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Abstract

Cognitive models are usually evaluated based on their fit to
empirical data. Artificial intelligence (AI) systems on the other
hand are mainly evaluated based on their performance. Within
the field of artificial general intelligence (AGI) research, a new
type of performance measure for AGI systems has recently
been proposed that tries to cover both humans and artificial
systems: Anytime Intelligence Tests (AIT; Herndndez-Orallo
& Dowe, 2010). This paper explores the viability of the AIT
formalism for the evaluation of cognitive models based on data
from the ICCM 2009 “Dynamic Stocks and Flows” modeling
challenge.
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Introduction

Cognitive modeling as a field, although being rooted in Al,
has diverged from Al research in recent years because both
fields pursue different goals. While modelers try to under-
stand human behavior by creating systems that act as human-
like as possible, Al researchers strive for systems that act as
perfect as possible, or in Legg and Hutter (2007)’s words:
universal intelligence. At the same time, parts of the cog-
nitive modeling community are suggesting to direct the field
towards more generic models of human behavior (“cognitive
supermodels”; Salvucci, 2010) as opposed to task-specific
models. Such supermodels did not come into existence yet,
but given the methodological advances in the Al field, it may
be worthwhile to think about how the abilities (i.e., intelli-
gence) of generic cognitive models should be evaluated. A
promising approach to this question are anytime intelligence
tests (AIT; Hernandez-Orallo & Dowe, 2010).

Anytime Intelligence Tests

These intelligence tests are crossing the boundaries between
the modeling and the Al field because they are targeting both
biological and artificial systems. Based on the work of Legg
and Hutter (2007), they intend to measure intelligence of an
agent (i.e., ‘model’ in the terms of the ‘other’ field) as the ac-
cumulated amount of reward! r it receives through interaction
with a set of (deterministic) environments of varying (compu-
tational) complexity. The validity of this accumulated reward
is achieved through several means: a) The reward is bound
to the range [-1;1]; b) All environments must be balanced,

INote: In reinforcement learning, reward functions are a cru-
cial part of the learning agents themselves (Singh, Lewis, & Barto,
2009). In the context of this paper, rewards come from an external
‘critic’ and were not available to the agents (i.e., human participants
and cognitive models) during exploration and learning.

i.e., arandom agent will on average receive a reward of zero;
and c) The aggregated reward is scaled by the computational
complexity of the transition function of the environment. An
example of such an intelligence test that was applied to both
humans and Al agents can be found in Insa-Cabrera, Dowe,
Espaifia-Cubillo, Hernandez-Lloreda, and Herndndez-Orallo
(2011).

Besides the construction of new environments that follow
the AIT formalism, one can try to analyze published data and
models from the literature. This way, potential insights from
the AIT procedure can be compared to fit-based evaluations
that have been performed before. It is often possible to trans-
form existing tasks into AIT environments by constructing
new reward functions for the tasks.

Dynamic Stock and Flow Task

A promising candidate for such a reward reconstruction is the
Dynamic Stock and Flow task (DSF; Dutt & Gonzalez, 2007)
that has been used for the modeling challenge of the same
name (Lebiere, Gonzalez, & Warwick, 2009). The task for
this challenge was to maintain the level (i.e., stock) in a wa-
ter tank at a given target value in the presence of dynamically
changing water in- or outflow from an external source. There
were four training conditions with monotonously changing
inflow (Lin-, Lin+, NonL-, NonL+) and five transfer condi-
tions. Two of these featured linearly increasing inflow (like
Lin+), but the agents’ actions were delayed by one (Del2) or
two (Del3) additional time steps. The remaining conditions
featured two (Seq2, Seq2Nos) or four (Seq4) time steps long
repeating sequences of inflow; in case of Seq2Nos the pat-
tern was masked by additional noise. The evaluation of the
models in the competition was based on the goodness-of-fit
to human data in all nine conditions. The crucial variable for
this fit was the time-dependent water level.

