   (6.14) 

Eq. (6.14) is an LS estimator using only the new observations at epoch i. The estimator is 

suitable when observations are not contaminated by outliers, the updated parameters are 

biased so much that the iX∆   in Eq. (6.12) is larger than 1c , and the information of the 

updated parameters is completely ignored. 
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Case 2. If 1iα =  and i iP P= , than 

 1ˆ ( ) ( )
i i

T T
i i i i i i i iX XX A P A P A PL P X−= + +   (6.15) 

Eq. (6.15) is a general estimator of the classic Kalman filter. 

  Case 3. If iα  varies between 0 and 1, which is determined by Eq. (6.12) and i iP P= , than 

 1ˆ ( ) ( )
i i

T T
i i i i i i i i i iX XX A P A P A PL P Xα α−= + +   (6.16) 

Eq. (6.16) is an adaptive LS estimator of the Kalman filter. It balances the contributions of the 

updated parameters and the observations. 

  Case 4. If 0iα = , than 

 1ˆ ( )T T
i i i i i i iX A P A A PL−=   (6.17) 

Eq. (6.17) is a robust estimator using only the new observations at epoch i (Yang, 1994; Yang 

et al., 2002). 

  Case 5. If 1iα = , than 

 1ˆ ( ) ( )
i i

T T
i i i i i i i iX XX A P A P A PL P X−= + +   (6.18) 

Eq. (6.18) is an M-LS filter estimator (Yang, 1997). 

Case 6. If the covariance matrices of the observations iL  and the predicted state vector 

iX  are calculated based on the Sage windowing method (Deng, 2003; Yang and Xu, 2003), 

which are presented as ˆ
i∑  and ˆ

iX∑ , given by 

 
0

1ˆ
i

m
T T

i i j i j i iX
j

V V A A
m − −

=

∑ = − ∑∑   (6.19) 

 
0

1ˆ
m

T
X i j i j

j
X X

m∆ − −
=

∑ = ∆ ∆∑   (6.20) 

where m is the window width; iV  is the predicted residual; iX∆  denotes the discrepancy 

between the predicted and estimated state vector, then 
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 i i i iV A X L= −   (6.21) 

 ˆ
i i iX X X∆ = −   (6.22) 

In this case the adaptively robust filter turns out to be an adaptive Sage filter. 

6.2.4 Development of the Adaptively Robust Filter and Its Applications 

After the adaptive filter was developed, the construction of a suitable adaptive factor for 

balancing the contribution of the measurements and the predicted dynamic model information 

has been a key problem. Two optimal adaptive factors are established, which satisfy the 

conditions that the theoretical uncertainty of the predicted state outputted from adaptive 

filtering equals or nearly equals to its actual estimated uncertainty, or the theoretical 

uncertainty of the predicted residual vector equals or nearly equals its actual estimated 

uncertainty (Yang and Gao, 2006a). Furthermore, an adaptively robust filter with classified 

adaptive factors (Cui and Yang, 2006) is developed, which is more effective in tracking 

disturbances of vehicle movements. An adaptively robust filter with multi-adaptive factors 

(Yang and Cui, 2008) is also set up, which is more general in theory and contains adaptively 

robust filters with a single adaptive factor and classified adaptive factors. 

  To control influences of measurement outliers and disturbances of the dynamic model, an 

adaptively robust filter based on the current statistical model (Gao et al., 2006b) is developed. 

In addition, an adaptively robust filter based on neural network (Gao et al., 2007a; Gao et al., 

2007b) is studied to solve the construction of the dynamic model. An adaptively robust filter 

can also be integrated with error detection, identification and adaptation (DIA). To control the 

nonlinear disturbances of the dynamic model, an adaptive UKF (unscented Kalman Filter) 

algorithm for improving the generalization of neural network (Gao et al., 2008) and an 

adaptively robust filter based on the Bancroft algorithm (Zhang et al., 2007) are derived. 

