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Abstract

Cognitive models are usually evaluated based on their fit to
empirical data. Artificial intelligence (AI) systems on the other
hand are mainly evaluated based on their performance. Within
the field of artificial general intelligence (AGI) research, a new
type of performance measure for AGI systems has recently
been proposed that tries to cover both humans and artificial
systems: Anytime Intelligence Tests (AIT; Hernández-Orallo
& Dowe, 2010). This paper explores the viability of the AIT
formalism for the evaluation of cognitive models based on data
from the ICCM 2009 “Dynamic Stocks and Flows” modeling
challenge.
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Introduction
Cognitive modeling as a field, although being rooted in AI,
has diverged from AI research in recent years because both
fields pursue different goals. While modelers try to under-
stand human behavior by creating systems that act as human-
like as possible, AI researchers strive for systems that act as
perfect as possible, or in Legg and Hutter (2007)’s words:
universal intelligence. At the same time, parts of the cog-
nitive modeling community are suggesting to direct the field
towards more generic models of human behavior (”cognitive
supermodels”; Salvucci, 2010) as opposed to task-specific
models. Such supermodels did not come into existence yet,
but given the methodological advances in the AI field, it may
be worthwhile to think about how the abilities (i.e., intelli-
gence) of generic cognitive models should be evaluated. A
promising approach to this question are anytime intelligence
tests (AIT; Hernández-Orallo & Dowe, 2010).

Anytime Intelligence Tests
These intelligence tests are crossing the boundaries between
the modeling and the AI field because they are targeting both
biological and artificial systems. Based on the work of Legg
and Hutter (2007), they intend to measure intelligence of an
agent (i.e., ‘model’ in the terms of the ‘other’ field) as the ac-
cumulated amount of reward1 r it receives through interaction
with a set of (deterministic) environments of varying (compu-
tational) complexity. The validity of this accumulated reward
is achieved through several means: a) The reward is bound
to the range [-1;1]; b) All environments must be balanced,

1Note: In reinforcement learning, reward functions are a cru-
cial part of the learning agents themselves (Singh, Lewis, & Barto,
2009). In the context of this paper, rewards come from an external
‘critic’ and were not available to the agents (i.e., human participants
and cognitive models) during exploration and learning.

i.e., a random agent will on average receive a reward of zero;
and c) The aggregated reward is scaled by the computational
complexity of the transition function of the environment. An
example of such an intelligence test that was applied to both
humans and AI agents can be found in Insa-Cabrera, Dowe,
España-Cubillo, Hernández-Lloreda, and Hernández-Orallo
(2011).

Besides the construction of new environments that follow
the AIT formalism, one can try to analyze published data and
models from the literature. This way, potential insights from
the AIT procedure can be compared to fit-based evaluations
that have been performed before. It is often possible to trans-
form existing tasks into AIT environments by constructing
new reward functions for the tasks.

Dynamic Stock and Flow Task
A promising candidate for such a reward reconstruction is the
Dynamic Stock and Flow task (DSF; Dutt & Gonzalez, 2007)
that has been used for the modeling challenge of the same
name (Lebiere, Gonzalez, & Warwick, 2009). The task for
this challenge was to maintain the level (i.e., stock) in a wa-
ter tank at a given target value in the presence of dynamically
changing water in- or outflow from an external source. There
were four training conditions with monotonously changing
inflow (Lin-, Lin+, NonL-, NonL+) and five transfer condi-
tions. Two of these featured linearly increasing inflow (like
Lin+), but the agents’ actions were delayed by one (Del2) or
two (Del3) additional time steps. The remaining conditions
featured two (Seq2, Seq2Nos) or four (Seq4) time steps long
repeating sequences of inflow; in case of Seq2Nos the pat-
tern was masked by additional noise. The evaluation of the
models in the competition was based on the goodness-of-fit
to human data in all nine conditions. The crucial variable for
this fit was the time-dependent water level.

Besides convenience (i.e., availability of data and models),
the DSF task is especially suited as an AIT because it is deter-
ministic and open-ended (in contrast to, e.g., robotic soccer),
and the computational complexity of the environment should
be both easily scalable and easily quantifiable. Whether and
how this task can be transformed to an AIT will now be re-
viewed regarding possible reward functions for the task. The
question of the complexity of the different task conditions
will be discussed in a later contribution.