Besides convenience (i.e., availability of data and models),
the DSF task is especially suited as an AIT because it is deter-
ministic and open-ended (in contrast to, e.g., robotic soccer),
and the computational complexity of the environment should
be both easily scalable and easily quantifiable. Whether and
how this task can be transformed to an AIT will now be re-
viewed regarding possible reward functions for the task. The
question of the complexity of the different task conditions
will be discussed in a later contribution.

Possible Reward Functions

In the following, r; denotes the reward for time step ¢, amount,
denotes the water level for ¢, env, the external inflow for 7, and
goal denotes the target water level.
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Scaled Absolute Difference. For every time step, the ab-
solute difference to the target water level is multiplied with
some constant ¢ and mapped to the range from -1 to 1.

r; = max(—1, 1 — clamount; — goall|)

This is the most straightforward solution with the highest
face-validity. The agent’s proximity to the target level is
represented very well. On the other hand, ¢ is arbitrary.
Most problematic is that the function is not balanced. Be-
cause all task conditions feature external water inflow, ran-
dom agents would receive an accumulated reward close to
the lower boundary of -1.

Relative Progress. A balanced environment could be cre-
ated by concentrating on the relative progress to the target
level. The most simple option is a binary decision whether
the water level has improved.

r_{l
N .

This solution has the downside of the current water level be-
ing underrepresented. Getting from anywhere to the exact
target level would be as good as getting an arbitrarily small
amount closer to it. At the same time, environments with ex-
ternal in- or outflow would still not result in random agents
receiving a reward of zero.

if |amount; — goal| < |amount,_1 — goal|
otherwise

Relative Progress with Weighting. This can be solved us-
ing the following rationale: A perfect agent would always
bring the water level to the goal amount in the next step.
If this maps to a reward of 1 and no action maps to 0, then
the agent should be awarded a reward that is proportional to
the stock change made by the agent compared to the two ex-
tremes. The result is clipped at -1 in order to stick to the
properties of AIT.

|amount, — goal|

r; = max(—1 )

’ lamount,_; + env; — goal |

Boxplots of the human data collected for the DSF chal-
lenge recoded using the proposed reward functions together
with the results achieved by a random agent (flow ~ N(0, 5)),
a null agent (flow = 0), and an ACT-R model? (Halbriigge,
2010) are given in Figure 1. Of the three proposed reward
functions, ‘weighted relative progress’ provides the best fit to
the AIT requirement of balanced rewards.

Discussion and Conclusions

The accumulated reward for the human sample provides inter-
esting evidence about the different difficulty of the nine task
conditions. While the four monotonous conditions on the left

2The source code of the cognitive model is available for down-
load at http://dx.doi.org/10.14279/depositonce-5163
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Figure 1: Average reward in the DSF task after recoding using
the three proposed reward functions. Boxplots: Human Data.
Squares: Null Agent (no action). Crosses: Random Agent.
Triangles: ACT-R model (Halbriigge, 2010).

(Lin- to NonL+) are all comparatively easy, the delay condi-
tions are very hard. In the Del3 condition, the median of the
human sample is close to random performance. The difficulty
of the sequence conditions lies between the monotonous and
the delay conditions.

The performance of both humans and the model will be
compared to the computational complexity of the respective
environments. Then, the models that had entered the com-
petition can be evaluated with respect to their intelligence as
opposed to their fit to the human data.> Such an evaluation
should consider the computational complexity of the mod-
els as well (Halbriigge, 2007). Complexity metrics based on
the source code could be accompanied by Model Flexibility
Analysis (Veksler, Myers, & Gluck, 2015), which tries to es-
timate the range of possible model behavior through simula-
tion (see also Gluck, Stanley, Moore, Reitter, & Halbriigge,
2010). Together with the AIT formalism, this could lead to a
new evaluation criterion that would be complementary to fit
measures like RZ and RMSE and could also provide a step to-
wards reuniting the fields of cognitive modeling and artificial
(general) intelligence.

3Especially the delay conditions often lead to oscillating stock
levels, which renders averaging across participants questionable.
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