In terms of application, the adaptively robust filter has been successfully applied to the 

satellite orbit determination (Yang and Wen, 2004) and data processing of repeated 

observations of geodetic networks (Sui et al., 2007). Moreover, an adaptively robust filter 

with constraints has also been studied for navigation applications (Yang et al., 2011). In the 

integrated navigation application an adaptive Kalman filtering algorithm for the IMU/GPS 
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integrated navigation system (Gao et al., 2006a) and a two-step adaptively robust Kalman 

filtering algorithm for GPS/INS integrated navigation system (Wu and Yang, 2010) are 

developed. The comparison of several adaptive filtering algorithms in controlling the 

influence of colored noises is analyzed in order to simultaneously control the influence of 

colored noises and dynamic model disturbances (Cui et al., 2006). In research of the 

estimation and prediction of the satellite clock offset an adaptively robust sequential 

adjustment with opening window classified adaptive factors (Huang et al., 2011) and an 

adaptively robust Kalman filter with classified adaptive factors for real-time estimation of 

satellite clock offset (Huang and Zhang, 2012) are derived. Adaptive filtering is also applied 

to make progress on the estimation of the crustal deformation parameter by using geophysical 

models and geometrical measurements (Yang and Zeng, 2009). 

6.3 Adaptively Robust PPP of A Single System Based on the Equivalence 

Principle 

The PPP of a single system based on the parameter equivalent elimination principle can be 

briefly summarized as follows (cf. Sect. 5.3). 

The linearized error equation can be formed as 

 ( ) 1

2

ˆ
,

ˆ
X

V A B L P
X

 
= −  

 
  (6.23) 

where the meanings of the characters can be referred to in Sect.5.3.1. 

The normal equation can be formed as 

 11 12 1 1

21 22 22

ˆ

ˆ
M M X B
M M BX

    
=         

  (6.24) 

where 11
TM A PA= , 12

TM A PB= , 21
TM B PA= , 22

TM B PB= , 1
TB A PL= , 2

TB B PL= . 

Then the equivalently eliminated equation of Eq. (6.24) can be formed as 

 11 12 1 1

2 22

ˆ

ˆ0
M M X B

M RX

    
=         

  (6.25) 

where 1
2 22 21 11 12M M M M M−= − , 1

2 2 21 11 1R B M M B−= − . 
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Thus one has 

 2 2 2
ˆM X R=   (6.26) 

 11 1 12 2 1
ˆ ˆM X M X B+ =   (6.27) 

The recursion formulas of PPP at epoch i can be formed as 

 

( )
2

1

1
2 2 2

1
2 2 2

1
2 2 2

1
1 11 1 12 2

1
2

11 1
11 12 22 21 22 2 21 11 12

ˆ ( )
ˆ ˆ( ) ( )
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i

i

i i i

i i i

i i i

i i i i i

i
X

i i i i i i i i i
X
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−

−

−

−

−

−− −

 = +
 = +
 =
 = −

=

 = − = +

 

 

 



  

  (6.28) 

Through Eq. (6.28) the sequential solution of a single system PPP based on the parameter 

equivalent elimination principle can be obtained. For the sake of resisting the effects of 

observation outliers and controlling the anomalous disturbances of the a priori information, 

the adaptively robust PPP can be derived as follows. 

Referring to the principle of the adaptively robust filter in Sect. 6.2.1, we make 

11
TM A PA= , 12

TM A PB= , 21
TM B PA= , 22

TM B PB= , 1
TB A PL= , 2

TB B PL= , where 

P  denotes the robust equivalent weight which can be determined by Eq. (6.11), then one has 

1
2 22 21 11 12M M M M M−= − , 1

2 2 21 11 1R B M M B−= − . An adaptive factor (0 1)i iα α≤ ≤  which can 

be determined by Eq. (6.12) is introduced to balance the contribution of the a priori 

information. Therefore the adaptively robust PPP based on the parameter equivalent 

elimination principle can be formed as 

 

( )
2

1

1
2 2 2

1
2 2 2

1
2 2 2

1
1 11 1 12 2

1
2

11 1
11 12 22 21 22 2 21 11 12

ˆ ( )
ˆ ˆ( ) ( )

( )

( ) , ( )

i

i

i i i
i

i i i
i

i i i

i i i i i

i
X

i i i i i i i i i
X

M M M
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−

−
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−

−− −

 = +
 = +
 =
 = −
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  (6.29) 

where 
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c c X c X c
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X c

α

 ∆ ≤

  − ∆

= < ∆ ≤  −∆  
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  (6.30) 

 
( )

1

1

ˆ

ˆ

tr
i

i i
i

X

X X
X

−

−−
∆ =

∑


   (6.31) 

where 0c  and 1c  are two constants, which are usually chosen as 0 1.0 ~ 1.5c =  and 

1 2.5 ~ 8.0c = ; iX∆   can be computed through Eq. (6.31); iX  is the estimated vector based 

on observations at epoch i; 1
ˆ

iX −  and 
1

ˆ
iX −

∑  are the sequential estimation solution and its 

covariance matrix at epoch i-1, respectively. 