Possible Reward Functions
In the following, rt denotes the reward for time step t, amountt
denotes the water level for t, envt the external inflow for t, and
goal denotes the target water level.
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ScaledAbsoluteDifference. Foreverytimestep,theab-
solutedifferencetothetargetwaterlevelismultipliedwith
someconstantcandmappedtotherangefrom-1to1.

rt=max(−1,1−c|amountt−goal|)

Thisisthemoststraightforwardsolutionwiththehighest
face-validity. Theagent’sproximitytothetargetlevelis
representedverywell. Ontheotherhand,cisarbitrary.
Mostproblematicisthatthefunctionisnotbalanced. Be-
causealltaskconditionsfeatureexternalwaterinflow,ran-
domagentswouldreceiveanaccumulatedrewardcloseto
thelowerboundaryof-1.

RelativeProgress. Abalancedenvironmentcouldbecre-
atedbyconcentratingontherelativeprogresstothetarget
level.Themostsimpleoptionisabinarydecisionwhether
thewaterlevelhasimproved.

rt=
1 if|amountt−goal|≤|amountt−1−goal|

−1 otherwise

Thissolutionhasthedownsideofthecurrentwaterlevelbe-
ingunderrepresented. Gettingfromanywheretotheexact
targetlevelwouldbeasgoodasgettinganarbitrarilysmall
amountclosertoit.Atthesametime,environmentswithex-
ternalin-oroutflowwouldstillnotresultinrandomagents
receivingarewardofzero.

RelativeProgresswithWeighting. Thiscanbesolvedus-
ingthefollowingrationale: Aperfectagentwouldalways
bringthewaterleveltothegoalamountinthenextstep.
Ifthismapstoarewardof1andnoactionmapsto0,then
theagentshouldbeawardedarewardthatisproportionalto
thestockchangemadebytheagentcomparedtothetwoex-
tremes. Theresultisclippedat-1inordertosticktothe
propertiesofAIT.

rt=max(−1,
|amountt−goal|

|amountt−1+envt−goal|
)

BoxplotsofthehumandatacollectedfortheDSFchal-
lengerecodedusingtheproposedrewardfunctionstogether
withtheresultsachievedbyarandomagent(flow∼N(0,5)),
anullagent(flow=0),andanACT-Rmodel2(Halbrügge,
2010)aregiveninFigure1. Ofthethreeproposedreward
functions,‘weightedrelativeprogress’providesthebestfitto
theAITrequirementofbalancedrewards.

DiscussionandConclusions

Theaccumulatedrewardforthehumansampleprovidesinter-
estingevidenceaboutthedifferentdifficultyoftheninetask
conditions.Whilethefourmonotonousconditionsontheleft
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Thesourcecodeofthecognitivemodelisavailablefordown-
loadathttp://dx.doi.org/10.14279/depositonce-5163
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Figure1:AveragerewardintheDSFtaskafterrecodingusing
thethreeproposedrewardfunctions.Boxplots:HumanData.
Squares:NullAgent(noaction).Crosses:RandomAgent.
Triangles:ACT-Rmodel(Halbrügge,2010).

(Lin-toNonL+)areallcomparativelyeasy,thedelaycondi-
tionsareveryhard.IntheDel3condition,themedianofthe
humansampleisclosetorandomperformance.Thedifficulty
ofthesequenceconditionsliesbetweenthemonotonousand
thedelayconditions.
Theperformanceofbothhumansandthemodelwillbe

comparedtothecomputationalcomplexityoftherespective
environments.Then,themodelsthathadenteredthecom-
petitioncanbeevaluatedwithrespecttotheirintelligenceas
opposedtotheirfittothehumandata.3Suchanevaluation
shouldconsiderthecomputationalcomplexityofthemod-
elsaswell(Halbrügge,2007).Complexitymetricsbasedon
thesourcecodecouldbeaccompaniedbyModelFlexibility
Analysis(Veksler,Myers,&Gluck,2015),whichtriestoes-
timatetherangeofpossiblemodelbehaviorthroughsimula-
tion(seealsoGluck,Stanley,Moore,Reitter,&Halbrügge,
2010).TogetherwiththeAITformalism,thiscouldleadtoa
newevaluationcriterionthatwouldbecomplementarytofit
measureslikeR2andRMSEandcouldalsoprovideastepto-
wardsreunitingthefieldsofcognitivemodelingandartificial
(general)intelligence.

3Especiallythedelayconditionsoftenleadtooscillatingstock
levels,whichrendersaveragingacrossparticipantsquestionable.
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