6.4 Adaptively Multi-Constellation Combined PPP Based on the 

Equivalence Principle 

6.4.1 Methodology 

In multi-constellation combined PPP with identical weight ratio (cf. Sect. 5.3), the results can 

sometimes be degraded and inferior to results of a single system. Thus it is necessary to 

consider and construct a more reasonable and specific weight ratio to improve the 

performance of the combination. In this case, the shared parameters (coordinates and 

tropospheric delay) and their precision information obtained by every single system can 

become highly valuable a priori information for combined data processing. Such information 

can be utilized as a judgement to determine the contribution and weight ratio of each single 

system to the final combined data processing. Therefore, an extra adaptive factor kα  

between different GNSS systems is introduced. It provides the possibility to realize adaptively 

combined PPP of multi-GNSS systems. On basis of applying the equivalence principle, it is 

easier and more convenient to achieve such an adaptively combined PPP algorithm, compared 

to the traditional combined algorithm through constructing total calculation. 

The normal equation of the shared parameters in multi-constellation combined PPP is 

derived and presented as Eq. (5.24). By introducing an adaptive factor for each GNSS system, 
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the normal equation of adaptively combined PPP of multi-GNSS systems can be formed as 

 1 1 1
1 1

m m
k k

k k
k k

N Y Sα α
= =

=∑ ∑   (6.32) 

where kα  denotes the adaptive factor of system k. kα  can be determined as an unique 

adaptive factor or multi adaptive factors in accordance with different parameters (Huang et al., 

2011; Huang and Zhang, 2012; Yang and Cui, 2008). For example, an unique adaptive factor 

can be determined directly by the posteriori covariance matrix ˆ
kX∑  of the shared parameters 

obtained by a single system, that 
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The determination of the adaptive factor of each system as the form of Eq. (6.33) will be 

used in the examples given in Sect. 6.4.2. Another method to determine the adaptive factor 

kα  by variance components will be derived in Sect. 6.5.1. 

Based on Eq. (6.32) and the multi-GNSS combined PPP solution (cf. Eq. (5.25)), the 

adaptively combined PPP of multi-GNSS systems based on the parameter equivalent 

elimination principle can be formed as 
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  (6.34) 

where 2
iM  and 2

iR  are computed by Eq. (5.17). 

  By using Eqs. (6.32) - (6.34), the contribution of each system to the combined PPP solution 

can be adjusted adaptively according to the internal precision of each system in itself. In this 
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way the accuracy of the combined PPP solution will not be affected seriously when there are 

outliers in any single system, therefore the stability and precision of multi-GNSS combined 

PPP can be improved. 

6.4.2 Example and Analysis 

To validate the algorithm derived above (cf. Sect. 6.4.1), the GPS/GLONASS/BDS 

observations of MGEX stations (CAS1, GMSD, POHN, REUN, TUVA and XMIS) on GPS 

day 337 in 2014 and high-rate GPS/GLONASS/BDS observations of MGEX station GMSD 

(with an interval of 1 s) on GPS day 334 in 2014 were used for the case of static and 

kinematic combined PPP, respectively. The observation models and details of data processing 

can be referred to in Table 5.1 given in Sect. 5.3.4.  

Two schemes were conducted to make comparison and analysis possible. 

Scheme 1: GPS/GLONASS/BDS combined PPP with identical weight ratio of each system 

(cf. Sect. 5.3.4). 

Scheme 2: Adaptively GPS/GLONASS/BDS combined PPP with adaptive factor 

determined by the posteriori covariance of shared parameters of each single system (cf. Eq. 

(6.33)). 

To make a comparison, the position coordinates published by IGS were treated as standard 

values to compute the bias and RMS of the position results of both schemes in N, E and U 

components. The RMS results in the static case are given in Table 6.1. The bias and RMS 

results of station GMSD in the kinematic case are shown in Fig. 6.1 and given in Table 6.2. 

Table 6.1 RMS with respect to IGS results (units: m) 

Stations 
 

CAS1 GMSD POHN REUN TUVA XMIS 

Scheme1 
N 0.021 0.022 0.014 0.004 0.013 0.002 
E 0.018 0.022 0.067 0.027 0.019 0.023 
U 0.257 0.111 0.103 0.066 0.079 0.052 

Scheme2 
N 0.008 0.006 0.007 0.002 0.005 0.003 
E 0.007 0.010 0.039 0.020 0.019 0.013 
U 0.184 0.035 0.029 0.006 0.029 0.058 
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Fig. 6.1. Bias of two schemes with respect to IGS published results 

Table 6.2 RMS with respect to IGS results (units: m) 

Station 
 

Scheme1 Scheme2 

GMSD 
N 0.041 0.039 
E 0.041 0.041 
U 0.157 0.114 

From Fig. 6.1 and Table 6.1-6.2 it can be found that, compared to Scheme 1, Scheme 2 

improves the precision in N, E and U components significantly. In the given example, by 

applying the adaptive factor determined by the posteriori covariance of the shared parameters 

of each system in the combined PPP, the precision in U component for stations CAS1, GMSD, 

POHN, REUN and TUVA in the static case improved by 28%, 68%, 72%, 91% and 63%, 

respectively; while in the kinematic case the precision in U component for station GMSD 

improved by 27% in this example. It can be concluded that the adaptive factor determined by 

covariance of each system (cf. Eq. (6.33)) is superior regarding the accuracy of the 

multi-constellation combined PPP, compared to using equal weight ratio combination directly 

(Scheme 1, cf. Sect. 5.3.4). 
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6.5 Adaptively Combined PPP Based on the Variance Component 

Estimation 

6.5.1 Methodology 

As described in Sect. 5.3.4, it is necessary to give a specific and reasonable weight ratio for 

the observations of each system in multi-GNSS combined PPP. The unreasonable weight ratio 

will cause the least squares solution losing the property of minimum variance and degrade the 

accuracy of combined positioning. It is known that the values of weight ratio depend on the 

random noise of the observations, thus to process combined positioning with an a priori 

constant or an identical weight ratio is obviously irrational. The Helmert variance components 

estimation (Koch, 2000; Koch and Kusche, 2002) is a widely applied posteriori variance 

component estimation method, which can adaptively determine the weight ratio of different 

observations through iteration computation. Therefore, in this section the Helmert variance 

component estimation is applied to adjust the weight ratio of mixed observations reasonably 

and to improve the accuracy and reliability of the positioning. 

Assuming 1L  and 2L  are two types of independent observations, 1P  and 2P  are their 

weight matrices, thus the error equations can be formed as 

 1 1 1 1

2 2 2 2

ˆ ,
ˆ ,

V B X L P

V B X L P

= −

= −
  (6.35) 

The initial weights 1P  and 2P  determined by a priori variance may not be appropriate, 

thus its corresponding unit weight variance 2
01σ  and 2

02σ  may not be equal, which has 
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=
  (6.36) 

The normal equation of Eq. (6.35) can be formed as 

 ˆNX W=   (6.37) 

where 1 2 1 1 1 2 2 2
T TN N N A P A A P A= + = + , 1 2 1 1 1 2 2 2

T TW W W A PL A P L= + = + . According to the 

quadratic expectation formula, the Helmert variance components estimation can be derived as 
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 ˆS Wθθ =   (6.38) 

where 
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 2 2
01 02 1 1 1 2 2 2

ˆ= ,
T TT TW V PV V PVθθ σ σ   =      (6.40) 

Eqs. (6.38) - (6.40) are the Helmert variance components estimation formulas for two types 

of observations. In case of expanding to m types of observations, the coefficient matrix S of 

variance estimation can be formed as 

1 1 1 1 1 1 1
1 1 1 1 1 2 1

1 1 1 1 1 1 1
1 2 2 2 2 2 2

1 1 1 1 1 1 1
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  (6.41) 

 2 2 2
01 02 0 1 1 1 2 2 2

ˆ ,
T TT T T

m m m mW V PV V PV V P Vθθ σ σ σ   = =       (6.42) 

By using Eq. (6.38), Eq. (6.41) and Eq. (6.42), the variance components for m types of 

observations can be estimated. The procedures of Helmert variance components estimation 

can be summarized as follows: 

1. Determining the corresponding initial weights ( 1,2,..., )iP i m=  of various types of 

independent observations; 

2. Computing the respect ( 1,2,..., )T
i i iV PV i m=  of various kinds of observations after the 

first adjustment; 

3. Estimating the variance components 2 ( 1,2,..., )i i mσ =  of various kinds of observations 

by Eq. (6.38), then resetting the weight by ( 1) ( )
2 ( 1,2,..., )

ˆ
k k

i i
i

cP P i m
σ

+ = = , where c is a 

constant, which is usually set as one value of 2 ( 1,2,..., )i i mσ = ; 

4. Repeating procedures 2 and 3 until 2 2 2
1 2ˆ ˆ ˆ ( 1,2,..., )i i mσ σ σ= = = = . 

In the adaptively combined PPP of multi-GNSS systems, the adaptive factor kα  of system 
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k can be determined by variance components. The Helmert variance components of each 

system can be computed and used to adaptively adjust the contribution of the observations of 

each system to the combined PPP. 

  Considering four kinds of observational vectors from four GNSS systems respectively, 

their simplified Helmert variance components can be approximately computed by 

 2
0ˆ

T
G G G

G
G

V P V
n

σ =   (6.43) 

 2
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R R R

R
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V P V
n

σ =   (6.44) 

 2
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E E E

E
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V P V
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 2
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T
C C C

C
C

V P V
n
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where 2
0ˆ Gσ , 2

0ˆ Rσ , 2
0ˆ Eσ  and 2

0ˆ Cσ  are the variance components of GNSS observations; the 

subscripts G, R, E and C represent GPS, GLONASS, Galileo and BeiDou systems, 

respectively; n denotes the number of observations of each GNSS system; V and P denotes 

the residual vector and the weight matrix of each GNSS system. 

Therefore, the adaptive factor ( , , )k R E Cα α α α  of each system can be formed as 

 
2 2 2
0 0 0
2 2 2
0 0 0

ˆ ˆ ˆ
, ,

ˆ ˆ ˆ
R E C

R E C
G G G

σ σ σ
α α α

σ σ σ
= = =   (6.47) 

where Rα , Eα  and Cα  denote the adaptive factors for GLONASS, Galileo and Beidou 

systems, respectively. Substituting the adaptive factors into Eq. (6.32) and (6.34), the 

adaptively combined PPP based on the variance components estimation can be realized. 

6.5.2 Example and Analysis 

The same high-rate GPS/GLONASS/BDS observations of MGEX station GMSD (with an 

interval of 1 s) on GPS day 334 in 2014 were used to validate the algorithm derived above (cf. 

Sect.6.5.1). The observation models and details of data processing can be referred to in Table 
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5.1 given in Sect. 5.3.4.  

The kinematic PPP of each single system was processed. In addition, two schemes of 

kinematic combined PPP were conducted to make comparison and analysis possible. 

Therefore the computational schemes can be summarized as follows. 

Scheme 1: GPS single system kinematic PPP (denoted as GPS in Table 6.3 and Fig. 6.2). 

Scheme 2: GLONASS single system kinematic PPP. 

Scheme3: BDS single system kinematic PPP. 

Scheme 4: GPS/GLONASS/BDS kinematic combined PPP with identical weight ratio of 

each system (denoted as G+R+C in Table 6.3 and Fig. 6.2, cf. Sect. 5.3.4). 

Scheme 5: GPS/GLONASS/BDS kinematic combined PPP with adaptive factors based on 

the variance component estimation (denoted as G+R+C_adaptively in Table 6.3 and Fig. 6.2, 

cf. Sect. 6.5.1). 

As before, the position coordinates published by IGS were considered as standard values to 

compute the bias and RMS of the position results in N, E and U components. The RMS 

results of kinematic PPP of each single system and two schemes of kinematic combined PPP 

are given in Table 6.3. The bias of GPS single system kinematic PPP and two schemes of 

kinematic combined PPP are shown in Fig. 6.2. 

Table 6.3 RMS with respect to IGS results (units: m) 

RMS GPS GLONASS BDS G+R+C 
G+R+C 

_adaptively 
N 0.042 0.150 0.102 0.041 0.040 
E 0.059 0.206 0.103 0.041 0.058 
U 0.112 0.615 0.229 0.157 0.104 
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Fig. 6.2. Bias of two schemes with respect to IGS published results 

From Table 6.3 and Fig. 6.2 it can be found that: (1) The kinematic combined PPP with 

adaptive factors based on the variance component estimation (Scheme 5) is significantly 

superior to other computational schemes and especially improves the precision of U 

component. In this case, the precision in U component can be improved by 33% compared to 

using equal weight ratio combination directly (Scheme 4). (2) The precision of the combined 

PPP based on the equal weight ratio (Scheme 4) is influenced and degraded by GLONASS 

and BDS, which is inferior to single GPS but better than single GLONASS or BDS. However, 

the adaptive factors based on the variance component estimation can adjust the weight ratio of 

combined observations more reasonable to determine the contribution of each system to the 

combined results. It enlarges the weight ratio of single GPS solution in the combination due to 

the highest accuracy of GPS, which makes the combination results very close to single GPS 

solution. Thus in combined PPP the weight ratio of each system should be considered 

carefully to make the contribution of each system to the combined result more reasonable and 

improve the precision of combination. 
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6.6 Conclusions 

In this chapter, the principle of the adaptively robust filter, its developing progress and 

applications were summarized and introduced. Based on the equivalence principle, an 

adaptively robust PPP algorithm of a single system was derived. Due to the defect of the 

multi-GNSS combination with identical weight ratio, which leads to results that can 

sometimes be degraded and inferior to a single system, a more reasonable and specific weight 

ratio determined by the posteriori covariance matrix of the shared parameters of each single 

system adaptively was derived to improve the performance of combination. It shows that such 

an adaptive algorithm can be constructed and realized easily through applying the equivalence 

principle. Results show that through using such adaptive factors in combination, the precision 

in U component can be improved by an average of 58% compared to using the identical 

weight ratio combination directly. In addition, an adaptively combined PPP based on the 

variance component estimation, was derived. It was shown that it allows an accuracy 

improvement of 33% in U component compared to using the equal weight combination. 

Therefore it is concluded that the derived adaptively combined PPP algorithms, which can 

adjust the weight ratio of each system adaptively, and more reasonably, are significantly 

superior in the precision of combination. 
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7 Summary and Future Work 

 

7.1 Summary 

To achieve the objective of this thesis, which was to explore high-performance PPP 

algorithms and to develop GNSS algorithms with application of the equivalence principle, 

specific research has been done and the main achievements can be summarized as follows. 

On the basis of the equivalence principle and the equivalence property of un-differenced 

and differencing algorithms, the specific equivalence of un-differenced and time differencing 

PPP algorithms is proved theoretically in this thesis for the first time. Meanwhile, as a 

supplement to the equivalence property of the triple differences, an alternative method is 

proposed and derived to prove the equivalence between triple differences and zero-difference 

which up to now was missing. The main idea of such a method is to regard triple differences 

as to firstly make time differencing of the same satellite between two adjacent epochs at one 

station and then to be formed by double differences. 

As a consequence of above conducted theoretical study, a time differencing PPP algorithm 

based on the equivalence principle was derived and can be used to obtain the coordinates 

difference and average velocity between two adjacent epochs. Such a time differencing PPP 

algorithm is able to provide both position and velocity results from the phase and code 

observations. The obtained coordinates difference and velocity can keep stable from the 

beginning of computation, which is superior to making position difference of PPP because 

that always needs convergence time. Thus the results can be useful in different types of 

applications, such as airborne gravimetry, earthquake monitoring. Such a time differencing 

PPP algorithm could also be an efficient method to detect cycle slips in data processing. 

The influence of tropospheric delay on PPP, especially in the context of observations in the 

polar region or with low elevation cut-off angles, where the position results of the 

observations are more significantly affected by tropospheric delay, was analyzed and a 

methodology for minimizing its effect is proposed. Due to the specificity of Antarctic 
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positioning, the actual meteorological data were used and proved to be beneficial for 

improving PPP precision in the Antarctic region. When the elevation cut-off angle is lower, 

the effect of the actual meteorological observations on the positioning precision is more 

significant in Antarctic due to the retention of low elevation angle observations. The effect of 

the tropospheric horizontal gradient correction on PPP was also analyzed and verified to 

remarkably improve PPP precision under lower elevation cut-off angles and higher humidity 

conditions. 

A priori constrained PPP algorithms were proposed and derived in this thesis to improve 

the efficiency and precision of PPP. The a priori information concerning the geometric and 

physical properties of observations, which is known with a certain a priori precision, was 

applied in the PPP algorithms. The contribution of different a priori information constraints on 

different parameters to PPP solution was analyzed and validated. The a priori constraints as 

employed in the PPP were specified according to coordinates-, receiver clock offset-, 

tropospheric delay- and ambiguities-constraints, respectively. The validation of the derived 

PPP algorithms shows a significant improvement concerning convergence time and 

positioning accuracy. And moreover, the applications of different constraints under specific 

conditions were also discussed and validated. PPP with a priori coordinates accuracy and time 

period constraint is particularly beneficial to the convergence time and accuracy of the 

real-time slow-motion carriers positioning, such as landslide, urban land subsidence and 

structural monitoring. That is because it fully accounts for characteristics of slow-motion 

carriers. As deformation during geological disasters is generally continuous and in 

slow-motion, the monitoring station can be considered as stationary and the coordinates 

between epochs can be inherited like static positioning during a certain period. PPP with 

receiver clock offset constraint helps to solve the day-boundary discontinuities which are 

un-neglectable in precise timing and time transfer service. With coordinates and clock offset 

constraint, the results achieve convergent more quickly and more stable and continuous clock 

offset series can be obtained. PPP with tropospheric delay constraint removes the effect of the 

tropospheric delay on PPP height solution to improve the positioning accuracy in height 

component. PPP with ambiguities constraint is greatly superior in reducing the convergence 
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time of positioning. 

A multi-constellation combined PPP algorithm based on the equivalence principle was 

proposed and derived in this thesis. Being different from traditional multi-GNSS combined 

PPP, the new algorithm firstly decomposes the entire combined computation into independent 

computing of each single system. Then the normal equations of the shared parameters of 

different GNSS systems, which are equivalently eliminated through the normal equation of 

single system, are directly and simply accumulated to obtain the combined solutions. With 

such an algorithm, the exponentially increased computational load of traditional multi-GNSS 

PPP algorithm can be reduced to the single linear increase when more GNSS satellites are 

available and used for combined computation. 

A method to speed up the determination of the ambiguities parameters of BDS through 

applying the contribution of GPS observations was proposed. The coordinates computed 

formerly by GPS observations were used as a priori information in the computation of BDS 

PPP. Thus it was found that the ionosphere-free ambiguities of BDS satellites can be 

determined and converged to stable more quickly. In addition, the convergence time is greatly 

reduced. It can be said the method is useful for BDS computation if there is a priori 

information provided by GPS or other sensors and can be applied in the beginning of the 

computation. 

The GPS/BDS combined PPP algorithm with inter-system bias parameter was derived. 

Furthermore, using the estimated ISB as a priori constraint in the GPS/BDS combined PPP 

was proposed. Results demonstrate that the a priori constraint of ISB is superior in 

convergence time of PPP processing and can mainly improve the positioning accuracy in E 

component. 

In traditional multi-constellation combined PPP, it is difficult to adaptively adjust the 

contribution of each single system to the combination through constructing total calculation, 

which will lead to the deterioration in the combination accuracy. In this context, the 

adaptively combined PPP algorithms based on the equivalence principle were proposed and 

derived, which can easily achieve an adaptive adjustment of the weight ratio of each system 

in multi-GNSS combination. By using the posteriori covariance matrix of the shared 
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parameters of each single system and the Helmert variance components to adaptively adjust 

the weight ratio of each system, the derived algorithms can improve the accuracy of 

combination significantly, compared to combined PPP with identical weight ratio. 

The developed algorithms are net applicable and can be used for cloud computation for 

internet GNSS service which is considered significant for commercial applications. 

7.2 Future Work 

In accordance with the research progress and achievements of this thesis, several main points 

and ideas for subsequent studies are considered and proposed as recommendations, which can 

be summarized as follows. 

Due to the characteristics of Antarctic positioning, where there are much more lower 

elevation angle observations compared to mid-low latitude regions, a more accurate and 

reliable tropospheric model for the Antarctic area is essential to be explored and conducted in 

the future. An alternative idea is to make full use of a mass of real meteorological data to 

modelling or to apply such meteorological observations as a prior constraint in data 

processing. 

The a priori constrained PPP algorithms derived in this thesis are specified according to 

coordinates-, receiver clock offset-, tropospheric delay- and ambiguities-constraint. The cases 

of other constraints, such as ionospheric delay-, baseline length-, as well as the combination 

of several constraints should be studied further. 

With the rapid development of multiple GNSS systems, the developing features of GNSS 

precise positioning have changed from single GPS-only positioning over the past decades to 

multi-GNSS systems combined positioning nowadays. The study on PPP ambiguity resolution 

of multi-GNSS combination needs to be researched further. Moreover, the analysis, especially 

in case of BDS PPP will also have great significance in the future. 
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